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Prologue

It is fair to state� that in this digital era

correct systems for information processing

are more valuable than gold�

H� Barendregt� The quest for correctness�

Images of SMC Research ����� pages ������ 	��
�

On the relevance of system validation

In daily life we are more and more confronted with information technology� either

explicitly �by using PCs� Internet� Personal Digital Assistants� etc�� or implicitly

by using devices like TVs� electric razors� mobile phones� cars� public transporta�

tion and so forth� In ���	 it has been estimated that people are in contact with

about 
	 �information processing devices� per day� Due to the high integration

of information technology in all kinds of applications  it is estimated that 
��

of the total development costs of transportation devices such as cars� trains and

air�planes are for computer�based components  we increasingly rely on the re�

liability �or should we say unreliability�� of software and hardware components�

Clearly� we do not accept that our mobile phone is malfunctioning or that our

video recorder reacts unexpectedly and wrongly to commands we issue via the

remote control unit� And these errors do in a sense still have little impact� how�

ever� errors in safety�critical systems such as nuclear power plants or �ight control

systems are unacceptable and have a huge impact� A major problem though is
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that the complexity of systems grows rapidly� and hence their vulnerability for

errors�
Apart from �important� safety aspects� errors can be very expensive� in par�

ticular if they are demonstrated during system operation� i�e� after the product

has been launched on the market� There are several impressive recent stories

about those experiences� For instance� the error in Intel�s Pentium �oating�point

division unit is estimated to have caused a loss of about 	�� million US dollars�

A similar loss has been estimated for the crash of the Ariane�	 missile� which

seems to be due to an error in the software that controls the �ight direction�

All in all� it is fair to say that system validation� the process of determining the

correctness of speci�cations� designs and products� is becoming an increasingly

important activity� System validation is a technique to support the quality control

of the system design� Current practice in software engineering shows that system

designs are checked to a large extent by humans �so�called �peer reviewing��

and by dynamic testing �design tests� system tests� �eld tests etc��� Little tool�

support is involved� let alone the application of techniques and tools with a

sound mathematical basis� Due to the increasing magnitude and complexity of

systems and the pressure to reduce system design and development time ��time

to market��� the support of the system validation process through techniques

and tools that facilitate the automated analysis of the correctness is essential� As

Wolper has stated in the context of software veri�cation by humans��

�Manual veri�cation is at least as likely to be wrong as the program itself�

Techniques for system validation

Important validation techniques are peer reviewing� �simulation and� testing�

formal veri�cation� and model checking� Testing is an operational way to check

whether a given system realization  an entity consisting of soft� and�or hard�

ware � conforms to an abstract speci�cation� By nature� testing can be applied

�P� Wolper� Veri�cation� dreams and reality� Inaugural lecture of the course �The algorith�

mic veri�cation of reactive systems��
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only after a prototype implementation of the system has been realized� Formal

veri�cation� as opposed to testing� works on models �rather than implementa�

tions� and amounts to a mathematical proof of the correctness of a system �i�e��

its model�� Both techniques can �and partially are� supported by tools� For

instance� in the �eld of testing interest is increasing in the development of al�

gorithms and tools for the automated generation and selection of tests� starting

from a formal system speci�cation� In formal veri�cation� theorem provers and

proof checkers have been shown to be an important support� though quite some

expertise is usually required to handle them�

Model checking

In these lecture notes we concentrate on a di�erent validation technique that is

known as model checking� To put it in a nutshell� model checking is an automated

technique that� given a �nite�state model of a system and a property stated

in some appropriate logical formalism �such as temporal logic�� systematically

checks the validity of this property� Model checking is a general approach and

is applied in areas like hardware veri�cation and software engineering� Due to

its success in several projects and the high degree of support from tools� there is

an increasing interest in industry in model checking  various companies have

started their own research groups and sometimes have developed their own in�

house model checkers� For instance� Intel has started � validation laboratories

for the veri�cation of new chip designs� An interesting aspect of model checking

is that it supports partial veri�cation� a design can be veri�ed against a partial

speci�cation by considering only a subset of all requirements�

Scope of these notes

These lecture notes are concerned with the concepts� algorithms� and tools for

model checking� The concepts of model checking have their roots in sound math�

ematical foundations such as logic and automata theory� data structures� graph

algorithms� Although some basic knowledge �such as that obtained in an under�

graduate course� on these topics is required� these concepts will be extensively
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treated in these notes� We will deal with three di�erent types of model check�

ing� model checking of linear� branching� and real�time �branching� temporal

logic� The �rst two types concentrate on the functional or qualitative aspects

of systems� whereas the latter type of model checking allows in addition some

quantitative analysis� For each of these forms of model checking we deal with

the concepts� algorithms that will be developed systematically on the basis of the

mathematical concepts� and tools whose functionality is illustrated by a small

case study� In presenting the concepts and algorithms we concentrate on the

basic ingredients and do not treat e�ciency�improving techniques that  as we

�rmly believe  would unnecessarily distract the reader from the essence of

model checking� Instead� we devote a separate chapter to techniques for state

space reduction� We do not underestimate the role of these techniques  they

have been �and still are� the key for the success of model checking  but we

support Dijkstra�s principle of separation of concerns� and therefore treat these

techniques separately�
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Chapter �

System Validation

��� Purpose of system validation

Introduction and motivation

Systems that  in one way or another  are based on information process�

ing increasingly provide critical services to users� Mobile telephone systems� for

instance� are used in various circumstances �as in ambulances� where malfunc�

tioning of the software can have disastrous consequences� Information processing

plays a signi�cant role in process control systems� as in nuclear power plants or

in chemical industry where� evidently� errors �in software� are highly undesirable�

Other typical examples of such safety�critical systems are radiation machines in

hospitals and storm surge barriers�

These are obvious examples where reliability is a key issue and where the

correctness of a system is of vital importance� However� information technol�

ogy is more and more entering our daily life� In �non�information processing�

systems� such as electric razors� audio equipment� and TV�sets �where high�end

TVs are nowadays equipped with 
 Megabyte of software�� the amount of soft�

and hardware is increasing rapidly� For transport systems such as cars� trains

and airplanes� information technology is coming to play a dominant role� expec�

�	
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tations are that about 
�� of the total development costs of those vehicles will

be needed for information technology� Given this increasing integration of infor�

mation processing into various kinds of �critical� applications� it is fair to state

that

the reliability of information processing is a key issue

in the system design process�

What is common practice on maintaining the reliability of� for instance� soft�

ware systems� Usually the design is started with a requirements analysis where

the desires of the client�s� are extensively analyzed and de�ned� After travers�

ing several distinct design phases� at the end of the design process a �prototype�

design is obtained� The process of establishing that a design ful�lls its require�

ments is referred to as system validation� Schematically this strategy is depicted

in Figure ���� What is common practice on when to perform validation� Clearly�

validation

Requirements

Design Process

Result

Figure ���� Schematic view of �a posteriori� system validation

checking for faults only at the end of the design trajectory is not acceptable� if an

error is found it takes too much e�ort to repair it� since the whole design trajec�

tory needs to be re�traversed in order to see where and how the error could arise�

This is rather costly� It is therefore more common practice to check on�the��y�

i�e� while the system is being designed� If an error is determined in this setting�

ideally only the design phase up to the previous validation step needs to be re�

examined� This reduces the costs signi�cantly� This is depicted schematically in

Figure ��
�

Two techniques are widely applied in practice to ensure that the �nal result

does what it originally is supposed to do� peer reviewing and testing� Investi�

gations in the software engineering branch� for instance� show that ��� ��� of

all projects use peer reviewing� Peer reviewing is a completely manual activity
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Design	 Design Designk

Requirements Result

validation

Design Process

Figure ��
� Schematic view of on�the��y system validation

in which �part of� a design is reviewed by a team of developers that �in order

to increase the e�ect of reviewing� have not been involved in the design process

of that particular part� Testing is an operational way to check whether a given

system realization conforms to the original abstract speci�cation� Although test�

ing is an �the� essential validation technique for checking the correctness of real

implementations� it is usually applied in an ad�hoc manner  tests are� for in�

stance� generated by hand  and tool�support has received only scant attention�

�Testing is covered more extensively later on in this chapter��

System validation is an important step in system design�

In most designs more time and e	ort is spent on validation

than on construction


This is not so surprising� since errors can be very expensive� The error in Intel�s

Pentium �oating�point division unit is estimated to have caused a loss of about

	�� million US dollars� Consider also the �software� mistake in the missile Ariane�

	 �costs of about 	�� million dollars� or the mistake in Denver�s baggage handling

system that postponed the opening of the new airport for � months �at ��� million

dollar per day��

System validation as part of the design process

In Germany interviews with several software engineering companies have resulted

in some interesting �gures for the costs of error repairment and statements about

�� System Validation

the stages in the design process where errors are introduced and detected �Ligges�

meyer et� al� ������ These investigations show  once more  that integration

of system validation into the design process should take place at an early stage�

particularly from an economical point of view �cf� Figure ����� It should not

Analysis Conceptual
Design

Programming Design Test System Test Operation

0 DM

Time (non-linear)

errors errors
detected

cost of
correction

(in DM)
per error

50%

40%

30%

20%

10%

0%

5 kDM

10 kDM

15 kDM

20 kDM

25 kDM

(in %)
introduced

(in %)

Figure ���� System life cycle and error introduction� detection and costs of re�

pairment

surprise the reader that about 	�� of all errors are introduced during the pro�

gramming phase� i�e� the phase in which actual code is generated� The conceptual

design phase also contributes signi�cantly to the introduction of errors� Whereas

only about �	� of all errors have been detected before the test phases start� it is

evident that most errors are found during testing� in particular during system in�

tegration tests� where software modules are glued together and the entire system

is investigated�

Errors that are detected before the test phase can on average be repaired very

cheaply� about 	�� German Marks �i�e� about �
� US dollar� per error� In the

design test� while testing the software modules on a stand�alone basis� this cost

increases to 
���� DM� reaching a maximum of 
	���� DM per error when an error

is demonstrated during system operation ��eld tests�� It is clear that it is of vital

importance to detect errors as early as possible in the system design process� the

costs to repair errors are substantially lower� and the impact of errors on the rest

of the design is less substantial� Without overestimating� we can fairly conclude
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that

There is a strong need for an early integration

of system validation in the design process�

Support by systematic techniques� formal methods

Nowadays� computer systems are composed of several subsystems� such as parallel

and distributed systems �e�g� computer�telephony networks� chips that consist of

many communicating components� or high�speed parallel computers connected

by some shared memory�� Due to the increase in the magnitude and complexity

of information processing systems� errors can easily and unexpectedly occur in

their design� Reasoning about such systems becomes more and more complicated�

Thus�
There is a strong need for the use of advanced� systematic techniques

and tools that support the system validation process�

Whereas many validation techniques are ad�hoc and based on system speci�ca�

tions posed in natural language� we will concentrate in these lecture notes on

validation based on formal methods� Using formal methods� system designs can

be de�ned in terms of precise and unambiguous speci�cations that provide the

basis for a systematic analysis� Important validation techniques based on for�

mal methods are testing� simulation�� formal veri�cation� and model checking�

In the following we brie�y consider testing� simulation and formal veri�cation�

before concentrating on the main topic of these lecture notes� model checking�

Although system validation based on formal methods has a great potential� and

is well�accepted in �elds like hardware veri�cation and the veri�cation of commu�

nication protocols� its use in software engineering is still limited� For instance�

according to the German study mentioned before in ����	� of all projects formal

methods are used�
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Reactive systems

In these lecture notes we will concentrate on the validation of so�called reactive

systems� Reactive systems  this term has been coined by Pnueli ����	�  are

characterized by a continuous interaction with their environment� They typically

continuously receive inputs from their environment and� usually within quite a

short delay� react on these inputs� Typical examples of reactive systems are op�

erating systems� aircraft control systems� communication protocols� and process

control software� For instance� a control program of a chemical process receives

control signals regularly� like temperature and pressure� at several points in the

process� Based on this information� the program can decide to turn on the heat�

ing elements� to switch o� a pump� and so forth� As soon as a dangerous situation

is anticipated� for example the pressure in the tank exceeds certain thresholds�

the control software needs to take appropriate action� Usually reactive systems

are rather complex� the nature of their interaction with the environment can be

intricate and they typically have a distributed and concurrent nature�

As argued above� correctness and well�functioning of reactive systems is cru�

cial� To obtain correctly functioning and dependable reactive systems a coherent

and well�de�ned methodology is needed in which di�erent phases can be distin�

guished�

� In the �rst phase� a thorough investigation of requirements is needed and

as a result a requirement speci�cation is obtained�

� Secondly� a conceptual design phase results in an abstract design speci�ca�

tion� This speci�cation needs to be validated for internal consistency and

it needs to be checked against the requirement speci�cation� This valida�

tion process can be supported by formal veri�cation simulation and model

checking techniques� where a model �like a �nite�state automaton� of the

abstract design speci�cation can be extensively checked�

� Once a trustworthy speci�cation has been obtained� the third phase consists

of building a system that implements the abstract speci�cation� Typically�

testing is a useful technique to support the validation of the realization

versus the original requirement speci�cation�
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��� Simulation

Simulation is based on a model that describes the possible behavior of the system

design at hand� This model is executable in some sense� such that a software tool

�called a simulator� can determine the system�s behavior on the basis of some

scenarios� In this way the user gets some insight on the reactions of the system

on certain stimuli� The scenarios can be either provided by the user or by a tool�

like a random generator that provides random scenarios� Simulation is typically

useful for a quick� �rst assessment of the quality of a design� It is less suited to

�nd subtle errors� it is infeasible �and mostly even impossible� to simulate all

representative scenarios�

��� Testing

A widely applied and traditional way of validating the correctness of a design is

by means of testing� In testing one takes the implementation of the system as

realized �a piece of software� hardware� or a combination thereof�� stimulates it

with certain �probably well�chosen� inputs� called tests� and observes the reaction

of the system� Finally� it is checked whether the reaction of the system conforms

to the required output� The principle of testing is almost the same as that of

simulation� the important distinction being that testing is performed on the real�

executing� system implementation� whereas simulation is based on a model of the

system�

Testing is a validation technique that is most used in practice  in software

engineering� for instance� in all projects some form of testing is used  but almost

exclusively on the basis of informal and heuristic methods� Since testing is based

on observing only a small subset of all possible instances of system behavior� it

can never be complete� That is to say� in Dijkstra�s words�

Testing can only show the presence of errors� never their absence�

Testing is� however� complementary to formal veri�cation and model checking�
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that are based on a mathematical model of the system rather than on a real�

executing system� Since testing can be applied to the real implementation� it is

useful in most cases�

� where a valid and reliable model of the system is di�cult to build due to

complexity�

� where system parts cannot be formally modeled �as physical devices� or

� where the model is proprietary �e�g� in case of third�party testing��

Testing is usually the dominating technique for system validation and consists

of applying a number of tests that have been obtained in an ad�hoc or heuristic

manner to an implementation� Recently� however� the interest and possibilities

of applying formal methods to testing are increasing� For instance� in the area of

communication protocols this kind of research has resulted in a draft international

standard on �formal methods in conformance testing� �ISO� ������ There the

process of testing is partitioned into several phases�

�� In the test generation phase� abstract descriptions of tests� so�called test

cases� are systematically generated starting from a precise and unambiguous

speci�cation of the required properties in the speci�cation� The test cases

must be guaranteed to test these properties�


� In the test selection phase� a representative set of abstract test cases is

selected�

�� In the test implementation phase� the abstract test cases are transformed

into executable test cases by compiling them or implementing them�

�� In the test execution phase� the executable test cases are applied to the

implementation under test by executing them on a test execution system�

The results of the test execution are observed and logged�

	� In the test analysis phase� the logged results are analyzed to decide whether

they comply with the expected results�
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The di�erent phases may� and in practice often do� overlap� especially the last

phases�

Testing is a technique that can be applied both to prototypes� in the form of

systematic simulation� and to �nal products� Two basic approaches are transpar�

ent box testing� where the internal structure of an implementation can be observed

and sometimes partially controlled �i�e� stimulated�� and black box testing� where

only the communication between the system under test and its environment can

be tested and where the internal structure is completely hidden to the tester�

In practical circumstances� testing is mostly somewhere in between these two

extremes� and is sometimes referred to as grey box testing�

��� Formal veri�cation

A complementary technique to simulation and testing is to prove that a system

operates correctly� in a similar way as one can prove that� for example� the square

of an even number is always an even number� The term for this mathematical

demonstration of the correctness of a system is �formal� veri�cation� The basic

idea is to construct a formal �i�e� mathematical� model of the system under inves�

tigation which represents the possible behavior of the system� In addition� the

correctness requirements are written in a formal requirement speci�cation that

represents the desirable behavior of the system� Based on these two speci�ca�

tions one checks by formal proof whether the possible behavior �agrees with� the

desired behavior� Since the veri�cation is treated in a mathematical fashion� the

notion of �agree with� can be made precise� and veri�cation amounts to proving

or disproving the correctness with respect to this formal correctness notion�

In summary formal veri�cation requires�

�� A model of the system� typically consisting of

� a set of states� incorporating information about values of variables�

program counters and the like� and

� a transition relation� that describes how the system can change from
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one state to another�


� A speci�cation method for expressing requirements in a formal way�

�� A set of proof rules to determine whether the model satis�es the stated

requirements�

To obtain a more concrete feeling of what is meant we consider the way in which

sequential programs can be formally veri�ed�

Verifying sequential programs

This approach can be used to prove the correctness of sequential algorithms such

as quick�sort� or the computation of the greatest common divisor of two integers�

In a nutshell this works as follows� One starts by formalizing the desired behavior

by using pre� and postconditions� formulas in predicate logic� The syntax of such

formulas is� for instance� de�ned by

� ��� p j �� j � � �

where p is a basic statement �like �x equals 
��� � denotes negation and �

denotes disjunction� The other boolean connectives can be de�ned by� � � � �

� ��� � ���� true � � � ��� false � � true and � � � � �� � �� For

simplicity we omit universal and existential quanti�cation�

A precondition describes the set of interesting start states �i�e� the allowed

input�s��� and the postcondition describes the set of desired �nal states �i�e� the

required output�s��� Once the pre� and postcondition are formalized� the algo�

rithm is coded in some abstract pseudo�code language �e�g� Dijkstra�s guarded

command language� and it is proven in a step�by�step fashion that the program

satis�es its speci�cation�

To construct the proofs� a proof system� that is� a set of proof rules� is used�

These proof rules usually correspond to program constructs� They are written�

f� g S f� g
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where � is a precondition� S a program statement� and � a postcondition� The

triple f� gS f� g is known as the Hoare triple �Hoare ������ christened to one of

the pioneers in the �eld of formal veri�cation of computer programs� There are

two possible interpretations of Hoare triples� depending on whether one considers

partial or total correctness�

� The formula f� gSf� g is called partially correct if any terminating compu�

tation of S that starts in a state satisfying �� terminates in a state satisfying

��

� f� g S f� g is called totally correct if any computation of S that starts in

a state satisfying �� terminates and �nishes in a state satisfying ��

So� in the case of partial correctness no statements are made about computations

of S that diverge� that is not terminates� In the following explanations we treat

partial correctness unless stated otherwise�

The basic idea of the approach by Hoare �and others� is to prove the cor�

rectness of programs at a syntactical level� only using triples of the above form�

To illustrate his approach we will brie�y treat a proof system for a simple set of

deterministic sequential programs� A program is called deterministic if it always

provides the same result when provided a given input� These sequential programs

are constructed according to the following grammar�

S ��� skip j x �� E j S � S j if B then S else S � j while B do S od

where skip stands for no operation� x �� E for the assignment of the value of

expression E to variable x �where x and E are assumed to be equally typed�� S � S

for the sequential composition of statements� and the latter two for alternative

composition and iteration �where B denotes a boolean expression�� respectively�

The proof rules should be read as follows� if all conditions indicated above the

straight line are valid� then the conclusion below the line is valid� For rules with a

condition true only the conclusion is indicated� these proof rules are called axioms�

A proof system for sequential deterministic programs is given in Table ����
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Axiom for skip f� g skip f� g

Axiom for assignment f� x �� k! g x �� k f� g

Sequential composition

f� g S� f� g�f� g S� f� g

f� g S� � S� f� g

Alternative

f��B g S� f� g� f�� �B g S� f� g

f� g if B then S� else S� � f� g

Iteration

f��B g S f� g

f� gwhile B do S od f�� �B g

Consequence

�� ��� f�� g S f�� g� �� � �

f� g S f� g

Table ���� Proof system for partial correctness of sequential programs

The proof rule for the skip�statement� the statement that does nothing� is

what one would expect� under any condition� if � is valid before the statement�

then it is valid afterwards� According to the axiom for assignment� one starts with

the postcondition � and determines by substitution the precondition � x �� k!�

� x �� k! roughly means � where all occurrences of x are replaced by k� e�g�

f k� is even and k � y g x �� k f x� is even and x � y g�

The procedure of starting the proof from a postcondition is usually applied suc�

cessively to parts of the program in a way such that �nally the precondition of

the entire program can be proved� The rule for sequential composition uses an

intermediate predicate � that characterizes the �nal state of S� and the starting

state of S�� The rule for alternative composition uses the boolean B whose value

determines whether S� or S� is executed�

The proof rule for iteration needs some explanation� Stated in words� this

rule states that predicate � holds after the termination of while B do S od if

the validity of � can be maintained during each execution of the iteration�body
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S� This explains why � is called an invariant� One of the main di�culties in the

proof of programs in this approach is to �nd appropriate invariants� In particular�

this complicates the complete automation of these types of proofs�

All rules discussed so far are syntax�oriented� a proof rule is associated to each

syntactical construct� This di�ers from the consequence rule which establishes

the connection between program veri�cation and logics� The consequence rule

allows the strengthening of preconditions and the weakening of postconditions�

In this way it facilitates the application of other proof rules� In particular the

rule allows replacing pre� and postconditions by equivalent ones� It should be

noted� though� that proving implications like �� �� is in general undecidable�

We must stress that the above proof system allows the establishment of the

relation between inputs and outputs of composed programs by only considering

such relations for program parts� Proof rules and proof systems that exhibit this

property are called compositional� For instance� the proof rule for sequential com�

position allows the correctness of the composed program S� � S� to be established

by considering the pre� and postconditions of its components S� and S��

Let us brie�y consider total correctness� The proof system in Table ��� is

insu�cient to prove termination of sequential programs� The only syntactical

construct that can possibly lead to divergent �i�e� non�terminating� computations

is iteration� In order to prove termination� the idea is� therefore� to strengthen

the proof rule for iteration by�

f��B g S f� g� f��B �n � N g S fn � N g� �� n � �

f� gwhile B do S od f�� �B g

Here� the auxiliary variable N does not occur in �� B� n� or S� The idea is that

N is the initial value of n� and that at each iteration the value of n decreases �but

remains positive�� This construction precisely avoids in�nite computations� since

n cannot be decreased in�nitely often without violating the condition n � �� The

variable n is known as the variant function�
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Formal veri�cation of parallel systems

For statements S� and S� let the construct S� jjS� denote the parallel composition

of these statements� The major aim of applying formal veri�cation to parallel

programs is to obtain a proof rule such as�

f� g S� f� g� f�
� g S� f�
� g

f���� g S� jjS� f� ��
� g

Such a proof rule would allow the veri�cation of parallel systems in a composi�

tional way in the same way as verifying sequential programs by considering the

parts separately� Due to interaction between S� and S�� albeit in the form of

access to shared variables or by exchanging messages� this rule is unfortunately

not valid in general� Starting with the work of Owicki and Gries ������ much

e�ort has been devoted to obtaining proof rules of the above form� There are

several reasons why the achievement of this is far from straightforward�

The introduction of parallelism inherently leads to the introduction of non�

determinism� This results in the fact that for parallel programs which interact

using shared variables the input�output behavior strongly depends on the order

in which these common variables are accessed� For instance� if S� is x �� x"
� S ��

is x �� x"� � x �� x"�� and S� is x �� �� the value of x at termination of S� jjS�

can be either � or 
� and the value of x at termination of S �� jjS� can be �� � or 
�

The di�erent outcomes for x depend on the order of execution of the statements

in S� and S�� or S �� and S�� Moreover� although the input�output behavior of S�

and S �� is obviously the same �increasing x by 
�� there is no guarantee that this

is true in an identical parallel context�

Concurrent processes can potentially interact at any point of their execution�

not only at the beginning or end of their computation� In order to infer how

parallel programs interact� it is not su�cient to know properties of their initial and

�nal states� Instead it is important to be able to make� in addition� statements

about what happens during computation� So properties should not only to refer

to start and end�states� but the expression of properties about the executions

themselves is needed�
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The main problem of the classical approach for the veri�cation of parallel

and reactive systems as explained before is that it is completely focused on the

idea that a program �system� computes a function from inputs to outputs� That

is� given certain allowed input�s�� certain desired output�s� are produced� For

parallel systems the computation usually does not terminate� and correctness

refers to the behavior of the system in time� not only to the �nal result of a

computation �if a computation ends at all�� Typically� the global property of a

parallel program can often not be stated in terms of an input�output relationship�

Various e�orts have been made to generalize the classical formal veri�cation

approach towards parallel programs� starting from the pioneering work of Owicki

# Gries� Due to the interaction between components the proof rules are usually

rather complex� and the development of a fully compositional proof system for

parallel systems that interact via shared variables or via �synchronous or asyn�

chronous� message passing has turned out to be di�cult� The reader who is

interested in such proof systems is referred to the seminal work �Apt # Olderog�

������ For realistic systems� proofs in this style usually become very large 

due to possible interactions between parallel programs N �M additional proof

obligations have to be checked for parallel programs of length N and M in the

approach of Owicki # Gries  and require quite some interaction and guidance

�for instance� in the form of looking for appropriate invariants� from the user� As

a result� such proofs are rather lengthy� tedious� and quite vulnerable to errors�

Besides� the organization of proofs of such complexity in a comprehensible form

is di�cult�

The use of so�called proof assistants� software tools that assist the user in

obtaining mathematical proofs� and theorem provers� tools that generate the proof

of a certain theorem� may overcome these problems to some extent� their use in

formal veri�cation is a research topic that currently attracts a strong interest�

We discuss such tools in some more detail later on in this chapter�

Temporal logic

As we have argued above� the correctness of a reactive system refers to the behav�

ior of the system over time� it does not refer only to the input�output relationship
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of a computation �as pre� and postconditions do�� since usually computations of

reactive systems do not terminate� Consider� for instance� a communication pro�

tocol between two entities� a sender P and a receiver� which are connected via

some bidirectional communication means� A property like

�if process P sends a message� then it will not send the next message

until it receives an acknowledgement�

cannot be formulated in a pre� and postcondition way� To facilitate the formal

speci�cation of these type of properties� propositional logic has been extended

by some operators that refer to the behavior of a system over time� U �until�

and G �globally� are examples of operators that refer to sequences of states �as

executions�� �U� means that property � holds in all states until a state is

reached in which � holds� and G� means that always� that is in all future states�

� holds� Using these operators we can formalize the above statement for the

protocol by� for instance�

G  sndP �m� � � �sndP �nxt�m��U rcvP �ack�� !�

Stated in words� if a message m is sent by process P � then there will be no

transmission by P of some next message �nxt�m�� until an acknowledgement has

been received by P �

Logics extended by operators that allow the expression of properties about

executions� in particular those that can express properties about the relative order

between events� are called temporal logics� Such logics are rather well�established

and have their origins in other �elds many decades ago� The introduction of these

logics into computer science is due to Pnueli ������� Temporal logic is a well�

accepted and commonly used speci�cation technique for expressing properties of

computations �of reactive systems� at a rather high level of abstraction�

In a similar way as in verifying sequential programs one can construct proof

rules for temporal logic for reactive systems and prove the correctness of these

systems with the same approach as we have seen for sequential programs using

predicate logic� The disadvantages of the proof veri�cation method� which usually
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requires much human involvement� are similar to those we mentioned above for

checking parallel systems� they are tedious� labour�intensive� and require a high

degree of user guidance� An interesting approach for reactive systems that we

would like to mention� for which tool support is available� is TLA �Temporal Logic

of Actions� of Lamport ������� This approach allows one to specify requirements

and system behavior in the same notation�

In these lecture notes we concentrate on another type of �formal� veri�ca�

tion technique that is based on temporal logic� but that allows in general less

involvement of the user in the veri�cation process� model checking�

��� Model checking

The basic idea of what is known as model checking is to use algorithms� executed

by computer tools� to verify the correctness of systems� The user inputs a de�

scription of a model of the system �the possible behavior� and a description of

the requirements speci�cation �the desirable behavior� and leaves the veri�cation

up to the machine� If an error is recognized the tool provides a counter�example

showing under which circumstances the error can be generated� The counter�

example consists of a scenario in which the model behaves in an undesired way�

Thus the counter�example provides evidence that the model is faulty and needs

to be revised�� This allows the user to locate the error and to repair the model

speci�cation before continuing� If no errors are found� the user can re�ne its

model description �e�g� by taking more design decisions into account� so that the

model becomes more concrete�realistic� and can restart the veri�cation process�

The algorithms for model checking are typically based on an exhaustive state

space search of the model of the system� for each state of the model it is checked

whether it behaves �correctly�� that is� whether the state satis�es the desired

property� In its most simple form� this technique is known as reachability anal�

ysis� E�g�� in order to determine whether a system can reach a state in which

�In some cases the formal requirement speci�cation might be wrong� in the sense that the

veri�cation engine checks something which the user did not intend to check� Here� the user

probably made a mistake in the formalization of the requirements�
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Figure ���� Veri�cation methodology of model checking

no further progress is possible �a so�called deadlock�� it su�ces to determine all

reachable states and to determine whether there exists a reachable state from

which no further progress can be made� Reachability analysis is only applicable

to proving freedom from deadlock and proving invariant properties� properties

that hold during an entire computation� This is� for example� insu�cient for

communication protocols where a paramount concern is� for instance� that once

a message is sent it is eventually being received� These types of �progress� prop�

erties are not covered by a usual reachability check�

There has been quite some work done on automated reachability analysis for

communication protocols in the late seventies and early eighties �West� ���
��

Here� protocols were modeled as a set of �nite�state automata that communicate

via bounded bu�ered� asynchronous message passing� Starting from the initial

system state which is expressed in terms of the states of the interacting automata

and message bu�ers� all system states are determined that can be reached by

exchanging messages� Protocols like X�
�� X�
	� and IBM SNA protocols have
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been analyzed automatically using this techniques� Model checking can in fact

be considered as a successor of these early state�space exploration techniques for

protocols� It allows a wider class of properties to be examined� and handles state

spaces much more e�ciently than these early techniques�

Methods of model checking

There are basically two approaches in model checking that di�er in the way the

desired behavior� i�e� the requirement speci�cation� is described�

�� Logic�based or heterogeneous approach� in this approach the desired system

behavior is captured by stating a set of properties in some appropriate logic�

usually some temporal or modal logic� A system  usually modeled as a

�nite�state automaton� where states represent the values of variables and

control locations� and transitions indicate how a system can change from

one state to another  is considered to be correct with respect to these

requirements if it satis�es these properties for a given set of initial states�


� Behavior�based or homogeneous approach� in this approach both the desired

and the possible behavior are given in the same notation �e�g� an automa�

ton�� and equivalence relations �or pre�orders� are used as a correctness

criterion� The equivalence relations usually capture a notion like �behaves

the same as�� whereas the pre�order relation represents a notion like �be�

haves at least as�� Since there are di�erent perspectives and intuitions

about what it means for two processes to �behave the same� �or �behave at

least as��� various equivalence �and pre�order� notions have been de�ned�

One of the most well�known notions of equivalence is bisimulation� In a

nutshell� two automata are bisimilar if one automaton can simulate every

step of the other automaton� and vice versa� A frequently encountered no�

tion of pre�order is �language� inclusion� An automaton A is included in

automaton B� if all words accepted by A are accepted by B� A system is

considered to be correct if the desired and the possible behavior are equiv�

alent �or ordered� with respect to the equivalence �or pre�order� attribute

under investigation�
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Although these two techniques are conceptually di�erent� connections between

the two approaches can be established in the following way� In particular a logic

induces an equivalence relation on systems as follows� two systems are equivalent

if �and only if� they satisfy the same formulas� Using this concept relationships

between di�erent logics and equivalence relations have been established� For in�

stance� it is known that two models that are bisimilar satisfy the same formulas

of the logic CTL� a logic that is commonly used for model checking purposes

�as we will see below�� The connection between the two di�erent approaches is

now clear� if two models possess the same properties �checked using the logic

approach�� then they are behaviorally equivalent �as could be checked in the be�

havioral approach�� The reverse direction is more interesting� since in general it

is infeasible to check all properties of a certain logic� whereas checking for equiv�

alences like bisimulation can be done rather e�ciently �in time logarithmically in

the number of states and linear in the number of transitions��

In these lecture notes we focus entirely on the logic�based approach� This

approach originates from the independent work of two pairs� Quielle and Sifakis

������ and Clarke and Emerson ������� Since� in logical terms� one checks that

the system description is a model of the temporal logic formulas� this logical

approach has originally been referred to as model checking �this term has been

coined by Clarke and Emerson��

Model checking is an automated technique that� given

a �nite�state model of a system and a logical property�

systematically checks whether this property holds

for �a given initial state in� that model�

Roughly speaking� model checking is performed as an exhaustive state space

search that is guaranteed to terminate since the model is �nite�

The bene�ts of model checking

� General approach with applications to hardware veri�cation� software engi�

neering� multi�agent systems� communication protocols� embedded systems�

and so forth�
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� Supports partial veri�cation� a design can be veri�ed against a partial spec�

i�cation� by considering only a subset of all requirements� This can result

in improved e�ciency� since one can restrict the validation to checking only

the most relevant requirements while ignoring the checking of less impor�

tant� though possibly computationally expensive requirements�

� Case studies have shown that the incorporation of model checking in the

design process does not delay this process more than using simulation and

testing� For several case studies the use of model checking has led to shorter

development times� In addition� due to several advanced techniques� model

checkers are able to deal with rather large state spaces �an example with

����� states has been reported in the literature��

� Model checkers can potentially be routinely used by system designers with

as much ease as they use� for instance� compilers� this is basically due to

the fact that model checking does not require a high degree of interaction

with the user�

� Rapidly increasing interest of the industry� jobs are o�ered where skills in

applying model checkers are required� industry is building their own model

checkers �e�g� Siemens and Lucent Technologies�� have initiated their own

research groups on model checking �e�g� Intel and Cadence� or is using

existing tools �Fujitsu� Dutch Railways� to mention a few�� �nally� the �rst

model checkers are becoming commercially available�

� Sound and interesting mathematical foundations� modeling� semantics� con�

currency theory� logic and automata theory� data structures� graph algo�

rithms� etc� constitute the basis of model checking�

The limitations of model checking

The main limitations of model checking are�

� Appropriate mainly to control�intensive applications with communications

between components� It is less suited to data�intensive applications� since

the treatment of data usually introduces in�nite state spaces�
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� The applicability of model checking is subject to decidability issues� for par�

ticular cases  like most classes of in�nite�state systems  model checking

is not e�ectively computable� Formal veri�cation� though� is in principle

applicable to such systems�

� Using model checking a model of the system is veri�ed� rather than the real

system itself� The fact that a model possesses certain properties does not

guarantee that the �nal realization possesses the same properties� �For that

purpose complementary techniques such as systematic testing are needed��

In short�

Any validation using model checking is only

as good as the model of the system�

� Only stated requirements are checked� there is no guarantee of the com�

pleteness of desired properties�

� Finding appropriate abstraction �such as the system model and appropriate

properties in temporal logic� requires some expertise�

� As any tool� model checking software might be unreliable� Since �as we

will see in the sequel of these notes� standard and well�known algorithms

constitute the basis for model checking� the reliability does not in principle

cause severe problems� �For some cases� more advanced parts of model

checking software have been proven correct using theorem provers��

� It is impossible �in general� to check generalizations with model checking

�Apt and Kozen� ������ If� for instance� a protocol is veri�ed to be correct

for �� 
 and � processes using model checking� it cannot provide an answer

for the result of n processes� for arbitrary n� �Only for particular cases this

is feasible�� Model checking can� however� suggest theorems for arbitrary

parameters that subsequently can be veri�ed using formal veri�cation�

We believe that one can never achieve absolute guaranteed correctness for

systems of realistic size� Despite the above limitations we believe� however� that

Model checking can provide a signi�cant increase

in the level of con�dence of a system�
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Since in model checking it is quite common to model the possible behavior of

the system as ��nite�state� automata� model checking is inherently vulnerable to

the rather practical problem that the number of states may exceed the amount

of computer memory available� This is in particular a problem for parallel and

distributed systems that have many possible system states  the size of the

state space of such systems is in the worst case proportional to the product of

the size of the state spaces of their individual components� The problem that

the number of states can become too large is known as the state�space explosion

problem� Several e�ective methods have been developed to combat this problem�

the major techniques for state�space reduction in the setting of model checking

will be treated in Chapter 	 of these lecture notes�

��� Automated theorem proving

Automated theorem proving is an approach to automate the proof of mathemati�

cal theorems� This technique can e�ectively be used in �elds where mathematical

abstractions of problems are available� In case of system validation� the system

speci�cation and its realization are both considered as formulas� � and � say� in

some appropriate logic� Checking whether the implementation conforms to the

speci�cation now boils down to check whether � � �� This represents that each

possible behavior of the implementation �i�e� satis�es �� is a possible behavior of

the system speci�cation �and thus satis�es ��� Note that the system speci�cation

can allow other behavior that is� however� not realized� For the proof of � � ��

theorem provers can be used� Most theorem provers have algorithmic and search

components� The general demand to prove theorems of a rather general type

avoids to follow a solely algorithmic approach� Therefore� search components

are incorporated� Di�erent variants exist� highly automated� general�purpose

theorem provers� and interactive programs with special�purpose capabilities�

Proof checking is a �eld that is closely related to theorem proving� A user

can give a proof of a theorem to a proof checker� The checker answers whether

the proof is valid� Usually the logics used in proof checking enable the proofs to

be expressed more e�ciently than those that are used in theorem provers� These

di�erences in logic re�ect the fact that proof checkers have an easier task than
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theorem provers� therefore checkers can deal with more complex proofs�

In order to reduce the search in theorem proving it is sensible to have some

interaction with the user� The user may well be aware of what is the best strategy

to conduct a proof� Usually such interactive systems help in giving a proof by

keeping track of the things still to be done and by providing hints on how these

remaining theorems can be proven� Moreover� each proof step is veri�ed by the

system� Typically many small steps have to be taken in order to arrive at a proof�

checked proof and the degree of interaction with the user is rather high� This is

due to the fact that human beings see much more structure in their subject than

logic or theorem provers do� This covers not only the content of the theorem�

but also how it is used� In addition� the use of theorem provers or proof checkers

require much more scrunity than users are used to� Typically� human beings

skip certain small parts of proofs ��trivial� or �analogous to�� whereas the tool

requires these steps explicitly� The veri�cation process using theorem provers is

therefore usually slow� error�prone and labour�intensive to apply� Besides this�

the logic used by the tool requires a rather high degree of expertise of the user�

Logics that are used by theorem provers and proof checkers are usually vari�

ants of �rst�order predicate logic� In this logic we have an in�nite set of variables

and a set of function symbols and predicate symbols of given arities� The arity

speci�es the number of arguments of a function or predicate symbol� A term is

either a variable of the form f�t�� � � � � tn� where f is a function symbol of arity n

and ti is a term� Constants can be viewed as functions of arity �� A predicate is

of the form P �t�� � � � � tn� where P is a predicate symbol of arity n and ti a term�

Sentences in �rst�order predicate logic are either predicates� logical combinations

of sentences� or existential or universal quanti�cations over sentences� In typed

logics there is� in addition� a set of types and each variable has a type �like a pro�

gram variable x has type int�� each function symbol has a set of argument types

and a result type� and each predicate symbol has a set of argument types �but no

result type�� In these typed logics� quanti�cations are over types� since the vari�

ables are typed� Many theorem provers use higher�order logics� typed �rst�order

predicate logic where variables can range over function�types or predicate�types�

This enables to quantify over these types� In this way the logic becomes more

expressive than �rst�order predicate logic�
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Most theorem provers have algorithmic and search components� The algorith�

mic components are techniques to apply proof rules and to obtain conclusions

from this� Important techniques that are used by theorem provers to support

this are natural deduction �e�g� from the validity of �� and the validity of ��

we may conclude the validity of �� � ���� resolution� uni�cation �a procedure

which is used to match two terms with each other by providing all substitutions of

variables under which two terms are equal�� rewriting �where equalities are con�

sidered to be directed� in case a system of equations satis�es certain conditions

the application of these rules is guaranteed to yield a normal form�� In contrast to

traditional model checking� theorem proving can deal directly with in�nite state

spaces and can verify the validity of properties for arbitrary parameters values�

It relies on proof principles such as structural induction to prove properties over

in�nite domains�

These techniques are not su�cient to �nd the proof of a given theorem� even

if the proof exists� The tool needs to have a strategy �often called a tactic� which

tells how to proceed to �nd a proof� Such strategy may suggest to use rules

backwards� starting with the sentence to be proven� This leads to goal�directed

proof attempts� The strategies that humans use in order to �nd proofs is not

formalized� Strategies that are used by theorem provers are simple strategies�

e�g� based on breadth��rst and depth��rst search strategies�

Completely automated theorem provers are not very useful in practice� the

problem of theorem�proving in general is exponentially di�cult� i�e� the length of

a proof of a sentence of length n may be of size exponential in n� �To �nd such

proof a time that is exponential in the length of the proof may be needed� hence

in general theorem proving is double exponential in the size of the sentence to

be proven�� For user�interactive theorem provers this complexity is reduced to a

signi�cant extent�

Some well�known and often applied theorem provers are Coq� Isabelle� PVS�

NQTHM �Boyer�Moore�� nuPRL� and HOL� A recent overview of checked proofs

in the literature of sequential and distributed algorithms can be found in Groote�

Monin # van de Pol �������

The following di�erences between theorem proving and model checking can
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be listed�

� Model checking is completely automatic and fast�

� Model checking can be applied to partial designs� and so can provide useful

information about a system�s correctness even if the system is not com�

pletely speci�ed�

� Model checkers are rather user�friendly and easy to use� the use of theorem

provers requires considerable expertise to guide and assist the veri�cation

process� In particular� it is di�cult to familiarize oneself with the logical

language �usually some powerful higher�order logic� of the theorem prover�

� Model checking is more applicable to control�intensive applications �like

hardware� communication protocols� process control systems and� more

general� reactive systems�� Theorem proving can deal with in�nite state

spaces� it is therefore also suitable for data�intensive applications�

� When successful� theorem proving gives an �almost� maximal level of pre�

cision and reliability of the proof�

� Model checking can generate counter�examples� which can be used to aid

in debugging�

� Using model checking a system design is checked for a �xed �and �nite�

set of parameters� using theorem provers a proof for arbitrary values of

parameters can be given�

Model checking is not considered to be �better� than theorem proving� these

techniques are to a large extent complementary and both have their bene�ts� The

emerging e�ort to integrate these two techniques such that one can bene�t from

the advantages of both approaches is interesting� In this way� one could verify a

system model for a small� �nite set of parameters using model checking� From

these veri�cations one constructs a general result and subsequently the system

model can be proven to be correct� for instance using inductive arguments� for

an arbitrary set of parameters with the help of a theorem prover�
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��	 Some industrial case studies of model check


ing

NewCoRe Project �AT � T�

� ����$���
 Bell Laboratories �USA�

� 	ESS Switching Centre� part of Signalling Protocol no� �

� ISDN User Part Protocol

� project size� ���	� designers for writing the several thousands of lines of

software

� ��	 �veri�cation engineers� started independently� they had in addition to

adapt and develop tools to support the formal design process

� speci�cation� ��	�� lines of SDL �the ITU�T Speci�cation # Description

Language�

� model checker� Spin

� ��
 ��� serious design errors were found

� ��	 formal requirements stated in temporal logic

� ������ veri�cation runs �����week�

� 		� ��� of the original design requirements were logically

� experiment to really go through two independent system design cycles has

been given up� after � weeks ��� a series of logical inconsistencies have

been uncovered in the requirement by the veri�cation engineers� and the

conventional design team could not be kept unaware

� unknown how many errors would have resulted� when the teams would have

continued working independently inconsistent�

�
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IEEE Futurebus	 Standard

� bus architecture for distributed systems

� bus segment� set of processors connected via a bus which share a common

memory M �

� each processor has a local cache to store some data

� cache consistency protocol must ensure consistency of data� e�g��

� if 
 caches contain a copy of an item� the copies must have the same

value

� if M contains a data item which is %non�modi�ed� then each cache that

has a copy of this item contains the same as M

� bus segments can be connected via bridges� yielding a hierarchical bus sys�

tem

� model checker� SMV

� complexity� 
���� lines of SMV�code

� con�guration� � bus segments and � processors

� state space� ���� states �after abstraction from several details�

� several non�trivial� fatal errors were found

� result� substantial revision of original standard proposal

��� Synopsis

The topics �and organization� of these notes will be�

Part � Introduction and Motivation

Part � Model checking linear temporal logic

� Linear temporal logic
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� B�uchi automata

� From LTL�formulas to B�uchi automata

� Checking emptiness

� Software support� the model checker Spin �Lucent Technologies� USA�

Part � Model checking branching temporal logic

� Branching temporal logic

� Fixed point theory

� Model checking CTL

� Fairness

� Software support� the model checker SMV �Carnegie�Mellon University�

USA�

Part � Model checking real�time temporal logic

� Timed CTL

� Timed automata

� Model checking Timed CTL

� Software support� the model checkerUppaal �University of Uppsala� S�

and Aalborg� DK�

Part � A survey of e�ciency�improving techniques

� Partial�order reduction

� Memory management strategies

� Symbolic encoding techniques �BDDs�

� Use of equivalences and pre�orders
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Chapter �

Model Checking Linear Temporal

Logic

Reactive systems are characterized by a continuous interaction with the environ�

ment� For instance� an operating system or a co�ee machine interacts with its

environment �i�e� the user� and usually performs some actions� such as fetching

a �le or producing co�ee� Thus a reactive system reacts to a stimulus from the

environment by a reaction� After an interaction and accompanying reaction� a

reactive system is  once more  able to interact� The continuous character

of interaction in reactive systems di�ers from the traditional view on sequential

systems� These sequential systems are considered as functions from inputs to

outputs� After receiving input� the sequential system generates output�s� and

terminates eventually after a �nite number of computation steps� Due to the

�transformation� of inputs into outputs these type of systems are sometimes also

referred to as transformational systems� Properties of such transformational sys�

tems typically relate outputs generated to inputs provided in terms of pre� and

postconditions as discussed previously�

Typical reactive systems are non�terminating� Due to their non�terminating

behavior� properties of reactive systems we usually refer to the relative order of

events in the system� i�e� the behavior of the system while over time� Lamport

������ argued that the requirements that designers wish to impose on reactive

systems fall basically into two categories�
��
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� Safety properties state that �something bad never happens�� A system

satis�es such a property if it does not engage in the proscribed activity� For

instance� a typical safety property for a co�ee�machine is that the machine

will provide never tea if the user requests co�ee�

� Liveness properties state that �something good will eventually happen�� to

satisfy such a property� the system must engage in some desired activity�

An example liveness property for the co�ee�machine is that it will provide

co�ee eventually after a su�cient payment by the user� Stated di�erently�

the user will always be provided co�ee at some time after inserting the

payment�

Although informal� this classi�cation has proven to be rather useful� the two

classes of properties are �almost� disjoint� and most properties can be described

as a combination of safety and liveness properties� �Later several authors re�ned

and extended this classi�cation with several other types of properties��

Logics have been de�ned in order to describe precisely these type of properties�

The most widely studied are temporal logics� which were introduced for speci�ca�

tion and veri�cation purposes in computer science by Pnueli ������� �The origins

of linear temporal logic go back to the �eld of philosophy where A� Prior invented

it in the ����s�� Temporal logics support the formulation of properties of system

behavior over time� Di�erent interpretations of temporal logics exist depending

on how one considers the system to change with time�

�� Linear temporal logic allows the statement of properties of execution se�

quences of a system�


� Branching temporal logic allow the user to write formulas which include

some sensitivity to the choices available to a system during its execution�

It allows the statement of properties of about possible execution sequences

that start in a state�

In this chapter we deal with linear temporal logic� branching temporal logic will

be treated in Chapter �� Chapter � also contains a more extensive discussion

about the di�erences between these two interpretations of temporal logic�
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��� Syntax of PLTL

The syntax of propositional linear temporal logic is de�ned as follows� The start�

ing point is a set of atomic propositions� i�e� propositions that cannot be further

re�ned� Atomic propositions are the most basic statements that can be made�

The set of atomic propositions is denoted by AP� and typical elements of AP are

p� q and r� Examples of atomic propositions are x is greater than �� or x equals

one� given some variable x� Other examples are �it is raining� or �there are cur�

rently no customers in the shop�� In principle� atomic propositions are de�ned

over a set of variables x� y� � � �� constants �� �� 
� � � �� functions max� gcd� � � � and

predicates x � 
� x mod 
 � �� � � �� allowing e�g� statements such as max�x� y� � �

or x � y� We will not dwell upon the precise de�nition of AP here and simple

postulate its existence� AP is ranged over by p� q and r�

Notice that the choice of the set of atomic propositions AP is an important

one� it �xes the most basic propositions that can be stated about the system

under investigation� Fixing the set AP can therefore already be regarded as a

�rst step of abstraction� If one� for instance� decides not to allow some system

variables to be referred to in AP� then no property can be stated that refers to

these variables� and consequently no such property can be checked�

The following de�nition determines the set of basic formulas that can be stated

in propositional linear temporal logic �PLTL� for short��

De�nition �� �Syntax of propositional linear temporal logic�

Let AP be a set of atomic propositions� Then�

�� For all p � AP� p is a formula�


� If � is a formula� then �� is a formula�

�� If � and � are formulas� then � � � is a formula�

�� If � is a formula� then X� is a formula�

	� If � and � are formulas� then �U� is a formula�
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The set of formulas constructed according to these rules is denoted by PLTL�

Note that the set of formulas obtained by the �rst three items gives us the

set of formulas of propositional logic� Propositional logic is thus a proper sub�

set of PLTL� The only temporal operators are X �pronounced �neXt�� and U

�pronounced �Until���

Alternatively� the syntax of PLTL can be given in Backus�Naur Form �BNF�

for short� as follows� for p � AP the set of PLTL�formulas is de�ned by

� ��� p j �� j � � � j X� j �U��

We will use this succinct notation for syntax de�nitions in the rest of these lecture

notes�
The usual boolean operators � �conjunction�� � �implication� and� �equiv�

alence� are de�ned as

� � � 	 � ��� � ���

� � � 	 �� � �

�� � 	 �� � �� � �� � ���

The formula true equals � � �� and false equals � true� The temporal opera�

tors G �pronounced �always� or �Globally�� and F �pronounced �eventually� or

�Future�� are de�ned by

F � 	 trueU�

G� 	 � F ���

Since true is valid in all states� F� indeed denotes that � holds at some point in

the future� Suppose there is no point in the future for which �� holds� Then�

the counterpart of � holds at any point� This explains the de�nition of G�� In

the literature F is sometimes denoted as � and G as �� In these lecture notes

we will use the traditional notations F and G �
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To summarize� a formula without a temporal operator �X� F�G� U� at the �top

level� refers to the current state� the formula X� to the next state� G� to all

future states� F� to some future state� and U to all future states until a certain

condition becomes valid�

In order to diminish the use of brackets� a precedence order on the operators

is imposed as follows� As usual the unary operators bind stronger than the binary

ones� For instance� we write ��UF� instead of ����U �F��� � and X bind

equally strong and bind stronger than F and G which also bind equally strong�

The temporal operator U takes precedence over �� �� and � � � binds weaker

than � and �� and � and � bind equally strong� For instance�

����� � ��U ��X�� � �F���

is denoted by

���� ��U �X� � F���

Example � Let AP � f x � �� x � 
� x � � g be the set of atomic propositions�

Example PLTL�formulas are� X �x � ��� � �x � 
�� x � 
 � x � �� �x �


�U �x � ��� F �x � 
�� and G �x � ��� The second and the third formula are

also propositional formulas� An example of a PLTL�formula in which temporal

operators are nested is G  �x � 
�U �x � ��!� �End of example��

��� Semantics of PLTL

The above de�nition provides us a recipe for the construction of PLTL�formulas�

but it does not give an interpretation to these operators� Formally� PLTL is

interpreted on sequences of states� Intuitively� X� means that � is valid in the

next state� F� means that � is valid eventually� that is� it is valid now� or at some

point in the future� But what do we mean by �state�� �next state� and �some

point in the future�� In order to de�ne these notions unambiguously� a formal
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interpretation  usually called semantics  is given� The formal meaning of

temporal logic formulas is de�ned in terms of a model�

De�nition �� �Model for PLTL�

A PLTL�model is a triple M � �S�R�Label� where

� S is a non�empty denumerable set of states�

� R � S 
� S� assigning to s � S its unique successor state R�s��

� Label � S 
� 
AP� assigning to each state s � S the atomic propositions

Label�s� that are valid in s�

For the state s � S� the state R�s� is the unique next state of s� The im�

portant characteristic of the function R is that it acts as a generator for in�nite

sequences of states such as s� R�s�� R�R�s��� R�R�R�s���� � � �� For the semantics

of PLTL these sequences of states are the cornerstones� One can equally well

de�ne a PLTL�model as a structure �S� ��Label� where � is an in�nite sequence

of states and S and Label are de�ned as above� In this alternative setting a �nite

sequence s� s� � � � sk is identi�ed with the in�nite sequence s� s� � � � sk sk sk � � ��

This alternative approach is frequently encountered in the literature�

The function Label indicates which atomic propositions are valid for any state

in M� If for state s we have Label�s� � � it means that no proposition is valid in

s� The state s for which the proposition p is valid� i�e� p � Label�s�� is sometimes

referred to as a p�state�

Example �� Let AP � f x � �� x � �� x �� � g be a set of atomic propositions�

S � f s�� � � � � s� g a set of states� R�si� � si�� for � � i � � and R�s�� � s� the

successor function� and Label�s�� � f x �� � g� Label�s�� � Label�s�� � f x �

� g� Label�s�� � f x � �� x �� � g the function which assigns atomic propositions

to states� In the model M � �S�R�Label� the atomic proposition �x � �� is

valid in states s� and s�� �x �� �� is valid in s� and s�� and �x � �� is valid in

state s� only� �End of example��
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Note that an atomic proposition can either hold or not hold in any state of

M� No further interpretation is given� For instance� if �x � �� is valid in state s�

it does not mean that �x �� �� is also valid in that state� Technically this results

from the fact that no constraints are put on the labelling Label of states with

atomic propositions�

The meaning of formulas in logic is de�ned by means of a satisfaction rela�

tion �denoted by j�� between a model M� one of its states s� and a formula ��

�M� s� �� � j� is denoted by the following in�x notation� M� s j� �� The concept

is that M� s j� � if and only if � is valid in the state s of the model M� When

the model M is clear from the context we often omit the model and simply write

s j� � rather than M� s j� ��

De�nition �� �Semantics of PLTL�

Let p � AP be an atomic proposition� M � �S�R�Label� a PLTL�model� s � S�

and �� � PLTL�formulas� The satisfaction relation j� is de�ned by�

s j� p i� p � Label�s�

s j� �� i� � �s j� ��

s j� � � � i� �s j� �� � �s j� ��

s j� X� i� R�s� j� �

s j� �U� i�  j � �� Rj�s� j� � � �� � � k � j�Rk�s� j� ���

Here R��s� � s� and Rn���s� � Rn�R�s�� for any n � ��

�Although the logical operators on the right�hand side of a de�ning equation

are denoted in the same way as the logical operators in the logic� they represent

operators at a meta�level�� If R�s� � s�� the state s� is called a direct successor

of s� If Rn�s� � s� for n � �� state s� is called a successor of s� If M� s j� � we

say that model M satis�es � in state s� Stated otherwise� the formula � holds in

state s of model M�

The formal interpretation of the other connectives true� false� � � � � G� and

F can now be obtained from this de�nition by straightforward calculation� It is

not di�cult to see that true is valid in all states� take true 	 p � � p� and the
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validity of true in state s reduces to p � Label�s� � p �� Label�s� which is a

valid statement for all states s� So M� s j� true for all s � S� As an example we

derive for the semantics of F��

s j� F�

� f de�nition of F g

s j� trueU�

� f semantics of U g

 j � �� Rj�s� j� � � �� � � k � j�Rk�s� j� true�

� f calculus g

 j � �� Rj�s� j� ��

Therefore� F� is valid in s if and only if there is some �not necessarily direct�

successor state of s� or s itself where � is valid�

Using this result for F� for the semantics of G� we now become�

s j� G�

� f de�nition of G g

s j� � F ��

� f using result of previous derivation g

�   j � �� Rj�s� j� ��!

� f semantics of �� g

�   j � �� � �Rj�s� j� ��!

� f predicate calculus g

� j � �� Rj�s� j� ��

Therefore� the formula G� is valid in s if and only if for all successor states of s�

including s itself� the formula � is valid� This explains the expression �always�

��
Example �� If the formula �U� is valid in s� then F� is also valid in s� Thus

when stating �U� it is implicitly assumed that there exists some future state for

which � holds� A weaker variant of �until�� the �unless� operator W� states that
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� holds continuously either until � holds for the �rst time� or throughout the

sequence� The unless operator W is de�ned by

�W� 	 G� � ��U���

�End of example��

Example �� LetM be given as a sequence of states depicted as the �rst row in

Figure ��� States are depicted as circles and the function R is denoted by arrows�

i�e� there is an arrow from s to s� i	 R�s� � s�� Since R is a �total� function� each

state has precisely one outgoing arrow� The labelling Label is indicated below the

states�
In the lower rows the validity of the three formulas is shown� F p� G p� and

q U p� for all states in the given modelM� A state is colored black if the formula

is valid in that state� and colored white otherwise� The formula F p is valid in all

but the last state� No p�state can be reached from the last state� G p is invalid in

all states� since there is no state that only has p�states as successors� From all

q�states the �unique� p�state can be reached in zero or more steps� Therefore� for

all these states the formula q U p holds� �End of example��

F p
G p

q U p

p� q � &M

f p� q g� �f q g f q g

Figure 
��� Example of interpretation of PLTL�formulas �I�

Example �� Let M be given as the sequence of states depicted in Figure ���

where p through t are atomic propositions� Consider the formula X  r � �q U s�!

which equals X  � r � �q U s�!� For all states whose direct successor does not

satisfy r� the formula is valid due to the �rst disjunct� This applies to the second
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state� In the third state the formula is not valid since r is valid in its successor

state but q and s are not� Finally� in the �rst and the fourth state the formula is

valid� since in their direct successor state q is valid and in the state thereafter s

is� so q U s is valid in their direct successor states� The validity of the formulas

G p� F t� GF s and the formula X  r � �q U s�! is indicated in the rows depicted

belowM� �End of example��

M

f p� q� t g f p� s g f p� r g

G p
GF s

F t

X �r � �qU s��

f p� q� r g

Figure 
�
� Example of interpretation of PLTL�formulas �II�

We give below some frequently used propositions in PLTL and provide their verbal

interpretation such that M� s j� �� i�e� � holds in state s of M�

�� � � F�� if initially �that is� in s� �� then eventually ��


� G  � � F�!� if � then eventually � �for all successor states of s and the

initial state s��

�� GF�� � holds in�nitely often�

�� FG�� eventually permanently ��

	� G  � � X�!� if � is valid in some state� then it is also valid in its successor

state�

�� G  � � G�!� once �� always ��
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Model checking
 satis�ability and validity

In the �rst chapter we gave an informal de�nition of the model checking problem�

Given the formal machinery developed so far we are now in a position to give

a more precise characterisation� The model checking problem can formally be

de�ned as�
The model checking problem is� given a ��nite� modelM�

a state s and a property �� do we haveM� s j� ��

The model checking problem should not be confused with the more traditional

satis�ability problem in logic�

The satis�ability problem can be phrased as follows� given a property �� does

there exist a modelM and state s� such thatM� s j� �� While for model checking

the model M �and state s� is given� this is not the case for the satis�ability

problem� For PLTL the satis�ability problem is decidable� Since satis�ability

is decidable� the �simpler� model checking problem for PLTL is also decidable�

Satis�ability is relevant to system validation using formal veri�cation �cf� Chapter

�� in the following sense� As an example consider a system speci�cation and its

implementation� both speci�cations being formalised as PLTL�formulas � and ��

Checking whether the implementation conforms to the speci�cation now reduces

to checking whether � � �� By determining the satis�ability of this formula

one is able to check whether there exists a model for which this desired relation

does exist� If the formula is not satis�able� that is� no such model does exist� it

means that the relation between the implementation and speci�cation cannot be

realised in any model� Thus� the implementation is not a correct implementation

of the speci�cation�

A related problem that occurs frequently in the literature is the validity prob�

lem� given a property �� do we have for all models M and all states s in these

models� M� s j� �� The di�erence to the satis�ability problem is that to solve

the validity problem one has to check whether M� s j� � for all existing models

M and states s� rather than to determine the existence of one �or more� such M

and s� Logically speaking� the validity problem for � equals the negation of the

satis�ability problem for ���
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�Aside� at �rst sight the validity problem seems to be undecidable  there

does not seem to be an e�ective method for deciding whether formula � is valid

in all states of all models  since PLTL�models are allowed to have an in�nite

state space� However� due to the so�called �nite�model property for PLTL� it

su�ces to consider only all models with a �nite number of states to check validity�

The �nite�model property states that if a PLTL�formula is satis�able� then it is

satis�able in a model with a �nite set of states��

��� Axiomatization

The validity of a PLTL�formula can of course be derived using the semantics as

given before� This is usually a rather cumbersome task since we have to reason

about the formal semantics which is de�ned in terms of the model M� Let us�

for instance� try to deduce that

�U� � � �  � � X ��U��!�

Intuitively this equation is valid� if in the current state � holds� then obviously

�U� holds �for arbitrary ��� since � can be reached via a path of length ��

Otherwise if � holds in the current state and in the next state �U� holds� then

�U� holds� We obtain the following derivation�

s j� � �  � � X ��U��!

� f semantics of � and � g

�s j� �� � �s j� � � s j� X ��U���

� f semantics of X g

�s j� �� � �s j� � � R�s� j� �U��

� f semantics of U g

�s j� ��

� �s j� � �   j � �� Rj�R�s�� j� � � � � � k � j�Rk�R�s�� j� �!�

� f calculus using Rn���s� � Rn�R�s�� g

�s j� ��
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�   j � �� Rj���s� j� � � � � � k � j� �Rk���s� j� � � s j� ��!

� f calculus using R��s� � s g

�s j� �� �   j � �� Rj���s� j� � � � � � k � j"�� Rk�s� j� �!

� f calculus using R��s� � s g

  j � �� R��s� j� � � � � � k � j�Rk�s� j� �!

�   j � �� Rj���s� j� � � � � � k � j"�� Rk�s� j� �!

� f predicate calculus g

  j � �� Rj�s� j� � � � � � k � j�Rk�s� j� �!

� f semantics of U g

s j� �U��

As we can see from this calculation� formula manipulation is tedious and error�

prone� A more e�ective way to check the validity of formulas is to use the syntax

of the formulas rather than their semantics� The concept is to de�ne a set of

proof rules that allow the rewriting of PLTL�formulas into semantically equivalent

PLTL�formulas at a syntactical level� If� for instance� � 	 � is a rule �axiom��

then s j� � if and only if s j� � for all M and state s� Semantically equivalent

means that for all states in all models these rules are valid� The set of proof rules

obtained in this way is called an axiomatization�

It is not the aim of this section to deal with all possible proof rules for PLTL but

rather to give the reader some basic rules that are convenient� The rules presented

below are grouped and each group has been given a name� for reference purposes�

Using the idempotency and the absorption rules any non�empty sequence of F

and G can be reduced to either F � G � FG � or GF � The validity of these proof

rules can be proven using the semantic interpretation as we have seen for the

�rst expansion law above� The di�erence is that we only have to perform these

tedious proofs once� thereafter these rules can be universally applied� Note that

the validity of the expansion rules for F and G follows directly from the validity

of the expansion rule for U� using the de�nition of F and G �

An equational rule is said to be sound if it is valid� Formally� the axiom � 	 �

is called sound if and only if� for any PLTL�model M and state s in M�

M� s j� � if and only if M� s j� �
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Duality rules� �G� 	 F ��

� F� 	 G ��

�X� 	 X ��

Idempotency rules� GG� 	 G�

F F� 	 F�

�U ��U�� 	 �U�

��U��U� 	 �U�

Absorption rules� FGF� 	 GF�

GFG� 	 FG�

Commutation rule� X ��U�� 	 �X��U �X��

Expansion rules� �U� 	 � �  � � X ��U��!

F� 	 � � XF�

G� 	 � � XG�

Applying sound axioms to a certain formula means that the validity of that

formula is unchanged� the axioms do not change the semantics of the formula

at hand� If for any semantically equivalent � and � it is possible to derive this

equivalence using axioms then the axiomatization is said to be complete� The

list of axioms given before for PLTL is sound� but not complete� A sound and

complete axiomatization for PLTL does exist� but falls outside the scope of these

lecture notes�

��� Extensions of PLTL optional�

Strict and non�strict interpretation� G� means that � holds at all states including

the current state� It is called a non�strict interpretation since it also refers to the

current state� Opposed to this a strict interpretation does not refer to the current

state� The strict interpretation of G � denoted 'G � is de�ned by 'G� 	 XG�� That

is� 'G� means that � holds at all successor states without stating anything about
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the current state� Similarly� we have the strict variants of F and U that are

de�ned by 'F� 	 XF� and � 'U� 	 X ��U��� �Notice that for X it does not

make much sense to distinguish between a strict and a non�strict interpretation��

These de�nitions show that the strict interpretation can be de�ned in terms of

the non�strict interpretation� In the opposite direction we have�

G� 	 � � 'G�

F� 	 � � 'F�

�U� 	 � �  � � �� 'U��!�

The �rst two equations are self�explanatory given the above de�nitions of 'G and

'F � The third equation is justi�ed by the expansion rule of the previous section�

if we substitute � 'U� 	 X ��U�� in the third equation we indeed obtain the

expansion rule for U� Although sometimes the strict interpretation is used� it

is more common to use the non�strict interpretation as is done in these lecture

notes�

Past operators� All operators refer to the future including the current state�

Therefore� the operators are known as future operators� Sometimes PLTL is

extended with past operators� This can be useful for a particular application�

since sometimes properties are more easily expressed in terms of the past than

in terms of the future� For instance� G� ��always in the past�� means  in

the non�strict interpretation  that � is valid now and in any state in the past�

F� ��sometime in the past�� means that either � is valid in the current state

or in some state in the past and X� means that � holds in the previous state�

if such state exists� As for future operators� also for past operators a strict and

a non�strict interpretation can be given� The main reason for introducing past

operators is to make it easier to write a speci�cation� the expressive power of

PLTL is not increased by the addition of past operators �Lichtenstein� Pnueli #

Zuck� ���	���

�If as an underlying semantic notion a discrete model is taken� as in this chapter�

�
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��� Specifying properties in PLTL

In order to give the reader some idea of how to formulate informal properties

in linear temporal logic� we treat two examples� In the �rst example we try

to formalize properties of a simple communication system� and in the second

example we treat a formal requirement speci�cation of a leader election protocol

in a distributed system where processes can start at arbitrary moments�

A communication channel

Consider a unidirectional channel between two communicating processes� a sender

�S� and a receiver �R�� S is equipped with an output bu�er �S�out� and R with an

input bu�er �R�in�� Both bu�ers have an in�nite capacity� If S sends a message

m to R it inserts the message into its output bu�er S�out� The output bu�er

S�out and the input bu�er R�in are connected via a unidirectional channel� R

receives messages by deleting messages from its input bu�er R�in� Assume that

all messages are uniquely identi�ed� and assume the set of atomic propositions

AP � fm � S�out�m � R�in g where m denotes a message� We assume implic�

itly that all properties are stated for all messages m �i�e� universal quanti�cation

over m is assumed�� This is for convenience and does not a�ect the decidability

of the satis�ability problem if we assume that the number of messages is �nite�

In addition� we assume that the bu�ers S�out and R�in behave in a normal way�

i�e�� they do not disrupt or lose messages� and messages cannot stay in a bu�er

in�nitely long�

channelSender S S�out R�in Receiver R

We formalize the following informal requirements on the channel in PLTL�

� �A message cannot be in both bu�ers at the same time��

G � �m � S�out � m � R�in�
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� �The channel does not lose messages�� If the channel does not lose messages

it means that messages that are in S�out will eventually be delivered in R�in�

G  m � S�out � F �m � R�in�!

�Notice that if we do not assume uniqueness of messages then this property

does not su�ce� since if e�g� two copies of m are transmitted and only the

last copy is eventually received this would satisfy this property� It has been

shown by several authors that uniqueness of messages is a prerequisite for

the speci�cation of requirements for message�passing systems in temporal

logic�� Given the validity of the previous property� we can equally well state

G  m � S�out � XF �m � R�in�!

since m cannot be in S�out and R�in at the same time�

� �The channel is order�preserving�� This means that if m is o�ered �rst by

S to its output bu�er S�out and subsequently m�� then m will be received

by R before m��

G  m � S�out � �m� � S�out � F �m� � S�out�

� F �m � R�in � �m� � R�in � F �m� � R�in��!

Notice that in the premise the conjunct �m� � S�out is needed in order

to specify that m� is put in S�out after m� F �m� � S�out� on its own does

not exclude that m� is already in the sender�s bu�er when message m is in

S�out� �It is left to the reader to investigate what the meaning is when the

�rst and third occurrence of F is replaced by X��

� �The channel does not spontaneously generate messages�� This means that

for any m in R�in� it must have been previously sent by S� Using the past

operator F this can be formalized conveniently by�

G  m � R�in � F �m � S�out�!

In the absence of past operators� a it is possible to use the U �operator�

G  ��m � R�in�U �m � S�out�!
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Dynamic leader election

In current distributed systems several functions �or services� are o�ered by some

dedicated process�es� in the system� One might think of address assignment

and registration� query co�ordination in a distributed database system� clock

distribution� token regeneration after token loss in a token ring network� initiation

of topology updates in a mobile network� load balancing� and so forth� Usually

many processes in the system are potentially capable doing this� However� for

consistency reasons at any time only one process is allowed to actually o�er the

function� Therefore� one process  called the �leader�  must be elected to

support that function� Sometimes it su�ces to elect an arbitrary process� but

for other functions it is important to elect the process with the best capabilities

for performing that function� Here we abstract from speci�c capabilities and use

ranking on basis of process identities� The idea is thus that a process with a

higher identity has better capabilities�

Assume we have a �nite number of processes connected via some communi�

cation means� The communication between processes is asynchronous� as in the

previous example� Pictorially�

P�

Communication Network

P� PN� � � � � � �

Each process has a unique identity� and it is assumed that a total ordering exists

on these identities� Processes behave dynamically in the sense that they are

initially inactive �so� not participating in the election� and may become active

�i�e�� participating in the election� at arbitrary moments� In order to have some

progress we assume that a process cannot be inactive inde�nitely� i�e� each process

becomes active at some time� Once a process participates it continues to do so�

it does not become inactive anymore� For a given set of active processes a leader

will be elected� if an inactive process becomes active a new election takes place

if this process has a higher identity than the current leader�
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Assume the set of atomic propositions

AP � f leaderi� activei� i � j j � � i� j � N g

where leaderi means that process i is a leader� activei means that process i is

active� and i � j that the identity of i is smaller than the identity of j �in the

total ordering on identities�� We will use i� j as process identities� N is the

number of processes� Assume that a process that is inactive is not a leader�

In the following formulations we use universal and existential quanti�cations

over the set of identities� Strictly speaking� these are not part of PLTL� Since we

deal with a �nite number of processes the universal quanti�cation � i� P �i�� where

P is some proposition on processes� can be expanded into P ��� � � � � � P �N��

and similarly we can expand i� P �i�� The quanti�cations can thus be considered

as simply abbreviations�

� �There is always one leader��

G   i� leaderi � �� j �� i� � leaderj�!

Since we deal with a dynamic system where all processes may be inactive

initially �and thus no leader exists�� this property will in general not be

valid� Also� in a distributed system with asynchronous communication

switching from one leader to another can hardly be made atomic� so it is

convenient to allow the temporary absence of a leader� As a �rst attempt

one could think of modifying the above formula into�

GF   i� leaderi � �� j �� i� � leaderj�!

which allows there temporarily to be no leader� but which also allows there

to be more than one leader at a time temporarily� For consistency reasons

this is not desired� We therefore consider the following two properties�

� �There must always be at most one leader��

G  leaderi � � j �� i� � leaderj!
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� �There will be enough leaders in due time�� �This requirement avoids the

construction of a leader election protocol that never elects a leader� Such a

protocol would ful�ll the previous requirement� but is not intended��

GF   i� leaderi!

This property does not imply that there will be in�nitely many leaders� It

only states that there are in�nitely many states at which a leader exists�

� �In the presence of an active process with a higher identity the leader will

resign at some time�

G  � i� j� ��leaderi � i � j � � leaderj � activej� � F � leaderi�!

For reasons of e�ciency it is assumed not to be desirable that a leader

eventually resigns in presence of an inactive process that may participate

at some unknown time in the future� Therefore we require j to be an active

process�

� �A new leader will be an improvement over the previous one�� This property

requires that successive leaders have an increasing identity�

G  � i� j� �leaderi � �X leaderi � X F leaderj� � i � j!

Note that this requirement implies that a process that resigns once� will

not become a leader any more�

��� Labelled B�uchi automata

The previous section concludes the explanation and de�nition of PLTL� Model

checking PLTL is based on �nite automata that accept in�nite words� We start

in this section by brie�y refreshing the notion of �nite�state automata�
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Automata on �nite words

A major di�erence to the concept of �nite�state automata as known from e�g�

compiler theory is that states are labelled rather than transitions�

De�nition �� �Labelled �nite�state automaton�

A labelled �nite�state automaton �LFSA� for short� A is a tuple �(� S� S�� �� F� l�

where�
� ( is a non�empty set of symbols �ranged over by a� b� � � ��

� S is a �nite� non�empty set of states

� S� � S is a non�empty set of initial states

� � � S 
� 
S� a transition function

� F � S� a set of accepting states

� l � S 
� (� the labelling function of states�

By (� we denote the set of �nite sequences over (� and by (� the set of in�nite

sequences over (�

��s� is the set of states the automaton A can move into when it is in state

s� Notation� we write s 
� s� i� s� � ��s�� An LFSA may be non�deterministic

in the following sense� it may have several equally labelled initial states allowing

A to start di�erently on the �rst input symbol� and the transition function may

specify various equally labelled possible successor states for a given state� So� an

LFSA is deterministic if and only if

j f s � S� j l�s� � a g j � �

for all symbols a � (� and

j f s� � ��s� j l�s�� � a g j � �
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for all states s � S and all symbols a � (� Thus� an LFSA is deterministic if the

number of equally labelled initial states is at most once� and if for each symbol

and each state the successor in uniquely determined�

De�nition �� �Run of an LFSA�

For LFSA A a run of A is a �nite sequence of states � � s� s� � � � sn such that

s� � S� and si 
� si�� for all � � i � n� Run � is called accepting i� sn � F �

That is� a run is a �nite sequence of states� starting from an initial state such

that each state in the sequence can be reached via 
� from its predecessor in

the sequence� A run is accepting if it ends in an accepting state� A �nite word

w � a� a� � � � an is accepted by A i� there exists an accepting run � � s� s� � � � sn

such that l�si� � ai for � � i � n� The language accepted by A� denoted L�A��

is the set of �nite words accepted by A� so

L�A� � fw � (� j w is accepted by A g�

If F � � there are no accepting runs� and thus L�A� � � in this case�

Example �� An example LFSA is depicted in Figure ���� Here we have ( �

f a� b� c g� S � f s�� s�� s� g� S
� � f s�� s� g� l�s�� � a� l�s�� � b and l�s�� � c� In

addition F � f s� g and ��s�� � f s� g� ��s�� � f s�� s�� s� g and ��s�� � f s�� s� g�

The LFSA is deterministic� for each input symbol the starting state is uniquely

determined� and for any state the next state on the input of any symbol is uniquely

determined�

Example runs of this automaton are s�� s�� s� s� s�� s� s� s�� and s� s� s� s� s� s� s��

Accepting runs are runs that �nish in the accepting state s�� for instance� s� s��

s� s� s�� and s� s� s� s� s� s� s�� The accepted words that correspond to these ac�

cepting runs are respectively� ab� cab� and abbccab� The word cca is� for instance�

not accepting� since there is not an accepting run that is labelled with cca�

Each word accepted by our example automaton consists of zero or more times

a symbol c� then an a �in order to be able to reach the accepting state s��� and one

or more b�s� where this sequence of c�s� a� and b�s can be repeated a �nite number
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of times� Formally� the language accepted by this automaton is characterized by

the regular expression �c�ab���� �Here b� means one or more but �nitely many

times b� whereas b� means zero or more times b� so� b� equals bb��� �End of

c

a
b

s�

s� s�

Figure 
��� An example LFSA

example��

Automata on in�nite words

Automata play a special role in model checking PLTL�formulas� Since we are

interested in proving properties of in�nite behavior� accepting runs are not con�

sidered to be �nite� but rather as in�nite� while cycling in�nitely many times

through an accepting state� The fact that for model checking we consider in�

�nite behavior should not surprise the reader as reactive systems typically do

not terminate �cf� Chapter ��� Automata with this alternative characterization

of accepting run are called B�uchi automata or 	�automata� A labelled B�uchi

automaton �LBA� for short� is an LFSA that accepts in�nite words rather than

�nite words� Note that the automaton itself is still �nite� an LBA contains only

a �nite number of states and �nitely many transitions� An LBA thus has the

same components as an LFSA� and only has a di�erent acceptance condition�

the so�called B�uchi acceptance condition� What does it mean precisely to accept

in�nite words according to B�uchi�

De�nition �� �Run of an LBA�

A run � of the LBA A is an in�nite sequence of states s� s� � � � such that s� � S�

and si 
� si�� for i � �� Let lim��� be the set of states that occur in � in�nitely

often� The run � is accepting i� lim��� � F �� ��
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A word w � a� a� � � � � (� is accepting i� there exists an accepting run

s� s� � � � such that l�si� � ai for all i � �� Since a run of an LBA is in�nite we

cannot de�ne acceptance by the fact that the �nal state of a run is accepting

or not� Such �nal state does not exist� Rather according to B�uchi�s acceptance

criterion� a run is accepting if some accepting state is visited in�nitely often�

Notice that since � is an in�nite sequence of states and S is a �nite� non�empty

set of states� lim��� �� �� there always exists some state that is visited by �

in�nitely often� The set of in�nite words accepted by the LBA A is the language

of A� denoted L��A�� so

L��A� � fw � (� j w is accepted by A g�

If F � � there are no accepting states� no accepting runs� and thus L��A� � �

in this case�

De�nition �� �Equivalence of B�uchi automaton�

LBAs A and A� are equivalent if and only if L��A� � L��A���

Example �� Consider the LBA of Figure ���� An example run of this B�uchi au�

tomaton is s� s� s� s� � � �� or shortly� s� s
�
� � Some other runs are s

�
� and �s� s� s��

��

The runs that go in�nitely often through the accepting state s� are accepting� For

instance� s� s
�
� and �s� s� s��

� are accepting runs� whereas s�� is not� The accept�

ing words that correspond to these accepting runs are ab� and �abc��� respectively�

The language accepted by this LBA is c�a �b �c�a j 
���� Here� 
 stands for the

empty word� and j stands for �or�� i�e� �a j b� means either a or b� So� the LBA

accepts those in�nite words that after starting with c�a� have an in�nite number

of b�s such that in between any two successive b�s the sequence c�a might appear

but does not need to be� �End of example��

It is interesting to consider more carefully the relation between L�A�� the set

of �nite words accepted by the automaton A� and L��A�� the set of in�nite words

accepted by A according to the B�uchi acceptance condition� This is carried out

in the following example�

Example �� In this example we consider some di	erences between �nite�state
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automata and B�uchi automata� Let A� and A� be two automata� Let L�Ai� denote

the �nite language accepted by Ai �i � �� 
�� and L��Ai� the in�nite language

accepted by Ai�

� If A� and A� accept the same �nite words� then this does not mean that they

also accept the same in�nite words� The following two example automata

show this�

A�

a a a a

A�

We have L�A�� � L�A�� � f an�� j n � � g� but L��A�� � a� and L��A�� �

��

�� If A� and A� accept the same in�nite words� then one might expect that

they would also accept the same �nite words� This also turns out not to be

true� The following example shows this�

a a

A�

a a

A�

We have L��A�� � L��A�� � a�� but L�A�� � f a�n�� j n � � g and

L�A�� � f a�n j n � � g�

�� If A� and A� are deterministic� then L�A�� � L�A�� � L��A�� � L��A���

The reverse is� however� not true� as illustrated by the previous example�

�End of example��

Another important di�erence between �nite�state automata and B�uchi automata

is the expressive power of deterministic and non�deterministic automata� Non�

deterministic LFSAs are equally expressive as deterministic LFSAs� whereas non�

deterministic LBAs are strictlymore expressive than deterministic LBAs� For any

non�deterministic LFSA it is known that there exists a deterministic LFSA that

�
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accepts the same language �Vardi� ���	�� The algorithm for transforming a non�

deterministic LFSA into a deterministic one is known as the �Rabin�Scott� subset

construction� The number of states of the resulting deterministic automaton is

exponential in the number of states of the non�deterministic LFSA� For LBAs

such an algorithm does not exist� since non�deterministic LBAs are strictly more

expressive than deterministic ones� That is� there exists a non�deterministic

LBA for which there does not exist a deterministic version that accepts the same

in�nite words� For example� the language �a j b��b� can be accepted by the

non�deterministic LBA

a b
b

whereas there does not exist a deterministic LBA that accepts this language�

Due to the various ways in which the acceptance of in�nite words can be de�

�ned� di�erent variants of automata over in�nite words do exist in the literature�

These automata are christened according to the scientist that proposed the ac�

ceptance criterion� Street� Rabin and Muller� For completeness� we have listed

the most prominent types of automata over in�nite words in Table 
�� indicating

the kind of acceptance sets and acceptance criterion�

��	 Basic model checking scheme for PLTL

What do B�uchi automata have to do with PLTL formulas� Assume that we label

the states of an LBA with sets of symbols� i�e� l � S 
� 
�� In this case� a

word w � a� a� � � � is accepting i� there is an accepting run s� s� � � � such that

ai � l�si�� for i � �� �Up to now we only considered singleton sets of labels�

rather than sets of arbitrary cardinality�� Now let ( � 
AP� where AP is the

set of atomic propositions� Thus� states are labelled with �sets of� sets of atomic
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Name Acceptance sets Acceptance condition

B�uchi F � S lim��� � F �� �

Generalised B�uchi F � fF�� � � � � Fk g � i� lim��� � Fi �� �

where Fi � S

Muller idem  i� lim��� � Fi �� �

Rabin F � f �F�� G��� � � � �Fk� Gk� g  i� lim��� � Fi �� �

where Fi � S� Gi � S � lim��� �Gi � �

Street F � f �F�� G��� � � � �Fk� Gk� g � i� lim��� � Fi �� �

where Fi � S� Gi � S � lim��� �Gi � �

Table 
��� Major types of automata on in�nite words

propositions� whereas words consist of symbols where each symbol is a set of

atomic propositions� The reason that sets of sets of atomic propositions are used�

and not just sets� is explained in Example �� The key feature is�

the association of the PLTL�formula � with an LBA

which accepts all in�nite words�

i�e� sequences of �sets of� atomic propositions� which make � valid�

Example �� To be more concrete� we consider the following LBA A in the sense

of the previous paragraph where p� q are atomic propositions�

f f q g g f f p g g

A accepts the language of in�nite words�

L��A� � �f q g� f p g��

or� brie�y� �q� p��� This means that each accepting run of A visits a state that

satis�es p in�nitely often while between two successive visits to the p�state a state

satisfying q may be visited a �nite number of times� That is� the accepting runs
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of A correspond precisely to the sequences of atomic propositions for which the

PLTL�formula G  q U p! holds�

If we label the left state with f f q� r g g rather than with f f q g g� we obtain

L��A� � �f q� r g� f p g���

Now in between two visits to the p�state a state is visited a �nite number of times

for which both q and r hold� This modi�ed LBA corresponds to the PLTL�formula

G  �q � r�U p!�

Changing the label of this state into f f q g� f r g g rather than f f q� r g g gives

rise to
L��A� � ��f q g j f r g�� f p g��

which corresponds to G  �q � r�U p!� It is left to the reader to check that the

following LBA corresponds to the same formula�

f f r g g

f f p g g

f f q g g

�End of example��

Sometimes we encounter states that are labelled with the empty set �� � can

be read as �true�� Since true is a valid statement for any state� each LBA in

the above sense accepts the in�nite word ��� This corresponds to the tautology

G true� This in�nite word is usually omitted when presenting the language ac�

cepted by an LBA� An interesting case where true is referred to is the situation

in which accepting runs visit a state labelled with � in combination with visiting
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states satisfying other propositions� For instance� the language accepted by the

LBA�

f f p g g�

is ��� f p g�� which corresponds to the formula G  trueU p!� i�e� GF p� This should

not be confused with the language f p g� which corresponds to G p�

It turns out that for each PLTL�formula �on atomic propositions AP� one can

�nd a corresponding B�uchi automaton�

Theorem 	�

For any PLTL�formula � a B�uchi automaton A can be constructed on the alphabet

( � 
AP such that L��A� equals the sequences of sets of atomic propositions

satisfying ��

This result is due to Wolper� Vardi and Sistla ������� The LBA corresponding

to � is denoted by A�� Given this key result we can present the basic scheme for

model�checking PLTL�formulas� A naive recipe for checking whether the PLTL�

property � holds for a given model is given in Table 
�
� B�uchi automata are

�� construct the B�uchi automaton for �� A�


� construct the B�uchi automaton for the model of the system� Asys

�� check whether L��Asys� � L��A���

Table 
�
� Naive recipe for model checking PLTL

constructed for the desired property � and the model sys of the system� The ac�

cepting runs of Asys correspond to the possible behaviour of the model� while the

accepting runs of A� correspond to the desired behaviour of the model� If all pos�

sible behaviour is desirable� i�e� when L��Asys� � L��A��� then we can conclude

that the model satis�es �� This seems to be a plausible approach� However� the

�� Model Checking Linear Temporal Logic

problem to decide language inclusion of B�uchi automata is PSPACE�complete�

i�e� it is a di�cult type of NP�problem��

Observe that

L��Asys� � L��A�� � �L��Asys� � L��A�� � ��

where A is the complement of A that accepts (� n L��A� as a language� The

construction of A for LBA A� is however� quadratically exponential� if A has

n states then A has cn
�

states� for some constant c � �� This means that the

resulting automaton is very large� �For deterministic LBAs an algorithm exists

that is polynomial in the size of A� but since deterministic LBAs are strictly less

expressive than non�deterministic LBAs� this does not interest us here��

Using the observation that the complement automaton of A� is equal to the

automaton for the negation of ��

L��A�� � L��A� ��

we arrive at the following more e�cient method for model checking PLTL which

is usually more e�cient� This is shown in Table 
��� The idea is to construct

�� construct the B�uchi automaton for ��� A� �


� construct the B�uchi automaton for the model of the system� Asys

�� check whether L��Asys� � L��A� �� � ��

Table 
��� Basic recipe for model checking PLTL

an LBA for the negation of the desired property �� Thus the automaton A� �

models the undesired computations of the model that we want to check� If Asys

has a certain accepting run that is also an accepting run of A� � then this is

�PSPACE�complete problems belong to the category of problems that can still be solved in

polynomial space� i�e� in a memory space that is polynomial in the size of the problem �the

number of states in the B�uchi automaton� for instance�� Therefore� for these problems it is very

unlikely to �nd algorithms that do not have an exponential time complexity�
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an example run that violates �� so we conclude that � is not a property of Asys�

If there is no such common run� then � is satis�ed� This explains step � of the

method� Emerson and Lei ����	� have proven that the third step is decidable in

linear time� and thus falls outside the class of NP�problems�

In the sequel we will assume that the automaton Asys is given� The step from

a programming or speci�cation language to an LBA depends very much on the

language considered� and is usually also not that di�cult� In the next section

we provide an algorithm for step � of the method� Later in this chapter we also

explain in detail how step � is performed�

��� From PLTL
formulas to labelled B�uchi au


tomata

The algorithm that we treat here for associating an LBA with a PLTL�formula

is adopted from Gerth� Peled� Vardi # Wolper ����	� and consists of the steps

indicated in Figure 
��� We deal with each step separately� The main step is

formula

Normal�form Graph Generalised LBA LBAPLTL formula
Figure 
��� Schematic view of PLTL to LBA algorithm

the construction of a graph starting from a normal�form formula� The reason

for adopting this more recent algorithm rather than the original algorithm by

Wolper� Vardi and Sistla ������ is that in general the resulting LBAs for the

recent algorithm are substantially smaller� The worst�case complexity of both

algorithms is� however� identical�

Normal�form formulas

In order to construct an LBA for a given PLTL�formula �� � is �rst transformed

into normal form� This means that � does not contain F and G �one can easily

�� Model Checking Linear Temporal Logic

eliminate them by using the de�nitions F� 	 trueU� and G� 	 � F ����

and that all negations in � are adjacent to atomic propositions� To keep the

presentation simple we also assume that true and false are replaced by their

de�nitions� In order to make it possible to transform a negated until�formula into

normal form� an auxiliary temporal operator U is introduced which is de�ned by

����U ���� 	 � ��U���

In the original algorithm this operator was denoted V� but in order to avoid

confusion with � �disjunction� we use U�

De�nition 
� �Normal�form PLTL�formulas�

For p � AP� an atomic proposition� the set of PLTL�formulas in normal form is

de�ned by�

� ��� p j � p j � � � j � � � j X� j �U� j �U��

The following equations are used to transform the PLTL�formula � into normal

form�
� �� � �� 	 ���� � ����

� �� � �� 	 ���� � ����

�X� 	 X ����

� ��U�� 	 ����U ����

� ��U�� 	 ����U ����

Note that in each of these equations� reading them from left to right� the outer�

most negation is �pushed� inside the formula� Applying these rules iteratively�

allows one to push negations until they are adjacent to atomic propositions�

Example �� As an example we derive the normal�form of �X  r � pU q!�
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�X  r � pU q!

� f de�nition of � g

�X  � r � �pU q�!

� f �X� � X ���� g

X  � �� r � �pU q��!

� f predicate calculus g

X  r � � �pU q�!

