
Testing Real-Time Embedded Systems
Using UppAal-TRON

-Tool and Application

Kim G. Larsen, Marius Mikucionis,
Brian Nielsen, Arne Skou

{kgl | marius | bnielsen | ask}@cs.aau.dk

Aalborg University, DK

3

Traditional Software
Development

The Waterfall Model

Analyse

Design

Implementation

Testing♦Costly in time-to-market and money
♦ Errors are detected late or never
♦ Application of FM’s as early as possible

Problem
Area

Ru
nn

ing

Sy
ste

m

RE
VI

EW
S

RE
VI

EW
S

4

Models
A model is a simplified representation of the real
world.
Engineers use models to gain confidence in the
adequacy and validity of a proposed design.
Focus on one or more aspects of interest:

Safety
Liveness
Peak time
Performance

5

Model-based Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

FORMAL M
ETHODS

Implementation
Testing

UML

Monitoring

6

Model-based Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

FORMAL M
ETHODS

Implementation
Testing

UML

Monitoring

Automatic
Code generation

7

Model-based Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

FORMAL M
ETHODS

Implementation
Testing

UML

Monitoring

Automatic
Code generation

Automatic
Test generation

8

Model-based Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

FORMAL M
ETHODS

Implementation
Testing

UML

Monitoring

Automatic
Code generation

Automatic
Test generation

Automatic
Monitoring
generation

9

How?
Unified Model = State Machine! +
Tools for analysis of state machines

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports

10

Real-Time Systems

Environment Controller

Real Time System
A system where correctness not only depends on the logical order of events but
also on their timing

sensors

actuators

Task
Task

Task
Task

System
Model

Environment
Model

Output

Input

Σ

Modelling &
Abstraction

11

Timed Automata
I/O Timed Automata =FSM +

input? and output! actions
(discrete) data variables
(dense) clocks
guards and location invariants
assignments

Clocks are special timed
variables
General form:

transition may fire if the guard is
true, the action is ready, and
then perform the assignment
location must be left before its
invariant is violated

Parallel Composition of TAs

guard,
action,
assignment

(Invariant)

output action

guard

invariant

(clock) assignment

12

Timed Automata: Example

guard

reset-set

location

a

action

X:=0

13

Timed Automata: Example

a
a a

guard

reset-set

location

a

action

X:=0

14

Timed Automata: Example

3≤x a

Invariant

X:=0

15

Timed Automata: Example

3≤x a a a a

Invariant

X:=0

16

Sample Test Runs

INFINITELY MANY SEQUENCES!!!!!!

highTemp!·3·compressorOn? ⇒ PASS

highTemp!·3·compressorOn?·123·lowTemp!·3·compressorOff? ⇒ PASS

highTemp!·3·compressorOff? ⇒ FAIL

highTemp!·13·compressorOn? ⇒ FAIL

highTemp!·3·compressorOn?·17·lowTemp!·3·compressorOff?·3.14·
highTemp!·5·compressorOn?·177·lowTemp!·3·compressorOff? ⇒ PASS

17

The UPPAAL Model
= Networks of Timed Automata + Integer Var
+ Array Var + ….

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….
Two-way synchronization
on complementary actions.

Closed Systems!

Two-way synchronization
on complementary actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..) (l2,m2,……..,x=0, y=3.5, i=7,…..)

(l1,m1,………,x=2.2, y=3.7, I=3,…..)
0.2

tau

Example transitions

If a URGENT CHANNEL

18

Timed Automata in UPPAAL

Timed (Safety) Automata
+ urgent action channels
+ broadcast action channels
+ urgent and committed locations
+ data-variables (with bounded domains)
+ arrays of data-variables + constants
+ guards and assignments over data-variables
and

arrays…
+ templates with local clocks, data-variables,
and

constants.

20

Timed Automata in UPPAAL

n

m

a

x<=5 & y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: ≤<=

clock natural number and

}!,,,,,{
},,,,{

::
|::

,||::

=>>==<=<∈
>>==<=<∈

=
+=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

p

pp

nx =:

clock guards

data guards

clock assignments

clock assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

location invariants

21

Urgent Channels

urgent chan hurry;

Informal Semantics:
• There will be no delay if transition with urgent action can
be taken.

