

Scalable Parallel Programming
with CUDA

John Nickolls, Ian Buck, Michael Garland and Kevin Skadron

Presentation by Christian Hansen

Article Published in ACM Queue, March 2008

Outline

● About the Authors
● Hardware Platform
● What is CUDA?
● Programming in CUDA
● GPGPU/MC Programming Approaches
● Conclusion

About the Authors

● John Nickolls
– Director of Architecture at NVIDIA
– MS and PhD degrees in electrical engineering

from Stanford University
– Previously at Broadcom and Sun Microsystems

● Ian Buck
– GPU-Compute Software Manager at NVIDIA
– PhD in computer science from Stanford
– Has previously worked on Brook

About the Authors

● Michael Garland
– Research scientist at NVIDIA
– PhD in computer science at Carnegie Mellon

University
● Kevin Skadron

– Associate Professor of Computer Science at the
 University of Virginia, but currently at sabbatical
at NVIDIA Research

– PhD in Computer Science from Princeton
University

Hardware Platform

● GPU vs. CPU
– GPU: Few instructions but very, very fast execution

 Uses very fast GDDR3 RAM
– CPU: Lots of instructions, but slower execution

 Uses slower DDR2 or DDR3 RAM (but has direct
 access to more memory than GPUs)

Hardware Platform

What is CUDA?

● CUDA is a minimal extension to C and C++ (like CILK,
but not quite as easy)

● A serial program calls parallel kernels that may be a
function or a full program

● Function type qualifiers
– __device__, __global__, __host__

● Value type qualifiers
– __device__, __constant__, __shared__

What is CUDA?

● Kernels execute over a set of parallel threads
● Threads are organized in a hierarchy of grids of thread

blocks
● Blocks can have up to 3 dimensions and contain up to

512 threads
– Threads in blocks can communicate

● Grids can also have up to 3 dimensions and 65,536²
blocks

– No communication between blocks

What is CUDA

Programming in CUDA

● Computing y <- ax + y with a Serial
Loop

void saxpy_serial(int n, float
 alpha, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

● Computing y <- ax + y in parallel
using CUDA

__global__
void saxpy_parallel(int n, float
 alpha, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x +
 threadIdx.x;
 if(i<n) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel
(256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks,
 256>>>(n, 2.0, x, y);

Programming in CUDA

Other Applications

● Lots of different examples on nvidia.com
– Examples are image analysis (e.g. facial recognition), MRI

mapping, ray tracing, neural networks, and molecular
dynamics simulation

– Speed-ups from 1.3x (numerical weather prediction) to
250x (graphic-card cluster for astrophysics simulations)

N-Body Simulation

GPGPU/MC Approaches

● OpenCL
● CTM
● RapidMind

Conclusion

● Extremely high (and cheap) processing power
– 8800GTS: 640 GFLOP/s
– Core2Duo 2.66GHz: 17 GFLOP/s
– Core2Quad 3GHz (3,500kr): 43 GFLOP/s
– 2 x 8800GT(2,000kr): 1 TFLOP/s
– 8600GTM: 30 GFLOP/s

Conclusion

● Is GPGPU taking over multi-core CPUs?
– No (not yet, anyway)

● GPGPU programming has some problems
– Only applicable to large applications (or so it seems)
– When is it worth it to do it on the GPU?
– Possible problems with optimization
– Most programmers not used to working with GPUs

● Many rumors in the press on unified CPU and GPU in
the future, but nothing confirmed yet.

Presenters Opinion

● Nice article, well written
● Gives good insight into what CUDA is, but the hardware

description is lacking
● Good sales speech, does not mention possible

problems with CUDA

All Done

● Thank you