� f de�nition of U g

X  r � �� p�U �� q�!�

As a next example� the interested reader might check that the normal form of

G p is falseU p� �End of example��

It is not hard to see that the worst�case time complexity of transforming �

into normal form is linear in the size of �� denoted by j � j� The size of � can

easily be de�ned by induction on the structure of �� e�g� j p j� �� j X� j� �" j � j

and j �U� j� �" j � j " j � j� For the sake of brevity we do not give the full

de�nition here�

Program notation �intermezzo�

In order to present the algorithms in these lecture notes in a uniform style� and

 perhaps even more importantly  in order not to focus on a programming

language which might be popular today� but old�fashioned as soon as a new

language is launched� we choose an abstract program notation� This notation is

strongly based on Dijkstra�s guarded command language �Dijkstra� ������ In a

nutshell the following constructs are used in this language� Statements can be

sequenced by using the symbol � as a separator�

� The empty statement �denoted skip�� It simply means �do nothing��

� The let statement� It allows the non�deterministic choice of some element

of a given set� For instance� let x in V � where x is a variable and V a
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non�empty set� establishes that some �arbitrary� element of V is chosen

and assigned to x�

� Concurrent assignment statement� Here a number of di�erent variables

can be assigned simultaneously� Thus one can write x� y �� E�� E�� The

interchange of variables can now be described simply by x� y �� y� x�

� Guarded commands� A guarded command consists of a guard� that is� a

boolean expression� and a list of statements� The list of statements is only

executed if the guard is true initially� For instance� the guarded command

�V �� �� 
� x� y �� �� � means that the assignment x� y �� �� � will

be executed provided the set V is non�empty� Guarded commands can

be sequenced by using the symbol  ! as a separator� �Note that guarded

commands are not statements� but are part of statements��

� If�statement� An if�statement has the form

if guarded command  ! � � �  ! guarded command �

where all guards are assumed to be de�ned �i�e�� the evaluation of a guard

always terminates�� One of the guarded commands whose guard is true is

selected and the associated statement list is executed� If more than one

guard is true� the selection is made non�deterministically from the guarded

commands whose guards are true� If no guard is true� the statement is

aborted�

� Do�statement� A do�statement has the form

do guarded command  ! � � �  ! guarded command od

If there are no true guards� the statement terminates� if there are true

guards� one of them is selected non�deterministically and its statement list

is executed� After execution of a selected statement list� all guards are

re�evaluated� Thus the execution of the do�statement continues until there

are no true guards left�

� Comments� A comment is enclosed between the brackets �) and )��
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This concludes the description of the program notation� We will be quite liberal

in the types of variables that we use� In fact we allow sets� sequences� bags �multi�

sets�� and so on� without aiming at a particular realization of these types� For

sets we use the common notation whereas for sequences we use h i to denote an

empty sequence� hvi to denote the sequence consisting of a single element v� and

hvi�S and S�hvi for adding an element v at the front or at the end of sequence

S�
Constructing a graph

Suppose the transformation of the PLTL�formula at hand into normal form yields

a formula �� In the next step of the algorithm �cf� Table 
��� a graph G� � �V�E�

is constructed� with a set of vertices V � and a set of edges E � V � V � Vertices

have the following structure�

De�nition ��� �Vertex�

A vertex v is a tuple �P�N�O� Sc� with

� P � 
V �f init g� a set of predecessors

� N�O� Sc� sets of normal�form formulas�

For v � �P�N�O� Sc� we write P�v� � P� N�v� � N� O�v� � O and Sc�v� � Sc�

P is the set of predecessors of a vertex� A special name init is used for

indicating initial vertices �that is� vertices without incoming edges�� init �� V �

So� vertex v is initial i� init � P�v�� init is just a placeholder and not a physical

vertex� N�v� � O�v� are the formulas that are to be checked for v� N �New�

is the set of formulas that have not yet been processed� O �Old� is the set of

formulas that have already been processed� Sc �Succ� contains those formulas

that must hold at all vertices which are immediate successors of vertices satisfying

the formulas in O�

The graph G� is constructed in a depth��rst traversal order starting with a

single vertex labelled with �� the input formula� Selecting in each step as the next

�
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function CreateGraph �� � Formula�� set of Vertex�

�) pre�condition� � is a PLTL�formula in normal form )�

begin var S � sequence of Vertex�

Z � set of Vertex� �) already explored vertices )�

v� w�� w� � Vertex�

S� Z �� h�f init g� f� g�����i���

do S �� h i 
� �) let S � hvi�S � )�

if N�v� � � 
� �) all proof obligations of v have been checked )�

if �w � Z� Sc�v� � Sc�w� � O�v� � O�w�� 
�

P�w�� S �� P�w� � P�v�� S � �) w is a copy of v )�

 ! � �w � Z� � � �� 
�

S� Z �� h�f v g� Sc�v������i�S �� Z � f v g�

�
 ! N�v� �� � 
� �) some proof obligations of v are left )�

let � in N�v��

N�v� �� N�v� n f� g�

if � � AP � ���� � AP 
�

if ���� � O�v� 
� S �� S � �) discard v )�

 ! �� �� O�v� 
� skip

�
 ! � � ��� � ��� 
� N�v� �� N�v� � �f��� �� g nO�v��

 ! � � X� 
� Sc�v� �� Sc�v� � f� g

 ! � � f�� U��� �� U��� �� � �� g 
� �) split v )�

w�� w� �� v� v�

N�w�� �� N�w�� � �F���� nO�w����

N�w�� �� N�w�� � �F���� nO�w����

O�w���O�w�� �� O�w�� � f� g� O�w�� � f� g�

S �� hw�i
��hw�i
�S ��

�
O�v� �� O�v� � f� g

�

od�
return Z�

�) post�condition� Z is the set of vertices of the graph G� )�

�) where the initial vertices are vertices in Z with init � P )�

�) and the edges are given by the P�components of vertices in Z )�

end
Table 
��� Algorithm for constructing a graph for PLTL�formula �
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state a successor state of the state that has been most recently reached which has

non�visited successor states is called a depth��rst search strategy� The sequence

S �usually implemented as a stack� contains the vertices in depth��rst order that

have been visited but that not have yet been explored completely� Initially S

consists of one vertex init labeled with �� The set Z contains the set of vertices

created� initially �� When all vertices have been explored �i�e� S � h i� we are

�nished� and the algorithm terminates� Vertex v is fully explored when all the

formulas that must hold in v have been checked� that is� when N�v� � ��

Suppose N�v� � �� If there exists already a vertex �in Z� with the same proof

obligations in O and Sc� then no new vertex has to be created� Instead� it su�ces

to take the existing vertex in Z and augment its incoming edges with those of

v� indicating that the existing vertex can now be reached in the same way as v�

In addition� v is removed from S since we have �nished with v� If such a copy

of v does not exist� a vertex is created �that is� Z is extended with v�� and the

successors of v have to be explored �a new element is added to S labelled with

the proof obligations for all successor vertices of v� Sc�v���

Suppose that there are still formulas to be checked� i�e� N�v� �� �� At each

state a sub�formula � of � that remains to be satis�ed is selected from N�v� and

is decomposed according to its structure� The following cases are distinguished�

� � is a negation of some atomic proposition that has been processed before�

Then we have found a contradiction and the vertex v is not further explored

�i�e� S �� S ���

� � is some atomic proposition whose negation has not been processed before�

Then do nothing�

� � is a conjunction� Clearly� in order for �� ��� to be satis�ed we have to

check whether �� and �� are both satis�ed� Thus� �� and �� are added to

N�v�� In order to avoid that �� and �� are checked more than once we only

add them to N�v� if they do not have been processed before �i�e� �i �� O�v���

� � is a next�formula� say X�� In order for v to satisfy �� it su�ces that �

holds at all immediate successors of v� Thus� � is added to Sc�v��
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� � is a disjunction� a U � or a U �formula� For these cases the vertex v is

split into two vertices �w� and w���

These vertices correspond to the two ways in which � can be made valid�

The way in which v is split depends on the structure of �� The basic princi�

ple is to rewrite � into a disjunction such that each part of the disjunction

can be checked in each of the split versions of v� the vertices w� and w��

� � � �� � ��� Then the validity of either �� or �� su�ces to make �

valid� Given that Fi��� � f�i g for i��� 
� this reduces to checking

either �� �in w�� or �� �in w���

� � � �� U��� Here the equation� one of the expansion laws we have

seen before�

�� U�� � �� �  �� � X ��� U���!

is used to split v� One vertex �w�� is used for checking �� �X ��� U����

F���� � f�� � X ��� U��� g� The other vertex �w�� is used for check�

ing ��� F���� � f�� g�

� � � �� U��� Here the equation

�� U�� � �� �  �� � X ��� U���!

is used to split v� Rewriting this in disjunctive form yields

�� �  �� � X ��� U���! � ��� � ��� �  �� � X ��� U���!�

In this case F���� � f�� � �� g and F���� � f�� � X ��� U��� g�

The search proceeds in depth��rst order by considering w� and w��

Example � As an example of the CreateGraph algorithm consider � � pU q

where p and q are atomic propositions� It is left to the interested reader to check

that the result of applying CreateGraph to this formula results in the graph de�

picted in Figure ���� �End of

example��

We conclude by a short complexity analysis of this step� Since in principle

each set of sub�formulas of � can give rise to a vertex in the graph G�� the
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init init

O � f pU q� p g O � f pU q� q g

Sc � f pU q g Sc � � Sc � �

O � �

Figure 
�	� Result of applying the CreateGraph�algorithm to pU q

number of vertices is �in the worst case� proportional to the number of subsets of

sub�formulas of �� Since the number of sub�formulas of a formula is equal to the

length of the formula� the number of vertices is in the worst case equal to 
j�j� The

worst�case time complexity of this graph�creating algorithm is therefore O�
j�j��

We will address later on how this in�uences the worst�case time complexity of

model checking PLTL�

From a graph to a generalized LBA

A generalized LBA can be obtained in the following way from the graph con�

structed according to the algorithm of the previous section� First we introduce

the notion of generalized LBA�

De�nition ��� �Generalised LBA�

A generalized labelled B�uchi automaton �GLBA� A is a tuple �(� S� S�� ��F � l�

where all components are the same as for an LBA� except that F is a set of

accepting sets fF�� � � � � Fk g for k � � with Fi � S� i�e� F � 
S rather than a

single set of accepting states�

Run � � s� s� � � � is accepting for GLBA A if and only if for each acceptance

set Fi � F there exists a state in Fi that appears in � in�nitely often� Recall

that lim��� is the set of states that appear in�nitely often in �� The acceptance

condition formally amounts to

lim��� � Fi �� � for all � � i � k�
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Note that if F � � all runs go in�nitely often through all acceptance sets in F �

so any run is accepting in this case�

Example �� Consider the GLBA depicted in Figure ���� We illustrate the

relevance of the choice of F by discussing two alternatives� First� let F consist

of a single set f s�� s� g� i�e� there is a single acceptance set containing s� and s��

An accepting run has to go in�nitely often through some state in F � Since s�

cannot be visited in�nitely often� the only candidate to be visited in�nitely often

by an accepting run is state s�� Thus� the language accepted by this automaton

equals a �b �a j 
����

s�

s�

s�

a b b

Figure 
��� An example generalized B�uchi automaton

If we now let F to consist of f s� g and f s� g� i�e� two accepting sets consisting

of s� and s�� respectively� the GLBA has no accepting run� and thus the language

is �� Since any accepting run has to go in�nitely often through each acceptance

set� such run has to visit s� in�nitely often� which is impossible� �End of

example��

De�nition ��� �GLBA from graph�

For the PLTL�formula � in normal form� the associated GLBAA � �(� S� S�� ��F � l�

is de�ned by�

� ( � 
AP

� S � CreateGraph���

� S� � f s � S j init � P�s� g

� s 
� s� i� s � P�s�� and s �� init

� F � f f s � S j �� U�� �� O�s� � �� � O�s� g j �� U�� � Sub��� g
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� l�s� � fP � AP j Pos�s� � P � P � Neg�s� � � g�

Sub��� denotes the set of sub�formulas of �� This set can easily be de�ned

by induction on the structure of the formula and is omitted here� Pos�s� �

O�s� �AP� the atomic propositions that are valid in s� and Neg�s� � f p � AP j

� p � O�s� g� the set of negative atomic propositions that are valid in s�

The set of states is simply the set of vertices generated by the function Create�

Graph applied to �� the normal�form formula under consideration� Notice that

only those vertices v for which N�v� � � are returned by this function� For these

vertices all formulas to be checked have been considered� The set of initial states

are those states which have the special marking init in the set of predecessors�

We have a transition from s to s� if s is a predecessor of s� and s �� init� For

each sub�formula �� U�� in � an acceptance set is de�ned that consists of those

states s such that either �� � O�s�� or �� U�� �� O�s�� The number of sets of

acceptance thus equals the number of U �sub�formulas of �� For formulas with�

out U �sub�formulas F equals �� denoting that all runs are accepting� States are

labelled with sets of sets of atomic propositions� A state s is labelled with any

set of atomic propositions that contain the valid propositions in s� Pos�s� and

which does not contain any proposition in Neg�s�� the negative propositions that

are valid in s�

The above construction of acceptance sets avoids to accept a run � � s� s� � � �

where �� U�� in O�si�� but for which there is no sj� j � i for which �� is valid�

�Note that the acceptance of these runs is not avoided by the construction of

the graph by CreateGraph�� From the CreateGraph�algorithm it follows that if

�� U�� � O�si� and �� �� O�si���� then �� U�� � O�si���� This can be seen by

the splitting of a vertex labelled with �� U�� in the algorithm� the vertex that is

not labelled with �� is labelled with X ��� U���� So� if �� U�� is valid in si then

it is also valid in state si�� �given that �� is not valid in that state�� Now� let

Fi be the acceptance set associated with �� U��� � as described above is not an

accepting run� since there is no state in � that is in Fi� so there is no accepting

state in Fi that is visited in�nitely often by ��

The correctness of the construction follows from the following result �by Gerth�

Peled� Vardi # Wolper� ���	��
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Theorem ���

The GLBA obtained by transforming the graph generated by CreateGraph���

as described above accepts exactly those sequences over �
AP�� that satisfy the

normal�form PLTL�formula ��

Example �� The GLBA that corresponds to the graph in Figure ��� is�

s� s� s�

f f p g� f p� q g g f f q g� f p� q g g f�� f p g� f q g� f p� q g g

The two accepting states belong to one acceptance set� that is F � f f s�� s� g g�

The labels of the states deserve some explanation� For s� we have Pos�s�� �

O�s�� � AP � f p g� and Neg�s�� � �� since s� does not contain any negative

atomic proposition in O�s��� Consequently� l�s�� � f f p g� f p� q g g� A similar

reasoning justi�es the labelling of the other states� The only accepting state that

can be visited in�nitely often is s�� In s� it is irrelevant what is valid� It is only

important that s� is reached� since then pU q is guaranteed� In order to reach

state s�� state s� must be visited �rst� Therefore each accepting run of this GLBA

has a �nite pre�x for which p is valid until q is valid �in state s��� Either q is

valid initially� by starting in s�� or one reaches s� from having started in s� where

p is true �and sometimes even already q�� �End of example��

To give the reader some idea of the size of the GLBA that is obtained for

a given PLTL�formula we list for some formulas the following� number of states

j S j� transitions j � j� and acceptance sets j F j �Gerth et� al� ���	��

Formula j S j j � j j F j Formula j S j j � j j F j

pU q � � � �F p�U �G q� � �	 


pU �q U r� � � 
 �G p�U q 	 � �

�  pU �q U r�! � �	 � � �FF p � F p� 

 �� 


GF p � GF q � �	 
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Notice that for �  pU �q U r�! no accepting states are obtained� since the normal

form of this formula does not contain an until�formula� Therefore any run of the

automaton that is obtained for this formula is accepting�

From a generalized LBA to an LBA

The method of transforming a generalized LBA A with k acceptance sets into an

LBA A� is to make k copies of A� one copy per acceptance set� Then each state

s becomes a pair �s� i� with � � i � k� Automaton A� can start in some initial

state �s�� i� where s� is an initial state of A� In each copy the transitions are as

in A� with the only �but essential� exception that when an accepting state in Fi

is reached in the i�th copy� then the automaton switches to the �i"���th copy�

This transformation is formally de�ned in�

De�nition ��� �From a GLBA to an LBA�

Let A � �(� S� S�� ��F � l� be a GLBA with F � fF�� � � � � Fk g� The ordinary

LBA A� � �(� S �� S�� � ��� F �� l�� such that L��A� � L��A�� is obtained as follows

� S � � S � f i j � � i � k g

� S�� � S� � f i g for some � � i � k

� �s� i� 
�� �s�� i� i� s 
� s� and s �� Fi

�s� i� 
�� �s�� �i mod k� " �� i� s 
� s� and s � Fi

� F � � Fi � f i g for some � � i � k

� l��s� i� � l�s��

Since for the de�nition of the initial and accepting states of A� an arbitrary

�and even di�erent� i can be chosen� the automatonA� is not uniquely determined�

For a run of A� to be accepting it has to visit some state �s� i� in�nitely often�

where s is an accepting state in Fi in the GLBA A� As soon as a run reaches this

state �s� i� the automaton A� moves to the �i"���th copy� From the �i"���th copy
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the next copy can be reached by visiting �s�� i"�� with s� � Fi��� A� can only

return to �s� i� if it goes through all k copies� This is only possible if it reaches

an accepting state in each copy since that is the only opportunity to move to the

next copy� So� for a run to visit �s� i� in�nitely often it has to visit some accepting

state in each copy in�nitely often� Given this concept it is not hard to see that

A and A� accept the same language� and hence are equivalent�

Example �� Consider the following generalized LBA�

s�s� s�

ab c

It has two acceptance sets F� � f s� g and F� � f s� g� The states of the corre�

sponding simple LBA are

f s�� s�� s� g � f �� 
 g

Some example transitions are�

�s�� �� 
� �s�� �� since s� 
� s� and s� �� F�

�s�� �� 
� �s�� �� since s� 
� s� and s� �� F�

�s�� �� 
� �s�� 
� since s� 
� s� and s� � F�

�s�� 
� 
� �s�� 
� since s� 
� s� and s� �� F�

�s�� 
� 
� �s�� �� since s� 
� s� and s� � F�

The justi�cation of the other transitions is left to the reader� A possible resulting

simple LBA is
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�s�� ��

�s�� ��

�s�� ��

�s�� 
�

�s�� 
�

�s�� 
�

a
b

b

a

c

c

where the set of initial states is chosen to be f �s�� �� g and the set of accepting

states is chosen to be f �s�� 
� g� Any accepting run of the simple LBA must visit

�s�� 
� in�nitely often �s� � F��� In order to do so it also has to visit a state

labelled with s� � F� in�nitely often� Thus� an accepting run of the resulting

LBA visits some state of F� and some state of F� in�nitely often� �End of

example��

This concludes the description of how to obtain a �simple� LBA A� for a given

PLTL�formula �� Notice that the number of states in the simple LBA A is O�k� j

S j� where S is the set of states of the GLBA under consideration and k the

number of acceptance sets�

��� Checking for emptiness

We have seen how to convert a PLTL�formula � into a B�uchi automaton A��

We assume that a model of the system to be veri�ed is also given as a B�uchi

automaton Asys� Then the third step of the model checking method �cf� Table 
���

is to check whether the runs accepted by these automata are disjoint� i�e� whether

L��Asys� � L��A� �� � �

L��A� �� represents all computations that satisfy ��� that is� it characterizes

those computations that violate the desired property �� Stated di�erently� A� �

�
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characterizes the undesired behavior� L��Asys� represents all possible behavior

of the model of the system� The model sys satis�es property � if there is no

computation that ful�ll ��� thus if there is no possible undesired behavior�

Checking whether Asys and A� � have some accepting run in common consists

of the steps described in Table 
�	� First a new automaton is constructed that

accepts the intersection of the languages of Asys and A� �� This is called the

�synchronous� product automaton� Since B�uchi automata are closed under prod�

ucts� such an automaton always exists� The problem of checking whether a given

automaton generates the empty language is known as the emptiness problem�

�� construct the product automaton Asys � A� � which accepts

the language L��Asys� � L��A� ��� and


� check whether L��Asys � A� �� � ��

Table 
�	� Method for solving the emptiness problem

Product of automata on �nite words

In order to better understand the product automaton construction for B�uchi

automata we �rst deal with ordinary �nite�state automata� For labelled �nite�

state automata A� and A� it is not di�cult to construct an automaton that

accepts the language L�A�� � L�A��� viz� the automaton A� � A�� The product

operator � is de�ned by

De�nition ��� �Synchronous product of LFSA�

Let Ai � �(� Si� S
�
i � �i� Fi� li� for i��� 
 be two LFSA �that is� automata over �nite

words�� The product automaton A� � A� � �(� S� S�� �� F� l� is de�ned as follows

� S � f �s� s�� � S� � S� j l��s� � l��s
�� g

� S� � �S�
� � S�
�� � S

� �s�� s�� 
� �s��� s
�
�� i� s� 
�� s

�
� and s� 
�� s

�
�
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� F � �F� � F�� � S

� l�s� s�� � l��s� �which equals l��s
����

States are pairs �s� s�� such that s � S� and s� � S� and s and s� are equally

labelled� It is not di�cult to see that L�A� � A�� � L�A�� � L�A��� Every

accepting run �s�� s
�
�� �s�� s

�
�� � � � �sn� s

�
n� of A��A� must end in a state �sn� s

�
n� �

F � In order to reach �sn� s
�
n� it must be possible to reach sn in A� via the run

s� s� � � � sn which is an accepting run of A� if sn � F�� Similarly� s�� s
�
� � � � s

�
n is

an accepting run of A� if s�n � F�� Thus any accepting run of A� � A� must be

an accepting run of Ai when projected on a run of Ai for i��� 
�

Product of automata on in�nite words

For B�uchi automata this simple procedure is� however� not appropriate� In the

above construction� the set of accepting states F is the product of acceptance

sets F� and F�� When we view A� and A� as automata on in�nite words this

construction means that A��A� accepts an in�nite word w if there are accepting

runs �� and �� of A� and A� on w� where both runs go in�nitely often and

simultaneously through accepting states� This requirement is too strong and

leads in general to

L��A� � A�� � L��A�� � L��A��

which is not the desired result� This is illustrated by the following example�

Example �� Consider the two B�uchi automata

a a

A�

a a

A�

s� s� s� s�
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The language accepted by these LBA is� L��A�� � L��A�� � a�� But the au�

tomaton A� � A� is�

a
a

a
a

A� � A�

�s�� s�� �s�� s��

�s�� s���s�� s��

which� clearly has no accepting run� So� L��A� � A�� � � which di	ers from

L��A�� � L��A�� � a�� The point is that the product automaton assumes that

A� and A� go simultaneously through an accepting state� which is never the case

in this example since A� and A� are �out of phase� from the beginning on� if A�

is in an accepting state� A� is not� and vice versa�

Notice that when considered as automata on �nite words� then L�A�� �

f a�n�� j n � � g and L�A�� � f a�n�� j n � � g and L�A� � A�� � � �

L�A�� � L�A��� �End of example��

Fortunately there is a modi�cation of the pure product automata construction

that works for B�uchi automata� due to Choueka �������

De�nition ��� �Synchronous product of B�uchi automata�

Let Ai � �(� Si� S
�
i � �i� Fi� li� for i��� 
 be two LBAs �that is� automata over

in�nite words�� The product automaton A� � A� � �(� S� S�� �� F� l� is de�ned as

follows
� S � f �s� s�� � S� � S� j l��s� � l��s
�� g � f �� 
 g

� S� � ��S�
� � S�
��� f � g� � S

� if s� 
�� s
�
� and s� 
�� s

�
� then

�i� if s� � F� then �s�� s�� �� 
� �s��� s
�
�� 
�

�ii� if s� � F� then �s�� s�� 
� 
� �s��� s
�
�� ��
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�iii� in all other cases �s�� s�� i� 
� �s��� s
�
�� i� for i��� 


� F � ��F� � S��� f � g� � S

� l�s� s�� i� � l��s� �which equals l��s
����

The intuition behind this construction is as follows� The automaton A �

A� � A� runs both A� and A� on the input word� Thus the automaton can

be considered to have two �tracks�� one for A� and one for A�� In addition to

remembering the state of each track �the �rst two components of a state�� A also

has a pointer that points to one of the tracks �the third component of a state��

Whenever a track goes through an accepting state� the pointer moves to another

track �rules �i� and �ii��� More precisely� if it goes through an accepting state of

Ai while pointing to track i� it changes to track �i"�� modulo 
�

The acceptance condition guarantees that both tracks visit accepting states

in�nitely often� since a run is accepted i� it goes through F��S��f � g in�nitely

often� This means that the �rst track visits in�nitely often an accepting state

with the pointer pointing to the �rst track� Whenever the �rst track visits an

accepting state �of A�� with the pointer pointing to the �rst track� the track is

changed �i�e� the pointer is moved to the other track�� The pointer only returns

to the �rst track if the second track visits an accepting state �of A��� Thus in

order to visit an accepting state of A� � A�� both A� and A� have to visit an

accepting state in�nitely often and we have

L��A� � A�� � L��A�� � L��A���

Example �� Consider the B�uchi automata A� and A� from the previous exam�

ple� The LBA A� � A� is constructed as follows� The set of states equals

f s�� s� g � f s�� s� g � f �� 
 g

which yields 
� � � states� The initial state is �s�� s�� ��� The accepting states are

�s�� s�� �� and �s�� s�� ��� The following example transitions can be derived from
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the above de�nition�

�s�� s�� �� 
� �s�� s�� 
� since s� 
�� s� and s� 
�� s� and s� � F�

�s�� s�� 
� 
� �s�� s�� �� since s� 
�� s� and s� 
�� s� and s� � F�

�s�� s�� 
� 
� �s�� s�� �� since s� 
�� s� and s� 
�� s� and s� �� F�

The �rst transition follows from rule �i�� the second from rule �ii�� and the third

rule follows from rule �iii�� The justi�cation of the other transitions is left to the

interested reader� The resulting product automaton A� � A� is now�

�s�� s�� � �s�� s�� 	�

�s�� s�� 	�

�s�� s�� 	�

�s�� s�� �

�s�� s�� �

�s�� s�� 	� �s�� s�� �

where all states are labeled with a� Clearly� the language accepted by this product

automaton is a� which equals L��A�� � L��A��� �End of example��

Notice that the number of states of the automaton A��A� is proportional to

the product of the number of states in A� and A�� This is a worst�case indication�

Usually this upper�bound is not reached in model checking since Asys � A� � is

a small automaton� This is due to the fact that only sequences are accepted by

Asys � A� � that violate the desired property �� One expects only few of these�

none if the system is correct�

The emptiness problem

The second subproblem �cf� Table 
�	� is� given an LBA A how does one deter�

mine whether A is empty� i�e� whether L��A� � �� An LBA A is non�empty i�

it has an accepting state reachable from some initial state which is  in addition

 reachable from itself �in one or more steps�� Stated in graph�theoretic terms it
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means that A contains a cycle reachable from an initial state such that the cycle

contains some accepting state� State s� is reachable from s if there is a sequence

s� � � � sk such that s� � s and sk � s� and si 
� si�� for � � i � k�

Theorem ���

Let A � �(� S� S�� �� F� l� be an LBA� L��A� �� � i	 there exists s� � S� and

s� � F such that s� is reachable from s� and s
� is reachable from s��

This result can be explained as follows� If A is non�empty it is not di�cult

to see that there must be a reachable cycle that contains an accepting state� In

the other direction the argument is only slightly more involved� Suppose there

are states s� � S� and s� � F such that s� is reachable from s� and s� is reachable

from itself� Since s� is reachable from s� there is a sequence of states s� s� � � � sk�

k � �� and a sequence of symbols a� � � � ak such that sk � s� �the sequence ends

in s��� si 
� si�� �� � i � k� and ai � l�si� for all i� Similarly� since s� is

reachable from itself there is a sequence s�� s
�
� � � � s

�
n and a sequence of symbols

b� � � � bn such that s�� � s�n � s�� n � �� and s�i 
� s�i�� �� � i � n� and bi � l�s�i�

with ak � b�� But� since s� � F then �s� � � � sk����s
�
� � � � s

�
n�� is an accepting run

of A on the input word �a� � � � ak����b� � � � bn��� Thus L��A� contains at least

one accepting word� and hence� is non�empty�

So� in order

To determine whether a given A is non�empty� we check whether

A has a reachable cycle that contains an accepting state�

�Such a reachable cycle is also called a  non�trivial� since it must contain at

least one edge  maximal strong component of A�� The algorithm that checks

whether A has a reachable cycle that contains an accepting state consists of two

steps� For convenience� assume that A has a single initial state s�� i�e� S� � f s� g�

�� The �rst part computes all accepting states that are reachable from the

initial state� For convenience the accepting states are ordered� This is

performed by the function ReachAccept which is listed in Table 
���
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function ReachAccept �s� � Vertex� � sequence of Vertex�

�) precondition� true )�

begin var S � sequence of Vertex� �) path from s� to current vertex )�

R � sequence of Vertex� �) reachable accepting states )�

Z � set of Vertex� �) visited vertices )�

S�R� Z �� hs�i� h i���

do S �� h i 
� �) let S � hsi�S � )�

if ��s� � Z 
� S �� S ��

if s � F 
� R �� R�hsi

 ! s �� F 
� skip

�

 ! ��s� �� Z 
� let s� in ��s� n Z�

S� Z �� hs�i�S� Z � f s� g

��

od�
return R�

�) postcondition� R contains accepting states reachable from s� )�

�) ordered such that if R � hs�� � � � � ski then )�

�) i � j implies that si is explored before sj )�

end
Table 
��� Algorithm for determining reachable accepting states


� The second part checks whether an accepting state computed by function

ReachAccept is a member of a cycle� This is performed by the function

DetectCycle which is listed in Table 
���

The main program now consists of return DetectCycle �ReachAccept �s����

In a nutshell� the algorithm ReachAccept works as follows� The graph repre�

senting the B�uchi automaton is traversed in a depth��rst search order� Starting

from the initial state s�� in each step a new state is selected �if such state exists�

that is directly reachable from the currently explored state s� When all paths

starting from s have been explored �i�e� ��s� � Z�� s is removed from S� and if

s is accepting it is appended to R� The algorithm terminates when all possible

paths starting from s� have been explored� i�e� when all states reachable from s�
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have been visited� Notice that all operations on S are at the front of S� S is

usually implemented as a stack�

Example �� Consider the LBA depicted in Figure ���� Assume that the order

of entering the sequence S equals ADEFBCG� that is� �rst state A is visited�

then state D� then E� and so on� This is the order of visiting� The order of

exploration is FEDGCBA� This is the order in which the search is �nished in

a state� Thus the successor states of F are all visited �rst� then those of E� and

so on� Given that C� E and F are accepting states� the sequence R will contain

FEC� the order of exploration projected onto the accepting states� �End of

A

B

C G

D E F

Figure 
��� Example LBA

example��

The algorithm DetectCycle carries out a depth��rst search starting from an

accepting state reachable from s�� It terminates if all accepting states in R have

been checked or if some accepting state has been found that is member of a cycle�

Notice that elements of R are removed from its front� whereas the elements in R

were inserted in ReachAccept at the back� R is usually implemented as a �rst�in

�rst�out queue�

Rather than computing ReachAccept and DetectCycle as two separate phases�

it is possible to check whether an accepting state is a member of a cycle on�the�

�y� that is while determining all accepting states reachable from s�� We thus

obtain a nested depth��rst search� in the outermost search an accepting state

is identi�ed which is reachable from s�� whereas in the innermost search it is

determined whether such a state is a member of a cycle� The resulting program

is shown in Table 
���
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function DetectCycle�R � sequence of Vertex� � Bool�

�) precondition� true )�

begin var S � sequence of Vertex�

Z � set of Vertex�

b � Bool�

S� Z� b �� h i��� false�

do R �� h i � � b 
� �) let R � hsi�R� )�

R� S �� R�� hsi�S�

do S �� h i � � b 
� �) let S � hs�i�S � )�

b �� �s � ��s����

if ��s�� � Z 
� S �� S �

 ! ��s�� �� Z 
� let s�� in ��s�� n Z�

S� Z �� hs��i�S� Z � f s�� g

��

od�

od�
return b�

�) postcondition� b is true if some state in R is member of a cycle )�

�) b is false if there is no such state in R )�

end

Table 
��� Algorithm for determining the existence of an acceptance cycle
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function ReachAcceptandDetectCycle �s� � Vertex� � Bool�

begin var S�� S� � sequence of Vertex�

Z�� Z� � set of Vertex�

b � Bool�

S�� S�� Z�� Z�� b �� hs�i� h i����� false�

do S� �� h i � � b 
� �) let S� � hsi�S �� )�

if ��s� � Z� 
�

S� �� S ���

if s �� F 
� skip

 ! s � F 
� S� �� hsi�S��

do S� �� h i � � b 
� �) let S� � hs�i�S �� )�

b �� �s � ��s����

if ��s�� � Z� 
� S� �� S ��

 ! ��s�� �� Z� 
� let s�� in ��s�� n Z��

S�� Z� �� hs��i�S ��� Z� � f s�� g

��

od�

��

 ! ��s� �� Z� 
� let s�� in ��s� n Z��

S�� Z� �� hs��i�S ��� Z� � f s�� g

��

od�
return b�

end
Table 
��� Integrated program for ReachAccept and DetectCycle
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Now assume we apply this algorithm to the product automaton Asys�A� ��

An interesting aspect of this program is that if an error occurs� that is� if a cycle

is determined in Asys�A� � that contains an accepting state s� then an example

of an incorrect path can be computed easily� sequence S� contains the path from

the starting state s� to s �in reversed order�� while sequence S� contains the cycle

from s to s �in reversed order�� In this way� a counterexample that shows how �

is violated can be produced easily� namely �S ��
�S��
�� where S� � hsi�S ���

The time complexity of the nested depth��rst search algorithm of Table 
�� is

proportional to the number of states plus the number of transitions in the LBA

under consideration� i�e� O�j S j " j � j�� Recall that we assumed that the LBA

only contains a single initial state� If there are more initial states� the whole

procedure should be carried out for each initial state� This yields a worst�case

time complexity of

O�j S� j � �j S j " j � j���

���� Summary of steps in PLTL
model checking

An overview of the di�erent steps of model checking PLTL is shown in Figure 
���

The model of the system sys is transformed into a B�uchi automaton Asys in

which all states are accepting� The property to be checked is speci�ed in PLTL

 yielding � � negated� and subsequently transformed into a second B�uchi

automaton A� �� The product of these two automata represents all possible

computations that violate �� By checking the emptiness of this automaton� it is

thus determined whether � is satis�ed by the system�model sys or not�

Although the various steps in the algorithm are presented in a strict sequen�

tial order� that is� indicating that the next step cannot be performed� until the

previous ones are completely �nished� some steps can be done on�the��y� For

instance� constructing the graph for a normal�form formula can be performed

while checking the emptiness of the product automaton Asys�A� �� In this way

the graph is constructed �on demand�� only a new vertex is considered if no ac�

cepting cycle has been found yet in the partially constructed product automaton�
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When the successors of a vertex in the graph are constructed� one chooses the

successors that match the current state of the automaton Asys rather than all

possible successors� Thus it is possible that an accepting cycle is found �i�e� a

violation of � with corresponding counter�example� without the need for generat�

ing the entire graph G�� In a similar way� the automaton Asys does not need to be

totally available before starting checking non�emptiness of the product automa�

ton� This is usually the most bene�cial step of on�the��y model checking� since

this automaton is typically rather large� and avoiding the entire consideration of

this automaton may reduce the state space requirements signi�cantly�

model checker

System

�Yes�

Negation of property

�No� �counter�example�

Checking emptiness

Product automaton

�Asys �A� ��

Model of system �sys�

Generalised B�uchi automaton

Normal�form formula

Graph

B�uchi automaton �Asys� B�uchi automaton �A� ��

PLTL�formula ����

Figure 
��� Overview of model�checking PLTL

We conclude by discussing the worst�case time complexity of the model�

checking recipe for PLTL�formulas� Let � be the formula to be checked and sys

the model of the system under consideration� The crucial step is the transforma�

tion of a normal form PLTL�formula into a graph� Since each vertex in the graph

is labelled with a set of sub�formulas of �� the number of vertices in the graph is

proportional to the number of sets of sub�formulas of �� that is O�
j�j�� Since the

other steps of the transformation of � into an LBA do not a�ect this worst�case
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complexity� the resulting LBA has a state space of O�
j�j�� The worst�case space

complexity of the product automaton Asys � A� � is therefore O�j Ssys j � 
j�j�

where Ssys denotes the set of states in the LBA Asys� Since the time complex�

ity of checking the emptiness of an LBA is linear in the number of states and

transitions we obtain that

The worst�case time complexity of checking whether system�model sys

satis�es the PLTL�formula � is O�j Ssys j
� � 
j�j�

since in worst case we have j Ssys j
� transitions� In the literature it is common

to say that the time complexity of model checking PLTL is linear in the size of

the model �rather than quadratic� and exponential in the size of the formula to

be checked�

The fact that the time complexity is exponential in the length of the PLTL�

formula seems to be a major obstacle for the application of this algorithm to

practical systems� Experiments have shown that this dependency is not signi��

cant� since the length of the property to be checked is usually rather short� This is

also justi�ed by several industrial case studies� �Holzmann� for instance� declares

that �PLTL�formulas have rarely more than 
 or � operators���

We conclude by brie�y indicating the space complexity of model checking

PLTL� The model checking problem for PLTL is PSPACE�complete� i�e� a state

space that is polynomial in the size of the model and the formula is needed �Sistla

and Clarke� ���	��

���� The model checker Spin

Spin �see http���netlib�bell�labs�com�netlib�spin�whatispin�html� al�

lows the simulation of a speci�cation written in the language Promela �PROto�

col MEta�LAnguage� and the veri�cation of several types of properties� such as

model checking of PLTL�formulas �without the next operator X � and veri�cation

of state properties� unreachable code� and so on� An overview of the Spin�tool
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is given in Figure 
��� The algorithms that are used by Spin in order to per�

form model checking of PLTL�formulas are basically the algorithms that we have

treated in this chapter� For instance� the conversion of a PLTL�formula into a

B�uchi automaton is performed using the 	 steps that we have described before��

and the detection of emptiness is done by a nested�depth �rst search procedure�

It is beyond the scope of these lecture notes to give an extensive description of

Optimised

Model Checker

Executable

On�The�Fly

Veri�er

Xspin Promela

Parser

Syntax Error

Interactive

Reports

Simulation

Veri�er

Front�End

Generator

PLTL Parser

and Translator

Counterexamples

Figure 
��� The structure of Spin simulation and veri�cation

Spin� there are several overview articles and an introductory book of Holzmann

 the developer of Spin  that cover this �Holzmann� ������ Instead� we would

like to give the reader some insight into how systems can be modeled in Promela

and how an example veri�cation and simulation is treated using Spin� For that

purpose we use a standard leader election protocol known from the literature�

First we give a brief overview of the core of the language Promela�

A Promela speci�cation consists roughly of sequential processes� �local and

global� variables� and communication channels used to connect sequential proces�

ses� A process� say P� is de�ned as follows

proctype P �formal parameters� 	 local definitions
 statements �

This construct only de�nes the process P� some variables and constants that are

local to P� and its behavior� but it does not instantiate the process� Processes are

�Although there are some subtle di�erences �as pointed out to me by Rob Gerth�� e�g� the

generated automaton by Spin � called never claim � does accept also �nite runs�
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started through the run construct that� for instance� appears in the initialization

section indicated by init� Here� an instance of the processes P and Q are created

and started�

init	 run P�actual parameters�
 run Q�actual parameters�
 ������ �

Statements in Promela can be either enabled or blocked� If a statement is

blocked� execution of the statement halts at this point until the statement be�

comes enabled� So� for instance� the statement �a �� b� is equivalent to while

�a � b� do skip� Promela is strongly in�uenced by Dijkstra�s guarded com�

mand language that we have used as an abstract program notation� Statements

are separated by semicolons� To summarize the following constructs exist in

Promela�

� The empty statement �written skip�� It means %do nothing��

� Assignment statement� for instance� x � � means that the variable x of

type byte is assigned the value ��

� If�statement� An if�statement has the form

if �� guard� �� statements�

�� ������

�� guardn �� statementsn

fi
One of the alternatives whose guard is enabled is selected and the corre�

sponding �non�empty� list of statements is executed� Non�determinism is

allowed� if more than one guard is enabled� the selection is made non�

deterministically� A special guard else is enabled when all other guards

are blocked� If there is no else�guard and all other guards are blocked� the

if�statement itself is blocked� and the execution halts until one of the guards

becomes enabled�

� Do�statement� has the same form as an if�statement� with the only di�er�

ence that if is replaced by do and fi by od� Notice that a do�statement is
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in principal always an in�nite loop� since if all guards are blocked� it waits

until one of the guards becomes enabled� A do�statement can therefore only

be terminated by the use of goto or break�

� Send and receive statements� Processes can be interconnected via unidirec�

tional channels of arbitrary �but �nite� capacity� Channels of capacity �

are also allowed� Channels are speci�ed in the same way as ordinary vari�

ables� e�g� chan c � ��� of byte de�nes a channel named c of capacity

	 �bytes�� A channel can be viewed as a �rst�in �rst�out bu�er� Sending

a message is indicated by an exclamation mark� reception by a question

mark� Suppose c has a positive capacity� Then c� is enabled if c is not

fully occupied� Its execution puts the element 
 at the end of the bu�er�

c�x is enabled if c is non�empty� Its e�ect is to remove the head of the

bu�er c and assign its value to the variable x� If c is unbu�ered� i�e� it has

size �� then c �and c�� is enabled if there is a corresponding c� �and

c� respectively� which can be executed simultaneously �and the types of

the parameters match�� This facility is useful for modeling synchronous

communication between processes�

Other Promela constructs that we need for our small case study will be intro�

duced on�the��y in the sequel�

Dolev
 Klawe and Rodeh�s leader election protocol

It is assumed that there are N processes �N � 
� in a ring topology� connected by

unbounded channels� A process can only send messages in a clockwise manner�

Initially� each process has a unique identi�er ident� below assumed to be a natural

number� The purpose of a leader election protocol is to make sure that exactly

one process will become the leader� In addition� it is the idea that the process

with the highest identi�er should be elected as a leader� Here the concept is that

the identi�er of a process represents its capabilities and it is desired that the

process with the largest capabilities wins the election� �In real life this is also

often desired� but usually the outcome of an election does not conform to the

latter principle�� In the protocol of Dolev� Klawe and Rodeh ����
� each process

in the ring performs the following task�

��� Model Checking Linear Temporal Logic

active�

d �� ident�

do forever

begin
send�d��

receive�e��

if e � d then stop� �) process d is the leader )�

send�e��

receive�f��

if e � max�d� f� then d �� e else goto relay�

end
relay�

do forever

begin
receive�d��

send�d�

end
The intuition behind the protocol is as follows� Initially each process is active�

As long as a process is active it is responsible for a certain process number �kept

in variable d�� This value may change during the evolvement of the protocol�

When a process determines that it does not keep the identity of a leader�in�spe�

it becomes relaying� If a process is relaying it passes messages from left to right

in a transparent way� that is� without inspecting nor modifying their contents�

Each active process sends its variable d to its clockwise neighbor� and then

waits until it receives the value �e� of its nearest active anti�clockwise neighbor�

If the process receives its own d� it concludes that it is the only active process left

and that d is indeed the identity of the new leader� and terminates� �Notice that

the process itself does not have to become the new leader�� In case a di�erent

value is received �e �� d�� then the process waits for the second message �f� that

contains the value d kept by the second nearest active anti�clockwise neighbor� If

the value of the nearest active anti�clockwise neighbor is the largest among e� f �

and d� then the process updates its local value �i�e� d �� e�� otherwise it becomes

relaying� Thus from every set of active neighbours one will become relaying in
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every round�

To illustrate how the protocol works� an example run of the protocol for �

processes with identities �� �� 
� and �
�� respectively� is shown in Figure 
����

Here� processes are indicates by circles� and communication channels by arrows�

The content of a channel is indicated by the label of the arrow� where the semi�

colon symbol is used to separate distinct messages� Each circle is labelled by a

triple indicating the current value of the local variables d� e and f � A black circle

indicates that the process is relaying� otherwise it is active�
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Figure 
���� Example run of the leader election protocol
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Modeling the leader election protocol in Promela

The Promela speci�cation consists of three parts� de�nitions of global variables�

description of the behaviour of a process in the ring� and an initialisation section

where all processes are started� The behavioural part of a process is actually

obtained from a straightforward translation of the protocol description given just

above� We have added two print comments to facilitate simulation� A process is

connected to its anti�clockwise neighbour via channel in� and via channel out to

its clockwise neighbour�

proctype process �chan in� out
 byte ident�

	 byte d� e� f


printf��MSC� �d�n�� ident�


activ�

d � ident


do �� true �� outd


in�e


if �� �e �� d� ��

printf��MSC� �d is LEADER�n�� d�


goto stop �� process d is leader ��

�� else �� skip

fi

oute


in�f


if �� �e �� d� �� �e �� f� �� d � e

�� else �� goto relay

fi

od


relay�

end�
do �� in�d �� outd

od
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stop�
skip

�
A process can be in three states� activ �we do not use �active�� since this is a

reserved keyword in Promela�� relay� and stop� A process can only reach the

stop state if it has recognised a new leader� A process that does not recognise

this leader will end in the relay state� In order to avoid the generation of an

invalid endstate �a state that is neither the end of a program body nor labeled

with end�� we label the relay state as an end�state� If one were to verify the

above Promela speci�cation without this endlabel� Spin would �nd an invalid

end�state and report this as an error�

Notice that� for instance� the statement in�e is enabled only if the channel in

is non�empty� If the channel is empty� the statement is blocked and the execution

of the process is suspended until the statement becomes enabled� Therefore in�e

should be read as� wait until a message arrives in channel in and then store its

value in the variable e�

The Promela speci�cation starts with the de�nition of the global variables�

�define N � �� number of processes ��

�define I � �� process with smallest identifier ��

�define L �� �� size of buffer ��� ��N� ��

chan q�N� � �L� of 	 byte �
 �� N channels of capacity L each ��

The constant I is used for initialisation purposes only� it indicates the process

that will obtain the smallest ident� The capacity L of connecting channels is

taken to be at least 
N since each process sends at most two messages in each

round of the election� Since messages in the leader election protocol carry only

a single parameter �a process identi�er�� the channels q��� through q�N��� can

contain items of type byte�
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In order to create the ring topology and to instantiate the processes in the

ring� the init construct is used� This part of the Promela speci�cation is� for

instance� as follows�

init 	

byte i


atomic 	
i � �


do �� i �� N �� run process �q�i���� q�i�N�� �N I�i��N ��


i � i �

�� i � N �� break

od

�
�

where �N denotes the modulo N �operator� A process is started with some actual

parameters by the run process �� statement� The �rst parameter of a process

is the incoming channel� the second parameter is the outgoing channel� and the

third parameter is its identity� There are� of course� di�erent mechanisms to

assign identi�ers to processes� and we simply selected one� It is� however� assumed

that each process gets a unique identi�er� This is essential for the correctness of

the algorithm of Dolev et� al� In order to allow all processes to start at the same

time we use the atomic construct� This prevents some process starts to already

execute its process body� as long as other processes have not yet been created�

Notice that we have �xed one particular assignment of process identities to

processes� The results we will obtain by simulation and veri�cation are valid

only for this assignment� In order to increase con�dence in the correctness of the

protocol� other $ in fact� all possible  assignments need to be checked� An�

other possibility is to write a Promela fragment that assigns process identi�ers

randomly�

The Promela speci�cation ontained in this way can now be veri�ed� and

no unreachable code or deadlocks are obtained� In order to obtain insight into

the operation of the protocol a �random� guided� or interactive� simulation can

be carried out� This produces� for instance� the result shown in Figure 
����



The model checker Spin ���

Figure 
���� Visualisation of a simulation run in Spin

Here� the behaviour of each process� including the root process �leftmost line�� is

represented along a vertical line�

Model checking the Promela speci�cation

The most important property that a leader election protocol must possess is that

it does not allow more than one process to become a leader� This is expressed in

PLTL as�
G �  *leaders � 
!�
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or� equivalently�

G  *leaders � �!�

This property is checked using Spin in the following way� One de�nes the formula

as �� p where �� corresponds to G and p is de�ned as

�define p �nr!leaders �� ��

where nr leaders is an auxiliary global variable in the Promela speci�cation

which keeps track of the number of leaders in the system� Therefore the Promela

speci�cation is extended in the following way�

byte nr!leaders � �


proctype process �chan in� out
 byte ident�

	 �����as before�����

activ�

d � ident


do �� true �� outd


in�e


if �� �e �� d� ��

printf��MSC� �d is LEADER�n�� d�


nr!leaders � nr!leaders  �


goto stop �� process d is leader ��

�� else �� skip

fi


�����as before�����

�
The property �� p is automatically converted by Spin into a labelled B�uchi

automaton� In essence� this has been achieved by implementing the basic part of
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this chapter �Holzmann� ������ One of the major di�erences is that Spin labels

transitions with atomic propositions� whereas we have labeled the states with

�sets of� atomic propositions� The automaton generated by Spin is as follows�

��
� Formula As Typed� �� p

� The Never Claim Below Corresponds

� To The Negated Formula ��� p�

� �formalizing violations of the original�

��
never 	 �� ��� p� ��

T�!init�
if

�� ��� �� goto T�!init

�� � ��p��� �� goto accept!all

fi


accept!all�
skip

�
Notice that this is the B�uchi automaton that corresponds to the negation of the

formula to be checked� in our notation this would be A� �� where � corresponds

to G  *leaders � �!� If this property is saved in the �le property�� then Spin

can automatically check it if we add at the end �or beginning� of our Promela

speci�cation the statement�

�include �property��

The result of the veri�cation of this property is positive�

Full state space search for�

never�claim  

assertion violations  �if within scope of claim�

��� Model Checking Linear Temporal Logic

cycle checks � �disabled by �DSAFETY�

invalid endstates � �disabled by never�claim�

State�vector �"� byte� depth reached ���� errors� �

�#�$� states� stored

""�$% states� matched

#���" transitions �� stored matched�

�$ atomic steps

hash conflicts� ��## �resolved�

�max size �&�% states�

Stats on memory usage �in Megabytes��

���$$ equivalent memory usage for states

�stored��State�vector  overhead��

���"# actual memory usage for states �compression� $��#���

State�vector as stored � ��% byte  " byte overhead

���%� memory used for hash�table ��w�%�

����� memory used for DFS stack ��m������

"�""$ total actual memory usage

as indicated by the fact that errors� �� Even for this small protocol with 	

processes �plus their interconnecting channels� the state space is already rather

large� Spin therefore provides various mechanisms in order to make the state

space smaller� either through storing it in a compact way �using partial�order

reduction� or by avoiding searching the entire state space �using hashing�� or

even a combination of both� These techniques are further discussed in Chapter

	 of these lecture notes� The e�ect of applying partial�order reduction to the

above example is that only ���� states and 	��� transitions are stored rather

than ��	�	 states and ����
 transitions� the values if partial�order reduction is

not applied� In the remainder of this example we will use partial�order reduction

as a standard option�

In a similar way as above the following properties could be veri�ed� always a

leader will be elected eventually� the elected leader will be the process with the

highest number� if a process is elected as a leader it remains a leader forever�

The interested reader is encouraged to formulate these properties in PLTL and
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perform these veri�cations�

In order to see what happens when we check a property that is violated we

check G  *leaders � �!� Obviously� this property is violated in the state where

all process instantiations are created� since then there is no leader� If we run

Spin we indeed obtain an error� and a counter�example is generated and stored

in a �le� In order to analyze the error� a guided simulation run can be carried

out� based on the generated counter�example� The shortest trace that leads to

the error found can be generated on request� This option can be indicated when

the veri�cation is started� Basically� Spin then performs a breadth��rst search

rather than a depth��rst search�

Veri�cation using assertions

An alternative and often more e�cient way of veri�cation is the use of so�called

assertions� An assertion has a boolean expression as argument� Its execution has

no side�e�ects� If a Promela speci�cation contains an assertion� Spin checks

whether there exists a run in which the assertion is violated� In such a case�

an error is indicated� Since� in general� the state space is not increased when

checking PLTL�properties �where the product automaton of the property and the

speci�cation is constructed� checking for assertions is usually more e�cient� As

an example of the use of assertions� suppose we want to check whether it is always

the case that the number of leaders is at most one� This can be checked by adding

the in�line assertion

assert�nr!leaders �� ��

to our Promela speci�cation at the point where a process determines that it

has won the election and increments the variable nr leaders� So we obtain as

the body of a process�

byte nr!leaders � �


proctype process �chan in� out
 byte ident�
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	 �����as before�����

activ�

d � ident


do �� true �� outd


in�e


if �� �e �� d� ��

printf��MSC� �d is LEADER�n�� d�


nr!leaders � nr!leaders  �


assert�nr!leaders �� ��


goto stop �� process d is leader ��

�� else �� skip

fi


�����as before�����

�
Veri�cation of this Promela speci�cation yields no errors� and uses the same

number of states and transitions as the veri�cation of the corresponding PLTL�

formula G  *leaders � �!�

Exercises

Exercise �� Let M � �S�R�Label� with S � f s�� s�� s�� � � � � s�� g� R�si� � si�� for

	 � i � 
 and R�s��� � s��� and Label�si� � fx � i g� Determine the set of states in

S for which �� � x � �U �x � �� is valid� Do the same for �	 � x � ��U ��� � x �

��U �x � 
���

Exercise ��

�� Prove or disprove using the semantics of PLTL that G �� � X�� equals G �� � G��

where � is a PLTL�formula� State in each step of your proof which result or def�

inition you are using�
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�� Let M � �S�R�Label� be an PLTL�model� s a state in M and �� � PLTL�

formulas� Consider as the semantics of the operator Z

M� s j� �Z� i�

�j � 	�M� Rj�s� j� � � �� 	 � k � j�M� Rk�s� j� �� � ����

Prove or disprove the equivalence between �Z� and �U��

Exercise �� Give a formal interpretation of G and F in terms of a satisfaction

relation� Do the same with the past versions of next �previous� and until �since��

�Hint� give the formal interpretation in terms of a model �S� ��Label� where � is an

in�nite sequence of states��

Exercise �� The binary operator B ��before�� intuitively means� �B� is valid in

state s if � becomes true before � becomes true� Formalize the semantics of this

operator� or de�ne this operator in terms of other temporal operators like W�

Exercise �� Prove or disprove the validity of the commutation rule

�F��U �F�� � F ��U���

Exercise �� Consider the speci�cation of the dynamic leader election problem of

Section ���� What can you say about the validity of the last but one property if we

change F � leaderi into XF � leaderi�� Answer the same question for the case where we

omit � leaderj in the premise of that property knowing that we also require that there

must always be at most one leader� What can you say about the validity of the last

property if we change XF leaderj into F leaderj� Justify your answers� Finally� consider

the following variant of the last property

G �� i� j� �leaderi � X �� leaderi U leaderj� � i � j�

Is this alternative formulation of the last informal property equivalent to the last prop�

erty of Section ����

Exercise 	�

�
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�� Let � � f a� b g� Construct a labelled B�uchi automaton �LBA� A that ac�

cepts in�nite words w over � such that a occurs in�nitely many times in w

and between any two successive a�s an odd number of b�s occur� Formally�

L��A� � f �ab�n���� j n � 	 g where L��A� denotes the set of in�nite words

accepted by A�

�� Let � � f a� b� c g� Construct an automaton as in the previous exercise� except

that now there are an odd number of b�s or an odd number of c�s between any

two successive a�s� What is the language accepted by this automaton�

�� Let � � f a� b� c g� Construct an automaton as the previous exercise except that

now an odd number of b�s or c�s appear between any two successive a�s� That

is� abcba is now allowed as a �nite sub�word� What is the language accepted by

this automaton�

�� Construct an automaton as in exercise ��� with the extra condition that only a

�nite number of c�s may occur in any accepting word� What is the language

accepted by this automaton�

�� Let � � f a� b� c g� Construct an LBA A that accepts in�nite words w over �

such that a occurs in�nitely many times in w and an odd number of b�s occur and

an odd number of c�s occur between any two successive a�s� �I owe this variant

to L� Kerber��

Exercise 
� Construct the graph of the PLTL�formula �q � � q�U p using the Cre�

ateGraph algorithm� Subsequently� generate the corresponding GLBA and explain the

result �i�e� make intuitively clear why the resulting GLBA is correct��

Exercise �� Consider the GLBA� S � f s�� s� g with S� � f s� g� l�s�� � a and

l�s�� � b such that ��s�� � ��s�� � S� and F� � f s� g and F� � f s� g� Construct the

corresponding LBA�

Exercise ��� Consider the following generalized LBA with acceptance sets F �

f f s� g� f s� g g�
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s�

a b b

s� s�

Transform this GLBA into an LBA and argue that both automata accept the same

language�

Exercise ��� De�ne the following binary operator 	 on B�uchi automata� for LBAs

A� and A� let A� 	 A� be a generalized LBA that after transformation into an LBA

is equivalent to the product of A� and A�� �I owe this exercise to L� Kerber�� �Hint�

consider the transformation of a GLBA into an LBA��

Exercise ��� Translate using Spin the following linear�time temporal logic formulas

into a B�uchi automaton and explain the result� G �p � F q� and G �pU q�� where p and

q are atomic propositions� �Remark� note that Spin labels transitions whereas in the

lectures we labeled the states of an automaton instead��

Exercise ��� With linear�time temporal logic formulas one can check properties of

a Promela speci�cation using Spin� Alternatively� assertions can be used� Consider

the following Promela speci�cation�

bit X� Y�

proctype C��

�
do

�� true �	 X 
 �� Y 
 X

�� true �	 X 
 �� Y 
 X

od


proctype monitor��

�
assert�X

Y�

�
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init� atomic� run C��� run monitor��  

Verify thisPromela speci�cation using Spin� Explain the result� Modify thePromela

speci�cation such that the assertion assert�X

Y� is not violated� �I owe this exercise

to D� Latella��

Exercise ��� �Holzmann �

�� If two or more concurrent processes execute the same

code and access the same data� there is a potential problem that they may overwrite

each others results and corrupt the data� The mutual exclusion problem is the problem

of restricting access to a critical section in the code to a single process at a time�

assuming only the indivisibility of read and write instructions� The problem and a �rst

solution were �rst published by Dijkstra ��
���� The following �improved� solution

appeared one year later by another author� It is reproduced here as it was published

�in pseudo Algol��

boolean array b�	� �� integer k� i� j�

comment process i� with i either 	 or � and j � �
i

C	 � b�i� �� false�

C� � if k �� i then begin

C� � if not�b�j�� then go to C��

else k �� i�go to C� end�

else critical section�

b�i� �� true�

remainder of program�

go to C	�

end

Questions�

�a� Model this mutual exclusion program in Promela�

�b� Disprove the correctness of the program using properties speci�ed in linear�time

temporal logic�

�c� Disprove the correctness of the program using assertions�
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�d� Compare the state spaces of the veri�cation runs of �b� and �c� and explain the

di�erence in the size of the state space�

Exercise ��� We assume N processes in a ring topology� connected by unbounded

queues� A process can only send messages in a clockwise manner� Initially� each process

has a unique identi�er ident �which is assumed to be a natural number�� A process can

be either active or relaying� Initially a process is active� In Peterson�s leader election

algorithm ��
��� each process in the ring carries out the following task�

active�

d �� ident�

do forever

begin
� start phase  �

send�d��

receive�e��

if e � ident then announce elected�

if d 	 e then send�d� else send�e��

receive�f��

if f � ident then announce elected�

if e � max�d� f� then d �� e else goto relay�

end

relay�

do forever

begin
receive�d��

if d � ident then announce elected�

send�d�

end

Model this leader election protocol in Promela �avoid invalid end�states��� and verify

the following properties�

�� There is always at most one leader�

�� Always a leader will be elected eventually�

�
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�� The elected leader will be the process with the highest number�

�� The maximum total amount of messages sent in order to elect a leader is at most

�Nblog�Nc ! N � �Hint� choose an appropriate N such that log�N is easily

computable��

Check the above properties for two di�erent assignments of process identities to pro�

cesses�
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Chapter �

Model Checking Branching

Temporal Logic

Pnueli ������ has introduced linear temporal logic to the computer science com�

munity for the speci�cation and veri�cation of reactive systems� In the previous

chapter we have treated one important exponent of linear temporal logic� called

PLTL� This temporal logic is called linear� since the �qualitative notion of� time is

linear� at each moment of time there is only one possible successor state and thus

only one possible future� Technically speaking� this follows from the fact that the

interpretation of linear temporal logic�formulas using the satisfaction relation j�

is de�ned in terms of a model in which a state s has precisely one successor state

R�s�� Thus for each state s the model thus generates a unique in�nite sequence of

states s� R�s�� R�R�s��� � � �� A sequence of states represents a computation� Since

the semantics of linear temporal logic is based on such �sequence�generating�

models� the temporal operators X� U� F and G in fact describe the ordering of

events along a single time path� i�e� a single computation of a system�

In the early eighties another type of temporal logic for speci�cation and veri��

cation purposes which is not based on a linear notion of time� but on a branching

notion of time was introduced �Clarke and Emerson� ������ This logic is formally

based on models where at each moment there may be several di�erent possible

futures�� Due to this branching notion of time� this class of temporal logic is

�This does not imply that linear temporal logic cannot be interpreted over a branching

�
�

�
� Model Checking Branching Temporal Logic

called branching temporal logic� Technically speaking� branching boils down to

the fact that a state can have di�erent possible successor states� Thus R�s� is a

�non�empty� set of states� rather than a single state as for PLTL� The underlying

notion of the semantics of a branching temporal logic is thus a tree of states rather

than a sequence� Each path in the tree is intended to represent a single possible

computation� The tree itself thus represents all possible computations� More

precisely� the tree rooted at state s represents all possible in�nite computations

that start in s�

The temporal operators in branching temporal logic allow the expression of

properties of �some or all� computations of a system� For instance� the property

EF� denotes that there exists a computation along which F� holds� That is� it

states that there is at least one possible computation in which a state is eventually

reached that ful�lls �� This does� however� not exclude the fact that there can also

be computations for which this property does not hold� for instance� computations

for which � is never ful�lled� The property AF �� for instance� di�ers from this

existential property over computations in that it requires that all computations

satisfy the property F��

The existence of two types of temporal logic  linear and branching temporal

logic  has resulted in the development of two model checking �schools�� one

based on linear and one based on branching temporal logic� Although much can

be said about the di�erences and the appropriateness of linear versus branch�

ing temporal logic� there are� in our opinion� two main issues that justify the

treatment of model checking linear and branching temporal logic in these lecture

notes�
� The expressiveness of many linear and branching temporal logics is incom�

parable� This means that some properties that are expressible in a linear

temporal logic cannot be expressed in certain branching temporal logic� and

vice versa�

� The traditional techniques used for e�cient model checking of linear tem�

model� It is possible to consider this logic over sequences of state� i�e� possible traversals

through the branching model� Notice that in Chapter we took a di�erent approach by directly

de�ning linear temporal logic over sequences�
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poral logic are quite di�erent from those used for e�cient model checking

of branching temporal logic� �Although some promising unifying develop�

ments are currently taking place�� This results� for instance� in signi�cantly

di�erent complexity results�

Various types of branching temporal logic have been proposed in the literature�

They basically di�er in expressiveness� i�e� the type of formulas that one can state

in the logic� To mention a few important ones in increasing expressive power�

� Hennessy�Milner logic ����	�

� Uni�ed System of Branching�Time Logic �Ben�Ari� Manna and Pnueli�

�����

� Computation Tree Logic �Clarke and Emerson� �����

� Extended Computation Tree Logic �Clarke and Emerson� ����� and

� Modal �Calculus �Kozen� ������

Modal �calculus is thus the most expressive among these languages� and Hennessy�

Milner logic is the least expressive� The fact that the modal �calculus is the most

expressive means that for any formula � expressed in one of the other types of

logic mentioned� an equivalent formula � in the modal �calculus can be given�

In this chapter we consider model checking of Computation Tree Logic �CTL��

This is not only the temporal logic that was used originally by Clarke and Emer�

son ������ and �in a slightly di�erent form� by Quielle and Sifakis ����
� for

model checking� but  more importantly  it can be considered as a branching

counterpart of PLTL� the linear temporal logic that we considered in the �rst

chapter� for which e�cient model checking is possible�

��� Syntax of CTL

The syntax of computation tree logic is de�ned as follows� The most elementary

expressions in CTL are atomic propositions� as in the de�nition of PLTL� The set
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of atomic propositions is denoted by AP with typical elements p� q� and r� We

de�ne the syntax of CTL in Backus�Naur Form�

De�nition �	� �Syntax of computation tree logic�

For p � AP the set of CTL�formulas is de�ned by�

� ��� p j �� j � � � j EX� j E  �U�! j A  �U�!�

Four temporal operators are used�

� EX �pronounced �for some path next��

� E �pronounced �for some path��

� A �pronounced �for all paths�� and

� U �pronounced �until���

X and U are the linear temporal operators that express a property over a single

path� whereas E expresses a property over soma path� and A expresses a property

over all paths� The existential and universal path operators E and A can be used

in combination with either X or U� Note that the operator AX is not elementary

and is de�ned below�

The boolean operators true� false� � � � and � are de�ned in the usual

way �see the previous chapter�� Given that F� � trueU� we de�ne the following

abbreviations�

EF� 	 E  trueU�!

AF� 	 A  trueU�!�
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EF� is pronounced �� holds potentially� and AF � is pronounced �� is inevitable��

Since G� � � F �� and A � � �E �� we have in addition� �

EG� 	 �AF ��

AG� 	 �EF ��

AX� 	 �EX ���

For instance� we have

�A �F ���

� f A� 	 �E �� g

� �E � �F ���

� f G� 	 � F ��� calculus g

EG��

EG� is pronounced �potentially always ��� AG� is pronounced �invariantly ��

and AX� is pronounced �for all paths next ��� The operators E and A bind

equally strongly and have the highest precedence among the unary operators� The

binding power of the other operators is identical to that of linear temporal logic

PLTL� Thus� for example� �AG p� � �EG q� is simply denoted by AG p � EG q�

and should not be confused with AG �p � EG q��

Example �� Let AP � f x � �� x � 
� x � � g be the set of atomic propositions�

� Examples of CTL�formulas are� EX �x � ��� AX �x � ��� x � 
 � x � ��

E  �x � 
�U �x � ��! and AF �x � 
��

� The expression E  x � � � AX �x � ��! is� for example� not a CTL�formula�

since x � � � AX �x � �� is neither a next� nor an until�formula� The

expression EF  G �x � ��! is also not a CTL�formula� EG  x � � � AX �x �

��! is� however� a well�formed CTL�formula� Likewise EF  EG �x � ��! and

EF  AG �x � ��! are well�formed CTL�formulas�

�The equation A � � �E �� only holds for � where � is a CTL�formula for which the

outermost existential or universal path quanti�er is �stripped o��� It allows� for instance�

rewriting E ��F ��� into �AF ���
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�End of example��

The syntax of CTL requires that the linear temporal operators X � F � G � and U are

immediately preceded by a path quanti�er E or A� If this restriction is dropped�

then the more expressive branching temporal logic CTL� �Clarke and Emerson�

����� is obtained� The logic CTL� permits an arbitrary PLTL�formula to be

preceded by either E or A� It contains� for instance� E  p � X q! and A  F p � G q!�

formulas which are not syntactical terms of CTL� CTL� can therefore be considered

as the branching counterpart of PLTL since each PLTL sub�formula can be used in

a CTL
��formula� The precise relationship between PLTL� CTL and CTL
� will be

described in Section ���� We do not consider model checking CTL� in these lecture

notes� since model checking of CTL
� is of intractable complexity� the model

checking problem for this logic is PSPACE�complete in the size of the system

speci�cation �Clarke� Emerson and Sistla� ������ We therefore consider CTL for

which more e�cient model checking algorithms do exist� Although CTL does

not possess the full expressive power of CTL�� various �industrial� case studies

have shown that it is frequently su�ciently powerful to express most required

properties�

��� Semantics of CTL

As we have seen in the previous chapter� the interpretation of the linear temporal

logic PLTL is de�ned in terms of a model M � �S�R�Label� where S is a set of

states� Label an assignment of atomic propositions to states� and R a total func�

tion that assigns a unique successor state to any given state� Since the successor

of state s� R�s�� is unique� the model M generates for each state s a sequence of

states s� R�s�� R�R�s��� � � �� These sequences represent computation paths start�

ing at s� and since PLTL�formulas refer to a single path� the interpretation of

PLTL is de�ned in terms of such sequences�

Branching temporal logic does� however� not refer to a single computation

path� but to some �or all� possible computation paths� A single sequence is

therefore insu�cient to model this� In order to adequately represent the moments

at which branching is possible� the notion of sequence is replaced by the notion
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of a tree� Accordingly a CTL�model is a �tree�generating� model� Formally� this

is expressed as follows�

De�nition �
� �CTL�Model�

A CTL�model is a triple M � �S�R�Label� where

� S is a non�empty set of states�

� R � S � S is a total relation on S� which relates to s � S its possible

successor states�

� Label � S 
� 
AP� assigns to each state s � S the atomic propositions

Label�s� that are valid in s�

M is also known as a Kripke structure �� since Kripke used similar structures

to provide a semantics for modal logic� a kind of logic that is closely related to

temporal logic �Kripke� ������

Notice that the only di�erence to a PLTL�model is that R is now a total

relation rather than a total function� A relation R � S � S is total if and only

if it relates to each state s � S at least one successor state� � s � S� � s� �

S� �s� s�� � R��

Example �� Let AP � f x � �� x � �� x �� � g be a set of atomic proposi�

tions� S � f s�� � � � � s� g be a set of states with labelling Label�s�� � f x �� � g�

Label�s�� � Label�s�� � f x � � g� and Label�s�� � f x � �� x �� � g� and

transition relation R be given by

R � f �s�� s��� �s�� s��� �s�� s��� �s�� s��� �s�� s��� �s�� s�� g�

M � �S�R�Label� is a CTL�model and is depicted in Figure ���a�� Here states

are depicted by circles� and the relation R is denoted by arrows� i�e� there is an

arrow from s to s� if and only if �s� s�� � R� The labelling Label�s� is indicated

beside the state s� �End of example��

�Although usually a Kripke structure is required to have an identi�ed set of initial state

S� � S with S� �� ��

��� Model Checking Branching Temporal Logic

s�
s�

s� s�

s� s� s�

s� s� s� s� s�

s� s�
�a� �b�

fx �� � gfx � � g

s�

fx � � g

s� fx � �� x �� � g

Figure ���� An example of a CTL�model and a �pre�x of� of one of its in�nite

computation trees

Before presenting the semantics we introduce some auxiliary concepts� Let M �

�S�R�Label� be a CTL�model�

De�nition ��� �Path�

A path is an in�nite sequence of states s� s� s� � � � such that �si� si��� � R for all

i � ��

Let � � S� denote a path �of states�� For i � � we use � i! to denote the �i"���th

element of �� i�e� if � � t� t� t� � � � then � i! � ti� where ti is a state�

De�nition ��� �Set of paths starting in a state�

The set of paths starting in state s of the model M is de�ned by

PM�s� � f � � S� j � �! � s g�

For any CTL�model M � �S�R�Label� and state s � S there is an in�nite

computation tree with root labelled s such that �s�� s��� is an arc in the tree if

and only if �s�� s��� � R� A state s for which p � Label�s� is sometimes called a

p�state� � is called a p�path if it consists solely of p�states�

Example ��� Consider the CTL�model of Figure ���a�� A �nite pre�x of the

in�nite computation tree rooted at state s� is depicted in Figure ���b�� Examples

of paths are s� s� s� s
�
� � s� s� �s� s��

� and s� s� �s� s��
� s�� � PM�s��� for example�

equals the set f �s� s��
�s�� � �s
�
� s��

� g� �End of example��
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The semantics of CTL is de�ned by a satisfaction relation �denoted by j�� between

a model M� one of its states s� and a formula �� As before� we write M� s j� �

rather than ��M� s�� �� �j�� We have �M� s� j� � if and only if � is valid in state

s of model M� As in the previous chapter� we omit M if the model is clear from

the context�

De�nition ��� �Semantics of CTL �

Let p � AP be an atomic proposition� M � �S�R�Label� be a CTL�model� s � S�

and �� � be CTL�formulas� The satisfaction relation j� is de�ned by�

s j� p i� p � Label�s�

s j� �� i� � �s j� ��

s j� � � � i� �s j� �� � �s j� ��

s j� EX� i�  � � PM�s�� � �! j� �

s j� E  �U�! i�  � � PM�s��� j � �� � j! j� � � �� � � k � j� � k! j� ���

s j� A  �U�! i� � � � PM�s��� j � �� � j! j� � � �� � � k � j� � k! j� ����

The interpretations for atomic propositions� negation and conjunction are as

usual� EX� is valid in state s if and only if there exists some path � starting in s

such that in the next state of this path� state � �!� the property � holds� A  �U�!

is valid in state s if and only if every path starting in s has an initial �nite pre�x

�possibly only containing s� such that � holds in the last state of this pre�x and

� holds at all other states along the pre�x� E  �U�! is valid in s if and only if

there exists a path starting in s that satis�es the property �U��

The interpretation of the temporal operators AX �� EF�� EG�� AF� and AG�

can be derived using the above de�nition� To illustrate such a derivation we derive

the formal semantics of EG��

s j� EG�

� f de�nition of EG g

s j� �AF ��

� f de�nition of AF g

s j� �A  trueU ��!

� f semantics of � g
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� �s j� A  trueU ��!�

� f semantics of A  �U�! g

�  � � � PM�s�� � j � �� � j! j� �� � �� � � k � j� � k! j� true��!

� f s j� true for all states s g

�  � � � PM�s�� � j � �� � j! j� ���!

� f semantics of � � predicate calculus g

 � � PM�s��� � j � �� � �� j! j� ���

� f predicate calculus g

 � � PM�s�� �� j � �� � j! j� �� �

Thus EG� is valid in state s if and only if there exists some path starting at s

such that for each state on this path the property � holds� In a similar way one

can derive that AG � is valid in state s if and only if for all states on any path

starting at s the property � holds� EF� is valid in state s if and only if � holds

eventually along some path that starts in s� AF � is valid i� this property holds

for all paths that start in s� The derivation of the formal interpretation of these

temporal operators is left to the interested reader�

Example �� Let the CTL�model M be given as depicted in Figure ����a�� In

the �gures below the validity of several formulas is indicated for all states ofM�

A state is colored black if the formula is valid in that state� and otherwise colored

white�
� The formula EX p is valid for all states� since all states have some direct

successor state that satis�es p�

� AX p is not valid for state s�� since a possible path starting at s� goes directly

to state s� for which p does not hold� Since the other states have only direct

successors for which p holds� AX p is valid for all other states�

� For all states except state s�� it is possible to have a computation �such as

s� s� s
�
� � for which p is globally valid� Therefore EG p is valid in these states�

Since p �� Label�s�� there is no path starting at s� for which p is globally

valid�
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EX p AX p

EG p AG p

EF �EG p� A �pU q�

E �pU �� p � A �� pU q���

M

s�s�
f p g f p g

s�

f q g
f p� q g

s�

�a�

Figure ��
� Interpretation of several CTL�formulas in an example of a model

� AG p is only valid for s� since its only path� s
�
� � always visits a state in which

p holds� For all other states it is possible to have a path which contains s��

which does not satisfy p� So� for these states AG p is not valid�

� EF  EG p! is valid for all states� since from each state a state �either s�� s�

or s�� can be reached eventually from which some computation starts along

which p is globally valid�

� A  pU q! is not valid in s� since its only computation �s
�
� � never reaches a

state for which q holds� For all other states this is� however true and in

addition� the proposition p is valid before q is valid�

� Finally� E  pU �� p � A �� pU q��! is not valid in s�� since from s� a q�

state can never be reached� For the states s� and s� the property is valid�

since state s� can be reached from these states via a p�path� � p is valid in

s�� and from s� all possible paths satisfy � pU q� since s� is a q�state� For

instance� for state s� the path �s� s� s��
� satis�es pU �� p � A �� pU q��

since p � Label�s��� p �� Label�s�� and q � Label�s��� For state s� the

property is valid since p is invalid in s� and for all paths starting at s�

��� Model Checking Branching Temporal Logic

the next state is a q�state� Thus� the property � p � A �� pU q� is reached

after a path of length ��

�End of example��

��� Expressiveness of CTL� CTL� and PLTL

In order to understand better the relationship between PLTL� CTL and CTL
�

we present an alternative characterization of the syntax of CTL and CTL� in

terms of PLTL� We do this by explicitly distinguishing between state formulas�

i�e� expressions over states� and path formulas� i�e� properties that are supposed

to hold along paths� Table ��� summarizes the syntax of the three types of logic

considered�� �Although we did not consider the formal semantics of CTL� in

these lecture notes we assume that this interpretation is intuitively clear from

the interpretation of CTL��

Clearly� by inspecting the syntax it can be seen that CTL is a subset of CTL��

all CTL�formulas belong to CTL�� but the reverse does not hold �syntactically��

Since CTL and CTL� are interpreted over branching models� whereas PLTL is in�

terpreted over sequences� a comparison between these three logics is not straight�

forward� A comparison is facilitated by changing the de�nition of PLTL slightly�

such that its semantics is also de�ned in terms of a branching model� Although

there are di�erent ways of interpreting PLTL over branching structures  for in�

stance� should � in case of X� hold for all or for some possible successor states of

the current state�  the simplest and most common approach is to consider that

a PLTL�formula � holds for all paths� Since a PLTL�formula is usually implicitly

universally quanti�ed over all possible computations� this choice is well justi�ed

�Emerson and Halpern� ������ This results in the following embedding of PLTL

in terms of CTL��

�Here we have taken an alternative way to de�ne the syntax of CTL that facilitates the

comparison� It is left to the reader to show that this alternative de�nition corresponds to

De�nition 	�� Hereby� the reader should bear in mind that �E �� equals A� for path�formula

��
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PLTL � ��� p j �� j � � � j X � j �U�

CTL state formulas � ��� p j �� j � � � j E�

path formulas � ��� �� j X� j �U�

CTL� state formulas � ��� p j �� j � � � j E�

path formulas � ��� � j �� j � � � j X� j � U�

Table ���� Summary of syntax of PLTL� CTL and CTL�

De�nition ��� �Formulation of PLTL in terms of CTL��

The state formulas of PLTL are de�ned by � ��� A� where � is a path formula�

The path formulas are de�ned according to

� ��� p j �� j � � � j X� j � U��

As a result� CTL� CTL� and PLTL are now interpreted in terms of the same

model� and this common semantical basis allows a comparison� Let us �rst clarify

how the expressiveness of two temporal logics is compared� Clearly� one logic is

more expressive than another if it allows the expression of terms that cannot be

expressed in the other� This syntactical criterion applies to CTL versus CTL��

the former is syntactically a subset of the latter� This criterion is in general too

simple� More precisely� it does not exclude the fact that for some formula � in

one temporal logic L� say� there does not exist an equivalent formula �  that

syntactically di�ers from �  in the temporal logic L�� Here� by equivalent we

mean�

De�nition ��� �Equivalence of formulas�
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Formulas � and � are equivalent if and only if for all models M and states s�

M� s j� � if and only if M� s j� ��

We are now in a position to de�ne formally what it means for two temporal logics

to be equally expressive�

De�nition ��� �Comparison of expressiveness�

Temporal logic L and L� are equally expressive if for all models M and states s

�� � L� �� � L�� �M� s j� � � M� s j� ���

� �� � L�� �� � L� �M� s j� � � M� s j� ��� �

If only the �rst conjunct is valid� but not the second� then L is �strictly� less

expressive than L��

Figure ��� depicts the relationship between the three logics considered in this

CTL

PLTL

CTL�

A �F �p�X p��

A �pU q�

A �F �p�X p��

�

AG �EF q�

AG �EF q�

Figure ���� Relationship between PLTL� CTL and CTL�

section� It follows that CTL� is more expressive than both PLTL and CTL� whereas

PLTL and CTL are incomparable� An example of a formula which distinguishes

the part of the �gure it belongs to is given for CTL� CTL� and PLTL�

In PLTL� but not in CTL� For example� A  F �p�X p�! is a PLTL�formula for

which there does not exist an equivalent formula in CTL� The proof of this is by

�Emerson # Halpern� ����� and falls outside the scope of these lecture notes�



Expressiveness of CTL� CTL� and PLTL ���

Another example of a PLTL�formula for which an equivalent formulation in CTL

does not exist is�

A  GF p � F q!

which states that if p holds in�nitely often� then q will be valid eventually� This

is an interesting property which occurs frequently in proving the correctness of

systems� For instance� a typical property for a communication protocol over an

unreliable communication medium �such as a radio or infra�red connection� is

that �if a message is being sent in�nitely often� it will eventually arrive at the

recipient��

In CTL� but not in PLTL� The formula AGEF p is a CTL�formula for which

there does not exist an equivalent formulation in PLTL� The property is of use

in practice� since it expresses the fact that it is possible to reach a state for

which p holds irrespective of the current state� If p characterizes a state where a

certain error is repaired� the formula expresses that it is always possible to recover

from a certain error� The proof sketch that for AGEF p there does not exist an

equivalent formulation in PLTL is as follows �Huth and Ryan� ������ Let � be

a PLTL�formula such that A� is equivalent to AGEF p� Since M� s j� AGEF p

in the left�hand �gure below �a�� it follows that M� s j� A�� Let M� be the

sub�model of M shown in the right�hand diagram �b�� The paths starting from

s in M� are a subset of those starting from s in M� so we have M�� s j� A��

However� it is not the case that M�� s j� AGEF p� since p is never valid along the

only path s��

s ss�

�b��a�

f p gf � p g f � p g

Relationship between CTL
� and PLTL� The following holds for the relationship

between PLTL and CTL� �Clarke and Draghicescu� ������
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For any CTL��formula �� an equivalent PLTL�formula �if such exists�

must be of the form A f��� where f��� equals �

where all path�quanti�ers are eliminated�

For instance� for � � EFEG p � AF q we obtain f��� � FG p � F q� Thus

� is a distinguishing formula for CTL� if for � its equivalent A f��� is not a

PLTL�formula�

As a �nal example of the di�erence in expressiveness of PLTL� CTL and CTL�

consider the PLTL�formula GF p� in�nitely often p� It is not di�cult to see that

pre�xing this formula with an existential or a universal path quanti�er leads to

a CTL��formula� AGF p and EGF p are CTL��formulas� AGF p is equivalent to

AGAF p  for any model M the validity of these two formulas is identical 

and thus for AG F p an equivalent CTL�formula does exist� since AGAF p is a CTL�

formula� For EGF p� however� no equivalent CTL�formula does exist� This can be

seen by considering the following example model�

f p g f p g f p g f p g
� � �

� � �

s� s� s� s�

We have s j� EGEF p� since for the path s� s� s� � � � for each sj a p�state is even�

tually reachable� However� s �j� EGF p� since there is no path starting in s such

that p is in�nitely often valid�

��� Specifying properties in CTL

In order to illustrate the way in which properties can be expressed in CTL we treat

a simple two�process mutual exclusion program� Each process �P� and P�� can be
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in one of the following three states� the critical section �C�� the attempting section

�T�� and the non�critical section �N�� A process starts in the non�critical section

and indicates that it wants to enter its critical section by entering its attempting

section� It remains in the attempting section until it obtains access to its critical

section� and from its critical section it moves to the non�critical section� The

state of process Pi is denoted Pi�s� for i��� 
� Some required properties and their

formal speci�cation in CTL are as follows�

�� �It is not possible for both processes to be in their critical section at the

same time��

AG  � �P��s � C � P��s � C�!


� �A process that wants to enter its critical section is eventually able to do

so��
AG  P��s � T � AF �P��s � C�!

�� �Processes must strictly alternate in having access to their critical section��

AG  P��s � C � A �P��s � C U �P��s �� C � A�P��s �� C UP��s � C���!

��� Automaton
based approach for CTL�

The model checking problem for CTL is to check for a given CTL�model M� state

s � S� and CTL�formula � whether M� s j� �� that is� to establish whether the

property � is valid in state s of model M� Here� it is assumed that M is �nite�

This means that the set S of states is �nite �but non�empty��

For linear temporal logic we have seen that the model checking algorithm

is strongly based on B�uchi automata� a kind of automata that accepts in�nite

words� The key result that makes this approach possible is the fact that for each

PLTL�formula �� a B�uchi automaton can be constructed that accepts precisely

those �in�nite� sequences of atomic propositions that make � valid� This allows

the reduction of model checking PLTL to known automata�theoretic problems�
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When dealing with CTL the question is whether a similar method can be

used� The answer is positive� since an automaton�based approach is possible

also for CTL� The di�erence between PLTL and CTL is that the former expresses

properties related to in�nite sequences of states� whereas the latter focuses on

in�nite trees of states� This suggests transforming a CTL�formula into a B�uchi�like

automaton that accepts in�nite trees �of states� rather than in�nite sequences�

And� indeed� each CTL�formula can be transformed into a B�uchi�tree automaton�

The time complexity of this transformation is exponential in the length of the

CTL�formula under consideration� as in the PLTL case�

Recent work of Bernholtz� Vardi and Wolper ������ has led to a signi�cant im�

provement of the automaton�based approach for branching temporal logic� They

propose to use a variant of non�deterministic tree automata� called �weak� al�

ternating tree automata� The time complexity of their approach is linear in the

length of the CTL�formula and the size of the system speci�cation� An inter�

esting aspect of this approach is that the space complexity of their algorithm

is NLOGSPACE in the size of the model M� This means that model checking

can be done in space which is polynomial in the size of the system speci�cation

�rather than exponential� as is usual�� To our knowledge� no tools have been

constructed yet based on alternating tree automata�

Although these current developments are interesting and quite promising�

there does exist an e�cient and well�established method for model checking CTL

based on another paradigm that is conceptually simpler� As originally shown by

Clarke and Emerson ������ model checking for CTL can be performed in a time

complexity that is linear in the size of the formula �and the system speci�cation��

In these lecture notes we discuss this traditional scheme that has its roots in

�xed point theory� This enables us to use a tool� SMV� which is based on this

approach�

��� Model checking CTL

Suppose we want to determine whether the CTL�formula � is valid in the �nite

CTL�model M � �S�R�Label�� The basic concept of the model checking algo�
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rithm is to �label� each state s � S with the sub�formulas of � that are valid in

s� The set of sub�formulas of � is denoted by Sub��� and is inductively de�ned

as follows�

De�nition ��� �Sub�formulas of a CTL�formula�

Let p � AP� and �� � be CTL�formulas� Then

Sub�p� � f p g

Sub���� � Sub��� � f �� g

Sub�� � �� � Sub��� � Sub��� � f� � � g

Sub�EX�� � Sub��� � fEX� g

Sub�E  �U�!� � Sub��� � Sub��� � fE  �U�! g

Sub�A  �U�!� � Sub��� � Sub��� � fA  �U�! g�

�Note that �U� is not a sub�formula of E  �U�!�� The labelling procedure

mentioned above is performed iteratively� starting by labelling the states with the

sub�formulas of length � of �� i�e� the atomic propositions �and true and false� that

occur in �� �Actually this step is easy� since the function Label already provides

this labelling�� In the �i"���th iteration of the labelling algorithm sub�formulas

of length i"� are considered and the states are labelled accordingly� The labels

already assigned to states are used for that purpose� being sub�formulas of � of

length at most i �i � ��� For instance� if � � �� � �� then state s is labelled

with �� a formula of length i"�� if s is already labelled with �� or with �� in some

previous iteration� The labelling algorithm ends by considering the sub�formula

of length j � j� � itself�

The model checking problem for CTL� deciding whether M� s j� �� for a

given model M and CTL�formula �� can now be solved for any state s in S by

considering its labelling�

M� s j� � if and only if s is �labelled� with ��
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function Sat �� � Formula� � set of State�

�) precondition� true )�

begin
if � � true 
� return S

 ! � � false 
� return �

 ! � � AP 
� return f s j � � Label�s� g

 ! � � ��� 
� return S 
 Sat����

 ! � � �� � �� 
� return �Sat���� � Sat�����

 ! � � EX�� 
� return f s � S j �s� s�� � R � s� � Sat���� g

 ! � � E  �� U��! 
� return SatEU���� ���

 ! � � A  �� U��! 
� return SatAU���� ���

�

�) postcondition� Sat��� � f s j M� s j� � g )�

end
Table ��
� Outline of main algorithm for model checking CTL

Actually� the model checking algorithm can be presented in a very compact and

elegant way by determining for a given � and M�

Sat��� � f s � S j M� s j� � g

in an iterative way �as indicated above�� By computing Sat��� according to

the algorithm depicted in Table ��
 the problem of checking M� s j� � reduces

to checking s � Sat���� �In the program text it is assumed that the model

M � �S�R�Label� is a global variable��

Notice that by computing Sat��� a more general problem than just checking

whether M� s j� � is solved� In fact� it checks for any state s in M whether

M� s j� �� and not just for a given one� In addition� since Sat��� is computed

in an iterative way by considering the sub�formulas of �� the sets Sat��� for any

sub�formula � of � are computed� and thus M� s j� � can be easily checked as

well�
The computation of Sat��� is done by considering the syntactical structure

of �� For � � true the program just returns S� the entire state space of M� thus
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indicating that any state ful�lls true� Accordingly� Sat�false� � �� since there is

no state in which false is valid� For atomic propositions� the labelling Label�s�

provides all the information� Sat�p� is simply the set of states that is labelled by

Label with p� For the negation �� we compute Sat��� and take its complement

with respect to S� Disjunction amounts to a union of sets� For EX� the set Sat���

is recursively computed and all states s are considered that can reach some state

in Sat��� by traversing a single transition� Finally� for E  �U�! and A  �U�! the

speci�c functions SatEU and SatAU are invoked that perform the computation of

Sat�E  �U�!� and Sat�A  �U�!�� These algorithms are slightly more involved�

and their correctness is based on the computation of so�called �xed points� In

order to understand these program fragments better� we �rst give a summary of

the most important results and concepts of �xed point theory �based on partial

orders���

��	 Fixed point theory based on posets

In this section we brie�y recall some results and de�nitions from basic domain

theory as far as they are needed to understand the fundamentals of model check�

ing CTL�

De�nition ��� �Partial order�

A binary relation v on set A is a partial order i�� for all a� a�� a�� � A�

�� a v a �re�exivity�


� �a v a� � a� v a� � a � a� �anti�symmetry�

�� �a v a� � a� v a��� � a v a�� �transitivity��

The pair hA�vi is a partially ordered set� or shortly� poset� If a �v a� and a� �v a

then a and a� are said to be incomparable� For instance� for S a set of states�

�Another well�known variant of �xed�point theory is based on metric spaces � domains that

are equipped with an appropriate notion of distance between any pair of its elements � where

the existence of �xed points is guaranteed by Banach�s contraction theorem for certain types

of functions� This theory falls outside the scope of these lecture notes�
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it follows that h
S��i� where 
S denotes the power�set of S and � the usual

subset�relation� is a poset�

De�nition �	� �Least upper bound�

Let hA�vi be a poset and A� � A�

�� a � A is an upper bound of A� if and only if � a� � A� � a� v a�


� a � A is a least upper bound �lub� of A�� written tA�� if and only if

�a� a is an upper bound of A� and

�b� � a�� � A� a�� is an upper bound of A� � a v a���

The concepts of the lower bound of A� � A� and the notion of greatest lower

bound� denoted uA�� can be de�ned similarly� Let hA�vi be a poset�

De�nition �
� �Complete lattice�

hA�vi is a complete lattice if for each A� � A� tA� and uA� do exist�

A complete lattice has a unique least element uA � � and a unique greatest

element tA � ��

Example ��� Let S � f �� �� 
 g and consider h
S��i� It is not di�cult to

check that for any two subsets of 
S a least upper bound and greatest upper bound

do exist� For instance� for f �� � g and f �� 
 g the lub is f �� �� 
 g and the glb

f � g� That is� the poset h
S��i is a complete lattice where intersection and union

correspond to u and t� The least and greatest element of this example lattice are

� and S� �End of example��

De�nition ��� �Monotonic function�

Function F � A 
� A is monotonic if for each a�� a� � A we have a� v

a� � F �a�� v F �a���

Thus F is monotonic if it preserves the ordering v� For instance� the function

F � S � f � g is monotonic on h
S��i�
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De�nition ��� �Fixed point�

For function F � A 
� A� a � A is called a �xed point of F if F �a� � a�

a is the least �xed point of F if for all a� � A such that F �a�� � a� we have a v a��

The greatest �xed point of F is de�ned similarly� The following important result

for complete lattices is from Knaster and Tarski ���		��

Theorem ���

Every monotonic function over a complete lattice has a complete lattice of �xed

points �and hence a unique greatest and unique least �xed point��

Notice that the lattice of �xed points is in general di�erent from the lattice on

which the monotonic function is de�ned�

The least �x�point of monotonic function F on the complete lattice hA�vi can

be computed by tiF
i���� i�e� the least upper bound of the series�� F ���� F �F ����� � � ��

This series is totally ordered under v� that is� F i��� v F i����� for all i� This

roughly follows from the fact that � v F ���� since � is the least element in the

lattice� and the fact that F ��� v F �F ����� since F is monotonic� �In fact this

second property is the key step in a proof by induction that F i��� v F i�������

The greatest �xed point can be computed by uiF
i���� that is the greatest lower

bound of the series �� F ���� F �F ����� � � �� a sequence that is totally ordered by

F i����� v F i��� for all i�

In the following subsection we are interested in the construction of monotonic

functions on lattices of CTL�formulas� Such functions are of particular interest

to us� since each monotonic function on a complete lattice has a unique least and

greatest �xed point �cf� Theorem �
�� These �xed points can be easily computed

and such computations form the key to the correctness of functions SatEU and

SatAU �
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��� Fixed point characterization of CTL
formulas

The labelling procedures for E  �U�! and A  �U�! are based on a �xed point

characterization of CTL�formulas� Here� the technique is to characterize E  �U�!

as the least �or greatest� �xed point of a certain function �on CTL�formulas�� and

to apply an iterative algorithm  suggested by Knaster and Tarski�s result 

to compute such �xed points in order to carry out the labelling of the states� To

do this basically two main issues need to be resolved�

�� First� a complete lattice on CTL�formulas needs to be de�ned such that the

existence �and uniqueness� of least and greatest �xed points is guaranteed�

The basis of this lattice is a partial order relation on CTL�formulas�


� Secondly� monotonic functions on CTL�formulas have to be determined such

that E  �U�! and A  �U�! can be characterized as least �or greatest� �xed

points of these functions� For this purpose it turns out that an axiomati�

zation of CTL is useful�

In the sequel we start by de�ning a complete lattice of formulas� after which

we introduce some axioms that are helpful in �nding the monotonic functions

mentioned in step 
� Finally� we show that E  �U�! and A  �U�! are particular

�xed points of these functions�

A complete lattice of CTL�formulas

The partial order v on CTL�formulas is de�ned by associating with each formula

� the set of states in M for which � holds� Thus � is identi�ed with the set

  � !! � f s � S j M� s j� � g�

�Strictly speaking   !! is a function of M as well� i�e�   !!M would be a more

correct notation� but since in all cases M is known from the context we omit this
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subscript�� The basic idea now is to de�ne the order v by�

� v � if and only if   � !! �   � !!�

Stated in words� v corresponds to �� the well�known subset relation on sets�

Notice that   � !! �   � !! is equivalent to � � �� Clearly� h
S��i is a poset� and

given that for any two subsets S�� S� � 
S� S� � S� and S� � S� are de�ned� it

follows that it is a complete lattice� Here� � is the lower bound construction and

� the upper bound construction� The least element � in the lattice h
S��i is �

and the greatest element � equals S� the set of all states�

Since v directly corresponds to �� it follows that the poset hCTL�vi is a

complete lattice� The lower bound construction in this lattice is conjunction�

  � !! �   � !! �   � � � !!

and the upper bound corresponds to disjunction�

  � !! �   � !! �   � � � !!�

Since the set of CTL�formulas is closed under conjunction and disjunction� it

follows that for any � and � their upper bound and lower bound do exist� The

least element � of the lattice hCTL�vi is false� since   false !! � �� which is the

bottom element for 
S� Similarly� true is the greatest element in hCTL�vi since

  true !! � S�

Some CTL�axioms

In the previous chapter on linear temporal logic we have seen that axioms can be

helpful in order to prove the equivalence between formulas� rather than proving

the equivalence using the semantic de�nition� it is often su�cient to use the

axioms that are de�ned on the syntax of the formulas� This facilitates proving
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the equivalence of the formulas� An important axiom for model checking PLTL

�cf� Chapter 
� is the expansion rule for until�

�U� 	 � � �� � X  �U�!��

By instantiating this rule with the de�nitions of F and G one obtains

G� 	 � � XG� and

F � 	 � � XF��

For CTL similar axioms do exist� Given that each linear temporal operator U� F�

and G can be pre�xed with either an existential or a universal quanti�cation� we

obtain the axioms as listed in Table ���� For all these axioms the basic idea is to

express the validity of a formula by a statement about the current state �without

the need to use temporal operators� and a statement about the direct successors

of this state �using either EX or AX depending on whether an existential or a

universally quanti�ed formula is treated�� For instance� EG� is valid in state s

if � is valid in s �a statement about the current state� and � holds for all states

along some path starting at s �statement about the successor states�� The �rst

EG� 	 � � EX  EG�!