Restrictions:
• No clock guard allowed on transitions with urgent actions.
• Invariants and data-variable guards are allowed.

22

Urgent Locations

Click “Urgent” in State Editor.

Informal Semantics:
• No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

23

Committed Locations

Click “Committed” in State Editor.

Informal Semantics:
• No delay in committed location.
• Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
clocks in a model, and allows for more space and time efficient
analysis.

24

Urgent and Committed
Locations

m

n

o

2≥x

!a

0:=x

p

q

r

?a

)0,|(

)0,|(

)5.2,|(

)5.2,|(

)0,|(

=

=

=

=

=

xro

xqo

xqn

xpm

xpm
2.5

a)5.2,|(=xrn

)5.2,|(dxqn +=

)5.2,|(dxqo +=

com
mitte

d

urge
nt

d

d

25

Tool Support (model checking)

System Description A

Requirement F Yes,
Prototypes
Executable Code
Test sequences

No!
Debugging Information

Tools: UPPAAL, visualSTATE, ESTEREL,
SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,Telelogic…

TOOLTOOL

26

UPPAAL Property Specification
Language

A[] p
A<> p

E<> p
E[] p
P --> q

clock guards
data guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
(p) | deadlock(only for A[],E<>)

27

Uppaal “Computation Tree Logic”

p

. . .

. . .

. . .

. . .

E<> p Possible

P

P P

. . .

. . .

. . .

. . .

A<> p inevitable

p

P

p

P P

p

. . .

. . .

. . .

. . .

A[] p

p

always

P

P

P

. . .

. . .

. . .

. . .

E[] p potentially always p --> q leads-to

p

. . .

. . .

q q q

. . .

. . .

. . .

28

Reachability Analysis

Passed:=Ø //already seen states
Waiting:={S_0} //states not examined yet
While(waiting!=Ø) {

Waiting:=Waiting\{s_i}
if s_i ∉ Passed

whenever (s_j → s_j) then
waiting:=waiting ∪ s_j

}

Depth First: maintain waiting as a stack

Breadth First: maintain waiting as a queue
(shortest counter example)

0

1

3

6 7 8 9

4 5

2

Order: 0 1 3 6 7 4 8 2 5 9

Order: 0 1 2 3 4 5 6 7 8 9

30

Home-Banking?

Are the accounts in balance after the
transactions?

int accountA, accountB; //Shared global variables
//Two concurrent bank costumers

Thread costumer1 () {
int a,b; //local tmp copy

a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;

}

Thread costumer2 () {
int a,b;

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

}

31

Uppaal Demo

33

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?
x:=0

click?
x<2

x>=2

DBLclick!

Automated Model-Based Testing

fail

pass

Test
execution

tool

Test
execution

tool
Event

mapping

Driver

Model Test suite

Test
Generator

tool

Test
Generator

tool

Implementation Relation

Selection &
optimization

Does the behavior of the (blackbox)
implementation comply to that of the specification?

Implementation
Under
Test

34

Test
Gene-
rator
tool

Test
Gene-
rator
tool

click?
x:=0

click?
x<2

x>=2

DBLclick!

input

Online Testing

fail

pass

Test
execution

tool

Test
execution

tool
Event

mapping

Driver

Model

Test
Generator

tool

Test
Generator

tool output

Implementation Relation

Selection &
optimization

•Test generated and executed
event-by-event (randomly), reactively

•Long Running, deep testing, imaginative

Implementation
Under
Test

inputinputinput

outputoutputoutput

35

Our Framework

•Complete and sound algorithm
•Efficient symbolic reachability algorithms
•UppAal-TRON: Testing Real-Time Systems Online
•Release 1.3 http://www.cs.aau.dk/~marius/tron/

Correct system behavior
•Test Oracle
•Monitor

•Relevant input event
sequences
•Load model

”Formal Relativized i/o conformance” Relation

•UppAal Timed Automata Network: Env || IUT

37

Sample Cooling Controller

IUT-model Env-model

On!

Off!

Low?

Med?

High?

Cr

38

Env. Modeling
Realism and Guiding

EL

EM

E1 E2

EL E2 E1 EM

Temp.

time

High!

