Scalable Parallel Programming
with CUDA

Ichael Garland and Kevin Skadron

. March 2008

* About the Authors

« Hardware Platform
What is CUDA?
Programming in CUDA

ming Approaches

Outline

 John Nickolls

— Director of Architecture at NVIDIA

- MS and PhD degrees in electrical engineering
from Stanford University

- Previously at Broadcom and Sun Microsystems
* lan Buck

e Manager at NVIDIA
m Stanford

About the Authors

 Michael Garland

— Research scientist at NVIDIA

- PhD in computer science at Carnegie Mellon &
University '

 Kevin Skadron

sor of Computer Science at the
la, but currently at sabbatical

Princeton

About the Authors

- GPUvs. CPU

- GPU: Few instructions but very, very fast execution
Uses very fast GDDR3 RAM
- CPU: Lots of instructions, but slower execution

Uses slower DDR2 or DDR3 RAM (but has direct
access to more memory than GPUs)

Hardware Platform

| host CPU l R TR S oA L
2] T b i A% p—— . system memory I*_
" : f; ¥ :

compute work
distribution

pixel work
distribution

vertex work
distribution

texture texture texture texture texture texture
unit unit unit unit unit unit

interconnection network

Hardware Platform

« CUDA is a minimal extension to C and C++ (like CILK,
but not quite as easy)

* A serial program calls parallel kernels that may be a
function or a full program

* Function type qualifiers

What 1Is CUDA?

« Kernels execute over a set of parallel threads

 Threads are organized in a hierarchy of grids of thread
blocks

* Blocks can have up to 3 dimensions and contain up to
512 threads

an communicate

Imensions and 65,5362

What 1Is CUDA?

per-block | 3
shared

global
memory
- -‘1. ;L

What 1S CUDA

« Computing y <- ax + y with a Serial « Computing y <- ax +y in parallel

Loop using CUDA
void saxpy_serial(int n, float __global

alpha, float *x, float *y) void saxpy_parallel(int n, float
{ alpha, float *x, float *y)

for(int i = 0; i<n; ++i) {

y[i] = alpha*x[i] + y[i]; Int i = blockldx.x*blockDim.x +

} threadldx.x;

if(i<n) y[i] = alpha*x[i] + VI[i];
}

Il Invoke parallel SAXPY kernel
(256 threads per block)

t nblocks = (n + 255) / 256;

y parallel<<<nblocks,
6>>>(n, 2.0, X, Y);

Programming in CUDA

i

block 0.0 | block 1.0 block 2.0

|

A2

Sl 0 L |)

Eaul

thread 1.0 thread 2,0 thread 3,0

thread 0.1 thread 1,1 thread 2.1 thread 3,1 |thread 4.1

AR NI

thread 1.2 thread 2,2 thread 3,2 thread 4.2

1 ,

¥ ¥ = e r i Y

inter-kernel synchronization barrier |

Y e
thread 4 = thread &

AR
Programming in CUDA

 Lots of different examples on nvidia.com

- Examples are image analysis (e.g. facial recognition), MRI
mapping, ray tracing, neural networks, and molecular
dynamics simulation

— Speed-ups from 1.3x (numerical weather prediction) to
250x (graphic-card cluster for astrophysics simulations)

Other Applications

Foint Size ™
Velocity ‘Damping
softening Factor *
Time Step '
Clustetr,Scale
Velodity Scels

N-Body Simulation

* OpenCL
- CTM
* RapidMind

GPGPU/MC Approaches

« Extremely high (and cheap) processing power

- 8800GTS: 640 GFLOP/s
— Core2Duo 2.66GHz: 17 GFLOP/s
- Core2Quad 3GHz (3,500kr): 43 GFLOP/s
- 2 x 8800GT(2,000kr): 1 TFLOP/s
P/s

Conclusion

* |s GPGPU taking over multi-core CPUs?
- No (not yet, anyway)
 GPGPU programming has some problems

- Only applicable to large applications (or so it seems)

- When is it worth it to do it on the GPU?

with optimization

d to working with GPUs

Ifled CPU and GPU in

Conclusion

* Nice article, well written

e Gives good insight into what CUDA is, but the hardware
description Is lacking

* Good sales speech, does not mention possible
problems with CUDA

Presenters Opinion

e Thank you

All Done