AG � 	 � � AX  AG �!

EF � 	 � � EX  EF�!

AF � 	 � � AX  AF �!

E  �U�! 	 � � �� � EX  E ��U��!�

A  �U�! 	 � � �� � AX  A ��U��!�

Table ���� Expansion axioms for CTL

four axioms can be derived from the latter two central ones� For instance� for

AF� we derive
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AF�

� f de�nition of AF g

A  trueU�!

� f axiom for A  �U�! g

� � �true � AX  A �trueU��!�

� f predicate calculus� de�nition of AF g

� � AX  AF �!�

Using this result� we derive for EG��

EG�

� f de�nition of EG g

�AF ��

� f result of above derivation g

� ��� � AX  AF ��!�

� f predicate calculus g

� � �AX  AF ��!

� f de�nition of AX g

� � EX ��  AF ��!�

� f de�nition of EG g

� � EX  EG�!�

Similar derivations can be performed in order to �nd the axioms for EF and AG �

These are left to the reader� As stated above� the elementary axioms are the

last two expansion axioms� They can be proved using the semantics of CTL� and

these proofs are very similar to the proof of the expansion law for U for PLTL as

discussed in the previous chapter� We therefore omit these proofs here and leave

them �again� to the reader�
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CTL�formulas as �xed points

The expansion axiom

E  �U�! 	 � � �� � EX  E ��U��!�

suggests considering the expression E  �U�! as a �xed point of the function G �

CTL 
� CTL de�ned by

G�z� � � � �� � EX z�

since clearly� one obtains G�E  �U�!� � E  �U�! from the above expansion rule�

The functions for the other temporal operators can be determined in a similar

way� In order to explain the model checking algorithms in a more elegant and

compact way it is convenient to consider the set�theoretical counterpart of G

�Huth and Ryan� ������ More precisely�   E  �U�! !! is a �xed point of the function

F � 
S 
� 
S� where F is de�ned by

F �Z� �   � !! � �  � !! � f s � S j  s� � R�s� � Z g��

where R�s� denotes the set of direct successors of s� that is� R�s� � f s� �

S j �s� s�� � R g� Similar formulations can be obtained for the other temporal

operators� To summarize we obtain the following �xed point characterizations�

Theorem ���

�   EG� !! is the greatest �x�point of F �Z� �   � !! � f s � S j  s� � R�s� � Z g

��   AG� !! is the greatest �x�point of F �Z� �   � !! � f s � S j � s� � R�s� � Z g

��   EF� !! is the least �x�point of F �Z� �   � !! � f s � S j  s� � R�s� � Z g

��   AF � !! is the least �x�point of F �Z� �   � !! � f s � S j � s� � R�s� � Z g
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��   E  �U�! !! is the least �x�point of

F �Z� �   � !! � �  � !! � f s � S j  s� � R�s� � Z g�

��   A  �U�! !! is the least �x�point of

F �Z� �   � !! � �  � !! � f s � S j � s� � R�s� � Z g��

It is not di�cult to check using the axioms of Table ��� that for each case the

CTL�formula is indeed a �xed point of the function indicated� To determine

whether it is the least or greatest �xed point is slightly more involved�

Proving the �xed point characterizations

We illustrate the proof of Theorem �� by checking the case for   E  �U�! !!� the

proofs for the other cases are conducted in a similar way� The proof consists of

two parts� �rst we prove that the function F �Z� is monotonic on h
S��i� and

then we prove that   E  �U�! !! is the least �xed point of F �

Proving monotonicity� Let Z�� Z� � 
S such that Z� � Z�� It must be proven

that F �Z�� � F �Z��� Then we derive�

F �Z��

� f de�nition of F g

  � !! � �  � !! � f s � S j  s� � R�s� � Z� g�

� f Z� � Z�� set calculus g

  � !! � �  � !! � f s � S j  s� � R�s� � Z� g�

� f de�nition of F g

F �Z���

This means that for any arbitrary � and � we have that F �Z�� � F �Z��� and thus

F is monotonic on 
S� Given this result and the fact that h
S��i is a complete

lattice� it follows by Knaster�Tarski�s theorem that F has a complete lattice of

�xed points� including a unique least and greatest �xed point�
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Proving the least �xed point� Recall that the least element of h
S��i is ��

If the set of states S has n"� states� it is not di�cult to prove that the least

�xed point of F equals F n����� for monotonic F on S� We now prove that

  E  �U�! !! � F n����� by induction on n�

By de�nition we have F ���� � �� For F ��� we derive�

F ���

� f de�nition of F g

  � !! � �  � !! � f s � S j  s� � R�s� � � g�

� f calculus g

  � !! � �  � !! � ��

� f calculus g

  � !!�

Thus F ��� �   � !!� the set of states that can reach   � !! in � steps� Now

F ����

� f de�nition of F g

  � !! � �  � !! � f s � S j  s� � R�s� � F ��� g�

� f F ��� �   � !! g

  � !! � �  � !! � f s � S j  s� � R�s� �   � !! g��

Thus F �F ���� is the set of states that can reach   � !! along a path of length at

most one �while traversing   � !!�� By mathematical induction it can be proven

that F k����� is the set of states that can reach   � !! along a path through   � !!

of length at most k� But since this holds for any k we have�

  E  �U�! !!

� f by the above reasoning gS
k�� F

k�����

� f F i��� � F i����� g

F k������
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Computing least and greatest �xed points

What do these results mean for the labelling approach to CTL model checking�

We discuss this by means of an example� Consider � � E  �U�!� An iterative

approach is taken to the computation of SatEU��� ��� Since   E  �U�! !! is the

least �xed point of

F �Z� �   � !! � �  � !! � f s � S j  s� � R�s� � Z g�

the problem of computing SatEU��� �� boils down to computing the �xed point of

F � which is �according to Knaster�Tarski�s theorem� equal to
S

i F
i����
S

i F
i���

is computed by means of iteration� �� F ���� F �F ����� � � �� Since we deal with

�nite CTL�models� this procedure is guaranteed to terminate� i�e� there exists

some k such that F k����� � F k���� Then� F k����� �
S

i F
i����

Intuitively� this iterative procedure can be understood as follows� one starts

with no state being labelled with E  �U�!� This corresponds to the approximation

for which the formula is nowhere valid� i�e� F ���� � �� Then in the �rst iteration

we consider F ���� which reduces to   � !! �see proof above�� and label all states

for which � holds with E  �U�!� In the second iteration we consider F ���� and

label  in addition to the states which habe already been labelled  the states s

for which � holds and which have some direct successor state for which � holds�

We continue in this way until the �xed point F k��� is reached for some k� At

this point of the computation all states are labelled that satisfy E  �U�!�

The resulting procedures SatEU and SatAU � for the formula A  �U�!� are listed

in Table ��� and Table ��	�

At the beginning of the �i"���th iteration in these procedures we have as an

invariant Q � F i����� and Q� � F i��� for the function F � The iterations end

when Q � Q�� that is� when F i����� � F i���� The di�erence between SatEU and

SatAU is that for the latter a new state is labelled if � holds in that state and if

all successor states are already labelled� i�e� are member of Q�� This corresponds

to AX �
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function SatEU ��� � � Formula� � set of State�

�) precondition� true )�

begin var Q�Q� � set of State�

Q�Q� �� Sat������

do Q �� Q� 
�

Q� �� Q�

Q �� Q � �f s j  s� � Q� �s� s�� � R g � Sat����

od�
return Q

�) postcondition� SatEU��� �� � f s � S j M� s j� E  �U�! g )�

end

Table ���� Labelling procedure for E  �U�!

function SatAU ��� � � Formula� � set of State�

�) precondition� true )�

begin var Q�Q� � set of State�

Q�Q� �� Sat������

do Q �� Q� 
�

Q� �� Q�

Q �� Q � �f s j � s� � Q� �s� s�� � R g � Sat����

od�
return Q

�) postcondition� SatAU��� �� � f s � S j M� s j� A  �U�! g )�

end

Table ��	� Labelling procedure for A  �U�!
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The iterative procedures for all formulas that have a least �xed point charac�

terisation are performed in a similar way� For EG� and AG �� which are greatest

�xed points rather than least �xed points� the procedure is slightly di�erent�

Greatest �xed points are equal to
T

i F
i�S�� which is computed by the series

S� F �S�� F �F �S��� � � �� Intuitively� this means that one starts by labelling all states

with the formula under consideration� say EG�� This corresponds to F ��S� � S�

In each subsequent iteration states are �unlabelled� until a �xed point is reached�

Example ��� Let the CTL�modelM be shown in the �rst row of Figure ��� and

suppose we are interested in checking whether � � E  pU q! is valid in state s�

ofM� For this purpose we compute SatEU�p� q�� i�e�   E  pU q! !!� It follows from

the theory developed in this chapter that this reduces to computing the series ��

F ���� F �F ����� � � � until a �xed point is reached� where according to Theorem ��

F i���Z� �   q !! � �  p !! � f s � S j  s� � R�s� � F i�Z� g��

We start the computation by�

F ��� �   q !! � �  p !! � f s � S j  s� � R�s� � � g� �   q !! � f s� g�

This is the situation just before starting the �rst iteration in SatEU�p� q�� This

situation is illustrated in the �rst row� right column� where states which are in Q

are colored black� and the others white�

For the second iteration we obtain

F �F ����

� f de�nition of F g

  q !! � �  p !! � f s � S j  s� � R�s� � F ��� g�

� f F ��� �   q !! � f s� g�   p !! � f s�� s� g g

f s� g � �f s�� s� g � f s � S j  s� � R�s� � f s� g� g�

� f direct predecessors of s� are f s�� s� g g

f s� g � �f s�� s� g � f s�� s� g�

� f calculus g

��� Model Checking Branching Temporal Logic

f s�� s� g�

The states that are now colored are those states from which a q�state �s�� can be

reached via a p�path �s�� of length at most one�

From this result and the fact that the direct predecessors of f s�� s� g are

f s�� s�� s�� s� g we obtain for the next iteration�

F ���� � f s� g � �f s�� s� g � f s�� s�� s�� s� g� � f s�� s�� s� g

Intuitively� the state s� is now labelled in the second iteration since it can reach

a q�state �s�� via a p�path �i�e� s� s�� of length two�

Since there are no other states inM that can reach a q�state via a p�path� the

computation is �nished� This can be checked formally by computing F ����� The

interested reader can check that indeed F ���� � F ����� that is� the �xed point

computation by SatEU�p� q� has terminated� �End of example��

f p g f q gf p g �

s� s�s� s�

M

initialisation

second iteration

�rst iteration

third iteration

Figure ���� Example of iteratively computing SatEU�p� q�

Complexity analysis

The time complexity of model checking CTL is determined as follows� It is not

di�cult to see that Sat is computed for each sub�formula of �� that is� j Sub��� j

times� The size of Sub��� is proportional to the length of �� The time complexity



Fixed point characterization of CTL�formulas ���

of the labelling procedures SatAU is proportional to j Ssys j
�� because the iteration

is traversed j Ssys j times in the worst case  starting with the empty set� in each

iteration a single state is added to the set Q  while for the computation of each

successive Q all transitions in R have to be considered� where R in the worst case

equals Ssys�Ssys� This entails that the worst time complexity of model checking

CTL equals O�j � j � j Ssys j
�� That is� the time complexity of model checking

CTL is linear in the size of the formula to be checked and cubic in the number of

states of the model of the system�

This time complexity can be improved by using a di�erent� more e�cient

procedure for SatEG �Clarke� Emerson and Sistla� ������ The concept behind

this variant is to de�ne CTL in terms of EX � E  �U�! and EG � and to proceed for

checking EG� in state s as follows� First� consider only those states that satisfy �

and eliminate all other states and transitions� Then compute the maximal strong

components in this reduced model that contain at least one transition� and check

whether there is a strong component reachable from state s� If state s belongs

to the reduced model and there exists such a path then  by construction of the

reduced model  the property EG� is satis�ed� otherwise� it is not� Using this

variant� the complexity of model checking CTL can be reduced to O�j � j � j

Ssys j
��� Thus� we conclude that

The worst�case time complexity of checking whether system�model sys

satis�es the CTL�formula � is O�j Ssys j
� � j � j�

Recall that model checking PLTL is exponential in the size of the formula�

Although the di�erence in time complexity with respect to the length of the

formula seems drastic� a few remarks on this are in order� First� formulas in PLTL

are never longer than� and mostly shorter than� their equivalent formulation in

CTL� This follows directly from the fact that for formulas that can be translated

from CTL into PLTL� the PLTL�equivalent formula is obtained by removing all

path quanti�ers� and as a result is �usually� shorter �Clarke and Draghicescu�

������ Even stronger� for each model M there does exist a PLTL�formula � such

that each CTL�formula equivalent to E� �or A��  if such a formula exists in CTL

 has exponential length� This is nicely illustrated by the following example�

which we adopted from �Kropf� ������

��
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In summary� for a requirement that can be speci�ed in both CTL and PLTL�

the shortest possible formulation in PLTL is never longer than the CTL�formula�

and can even be exponentially shorter� Thus� the advantage that CTL model

checking is linear in the length of the formula� whereas PLTL model checking is

exponential in the length� is diminished �or even completely eliminated� by the

fact that a given property needs a �much� longer formulation in CTL than in

PLTL�

Example ��� We consider the problem of �nding a Hamilton path in an arbitrary

connected graph in terms of PLTL and CTL� Consider a graph G � �V�E� where

V denotes the set of vertices and E � V � V � the set of edges� Suppose V �

f v�� � � � � vn g� A Hamilton path is a path through the graph which visits each state

exactly once� �It is a travelling salesman problem where the cost of traversing an

edge is the same for all edges��

We �rst describe the Hamilton path problem in PLTL� The method used is

to consider the graph G as a B�uchi automaton which is obtained from G in the

following way� We label each vertex vi in V by a unique atomic proposition pi�

i�e� Label�vi� � f pi g� In addition� we introduce a new �accepting� vertex w� such

that w �� V � with Label�w� � f q g� where q is an atomic proposition di	erent

from any pi� The vertex w is a direct successor of any node vi� that is� the edges

�vi� w� are added to the graph� and w is a direct successor of itself� i�e� �w�w� is

an edge� Figure ��� shows this construction for a connected graph with � vertices�

is transformed into

f p� g

f p� g

v� v�
v�v�

w f q g

v� v�
v�v�

f p� g

f p� g

Figure ��	� Encoding the Hamilton path problem in a model

Given this structure� the existence of a Hamilton path in a graph can be for�
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mulated in PLTL as follows	�

E
�

��i� F pi� � X
n��q�
�
�

where X �q � X q and Xn��q � X �X nq�� This formula is valid in each state from

which a path starts that ful�lls each atomic proposition once� This corresponds to

visiting each state vi once� In order to obtain the desired in�nite accepting run�

such a path must have a su�x of the form w�� otherwise it would visit one or

more states more than once� Notice that the length of the above formula is linear

in the number of vertices in the graph�

A formulation of the Hamilton path problem in CTL exists and can be obtained

in the following way� We start by constructing a CTL�formula g�p�� � � � � pn� which

is valid when there exists a path from the current state that visits the states for

which p� � � � pn is valid in this order�

g�p�� � � � � pn� � p� � EX �p� � EX �� � � � EX pn� � � ���

Because of the branching interpretation of CTL� a formulation of the Hamilton

path in CTL requires an explicit enumeration of all possible Hamilton paths� Let

P be the set of permutations on f �� � � � n g� Then we obtain�

� � � P� g�p��� � � � � p�n�� � EX
n��q�

By the explicit enumeration of all possible permutations we obtain a formula that

is exponential in the number of vertices in the graph� This does not prove that

there does not exist an equivalent� but shorter� CTL�formula which describes the

Hamilton path problem� but this is impossible �Kropf� ����� �End of example��

�Strictly speaking� this is not a well�formed PLTL�formula since the path quanti�er E is

not part of PLTL� However� for E�� where � does not contain any path quanti�ers �as in this

example� we can take the equivalent �A �� which can be checked by checking A �� which is

a well�formed PLTL�formula according to De�nition ��
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Overview of CTL model checking

We conclude this section with an overview of model checking CTL� This is shown

in Figure ����

model checker

CTL�model

�Yes�

CTL�model

�No� �counter�example�

Labelled

System

CTL�formula ���Model of system �sys�

Property

Check s � Sat���

Figure ���� Overview of model checking CTL

��� Fairness

On the notion of fairness

As we have argued before� PLTL and CTL have incomparable expressiveness� An

important category of properties that can be expressed in PLTL� but not in the

branching temporal logic CTL� are so�called fairness constraints� We illustrate the

concept of fairness by means of a frequently encountered problem in concurrent

systems�

Example ��� Consider N processes P�� � � � � PN which require a certain service�

There is one server process Server which is expected to provide services to these

processes� A possible strategy which Server can realize is the following� Check the
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processes starting with P�� then P�� and so on� and serve the �rst thus encoun�

tered process which requires service� On �nishing serving this process� repeat this

selection procedure� once again starting with checking P�� Now suppose that P�

is always requesting service� Then this strategy will result in Server always serv�

ing P�� Since in this way another process has to wait in�nitely long before being

served� this is called an unfair strategy� In a fair serving strategy it is required

that the server eventually responds to any request by one of the processes� For

instance� a round�robin scheduling strategy where each process is only served for

a limited amount of time is a fair strategy� after having served one process� the

next is checked and �if needed� served� �End of example��

In verifying concurrent systems we are quite often only interested in execution

sequences in which enabled transitions �statements� are executed in some fair

way� In the next section� for instance� we will treat a mutual exclusion algorithm

for two processes� In order to prove the absence of individual starvation 

the situation in which a process which wants to enter its critical section has to

wait in�nitely long  we want to exclude those execution sequences in which a

single process is always being selected for execution� This type of fairness is also

known as process fairness� since it concerns the fair scheduling of the execution

of processes� If we were to consider unfair execution sequences when proving the

absence of individual starvation we would usually fail� since there always exists

an unfair strategy according to which some process is always neglected� and thus

can never make progress�

Process fairness is a particular form of fairness� In general� fairness assump�

tions are needed for proving liveness properties ��something good will eventually

happen�� when the model to be checked considers non�determinism� In the above

example the scheduling of processes is non�deterministic� the choice of the next

process to be executed �if there are at least two processes which can be poten�

tially selected� is arbitrary� Other examples where non�determinism occurs are

in sequential programs� when constructs like

do true 
� S� ! true 
� S� od

are allowed� Here an unfair mechanism might always choose S� to be executed�

and as a consequence� a property that is established by executing S� is never
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reached� Another prominent example where fairness is used to �resolve� non�

determinism is in modeling concurrent processes by means of interleaving� In�

terleaving boils down to modeling the concurrent execution of two independent

processes by enumerating all the possible orders in which activities of the pro�

cesses can be executed�

In general� a fair computation is characterized by the fact that certain �fair�

ness� constraints are always ful�lled�

Types of fairness expressed in PLTL

In linear temporal logic such as PLTL� fairness can be expressed syntactically� We

will brie�y describe how three di�erent forms of fairness can be formally speci�ed

in PLTL� Let � be the desired property �such as absence of individual starvation�

and � be the fairness constraint under consideration �like a process has to have

its turn�� Then we distinguish between

� Unconditional fairness� A path is unconditionally fair with respect to � if

GF�

holds� Such a property expresses� for instance� that a process enters its

critical section in�nitely often �regardless of any fairness constraint��

� Weak fairness �justice�� A path is weakly fair with respect to � and fairness

constraints � if

FG� � GF��

For instance� a typical weak fairness requirement is

FG enabled�a� � GF executed�a��

Weak fairness means that if an activity such as a� like a transition or an

entire process� is continuously enabled �FG enabled�a��� then it will be exe�

cuted in�nitely often �GF executed�a��� A computation is weakly fair with
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respect to activity a if it not the case that a is always enabled beyond

some point without being taken beyond this point� In the literature� weak

fairness is sometimes referred to as justice�

� Strong fairness �compassion�� A path is strongly fair with respect to � and

fairness constraints � if

GF� � GF��

The di�erence to weak fairness is that FG is replaced by GF in the premise�

Strong fairness means that if an activity is in�nitely often enabled �but not

necessarily always� i�e� there may be periods during which � is not valid��

then it will be executed in�nitely often� A computation is strongly fair

with respect to activity a if it not the case that a is in�nitely often enabled

without being taken beyond a certain point�

Fairness constraints in CTL

Weak and strong fairness cannot be expressed syntactically In the branching

temporal logic CTL� Additional constructs in the CTL�model are employed in

order to be able to deal with fairness constraints� A CTL�model is extended such

that it allows one to specify a set of fairness constraints F�� � � � � Fk� A fairness

constraint is de�ned by �a predicate over� sets of states� For instance� in a mutual

exclusion algorithm such a fairness constraint could be �process one is not in its

critical section�� This imposes the fairness constraint that there must be in�nitely

many states in a computation such that process one is not in its critical section�

The basic approach is not to interpret CTL�formulas over all possible execution

paths  as in the semantics of CTL which we have dealt with throughout this

chapter  but rather to only consider the fair executions� i�e� those executions

which satisfy all imposed fairness constraints F�� � � � � Fk� A fair CTL�model is

de�ned as follows�

De�nition ��� �Fair model for CTL�

A fair CTL�model is a quadruple M � �S�R�Label�F� where �S�R�Label� is a

CTL�model and F � 
S is a set of fairness constraints�
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De�nition ��� �An F�fair path�

A path � � s� s� s� � � � is called F �fair if for every set of states Fi � F there are

in�nitely many states in � that belong to Fi�

Formally� if lim��� denotes the set of states which are visited by � in�nitely

often� then � is F �fair if

lim��� � Fi �� � for all i�

Notice that this condition is identical to the condition for accepting runs of a

generalized B�uchi automaton �see Chapter 
�� Indeed� a fair CTL�model is an

ordinary CTL�model which is extended with a generalized B�uchi acceptance con�

dition�
The semantics of CTL in terms of fair CTL�models is identical to the semantics

given earlier �cf� De�nition 

�� except that all quanti�cations over paths are

interpreted over F �fair paths rather than over all paths� Let P f
M�s� be the set

of F �fair paths in M which start in state s� Clearly� P f
M�s� � PM�s� if F �� ��

The fair interpretation of CTL is de�ned in terms of the satisfaction relation j�f �

�M� s� j�f � if and only if � is valid in state s of fair model M�

De�nition ��� �Fair semantics of CTL�

Let p � AP be an atomic proposition� M � �S�R�Label�F� a fair CTL�model�

s � S� and �� � CTL� formulas� The satisfaction relation j� is de�ned by�

s j�f p i� p � Label�s�

s j�f �� i� � �s j�f ��

s j�f � � � i� �s j�f �� � �s j�f ��

s j�f EX� i�  � � P f
M�s�� � �! j�f �

s j�f E  �U�! i�  � � P f
M�s�� � j � �� � j! j�f � �

�� � � k � j� � k! j�f ���

s j�f A  �U�! i� � � � P f
M�s�� � j � �� � j! j�f � �

�� � � k � j� � k! j�f ����

The clauses for the propositional logic terms are identical to the semantics
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given earlier� for the temporal operators the di�erence lies in the quanti�cations

which are over fair paths rather than over all paths� The expressiveness of fair

CTL is strictly larger than that of CTL� and fair CTL is �like CTL� a subset of

CTL�� As CTL� fair CTL is incomparable to PLTL�

A few remarks are in order to see what type of fairness �unconditional� weak

or strong fairness� can be supported by using this alternative interpretation for

CTL� Suppose that ��� � � � � �n are the desired fairness constraints and � is the

property to be checked for CTL�model M� Let Mf be equal to M with the

exception that Mf is a fair CTL�model where the fairness constraints ��� � � � � �n

are realized by appropriate acceptance sets Fj� Then

Mf � s j�f � if and only if M� s j� A  ��i�GF�i� � �!

�Notice that A  ��i�GF�i� � �! is a CTL��formula� and not a CTL�formula��

The intuition of this result is that the formulas GF�i exactly characterize those

paths which visit Fj in�nitely often�

For example� strong fairness �compassion� can now be imposed by checking

s j�f AGAF�

where we use the result that the PLTL�formula GF� is equivalent to the CTL�

formula AGAF��

Example ��� Consider the CTL�model depicted in Figure ��� and suppose we

are interested in checkingM� s� j� AG  p � AF q!� This property is invalid since

there is a path s� s� �s� s��
� which never goes through a q�state� The reason for

that this property is not valid is that at state s� there is a non�deterministic

choice between moving either to s� or to s�� and by always ignoring the possibility

of going to s� we obtain a computation for which AG  p � AF q! is invalid�

M� s� �j� AG  p � AF q!�
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s� s�

s�
s�

s�

f p g f p g f p g

f p g

f q g

Figure ���� An example CTL�model

Usually� though� the intuition is that if there is in�nitely often a choice of moving

to s� then s� should be visited sometime �or in�nitely often��

We transform the CTL�model shown in Figure ��� into a fair CTL�modelM�

by de�ning F � fF�� F� g where F� � f s� g and F� � f s� g� Let us now check

AG  p � AF q! on this fair model� that is� consider M�� s� j�f AG  p � AF q!�

Any F�fair path starting at s� has to go in�nitely often through some state in F�

and some state in F�� This means that states s� and s� must be visited in�nitely

often� Such fair paths exclude paths like s� s� �s� s��
�� since s� is never visited

along this path� Thus we deduce that indeed

M�� s� j�f AG  p � AF q!�

�End of example��

Model checking fair CTL

It is beyond the scope of these lecture notes to treat in detail the extensions to the

model checking algorithms which we have presented earlier which are concerned

with the treatment of fairness� The �xed point characterizations of EF � EG and

so on can be extended with fairness constraints� Based on these characterizations

model checking of fair CTL can be performed in a similar way as model checking of

CTL� The most important changes to the algorithms are that we have to consider

the fair paths from a state� rather than all paths �like we did up to so far� for the

procedures SatEU and SatAU and the treatment of EX�� For this purpose� we

need an algorithm to compute fair paths� In essence� fair paths can be determined
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as follows� Suppose we want to determine whether there is an F �fair path in M

starting at state s� Then�

�� We check whether we can reach from s some state s� � Fi for the fairness

constraint Fi � F �


� If such state exists for some i� we check whether we can reach s� from itself

via a path which goes through a state in Fj for each Fj � F �

If both checks are positive then we have found a cycle which is reachable from

the state s such that in the cycle each fairness constraint is satis�ed� As for the

calculation of emptiness for B�uchi automata in the previous chapter� this strategy

is the same as the computation of maximal strong components in a graph �cf� the

programs ReachAccept and DetectCycle of Chapter 
�� The standard algorithm

to compute maximal strong components by Tarjan ����
� has a known worst case

time�complexity of O�j S j " j R j��

A second major change to the model checking algorithms discussed before

are the �xed point characterizations of E  �U�! and A  �U�!� These have to be

changed in order to incorporate the fairness constraints F � We do not provide

the details here of this adaptation �see e�g� Clarke� Grumberg and Long� �����

and only mention that the worst�case time�complexity of the model checking

algorithms grows from O�j � j � j S j�� to

O�j � j � j S j� � j F j��

As for model checking plain CTL� this time complexity can be improved to being

quadratic in the size of the state space� by using an alternative approach for EG �

���� The model checker SMV

The tool SMV �Symbolic Model Veri�er� supports the veri�cation of cooper�

ating processes which �communicate� via shared variables� The tool has been
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developed at Carnegie�Mellon University by Ken McMillan and was originally

developed for the automatic veri�cation of synchronous hardware circuits� It

is publically available� see www�cs�cmu�edu��modelcheck� The model checker

has been very useful for verifying hardware circuits and communication proto�

cols� It has recently also been applied to large software systems� for instance� in

the airplane�industry �Chan et� al� ������ Processes can be executed in either

a synchronous or an asynchronous fashion and model checking of CTL�formulas

is supported� The model checking algorithms which are used by SMV are ba�

sically the algorithms which we have covered in this chapter and support the

treatment of fair CTL� It is not our intention to give a complete introduction

to the tool SMV in these lecture notes� For a more extensive introduction we

refer to �McMillan� ���
������� We rather want to demonstrate by example how

systems can be speci�ed and veri�ed using the model checker�

An SMV speci�cation consists of process declarations� �local and global� vari�

able declarations� formula declarations and a speci�cation of the formulas that

are to be veri�ed� The main module is called main� as in C� The global structure

of an SMV speci�cation is�

MODULE main

VAR variable declarations

ASSIGN global variable assignments

DEFINITION definition of property to be verified �� optional ��

SPEC CTL�specification to verify

MODULE �� submodule � ��

MODULE �� submodule � ��

�������������

The main ingredients of system speci�cations in SMV are�

� Data types� The only basic data types provided by SMV are bounded

integer subranges and symbolic enumerated types�
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� Process declarations and initializations� A process named P is de�ned as

follows�

MODULE P �formal parameters�

VAR local definitions

ASSIGN initial assignments to variables

ASSIGN next assignments to variables

This construct de�nes a module called P which can be instantiated by either

VAR Pasync� process P�actual parameters�

to obtain a process instantiation called Pasync which executes in asyn�

chronous mode� or by

VAR Psync� P�actual parameters�

to obtain a process instantiation Psync which executes in synchronous

mode� �The di�erence between asynchronous and synchronous is discussed

below��

� Variable assignments� In SMV a process is regarded as a �nite�state au�

tomaton and is de�ned by listing for each �local and global� variable the

initial value �i�e� the values in the initial state�� and the value which is to be

assigned to the variable in the next state� The latter value usually depends

on the current values of the variables� For instance� next�x� �� x y � as�

signs to x the value x y � in the next state� For variable x the assignment

init�x� �� � denotes that x initially has the value �� The assignment

next�x� �� � assigns to x the value � in the next state� Assignments can

be non�deterministic� e�g� the statement next�x� �� f�� �g means that

the next value of x is either � or �� Assignments can be conditional� For

instance� the assignment

next�x� �� case b � �� �


b � �� 	�� ���

esac
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assigns to variable x the value 
 if b equals � and �non�deterministically�

the value � or �
 if b equals �� If x is a variable in process instantiation Q

then we write Q�x�

Assignments to global variables are only allowed if these variables occur as

parameters of the process instantiation�

� Synchronous versus asynchronous mode� In the synchronous mode all as�

signments in any process are carried out in a single indivisible step� In�

tuitively this means that there is a single global clock and at each of its

ticks each module performs a step� At any given time� a process is either

running or not running� An assignment to the next value of a variable only

occurs if the process is running� If not� the value of the variable remains

unchanged in the next step�

In asynchronous mode only the variables of the �active� process are as�

signed a new value� That is� at each tick of the global clock a single process

is non�deterministically chosen for execution and a single step of this pro�

cess is performed �while the other� not selected processes� keep their state��

Synchronous composition is useful for e�g� modelling synchronous hardware

circuits� whereas asynchronous composition is useful for modeling commu�

nication protocols or asynchronous hardware systems�

� Speci�cation of CTL�formulas� For the speci�cation of CTL�formulas� SMV

uses the symbols � for conjunction� ' for disjunction� �� for implication and

 for negation� The SMV model checker veri�es that all possible initial

states satisfy the speci�cation�

Peterson and Fischer�s mutual exclusion algorithm

The mutual exclusion algorithm of Peterson and Fischer is used by two processes

which communicate via shared variables� It is intended to prevent the processes

being simultaneously in their critical section� Each process i �i��� 
� has local

variables ti and yi which are readable by the other process but which can only be

written by process i� These variables range over f�� false� true g� The operator

� is not de�ned for � and has its usual meaning for false and true� This means

that in an expression like � y� � y� it is assumed that y� �� � and y� �� ��
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The initial values of the variables are y�� y�� t�� t� �� �������� Process � is as

follows�

start�� �) Process � )�

t� �� if y� � false then false else true �

y� �� t�

if y� �� � then t� �� y� �

y� �� t�

loop while y� � y�

critical section �� y�� t� �� ���

goto start�

Process 
 is as follows�
start�� �) Process 
 )�

t� �� if y� � true then false else true �

y� �� t�

if y� �� � then t� �� � y� �

y� �� t�

loop while �� y�� � y�

critical section 
� y�� t� �� ���

goto start�

The basic method of the algorithm is that when both processes compete to enter

their critical section� it is guaranteed that y� �� � and y� �� �� and therefore

the conditions for entering the critical sections can never be valid simultaneously�

Notice that the two processes are not symmetric�

Modeling the mutual exclusion algorithm in SMV

The translation of the algorithm just described into an SMV speci�cation is fairly

straightforward� The two process instantiations are created by
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VAR prc� � process P�t��t��y��y��


prc� � process Q�t��t��y��y��


The behavioral part of the �rst process of the previous section is given below� For

our purpose we have labelled each statement in the algorithm starting from label

l�� These labels are used to determine the next statement after the execution of

a statement� they are a kind of program counter� The SMV code for the other

process is rather similar� and is omitted here� Comments start with �� and end

with a carriage return�

MODULE P�t��t��y��y��

VAR label � 	l��l��l��l"�l��l#�l��
 �� local variable label

ASSIGN init�label� �� l�
 �� initial assignment

ASSIGN �� next assignments

next�label� ��

case
label � l� � l�


label � l� � l�


label � l� � l"


label � l" � l�


label � l� � y� � y� � l�
 �� loop

label � l� � �y� � y�� � l#


label � l# � l�


label � l� � l�
 �� goto start

esac


next�t�� ��

case
label � l� � y� � false � false


label � l� � �y� � false� � true


label � l� � y� � bottom � t�


label � l� � �y� � bottom� � y�


label � l# � bottom


� � t�
 �� otherwise keep

�� t� unchanged
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esac


next�y�� ��

case
label � l� ' label � l" � t�


label � l# � bottom


� � y�
 �� otherwise keep

�� y� unchanged

esac


Notice that the label prc��l# corresponds to the critical sections of process �

and symmetrically� label prc��m# corresponds to the critical sections of process


�
Model checking the SMV speci�cation

There are two major properties which a mutual exclusion algorithm must possess�

First there must be at most one process in its critical section at the same time�

This is expressed in CTL as�

AG � �prc��label � l� � prc
�label � m��

In SMV this property is de�ned by

DEFINE MUTEX �� AG �prc��label � l# � prc��label � m#�

where MUTEX is simply a macro� The result of the veri�cation using SPEC MUTEX

is positive�

�� specification MUTEX is true

resources used�
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user time� ��#$��� s� system time� �������� s

BDD nodes allocated� ���%�

Bytes allocated� ��"$��#

BDD nodes representing transition relation� �#$  �

reachable states� ��� ��&���%"#�� out of �%#% ��&���%�"#�

For the moment we ignore the messages concerning BDDs� SMV uses BDDs to

represent �and store� the state space in a compact way in order to improve the

capabilities of the model checker� These techniques will be treated in Chapter 	

of these lecture notes�

A second important property of a mutual exclusion algorithm is the absence

of individual starvation� That means that it should not be possible that a process

which wants to enter its critical section can never do so� This can be formalized

in the current example in the following way

NST �� AG ��prc��label in 	l��l��l��l"�l�� �� AF prc��label � l#� �

�prc��label in 	m��m��m��m"�m�� �� AF prc��label � m#��

An alternative formulation of the intended property is

AG AF �prc��label in 	l��l��l��l"�l��� �

AG AF �prc��label in 	m��m��m��m"�m���

This states that from any state in the computation along any path the label of

process � �and 
� will be di�erent eventually from l� through l� �and m� through

m��� This implies that process � and 
 are �regularly� in their critical section�

Checking the property NST using SMV yields an error as indicated by the

following generated output�

�� specification NST is false

�� as demonstrated by the following execution sequence

�� loop starts here ��
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state ����

NST � �

MUTEX � �

t� � bottom

t� � bottom

y� � bottom

y� � bottom

prc��label � l�

prc��label � m�

state ����

�executing process prc��

state ����

�executing process prc��

t� � true

prc��label � m�

state ��"�

�executing process prc��

y� � true

prc��label � m�

state ����

�executing process prc��

prc��label � m"

state ��#�

�executing process prc��

prc��label � m�

state ����

�executing process prc��

prc��label � m#

state ��$�
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�executing process prc��

t� � bottom

y� � bottom

prc��label � m�

state ��%�

prc��label � m�

The counter�example is described as a sequence of changes to variables� If a

variable is not mentioned� then its value has not been changed� The counterex�

ample which the model checker produces indicates that there exists a loop in

which prc� repeatedly obtains access to its critical section� whereas process prc�

remains waiting forever� This should not surprise the reader� since the SMV

system can� in each step of its execution� non�deterministically select a process

�which can proceed� for execution� By always selecting one and the same process�

we obtain the behavior illustrated above� One might argue that this result is not

of much interest� since this unfair scheduling of processes is undesired� Stated

di�erently� we would like to have a scheduling mechanism in which enabled pro�

cesses  a process which can make a transition  are scheduled in a fair way�

How this can be done is explained in the following subsection�

Model checking with fairness using SMV

SMV o�ers the possibility of specifying unconditional fairness requirements by

stating �for each process��

FAIRNESS f

where f is an arbitrary CTL�formula� The interpretation of this statement is that

the model checker� when checking some speci�cation �which might di�er from

f�� will ignore any path along which f does not occur in�nitely often� Using

this construct� we can establish process fairness in the following way� In SMV

each process has a special variable running which is true if and only if the pro�

cess is currently executing� When we add FAIRNESS running to our previous
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SMV speci�cation for the mutual exclusion program� the previously obtained

execution that showed the presence of individual starvation is indeed no longer

possible �since it is unfair�� We now obtain indeed absence of individual starva�

tion� Therefore we can conclude that under the fairness assumption that each

process is executed in�nitely often� the algorithm of Peterson and Fischer does

not lead to individual starvation�

As another example of the use of the FAIRNESS construct� let us modify the

mutual exclusion algorithm slightly by allowing a process to stay in its critical

section for some longer time� Recall that the label prc��l# corresponds to process

one being in its critical section� We now change the code of MODULE P so that we

obtain�

ASSIGN
next�label� ��

case

���������

label � l# � 	l#� l��


���������

esac


Process one can now stay in its critical section in�nitely long� while blocking

process two from making any progress� Notice that adding FAIRNESS running

to the above speci�cation does not help� process two will then be scheduled for

execution� but since it is blocked� it cannot make any progress� In order to avoid

this situation we add the fairness constraint�

FAIRNESS �prc��label � l#�

This statement means that when evaluating the validity of CTL�formulas� the

path operators A and E range over the fair paths with respect to �prc��label

� l#�� Stated di�erently� the runs for which �prc��label � l#� is not valid

in�nitely often are not considered� This indeed avoids that process one remains

in its critical section forever�
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Exercises

Exercise ��� Prove the following equality�

A �pU q� � � �E �� qU �� p � � q�� � EG � p�

where p and q are atomic propositions�

Exercise �	� Assume that we have the following model�

s� s�

s� s� s�

f p� q g

f p� q g f p� r g f p g

�

where states are represented by circles� for each state s the labelling 
�s� is given beside

the circle representing s� and arrows denote relation R such that there is an arrow from

s to s� if and only if �s� s�� � R� �a� Show that this model is a CTL�model and �b� check

for each state in this model the validity of the following CTL�formulas in an informal

way �that is� using the strategy of Example ��� Justify your answers�

�� EG p

�� AG p

�� EF �AG p�

�� AF �pUEG �p � q��

�� EG ���p � q� � r�U �rUAG p��

Exercise �
� We have de�ned in this chapter the logic CTL in terms of the basic

operators EX � EU and AU � �EU and AU denote the combination of a path quanti�er
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with the �until� operator�� Another possibility is to consider the operators AG � AX

and AU as basic and to de�ne all other operators �EX � EU and EG � as derivatives

of these operators� Give a translation from an arbitrary CTL�formula into the basic

operators AG � AX and AU �

Exercise ��� Give an example CTL�model which shows that the PLTL�formula

A �FG p� �expressed as embedded CTL��formula� and the CTL�formula AFAG p are dis�

tinct�

Exercise ���

�� Prove that the function F �Z� � ��� ��  f s j � s� � R�s�  Z g is monotonic on

the complete lattice h�S ��i�

�� Given that ��EG� �� is the greatest �xed point of the function F �Z�� give an

algorithm SatEG which labels states in an arbitrary CTL�model M � �S�R� 
�

such that the postcondition of this procedure equals�

SatEG��� � f s � S j M� s j� EG� g�

Exercise ��� LetM � �S� P� 
�� where S is a set of states� P is a set of paths �where

a path is an in�nite sequence of states� and 
 is an assignment of atomic propositions

to states� If we impose the following conditions on P � then �S� P� 
� can be used as a

CTL�model�

I � � P � �
�� � P �

II �� s � � P � �� s �� � P � � � s �� � P �

Here �� �� are paths� �
�� is � where the �rst element of � is removed� and �� �� are

�nite sequences of states�

�� Give an intuitive interpretation of I and II�

�� Check whether the following sets of paths satisfy I and II� Here a� denotes an

in�nite sequence of a�s� and a� denotes a �nite �possibly empty� sequence of a�s�

Justify your answers�
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�a� f a b c� � d b e� g

�b� f a b c� � d b e� � b c�� c�� b e� � e� g

�c� f a a� b� g�

Exercise ��� Consider the CTL�model of Exercise � and compute the sets ��EF p ��

and ��EF �AG p� �� using the �xed point characterizations�

Exercise ��� Consider the mutual exclusion algorithm of the Dutch mathematician

Dekker� There are two processes P� and P�� two boolean�valued variables b� and b�

whose initial values are false� and a variable k which can take the values � and � and

whose initial value is arbitrary� The i�th process �i��� �� is described as follows� where

j is the index of the other process�

while true do

begin bi �� true�

while bj do

if k � j then begin

bi �� false�

while k � j do skip�

bi �� true

end�

h critical section i�

k �� j�

bi �� false

end

Model this algorithm in SMV� and investigate whether this algorithm satis�es the

following properties�

Mutual exclusion� two processes cannot be in their critical section at the same time�

Individual starvation� if a process wants to enter its critical section� it is eventually

able to do so�
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Hint� use the FAIRNESS running statement in your SMV speci�cation to prove these

properties in order to prohibit unfair executions �which might trivially violate these

requirements��

Exercise ��� Dekker�s algorithm is restricted to two processes� In the original mutual

exclusion algorithm of Dijkstra in �
��� another Dutch mathematician� it is assumed

that there are n � � processes� and global variables b� c � array �� � � � n� of boolean

and an integer k� Initially all elements of b and of c have the value true and the value

of k is non�deterministically chosen from the range �� �� � � � � n� The i�th process may

be represented as follows�

var j � integer�

while true do

begin b�i� �� false�

Li � if k �� i then begin c�i� �� true�

if b�k� then k �� i�

goto Li

end�

else begin c�i� �� false�

for j �� � to n do

if �j �� i � � �c�j��� then goto Li

end

h critical section i�

c�i� �� true�

b�i� �� true

end

Questions�

�a� Model this algorithm in SMV and check the mutual exclusion and individual

starvation property� In case a property is not satis�ed analyze the cause for this

invalidity by checking the generated counter�example�

�b� Start with n��� increase the number of processes gradually and compare the

sizes of the state spaces�
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Exercise ��� It is well�known that Dijkstra�s solution for N processes is unfair�

i�e� individual starvation is possible� In order to �nd a fair solution for N processes�

Peterson proposed in �
�� the following variant� Let Q�� � � � N � and T �� � � � N
�� �T

for Turn�� be two shared arrays which are initially 	 and �� respectively� The variables

i and j are local to the process with i containing the process number� The code of

process i is as follows�

for j �� � to N 
 � do

begin
Q�i� �� j�

T �j� �� i�

wait until �� k �� i� Q�k� � j� � T �j� �� i

end�

h critical Section i�

Q�i� �� 	

Check whether this is indeed a mutual exclusion program for N � �� �� �� � � � �until the

generated state space is too large to handle�� and check whether Peterson�s algorithm

is indeed free from individual starvation�
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Chapter �

Model Checking Real�Time

Temporal Logic

Time�critical systems

Temporal logics like PLTL and CTL facilitate the speci�cation of properties that

focus on the temporal order of events� This temporal order is a qualitative notion�

time is not considered quantitatively� For instance� let proposition p correspond

to the occurrence of event A� and q correspond to the occurrence of event B� Then

the PLTL�formula G  p � F q! states that event A is always eventually followed

by event B� but it does not state anything about how long the period between

the occurrences of A and B will be� This absent notion of quantitative time

is essential for the speci�cation of time�critical systems� According to the �folk

de�nition��

Time�critical systems are those systems in which correctness depends

not only on the logical result of the computation but also

on the time at which the results are produced�

That is� time�critical systems must satisfy not only functional correctness require�

ments� but also timeliness requirements� Such systems are typically characterized

by quantitative timing properties relating occurrences of events�

���
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A typical example of a time�critical system is a train crossing� once the ap�

proach of a train is detected� the crossing needs to be closed within a certain

time bound in order to halt car and pedestrian tra�c before the train reaches the

crossing� Communication protocols are another typical example of time�critical

systems� after the transmission of a datum� a retransmission must be initiated if

an acknowledgement is not received within a certain time bound� A third exam�

ple of a time�critical system is a radiation machine where patients are imposed a

high dosis of radiation during a limited time�period� a small exceed of this period

is dangerous and can cause the patient�s death�

Quantitative timing information is not only essential for time�critical systems�

but is also a necessary ingredient in order to analyze and specify the performance

aspects of systems� Typical performance�related statements like �job arrivals

take place with an inter�arrival time of �� seconds�� can only be stated if one can

measure the amount of elapsed time�

Quantitative time in temporal logics

In this chapter we treat the extension of a branching�time temporal logic with

a quantitative notion of time� We have seen in the two previous chapters that

linear and branching temporal logics are interpreted in terms of models where the

notion of states plays a central role� The most important change when switching

to quantitative time is the ability to measure time� That is� how is the notion of

time incorporated in the state�based model and how is the relationship between

states and time� As indicated by Koymans ������ there are several issues that

need to be addressed when incorporating time� The following issues� for example�

need to be addressed�

� how should time elements be represented �explicitly or implicitly��

� what is the notion of time reference �absolute or relative��

� what is the semantical time domain �discrete or continuous��

� how is time measure presented �additive or metric��
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As a result of the various ways in which these questions can be answered� a

whole spectrum of real�time temporal logics has been developed� Some important

real�time temporal logics are� Real�Time Temporal Logic �RTTL� Ostro� and

Wonham� ���	�� Metric Temporal Logic �Koymans� ������ Explicit Clock Tem�

poral Logic �Harel� Lichtenstein and Pnueli� ������ Timed Propositional Tempo�

ral Logic �Alur and Henzinger� ������ Timed Computational Tree Logic �Alur

and Dill� ����� and Duration Calculus �Chaochen� Hoare and Ravn� ������ The

�rst �ve are timed extensions of linear temporal logics� the one�but�last a real�

time branching temporal logic� and the last an interval temporal logic� a timed

extension of temporal logic that is suited for reasoning about time intervals� The

purpose of these lecture notes is neither to discuss all possible variants nor to

compare the merits or drawbacks of these approaches�

Choice of time domain

One of the most important issues is the choice of the semantical time domain�

Since time  as in Newtonian physics  is of continuous nature� the most obvi�

ous choice is a continuous time domain like the real numbers� For synchronous

systems� for instance� in which components proceed in a �lock�step� fashion�

discrete time domains are appropriate� A prominent example of discrete�time

temporal logics is RTTL� For synchronous systems one could alternatively con�

sider to use ordinary temporal logic where the next operator is used as a means

to �measure� the discrete advance of time� In a nutshell this works as follows�

The basic idea is that a computation can be considered as a sequence of states

where each transition from one state to the next state in the sequence can be

thought of as a single tick of some computation clock� That is� X � is valid if

after one tick of the clock � holds� Let Xk be a sequence of k consecutive next

operators de�ned by X�� � � and Xk��� � Xk�X�� for k � �� The requirement

that the maximal delay between event A and event B is at most �
 time�units

then amounts to specifying

G  p � X
���q!
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where X�k� is an abbreviation of the �nite disjunction X�� � � � � � Xk��� and

p� q correspond to the occurrences of A and B� respectively� �As an aside re�

mark� the introduction of the Xk�operator makes the satis�ability problem for

timed linear temporal logic EXPSPACE�hard�� Since we do not want to restrict

ourselves to synchronous systems we consider a real�valued time�domain in these

lecture notes� This allows for a more accurate speci�cation of non�synchronous

systems�

Model checking timed CTL

Suitability as speci�cation language has originally been the driving force for the

development of most real�time temporal logics� With the exception of the work

by Alur and co�authors in the early nineties� automatic veri�cation of real�time

properties has not directly been the main motivation� This interest has increased

signi�cantly later �and is still increasing�� Introducing time into a temporal

logic must be carried out in a careful way in order to keep the model�checking

problem be decidable� We concentrate on the temporal logic Timed CTL �TCTL�

for short�� for which model checking is decidable �Alur� Courcoubetis # Dill�

������ This is a real�time branching temporal logic that represents time elements

implicitly� supports relative time references� and is interpreted in terms of an

additive� continuous time domain �i�e� IR�� the non�negative real numbers�� The

basic idea of Timed CTL is to allow simple time constraints as parameters of the

usual CTL temporal operators� In Timed CTL we can� for instance� specify that

the maximal delay between event A and event B is �
 time�units by

AG  p � AF��� q!

where as before proposition p �q� corresponds to the occurrence of event A �B��

Timed CTL is a real�time extension of CTL for which model checking algorithms

and several tools do exist�

The main di�culty of model�checking models in which the time domain is

continuous is that the model to be checked has in�nitely many states  for each

time value the system can be in a certain state� and there are in�nitely many of
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those values� This suggests that we are faced with an undecidable problem� In

fact� the major question in model checking real�time temporal logics that must

be dealt with is how to cope with this in�nite state space� Since the solution to

this key problem is rather similar for linear and branching temporal logics we

treat one case� Timed CTL�

The essential idea to perform model checking on a continuous time�domain

is to realize a discretization of this domain on�demand�

i�e� depending on the property to be proven and the system model�

As a speci�cation formalism for real�time systems we introduce the notion of

timed automata� an extension of �nite�state automata with clocks that are used to

measure time� Since their conception �Alur # Dill� ������ timed automata have

been used for the speci�cation of various types of time�critical systems� ranging

from communication protocols to safety�critical systems� In addition� several

model checking tools have been developed for timed automata� The central topic

of the chapter will be to develop a model checking algorithm that determines the

truth of a TCTL�formula with respect to a timed automaton�

Model checking real�time linear temporal logics

As we will see in this chapter the model�checking algorithm is strongly based

on the labelling procedures that we introduced for automatically verifying CTL

in Chapter �� Although we will not deal with real�time linear temporal logics

here� we like to mention that model checking of such logics  if decidable  is

possible using the same paradigm as we have used for untimed linear temporal

logics� namely B�uchi automata� Alur and Henzinger ������ have shown that

using a timed extension of B�uchi automata� model checking of an appropriate

timed propositional linear temporal logic is feasible� Based on these theoretical

results� Tripakis and Courcoubetis ������ have constructed a prototype of a real�

time extension of Spin� the tool that we have used to illustrate model checking

PLTL in Chapter 
� The crux of model checking real�time PLTL is to transform a

timed B�uchi automaton Asys into a discretized variant� called a region automaton�
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R�Asys�� Then the scheme proceeds as for PLTL� a timed B�uchi automaton A� �

is constructed for the property � to be checked� and subsequently the emptiness

of the product region automaton R�Asys � A� �� is checked� This algorithm

uses polynomial space� The transformation of a B�uchi automaton into its region

automaton is based on an equivalence relation that is identical to the one used

in the branching�time approach in this chapter� If A has n states �actually�

locations� and k clocks� then R�A� has n � 
O
klog c� � O�
k � k�� states� where c is

the largest integer constant occurring in A with which clocks are compared�

��� Timed automata

Timed automata are used to model �nite�state real�time systems� A timed au�

tomaton is in fact a �nite�state automaton equipped with a �nite set of real�valued

clock variables� called clocks for short� Clocks are used to measure the elapse of

time�

De�nition ��� �Clock�

A clock is a variable ranging over IR��

In the sequel we will use x� y and z as clocks� A state of a timed automaton

consists of the current location of the automaton plus the current values of all

clock variables�� Clocks can be initialized �to zero� when the system makes a

transition� Once initialized� they start incrementing their value implicitly� All

clocks proceed at the same rate� The value of a clock thus denotes the amount of

time that has been elapsed since it has been initialized� Conditions on the values

of clocks are used as enabling conditions of transitions� only if the clock constraint

is ful�lled� the transition is enabled� and can be taken� otherwise� the transition

is blocked� Invariants on clocks are used to limit the amount of time that may

be spent in a location� Enabling conditions and invariants are constraints over

clocks�

De�nition �	� �Clock constraints�

�Note the �deliberate� distinction between location and state�
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For set C of clocks with x� y � C� the set of clock constraints over C� +�C�� is

de�ned by

� ��� x � c j x
 y � c j �� j �� � ��

where c � IN and � � f��� g�

Throughout this chapter we use typical abbreviations such as x � c for � �x �

c� and x � c for x � c � x � c� and so on� We could allow addition of constants

in clock constraints like x � c"d for d � IN� but addition of clock variables�

like in x"y � �� would make model checking undecidable� Also if c could be a

real number� then model checking a timed temporal logic that is interpreted in

a dense time domain  as in our case  becomes undecidable� Therefore� c is

required to be a natural� Decidability is not a�ected if the constraint is relaxed

such that c is allowed to be a rational number� In this case the rationals in each

formula can be converted into naturals by suitable scaling� see also Example ���

De�nition �
� ��Safety� timed automaton�

A timed automaton A is a tuple �L� l�� E�Label� C� clocks� guard� inv� with

� L� a non�empty� �nite set of locations with initial location l� � L

� E � L� L� a set of edges

� Label � L 
� 
AP� a function that assigns to each location l � L a set

Label�l� of atomic propositions

� C� a �nite set of clocks

� clocks � E 
� 
C � a function that assigns to each edge e � E a set of clocks

clocks�e�

� guard � E 
� +�C�� a function that labels each edge e � E with a clock

constraint guard�e� over C� and

� inv � L 
� +�C�� a function that assigns to each location an invariant�
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The function Label has the same role as for models for CTL and PLTL and

associates to a location the set of atomic propositions that are valid in that

location� As we will see� this function is only relevant for de�ning the satisfaction

of atomic propositions in the semantics of TCTL� For edge e� the set clocks�e�

denotes the set of clocks that are to be reset when traversing e� and guard�e�

denotes the enabling condition that speci�es when e can be taken� For location

l� inv�l� constrains the amount of time that can be spent in l�

For depicting timed automata we adopt the following conventions� Circles

denote locations and edges are represented by arrows� Invariants are indicated

inside locations� unless they equal %true�� i�e� if no constraint is imposed on delay�

ing� Arrows are equipped with labels that consist of an optional clock constraint

and an optional set of clocks to be reset� separated by a straight horizontal line� If

the clock constraint equals %true� and if there are no clocks to be reset� the arrow

label is omitted� The horizontal line is omitted if either the clock constraint is

%true� or if there are no clocks to be reset� We will often omit the labelling Label

in the sequel� This function will play a role when discussing the model checking

algorithm only� and is of no importance for the other concepts to be introduced�

Example ��� Figure ���a� depicts a simple timed automaton with one clock x

and one location l with a self�loop� The self�transition can be taken if clock x has

at least the value �� and when being taken� clock x is reset� Initially� clock x has

the value �� Figure ���b� gives an example execution of this timed automaton�

by depicting the value of clock x� Each time the clock is reset to �� the automaton

moves from location l to location l� Due to the invariant �true� in l� time can

progress without bound while being in l�

Changing the timed automaton of Figure ���a� slightly by incorporating an

invariant x � � in location l� leads to the e	ect that x cannot progress without

bound anymore� Rather� if x � 
 �enabling constraint� and x � � �invariant� the

outgoing edge must be taken� This is illustrated in Figure ���c� and �d��

Observe that the same e	ect is not obtained when strengthening the enabling

constraint in Figure ���a� into 
 � x � � while keeping the invariant �true� in

l� In that case� the outgoing edge can only be taken when 
 � x � � �as in the

previous scenario�� but is not forced to be taken� i�e� it can simply be ignored by
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Figure ���� A timed automaton with one clock and a sample evolution of it
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letting time pass while staying in l� This is illustrated in Figure ���e� and �f��

�End of example��

We like to emphasize that di�erent clocks can be started at di�erent times�

and hence there is no lower bound on their di�erence� This is� for instance� not

possible in a discrete�time model� where the di�erence between two concurrent

clocks is always a multiple of one unit of time� Having multiple clocks thus allows

to model multiple concurrent delays� This is exempli�ed in the following example�

Example ��� Figure ����a� depicts a timed automaton with two clocks� x and

y� Initially� both clocks start running from value � on� until one time�unit has

passed� From this point in time� both edges are enabled and can be taken non�

deterministically� As a result� either clock x or clock y is reset� while the other

clock continues� It is not di�cult to see that the di	erence between clocks x and

y is arbitrary� An example evolution of this timed automaton is depicted in part

�b� of the �gure� �End of example��

clock x

clock y

l
�a�

y � 


f y g

x � 


f x g



�

time


 � � � ��

�b�

clock

value

Figure ��
� A timed automaton with two clocks and a sample evolution of it

Example ��� Figure ��� shows a timed automaton with two locations� named

o
 and on� and two clocks x and y� All clocks are initialized to � if the initial

location o
 is entered� The timed automaton in Figure ��� models a switch that

controls a light� The switch may be turned on at any time instant since the light

has been switched on for at least two time units� even if the light is still on� It
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o� on

x � 


f x g

x � 


f x� y g

y � �

f x g

Figure ���� A timed automaton example� the switch

switches automatically o	 exactly � time�units after the most recent time the light

has turned from o	 to on� Clock x is used to keep track of the delay since the last

time the light has been switched on� The edges labelled with the clock constraint

x � 
 model the on�switching transitions� Clock y is used to keep track of the

delay since the last time that the light has moved from location o
 to on� and

controls switching the light o	� �End of example��

In the above examples we have already shown how clocks evolve� The values

of clocks are formally de�ned by clock valuations�

De�nition ��� �Clock valuation�

A clock valuation v for a set of clocks C is a function v � C 
� IR�� assigning to

each clock x � C its current value v�x��

Let V �C� denote the set of all clock valuations over C� A state of A is a pair

�l� v� with l a location in A and v a valuation over C� the set of clocks of A�

Example ��� Consider the timed automaton of Figure ���� Some states of this

timed automaton are the pairs �o
� v� with v�x� � v�y� � � and �o
� v�� with

v��x� � � and v��y� � �� and �on� v��� with v���x� � Label and v���y� � �� Note

that the latter state is not reachable� �End of example��

Let v be a clock valuation on set of clocks C� Clock valuation v"t denotes

that all clocks are increased by t with respect to valuation v� It is de�ned by

�v"t��x� � v�x� " t for all clocks x � C� Clock valuation reset x in v� valuation
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v with clock x reset� is de�ned by

�reset x in v��y� �
�
v�y� if y �� x

� if y � x�

Nested occurrences of reset are typically abbreviated� For instance� reset x in

�reset y in v� is simply denoted reset x� y in v�

Example �� Consider the clock valuations v and v� of the previous exam�

ple� Valuation v"� is de�ned by �v"���x� � �v"���y� � �� In clock valuation

reset x in �v"��� clock x has value � and clock y reads �� Clock valuation v� now

equals �reset x in �v"��� " �� �End of example��

We can now formally de�ne what it means for a clock constraint to be valid or

not� This is done in a similar way as characterizing the semantics of a temporal

logic� namely by de�ning a satisfaction relation� In this case the satisfaction

relation j� is a relation between clock valuations �over set of clocks C� and clock

constraints �over C��

De�nition ��� �Evaluation of clock constraints�

For x� y � C� v � V �C� and let �� � � +�C� we have

v j� x � c i� v�x� � c

v j� x
 y � c i� v�x�
 v�y� � c

v j� �� i� v �j� �

v j� � � � i� v j� � � v j� ��

For negation and conjunction� the rules are identical to those for propositional

logic� In order to check whether x � c is valid in v� it is simply checked whether

v�x� � c� Similarly� constraints on di�erences of clocks are treated�

Example ��� Consider clock valuation v� v"� and reset x in �v " �� of the

previous example and suppose we want to check the validity of � � x � 	 and of

� � �x 
 y � ��� It follows v j� � and v j� �� since v�x� � v�y� � �� We have
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v"� �j� � since �v"���x� � � �� 	 and v"� j� � since �v"���x� � �v"���y� � ��

The reader is invited to check that reset x in �v"�� j� �� but reset x in �v"�� �j� ��

�End of example��

��� Semantics of timed automata

The interpretation of timed automata is de�ned in terms of an in�nite transition

system �S�
�� where S is a set of states� i�e� pairs of locations and clock valua�

tions� and 
� is the transition relation that de�nes how to evolve from one state

to another� There are two possible ways in which a timed automaton can pro�

ceed� by traversing an edge in the automaton� or by letting time progress while

staying in the same location� Both ways are represented by a single transition

relation 
��

De�nition ��� �Transition system underlying a timed automaton�

The transition system associated to timed automaton A� denoted M�A�� is de�

�ned as �S� s��
�� where�

� S � f �l� v� � L� V �C� j v j� inv�l� g

� s� � �l�� v�� where v��x� � � for all x � C

� the transition relation 
�� S � �IR� � f � g�� S is de�ned by the rules�

�� �l� v�

�

� �l�� reset clocks�e� in v� if the following conditions hold�

�a� e � �l� l�� � E

�b� v j� guard�e�� and

�c� �reset clocks�e� in v� j� inv�l��


� �l� v�

d

� �l� v"d�� for positive real d� if the following condition holds�

� d� � d� v"d� j� inv�l��

The set of states is the set of pairs �l� v� such that l is a location of A and v is

a clock valuation over C� the set of clocks in A� such that v does not invalidate


�
 Model Checking Real�Time Temporal Logic

the invariant of l� Note that this set may include states that are unreachable�

For a transition that corresponds to �a� traversing edge e in the timed automa�

ton it must be that �b� v satis�es the clock constraint of e �otherwise the edge is

disabled�� and �c� the new clock valuation� that is obtained by resetting all clocks

associated to e in v� satis�es the invariant of the target location l� �otherwise it

is not allowed to be in l��� Idling in a location �second clause� for some posi�

tive amount of time is allowed if the invariant is respected while time progresses�

Notice that it does not su�ce to only require v"d j� inv�l�� since this could inval�

idate the invariant for some d� � d� For instance� for inv�l� � �x � 
� � �x � ��

and state �l� v� with v�x� � ��	 it should not be allowed to let time pass with

� time�units� although the resulting valuation v"� j� inv�l�� the intermediate

valuation v"
� for instance� invalidates the clock constraint�

De�nition ��� �Path�

A path is an in�nite sequence s� a� s� a� s� a� � � � of states alternated by transition

labels such that si
ai
� si�� for all i � ��

Note that labels can either be ) in case of traversing an edge in the timed

automaton� or �positive� real numbers in case of delay transition� The set of

paths starting in a given state is de�ned as before� A position of a path is a pair

�i� d� such that d equals � if ai � �� i�e� in case of an edge�transition� and equals

ai otherwise� The set of positions of the form �i� d� characterizes the set of states

visited by � while going from state si to the successor si��� Let Pos��� denotes

the set of positions in �� For convenience� let ��i� d� denote the state �si� vi"d��

A total order on positions is de�ned by�

�i� d� � �j� d�� if and only if i � j � �i � j � d � d���

That is� position �i� d� precedes �j� d�� if li is visited before lj in �� or if the

positions point to the same location and d is at most d��

In order to �measure� the amount of time that elapses on a path� we introduce�

De�nition ��� �Elapsed time on a path�

For path � � s�
a�
� s�
a�
� � � � and natural i� the time elapsed from s� to si�
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denoted ,��� i� is de�ned by�

,��� �� � �

,��� i"�� � ,��� i� "
�

� if ai � �

ai if ai � IR��

Path � is called time�divergent if limi�� ,��� i� � �� The set of time�

divergent paths starting at state s is denoted P�
M�s�� An example of a non time�

divergent path is a path that visits an in�nite number of states in a bounded

amount of time� For instance� the path

s�
���


� s�
���


� s�
���


� s� � � �

is not time�divergent� since an in�nite number of states is visited in the bounded

interval  �
�
� �!� Since such paths are not realistic� usually non�Zeno timed au�

tomata are considered�

De�nition ��� �Non�Zeno timed automaton�

A timed automaton A is called non 
 Zeno if from any of its states some time�

divergent path can start�

Example ��� Recall the light switch from Example ���

o� on

x � 


f x g

x � 


f x� y g

y � �

f x g
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A pre�x of an example path of the switch is

� � �o
� v��

�

� �o
� v��

�

� �on� v��

�

� �on� v��

�

� �on� v��

�

� �on� v��

�

� �on� v	�

�

� �on� v��

�

� �o
� v� � � �

with v��x� � v��y� � �� v� � v�"�� v� � reset x� y in v�� v� � v�"�� v� �

reset x in v�� v� � v�"�� v	 � v�"
� v� � v	"
 and v � reset x in v�� These

clock valuations are summarized by the following table�

v� v� v� v� v� v� v	 v� v

x � � � � �  � � �

y � � � � � � � � �

The transition �o
� v��

�

� �on� v�� is� for instance� possible since �a� there is an

edge e from o
 to on� �b� v� j� x � 
 since v��x� � �� and �c� v� j� inv�on�� The

positions of � are ������ ����� ������ ������ ����� ������ ������ ������ respectively�

We have� for instance� ��� �� � �	� 
�� In addition ,��� �� � � and ,��� �� � �
�

Another possible evolution of the switch is to stay in�nitely long in location

o
 by making in�nitely many delay transitions� Although at some point� i�e�

if v�x� � 
 the edge to location on is enabled� it can be ignored continuously�

Similarly� the switch may stay arbitrarily long in location on� These behaviors

are caused by the fact that inv�o
 � � inv�on� � true� If we modify the switch

such that inv�o
 � becomes y � � while inv�on� remains true� the aforementioned

path � is still legal� In addition� the light may stay in�nitely long in location o
  

while awaiting a person that pushes the button  it must switch o	 automatically

if during � time�units the automaton has not switched from o
 to on� �End of

example��

��� Syntax of TCTL

Let A be a timed automaton� AP a set of atomic propositions and D a non�

empty set of clocks that is disjoint from the clocks of A� i�e� C �D � �� z � D
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is sometimes called a formula clock� Since clocks form a part of the syntax of the

logic� the logic is sometimes referred to as explicit�clock temporal logic�

De�nition ��� �Syntax of timed computation tree logic�

For p � AP� z � D� and � � +�C � D�� the set of TCTL�formulas is de�ned by�

� ��� p j � j �� j � � � j z in � j E  �U�! j A  �U�!�

Notice that � is a clock constraint over formula clocks and clocks of the timed

automaton� it allows� for instance� the comparison of a formula clock and an

automaton clock� The boolean operators true� false� � � � and � are de�ned

in the usual way �see Chapter 
�� Clock z in z in � is called a freeze identi�er

and bounds the formula clock z in �� The intuitive interpretation is that z in �

is valid in state s if � holds in s where clock z starts with value � in s� For

instance� z in �z � �� is a valid statement� while z in �z � �� is not� The use

of this freeze identi�er is very useful in combination with until�constructions to

specify typical timeliness requirements like punctuality� bounded response� and so

on� Typically� one is not interested in formulas where formula clocks from D are

free� that is� not bound� For simplicity we therefore consider all TCTL�formulas

to be closed from now on� This means� for instance� that formulas like x � 
 and

z in �z 
 y � �� are illegal if x� y are formula clocks �i�e� x� y � D�� x in �x � 
�

and z in �y in �z 
 y � ��� are legal formulas� however�

Like for CTL� the basic operators of TCTL are until�formulas with existential

and universal quanti�cation over paths� EF � EG � and so on� are derivatives of

these until�formulas like before� Notice that there are no timed variants of EX and

AX in TCTL� The reason for this will become clear when we treat the semantics

of the logic� The binding of the operators is identical to that of CTL�

Using the freeze identi�er� temporal operators of CTL like E  �U�!� EF� and

so on� can be equipped with a time constraint in a succinct way� For instance�

the formula

A  �U�� �!
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intuitively means that along any path starting from the current state� the prop�

erty � holds continuously until within � time�units � becomes valid� It can be

de�ned by

z in A  �� � z � ��U�!�

Alternatively� the formula

EF�� �

means that along some path starting from the current state� the property �

becomes valid within 	 time�units� and is de�ned by

z in EF �z � 	 � ��

where EF is de�ned as before� Stated otherwise� EF�c � denotes that a ��state is

reachable within c time�units� The dual expression� AF�c � is valid if all execu�

tions lead to a ��state within c time�units�

Example ��� Let AP � f b � �� b � 
� b � � g be a set of atomic proposi�

tions� Example TCTL�formulas are� E  �b � 
�U��� �b � ��!� AF�� �b � 
�� and

EF��  EF�� �b � ��!� Formula AX ���b � �� is not a TCTL�formula since there

is no next operator in the logic� The formula AF�� �b � 
� is not a legal TCTL�

formula� since � �� IN� For the same reason AF� �
�

 AG� �
�

�b � 
�! is also not

allowed� Using appropriate scaling� however� this formula can be converted into

the legal TCTL�formula AF��  AG�	 �b � 
�!� �End of example��

Notice that it is not allowed to write a bounded response time property like

�there exists some unknown time t such that if � holds� then before time t prop�

erty � holds�� For instance�

 t� z in �AG��  �b � �� � AF �z � t � b � ��!��

Such quanti�cations over time makes model checking undecidable�
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��� Semantics of TCTL

Recall that the interpretation of temporal logic is de�ned in terms of a model�

For PLTL such a model consists of a �non�empty� set S of states� a total successor

function R on states� and an assignment Label of atomic propositions to states�

For CTL the function R is changed into a relation in order to take the branching

nature into account� For TCTL� in addition� the notion of real�time has to be

incorporated� This is needed in order� for instance� to be able to obtain a formal

interpretation of formulas of the form zin� that contain time constraints� The

basic idea is to consider a state� i�e� a location and a clock valuation� The location

determines which atomic propositions are valid �using the labelling Label�� while

the clock valuation is used to determine the validity of the clock constraints in

the formula at hand� Since clock constraints may contain besides clocks of the

automaton� formula clocks� an additional clock valuation is used to determine

the validity of statements about these clocks� Thus� the validity is de�ned for a

state s � �l� v� and formula clock valuation w� We will use v � w to denote the

valuation that for automata clock x equals v�x� and for formula clock z equals

w�z��
The semantics of TCTL is de�ned by a satisfaction relation �denoted j�� that

relates a transition system M� state �i�e� a location plus a clock valuation over

the clocks in the automaton�� a clock valuation over the formula clocks occurring

in �� and a formula �� We write �M� �s� w�� �� � j� by M� �s� w� j� �� We have

M� �s� w� j� � if and only if � is valid in state s of model M under formula clock

valuation w�

State s � �l� v� satis�es � if the �extended� state �s� w� satis�es � where w is

a clock valuation such that w�z� � � for all formula clocks z�

De�nition ��� �Semantics of TCTL�

Let p � AP be an atomic proposition� � � +�C � D� a clock constraint over

C �D� M � �S�
�� an in�nite transition system� s � S� w � V �D�� and �� �
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TCTL�formulae� The satisfaction relation j� is de�ned by�

s� w j� p i� p � Label�s�

s� w j� � i� v � w j� �

s� w j� �� i� � �s� w j� ��

s� w j� � � � i� �s� w j� �� � �s� w j� ��

s� w j� z in � i� s� reset z in w j� �

s� w j� E  �U�! i�  � � P�
M�s��  �i� d� � Pos����

���i� d�� w",��� i� j� � �

�� �j� d�� � �i� d�� ��j� d��� w",��� j� j� � � ���

s� w j� A  �U�! i� � � � P�
M�s��  �i� d� � Pos����

����i� d�� w",��� i�� j� � �

�� �j� d�� � �i� d�� ���j� d��� w",��� j�� j� � � ����

For atomic propositions� negations and disjunctions� the semantics is de�ned

in a similar way as before� Clock constraint � is valid in �s� w� if the values of the

clocks in v� the valuation in s� and w satisfy �� Formula z in � is valid in �s� w�

if � is valid in �s� w�� where w� is obtained from w by resetting z� The formula

E  �U�! is valid in �s� w� if there exists a time�divergent path � starting in s�

that satis�es � at some position� and satis�es � � � at all preceding positions�

The reader might wonder why it is not required  like in the untimed variants of

temporal logic we have seen before  that just � holds at all preceding positions�

The reason for this is the following� Assume i � j� d � d� and suppose � does

not contain any clock constraint� Then� by de�nition �i� d� � �j� d��� Moreover�

if i � j it means that the positions �i� d� and �j� d�� point to the same location in

the timed automaton� But then� the same atomic propositions are valid in �i� d�

and �j� d��� and� since � does not contain any clock constraint� the validity of �

in �i� d� and �j� d�� is the same� Thus� delaying in locations forces us to use this

construction�

Consider now� for instance� the formula E  �U��� �! and state s in M� This

formula means that there exists an s�path which has an initial pre�x that lasts at

most �
 units of time� such that � holds at the end of the pre�x and � holds at all

intermediate states� Formula A  �U��� �! requires this property to be valid for all

paths starting in s� The formulae E  �U�� �! and A  �U�� �! are abbreviated by
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E  �U�! and A  �U�!� respectively� This corresponds to the fact that the timing

constraint � � is not restrictive�

For PLTL the formula F �� � �� implies F� � F�� but the reverse impli�

cation does not hold �the interested reader is invited to check this�� Similarly�

in CTL we have that AF �� � �� implies AF� � AF�� but not the other way

around� Due to the possibility of requiring punctuality� the validity of a property

at a precise time instant� we obtain for AF�c �� � �� also the implication in the

other direction�

AF�c �� � �� 	 �AF�c � � AF�c ��

This can be formally proven as follows�

s� w j� AF�c �� � ��

� f de�nition of AF�c g

s� w j� A  trueU�c �� � ��!

� f de�nition of U�c � let z be a %fresh� clock g

s� w j� z in A  trueU �z � c � � � ��!

� f semantics of z in � g

s� reset z in w j� A  trueU �z � c � � � ��!

� f semantics of A  �U�!� true is valid in any state g

� � � P�
M�s��  �i� d� � Pos����

���i� d�� �reset z in w�",��� i� j� �z � c � � � ���

� f predicate calculus g

� � � P�
M�s��  �i� d� � Pos����

���i� d�� �reset z in w�",��� i� j� �z � c � �� � �z � c � ���

� f semantics of � g

� � � P�
M�s��  �i� d� � Pos����

����i� d�� �reset z in w�",��� i� j� �z � c � ���

� ���i� d�� �reset z in w�",��� i� j� �z � c � ���

� f semantics of A  �U�!� true is valid in any state g

s� reset z in w j� A  trueU �z � c � ��!
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� s� reset z in w j� A  trueU �z � c � ��!

� f semantics of z in � g

s� w j� z in A  trueU �z � c � ��! � s� w j� z in A  trueU �z � c � ��!

� f de�nition of U�c � de�nition of AF�c g

s� w j� AF�c � � s� w j� AF�c �

� f semantics of � g

s� w j� �AF�c � � AF�c ���

The reader is invited to check that this equivalence only holds for the timing

constraint � c� but not for the others� Intuitively this stems from the fact that

in AF�c �� � �� we not only require that eventually � � � hold� but also at

exactly the same time instant� But then also AF�c � and AF�c �� Since conditions

like � c� � c� and so on� do not single out one time instant a similar reasoning

does not apply to the other cases�

Extending the expressivity of CTL with real�time aspects in a dense time�

setting has a certain price to pay� Recall that the satis�ability problem of a logic

is as follows� does there exist a model M �for that logic� such that M j� � for

a given formula �� For PLTL and CTL satis�ability is decidable� but for TCTL

it turns out that the satis�ability problem is highly undecidable� Actually� for

most real�time logics the satis�ability problem is undecidable� Alur # Henzinger

������ showed that only a very weak arithmetic over a discrete time domain can

result in a logic for which satis�ability is decidable�

Another di�erence with the untimed variant is the extension with past oper�

ators� operators that refer to the history rather than to the future �like F� U and

G�� Some example past operators are previous �the dual of next�� and since �the

dual of until�� It is known that extending CTL and PLTL with past operators

does not enhance their expressivity� the major reason for considering these oper�

ators for these logics is to improve speci�cation convenience  some properties

are easier to specify when past operators are incorporated� For TCTL� however�

this is not the case� extending TCTL �actually� any temporal logic interpreted

over a continuous domain� with past operators extends its expressivity �Alur #

Henzinger� ���
�� Model checking such logics is however still possible using a

natural accommodation� and the worst case complexity is not increased�
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��� Specifying timeliness properties in TCTL

In this section we treat some typical timeliness requirements for time�critical

systems and formally specify these properties in TCTL�

�� Promptness requirement� speci�es a maximal delay between the occurrence

of an event and its reaction� For example� every transmission of a message

is followed by a reply within 	 units of time� Formally�

AG  send�m� � AF�� receive �rm�!

where it is assumed that m and rm are unique� and that send�m� and

receive�rm� are valid if m is being sent� respectively if rm is being received�

and invalid otherwise�


� Punctuality requirement� speci�es an exact delay between events� For in�

stance� there exists a computation during which the delay between trans�

mitting m and receiving its reply is exactly �� units of time� Formally�

EG  send�m� � AF��� receive �rm�!

�� Periodicity requirement� speci�es that an event occurs with a certain pe�

riod� For instance� consider a machine that puts boxes on a moving belt

that moves with a constant speed� In order to maintain an equal distance

between successive boxes on the belt� the machine is required to put boxes

periodically with a period of 
	 time�units� say� Naively� one is tempted to

specify this periodic behavior by

AG  AF��� putbox!

where the atomic proposition putbox is valid if the machine puts a box on

the belt� and invalid otherwise� This formulation does� however� allow to

put additional boxes on the belt in between two successive box placings

that have a spacing of 
	 time�units� For instance� a machine that puts

boxes at time instant 
	� 	�� �	� � � � and at time ��� �	� ��� � � � on the
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belt� satis�es the above formulation� A more accurate formulation of our

required periodicity requirement is�

AG  putbox � � putboxU��� putbox!

This requirement speci�es a delay of 
	 time�units between two succes�

sive box placings� and in addition� requires that no such event occurs in

between��

�� Minimal delay requirement� speci�es a minimal delay between events� For

instance� in order to ensure the safety of a railway system� the delay between

two trains at a crossing should be at least ��� time units� Let tac be

an atomic proposition that holds when the train is at the crossing� This

minimal delay statement can be formalized by�

AG  tac � � tacU��� tac!

The reason for using the until�construct is similar to the previous case for

periodicity�

	� Interval delay requirement� speci�es that an event must occur within a

certain interval after another event� Suppose� for instance� that in order

to improve the throughput of the railway system one requires that trains

should have a maximal distance of ��� time�units� The safety of the train

system must be remained� Formally� we can easily extend the previous

minimal delay requirement�

AG  tac � �� tacU��� tac � � tacU���� tac�!

Alternatively� we could write

AG  tac � � tacU��� �AF���� tac�!

It speci�es that after a train at the crossing it lasts ��� time units �the safety

requirement� before the next train arrives� and in addition this next train

arrives within �
�"������� time�units �the throughput requirement��

�The reader might wonder why such construction is not used for the punctuality requirement�

This is due to the fact that rm is unique� so receive�rm� can be valid at most once� This is not

true for the predicate putbox� since putting boxes on the belt is supposed to be a repetitive

activity�
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��� Clock equivalence� the key to model check


ing real time

The satisfaction relation j� for TCTL is not de�ned in terms of timed automata�

but in terms of in�nite transition systems� The model checking problem for

timed automata can easily be de�ned in terms of M�A�� the transition system

underlying A �cf� De�nition �
�� Let the initial state of M�A� be s� � �l�� v��

where l� is the initial location of A and v� the clock valuation that assigns value

� to all clocks in A� We can now formalize what it means for a timed automaton

to satisfy a TCTL�formula�

De�nition �	� �Satis�ability for a timed automaton�

For TCTL�formula � and timed automaton A let

A j� � if and only if M�A�� �s�� w�� j� �

where w��y� � � for all formula clocks y�

The model checking problem that we are interested in is to check whether a

given timed automaton A satis�es some TCTL�formula �� According to the last

de�nition� this amounts to check whether M�A�� �s�� w�� j� �� The basis for the

model checking of A is thus the transition system M�A�� The main problem�

however� is that the state space of M�A�� the set L � V �C�� is in�nite� This is

exempli�ed by means of the following example�

l�

l� l� l� l�

x � �

l�

l�x � �

� � � � � �

x �  x � �	 x � � x � �

� � � � � �

gives rise to the

in�nite transition system�
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How can we e�ectively check whether a given formula is valid for M�A�� if an

in�nite number of states has to be considered�

From the above treatment of timed automata it is evident that the number

of states of a timed automaton is in�nite� The key idea by Alur and Dill ������

that facilitates model checking of timed automata �and similar structures� is to

introduce an appropriate equivalence relation� � say� on clock valuations such

that

Correctness equivalent clock valuations satisfy the same TCTL�formulas� and

Finiteness the number of equivalence classes under � is �nite�

The second property allows to replace an in�nite set of clock valuations by a �nite

set of �sets of� clock valuations� In addition� the �rst property guarantees that

for model M these clock valuations satisfy the same TCTL�formulas� That is to

say� there does not exist a TCTL�formula that distinguishes the in�nite�state and

its equivalent �nite�state clock valuation� Formally� for any timed automaton A�

this amounts to�

M�A�� ��l� v�� w� j� � if and only if M�A�� ��l� v��� w�� j� �

for v � w � v� � w��

The key observation that leads to the de�nition of this equivalence relation

� is that paths of timed automaton A starting at states which

� agree on the integer parts of all clock values� and

� agree on the ordering of the fractional parts of all clocks

are very similar� In particular� since time constraints in TCTL�formulas only refer

to natural numbers� there is no TCTL�formula that distinguishes between these

�almost similar� runs� Roughly speaking� two clock valuations are equivalent if

they satisfy the aforementioned two constraints� Combined with the observation

that
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� if clocks exceed the maximal constant with which they are compared� their

precise value is not of interest

the amount of equivalence classes thus obtained is not only denumerable� but

also �nite�

Since the number of equivalence classes is �nite� and the fact that equivalent

TCTL�models of timed automata satisfy the same formulas� this suggests to per�

form model checking on the basis of these classes� The �nite�state model that

thus results from timed automaton A is called its region automaton� Accordingly�

equivalence classes under � are called regions� Model checking a timed automa�

ton thus boils down to model checking its associated �nite region automaton�

This reduced problem can be solved in a similar way as we have seen for model

checking the branching temporal logic CTL in the previous chapter  by itera�

tively labelling states with sub�formulas of the property to be checked� as we will

see later on� Thus� roughly speaking

Model checking a timed automaton against a TCTL�formula amounts to

model checking its region automaton against a CTL�formula�

In summary we obtain the scheme in Table ��� for model checking the TCTL�

formula � over the timed automaton A� Here we denote the equivalence class of

clock valuation v under � by  v!� �As we will see later on� the region automaton

also depends on the clock constraints in the formula to be checked� but this

dependency is omitted here for reasons of simplicity��

�� Determine the equivalence classes �i�e� regions� under �


� Construct the region automaton R�A�

�� Apply the CTL�model checking procedure on R�A�

�� A j� � if and only if  s�� w�! � SatR����

Table ���� Basic recipe for model checking TCTL over timed automata

In the next section we address the construction of the region automatonR�A��

We start by discussing in detail the notion of equivalence� indicated above� Since
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this notion of equivalence is of crucial importance for the approach we extensively

justify its de�nition by a couple of examples�

In the sequel we adopt the following notation for clock valuations� For clock

valuation v � C 
� IR� and clock x � C let v�x� � bxc " frac�x�� that is� bxc

is the integral part of the clock value of x and frac�x� the fractional part� For

instance� for v�x� � 
���� we have bxc � 
 and frac�x� � ������ The justi�cation

of the equivalence relation � on clock valuations proceeds by four observations�

that successively lead to a re�nement of the notion of equivalence� Let v and v�

be two clock valuations de�ned on the set of clocks C�

l� l�

x � �

fx g

Figure ���� Clock valuations that agree on integer parts are equivalent

First observation� consider the timed automaton depicted in Figure ��� and

the following states of this automaton� �l�� v� and �l�� v
�� with v�x� � ��
 and

v��x� � ���� Clearly� in both states the edge from location l� to l� is enabled

for any time instant exceeding 
� The fractional parts of v�x� and v��x� do

not determine its enabled�ness� Similarly� if v�x� � ��
 and v��x� � ��� the

edge is disabled for both clock valuations and once more the fractional parts are

irrelevant� Since in general clock constraints are of the form x � c with c � IN�

only the integral parts of the clocks seem to be important� This leads to the �rst

suggestion for clock equivalence�

v � v� if and only if bv�x�c � bv��x�c for all x � C� �����

This notion is rather simple� leads to a denumerable �but still in�nite� number of

equivalence classes� but is too coarse� That is� it identi�es clock valuations that

can be distinguished by means of TCTL�formulas�

Second observation� consider the timed automaton depicted in Figure ��	 and

the following states of this automaton� s � �l�� v� and s� � �l�� v
�� with v�x� � ����
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y � �x � �

l� l� l�

x � �

f x g

y � �

f y g

Figure ��	� The ordering of clock valuations of di�erent clocks is relevant

v��x� � ��
 and v�y� � v��y� � ���� According to suggestion ����� we would have

v � v�� since bv�x�c � bv��x�c � � and similarly for clock y� But from state s the

location l� can be reached� whereas this is not possible starting from state s�� This

can be seen as follows� Consider s at � fractions of a time�unit later� Its clock

valuation v"��� reads v�x� � � and v�y� � ���� Clearly� in this clock valuation

the edge leading from l� to l� is enabled� If� after taking this edge� successively

in location l� time progresses by ��� time�units� then the edge leading to location

l� is enabled� A similar scenario does not exist for s�� In order to reach from s�

location l� clock x needs to be increased by ��� time�units� But then v��y� equals

���� and the edge leading to l� will be permanently disabled� The important

di�erence between v and v� is that v�x� � v�y�� but v��x� � v��y�� This suggests

the following extension to suggestion ������

v�x� � v�y� if and only if v��x� � v��y� for all x� y � C� ���
�

Again� the resulting equivalence leads to a denumerable number of equivalence

classes� but it is still too coarse�
l� l�

x � �

x � �

f x g

Figure ���� Integer�valued clocks should match

Third observation� consider the timed automaton of Figure ��� and the follow�

ing states s � �l�� v� and s� � �l�� v
�� with v�x� � � and v��x� � ���� According to

suggestions ����� and ���
� we would have v � v�� but� for instance� s� w j� EF�� p�

but s� wnot j� EF�� p� where p is an atomic proposition that is only valid in lo�

cation l�� The main di�erence between v and v� is that clock x in s is exactly
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� whereas in state s� it just passed �� This suggests to extend suggestions �����

and ���
� with

frac�v�x�� � � if and only if frac�v��x�� � � for all x � C� �����

The resulting equivalence is not too coarse anymore� but still leads to an in�nite

number of equivalence classes and not to a �nite one�

Fourth observation� let cx be the maximum constant with which clock x is

compared in a clock constraint �that occurs either in an enabling condition asso�

ciated to an edge� or in an invariant� in the timed automaton at hand� Since cx

is the largest constant with which x is compared it follows that if v�x� � cx then

the actual value of x is irrelevant� the fact that v�x� � cx su�ces to decide the

enabled�ness of all edges in the timed automaton�

In combination with the three conditions above� this observation leads to

a �nite number of equivalence classes� only the integral parts of clocks are of

importance up to a certain bound ������ plus the current observation� plus their

fractional ordering ���
� and the fact whether fractional parts are zero or not

������ These last two points now also are of importance only if the clocks have

not exceed their bound� For instance� if v�y� � cy then the ordering with clock x

is not of importance� since the value of y will not be tested anymore anyway�

Finally� we come to the following de�nition of clock equivalence �Alur and

Dill� ������

De�nition �
� �Clock equivalence �

Let A be a timed automaton with set of clocks C and v� v� � V �C�� Then v � v�

if and only if

�� bv�x�c � bv��x�c or v�x� � cx and v��x� � cx� for all x � C� and


� frac�v�x�� � frac�v�y�� i� frac�v��x�� � frac�v��y�� for all x� y � C with

v�x� � cx and v�y� � cy� and

�� frac�v�x�� � � i� frac�v��x�� � � for all x � C with v�x� � cx�
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This de�nition can be modi�ed in a straightforward manner such that � is

de�ned on a set of clocks C � such that C � C �� This would capture the case

where C � can also included formula clocks �beside clocks in the automaton�� For

formula clock z in �� the property at hand� cz is the largest constant with which z

is compared in �� For instance� for formula z in �AF  �p � z � �� � �q � z �

	�!�� cz � 	�

Example ��� Consider the simple timed automaton depicted by�

l

x � 


f x g

This automaton has a set of clocks C � f x g with cx � 
� since the only clock

constraint is x � 
� We gradually construct the regions of this automaton by

considering each constraint of the de�nition of � separately� Clock valuations v

and v� are equivalent if v�x� and v��x� belong to the same equivalence class on the

real line� �In general� for n clocks this amounts to considering an n�dimensional

hyper�space on IR��� For convenience let  x � c! abbreviate f x j x � c g for

natural c and comparison operator ��

� The requirement that bv�x�c � bv��x�c leads to the following partition of

the real line�

 � � x � �!�  � � x � 
!�  
 � x � �!�  � � x � �!� � � �

�� Since cx � 
� it is not interesting for the timed automaton at hand to

distinguish between the valuations v�x� � � and v��x� � 
�� In summary�

the equivalence classes that result from considering the �rst constraint of

De�nition �� is

 � � x � �!�  � � x � 
!�  x � 
!� and  x � 
!