Med!

Low!

EM Any action possible at any time
E1 Only realistic temperature variations
E2 Temperature never increases when cooling
EL No inputs (completely passive)

39

Implementation relation
Relativized real-time io-conformance

•i rt-iocoe s =def
•∀σ ∈ TTr(e): Out((e,i) after σ) ⊆ Out((e,s) after σ)

•i rt-iocoe s iff TTr(i) ∩ TTr(e) ⊆ TTr(s) ∩ TTr(e)

•Intuition, for all relevant environment behaviors
•never produces illegal output, and
•always produces required output in time

•~timed trace inclusion

•Let P be a set of states
•TTr(P): the set of timed traces from states in P
•P after σ = the set of states reachable after timed trace σ
•Out(P) = possible outputs and delays in P

System
Model

Environment
assumptions ε0’,o0,ε1’,o1…

ε0,i0,ε1,i1…e

IUT

s i

40

Sample Cooling Controller

IUT Env-model

On!

Off!

Low?

Med?

High?

EM

Cr

C’r rt-ioco EM
Cr

C’r

41

Sample Cooling Controller

IUT Env-model

On!

Off!

Low?

Med?

High?

C’r rt-ioco E1
Cr , iff 3d<r

d.Med?.d.High?.d.Med?.d.Low?.ε.On, ε≤r

E1

C’r

42

Sample Cooling Controller

IUT Env-model

On!

Off!

Low?

Med?

High?

C’r rt-ioco E2
Cr

E2

C’r

43

Randomized Online Algorithm
Algorithm TestGenExec (TestSpec) returns {pass, fail}

Z:={〈l0,0〉},
While Z ≠∅ and #iterations≤T do choose randomly

1. if EnvOutput(Z) ≠∅ // Offer an input
choose randomly a ∈ EnvOutput(Z)
send i to SUT
Z:=Z after a

2. choose randomly δ ∈ Delays(Z) // Delay and wait for output
Wait(δ)

if o occurred after δ’ ≤ δ then
Z:=Z after δ’

if o ∉ ImpOutput(Z) then return fail
Z:=Z after o

else // no output within δ time
Z:=Z after δ

3. reset IUT
Z:={〈l0,0〉}

if Z=∅ then return fail else return pass
•Sound
•Complete as T→∞

45

Non-Determinism

time

threshold
±err

switchOn!

switchOff!

T

•Modeling Action uncertainty
•A controller switches a relay when a control variable crosses
‘around’ threshold value

•Modeling Timing uncertainty
•A controller switches a relay between 2 and 10 time units

46

State-set computation
Compute all potential states the model can
occupy after the timed trace ε0,i0,ε1,o1,ε2,i2,o2,…

Let Z be a set of states
Z after a: possible states after executing a (and t*)
Z after ε :possible states after t* and εi , totaling a delay of ε

o is a legal output from SUT iff O in ImpOutput(Z)
a is a relevant input in Env iff I in EnvOutput(Z)

ε is a permitted delay iff Z after ε ≠∅
ε is a relevant delay iff Delays (Z)

47

State-set Computation
Compute all potential states the model can
occupy after the timed trace ε0,i0,ε1,o1,ε2,i2,o2,…
Let Z be a set of states

Z after a: possible states after executing a (and τ*)

Z after ε :possible states after τ* and εi , totaling a delay of ε

l0

x≤7, a

a

l3

l2

l1

l4
a,

x:=0

τ l0

τ, x:=0
l1

{ 〈l0,x=3〉 } after a =
{ 〈l2,x=3〉, 〈l4, x=3〉, 〈l3, x=0〉 }

{ 〈l0,x=0〉} after 4 =
{ 〈l0,x=4〉, 〈l1, 0 ≤ x ≤ 4〉 }

Represent state sets as sets of symbolic states
Use symbolic reachability
(similar to model checkers like UppAal)

48

Symbolic Reachability

49

Real-time Online
•Compute all states reachable after timed trace
•Maintain a set of symbolic states in real time!

Z2

Z4

Z0

Z1
Z3Z7

Z5

Z8

Z6
Z9

Z11

Z14

Z12

Z15Z18

Z17

Z16

Specification
TA-network

i!
2.75
O?

