
� �

UPPAAL in a Nutshell

Kim G� Larsen�� Paul Pettersson�� and Wang Yi�

Department of Computer Science and Mathematics� Aalborg University� Denmark� Email� kgl�cs�auc�dk
Department of Computer Systems� Uppsala University� Sweden� Email� fpaupet�yig�docs�uu�se

Abstract� This paper presents the overall structure� the
design criteria� and the main features of the tool boxUp�
paal� It gives a detailed user guide which describes how
to use the various tools of Uppaal version ���� to con�
struct abstract models of a real�time system� to simulate
its dynamical behavior� to specify and verify its safety
and bounded liveness properties in terms of its model�
In addition� the paper also provides a short review on
case�studies where Uppaal is applied� as well as refer�
ences to its theoretical foundation�

� Introduction

Uppaal is a tool box for modeling� simulation and veri��
cation of real�time systems� based on constraint	solving
and on�the�
y techniques� developed jointly by Uppsala
University and Aalborg University� It is appropriate for
systems that can be modeled as a collection of non�
deterministic processes with �nite control structure and
real�valued clocks� communicating through channels and
�or� shared variables ��
� ���� Typical application areas
include real	time controllers and communication proto�
cols in particular� those where timing aspects are critical�
It is designed mainly to check invariant and reachability
properties by exploring the state	space of a system� i�e�
reachability analysis in terms of symbolic states repre�
sented by constraints�

The two main design criteria for Uppaal have been e��
ciency and ease of usage� The restriction to reachability
analysis has been crucial to the e�ciency of the Up�

paal model�checker� Another important key to e�ciency
is the application of on�the��y searching technique com�
bined with the symbolic technique that reduces veri�ca�
tion problems to that of manipulating and solving sim�
ple constraints ��
� ���� To facilitate modeling and de�
bugging� the Uppaal model	checker may automatically

generate a diagnostic trace that explains why a property
is �or is not� satis�ed by a system description� The di�
agnostic traces generated by the model	checker may be
graphically visualized using the simulator�

Since its �rst release in �����Uppaal has been applied in
a number of case studies �see Section � for a summary��
To meet requirements arising from the case studies� It has
been extended with various features� The current version
of Uppaal is implemented in C��� XForms and Mo�

tif� This paper is devoted to an informal presentation of
Uppaal� We present the semantics model implemented
in Uppaal� its various features� review and provide ref�
erences on the theoretical foundation and applications to
case	studies� We also provide a detailed user guide� The
paper is organized as follows�

Section � describes the overall structure and the main
components of Uppaal� Section � is an informal pre�
sentation of the syntax and semantics of the Uppaal
model� Section � presents the logic and the kernel of the
model�checking algorithm of the Uppaal model�checker�
Section � serves as a user guide� describing in details how
to use the various tools of Uppaal� Section � concludes
the paper with a brief description on recent and possible
future development of Uppaal�

� Overview of UPPAAL

An overview of Uppaal is shown in Figure �� In this
section we brie
y describe the main features of Uppaal�

Uppaal consists of three main parts� a description lan�
guage� a simulator and a model�checker� The description
language is a non�deterministic guarded command lan�
guage with data types�� It serves as a modeling or de�
sign language to describe system behavior as networks of

� Currently� only integer and clock with restricted forms of
operations are implemented�

� Kim G� Larsen et al�� UPPAAL in a Nutshell

.ta

HyTech

animator

display

atg2ta

trace

graphic

simta

atg2hy

A
u
t
o
g
r
a
p
h

.atg

diagnostic
trace

.q

simulator
random

graphical

generator

checkta forward
analysis

solvers
constraint

hs2ta

verifyta

‘‘yes’’

‘‘no’’

trace
execution

Fig� �� Overview of Uppaal

timed automata extended with data variables� The simu�
lator and the model	checker are designed for interactive
and automated analysis of system behavior by manipu�
lating and solving constraints that represent the state	
space of a system description� They have a common ba�
sis� i�e� constraint	solvers� The simulator enables exami�
nation of possible dynamic executions of a system during
early modeling �or design� stages and thus provides an
inexpensive mean of fault detection prior to veri�cation
by the model�checker which covers the exhaustive dy�
namic behavior of the system�

��� Modeling

To facilitate modeling� Uppaal provides both graphical
and textual formats for the description language� One
can use either the textual format or the Autograph�
based graphical user interface ���� to de�ne system de�
scriptions� namely networks of timed automata� As an
example� the textual representation of the graphical sys�
tem description in Figure � is shown in Figure ��

The textual format �i�e� �ta� provides a basic program�
ming language for timed automata� In certain cases� the
textual format can be more convenient �and faster� to
work with than the graphical interface� The compiler
atg�ta automatically transforms system description in
the graphical �atg	format into the textual �ta	format�
thus supporting the important principle WYSIWYV��

The Uppaal description language also supports mod�
eling of simple linear hybrid automata� that is� timed
automata with clocks whose rates may vary in a certain
interval ����� This extension of timed automata is useful
for modeling of hybrid systems where the behavior of the
system variables can be described or approximated using
lower and upper bounds on their rates� Using abstrac�
tion techniques� this class of linear hybrid system can

� What You See Is What You Verify�

be transformed into timed automata and thus be veri�
�ed using the techniques available for timed automata�
implemented in Uppaal� Uppaal allows linear hybrid
automata where the rates of clocks are given by an inter�
val� Philips Audio�Control Protocol of ��� is an example
of such a linear hybrid systems�

��� Analysis

Model�Checking�The model	checker is designed to check
for invariant and reachability properties� in particular
whether certain combinations of control�nodes and con�
straints on clocks and integer variables are reachable
from an initial con�guration� Other properties such as
bounded liveness properties can be checked by reasoning
about the system in the context of testing automata or
simply decorating the system description with debugging
information and then checking reachability properties�
Model�checking is performed by the module verifyta

which takes as input a network of automata in the textual�
format �i�e� �ta� and a formula� In checking a prop�
erty� a diagnostic trace can be automatically reported by
verifyta ����� that explains why the property is satis�ed
or not� Such a trace may be considered as diagnostic in�
formation of a system error� useful during the subsequent
debugging of the system�

Simulation� The simulator allows the user to examine in
an interactive and graphical fashion the dynamic behav�
ior of a system� In contrast to the model	checker which
explores the whole reachable state	space of a system �
examining all the behavior of the system� the simulator
explores only a particular execution trace i�e� a sequence
of states of the system� This will in early stages of mod�
eling �or design� provide an inexpensive mean of fault
detection� In comparison the model	checker is obviously
more expensive as it amounts to an exhaustive simula�
tion covering all behavior of the system� Another useful
application of the simulator is to visualize a diagnostic
trace generated by the model	checker� thus the user can

Kim G� Larsen et al�� UPPAAL in a Nutshell �

��

�� Global declaration section

��

clock x� y�

int n�

chan a�

��

�� Component description section

��

process A �

state A� � y	
� �� A
� A�� A��

init A��

trans A� �� A
 �

guard y�
��

sync a��

assign y�
��

��

A
 �� A� �

guard y�
��

��

A� �� A� �

guard n

��

��

�

process B �

state B� � x	
� �� B
� B�� B��

commit B
�

init B��

trans B� �� B
 �

guard x�
��

sync a��

assign n�
��x�
��

��

B
 �� B� �

assign n�
n�
�

��

B� �� B� �

��

�

��

�� System description section

��

system A� B�

Fig� �� Textual description�

in an interactive and graphical fashion examines the ex�
ecution trace that may result in a system error�

� The Bolts of UPPAAL � Modelling

In this section� we present the basic ingredienses of the
Uppaal model based on small examples� For a precise
semantical treatment we refer the reader to �
��

We assume that a typical real�time system is a network
of non	deterministic sequential processes communicating
with each other over channels� In Uppaal we use �nite	
state automata extended with clock and data variables
to describe processes and networks of such automata to
describe real	time systems�

��� Syntax

The basis of the Uppaal model is the notion of timed
automata ��� developed by Alur and Dill as an extension
of classical �nite	state automata with clock variables� To
provide a more expressive model and to ease the model�
ing task� we further extend timed automata with more
general types of data variables such as boolean and inte�
ger variables� Our �nal goal is to develop a modeling �or
design� language which is as close as possible to a high	
level real	time programming language with various data
types� Clearly� this will create problems for decidability
of model	checking� However� we can always require that
the value domains of the data variables should be �nite
in order to guarantee the termination of a veri�cation
procedure �as in Mur� ������

In the current implementation of Uppaal a system de�
scription �or model� consists of a collection of timed au�
tomata extended with integer variables in addition to
clock variables� Consider the Uppaal model of Figure ��
The model consists of two components A and B with con�
trol nodes fA�� A�� A�� A�g and fB�� B�� B�� B�g respec�
tively� In addition to these discrete control structures�
the model uses two clocks x and y� one integer variable
n and one channel a�

The edges of the automata are decorated with three types
of labels� a guard� expressing a condition on the values
of clocks and integer variables that must be satis�ed in
order for the edge to be taken� a synchronization action
which is performed when the edge is taken and �nally a
number of clock resets and assignments to integer vari�
ables� All three types of labels are optional�

In addition� control nodes may be decorated with so	
called invariants� which are conditions expressing con�
straints on the clock values in order for control to remain
in a particular node�

����� Guards

Guards express conditions on the values of clocks and
integer variables that must be satis�ed in order for the
edge to be taken� In Figure � the edge between A� and
A� can only be taken� when the value of the clock y is
greater than or equal to �� Similarly the edge between A�

and A� can only be taken when the value of the integer

� Kim G� Larsen et al�� UPPAAL in a Nutshell

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0 y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4 n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5

 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5
x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0 n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;
int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;
chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;
system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;

Fig� �� An example Uppaal model�

variable n equals �� Formally� guards are conjunctions of
timing and data constraints� a timing constraint is of the
form� x � n or x � y � n� where n is a natural number
and �� f������ ���g� a data constraint is of a similar
form i � j or i � j � k but with k being an arbitrary
integer� The default guard of an edge is true�

����� Reset	Operations

When taking an edge clock and data variables may be
subject to simple manipulations in terms of resets being
assignments of the form w �� e� where w is a clock or
data variable and e is an expression� In the current ver�
sion of Uppaal reset	operations on clock variables must
be of the simple form x �� n� where n is a natural num�
ber� and reset	operations on integer variables should be
in the form i �� c� i�c�� where c� c� are integer constants
�note that c� c� may be zero or negative�� As examples re�
consider Figure �� Here the clock y is reset to � when the
edge between A� and A� is taken� Similarly the integer
variable n is incremented when the edge from B� to B�

is taken�

����� Channels� Synchronization and Urgency

A Uppaal model consists of a network of �extended�
timed automata� Automata may communicate either via
integer variables �which in Uppaal are global� or using
communication channels� As in CCS ���� communication
on channels occur as two	process synchronizations� In
Figure � the two processes may communicate via the
channel a�
To denote the actions that processes can perform when
synchronizing with each other we use the notation a� and
a� �denoting the complementary actions of sending and
receiving on channel a�� Absence of synchronization ac�
tion indicates an internal �non	synchronizing� edge sim�
ilar to �	transitions in CCS� In Figure �� the edge be�
tween A� and A� is an example of an internal edge of the
process A�

To prevent a network from delaying in a situation where
two components are already able to synchronize� a chan�
nel may be declared as being urgent� For e�ciency rea�
sons edges labelled with synchronization actions on ur�
gent channels may not have guards on clocks�

����
 Committed Locations

To introduce the notion of committed locations in timed
automata� consider the scenario shown in Figure
�

m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!

m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!

m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1? m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1 R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11 R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12 R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1SSSSSSSSSSSSSSSSS

Fig� �� Broadcasting Communication and Committed Locations�

A sender S is to broadcast a message m to two receivers
R� and R�� As this requires synchronization between three
processes this can not directly be expressed in Uppaal

where synchronization� as in CCS� is between two pro�
cesses based on complementarity of actions� However�
as an initial attempt we may model the broadcast as
a sequence of two two�process synchronizations� where
�rst S synchronizes with R� on m� and then with R� on
m�� However� this is not an accurate modeling as the in�
tended atomicity of the broadcast is not preserved �i�e�
other processes may interfere during the �broadcast� se�
quence�� To ensure atomicity� we mark the intermediate
location S� of the sender S as a so�called committed lo�
cation �indicated by the c��pre�x�� The atomicity of the

Kim G� Larsen et al�� UPPAAL in a Nutshell �

action sequence m��m�� is now achieved by insisting that
a committed location must be left immediately� This be�
havior is quite similar to what has been called �urgent
transitions� ���� �
� �� which insists that the next transi�
tion taken must be an action �and not a delay�� The pre�
cise semantics of committed locations will be formalized
in the transition rules for networks of timed automata
with data variables in the following�

����� Invariants

To enforce progress in a system� control nodes may be
decorated with so	called invariants� which express con�
straints on the clock values in order for control to remain
in a particular node� The default of a location invariant
is true� Thus� in Figure �� control can only remain in A�

as long as the value of y is no more than ��

��� Semantics

Formally� states of aUppaalmodel are of the form �l� v��
where l is a control vector indicating the current control
node for each component of the network and v is an as�
signment given the current value for each clock and inte�
ger variable� A Uppaal model determines the following
two types of transitions between states�

Delay transitions As long as none of the invariants of the
control nodes in the current state are violated time
may progress without a�ecting the control node vec�
tor and with all clock values incremented with the
elapsed duration of time� In Figure �� from the initial
state ��A�� B��� x � �� y � �� n � �� time may elapse
��� time units leading to the state ��A�� B��� x �
���� y � ���� n � ��� However� time cannot elapse �
time units as this would violate the invariant of B��

Action transitions If two complementary labelled edges
of two di�erent components are enabled in a state
then they can synchronize� Thus in state ��A�� B��� x �
���� y � ���� n � �� the two components can syn�
chronize on a leading to the new state ��A�� B��� x �
�� y � �� n � �� �note that x� y� n have been appropri�
ately updated�� If a component has an internal edge
enabled� the edge can be taken without any synchro�
nization� Thus in state ��A�� B��� x � �� y � �� n �
��� the B	component can perform without synchro�
nizing with A� leading to the state ��A�� B��� x �
�� y � �� n � ���

The above two types of transitions may be overruled by
presence of urgent channels and committed locations in
the following ways�

Urgent Channels In a state where two components may
synchronize on an urgent channel no further delay is
allowed� Thus� in Figure � if channel a is urgent��
time may not elapse ��� units from the initial state
��A�� B��� x � �� y � �� n � �� as synchronization on
a is already possible in the state ��A�� B��� x � �� y �
�� n � ���

Committed Locations If in a state one of the compo�
nents is in a control node labelled as being com�
mitted� no delay is allowed to occur and any action
transition �synchronization or not� must involve the
particular component �the component is so	to	speak
committed to continue�� In the state ��A�� B��� x �
�� y � �� n � �� B� is committed� thus without any
delay the next transition must involve the B	component�
i�e� the next state of the network is ��A�� B��� x �
�� y � �� n � ��� Hence the two �rst transitions of B
are guaranteed to be performed atomically�

	 The Nuts of UPPAAL � Specifying

The Uppaal model�checker is designed to check for sim�
ple invariant and reachability properties� A number of
other properties� including bounded reachability prop�
erties� may be checked by reasoning about the system
in the context of testing automata� We give an informal
presentation of the Uppaal logic and an example use
of testing automata in the next two sections� Hereafter�
we give a short review of the model�checking technique
used in Uppaal and point out some recent developed
and implemented space�saving improvements�

��� UPPAAL Speci	cations

In the current version�Uppaal is able to check for reach�
ability properties� in particular whether certain combina�
tions of control�nodes and constraints on clock and data
variables are reachable from an initial con�guration� The
properties that can be analyzed are of the forms�

� ��� ��� j 	�� � ��� a j ��
 �� j ��

Where a is an atomic formula being either an atomic
clock �or data� constraint or a component location �Aiat l��
Atomic clock �data� constraints are either integer bounds
on individual clock �data� variables �e�g� � � x � �� or
integer bounds on di�erences of two clock �data� vari�
ables �e�g� � � x� y � ���

Intuitively� for ��� to be satis�ed all reachable states
must satisfy �� Dually� for 	�� to be satis�ed some

� Note� that strictly speaking� this would violate the syntactic
restriction that the guard of edges labelled with urgent actions
must be empty�

	 Kim G� Larsen et al�� UPPAAL in a Nutshell

x:=0

bad
x<=t

T’