System
Under
Test

Online Tester:

[Tripakis’02, Krichen’04]

51

Danfoss EKC Case
Electronic Cooling Controller

Output Relays
•compressor relay
•defrost relay
•alarm relay
•(fan relay)
Display Output
•alarm / error indication
•mode indication
•current calculated temperature

Sensor Input
•air temperature sensor
•defrost temperature sensor
•(door open sensor)
Keypad Input
•2 buttons (~40 user settable
parameters)

•Optional real-time clock or LON network module

52

Industrial Cooling Plants

54

Basic Refrigeration Control

Time

setpoint

setpoint
+differential

highAlarm
Deviation

lowAlarm
Limit

highAlarm
Limit

lowAlarm
Deviation

differential

start
compressor

stop
compressor

start
compressor

stop
compressor

start
alarm

normal min restart
time not elapsed

min cooling
time not elapsed alarm delay

56

EKC Adaptation 1

Hardware+Physical I/O

Device drivers+kernel

Parameter DB
(shared variables)

Control Software

Test Interface

LON GW RS232

win32+OLE+VB

•AK-Online (PC SW)
•configuration
•supervision
•logging

•Read and write parameter “database”
•47 parameters

EKC Software Layering

57

Adaptor

EKC Adaptation 2

tcp/ipLON+rs232

win32+OLE+VB Solaris/Linux (C++)

TRON Engine

compressorOn

22.3 0 1 22.1 0 1

16.7 0 0 old copy

new copy

“continous” readout 2 readouts/s

setTemp(20)

“par#4=20.0”

Need better test interface!
•Read-only parameters
•Delay and synchronization

59

Temperature Tracking
Temperature

Time

“periodic” weighted average:
5

4*1 sampledn
n

TT
T

+
= −

EKC calculated temperature

Model calculated temperature
Error/uncertainty envelope

tolerance in sampling time

tolerance in value computation

compressorOn!

60

Main Model Components
18 concurrent timed automata
14 clocks, 14 integers

Output

Input

IUT-Model

alarm
Relay

compressor
Relay

tempMeasurement

compressor

newTempnewTemp

on/off on/off

Environment

TemperatureGenerator

defrost
Relay

defrost

autoDefrost

on/off

defrostEventGen

alarm
Display

on/off

highTempAlarm

61

Reverse Engineering
Unclear and incomplete specifications
Method of Working

1. Formulate hypothesis model
2. Test
3. FAIL-verdict ⇒ Refine model
4. (PASS) ⇒ Confirm with Danfoss

Detects differences between actual and
modeled behavior
Indicates promising error-detection
capability
4 examples

62

Ex1: Control Period
Control actions issued when
”calculatedTemp” crosses thresholds

No requirements on period given
Tested to be 1.2 seconds

“periodic” weighted average:
5

4*1 sampledn
n

TT
T

+
= −

63

Ex2: High Alarm Monitor v1

Clearing the alarm do not switch off alarm state, only alarm relay

64

Ex2: High Alarm Monitor v2

•Add HighAlarmDisplay action
•Add location for “noSound, but alarmDisplaying”
•(Postpone alarms after defrosting)

65

Ex3: Defrosting and Alarms
When defrosting the temperature rises
Postpone high temperature alarms during
defrost
System parameter alarmDelayAfterDefrost
Several Interpretations

1. Postpone alarmDelayAfterDefrost+alarmDelay after
defrost?

2. Postpone alarmDelayAfterDefrost+alarmDelay after
highTemp detected?

3. Postpone alarmdelayAfterDefrost until temperature
becomes low; then use alarmDelay

Option 3 applies!

66

Ex4: Defrost TimeTolerance
Defrost relays engaged earlier and
disengaged later than expected
Assumed 2 seconds tolerance
Defrosting takes long time
Implementation uses a low resolution
timer (10 seconds)

67

Example Test Run
(log visualization)

1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

setTemp
modelTemp
ekcTemp
CON
COFF
AON
AOFF
alarmRst
HADOn
HADOff
DON
DOFF
manDefrostOn
manDefrostOff

defrostOff?

alarmOn!
alarmDisplayOn!

resetAlarm?
AOFF!