T

’a’

x=t

x<t

Fig� �� Test Automata for �Until�t a

reachable state must satisfy �� Formally let � denote
the transitive closure of the delay� and action�transition
relations between states� Then the satisfaction relation
j� between states and formulas are de�ned as follows�

hl� vi j� 	�� �
 	hl�� v�i�hl� vi� hl�� v�i
 hl�� v�i j� �

hl� vi j� ��� �
 �hl�� v�i�hl� vi� hl�� v�i
 hl�� v�i j� �

Satisfaction with respect to a boolean combination � of
atomic formulas is de�ned inductively on the structure
of � �behaving as usual with respect to the boolean con�
nectives�� Satisfaction with respect to an atomic formula
is given by the following de�nitions�

hl� vi j� c �
 v � c

hl� vi j� Aiat l �
 li � l

��� Test Automata
 Beyond Reachability

Our �simple and e�cient� model�checking technique ex�
tends to the logic presented in ����� which also allows for
bounded liveness properties to be speci�ed� Currently�
bounded liveness properties must be obtained by reach�
ability analysis of the system in the context of testing
�and time�sensitive� automata�

Consider the following real�time property

� � 	Until�t a

stating that the �atomic� property a must hold before
t time units and that 	 must hold until then� Here we
assume that a is of the form Aiat l� Now to verify that
a system S satis�es the formulae we extend it with the
test automata T of Figure � as a component�

Here T � is assumed to be an already constructed test
automata for the sub�property 	� and �a� is a �urgent�

Passed�
 fg
Waiting�
 f�l�� D��g
repeat

begin

get �l� D� from Waiting

if �l� D� j
 � then return �YES�

else if D �� D� for all �l� D�� � Passed then

begin

add �l� D� to Passed

Succ�
f�ls� Ds� � �l� D�� �ls� Ds� �Ds �
 �g
for all �ls� � Ds�� in Succ do

put �ls� � Ds�� to Waiting

end

end

until Waiting
fg
return �NO�

Fig� �� An Algorithm for Symbolic Reachability Analysis�

probe action inserting into the component Ai at loca�
tion l� Now� it may be shown that our original system
S will satisfy 	Until�t a if and only if S jT satis�es the
invariance property ����Tat bad��

We conjecture that all bounded liveness properties of the
logic in ���� can be translated into reachability problems
in this manner� and in a forthcoming version of Uppaal
we intend to provide automatic support for generation
of test automata from logical formulas �as has been done
in the tool SPIN� where �never�claims� are directly gen�
erated from Linear Temporal Logic properties�� For an
initial investigation we refer the reader to �����

��� Model Checking

The model�checking procedure implemented in Uppaal
is based on an interpretation using a �nite�state sym�
bolic semantics of networks� More precisely� we inter�
pret the logic with respect to symbolic states of the form
�l� D�� where D is a constraint system �i�e� a conjunction
of atomic clock and data constraints� and l a control�
vector� Thus� a symbolic state �l� D� represents all the
states �l� v� where v satis�es the constraint D� Based on
this notion of symbolic state� the heart of the Uppaal
model�checking procedure is the abstract reachability al�
gorithm shown in Figure ��� which reduces the reachabil�
ity problem to that of solving simple constraint systems�
The algorithm is to check whether a timed automaton
may reach a state satisfying a given state formula ��

We observe that several operations of the algorithm are
critical for e�cient implementations� Firstly� the algo�
rithm depends heavily on the test operations for check�
ing the inclusion D � D� �i�e� the inclusion between

� The relation � has been extended to symbolic states in the
obvious fashion�

Kim G� Larsen et al�� UPPAAL in a Nutshell

red
black

Controller

Piston

18 90

Red Boxes

Black Boxes

Belt

0

Boxes

remove

eject

Sensor

9 81 99

Fig� 	� The Box�Sorter Unit�

constraints D and D�� and the emptiness of Ds in con�
structing the successor set Succ of �l� D�� Clearly� it is
important to design e�cient data structures and algo�
rithms for the representation and manipulation of clock
constraints� One such well�known data structure is that
of Di�erence Bounded Matrices ��� ��� ���� Dbm� which
o�ers a canonical representation for constraint systems�
It has been successfully employed by several real�time
veri�cation tools� e�g� Uppaal ��� and Kronos ��
��

In theUppaal�implementation the reachability algorithm
of Figure � is extended so that a diagnostic trace is au�
tomatically generated as a side�e�ect in case reachability
is established� If the symbolic state�space is examined in
a breadth��rst manner �corresponding to organizing the
waiting set as a queue� the trace is guaranteed to be the
shortest possible�

��� Optimizations

ADbm representation is in fact a weighted directed graph
where the vertices correspond to clocks �including a zero�
clock� and the weights on the edges stand for the bounds
on the di�erences between pairs of clocks ��� ��� ���� As
it gives an explicit bound for the di�erence between each
pair of clocks� its space�usage is in the order of O�n��
where n is the number of clocks� However� in practice
it often turns out that most of these bounds are redun�
dant� In ����� we have presented a new compact data
structure for Dbm� which provides minimal and canon�
ical representations of clock constraints and also allows
for e�cient inclusion checks� The representation is ob�
tained by a minimization of the weighted directed graph
representing the constraint system� and our experimen�
tal results demonstrate truly signi�cant space�savings as
well as better time�performance�

In addition to the local reduction technique above� which
is to minimize the space�usage of each individual sym�

bolic state� we have developed a global reduction tech�
nique to reduce the total number of symbolic states to
save in the global data structure� i�e� the passed list� It is
completely orthogonal to the local technique and is based
on static analysis of the control structure of the system�
Again our experimental results demonstrate signi�cant
space�savings and improved time�performance�

Finally� it is possible to save the symbolic state�space
generated during checking of a property and re�use it in
the checking of other properties� In cases where several
correctness properties have to be examined this leads to
signi�cant time�savings�

 How to Use UPPAAL � a User Guide

This section describes how to model� simulate and verify
real�time systems using Uppaal� We will focus on the
graphical interface and the graphical modeling language
of Uppaal� However� it should be noticed that the tool
also has a text�based interface and a textual representa�
tion of the modeling language�

As a running example throughout this section we will
use the box�sorting unit of �����

Example � �The Box�Sorter Unit�� The box�sorter shown
in Figure � is made in LEGO�� It sorts red and black
boxes� The sorter is built around a belt that transports
boxes in the unit� which consists of four components� a
color�sensor� a piston� a controller� and an observer�

A box starts at the leftmost extreme of the belt� repre�
sented by position 	� At some position from
 to �� its
color is sensed by the color�sensor which is attached to
the controller� The controller reacts if the color is red

� Information about LEGO can be found on World Wide Web
at� http���www�lego�com��

� Kim G� Larsen et al�� UPPAAL in a Nutshell

by sending an eject request to the piston� after a cer�
tain delay� The piston ejects within one time unit after
the arrival of a request� When the piston is ejected it is
guaranteed to remove the box if it is positioned in the
interval �� to
	� If the box is not removed
i�e� if the
box is black�� it proceeds to position

� representing the
rightmost extreme of the belt� where it falls o� the belt�

The observer is not participating in the sorting of boxes�
Its only task is to observe that no red boxes appears on
the rightmost extreme of the belt� As the observer is not
part of the sorting mechanism� we have not shown him
in Figure � but he can be imagined to sit at the far right
end�

For simplicity we regard the system as being correct if
the observer sees no red boxes
i�e� only black boxes� at
the rightmost extreme of the belt� ut

�� XUPPAAL

XUppaal is to provide a user�friendly graphical interface
to the tools in Uppaal� It o�ers support to the user by
managing the working �le names� by providing an easy
way to give optional setting� and to execute the various
tools of the tool�box� The application is implemented in
C and the Forms Library for X��

In the following we give a short overview of the tool� The
description continues in Section ��
 which explains how
to verify and generate diagnostic traces with XUppaal�
A more detailed description of XUppaal can be found
in �
��

����� The Files

During an XUppaal session the user works with three
di�erent kind of �les� a system description� a requirement
speci�cation� and a trace �le�

The system description �le contains the system descrip�
tion� It is assumed to be given in the textual format
�called �ta� or on the graphical format �called �atg�
used by Autograph and the simulator� Section ��� pro�
vides a guide for de�nition of system descriptions using
Autograph� Once the �le have been created its syntax
can be checked by invoking Syntax Check in the Run

menu of XUppaal�

The requirement speci�cation �le holds a set of formulae
in a textual representation �called �q�� The �le can be
created using a simple editor invoked in the Run �item

� Information about the Forms Library for X is available on
World Wide Web� http���www�uwm�edu��zhao and on anonymous
ftp� ftp���bloch�phys�uwm�edu�pub�xforms�

Fig�
� The Graphical Interface of XUppaal�

Req� Spec� Editor� menu of XUppaal or using an ex�
ternal text editor�

The trace �le is used to store information about diagnos�
tic traces generated by the veri�er� A trace is a sequence
of �symbolic� states and transitions� that represents an
�symbolic� execution of the system� It is often useful for
discovering why a property is �or is not� satis�ed by a
system description� The trace �le can be input to the
simulator which is able to display traces graphically �see
Section �����

����� Getting Started

XUppaal is activated from the command line with the
command xuppaal� On startup� XUppaal shows the
user with its main window as shown in Figure � The
main window consists of four parts� the menu bar� the
two input �elds that displays the name of the currently
speci�ed system description �le �labeled Model� and re�
quirement speci�cation �le �labeled Req� Spec��� and
the output browser �labeled Output��

Kim G� Larsen et al�� UPPAAL in a Nutshell �

����� The Menu Bar

The menu bar has four sub�menus� Files� Options� Run
and Help� Each sub�menu is invoked by clicking the menu
label or using snap�keys� The snap�keys are given be�
low enclosed in parenthesis �where C denotes the Ctrl�
button��

The File menu �C�x� contains entries for selecting the
�les to work with� and for exiting XUppaal� The Help

menu �C�h� provides online help on the six topics� General
�C�g�� Files �C�f�� Options �C�o�� Run �C�r�� Problems
�C�p� and Version �C�v�� When an entry is selected� the
help text is displayed in the output browser� The output
generated by selecting the menu item Version is shown
on the �rst seven lines of text in the browser in Figure �

We proceed by giving a more detailed description of the
two sub�menus� Options and Run�

The Options Menu �C�o� provides a list of choices that
mainly a�ect the veri�cation session� Each entry in the
menu can be toggled on or o� �which is visualized in the
menu by a �lled or empty check�box to the left of each
menu item��

Auto Check Syntax �C�a��Automatically perform syn�
tax check before simulation and veri�cation sessions�

Diagnostic Info �C�i�� Generate diagnostic traces
in textual format and present the result in the output
browser�

Diagnostic File �C�f��Produce diagnostic traces on
the speci�ed trace �le�

Breadth�First �C�b�� Explore the state�space of the
system by breadth��rst search��

Depth�First �C�d��Explore the state�space of the sys�
tem by depth��rst search�

Local Reduction �C�l��Use compact data�structures
to represent constraints �instead of Dbm� see Sec�
tion
�
��

Global Reduction �C�s�� Perform Control Structure
Analysis �see Section
�
��

Re�use State�Space �C�r��Re�use the generated por�
tion of the state�space when verifying several reach�
ability properties �see Section
�
��

The Run Menu �C�c� contains commands that are as�
sociated with the various tool programs of Uppaal� The
outputs produced by the programs are always displayed
in the output browser�

Autograph �C�a�� Start the graphical editor Autograph�

� This option generates a shortest diagnostic trace when used in
combination with one of the two trace options above�

Fig� �� The Requirement Speci�cation Editor�

Syntax Check �C�c��Perform syntactical check on the
textual format of the system description�

Simulation �C�s�� Start the simulator with the spec�
i�ed system description �le�

Req� Spec� Editor �C�e��Open the requirement spec�
i�cation editor shown in Figure ��

Verification �C�v�� Check if the system description
satis�es the requirement speci�cation by model�check�
ing�

Show Model �C�f�� Display the system description in
textual representation� �

Show Req� Spec� �C�r�� Show the contents of the re�
quirement speci�cation �le�

Clear Output �C�o�� Clear the output browser �i�e�
erase the contents of the browser��

Example � �Specifying the File Names�� As a preliminary
step when working with the box�sorter example we de�ne
the �le names for XUppaal to work with� We do this by
typing in the system description �le name �boxes�atg�
in the �eld labeled System and the requirement speci�ca�
tion �le name �boxes�q� in the �eld labeled Req� Spec�
The trace �le is speci�ed by selecting Set Trace File

from the Files menu� We use the �le name boxes�tr�
The resulting XUppaal input �elds are shown in Fig�
ure �� ut

�� How to Model

Uppaal allows for systems descriptions to be de�ned
textually or by drawing using Autograph� In this section
we describe how to de�ne a system using Autograph�
For a description of the textual representation of systems
used in Uppaal we refer the reader to �
��

����� Systems Descriptions in Autograph

Autograph is a graphical tool for drawing automata�
based system descriptions� It is very general though it
was developed for the Fc�tools set ����� This section

�� Kim G� Larsen et al�� UPPAAL in a Nutshell

Fig� ��� The menu bar with the ObjectEdit menu selected�

will explain the subset of features of Autograph� that are
needed to de�ne Uppaal system descriptions�

To de�ne network of timed automata in Autograph it
is necessary to de�ne a mapping from the elements of
timed automata to graphical objects in Autograph� Here
we summarize the mapping of the components that a
system description should consist of�

A location is denoted by a vertex labeled with its name
�required� and its invariant �which is optional�� By
default� the invariant is true�

A transition is denoted by an edge connecting two ver�
tices� The transition may be labeled with a guard
which is true by default� a synchronization action
�which is � by default�� and a list of assignments�

A timed automaton is denoted by a box containing the
locations and transitions of the automaton with the
initial location being denoted by an initial vertex�
The box should be labeled with the name of the au�
tomaton�

A declaration for the variables� clocks and channels� both
normal and urgent� used in the network of timed au�
tomata are placed in a box which must be labelled
with Config�

A network of timed automata is represented by a set of
set of automata boxes and the Config box�

If a graph is created according to these de�nitions and
to the small set of rules that will be introduced in the
remainder of this section� it can be used directly in the
Uppaal toolkit�

����� Getting Started

Autograph can be activated from the Runmenu of XUpp�
aal� On startup the program displays a menu bar which
is depicted in Figure �� with the ObjectsEdit menu se�
lected� All menus mentioned in the remainder of this sec�
tion are parts of this menu bar�

Note that all items inside a menu bar� can also be selected
by a snap�key given below in parenthesis� and a selection
will be active until another selection is made�

To get started it is necessary to open a window to draw
in� This is done by selecting Create from the Window

menu� It is possible to resize and reposition the window�

����� Creating Locations

Locations of a timed automata are created by choosing
Create �v� from the Vertice sub�menu in the Objects�
Editmenu� To instantiate a location just �nd the wanted
position and click the left mouse button to place it�

If the vertex is supposed to model an initial location�
select Initial �i� from the Vertice sub�menu of the
ObjectsEdit menu and click at the chosen vertex�

To create the name and the invariant of the location� a
label must be attached to the vertex� The actual creation
of labels will be described in the next section� There is a
set of rules concerning location labels that must be fol�
lowed to avoid errors when using the drawing inUppaal�

� Every location must have a name associated�
� All names are speci�ed by the regular expression �a�

zA�Z��a�zA�Z��� �	� If the location is committed� its
name must be pre�xed with C� or c��

� Location names are local to a process and can be
reused in other processes�

� An invariant is a conjunction of inequalities� It is writ�
ten as a list of inequalities separated by commas and
surrounded by a pair of parentheses� e�g�
� clock��	
�� clock��	��� ��

� The invariant can be put either on the same line as
the location name or on a line for itself�

Kim G� Larsen et al�� UPPAAL in a Nutshell ��

����
 Creating Labels

In Autograph there are four kinds of labels� Struct� Be�
hav� Logic and Hook� The di�erent kinds of labels may
have di�erent meanings depending on the kind of com�
ponent they are attached to�

InUppaal the notion of di�erent labels has been avoided
as much as possible� Therefore� the default label �auto�
matically selected by Autograph� is always used for com�
ponents with only one label� To label a component with
its default label select Create
Edit Default �a� from
the Label menu� then click on the component to label�
This opens an editor window for typing in text for the
label�

The only component type with more than one label is
the Con
g box described in Section ���� �

Labels can be re�edited by selecting Reedit �R� from the
Label menu� After the label has been clicked an editor
for editing �the four kinds of� labels will appear�

����� Creating Edges

The next step in de�ning a network of automata is to
connect locations with transitions� denoted by edges� Edges
can only be drawn between two vertices belonging to the
same automaton� The start and end vertices can be the
same�

To create an edge� �rst select Create �e� from the Edges
sub�menu under ObjectsEdit and then select the start
and end vertex� One can create curved edges� The sim�
plest way is to drag the mouse from the start of the edge
to a point and then continue to the end of the edge�

The optionals that can belong to a transition are put in a
label attached to the edge� An edge can have more than
one set of labels� whereas all other components can only
have one�

As for location labels� there is a set of rules for transition
labels�

� If a transition is synchronizing� its label should have
a line containing the name of the channel it is syn�
chronizing on�

� Guards are written as lists of comma�separated con�
straints�

� Assignments are written as lists of comma�separated
assignments on the form� �name� �	 �expression��
where expressions follow the syntax de�ned in Sec�
tion ��

Example �� To start modeling the box�sorter unit we
draw the locations and the transitions of the piston au�
tomaton� The piston waits for the controller to send an

Fig� ��� Locations and transitions of the piston�

Fig� ��� An automaton de�ning the piston of the box�sorter unit�

eject�signal� It then ejects within one second� possibly
resulting the removal of a box from the belt�

A model of the piston is shown in Figure ��� The two
locations idle and wait are used to model the two oper�
ational modes of the piston� Initially the piston is idle�
The piston will enter location wait when the signal eject
is received� In location wait the piston is ready to remove
a box
by synchronizing on remove� for � time unit af�
ter which the piston will return to the location idle� The
clock variable y is used to model the timing behavior of
the piston� ut

����� Creating Automata

An automaton is represented by a box containing its lo�
cations and transitions� Boxes are created by choosing
Create �b� from the Boxes sub�menu in the ObjectsEdit
menu� The box is drawn by picking the position of its
upper left corner and dragging the mouse until the box
has the wanted size �i�e� the position of the lower right
corner��

�� Kim G� Larsen et al�� UPPAAL in a Nutshell

Fig� ��� The complete system description of the box sorter unit�

Every automaton must be labeled with a name that is
written according to the regular expression �a�zA�Z��a�
zA�Z��� �	�

Example �� We now �nish the piston automaton by adding
a bounding box around its locations and transitions� We
name the automaton Piston by adding a label to the box�
The resulting automaton is shown in Figure ���

To create an automaton� one can also start with drawing
the box and then the vertices� edges etc� ut

����� Creating a Network of Automata

A network of automata is denoted by a collection of au�
tomata boxes representing the component automata and
a distinct box� labeled with Con
g� for declarations�

���� Creating Declarations

Declarations of objects in the network� i�e� variables�
clocks and channels are placed in the Con
g box� In ad�
dition� comments for documentation can be put in this
box� Declarations should be created according to the fol�
lowing rules�

� Declarations are written as lists of comma�separated
object names preceded by the type of the entities de�
clared and ended with a semi�colon�

� The type of a variable declaration is int�
� The type of a clock declaration is clock�
� The type of a declaration of normal channels is chan

and for urgent channels it is urgent chan�
� There can be zero or more declarations of each type�
� Names of objects are speci�ed by the regular expres�

sion �a�zA�Z��a�zA�Z��� ���
� Comments are prepended with

� Except for this�

there are no rules concerning the syntax of comments�

In addition to the object declarations the Con
g box also
holds the de�nition of which automata the system con�
sists of� This de�nition is written using the same syntax
as above with the type of the declaration being system�
Only the automata mentioned in the system de�nition
are considered when the system is veri�ed or simulated�
There must be exactly one system de�nition�

There are also some rules concerning the Con
g box and
other boxes with comments�

� There must be exactly one Con
g box�
� The Con
g box cannot contain any components� It is

only allowed to have a label attached�
� Other boxes than the components and Con
g box are

ignored by Uppaal�

Example
� The complete system description of the box�
sorter unit is shown in Figure ��� It consists of four au�
tomata� Piston� Controller� Box� and Observer� In this ex�
ample we describe the two automata Box and Controller�
The Piston automaton was described in Example � and
the Observer will be described in Example ��

Kim G� Larsen et al�� UPPAAL in a Nutshell ��

Fig� ��� A System window�

The Box automaton models the behavior of a box� It
uses the integer variable color to represent the color of
the box
where � is black and � is red� and the clock
variable pos to represent its position on the belt� In the
initial location idle is the box not yet placed on the belt

even if pos � ��� On the outgoing transitions from idle
to movea the box is put on the belt and assigned a color�
The two locations sayblack and sayred model the behav�
ior of a box when it passes the color�sensor� It o�ers the
signals black�� or red�� to the sensor until position
�� is reached� where it enters location moveb� The loca�
tion atpiston models the situation when the box passes
the piston� therefore the box o�ers synchronization on
the channel remove to model the possibility of getting
removed� If not removed� the box proceeds to location
saycolor where it returns to its initial location by syn�
chronizing on channel black� or red�� which are syn�
chronized with the observer�

The Controller automaton models the controller and its
integrated color�sensor� It stays in its initial location idle
as long as only black boxes appear� modeled by a black��
synchronizing self�loop� When a red box appears� it de�
lays for �� time units in location wait and there after
requests a reject from the piston by synchronization on
the eject�channel as soon as possible�

To model that the color�sensor and the piston react im�
mediately on input� the four channels black�� red�� eject�
and remove are declared as urgent� ut

����� Saving the System Description File

To save a �le� select either Save atg �s� or Save atg as

�S� from the Files menu and click on the drawing to be
saved� This leads to the opening of a �le selector window�
where the path and name of the �le can be entered� When
ready press the OK button�

The saved �atg �les can then be used in Uppaal�

�� How to Simulate

The symbolic simulator enables the user to simulate and
debug the dynamical executions of a network of timed
automata given its statical structure i�e� a system de�
scription� This section provides a guide for the interface
of the simulator and show how to use it�

����� Getting Started

The simulator can be activated from the Run menu in
XUppaal� The system description �le �an �atg��le� spec�
i�ed in the Model �eld of XUppaal will be loaded into
the simulator on startup�

The graphical interface to the simulator consists of two
windows� the System window to show the system descrip�
tion to simulate� and the Main window to control the
simulator�

�� Kim G� Larsen et al�� UPPAAL in a Nutshell

The interface uses the standard X notions for mouse and
keyboard control meaning that e�g� double�clicking the
mouse and using tab�key to switch between groups in
windows can be used�

����� The System Window

The System window holds the Autograph drawing of the
system being simulated� Figure �
 shows an example of
a System window containing the de�nition of the box
sorter unit�

During a simulation� the current location vector and one
of the currently available transitions are depicted in the
window� For the location vector this is accomplished by
marking the current location of each of the automata�
e�g� in the �gure� Box is in location idle� A possible tran�
sition is depicted as a highlighted arrow going from the
source location of the transition to its destination� If the
transition is a synchronization� an arrow will be shown
for each of the two synchronizing transitions� otherwise
only one� In the �gure a transition from idle to movea in
Box is shown�

It is not possible to manipulate the contents of the Sys�
tem window directly as its only purpose is to display the
structure of the current system and to show how simu�
lations progress� All changes to the System window are
performed indirectly through the Main window described
below�

����� The Main Window

The simulator is controlled from the Main window which
is split up into two parts� one containing the basic sim�
ulation control� and the other containing the more ad�
vanced control mechanisms concerned with traces� Fig�
ure �� shows the Main window with the trace so far and
the possible step for the system depicted in Figure �
�

The upper part of the window has six buttons and a �eld
holding a list of steps possible in the current state of the
system� The lower part also has six buttons and a �eld
containing the trace of the current simulation� When the
simulator is activated only the upper half of this window
is opened�

The upper six buttons are used for controlling the most
basic functionality of the simulator� The semantics of the
buttons is as follows�

Take Step� Take the step selected in the list of possible
steps� A step is selected if it is highlighted in the list�

Run� Open the Run window which is used for control�
ling the automatic mode� where the simulator itself
randomly selects transitions�

Fig� ��� The Main window�

Reset� Set the automata in the system to their initial
locations and clears the trace�

Show Regions� Open the Regions window showing the
regions valid for the current con�guration of the sim�
ulated system�

Exit� Exit the simulator�
� �plus�� Open the lower half of the Simulate Main win�

dow� which displays the trace generated so far�

In the list of possible steps� the elements are written in
one of the forms listed below� The �rst is used if the
transition of the step is a synchronization between two
processes and the second is used if the transition is non�
synchronizing� It is possible to take a step directly from
the list by double�clicking it�

� �channel� ��sender� �� �receiver��

� tau ��process��

A trace is a list whose elements alternate between loca�
tion vectors and transitions� Location vectors are simply
written as a list of location names where the names are
ordered the same way as the list of automata given in
the header of the lower half of the Simulate Main win�
dow� The order of the automata in the Simulate Main
window shown in Figure �� is� Controller� Piston� Box
and Observer�

Transitions are written in the same form as the possi�
ble steps� Selecting an element in the trace changes the
System window so that instead of re
ecting the current
state of the system it will show the selected transition or
location�

The six buttons in the lower part of the Main window
are all used for controlling the trace functionality� Their
semantics is given in the following�

Kim G� Larsen et al�� UPPAAL in a Nutshell ��

Fig� ��� The Run window�

� �minus�� Close this half of the window�
Previous� Highlight the element immediately preceding

the current selection in the trace� If no element is
selected� nothing happens�

Next� Highlight the element immediately following the
current selection in the trace� If no element is se�
lected� nothing happens�

Restart� Restart the simulation from the current selec�
tion in the trace�

Load� Open a �le selector window for loading a trace�
Save� Open a �le selector window for saving the current

trace�

����
 The Run Window

Instead of creating traces manually� by taking one step
at a time� it is possible to let the simulator proceed auto�
matically by randomly selecting enabled steps and show
the progress of the simulation in the Systemwindow� This
can be done from the Run window as shown in Figure ���

The window shows two text input �elds� Number Of Steps

and Speed� plus three buttons� The �eld Number Of Steps

decides how many steps the simulator should take when
generating the random trace and the Speed �eld decides
how fast the screen should be updated during the run�
with � being the highest speed� The meaning of the three
buttons is as follow�

Close� Stop the run if it is currently executing� and close
the Run window�

Stop� Stop the run� If the simulator is not running� noth�
ing happens�

Go� Start or restart the execution of a run�

����� The Regions Window

In doing a simulation the user can watch the changes of
the regions in the Regions window� Figure �� shows the
Regions window corresponding to the system state and
transition selection of Figures �
 and ���

The window is split up into four parts each holding one
particular kind of region� The regions are represented as
sets of equations and inequalities on the variables� clocks

and di�erences between clocks in the system� Inequalities
are written as intervals that the clock or clock di�erence
must be in �see the �gure��

The upper left quarter of the Regions window shows the
state entry region� It is the region valid immediately after
the last step� i�e� the step that took the system to the
current state� The lower left quarter holds the transition
exit region� For any of the possible steps that can take
the system out of the current state� the transition exit
region is the region where the system is able to take that
particular step�

The next state entry region will then be the same as the
transition exit region of the possible step which is taken
next� except that it has been updated by the assignments
of the transition�

The constraints of the latest step taken can put addi�
tional constraints on the regions for previous steps� This
is not taken into account in the calculations of the re�
gions in the left half of the window� but it is considered
in the right where the adjusted counterparts of the two
above mentioned types of regions are displayed�

�� How to Verify

The veri�cation of a system description w�r�t� its re�
quirement speci�cation is conducted entirely from the
XUppaal window� It is often the case that the veri�ca�
tion will not succeed immediately even if the system has
been carefully validated in the simulator� More likely� a
number of problems� usually in the system description�
will have to be resolved before the veri�cation �nally
succeeds�

In this section we describe how XUppaal supports the
work by allowing diagnostic traces� generated by the ver�
i�cation procedure� to be loaded and graphically dis�
played in the simulator� We begin by describing how to
verify in Uppaal� using XUppaal�

��
�� Veri�cation

To verify with XUppaal is very simple� When the �le
names have been speci�ed� the next step is to select the
optional settings that a�ect the veri�cation method� and
then it is ready for the start of a veri�cation session�
The menu of veri�cation options has been described in
Section ������

The veri�er �called verifyta� is activated by clicking
Verification in the Run menu� XUppaal then �rst
transforms the options� selected in the Options menu�
to a list of
ags to be accepted by the veri�er� It then
proceeds by compiling the graphical system description

�	 Kim G� Larsen et al�� UPPAAL in a Nutshell

Fig� �	� The Regions window�

to its textual format� Finally� it spawns a child process
running the veri�er with the required parameters� i�e��
the list of
ags� the system description �le� the require�
ment speci�cation and �optionally� the speci�ed trace
�le�

All output	 produced in the child process is displayed
in the output browser of XUppaal� In particular� an�
swers to whether each property of the requirement spec�
i�cation is satis�ed or not are displayed� Each answer
is numbered in order of appearance in the requirement
speci�cation �le and with line numbers in parenthesis
�see Figure �� If an answer line is double�clicked in the
output browser of XUppaal� the requirement speci�ca�
tion editor �if open� will display the corresponding line
of the requirement speci�cation �le in its output browser
�labeled Req� Spec� File�� This is useful when working
with large speci�cations�

Example � �Verifying the Box�Sorter�� Now we show how
to verify the correctness of the box�sorter unit� Since the
sorter is considered correct if the observer sees no red
boxes� we formalize the correctness in terms of reach�
able locations of the observer� We begin by describing
the automaton Observer which models the observer�

The Observer automaton� which can be found in Fig�
ure ��� has two locations� happy and sad� It is initially
in location happy and stays there as long as it sees only
black boxes at the rightmost extreme of the belt� If a
red box appears� it enters the location sad where it stays
forever�

	 The output which normally appears on standard output and
standard error �i�e� stdout and stderr	�

To prove the box�sorter correct� it su�ces to show that
it is impossible for the observer to reach location sad� i�e�
��� Observer�sad� We phrase the property in the Up�
paal syntax� A��not Observer�sad� and put the result�
ing formula in the requirement speci�cation �le� named
boxes�q� This can be done using the requirement spec�
i�cation editor which is activated in the Run menu of
XUppaal�

Finally� we start the actual veri�cation
Verification
in the Run menu�� The veri�er outputs the text lines ��
and �� in the output browser of Figure �� telling that the
property is not satis�ed� ut

��
�� Visualizing Diagnostic Traces

The simulator generates traces and allows for traces to
be displayed� reexamined� replayed and reset from any
intermediate point� Traces may also be reused using the
save and load facilities� In particular� diagnostic traces
generated by the veri�er may be loaded for examination�

To use this facility� the �rst step is to specify the trace �le
name �see Section ������� and then instruct the veri�er
to generate traces on �le� This is done by selecting item
Diagnostic File in the Optionsmenu of XUppaal� As
a result� all succeeding veri�cations will output traces in
the speci�ed �le until the Diagnostic File option is
toggled o��

It should be noticed that it is possible to generate a short�
est diagnostic trace� simply by instructing the veri�er to
explore the state space by breath��rst search�

Kim G� Larsen et al�� UPPAAL in a Nutshell �

�Controller�idle Piston�idle Box�idle Observer�happy �

� x�	 y�	 pos�	 color�	

�Controller�idle Piston�idle Box�movea Observer�happy �

� x�	 y�	 pos�	 color��

delay���

�Controller�idle Piston�idle Box�movea Observer�happy �

�x�� y�� pos�� color��

�Controller�idle Piston�idle Box�sayred Observer�happy �

� x�� y�� pos�� color��

Urgent sync� red

�Controller�wait Piston�idle Box�moveb Observer�happy �

� x�	 y�� pos�� color��

delay����

�Controller�wait Piston�idle Box�moveb Observer�happy �

�x��� y��� pos��� color��

�Controller�go Piston�idle Box�moveb Observer�happy �

� x��� y��� pos��� color��

Urgent sync� eject

�Controller�idle Piston�wait Box�moveb Observer�happy �

� x��� y�	 pos��� color��

delay�
�

�Controller�idle Piston�wait Box�moveb Observer�happy �

�x��� y�
 pos��� color��

�Controller�idle Piston�idle Box�moveb Observer�happy �

� x��� y�
 pos��� color��

delay���

�Controller�idle Piston�idle Box�moveb Observer�happy �

�x��� y�� pos��
 color��

�Controller�idle Piston�idle Box�atpiston Observer�happy �

� x��� y�� pos��
 color��

delay���

�Controller�idle Piston�idle Box�atpiston Observer�happy �

�x��
 y�
� pos��	 color��

�Controller�idle Piston�idle Box�saycolor Observer�happy �

� x��
 y�
� pos��	 color��

Sync� red�

�Controller�idle Piston�idle Box�idle Observer�sad �

� x��
 y�
� pos��	 color��

Fig� �
� A diagnostic trace�

When the veri�cation is �nished� the trace �le is loaded
in the simulator by clicking the Load button in the Main
window of the simulator �see Section �������

Example � �Correcting the Box�Sorter�� To �nd out why
the requirement speci�cation is not satis�ed by the sys�
tem description we generate a diagnostic trace� As an
exercise� we �rst produce a textual representation of a
shortest diagnostic trace� To do so� we �rst select the op�
tions Diagnostic Info and Breadth�First in the Options
menu and then initiate a new veri�cation� The resulting
trace is shown in Figure ��
�

We can also try to debug graphically using the simula�
tor� Recall that we have speci�ed the trace �le name in
Example �� A trace will be produced in that �le if we
select the option Diagnostic File and then verify the
system again� Next� we load the trace into the simulator
using button Load in the main window of the simulator�
The windows of the simulator now look exactly like in
Figure ��� Figure �� and Figure ���

It can be deduced that there is an error in the Controller
automaton� After the controller has sensed a red box� it
will miss the box if it waits too short time before ejecting
the piston� If it waits another
 time units before the
eject signal is sent� the piston will hit the box�

The error can be corrected simply by modifying the time
bound from �� to �� in the invariant and the guard on

 Normally� the trace would have been displayed in the output
browser of XUppaal�

the edge outgoing from location wait in the Controller� It
can be veri�ed that the modi�ed system is correct� ut

� Case Studies

Uppaal has been applied in a number of �industrial�
case�studies� In this section we brie
y review some of
them�

Audio!Video Protocol� This is an audio control proto�
col highly dependent on real�time� The protocol is
developed by Bang " Olufsen� to transmit messages
between audio!video components over a single bus�
and further studied in �� �� Though it was known
to be faulty� the error was not found using conven�
tional testing methods� UsingUppaal� an error�trace
is automatically produced� which reviled the error�
Furthermore� a correction is suggested and automat�
ically proved using Uppaal�

Bounded Retransmission Protocol� The protocol is pro�
posed and studied at COST ���� International Work�
shop on Applied Formal Methods in System Design�
It is based on the alternating bit protocol over a lossy
communication channel� but allows for a bounded
number of retransmissions� In ���� ���� it is reported
that a number of properties of the protocol is auto�
matically checked with Uppaal� In particular� it is
shown that the correctness of the protocol is depen�
dent on correctly chosen time�out values�

�� Kim G� Larsen et al�� UPPAAL in a Nutshell

Collision Avoidance Protocol� The protocol in ���� is im�
plemented on top of an Ethernet�like medium such
as the CSMA!CD protocol� It is to ensure an upper
bound on the communication delay between the net�
work nodes� It was designed and proved correct using
Uppaal� The two main properties established show
that the protocol is collision�free� and it does ensure
an upper bound on the user�to�user communication
delay �assuming a perfect medium��

Gear�Box Controller� In this industrial case�study� Up�
paal is applied to the design and analysis of a proto�
type gear�box controller for vehicles by Mecel AB��

�� �� The gear�box controller is a component in the
real�time distributed system that controls a modern
car� The gear�requests from the driver are delivered
via the man!machine interface over a communication
network to the gear�box controller� The controller im�
plements the actual gear change by actuating the
lower level components of the system �such as the
clutch� the engine and the gear�box��
In the design of the controller� the symbolic simulator
of Uppaal is applied to validate the system behav�
ior� The correctness of the gear�box controller design
is established by automatic proofs of
� properties
derived from requirements speci�ed by Mecel AB�

Philips Audio Protocol� The protocol is developed and
implemented by Philips to exchange control informa�
tion between components in audio equipment using
Manchester encoding� The correctness of the encod�
ing relies on timing delays between signals� It is �rstly
studied and manually veri�ed in ���� In ���� the pro�
tocol is modeled and veri�ed using Uppaal�

Philips Audio Protocol with Bus Collision� This is an ex�
tended variant of Philips audio control protocol with
bus collision detection� It is signi�cantly larger than
the version above since several new components �and
variables� are introduced� and existing components
are modi�ed to deal with bus collisions� Its correct�
ness is originally proved by hand in ����� and by model�
checking for the �rst time using Uppaal in ����

Mutual Exclusion Protocol� The so�called Fischers pro�
tocol has been studied previously in many experi�
ments� e�g� ��� ���� The protocol is to ensure mutual
exclusion among several processes competing for a
critical section using timing constraints and a shared
variable� Di�erent versions of the protocol have been
veri�ed using Uppaal� c�f� ��
� �
� ����

TDMA Protocol Start�Up Mechanism� In ����� a formal
veri�cation of the start�up algorithm of a TDMA
�Time Division Multiple Access� protocol is reported�
It was proved using Uppaal that an ensemble of
three communicating stations becomes synchronized
and operational within a bounded time from an ar�
bitrary initial state� given a clock�drift corresponding

�� Mecel AB is a Swedish company developing control systems
for vehicle industries�

to ������ Furthermore� an upper time�bound for the
start�up to complete was derived�

 Conclusions

In this paper� we have presented the overall structure�
the design criteria� and the main features of Uppaal� It
is intended to be an informal but reasonably �complete�
description of the syntax and semantics of the Uppaal
modelling and speci�cation languages as well as the ker�
nel of its model�checking algorithm� It contains neither
de�nitions nor theorems� but mainly examples� The in�
tended readers are engineers working with development
and analysis of embedded systems in particular� real�time
protocols and controllers� A user guide is given� which de�
scribes in details how to use the various tools of Uppaal
to construct abstract models of a system� to simulate its
dynamical behavior� to specify and verify its safety and
bounded liveness properties in terms of its model� In ad�
dition� we also provide a short review on case�studies
where Uppaal is applied� as well as references to its
theoretical foundation�

However the document is by no means complete as Up�
paal is still under development� In fact� during the time
when this paper is written� a new version of Uppaal has
been implemented� which is currently under internal test
and evaluation� Future versions of Uppaal will extend
the current description language with data types such as
arrays� records� lists etc� as well as various primitive oper�
ations on data types� In the near future� a new graphical
interface will be available� which provides graphical sup�
ports for not only system descriptions at process level as
the current version does but also hierarchical design and
modularization� But that is all for now�

Acknowledgements� The authors wish to thank the people involved
in the development of Uppaal� including� Johan Bengtsson� Palle
Christensen� Jesper Jensen� Per Jensen� K
are Kristo�ersen� Fredrik
Larsson� and Thomas S�rensen�

References

�� Martin Abadi and Leslie Lamport� An Old�Fashioned
Recipe for Real Time� In Proc� of REX Workshop �Real�

Time� Theory in Practice�� volume 	�� of Lecture Notes

in Computer Science� �����
�� R� Alur and D� Dill� Automata for Modelling Real�Time

Systems� Theoretical Computer Science� ��	����������	�
April �����

�� Richard Bellman� Dynamic Programming� Princeton
University Press� ���
�

�� Johan Bengtsson� Palle Christensen� Per Jensen�
Kim G� Larsen� Fredrik Larsson� Paul Pettersson�
Thomas S�rensen� and Wang Yi� Uppaal� a

Tool Suite for Validation and Veri�cation of Real�

Time Systems� http���www�docs�uu�se�rtmv�uppaal��
uppaal�guide�ps�gz� ���	�

Kim G� Larsen et al�� UPPAAL in a Nutshell ��

�� Johan Bengtsson� David Gri�oen� K�are Kristo�ersen�
Kim G� Larsen� Fredrik Larsson� Paul Pettersson� and
Wang Yi� Veri�cation of an Audio Protocol with Bus
Collision Using Uppaal� In Rajeev Alur and Thomas A�
Henzinger� editors� Proc� of �th Int� Conf� on Computer

Aided Veri�cation� number ���� in Lecture Notes in
Computer Science� pages ������	� Springer�Verlag� July
���	�

	� Johan Bengtsson� Kim G� Larsen� Fredrik Larsson� Paul
Pettersson� andWang Yi� Uppaal� a Tool Suite for Au�
tomatic Veri�cation of Real�Time Systems� In Proc� of

Workshop on Veri�cation and Control of Hybrid Systems

III� volume ��		 of Lecture Notes in Computer Science�
pages �������� Springer�Verlag� October �����

� Johan Bengtsson� Kim G� Larsen� Fredrik Larsson� Paul
Pettersson� and Wang Yi� Uppaal in ����� In Proc� of the
	ndWorkshop on Tools and Algorithms for the Construc�

tion and Analysis of Systems� number ���� in Lecture
Notes in Computer Science� pages �������� Springer�
Verlag� Mars ���	�

�� Johan Bengtsson and Fredrik Larsson� Uppaal a Tool for
Automatic Veri�cation of Real�time Systems� Master�s
thesis� Uppsala University� ���	�

�� D� Bosscher� I� Polak� and F� Vaandrager� Veri�cation
of an Audio�Control Protocol� In Proc� of Formal Tech�

niques in Real�Time and Fault�Tolerant Systems� volume
�	� of Lecture Notes in Computer Science� �����

��� Amar Bouali� Annie Ressouche� Val�erie Roy� and Robert
de Simone� The fc�tools set� In Rajeev Alur and
Thomas A� Henzinger� editors� Proc� of �th Int� Conf�

on Computer Aided Veri�cation� number ���� in Lecture
Notes in Computer Science� pages �������� Springer�
Verlag� ���	�

��� Palle Christensen and Thomas Mark S�rensen� void�
Master�s thesis� Aalborg University� ���
�

��� P�R� D�Argenio� J��P�� Katoen� T� Ruys� and J� Tretmans�
Modeling and Verifying a Bounded Retransmission Pro�
tocol� In Proc� of COST 	
�� International Workshop on

Applied Formal Methods in System Design� ���	� Also
available as Technical Report CTIT �	���� University of
Twente� July ���	�

��� P�R� D�Argenio� J��P� Katoen� T�C� Ruys� and J� Tret�
mans� The bounded retransmission protocol must be
on time� In Proc� of the
rd Workshop on Tools and

Algorithms for the Construction and Analysis of Sys�

tems� number ���
 in Lecture Notes in Computer Sci�
ence� pages ��	����� Springer�Verlag� April ���
�

��� C� Daws and S� Yovine� Two examples of veri�cation of
multirate timed automata with Kronos� In Proc� of the

��th IEEE Real�Time Systems Symposium� pages 		�
��
December �����

��� David Dill� Timing assumptions and veri�cation of �nite�
state concurrent systems� In J� Sifakis� editor� Proc� of
Automatic Veri�cation Methods for Finite State Systems�
number ��
 in Lecture Notes in Computer Science� pages
��
����� Springer�Verlag� �����

�	� David Dill� The Mur� Veri�cation System� In Rajeev
Alur and Thomas A� Henzinger� editors� Proc� of �th
Int� Conf� on Computer Aided Veri�cation� number ����
in Lecture Notes in Computer Science� pages ��������
Springer�Verlag� ���	�

�
� W�O�D� Gri�oen� Analysis of an Audio Control Protocol
with Bus Collision� Master�s thesis� University of Ams�
terdam� Programming Research Group� �����

��� Klaus Havelund� Arne Skou� Kim G� Larsen� and Kristian
Lund� Formal Modeling and Analysis of an Audio�Video
Protocol� An Industrial Case Study Using Uppaal� Ac�
cepted for presentation at the ��th IEEE Real�Time Sys�

tems Symposium� ���
�

��� Thomas A� Henzinger� Pei�Hsin Ho� and Howard Wong�
Toi� HyTech� The Next Generation� In Proc� of the

��th IEEE Real�Time Systems Symposium� pages �	�	��
December �����

��� H�E� Jensen� K�G� Larsen� and A� Skou� Modelling and
Analysis of a Collision Avoidance Protocol Using SPIN
and Uppaal� In Proc� of 	nd International Workshop on

the SPIN Veri�cation System� pages ����� August ���	�
��� Jesper Gravgaard Jensen and Per Sto�er Jensen� Design

and Implementation of NewPaal � a modelling language
for real�time systems� Master�s thesis� Aalborg Univer�
sity� ���
�

��� K�are J� Kristo�ersen� Francois Larroussinie� Kim G�
Larsen� Paul Pettersson� and Wang Yi� A compositional
proof of a real�time mutual exclusion protocol� In Proc�

of the �th International Joint Conference on the Theory

and Practice of Software Development� April ���
�

��� Kim G� Larsen and Hans H�uttel� Uppaal � An Au�
tomatic Tool for Veri�cation of Real Time and Hybrid
Systems� Seminar slides from Livslang Uddannelse ���
���	� Email� fkgl�hansg�cs�auc�dk�

��� Kim G� Larsen� Paul Pettersson� and Wang Yi� Com�
positional and Symbolic Model�Checking of Real�Time
Systems� In Proc� of the ��th IEEE Real�Time Systems

Symposium� pages
	��
� December �����

��� Kim G� Larsen� Paul Pettersson� and Wang Yi� Diagnos�
tic Model�Checking for Real�Time Systems� In Proc� of

Workshop on Veri�cation and Control of Hybrid Systems

III� volume ��		 of Lecture Notes in Computer Science�
pages �
����	� Springer�Verlag� October �����

�	� Kim G� Larsen� Paul Pettersson� and Wang Yi� Model�
Checking for Real�Time Systems� In Proc� of Fundamen�

tals of Computation Theory� volume �	� of Lecture Notes
in Computer Science� pages 	����� August �����

�
� Fredrik Larsson� Kim G� Larsen� Paul Pettersson� and
Wang Yi� E�cient Veri�cation of Real�Time Systems�
Compact Data Structures and State�Space Reduction�
Accepted for presentation at the ��th IEEE Real�Time

Systems Symposium� ���
�

��� Magnus Lindahl� Paul Pettersson� and Wang Yi� For�
mal Design and Analysis of a Gear�Box Controller�
an Industrial Case Study using Uppaal� Techni�
cal Report ASTEC ����
� Dept� of Computer Sys�
tems� Uppsala University� August ���
� Avail�
able at http���www�docs�uu�se�docs�rtmv�papers��

lpw�astec���ps�gz�

��� Henrik L�onn and Paul Pettersson� Formal Veri�cation
of a TDMA Protocol Startup Mechanism� Accepted for
presentation at the Paci�c Rim International Symposium

on Fault�Tolerant Systems� December ���
�
��� R� Milner� Communication and Concurrency� Prentice

Hall� Englewood Cli�s� �����

��� A� Olivero� J� Sifakis� and S� Yovine� Using Abstractions
for the Veri�cation of Linear Hybrids Systems� In Proc�

�� Kim G� Larsen et al�� UPPAAL in a Nutshell

of �th Int� Conf� on Computer Aided Veri�cation� volume
��� of Lecture Notes in Computer Science� �����

��� N� Shankar� Veri�cation of Real�Time Systems Using
PVS� In Proc� of �th Int� Conf� on Computer Aided

Veri�cation� volume 	�
 of Lecture Notes in Computer

Science� Springer�Verlag� �����
��� Mihalis Yannakakis and David Lee� An e�cient algo�

rithm for minimizing real�time transition systems� In
Proc� of �th Int� Conf� on Computer Aided Veri�cation�
volume 	�
 of Lecture Notes in Computer Science� pages
�������� �����

��� Wang Yi� Paul Pettersson� and Mats Daniels� Auto�
matic Veri�cation of Real�Time Communicating Systems
By Constraint�Solving� In Proc� of the �th International

Conference on Formal Description Techniques� �����

Appendix A� BNF for ta�format

Ita � VarList ProcList Globals

VarList � � j Channel VarList j Var VarList
ProcList � Proc j Proc ProcList
Globals � system IdList �

Channel � urgent chan IdList �

j chan IdList �

Var � Type IdList �

Proc � process Id f ProcBody g
IdList � Id j Id � IdList

ProcBody � StateDecls TransDecls

StateDecls � state IdList � commit IdList � init Id �

j state IdList � init Id �

Transdecls � trans TransList �

TransList � Trans j Trans � TransList

Trans � Id SInv �� Id f OpG OpS OpA g
j �� Id f OpG OpS OpA g

SInv � � j f InvList g
InvList � Inv j Inv � InvList

Inv � Id 	
 Nat j Id 	 Nat

OpG � � j guard GuardList �

OpS � � j Id� j Id�
OpA � � j assign AssignList �

GuardList � Guard j Guard � GuardList

AssignList � Assign j Assign � AssignList

Type � clock j int
Assign � ClockAssign j IntAssign
Guard � Id RelOp Nat j Id RelOp Id Op Nat

ClockAssign � Id �
 Nat

IntAssign � Id �
 IntExpr

IntExpr � Int � Id Op Nat j Id Op Nat j Id j Int
RelOp � 	 j 	
 j �
 j � j

Op � � j �
Id � Alpha j IdAlphaNum
Nat � Num j NumNat

Int � Nat j �Nat
Alpha � A j � � � j Z j a j � � � j z
Num � � j � � � j �
AlphaNum � Alpha j Num j

Appendix B� BNF for q�format

Prop � E	� StateProp j A�� StateProp

StateProp � AtomicProp j � StateProp �

j not StateProp

j StateProp or StateProp

j StateProp and StateProp

j StateProp imply StateProp

AtomicProp � Id�Id j Id RelOp Nat

j Id RelOp Id Op Nat

RelOp � 	 j 	
 j �
 j � j

Op � � j �
Id � Alpha j Id AlphaNum

Nat � Num j NumNat

Alpha � A j � � � j Z j a j � � � j z
Num � � j � � � j �
AlphaNum � Alpha j Num j