HighAlarmDisplayOff!

manualDefrostOn?
COFF!
DON!

compressorOn!

//defrost complete
DOFF!
CON!

Testing=Environment
emulation+monitoring

71

Testing

Correct system behavior
•Test Oracle
•Monitor

•Relevant input event
sequences
•Load model

”Formal Relativized i/o conformance” Relation

•Replace Systems Real Environment by Tester
•Tester provides inputs
•Tester observes outputs

i

o

72

Environment Emulation

”Formal Relativized i/o conformance” Relation

i

o

∅

Compute inputs from environment model
Relevant input event sequences
Load model

Feedback or one-way
Outputs may go to real-system

o

73

Monitoring

”Formal Relativized i/o conformance” Relation

∅

Passively check communication between system
and its real environment

check system behavior
Passive Testing

oi

74

Conclusions
Can accurately model EKC-like devices
Can create models suitable for online testing
Complete and detailed model not required

Select aspects
Abstraction

MBT feasible even if specification is incomplete/unclear
Promising error-detection capabilities

Differences between actual and specified behavior in
industrial case
Academic mutation studies

Excellent performance
Very non-deterministic models causes very large state-
sets which can become a computational bottleneck
Real-time synchronization of IUT and tester is problematic

75

Touch-Sensitive Light-
Controller

•Patient user: Wait=∞
•Impatient: Wait=15

76

Touch-sensitive Light-
Controller Model

User/ENV Interface
switch

Dimmer

grasp!

release!

touch!

Level!

light controller model

hold!

endhold!

77

Demo

78

END

A tool for
scheduling,

optimization,
and synthesis

of real-time & embedded
control programs

CORACORACORA

82

Scheduling & Planning

Constraints:
Max 2 persons on the boat
Mom not alone with boys
Dad ont alone with girls
Thief not alone with family
Only police, dad and mom

can handle the boat

Help the family to get to the
safe side.

83

Scheduling & Planning
Solve

Scheduling Problem
using UPPAAL

Solve
Scheduling Problem

using UPPAAL

Constraints

84

Scheduling & Planning

UPPAAL provides the ScheduleUPPAAL provides the Schedule

85

Linearly Priced Timed Automata:

Timed Automata + Costs on transitions and locations.
Cost of performing transition: Transition cost.
Cost of performing delay d: (d x Location
cost).

(a,x=y=0) (b,x=y=0) (b,x=y=2.5)
ε(2.5)

(a,x=0,y=2.5)
4 2.5 x 2 0

• Cost of Execution Trace: Sum of costs: 4 + 5 + 0 = 9

•
Trace:

b

x<3

y>2, x<2

x<3

{x:=0}a c

cost’=1

cost+=4
cost’=0

cost’=2

86

Linearly Priced Timed Automata:

Timed Automata + Costs on transitions and locations.
Cost of performing transition: Transition cost.
Cost of performing delay d: (d x Location
cost).

(a,x=y=0) (b,x=y=0) (b,x=y=2.5)
ε(2.5)

(a,x=0,y=2.5)
4 2.5 x 2 0

• Cost of Execution Trace: Sum of costs: 4 + 5 + 0 = 9

•
Trace:

b

x<3

y>2, x<2

x<3

{x:=0}a c

cost’=1

cost+=4
cost’=0

cost’=2

Problem :

Find the minimum cost of reaching location c Problem :

Find the minimum cost of reaching location c

87

Example
Prices

88

Example (execution)

89

Example (min-cost)

95

SIDMAR Steel Production Plant
Gent, Belgium

96

SIDMAR Steel Production Plant

In LEGO MindStorm

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

97

SIDMAR Overview
Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

104

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

A Single Load

UPPAAL Model

105

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

A Single Load

UPPAAL Model

106

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

A Single Load

UPPAAL Model

107

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

Crane B

108

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

Crane B

109

SIDMAR Modelling

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5

Buffer

Continuos
Casting Machine

Storage Place

Crane B

Crane A

Lane 1

Lane 2

Crane B

110

Modus Operandi

Physical Plant

Plant Model Trace

Program

3. Synthesise
program.

1. Model plant as
networks of
timed automata.

2. Reformulate
schuling as reachability
and apply UPPAAL .

4. Execute
program.

111

Extracting Programs

Trace
...
(loadB1.p1 recipeB1.gotoT1

loadB2...
{ loadB1.x=5 recipeB1.tot=5

recipeB1…
Sync: b1right
(loadB1.pre recipeB1.gotoT1

loadB2…
{ loadB1.x=5 recipeB1.tot=5

recipeB1…
delay(5)
(loadB1.pre recipeB1.gotoT1

loadB2…
{ loadB1.x=10 recipeB1.tot=10

recipe…
Sync: B1M1on
(loadB1.onM1 recipeB1.onT1

loadB2…
{ loadB1.x=0 recipeB1.tot=10

recipe…
delay(10)
(loadB1.onM1 recipeB1.onT1

loadB2…

Schedule
...

belt1 right

delay 5

load B1 on Machine 1

delay 10

load B1 off Machine 1
...

Program
...

// Belt Unit 1 move RIGHT
PB.SendPBMessage 2, 20

// Delay 5
PB.Wait 2, 500

// Machine 1 START
PB.SendPBMessage 2, 23

// Delay 10
PB.Wait 2, 100

// Machine 2 STOP
PB.SendPBMessage 2,24
...

1971 lines of RCX code (n=5),
24860 - “ - (n=60).

112

Example: Aircraft Landing

cost

t
E LT

E earliest landing time
T target time
L latest time
e cost rate for being early
l cost rate for being late
d fixed cost for being late

e*(T-t)

d+l*(t-T)

Planes have to keep separation
distance to avoid turbulences
caused by preceding planes

Runway

113

Example: Aircraft Landing

Planes have to keep separation
distance to avoid turbulences
caused by preceding planes

land!
x >= 4

x=5

x <= 5
x=5

x <= 5

land!

x <= 9
cost+=2

cost’=3 cost’=1

4 earliest landing time
5 target time
9 latest time
3 cost rate for being early
1 cost rate for being late
2 fixed cost for being late

Runway

114

Aircraft LandingSource of examples:
Baesley et al’2000

115

Ressource Optimal Scheduling
Compute : (D * (C * (A + B)) + ((A + B) + (C * D))

+

*

+ *

+

*

On 2 processors
P1 (fast) P2 (slow)

3
s*

2
s+

7
s*

5
s+

time

P1
P2

5 10 15 20 25

2

3

6

4

5

1

1

2 3 65

4

13 sec’s !!

116

Ressource Optimal
Scheduling

Compute : (D * (C * (A + B)) + ((A + B) + (C * D))

+

*

+ *

+

*

On 2 processors
P1 (fast) P2 (slow)

3
s*

2
s+

7
s*

5
s+

time

P1
P2

5 10 15 20 25

2

3

6

4

5

1

1

2

3 65 4

12 sec’sOPTIMAL !!

But what about
energy

consumption
?!?!

117

Ressource Optimal
Scheduling

Compute : (D * (C * (A + B)) + ((A + B) + (C * D))

+

*

+ *

+

*

On 2 processors
P1 (fast) P2 (slow)

3
s*

2
s+

7
s*

5
s+

time

P1
P2

5 10 15 20 25

2

3

6

4

5

1

1

2

3 65 4

Energy : 9
W

In
use

1
WIdle

3
W

In
use

2
WIdle

Energy use:
139 Joule !!

118

Ressource Optimal
Scheduling

Compute : (D * (C * (A + B)) + ((A + B) + (C * D))

+

*

+ *

+

*

On 2 processors
P1 (fast) P2 (slow)

3
s*

2
s+

7
s*

5
s+

time

P1
P2

5 10 15 20 25

2

3

6

4

5

1

1

2

3

65

4

Energy : 9
W

In
use

1
WIdle

3
W

In
use

2
WIdleEnergy used:

132 JouleOPTIMAL !!

But how to solve
the problem in

practise ?!?!

119

Use UPPAAL Cora

120

Application: Dynamic Voltage
Scaling

UPPAAL Cora Energy Optimal Schedule

123

More Information

www.cs.aau.dk/~behrmann/cora