�� According to the second constraint� the ordering of clocks should be main�

tained� In our case� this constraint trivially holds since there is only one

clock� So� there are no new equivalence classes introduced by considering

this constraint�
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�� The constraint that frac�v�x�� � � i	 frac�v��x�� � � if v�x� � cx leads to

partitioning� for instance� the equivalence class  � � x � �!� into the classes

 x � �! and  � � x � �!� Similarly� the class  � � x � 
! is partitioned� The

class  x � 
! is not partitioned any further since for this class the condition

v�x� � cx is violated� As a result we obtain for the simple timed automaton

the following � equivalence classes�

 x � �!�  � � x � �!�  x � �!�  � � x � 
!�  x � 
!� and  x � 
!�

�End of example��

Example ��� Consider the set of clocks C � f x� y g with cx � 
 and cy � �� In

Figure ��� we show the gradual construction of the regions by considering each

constraint of the de�nition of � separately� The �gure depicts a partition of

the two�dimensional space IR� � IR�� Clock valuations v and v� are equivalent

if the real�valued pairs �v�x�� v�y�� and �v��x�� v��y�� are elements of the same

equivalence class in the hyper�space�

� The requirement that bv�x�c � bv��x�c for all clocks in C leads� for instance�

to the equivalence classes  �� � x � ��� �� � y � ��! and  �� � x � 
�� �� �

y � ��! and so on� The constraint that v�x� � cx and v
��x� � cx for all

clocks in C leads to the equivalence class  �x � 
�� �y � ��!� This means

that for any clock valuation v for which v�x� � 
 and v�y� � � the exact

values of x and y are irrelevant� The obtained equivalence classes are�

 �� � x � ��� �� � y � ��!  �� � x � 
�� �� � y � ��!

 �� � x � ��� �y � ��!  �� � x � 
�� �y � ��!

 �� � x � ��� �y � ��!  �� � x � 
�� �y � ��!

 �x � 
�� �� � y � ��!  �x � 
�� �� � y � ��!

 �x � 
�� �y � ��!  �x � 
�� �y � ��!

 �x � 
�� �y � ��!  �x � 
�� �y � ��!

These � classes are depicted in Figure ����a��

�� Consider the equivalence class  �� � x � ��� �� � y � ��! that we obtained in

the previous step� Since the ordering of the clocks now becomes important�
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this equivalence class is split into the classes  �� � x � ��� �� � y � ��� �x �

y�!�  �� � x � ��� �� � y � ��� �x � y�!� and  �� � x � ��� �� � y � ��� �x �

y�!� A similar reasoning applies to the class  �� � x � 
�� �� � y � ��!�

Other classes are not further partitioned� For instance� class  �� � x �

��� �y � ��! does not need to be split� since the ordering of clocks x and

y in this class is �xed� v�x� � v�y�� Class  �� � x � 
�� �y � ��! is not

split� since for this class the condition v�x� � cx and vy � cy is violated�

Figure ����b� shows the resulting equivalence classes�

�� Finally� we apply the third criterion of De�nition ��� As an example con�

sider the class  �� � x � ��� �� � y � ��� �x � y�! that we obtained in

the previous step� This class is now partitioned into  �x � ��� �y � ��! and

 �� � x � ��� �� � y � ��� �x � y�!� Figure ����c� shows the resulting

�� equivalence classes� � corner points� � open line segments� and � open

regions�
�a�

y

x	 �
�c�

�

�

y

x	 � �

�

�b�

y

x	 � �

�

Figure ���� Partitioning of IR� � IR� according to � for cx � 
 and cy � �

�End of example��

��	 Region automata

The equivalence classes under � will be the basis for model checking timed au�

tomata� The combination of such class with a location is called a region�

De�nition ��� �Region�

A region r is a pair �l�  v!� with location l � L and valuation v � V �C��
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In the sequel we abbreviate �l�  v!� by  s! for s � �l� v�� In addition we write

 s� w! as a shorthand for �l�  v � w!� for w a clock valuation over formula clocks�

Since there are �nitely many equivalence classes under �� and any timed

automaton possesses only a �nite number of locations� the number of regions is

�nite� The next result says that states belonging to the same region satisfy the

same TCTL�formulas� This important result for real�time model checking is due

to Alur� Dill # Courcoubetis �������

Theorem ���

Let s� s� � S such that s� w � s�� w�� For any TCTL�formula �� we have�

M�A�� �s� w� j� � if and only ifM�A�� �s�� w�� j� ��

According to this result we do not have to distinguish the equivalent states

s and s�� since there is no TCTL�formula that can distinguish between the two�

This provides the correctness criterion for using equivalence classes under ��

i�e� regions� as basis for model checking� Using regions as states we construct

a �nite�state automaton� referred to as the region automaton� This automaton

consists of regions as states and transitions between regions� These transitions

either correspond to the evolvement of time� or to the edges in the original timed

automaton�

We �rst consider the construction of a region automaton by means of an exam�

ple� Two types of transitions can appear between augmented regions� They are

either due to ��� the passage of time �depicted as solid arrows�� or �
� transitions

of the timed automaton at hand �depicted as dotted arrows��

Example ��� Let us consider our simple timed automaton with a single edge�

cf� Figure ����a�� Since the maximum constant that is compared with x is �� it

follows cx � 
� The region automaton is depicted in Figure ����b�� Since there is

only one location� in each reachable region the timed automaton is in location l�

The region automaton contains two transitions that correspond to the edge of the

timed automaton� They both reach the initial region A� The dotted transitions

from E and F to A represent these edges� Classes in which there is a possibility
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to let time pass without bound while remaining in that class� are called unbounded

classes� see below� In this example there is a single unbounded class� indicated by

a grey shading� namely F� In F� the clock x can grow without bound while staying

in the same region� �The reader is invited to investigate the changes to the region

automaton when the simple timed automaton is changed as in Figure ���c� and

�e���

�b��a�

x � � x � �

l

x � �x � �

l

x � 

fx g

E

� � x � �

� � x � �

ll l

l l

D
CB

F
A

Figure ���� Region automaton of a simple timed automaton

Suppose now that we would like to model check a TCTL�formula over the timed

automaton of Figure ����a� that contains a single formula clock z with cz � 
�

i�e� clock z is not compared in the formula with a constant larger than �� The

region automaton over f x� z g is depicted in Figure ���� Notice that it is in fact

the region automaton of before �cf� Figure ����b�� extended with two �copies� of

it� regions G through L and regionsM through R� These �copies� are introduced

for the constraints z
x � 
 and z
x � 
� Notice that the formula clock z is

never reset� This is typical for a formula clock as there is no means in a formula

to reset clocks once they are introduced� �End of example��

De�nition ��� �Delay�successor region�

Let r� r� be two distinct regions �i�e� r �� r��� r� is the delay successor of r�

denoted r� � delsucc�r�� if there exists a d � IR� such that for each r �  s! we

have s

d

� s� and r� �  s"d! and for all � � d� � d �  s"d�! � r � r��

Here� for s � �l� v�� state s"d denotes �l� v"d�� In words�  s"d!� is the delay�

successor of  s!� if for some positive d any valuation in  s!� moves to a valuation

in  s"d!�� without having the possibility to leave these two regions at any earlier
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Figure ���� Region automaton of a simple timed automaton for formula clock z

with cz � 


point in time� Observe that for each region there is at most one delay�successor�

This should not surprise the reader� since delay�successors correspond to the

advancing of time� and time can advance only deterministically�

Example ��� Consider the equivalence classes of the timed automaton of Fig�

ure ����a�� The regions containing clock x and extra clock z �cf� Figure ����

are partitions of the two�dimensional real�space� Timed transitions correspond

to upward moves along the diagonal line x � z� For instance�  x � z � �!

is the delay�successor of  �� � x � ��� �x � z�!� and the delay�successor of

 �� � x � 
�� �x � z�! has successor  x � z � 
!� Class  �x � ��� �z � 
�! is

not the delay�successor of  �� � x � ��� �z � 
�!  a unreachable region that is

not depicted  since there is some real value d� such that  �� � x � ��� �z � 
�!

is reached in between� �End of example��

De�nition ��� �Unbounded region�

Region r is an unbounded region if for all clock valuations v such that r �  v! we

have v�x� � cx for all x � C�

In an unbounded region all clocks have exceed the maximum constant with

which they are compared� and hence all clocks may grow without bound� In
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Figure ����b� and ��� we have indicated the unbounded region by a grey shading

of the region�

A region automaton now consists of a set of states �the regions�� an initial

state� and two transition relations� one corresponding to delay transitions� and

one corresponding to the edges of the timed automaton at hand�

De�nition ��� �Region automaton�

For timed automaton A and set of time constraints + �over C and the formula

clocks�� the region automaton R�A�+� is the transition system �R� r��
�� where

� R � S�� � f  s! j s � S g

� r� �  s�!

� r 
� r� if and only if  s� s���r �  s! � r� �  s�! � s

�

� s��

� r 
� r� if and only if

�� r is an unbounded region and r � r�� or


� r �� r� and r� � delsucc�r��

Observe that from this de�nition it follows that unbounded regions are the

only regions that have a self�loop consisting of a delay transition�

Example ��� To illustrate the construction of a region automaton we consider a

inv�o� � � true

inv�on� � y � �

o� on

x � 

fx g

x � 	

fx� y g

y � �

fx g

Figure ����� Timed automaton for modi�ed light switch

slight variant of the light switch of Example ��� that is depicted in Figure ���� In

order to show the e	ect of invariants we have equipped location on with invariant
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y � �� In order to keep size of the region automaton manageable we have adapted

the enabling conditions of the transitions that change location� in particular we

have made the constants smaller�

The region automaton R�A�+� where A is the modi�ed light switch� is de�

picted in Figure ��� The set of time constraints is + � f x � �� x � 
� y �

�� y � � g� i�e� the set of all enabling constraints and invariants in A� For simplic�

ity no formula clocks are considered� We have for example D 
� E since there

is a transition from state s � �o
 � v� with v�x� � v�y� � � to state s� � �on� v��

with v��x� � v��y� � � and D �  s!� E �  s�!� There is a delay transition

D 
� D� since the region  v! where v�x� � v�y� � � is an unbounded region�

This stems from the fact that in location o
 time can gro without any bound� i�e�

inv�o
 � � true�

The reader is invited to check how the region automaton has to be changed

when changing inv�o
 � into y � �� �End of example��

��� Model checking region automata

Given the region automaton R�A�+� for timed automaton A and TCTL�formula

� with clock constraints + inA and �� the model checking algorithm now proceeds

as for untimed CTL� see previous chapter� Let us brie�y summarise the idea of

labelling� The basic idea of the model checking algorithm is to label each state

�i�e� augmented region� in the region automaton with the sub�formulas of � that

are valid in that state� This labelling procedure is performed iteratively starting

by labelling the states with the sub�formulas of length � of �� i�e� the atomic

propositions �and true and false� that occur in �� In the �i"���th iteration of the

labelling algorithm sub�formulas of length i"� are considered and the states are

labelled accordingly� To that purpose the labels already assigned to states are

used� being sub�formulas of � of length at most i �i � ��� The labelling algorithm

ends by considering the sub�formula of length j � j� � itself� This algorithm is

listed in Table ��
�

The model checking problem A j� �� or� equivalently� M�A�� �s�� w�� j� �� is
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Figure ����� Region automaton of the modi�ed light switch
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function SatR �� � Formula� � set of Region�

�) precondition� true )�

begin
if � � true 
� return S��

 ! � � false 
� return �

 ! � � AP 
� return f  s� w!� j � � Label�s� g

 ! � � � 
� return f  s� w!� j s � �l� v� � v � w j� � g

 ! � � ��� 
� return S�� 
 SatR����

 ! � � �� � �� 
� return �SatR���� � SatR�����

 ! � � z��� 
� return f  s� w!� j �s�  z!w� � SatR���� g

 ! � � E  �� U��! 
� return SatREU���� ���

 ! � � A  �� U��! 
� return SatRAU���� ���

�

�) postcondition� SatR��� � f  s� w!� j M� �s� w� j� � g )�

end

Table ��
� Outline of main algorithm for model checking TCTL

now solved by considering the labelling�

M�A�� �s�� w�� j� � if and only if  s�� w�! � SatR����

�The correctness of this statement follows from Theorem 		��

The computation of SatR��� is done by considering the syntactical structure

of �� The cases for the propositional formulas �true� false� negation� disjunction

and atomic propositions� is identical to the case for CTL� cf� Chapter �� For clock

constraint �� SatR��� is the set of regions  s� w! such that � is satis�ed by w and

v� the clock valuation of the automata clocks in s� Region  s� w! belongs to set

SatR�z in �� if it satis�es � for w� where w��z� � � �start the formula clock at

value �� and w��x� � w�x� for x �� z� For the until�formulas� auxiliary functions

are de�ned� These functions are listed in Table ��� and ���� The code for the

function SatREU is identical to the untimed case� For SatRAU there is small� though

essential� di�erence with the untimed algorithm for A  �U�!� In analogy to the
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�

case for CTL� the iteration would contain the statement�

Q �� Q �
�
f s j � s� � Q� s 
� s� g � SatR���

�
�

The correctness of this statement� however� assumes that each state s has some

successor under 
�� This is indeed valid for CTL� since in a CTL�model each state

has at least one successor� In region automata� regions may exist that have no

outgoing transition� neither a delay transition nor a transition that corresponds

to an edge in the timed automaton� Therefore� we take a di�erent approach and

extend Q with those regions that have at least one transition into Q� and for

which all direct successors are in Q� This yields the code listed in Table ����

An example of a region automaton containing a region without any successors

is depicted in Figure ���
� Region C does not have any successors� delaying is

not possible due to the invariant of l� and there is no edge that is enabled for

valuation x � ��

x � � x � �� � x � �

ll l

CBA

l x � 	

inv�l� � x � 	

�a�

�b�

Figure ���
� Region automaton with a region without successors

Example ��� Consider the region automaton �cf� Figure ��� of the modi�ed

light switch� and suppose location on is labelled with atomic proposition q and o


with p� We can now check that it is impossible to reach on from o
 in less than

one time�unit�

M�A�� �s�� w�� �j� E  pU�� q!

since there is no path through the region automaton that starts in A �which cor�

responds to  s�� w�!� to some region E through K� where the light is switched on�

and that lasts less than one time�unit� Formally� this can be seen as follows� For�

mula E  pU�� q! abbreviates z in E  �p � z � ��U q!� Equip the region automaton
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function SatREU ��� � � Formula� � set of Region�

�) precondition� true )�

begin var Q�Q� � set of Region�

Q�Q� �� SatR������

do Q �� Q� 
�

Q� �� Q�

Q �� Q �
�
f s j  s� � Q� s 
� s� g � SatR���

�

od�
return Q

�) postcondition� SatEU��� �� � f  s� w! j s� w j� E  �U�! g )�

end

Table ���� Model checking E  �U�! over regions

function SatRAU ��� � � Formula� � set of Region�

�) precondition� true )�

begin var Q�Q� � set of Region�

Q�Q� �� SatR������

do Q �� Q� 
�

Q� �� Q�

Q �� Q �
�
f s j  s� � Q� s 
� s� � �� s� � Q� s 
� s�� g � SatR���

�

od�
return Q

�) postcondition� SatAU��� �� � f  s� w! j s� w j� A  �U�! g )�

end

Table ���� Model checking A  �U�! over regions
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with a formula clock z� that is reset in A� and keeps advancing ad in�nitum� The

earliest time to switch the light on �i�e� to make q valid� is to take the transition

from C to E� However� then z equals � and thus the property is invalid� �The

reader is invited to check this informal reasoning by applying the algorithms to

the region automaton�� �End of example��

Recall that a timed automaton is non�Zeno if from every state there is at least

one time�divergent path� a path where time grows ad in�nitum� does exist� Non�

Zenoness is a necessary pre�condition for the model checking procedures given

above� as follows from the following result �Yovine� ������

Theorem ���

For A a non�Zeno timed automaton� �s� w� � Sat��� if and only if  s� w! �

SatR����

Thus the correctness of the model checking algorithm is only guaranteed if the

timed automaton at hand is non�Zeno� Non�Zenoness of A can be checked by

showing that from each state of M�A� time can advance by exactly one time�unit�

Theorem ���

A is non�Zeno if and only if for all states s � S � M�A�� s j� EF�� true�

Time complexity

The model checking algorithm labels the region automaton R�A�+� for timed

automaton A and set of clock constraint +� We know from Chapter � that the

worst�case time complexity of such algorithm is proportional to j� j�jS j�� where

S is the set of states of the automaton to be labelled� The number of states in

R�A�+� equals the number of regions of A with respect to +� The number of

regions is proportional to the product of the number of locations in A and the

number of equivalence classes under �� Let + be a set of clock constraints over

C � where C � C �� i�e� C � contains the clocks of A plus some formula clocks� For


�
 Model Checking Real�Time Temporal Logic

n � jC � j� the number of regions is

O
�

n�� 
n �
Y

x	�
cx � jL j

�
�

Thus�
The worst�case time complexity of model checking TCTL�formula �

over timed automaton A� with the clock constraints of � and A in + is�

O
�
j� j � �n�� 
n �

Q
x	� cx � jL j

��
�
�

That is� model checking TCTL is

�i� linear in the length of the formula �

�ii� exponential in the number of clocks in A and �

�iii� exponential in the maximal constants with which clocks are compared in A

and ��

Using the techniques that we have discussed in Chapter �� the time complexity

can be reduced to being quadratic in the number of locations�

The lower�bound for the complexity of model checking TCTL for a given timed

automaton is known to be PSPACE�hard �Alur� Courcoubetis # Dill� ������ This

means that at least a memory is needed of a size that is polynomial in the size

of the system to be checked�

Fairness

As for untimed systems� in verifying time�critical systems we are often only in�

terested in considering those executions in which enabled transitions are taken

in a fair way� see Chapter �� In order to be able to deal with fairness� we have
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seen that for the case with CTL the logic is interpreted over a fair CTL�model�

A fair model has a new component� a set F � 
L of fairness constraints� An

analogous recipe can be followed for TCTL� We will not work out all details here�

but the basic idea is to enrich a TCTL�model with a set of fairness constraints�

in a similar way as for CTL� A fair path of a timed automaton is de�ned as a

path in which for every set Fi � F there are in�nitely many locations in the run

that are in Fi �like a generalized B�uchi acceptance condition�� The semantics

of TCTL is now similar to the semantics provided earlier in this chapter� except

that all path quanti�ers are interpreted over F �fair paths rather than over all

paths� In an analogous manner as before� the region automaton is constructed�

The fairness is incorporated in the region automaton by replacing each Fi � F by

the set f �l�  v!� j l � Fi g� The labelling algorithms can now be adapted to cover

only F �fair paths in the region automaton� Due to the consideration of fairness

constraints� the worst�case time complexity of the labelling algorithm increases

by a multiplicative factor that is proportional to the cardinality of F �

Overview of TCTL model checking

We conclude this section by providing an overview of model checking a timed

automaton against a TCTL�formula� Notice that the region automaton depends

only on the clock constraints �i�e� the formula and automata clocks and the max�

imal constants with which clocks are compared� appearing in the formula �� it

does not depend on the formula itself� The labelled region automaton� of course�

depends on the entire formula �� The reader is invited to check the resemblance

of this schema with the overview of CTL model checking in Chapter ��

��� The model checker Uppaal

Uppaal is a tool suite for symbolic model checking of real�time systems �Larsen�

Pettersson # Yi� ����� developed at the University of Uppsala �Sweden� and Aal�

borg �Denmark�� Besides model checking� it also supports simulation of timed

automata and has some facilities to detect deadlocks� Uppaal has been applied
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model checker

�No� �counter�example��Yes�

System

Region automaton

Real�time property

TCTL�formula �Timed automaton A

Transition system

R�A���

Check �s��� � SatR���

Labelled region automaton

Figure ����� Overview of model checking TCTL over a timed automaton

to several industrial case studies such as real�time protocols� multi�media syn�

chronization protocols and proving the correctness of electric power plants� The

model checker is available under http���www�docs�uu�se�docs�rtmv�uppaal��

An overview of the model checker Uppaal is given in Figure �����

For reasons of e�ciency� the model checking algorithms that are implemented

in Uppaal are based on �sets of� clock constraints �� rather than on explicit �sets

of� regions� By dealing with �disjoint� sets of clock constraints� a coarser parti�

tioning of the �in�nite� state space is obtained� Working with clock constraints

allows to characterize Sat��� without explicitly building the region automaton a

priori �Yovine� ������

Uppaal facilitates the graphical description of timed automata by using the

tool Autograph� The output of Autograph is compiled into textual format

�using component atg�ta�� which is checked �by checkta� for syntactical cor�

rectness� This textual representation is one of the inputs to Uppaal�s veri�er

�Here� the property that each region can be expressed by a clock constraint over the clocks

involved� is exploited�
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autograph

.atg atg2ta checkta

‘‘yes’’

‘‘no’’

verifyta

UPPAAL

.txt

.prop

simulator trace
Diagnostic

Symbolic
trace

Figure ����� The structure of the model checker Uppaal

verifyta� The veri�er can be used to determine the satisfaction of a given real�

time property with respect to a timed automaton� If a property is not satis�ed�

a diagnostic trace can be generated that indicates how the property may be vio�

lated� Uppaal also provides a simulator that allows a graphical visualization of

possible dynamic behaviors of a system description �i�e�� a symbolic trace�� The

diagnostic trace� generated in case a property is violated� can be fed back to the

simulator so that it can be analyzed with the help of the graphical presentation�

To improve the e�ciency of the model checking algorithms� Uppaal does not

support the full expressivity of TCTL� but concentrates on a subset of it that

is suitable for specifying safety properties� Properties are terms in the language

de�ned by the following syntax�

� ��� AG� j EF� � ��� a j � j � � � j ��

where a is a location of a timed automaton �like A�l for automaton A and location

l�� and � a simple linear constraint on clocks or integer variables of the form x � n

for � a comparison operator� x a clock or integer variable� and n an integer�

Notice the restricted use of AG and EF as operators� they are only allowed as

�top�level� operators� and cannot be nested� This use of path operators limits

the expressiveness of the logic� but turns out to pose no signi�cant practical

restrictions and makes the model checking algorithm easier� Also notice that
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formula clocks are not part of the supported logic� only automata clocks can be

referred to� Bounded liveness properties can be checked by checking the timed

automaton versus a test automaton�

In a nutshell� the most important ingredients for specifying systems in Up�

paal are�

� Networks of timed automata� The system speci�cation taken by Uppaal as

input� consists of a network of timed automata� Such network is described

as the composition of timed automata that can communicate via �equally

labelled� channels� If A� through AN �N � �� are timed automata then

A � A� jj A� jj � � � jj AN

speci�es the network of timed automata composed of A� through AN �

The communication between components is synchronous� Send and receive

statements are labels of edges of a timed automaton� A send statement

over channel a� denoted a� is enabled if the edge is enabled �that is� the

associated clock constraint is satis�ed in the current clock valuation�� and

if there is a corresponding transition �in another timed automaton� labelled

with the input statement a� that is enabled as well� For instance� the two

timed automata depicted in Figure ���	 can communicate along channel a

if clock x reads more than value 
 and clock y reads at most �� If there

is no execution of the two timed automata that ful�lls this conjunction of

constraints� the entire system  including the components that are not

involved in the interaction  halts� Since communication is synchronous�

a� a�

x � � y �� �

l	 l� l	
 l�
jj

Figure ���	� Example of communication between timed automata

in case of a synchronization both automata involved take their transition

labelled a and a� as one atomic transition� and afterwards the system is

in locations l� and l�(� respectively�

� Clock constraints and invariants are conjunctions of atomic constraints

which have the form x � n where x is a variable �a clock or an integer�� n a

non�negative integer� and �� f �� ��� �� ��� � g a comparison operator�
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� Data� The use of data in Uppaal �version ����� is restricted to clocks and

integers� Variables can be either local or global� i�e� shared variables are

possible� Assignments to integer variable i must have the form i��n��i n��

Notice that for the latter assignments the variable on the right�hand side

of the assignment should be the same as the variable on the left�hand side�

� Committed locations are locations that are executed atomically and urgently�

Atomicity of a committed location forbids interference in the activity that

is taking place involving the committed location� i�e� the entering of a com�

mitted location followed by leaving it constitutes a single atomic event� no

interleaving can take place of any other transition �of any other timed au�

tomaton�� Urgency means that it is not allowed to delay for any positive

amount of time in a committed location� Committed locations can thus

never be involved in a delay transition� Committed locations are indicated

by the pre�x c��

� Value passing� Uppaal �version ����� does not include mechanisms for

value passing at synchronization� Value passing can be e�ectively modeled

by means of assignments to variables� Committed locations are used to

ensure that the synchronization between components and the assignment

to variables  that establishes the value passing  is carried out atomically�

This is exempli�ed by�

a�k

jjc�

can be established through

jj

k �� �

a�
k �� 	

a�

a�bool

i �� 	

i �� �

i �� bool

a�

Here� the distributed assignment k �� bool is established�
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Philips� bounded retransmission protocol

To illustrate the capabilities of real�time model checking we treat �part of� the

model checking of an industrially relevant protocol� known as the bounded retrans�

mission protocol �BRP� for short�� This protocol has been developed by Philips

Electronics B�V� is currently under standardization� and is used to transfer

bulks of data ��les� via an infra�red communication medium between audio�video

equipment and a remote control unit� Since the communication medium is rather

unreliable� the data to be transferred is split into small units� called chunks� These

chunks are transmitted separately� and on failure of transmission  as indicated

by the absence of an acknowledgement  a retransmission is issued� If� however�

the number of retransmissions exceeds a certain threshold� it is assumed that

there is a serious problem in the communication medium� and the transmission

of the �le is aborted� The timing intricacies of the protocol are twofold�

�� �rstly� the sender has a timer that is used to initiate a retransmission in

case an acknowledgement comes �too late�� and


� secondly� the receiver has a timer to detect the abortion �by the sender� of

a transmission in case a chunk arrives �too late��

The correctness of the protocol clearly depends on the precise interpretation of

�too late�� and in this case study we want to determine clear and tight bounds

on these timers in order for the BRP to work correctly� This case study is more

extensively described in �D�Argenio� Katoen� Ruys # Tretmans� ������

What is the protocol supposed to do�

As for many transmission protocols� the service delivered by the BRP behaves

like a bu�er� i�e�� it reads data from one client to be delivered at another one�

There are two features that make the behavior much more complicated than a

simple bu�er� Firstly� the input is a large �le �that can be modeled as a list��

which is delivered in small chunks� Secondly� there is a limited amount of time

for each chunk to be delivered� so we cannot guarantee an eventually successful
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delivery within the given time bound� It is assumed that either an initial part of

the �le or the whole �le is delivered� so the chunks will not be garbled and their

order will not be changed� Both the sender and the receiver obtain an indication

whether the whole �le has been delivered successfully or not�

The input �the list l � d�� � � � � dn� is read on the �input� port� Ideally� each di

is delivered on the �output� port� Each chunk is accompanied by an indication�

This indication can be I FST� I INC� I OK� or I NOK� I OK is used if di

is the last element of the �le� I FST is used if di is the �rst element of the

�le and more will follow� All other chunks are accompanied by I INC� However�

when something goes wrong� a �not OK� indication �I NOK� is delivered without

datum� Note that the receiving client does not need a �not OK� indication before

delivery of the �rst chunk nor after delivery of the last one�

The sending client is informed after transmission of the whole �le� or when the

protocol gives up� An indication is sent out on the �input� port� This indication

can be I OK� I NOK� or I DK� After an I OK or an I NOK indication� the

sender can be sure� that the receiver has the corresponding indication� A �don�t

know� indication I DK may occur after delivery of the last�but�one chunk dn���

This situation arises� because no realistic implementation can ensure whether the

last chunk got lost� The reason is that information about a successful delivery

has to be transported back somehow over the same unreliable medium� In case

the last acknowledgement fails to come� there is no way to know whether the last

chunk dn has been delivered or not� After this indication� the protocol is ready

to transmit a subsequent �le�

This completes the informal FTS �File Transfer Service� description� Remark

that it is unclear from this description which indication the sending client receives

in case the receiving client does not receive any chunk� Since something went

wrong an I NOK indication is required� but from this indication the sending

client may not deduce that the receiving client has the corresponding indication�

This is because the receiving client does not receive an I NOK indication before

delivery of the �rst chunk� So� if the sending client receives an I NOK either the

receiving client received the same or did not receive anything at all�
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Formal speci�cation of the FTS �optional�

is

Sin� Rout	Sout	

l 
 hd�� � � � � dni

e 
 h�e�� i��� � � � � �ek � ik�i

Schematic view of the FTS

Signatures of the input and output�

Sin � l � hd�� � � � � dni for n � �

Sout � is � f I OK� I NOK� I DK g

Rout � h�e�� i��� � � � � �ek� ik�i for � � k � n� ij � f I FST� I INC� I OK� I NOK g

for � � j � k�

The FTS is considered to have two �service access points�� one at the sender

side and the other at the receiver side� The sending client inputs its �le via Sin

as a list of chunks hd�� � � � � dni� We assume that n � �� i�e�� the transmission of

empty �les is not considered� The sending client receives indications is via Sout�

while the receiving client receives pairs �ej� ij� of chunks and indications via Rout�

We assume that all outputs with respect to previous �les have been completed

when a next �le is input via Sin�

In Table ��	 we specify the FTS in a logical way� i�e�� by stating properties

that should be satis�ed by the service� These properties de�ne relations between

input and output� Note that a distinction is made between the case in which the

receiving client receives at least one chunk �k � �� and the case that it receives

none �k � ��� A protocol conforms to the FTS if it satis�es all listed properties�

For k � � we have the following requirements� ����� states that each correctly

received chunk ej equals dj� the chunk sent via Sin� In case the noti�cation ij

indicates that an error occurred� no restriction is imposed on the accompanying
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Table ��	� Formal speci�cation of the FTS

k � �

����� �� � j � k � ij �� I NOK � ej � dj

����� n � � � i� � I FST

����� �� � j � k � ij � I INC

������� ik � I OK � ik � I NOK

������� ik � I OK � k � n

������� ik � I NOK � k � �

����� is � I OK � ik � I OK

����� is � I NOK � ik � I NOK

����� is � I DK � k � n

k � �

����� is � I DK � n � �

����� is � I NOK � n � �

chunk ej� ����� through ����� address the constraints concerning the received

indications via Rout� i�e�� ij� If the number n of chunks in the �le exceeds one

then ����� requires i� to be I FST� indicating that e� is the �rst chunk of the

�le and more will follow� ����� requires that the indications of all chunks� apart

from the �rst and last chunk� equal I INC� The requirement concerning the last

chunk �ek� ik� consists of three parts� ������� requires ek to be accompanied with

either I OK or I NOK� ������� states that if ik � I OK then k should equal

n� indicating that all chunks of the �le have been received correctly� �������

requires that the receiving client is not noti�ed in case an error occurs before

delivery of the �rst chunk� ����� through ����� specify the relationship between

indications given to the sending and receiving client� ����� and ����� state when

the sender and receiver have corresponding indications� ����� requires a �don�t

know� indication to only appear after delivery of the last�but�one chunk dn���

This means that the number of indications received by the receiving client must

equal n� �Either this last chunk is received correctly or not� and in both cases an

indication �" chunk� is present at Rout��
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For k � � the sender should receive an indication I DK if and only if the �le

to be sent consists of a single chunk� This corresponds to the fact that a �don�t

know� indication may occur after the delivery of the last�but�one chunk only� For

k � � the sender is given an indication I NOK if and only if n exceeds one� This

gives rise to ����� and ������

Remark that there is no requirement concerning the limited amount of time

available to deliver a chunk to the receiving client as mentioned in the informal

service description� The reason for this is that this is considered as a protocol

requirement rather than a service requirement�

How is the protocol supposed to work�

The protocol consists of a sender S equipped with a timer T�� and a receiver R

equipped with a timer T� which exchange data via two unreliable �lossy� channels�

K and L�

Sender S reads a �le to be transmitted and sets the retry counter to �� Then

it starts sending the elements of the �le one by one over K to R� Timer T� is set

and a frame is sent into channel K� This frame consists of three bits and a datum

�� chunk�� The �rst bit indicates whether the datum is the �rst element of the

�le� The second bit indicates whether the datum is the last item of the �le� The

third bit is the so�called alternating bit� that is used to guarantee that data is not

duplicated� After having sent the frame� the sender waits for an acknowledgement

from the receiver� or for a timeout� In case an acknowledgement arrives� the timer

T� is reset and �depending on whether this was the last element of the �le� the

sending client is informed of correct transmission� or the next element of the �le is

sent� If timer T� times out� the frame is resent �after the counter for the number

of retries is incremented and the timer is set again�� or the transmission of the �le

is broken o�� The latter occurs if the retry counter exceeds its maximum value

MAX�
Receiver R waits for a �rst frame to arrive� This frame is delivered at the

receiving client� timer T� is started and an acknowledgement is sent over L to S�

Then the receiver simply waits for more frames to arrive� The receiver remembers
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whether the previous frame was the last element of the �le and the expected value

of the alternating bit� Each frame is acknowledged� but it is handed over to the

receiving client only if the alternating bit indicates that it is new� In this case

timer T� is reset� Note that �only� if the previous frame was last of the �le� then

a fresh frame will be the �rst of the subsequent �le and a repeated frame will

still be the last of the old �le� This goes on until T� times out� This happens if

for a long time no new frame is received� indicating that transmission of the �le

has been given up� The receiving client is informed� provided the last element

of the �le has not just been delivered� Note that if transmission of the next �le

starts before timer T� expires� the alternating bit scheme is simply continued�

This scheme is only interrupted after a failure�

Timer T� times out if an acknowledgement does not arrive �in time� at the

sender� It is set when a frame is sent and reset after this frame has been acknowl�

edged� �Assume that premature timeouts are not possible� i�e�� a message must

not come after the timer expires��

Timer T� is �re�set by the receiver at the arrival of each new frame� It times

out if the transmission of a �le has been interrupted by the sender� So its delay

must exceed MAX times the delay of T��
� Assume that the sender does not start

reading and transmitting the next �le before the receiver has properly reacted

to the failure� This is necessary� because the receiver has not yet switched its

alternating bit� so a new frame would be interpreted as a repetition�

This completes the informal description of the BRP� Two signi�cant assump�

tions are made in the above description� referred to as �A�� and �A�� below�

�A�� Premature timeouts are not possible

Let us suppose that the maximum delay in the channel K �and L� is TD and

that timer T� expires if an acknowledgement has not been received within T�

time units since the �rst transmission of a chunk� Then this assumption requires

that T� � 
 � TD " � where � denotes the processing time in the receiver R�

�A�� thus requires knowledge about the processing speed of the receiver and the

�Later on we will show that this lower bound is not su�cient�
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delay in the line�

�A�� In case of abortion� S waits before starting a new �le

until R reacted properly to abort

Since there is no mechanism in the BRP that noti�es the expiration of timer

T� �in R� to the sender S this is a rather strong and unnatural assumption� It

is unclear how S �knows� that R has properly reacted to the failure� especially

in case S and R are geographically distributed processes  which apparently is

the case in the protocol at hand� We� therefore� consider �A�� as an unrealistic

assumption� In the sequel we ignore this assumption and adapt the protocol

slightly such that this assumption appears as a property of the protocol �rather

than as an assumption���

Modeling the protocol as a network of timed automata

The BRP consists of a sender S and a receiver R communicating through channels

K and L� see the �gure below� S sends chunk di via F to channel K accompanied

with an alternating bit ab� an indication b whether di is the �rst chunk of a �le

�i�e�� i � ��� and an indication b� whether di is the last chunk of a �le �i�e�� i � n��

K transfers this information to R via G� Acknowledgements ack are sent via A

and B using L�

Sin Sout

Sender S

Rout

F

Channel K

Channel L

G

AB

Receiver R

Schematic view of the BRP�
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The signatures of A� B� F � and G are�

F�G � �b� b�� ab� di� with ab � f �� � g� b� b� � f true� false g and � � i � n

In addition� A�B � ack�

We adopt the following notational conventions� States are represented by

labelled circles and the initial state as double�lined labelled circle� State invariants

are denoted in brackets� Transitions are denoted by directed� labelled arrows� A

list of guards denotes the conjunction of its elements� For the sake of simplicity�

in this example we use value passing and variable assignments in an unrestricted

way�
Channels K and L are simply modeled as �rst�in �rst�out queues of un�

bounded capacity with possible loss of messages� We assume that the maximum

latency of both channels is TD time units�

ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

x==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNC
ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OK

i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1

Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)
i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
Sout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1
B?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ack
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
ab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-ab

rc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror
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successsuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccess
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idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

next_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_frame
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SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

Figure ����� Timed automaton for sender S�
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Modeling the sender

The sender S �see Figure ����� has three system variables� ab � f �� � g indicating

the alternating bit that accompanies the next chunk to be sent� i� � � i �

n� indicating the subscript of the chunk currently being processed by S� and

rc� � � rc � MAX� indicating the number of attempts undertaken by S to

retransmit di� Clock variable x is used to model timer T� and to make certain

transitions urgent �see below�� In the idle location S waits for a new �le to be

received via Sin� On receipt of a new �le it sets i to one� and resets clock x�

Going from location next frame to wait ack� chunk di is transmitted with the

corresponding information and rc is reset� In location wait ack there are several

possibilities� in case the maximum number of retransmissions has been reached

�i�e�� rc � MAX�� S moves to an error location while resetting x and emitting

an I DK or I NOK indication to the sending client �via Sout� depending on

whether di is the last chunk or not� if rc � MAX� either an ack is received �via B�

within time �i�e�� x � T�� and S moves to the success location while alternating

ab� or timer x expires �i�e�� x � T�� and a retransmission is initiated �while

incrementing rc� but keeping the same alternating bit�� If the last chunk has

been acknowledged� S moves from location success to location idle indicating

the successful transmission of the �le to the sending client by I OK� If another

chunk has been acknowledged� i is incremented and x reset while moving from

location success to location next frame where the process of transmitting the

next chunk is initiated�

Two remarks are in order� First� notice that transitions leaving location s� say�

with location invariant x � � are executed without any delay with respect to the

previous performed action� since clock x equals � if s is entered� Such transitions

are called urgent� Urgent transitions forbid S to stay in location s arbitrarily

long and avoid that receiver R times out without abortion of the transmission

by sender S� Urgent transitions will turn out to be necessary to achieve the

correctness of the protocol� They model a maximum delay on processing speed�

cf� assumption �A��� Secondly� we remark that after a failure �i�e�� S is in

location error� an additional delay of SYNC time units is incorporated� This

delay is introduced in order to ensure that S does not start transmitting a new

�le before the receiver has properly reacted to the failure� This timer will make it



The model checker Uppaal 
��

possible to satisfy assumption �A��� In case of failure the alternating bit scheme

is restarted�

A!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ack
exp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_ab
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

rab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_ab
rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0
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Figure ����� Timed automaton for receiver R�

Modeling the receiver

The receiver is depicted in Figure ����� System variable exp ab � f �� � g in

receiver R models the expected alternating bit� Clock z is used to model timer T�

that determines transmission abortions of sender S� while clock w is used to make

some transitions urgent� In location new file� R is waiting for the �rst chunk of

a new �le to arrive� Immediately after the receipt of such chunk exp ab is set to

the just received alternating bit and R enters the location frame received� If

the expected alternating bit agrees with the just received alternating bit �which�

due to the former assignment to exp ab is always the case for the �rst chunk�

then an appropriate indication is sent to the receiving client� an ack is sent via

A� exp ab is toggled� and clock z is reset� R is now in location idle and waits

for the next frame to arrive� If such frame arrives in time �i�e�� z � TR� then

it moves to the location frame received and the above described procedure is

repeated� if timer z expires �i�e�� z � TR� then in case R did not just receive the

last chunk of a �le an indication I NOK �accompanied with an arbitrary chunk

���� is sent via Rout indicating a failure� and in case R just received the last

chunk� no failure is reported�
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Most of the transitions in R are made urgent in order to be able to ful�ll

assumption �A��� For example� if we allowed an arbitrary delay in location

frame received then the sender S could generate a timeout �since it takes too

long for an acknowledgement to arrive at S� while an acknowledgement generated

by R is possibly still to come�

Model checking the speci�cation

An important aspect of the BRP is the question what the relationships between

the timeout values� transmission delays and synchronization delays �like SYNC�

are in order for the protocol to work correctly�

Premature timeouts

Assumption �A�� states that no premature timeouts should occur� The BRP con�

tains two types of timeouts� one for detecting the absence of a promptly acknowl�

edgement �by the sender�� and one for detecting the abortion of the transmission

�by the receiver�� It can easily be seen that timer T� �i�e�� clock x� of sender S

does not violate assumption �A�� if it respects the two�way transmission delay

�i�e�� T� � 
�TD� plus the processing delay of the receiver R �which due to the

presence of location invariants equals ��� It remains to be checked under which

conditions timer T� of receiver R does not generate premature timeouts� This

amounts to checking that R times out whenever the sender has indeed aborted

the transmission of the �le� Observe that a premature timeout appears in R if it

moves from location idle to state new file although there is still some frame of

the previous �le to come� We therefore check that in location first safe frame

receiver R can only receive �rst chunks of a �le �i�e�� rb� � �� and not remaining

ones of previous �les� This is formulated in Uppaal notation as�

AG �R�first safe frame � rb� � �� �����

Using several veri�cations with the veri�cation engine verifyta of Uppaal we

can establish that this property holds whenever TR � 
�MAX � T� " �� TD�
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In order to conclude this� the simulator of Uppaal together with the diagnostic

traces have been of big help� We were able to try di�erent values for TD� T��

and MAX� and thus� to study the behavior of the protocol� Figure ���� depicts

the longest trace that makes the protocol loose the connection when MAX � 


and n � 
� The � symbol indicated after sending a frame represents that it is

lost in some of the channels K or L� Notice that frames are received within TD

time units but they always take some time to travel through the channel� In

particular� in the transmission of the �rst frame� the di�erence in time between

synchronization on F and synchronization on G cannot be ��

ReceiverSender
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I NOK
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B A
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A

Time
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� 
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F

Figure ����� Loosing the connection

From the �gure� it is clear that the receiver should not timeout �strictly� before


�MAX�T�"��TD units of time� since this is the last time a frame can arrive�

Premature timeouts would induce the receiver to abort the connection when there

is still the possibility of some frame to arrive� As a result� property ����� would

be violated�
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Premature abortions

Assumption �A�� states that sender S starts the transmission of a new �le only

after R has properly reacted to the failure� For our model this means that if S

is in location error� eventually� within SYNC time units� R resets and is able to

receive a new file� This property is expressed in TCTL as

A  S�errorU�SYNC R�new file! ���	�

Unfortunately� the property language of Uppaal does not support this type of

formula� Therefore� we check the following property�

AG  �S�error � x � SYNC� � R�new file! �����

The di�erence between properties ���	� and ����� is that ���	� requires that

S�error is true until R�new file becomes true� while ����� does not take into

account what happens when time passes� but considers only the instant for which

x � SYNC� Provided that S is in location error while clock x evolves from �

to SYNC  which is obviously the case  ����� implies ���	�� Using several

veri�cations with the veri�cation engine verifyta of Uppaal we can establish

that property ����� is satis�ed under the condition that SYNC � TR� This means

that �A�� is ful�lled if this condition on the values SYNC and TR is respected�

Veri�cation results

Summarizing� we were able to check with Uppaal that assumptions �A�� and

�A�� are ful�lled by the BRP if the following additional constraints hold

TD � 
� TD � SYNC � TR � 
�MAX� T� " �� TD

Remark that SYNC and T� are constants in the sender S� while TR is a constant

used in receiver R� These results show the importance of real�time aspects for

the correctness of the BRP�



The model checker Uppaal 
	�

Exercises

Exercise ��� The intuitive meaning of the formula E f I g� is that there exists a path

starting from the current state such that the earliest possible time at which � is true lies

in the interval I� for I an interval with integer boundaries� De�ne this operator either

semantically �using j��� or try to formulate it in terms of existing temporal operators�

Exercise �	� Consider the region r � ��� � x � ��� �� � y � ��� �x
y � ��� and let

clock valuation v such that r � �v��

�� Characterize the region to which �x�v belongs�

�� Characterize the direct time successor of r�

�� Suppose assignments of the form x �� y are allowed� Characterize the region r�

that results from r under x �� y�

Exercise �
� Let v� v� be two clock valuations over the set of clocks C such that

v � v�� Prove that for any time constraint � � "�C� we have� v j� � if and only if

v� j� ��

Exercise ��� Consider the timed automata A� and A� depicted in Figure ���
�

Construct the region automata R�A�� and R�A�� for cz � �� Explain the di�erences

and indicate for both region automata the unbounded regions�

l�l�

x � �

inv�l�� � x � 	� inv�l�� � true

l�l�

x � �

inv�l�� � inv�l�� � true

A� A�

Figure ����� Two similar timed automata

Exercise ��� Consider the modi�ed light switch of Figure ���	 and suppose on is

labelled with atomic proposition p and o� is labelled with q�


	
 Model Checking Real�Time Temporal Logic

�� Give a TCTL�formula that expresses the property �once the light is o�� it will be

switched o� eventually after it has been switched on��

�� Check the property with the help of the region automaton of Figure ���� by

indicating a path that invalidates this property or by arguing that all paths do

satisfy it�

�� Give a TCTL�formula that expresses the property �there is a possibility that

when the light is o�� it is switched on� and switched o� within � time�units��

�� Check the property with the help of the region automaton of Figure ���� by

indicating a path that satis�es this property or by arguing that there is no path

that satis�es it�

Exercise ��� Consider the following timed automaton�

l�l�

y � �

fx g

y � �
x � 	 	 y � 	

fx� y g

inv�l�� � x � 	 � y � 	

inv�l�� � x � 	 � y � 	

�� Construct the region automaton for this timed automaton for a formula with

maximal constant �� indicate explicitly the delay transitions and the unbounded

regions�

�� Check the validity of the following formula

E ��y � 	�UE ��x 	 	�U �y � 	���

and justify your answer�

�� Extend the timed automaton with a counter n that is initialized as 	 and is

increased by � on every visit to location l�� Check the validity of the formula

z in EF �z � �	 � n 	 �	�

and justify your answer�
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�� Consider the formula AF p where p is an atomic proposition that is true if and

only if the timed automaton is in location l��

�a� Check the validity of this formula�

�b� What is the validity of this formula if a notion of weak fairness �see Chapter

�� is adopted�

Exercise ��� Model and analyses the following soldier problem in Uppaal� Four

soldiers are heavily injured� try to #ee to their home land� The enemy is chasing them

and in the middle of the night they arrive at a bridge that has been damaged and can

only carry two soldiers at a time� Furthermore� several land mines have been placed

on the bridge and a torch is needed to move the mines out of the way� The enemy is

approaching� so the soldiers know that they only have �	 minutes to cross the bridge�

The soldiers only have a single torch and they are not equally injured� thus the crossing

time �one�way� for the soldiers is � min� �	 min� �	 min and �� minutes�

�a� Model the soldier problem inUppaal as a network of interacting timed automata

�b� Verify whether there exists a strategy that results in saving all soldiers�

�c� Is there such strategy if the enemy is arriving a bit earlier� say� within �� minutes�

�This exercise is due to Ruys and Brinksma��
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Chapter �

A Survey of State�Space

Reduction Techniques

As we have seen in the previous chapters� the worst case time complexity of

model checking is polynomial in the size of the state space of the system model�

Experiments have demonstrated that time complexity is not the limiting factor

of model checking� but the usage of memory is�

The real practical limiting factor of model checking is

the often excessive size of the state space�

More precisely� the amount of main memory is the major limiting factor of

most conventional model checking algorithms� For model checking� being it PLTL�

CTL or TCTL� the basic ingredient of checking the validity of a given property

is a systematic traversal of the state space� For linear�time temporal logic� the

emptiness of a B�uchi automaton needs to be checked which boils down to a depth�

�rst search of the reachable state space� for CTL �and its real�time variant� model

checking boils down to labelling the reachable state space� This exploration of

the state space is e�cient only� when the reachable states are stored in main

memory� since usage of secondary memory would introduce a major bottleneck�

It is� however� typical for many applications that with traditional state space


	�
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exploration techniques  based on explicit state enumeration  this is a major

obstacle� the available amount of main memory is highly insu�cient�

A prominent example of systems where the state space is typically too large

are systems that consist of various components that cooperatively carry out a

certain task� For such applications� like descriptions of asynchronous hardware

systems� communication protocols or parallel �distributed� systems� the system

description usually consists of a number of concurrent processes� Typically the

state space of the parallel composition of a process with n states and a process

with k states results in a state space of n � k states� Accordingly� the parallel

composition of N processes with each a state space of k states leads to a state

space with kN states� Even for small systems this may easily run out of control�

as illustrated in the next example�

Example �� Let us consider Dijkstra�s solution to the mutual exclusion prob�

lem� In the original mutual exclusion algorithm by Dijkstra in ���� a Dutch

mathematician� it is assumed that there are n � 
 processes� and global variables

b� c � array  � � � � n! of boolean and an integer k� Initially all elements of b and

of c have the value true and the value of k belongs to �� 
� � � � � n� The i�th process

may be represented as follows�

var j � integer�

while true do

begin b�i� �� false�

Li � if k �� i then begin c�i� �� true�

if b�k� then k �� i�

goto Li

end�

else begin c�i� �� false�

for j �� � to n do

if �j �� i � � �c�j��� then goto Li

end

h critical section i�

c�i� �� true�

b�i� �� true

end
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It is not di�cult to convert this algorithm into SMV�code� the model checker

for CTL that we have encountered in Chapter �� The precise code is not of

importance here� and is omitted� By a small experiment we can show the impact

of the number of processes in Dijkstra�s mutual exclusion program to the size of

the state space� To that purpose we let 
 � n � � and show the size of the state

space in Figure ��� �Note that the scale of the vertical axis is logarithmic�� �End

� � 	 �  � � �
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Figure 	��� Number of states versus the number of processes

of example��

This exponential growth of the state space is referred to as the state�space

explosion problem� The state�space explosion problem is a problem that not

only appears for model checking� but also for various other problems like per�

formance analysis that are strongly based on state space exploration� In order

to tackle this problem in the setting of model checking various approaches have

been considered� In this chapter we give a �brief� overview of some of the ma�

jor techniques to overcome state�space explosion� In particular we consider the

following techniques�

� Symbolic representation of state spaces using binary decision diagrams� a

technique to encode transition systems in terms of a compact model that

is suited to represent boolean functions e�ciently�

� E�cient memory management strategies� techniques that try to optimize
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the use of �main� memory for model checking by using hashing� caching

techniques� and so forth�

� Partial�order reduction� a technique that exploits the fact that for checking

many properties it is not necessary to consider all possible ways in which a

state space can be traversed�

� Equivalence and pre�order relations� a technique to transform models �like

CTL�models and PLTL�models� into equivalent� but smaller models that

satisfy the same properties�

� Compositional veri�cation� a technique to decompose properties in sub�

properties such that each sub�property can be checked for a part of the

state space� and the combination of the sub�properties implies the required

global property�

� Abstract interpretation is a technique to reduce the increase of the state

space due to date by providing a mapping between the concrete data values

in the system and a small set of abstract data values that su�ces to check

the properties of interest�

�In the current version of the lecture notes� the later two techniques are not

treated��

��� Symbolic state
space representation

The di�erent methods for model checking� like model checking linear and branch�

ing temporal logic� are all based on a system description in terms of �a kind of�

�nite state�transition diagram� The most obvious way to store this automaton in

memory is to use a representation that explicitly stores the states and the transi�

tions between them� Typically data structures such as linked lists and adjacency

matrices are used�
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The idea of the BDD �Binary Decision Diagram��technique is to replace

the explicit state�space representation by a compact symbolic representation�

The state space� being it a B�uchi automaton� CTL�model� or a region au�

tomaton� is represented using binary decision diagrams� models that are used for

the compact representation of boolean functions� BDDs can not guarantee the

avoidance of the state space explosion in all cases� but provide a compact rep�

resentation of several systems� allowing these systems to be veri�ed  systems

that would be impossible to handle using explicit state enumeration methods�

A BDD �due to Akers� ��	�� is similar to a binary decision tree� except

that its structure is a directed acyclic graph� and there is a total order on the

occurrences of variables that determines the order of vertices when traversing

the graph from root to one of its leaves �i�e� end�point�� Once the state space is

encoded using BDDs� the model checking algorithm at hand is carried out using

these symbolic representations� This means that all manipulations performed

by these algorithms must be carried out� as e�ciently as possible� on BDDs� It

turns out that in particular the operations needed for CTL model checking can be

carried out e�ciently on BDDs� In SMV� the model checker we have discussed

in Chapter �� these techniques are used�

Encoding relations as boolean functions

To introduce the use of BDDs� we describe in this section how CTL�models can

be symbolically represented using BDDs� Recall that such models consist of a

�nite set of states S� a successor relation R � S � S� and a labelling of states

with atomic propositions� This labelling function is not of great importance here�

so we omit this component in order not to blur the presentation� We start by

discussing how R can be considered as a boolean function after which we describe

how boolean functions can be represented as BDDs� Without loss of generality�

assume that S has a cardinality 
n for n � �� �If S does not satisfy this constraint�

then dummy states can be added��

Each state in S is represented by a bit�vector of length n using a bijective
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encoding   !! � S 
� f �� � gn� For instance� a possible encoding for S � f s� s� g is

  s !! � � and   s� !! � �� The successor relation R is a binary relation over f �� � gn

such that
�  s !!�   s� !!� � R if and only if �s� s�� � R

For instance� the pair ��� �� is in R if and only if state s� is a successor of s�

Relation R is de�ned by its characteristic function�

fR�  s !!�   s !!�� � � if and only if �  s !!�   s !!�� � R

where fR � f �� � g�n 
� f �� � g� In this way the relation R is represented as a

boolean function�

Example ��� Consider the CTL�model depicted below� Let the encoding function

be de�ned as   s� !! � ���   s� !! � ���   s� !! � �� and   s� !! � ��� The characteristic

function of the successor relation R is listed by its truth table next to the CTL�

model� For example� the fact that state s� is a successor of s� follows from

fR�  s� !!�   s� !!� � �� that is� fR��� �� �� �� � ��

s� s�

s� s�

An example CTL�model

fR �� � � 

�� �  � 

� �   �

� �   

  �  
�End of example��

Binary decision trees

Boolean function f � f �� � gk 
� f �� � g �like the transition relation before� can

be represented by a truth table� listing all possible inputs and corresponding

output� or alternatively� as a rooted binary decision tree �BDT�� The idea of this

representation is that each leaf n is labelled with a boolean value�n� which is
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either � or �� Other vertices are labelled with a boolean variable var�n� and have

two children� z�n� and o�n�� The �rst child corresponds to the case that the value

of var�n� equals zero� the latter to the case that var�n� equals one� Leafs are

often called terminals and other vertices are referred to as non�terminals� In the

representation of a BDT edges to zero�children are drawn as dashed lines� while

edges to one�children are represented by solid lines� For example� the binary

decision tree of the characteristic function fR of the previous example is given in

Figure 	�
�

� � � � � � � � � � � �� � ��
s�� s�� s�� s��

s�� s��

s�

s�

s��

s�� s��

s��

s�

s��s��

Figure 	�
� A binary decision tree representing fR

The function value for a given assignment to the arguments can be determined

by traversing the tree starting from the root� branching at each vertex based on

the assigned value of the variable that labels the vertex� until a leaf is reached�

The value of the leaf is now the function value� For instance� to determine

fR��� �� �� ��� we instantiate the variables s� �� �� s� �� �� s�� �� � and s�� �� �

and traverse the tree accordingly� BDTs are not very compact� in fact the size of

such tree is identical to the size of the truth table of f � In addition� the size of a

BDT does not change if we would change the order of the variables occurring in

the tree when traversing from the root to a leaf� For instance� we could change

the current variable ordering s�� s�� s
�
�� s

�
� into s�� s

�
�� s�� s

�
� without a�ecting the

size of the BDT depicted in Figure 	�
�

The boolean function represented by means of a BDT is obtained as follows�

De�nition ��� �Function represented by a BDT�vertex�
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Let B be a BDT and v a vertex in B� The boolean function fB�v� represented by

a vertex v is de�ned as follows� for v a terminal vertex fB�v� � value�v� and for

v a non�terminal vertex�

fB�v� � �var�v� � fB�o�v��� � �� var�v� � fB�z�v����

The function represented by a BDT is fB�v� where v is the root of the BDT�

i�e� the top�vertex without incoming edges� The value of fB for assignment x� ��

b�� � � � � xn �� bn� for bi � f �� � g� equals fB x� �� b�� � � � � xn �� bn!� The above

de�nition is inspired by the so�called Shannon expansion for boolean functions�

Function f � f �� � gn 
� f �� � g can be rewritten using this expansion into�

f�x�� � � � � xn� � �x� � f��� x�� � � � � xn�� � �� x� � f��� x�� � � � � xn���

Reduced ordered binary decision diagrams

In a binary decision diagram the redundancy that is present in a decision tree is

reduced� A binary decision diagram is a binary decision tree in which isomorphic

subtrees are collapsed and redundant vertices are omitted� As an auxiliary notion�

let us recall the concept of directed acyclic graph�

De�nition �	� �Rooted directed acyclic graph�

A directed acyclic graph �dag� for short� G is a pair �V�E� where V is a set

of vertices and E � V � V a set of edges� such that G does not contain any

cycles �i�e� a �nite path v� � � � vn with vn � v� and �vi� vi��� for i � n in E�� A

dag is rooted if it contains a single vertex v � V without incoming edges� i�e�

f v� � V j �v�� v� � E g � ��

Let X � f x�� � � � � xn g be a set of boolean variables and � a �xed total order

on X such that xi � xj or xj � xi for all i� j �i �� j��

De�nition �
� �Ordered binary decision diagram�

An ordered binary decision diagram �OBDD� for short� over hX��i is a rooted

dag with vertex�set V containing two disjoint types of vertices�
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� each non�terminal vertex v is labelled by a boolean variable var�v� � X

and has two children z�v�� o�v� � V

� each terminal vertex v is labelled by a boolean value value�v��

such that for all non�terminal vertices v� w � V �

w � f o�v�� z�v� g � �var�v� � var�w� � w is a terminal vertex��

The �ordering� constraint on the labelling of the non�terminals requires that

on any path from the root to a terminal vertex� the variables respect the given

ordering �� This constraint also guarantees that the OBDD is an acyclic graph�

Ordered BDDs are due to �Bryant� ������ For non�terminal v� the edge from v

to z�v� represents the case that var�v� � false ����� the edge from v to o�v� the

case var�v� � true �����

De�nition ��� �Reduced OBDD�

OBDD B over hX��i is called reduced if the following conditions hold�

�� for each non�terminal v� o�v� �� z�v�


� for each non�terminal v� w�

�var�v� � var�w� � o�v� � o�w� � z�v� � z�w�� � v � w

�� for each terminal v� w� �value�v� � value�w�� � v � w�

The �rst constraint states that no non�terminal vertex has identical one� and

zero�successors� The second constraint forbids vertices to denote isomorphic sub�

dags� the last constraint does not allow identical terminal vertices �such that at

most two terminal vertices are allowed��

Example ��� The BDT of Figure ��� is an OBDD� but not a ROBDD� For

instance� the two subtrees rooted at the vertex labelled with s�� in the leftmost
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� �	 	 �	

� 	

� 	

�a� becomes

�b�

becomes

�c�

becomes

Figure 	��� Steps to transform an OBDD into reduced form

subtree are isomorphic� and the top�vertices of these subtrees violate the second

constraint of being a ROBDD� �End of example��

The de�nition of reduced OBDD �ROBDD� for short� suggests three possible

ways to transform a given OBDD into a reduced form�

� Removal of duplicate terminals� if an OBDD contains more than one ter�

minal labelled � �or ��� redirect all edges that point to such vertex to one

of them� and remove the obsolete terminal vertices� cf� Figure 	���a��

� Removal of redundant tests� if both outgoing edges of a vertex v point to

the same vertex w� then eliminate vertex v and redirect all its incoming

edges to w� cf� Figure 	���b��
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� Removal of duplicate non�terminals� if two distinct vertices v and w are

the roots of isomorphic ROBDDs� then eliminate v �or w�� and redirect all

incoming edges to the other one� cf� Figure 	���c��

The transformation of an OBDD into a ROBDD can be done by a bottom�up

traversal of the directed graph in time that is linear in the number of vertices in

the OBDD�

The function represented by a ROBDD is obtained in the same way as for

BDTs �cf� De�nition 	��� Given a total ordering on the boolean variables and

some boolean function� there exists a unique ROBDD �up to isomorphism� that

represents this function� This important result is due to �Bryant� ������

Theorem ���

Let X � f x�� � � � � xn g be a set of boolean variables and � a total ordering on X�

For ROBDDs B� and B� over hX��i we have�

fB� � fB� � B� and B� are isomorphic�

As a result several computations on boolean functions can be easily decided�

such as equivalence of functions  it su�ces to check the equality of the ROB�

DDs� For instance� in order to check whether a ROBDD is always true �or false�

for any variable assignment of boolean values to its variables� amounts to sim�

ply check equality with a single terminal vertex labelled � �or ��� the ROBDD

that represents true �or false�� For boolean expressions e�g� this problem is NP�

complete�

Example ��� Consider again our running example� The BDT that represents the

transition relation R is depicted in Figure ��� and consists of 
�
� � �� vertices�

The corresponding ROBDD� that is a ROBDD that represents the same function

fR� for variable ordering s� � s� � s�� � s�� is depicted in Figure ����a�� Since the

BDT contains a substantial degree of redundancy� the size of the ROBDD is sig�

ni�cantly smaller� it only consists of � vertices� Notice that for some evaluations

of fR� the value of a variable might be irrelevant� e�g� fR��� �� �� �� is determined
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without using the fact that s�� � �� Figure ����b� depicts the ROBDD representing

the same function� but using a di	erent variable ordering� s� � s�� � s� � s���

This ROBDD consists of � vertices and thus exploits the redundancy in the BDT

in a more optimal way� This is� for instance� also illustrated by considering the

path to traverse in order to determine the value of ��� �� �� ��� in the left ROBDD

three vertices are visited� whereas in the right ROBDD only two� �End of

� 	 � 	

s�� s��
s�� s��

s�

s�

s�

s��

s�
s�

s�� s��

s�� s��

�a� ordering s� � s� � s�� � s��

�b� ordering s� � s�� � s� � s��

Figure 	��� Two ROBDDs �for di�erent orderings� for our sample CTL�model

example��

The size of a ROBDD strongly depends on the ordering of the boolean vari�

ables under �� This is illustrated in Figure 	�� for a small example� For larger

examples� these e�ects can be substantially larger� For representing the tran�

sition relation of �nite�state transition systems like CTL�models� experiments

have shown that an ordering on the variables in which the bits representing the

source and target of a transition are alternated� provides rather compact ROB�

DDs� Thus� if   s !! � �s�� � � � � sn� and   s� !! � �s��� � � � � s
�
n� then the ordering in the

ROBDD is

s� � s�� � s� � s�� � � � � � sn � s�n

or its symmetric counterpart s�� � s� � � � � � s�n � sn� This schema has been

applied in Figure 	���b�� Examples exist for which under a given ordering an

exponential number of states are needed� whereas under a di�erent ordering of
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the variables only a linear number of states is needed� Moreover� there do exist

boolean functions that have exponential�size ROBDDs for any variable ordering�

Example ��� Consider the function

f�x�� � � � � x�n� � �x� � x�� � � � � � �x�n�� � x�n��

Using the variable ordering xi � xi��� for � � i � 
n� gives rise to a ROBDD

with 
n"
 vertices� The variable ordering x� � x� � � � � � x�n�� � x� � x� �

� � � � x�n gives rise to a ROBDD with 
n�� vertices� �The reader is invited to

check this for n � � or n � 
�� �End of example��

The problem of �nding an optimal variable ordering is NP�complete� Most

model checkers based on a symbolic representation of the state space using ROB�

DDs apply heuristics �or dynamic re�ordering of variables� to �nd a variable

ordering that results in a compact representation� In practice� these algorithms

work quite well�

The use of ROBDDs does not improve the worst�case time complexity of

the model checking algorithms� the worst�case time complexity is identical to

that of model checking using explicit state space representations� It is very hard

to give exact average�time or best�time complexity �gures for ROBDD�model

checking� Empirical results show that for many practical cases state spaces can

be represented in a compact way by means of ROBDDs �Burch et al� ���
��

Experiments with state spaces of ����� states and beyond have been reported in

the literature�

Model checking using ROBDDs

The symbolic model checking algorithm for CTL works brie�y as follows� Let

M � �S�R� �� be a CTL�model that is obtained as system description� M is

represented by a ROBDD R over 
n boolean variables� where 
n is the cardinality

of the state space S� R is constructed as explained in the previous section� e�g� for

M of our running example� the corresponding ROBDD R is given in Figure 	���b��
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In practice it is often not feasible to obtain a ROBDD�representation starting

from an explicit state space enumeration� since the state space is to large to

handle� Instead� the ROBDD�representation is directly obtained from a high�

level description of the model M�

For each CTL�formula � a ROBDD   Sat��� !! is constructed over the boolean

variables �s�� � � � � sn� that represents state s�   Sat��� !! represents the character�

istic function of the set Sat��� � f s � S j M� s j� � g� Thus�

f��Sat
�� ���s�� � � � � sn� � � if and only if s � Sat��� for   s !! � �s�� � � � � sn��

Model checking CTL now boils down to constructing the ROBDD   Sat��� !! in an

iterative way starting with the sub�formulas of � of length �� In each iteration

the results of previous iterations can be exploited� For instance�

  Sat��� � ��� !! � Apply�  Sat���� !!�   Sat���� !!� � �

where Apply is an operator on ROBDDs� such that for ROBDDs B� and B��

fB � fB� � fB� for B � Apply�B��B���� with � a binary operator on booleans�

Like for model checking CTL without ROBDDs �cf� Chapter ��� the ROBDD

  Sat�E  �U�!� !! is computed by a least �xed point computation� In a nutshell�

one might say that all model checking algorithms of Chapter � for computing

Sat��� carry over in a direct way to the symbolic case to compute the ROBDD

  Sat��� !!� For a more thorough treatment of model checking using ROBDDs we

refer to �McMillan ����� and Clarke� Grumberg # Long� ������ Since this type of

model checking uses a symbolic representation of the state space� this is referred

to as symbolic model checking algorithms�

��� Memory management strategies

In this section we consider some memory management strategies that intend to

reduce the often excessive size of the state space for model checking purposes�

These techniques have originally been developed for state space exploration� i�e�
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procedure DepthFirstSearch �s� � Vertex��

�) precondition� true )�

begin var S � sequence of Vertex� �) path from s� to current vertex )�

Z � set of Vertex� �) visited vertices )�

S� Z �� hs�i� h i���

do S �� h i 
� �) let S � hsi�S � )�

if ��s� � Z 
� S �� S ��

 ! ��s� �� Z 
� let s� in ��s� n Z�

S� Z �� hs�i�S� Z � f s� g

��

od�

end

Table 	��� Depth��rst search traversal of state space

reachability analysis� Since model checking PLTL is strongly based on similar

reachability analysis methods� like the checking of emptiness of B�uchi automata�

these memory management strategies will be discussed in the context of PLTL

model checking�

Recall from Chapter 
 that the algorithm for checking emptiness of B�uchi

automata is based on a �nested� depth��rst search algorithm� In the �rst �outer�

most� depth��rst search an accepting state that is reachable from the initial state

is computed� In the second �innermost� depth��rst search� it is checked whether

such accepting state is reachable from itself� i�e� is member of a cycle� If such

accepting state is found� the B�uchi automaton at hand is non�empty� and the

property is invalidated�

The basic idea of the memory management strategies in this section is to

reduce the amount of memory used in this depth��rst search strategy as much as

possible� These techniques are not only applicable to depth��rst search strategies�

but can also be applied to other search strategies like breadth��rst search� In

order to discuss these techniques let us have a more detailed look at a typical �un�

nested� depth��rst search algorithm� see Table 	��� The two basic data structures

in this algorithm are a sequence of states S �usually implemented as a stack� and

a set of states Z� Recall that ��s� denotes the set of direct successors of s� The
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last state in sequence S denotes the state that is currently being explored while

Z records the states that have been considered �visited�� During the search� once

states have been explored they are stored in Z� Storing states avoids redundant

explorations of parts of the state space� if a state in Z is encountered again later

in the search� it is not necessary to re�explore all its successors� �If we would

know in advance that each state is visited at most once on exploring the state

space� Z could be omitted� but this knowledge is absent in practice�� To check

whether an encountered state is in Z is referred to as state matching�

Measurements of traditional reachability analysis methods have shown that

the most time�consuming operation is not the generation of states nor the analy�

sis� but the storage of states and state matching �Holzmann� ������ Since accesses

to sequence S are predictable  only the �top� element of S is of importance

 this data structure can be stored in secondary memory without slowing down

the computations signi�cantly� Accesses to Z� however� are random� and thus

Z is stored in main memory� The next two techniques are focussed on storing

Z� or part of it� in a suitable manner� such that the memory usage is reduced

�since main memory is typically a scarce resource�� and that state matching can

be done e�ciently�

Bit�state hashing

In order to discuss the bit�state hashing technique �which is due to Holzmann�

����� let us brie�y describe the traditional storage of states� To do so� consider a

parallel �or distributed� system with n processes� k channels that connect these

processes such that they can exchange information by means of message passing�

and m global variables� A state of such system� usually referred to as state de�

scriptor� consists of several components� the control location ��program counter�

plus values of local variables� for each process� the content of each channel� and

the value of each global variable� For N states per process� channels of capacity K

and range�size of each global variable M � this leads to maximally Nn�Kk�Mm

states� Typically this leads to a huge number of states and long state descriptors�

State matching thus amounts to comparing two �rather long� state descriptors�

The main problem though is the poor coverage of this explicit state enumeration
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method� in case of e�g� a main memory of capacity ��� Mbyte� state descriptors

of ���� bytes� and ��	 reachable states� a coverage of ��� is obtained� i�e� only

��� of the reachable states is consulted�

By bit�state hashing a state descriptor is mapped onto a memory address�

that points to a single bit indicating whether the state has been visited before�

After having provided the mapping for state descriptors onto addresses in main

memory� state descriptors are ignored� and thus never need to be stored� instead

addresses will represent them� The bit array represents the set Z of before� it

equals � for a given address �� state� if that state has been visited already and

equals � otherwise� Thus for state s� function h that maps states onto memory

addresses and bit�array bitar� bitar h�s�! � � if and only if state s has been visited

before� Initially all values in the bit�array equal �� and if state s is visited �that

is� added to Z in the code of Table 	��� bitar h�s�! is assigned value �� State

matching simply amounts to checking whether bitar h�s�! � �� a simple table

look�up� For an internal memory size of� for instance� � Mbyte �� �� Mbit�� this

strategy can handle state descriptors of up to 
� bits�

For practical systems� however� state descriptors may be much longer� and

the number of necessary addresses exceeds the addressing capacities of the main

memory of the machine at our disposal by a large factor� For instance� a state

descriptor of 	
� bits  which is not exceptional  exceeds the addressing ca�

pabilities of an � Mbyte machine by a factor 	
��
� � 
� times� Thus� although

the above scheme seems interesting� its usage is still limited� Empirical results

have shown� however� that for communication protocols with a total state space

of e�g� ��� states� the number of reachable states is a factor 
� lower �Holzmann�

������ This is due to the fact that state spaces are typically very sparse� the

ratio of the total number of states over the number of reachable states is high�

Based on this observation� the idea is to store only a subset of all possible state

descriptors� In this way� a probabilistic technique is obtained� there is a positive

probability that a reachable state is not covered� since it does not belong to the

selected subset of state descriptors to be stored� Due to the above observation�

though� the probability of such event is low�
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hashing

h

bitar

bit state space

descriptorstate address

��bit #ag

Figure 	�	� Basic principle of bit�state hashing

Technically� this scheme is achieved by letting h a �non�perfect� hash�function�

This scheme is illustrated in Figure 	�	� �In fact� in the aforementioned scheme

where the number of addresses is assumed to be equal to the number of reachable

state�descriptors� h is a perfect hash�function� i�e� h is injective�� As before� the

function h maps a state descriptor �called hash�key� onto a position �address�

in the bit�array� Since the number of addresses is signi�cantly smaller than the

number of reachable states� so�called hash�collisions may appear� Mathematically

speaking� h may be non�injective� That is� for states s� s� with s �� s� it is possible

that h�s� � h�s��� Consequently� one might wrongly decide that a state has been

visited while it has not� if state s has been visited �thus bitar h�s�! � �� and state

s� �� s is encountered with h�s� � h�s��� state s� is not considered� Consequently�

also the successors of s� might not be considered� Since state descriptors are

not stored� but addresses are used instead� there is no way to resolve the hash�

collision� Notice that although a hash�collision may cause the truncation of a

search path at a too early stage� it will not yield wrong results�

Thus� this scheme is actually providing a partial state space search� The

probability p that no collisions appear is approximated as �Wolper and Leroy�

������
p � e

N

�
k

where N is the number of states and k the number of positions in the bit�array�

Several proposals have been made to reduce this probability� for instance by

only storing states that have been visited before �Wolper and Leroy� ������ the

use of two hash functions with a sophisticated collision resolution scheme �Stern
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and Dill� ������ and dynamic hashing using two hash functions �Knottenbelt�

Mestern� Harrison and Kritzinger� ������

The e�ect of bit�state hashing on the coverage of the problem at hand is illus�

trated in Figure 	��� The curves show that with a considerable smaller amount of

available memory� the coverage of the state space with bit�state hashing outper�

forms that with conventional �i�e� explicit state space storge� signi�cantly� Here�

the bit�state hashing algorithm has been applied to a data transfer protocol that

requires the generation of about �
����� states each taking ��� Kbits of memory

for the state descriptor in case of an exhaustive state search� The total memory

requirements are close to �� Mbytes of memory �about 
�� bits�� The bit�state

hashing techniques have been applied with good results in several large�scale

industrial case studies �Holzmann� ������
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Figure 	��� E�ect of bit�state hashing on problem coverage

State�space caching

Another technique for coping with the state space explosion problem in depth�

�rst search is called state space caching �Holzmann� ���	��
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State�space caching is based on the idea to maintain a cache

�a fast memory of restricted size� of states that have been visited before�

Initially� the cache is empty and all visited states are stored in the cache until

the cache is fully occupied� If a new state is to be added to the full cache a

previously inserted state in the cache is selected and removed from the cache� and

the new state is added� Di�erent policies to select the state to be removed from

the cache can be adopted� least recently used� less frequently visited state� and

so on� Studies have shown that state�space caching is only useful for exploring

state spaces that are only a few times larger than the size of the cache� The

critical point of this approach is that a previously visited state that has been

removed from the cache is encountered again in the search� and explored again�

By experiments it has turned out that the number of transitions is about � times

the number of states in a model� and thus each state is encountered about �

times on average during a search� The e�ciency of this technique can be increased

signi�cantly if the number of visits to a state can be reduced� A possible technique

for this purpose is partial�order reduction� described in the next section� The

combination of state�space caching and partial�order reduction is implemented in

the model checker Spin and experiments indicate a signi�cant reduction of the

memory requirements �Godefroid� Holzmann # Pirottin� ���	��

��� Partial
order reduction

Systems that consist of a set of components that cooperatively solve a certain

task are quite common in practice� e�g� hardware systems� communications pro�

tocols� distributed systems� and so on� Typically� such systems are speci�ed as

the parallel composition of n processes Pi� for � � i � n� The state space of

this speci�cation equals in worst case
Qn

i�� jPi j� the product of the state spaces

of the components� A major cause of this state space explosion is the repre�

sentation of parallelism by means of interleaving� Interleaving is based on the

principle that a system run is a totally ordered sequence of actions� In order

to represent all possible runs of the system� all possible interleavings of actions

of components need to be represented and� consequently� parallel composition of
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state spaces amounts to building the Cartesian product of the state spaces of the

components� For n components� thus n� di�erent orderings �with 
n states� are

explicitly represented� In a traditional state space exploration all these orderings

are considered� For checking a large class of properties� however� it is su�cient

to check only some �in most of the cases even just one� representative of all these

interleavings� For example� if two processes both increment an integer variable in

successive steps� the end result is the same regardless of the order in which these

assignments occur� The underlying idea of this approach is to reduce the inter�

leaving representation into a partial�order representation� System runs are now

no longer totally ordered sequences� but partially ordered sequences� In the best

case� the state space of the parallel composition of n processes Pi now reduces toPn
i�� jPi j and only a single ordering of n"� states needs to be examined�

Given a property to be checked� partial�order reduction methods

explore only a reduced part of the state space that is

�provably� su�cient to check the validity of the given property�

The di�erence between the reduced and the global state space is that not all

interleavings of concurrent activities are represented in the reduced one� Which

interleavings need to be preserved may depend on the property to be checked�

The basic requirement for the reduced state space is that it contains su�cient

interleavings to enable checking of the desired property� For performing model

checking it is then su�cient to consider the reduced state space�

There are basically three di�erent techniques for partial�order approaches to�

wards model checking�

�� In dynamic partial�order reduction a subset of the states that need to be

explored is determined during the search procedure� This embodies that the

possible interesting successors of a given state are computed while exploring

the current state� Dynamic partial�order reduction is the most popular and

most developed technique� it requires� however� a modi�cation of the search

procedure��

�For instance� for Spin the size of the code of the model checker was doubled due to the

incorporation of dynamic partial�order reduction�
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� Static partial�order reduction techniques avoid the modi�cation of the search

engine of the model checker by performing the reduction at the level of the

system speci�cation� that is� syntactically� The subset of the states that

need to be explored is thus determined before the actual searching takes

place�

�� In the purely partial�order approach� the construction of the interleaved ex�

pansion of parallel components is avoided by directly constructing a partial�

order representation of the state space from the system speci�cation� An

interleaving representation is thus never generated� and needs never to be

stored� This approach is particularly suitable for Petri nets�

In this chapter we will treat the basic principles of dynamic partial�order reduc�

tion� for static partial�order reduction we refer to �Kurshan et al� ������ while

for the entirely partial�order approach we refer to �McMillan� ���	 and Esparza�

������
In the linear temporal case� dynamic partial�order reduction amounts to

traversing the reduced state space to check for emptiness �of the product B�uchi

automaton�� that is� reachable cycles that contain accepting states� Such traver�

sal starts in the non�reduced case from the initial state and successively considers

new states by exploring all successors of the current state s �cf� Table 	���� In

partial�order reduction only a subset of these successors are considered� Such a

partial exploration of the entire state space is called a selective search�

There are di�erent techniques for performing a selective search and they ba�

sically di�er in the way in which they select the representative interleavings�

Amongst others� notions like ample sets� persistent sets� sleep sets and stubborn

sets have been de�ned� The basic idea of these concepts is to consider only those

successor states that are reachable via dependent transitions� that is� to ignore in�

dependent transitions� Intuitively� independent transitions are transitions whose

e�ects are the same� irrespective of their order� For instance� the execution of

two independent transitions in either order both must lead to the same resulting

state� In the sequel of this section we will deal with the ample sets approach

�Peled� ������ This approach can be used in the context of on�the��y model

checking for PLTL as explained in Chapter 
�
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Selective search using ample sets

For reducing the state space� transitions play a prominent role� In particular

one has to decide which transitions are dependent and which are not� In order

to distinguish between the di�erent transitions in a system� we replace R� the

successor relation� by a set of transitions T � Each element a � T is referred to as

a transition �rather than a transition relation��

De�nition ��� �State transition system�

M � �S� T�Label� is a transition system with S a non�empty� �nite set of states�

Label � S � 
AP� the labelling of states with sets of atomic propositions� and T

a set of transitions such that for each a � T � a � S � S�

A CTL�model can be de�ned as a triple �S�R�Label� where R�s� s�� if and only

if there exists a transition a � T such that a�s� s��� We consider deterministic

transitions� i�e� transitions a such that for each state s there is at most one state s�

such that a�s� s��� Notice that this is not a real restriction� since non�deterministic

transitions can be modeled by a set of transitions� e�g� if R�s� s�� and R�s� s����

then let a� b � T with a �� b such that a�s� s�� and b�s� s���� For deterministic

transition a we often denote s� � a�s� as shorthand for a�s� s���

De�nition ��� �Enabled and disabled transitions�

Transition a is enabled in s if  s� � S� a�s� s��� otherwise a is disabled in s� The

set of transitions that is enabled in s is denoted enabled�s��

As we have stated above� the idea is to perform a selective search� such that

only a subset of the enabled transitions is explored� Let for state s� this subset be

denoted ample�s�� Thus� ample�s� � enabled�s�� The basic skeleton of a selective

depth��rst search is given in Table 	�
� In a similar way the algorithm in Chapter


 for checking the emptiness of a B�uchi automaton can be modi�ed such that

only a selective search is performed� The results of this partial search coincide

with the results of the exhaustive search with a small di�erence� since transitions

are removed from the reduced graph� the counter�example that is generated in

case a failure is detected might di�er from the counter�example obtained with

the exhaustive search algorithm�
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procedure SelectiveSearch �s� � State��

�) precondition� true )�

begin var S � sequence of State� �) path from s� to current state )�

Z � set of State� �) visited states )�

S� Z �� hs�i���

do S �� h i 
� �) let S � hsi�S � )�

if f a�s� j a � ample�s� g � Z 
� S �� S ��

 ! f a�s� j a � ample�s� g �� Z 
�

let s� in f a�s� j a � ample�s� g 
 Z�

S� Z �� hs�i�S� Z � f s� g

�

od

end

Table 	�
� Selective depth��rst search using ample sets

The correctness of the selective search algorithm critically depends on the

calculation of ample�s�� that is� su�ciently many transitions must be included

in this set so that the obtained results coincide with the results when enabled�s�

would be used instead� This requirement can of course� be simply ful�lled by

letting ample�s� � enabled�s�� but this is not the intention� the number of states

in ample�s� should be preferably signi�cantly smaller than the cardinality of

enabled�s�� Moreover� the ample sets need to computed with small overhead�

Independence and invisibility

As stated before� the idea is to ignore consider from a pair of independent tran�

sition only one� The notion of independence is de�ned as follows�

De�nition ��� �Independence relation on transitions�

Relation I � T � T is called an independence relation if it is symmetric �i�e�

�a� b� � I � �b� a� � I� and irre�exive �i�e� �a� a� �� I� such that for each s � S

and for each �a� b� � I � enabled�s��
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�� a � enabled�b�s��� and


� a�b�s�� � b�a�s���

The complement of I �that is� �T � T � n I� is referred to as the dependency

relation� The �rst condition states that a pair of independent transitions must

not disable each other �but they may enable each other�� if a and b are enabled in

s� then after taking a� b is still enabled in the resulting state after a� The second

condition states that executing independent transitions in either order results in

the same state�

The latter condition suggests a possible reduction of the state space� if the

orderings ab and ba are possible and transitions a� b are independent� then simply

ignore one of the possibilities� since the resulting state is the same� This naive

recipe is� however� not guaranteed to obtain correct results� For instance� the

property to be checked might be sensitive on the intermediate state reached after

�rst a has been executed� while this state is not consulted if the alternative ab is

omitted� To determine the intermediate states that are irrelevant for a property�

the notion of invisibility of a transition is introduced�

De�nition ��� �Invisible transition�

Let AP be a set of atomic propositions and AP � � AP� Transition a � T is

invisible with respect to AP � if for all s� s� � S such that s� � a�s� we have�

Label�s� � AP � � Label�s�� � AP �� Otherwise� a is called visible�

Stated in words� a transition is invisible with respect to AP � if it does not

change the validity of the atomic propositions in AP ��

De�nition ��� �Stuttering equivalence�

In�nite paths � � s� s� � � � and �� � t� t� � � � are stuttering equivalent� denoted

� �st �
�� if there are two in�nite sequences of integers i� � i� � � � � and j� � j� �

� � � such that i� � j� � � and for all k � ��

Label�� ik!� � Label�� ik"�!� � � � � � Label�� ik��
�!�

� Label��� jk!� � Label��� jk"�!� � � � � � Label��� jk��
�!��
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Intuitively� sequences � and �� are stuttering equivalent if they can be par�

titioned into in�nitely many blocks� �nite sequences of equally labelled states�

such that the k�th block of � is equally labelled to the k�th block of ���

Example ��� Consider the �part of the� transition system of Figure ��� and

let a � f �s�� s��� �s�� s�� g and b � f �s�� s��� �s�� s�� g� Then we have s� s� s� �st

s� s� s�� block s� s� is matched with s� and block s� is matched with s� s�� �End

f p g

f q g

f q g

s�

s�

s�f p g

s�

Figure 	��� Example of stuttering equivalent paths

of example��

The basic idea of partial�order reduction is to explore of each

equivalence class of stuttering�equivalent paths only one representative�

This is guaranteed to be correct for the set of PLTL�formulas whose validity is

identical for each stuttering equivalent sequence� Such formulas are said to be

invariant under stuttering�

De�nition ��� �Invariance under stuttering�

PLTL�formula � is invariant under stuttering if and only if for all paths �� b��

� �st b� � �M� � �! j� � if and only if M� b� �! j� ���

Is it possible to characterize the set of formulas that are invalid under stut�

tering� It is not di�cult to see that a formula like X p� for atomic proposition

p� is not invariant under stuttering� suppose � is the path s� s� s� s� s� � � � and b�

equals s� s� s� � � �� These two paths are stuttering equivalent� each subsequence
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s� s� in � is matched with the subsequence s� in b�� whereas s� in � is matched

with s� in b�� Assume p is valid in s�� and not in s�� Then X p is valid in the

initial state of b�� but not in the initial state of �� although � �st b�� In fact�

X is the only temporal operator in PLTL that disturbs validity under stuttering�

The following results are due to �Lamport� ����� and �Peled and Wilke� ������

respectively�

Theorem �	�

� Any PLTL�formula that does not contain any next operator is invariant

under stuttering�

�� Any PLTL�formula that is invariant under stuttering can be expressed with�

out next operators�

Characterization of ample sets

When the property at hand is invariant under stuttering� the independence re�

lation and the notion of invisibility allow us to avoid the exploration of certain

paths in the state space� The idea of the ample sets is to guarantee that for each

path that is not considered by the selective search algorithm� there is a stutter�

ing equivalent path that is considered� The reduction will depend on the set of

atomic propositions that appears in the PLTL�formula to be checked�

The characterization of ample sets is given by de�ning successive constraints�

subsequently we discuss how these sets can be computed such that the constraints

are ful�lled� The constraints on ample sets are �Peled� ������

�� ample�s� � � if and only if enabled�s� � ��


� For each path starting at state s in the original state space� the following

condition holds� a transition dependent on a transition in ample�s� cannot

be taken without some transition in ample�s� taken �rst�

�� ample�s� �� enabled�s� � each transition in ample�s� is invisible�
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�� A cycle is not allowed if it contains a state in which a is enabled� but is

never included in ample�s� for any state s in the cycle�

The �rst constraint says that if a state has at least a single outgoing transition�

then it should have so in the reduced state space� The second constraint implies

that only transitions that are independent of ample�s� can be taken before some

transition in ample�s� is taken� �It is even the case that by taking such inde�

pendent transition �rst� this does not disable any of the transitions in ample�s���

The last two constraints are necessary to guarantee that all paths in the original

state space are represented by some �stuttering�equivalent� path in the reduced

state space� The justi�cation of these constraints is beyond the scope of these

lecture notes�

Given this characterization the question is how to compute these ample sets

in an e�ective and �if possible� e�cient manner� The �rst and third condition

can easily be checked� checking the last constraint is hard� whereas checking

the second condition is at least as hard as exploring the entire state space� To

resolve this� the last constraint is usually replaced by a stronger condition that

facilitates an e�cient computation of ample sets� Di�erent strengthenings are

possible� �Peled� ����� proposes to strengthen the last constraint by� ample�s� ��

enabled�s� � no transition in ample�s� may close a cycle� �This can simply be

checked� if a state is explored that is already in the sequence S in the depth�

�rst search� it closes a cycle�� Since checking the second constraint is as hard as

exploring the full state space  which we would like to avoid�  the usual idea

is to construct ample sets that guarantee this constraint by construction� thus

avoiding checking it� The precise way in which this is done strongly depends on

the model of computation and is not treated here�

Experimental results

Partial�order reduction is for instance realized in the linear temporal logic model

checker Spin� in combination with techniques like bit�state hashing �as an option�

and state�space caching� as explained in the previous section� More precisely�

Spin computes the non�emptiness of the product B�uchi automaton on�the��y�
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that is� it checks whether there exists an accepting run in this automaton whereby

a new state in the automaton is generated only if no accepting run has been found

yet� Some care needs to be taken by combining the partial�order reduction with

the nested depth��rst search such that in each depth��rst search the same ample

sets are chosen� for instance� to ensure that cycles are closed �second constraint

above� at the same place�

As an example the leader election protocol of Dolev� Klawe and Rodeh is

taken� For an extensive explanation of this protocol we refer to Chapter 
�

For three processes the unreduced state space consists of about ������ states

���� Mbyte�� whereas the reduced state space consists of about ���	� states ���	

Mbyte�� This di�erence increases signi�cantly when the number of processes is

increased to �� 	

���� states ��	�� Mbyte� versus ����	 states ���� Mbyte� in

the reduced case� For � processes� the unreduced state space could not be gener�

ated� whereas for the reduced case ������� states ��	�� Mbyte� were needed� This

shows how partial�order reduction enables to alleviate the state space explosion�

in particular for systems with many parallel composed components� The e�ect

of partial order reduction is illustrated in Figure 	��
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Figure 	��� E�ect of partial order reduction on leader election protocol

This example provides a best�case performance for partial�order reduction�

where exponential growth of the state space in the number of processes partic�

ipating in the protocol is reduced to a linear growth� In more typical case� the
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reduction in the state space size and in the memory requirements is linear in

the size of the model� yielding savings in memory and run�time from �� to ���

�Holzmann and Peled� ������

��� Reduction through equivalences

The basic idea of reduction through equivalences is to replace a state space by

an equivalent state space that contains fewer states and that is invariant under

the validity of all formulas� �Actually� partial�order reduction is a speci�c variant

of these techniques where a model is reduced into stuttering�equivalent model��

More precisely� the idea is to �nd an equivalence relation � between models such

that for any formula ��

M�M� � �M� s j� � if and only if M�� s j� ���

That is� if two models are equivalent� then the validity of each formula in the

logic at hand is identical� Now suppose we want to check whether M� s j� �� In

case M� is smaller than M and M�M�� model checking formula � is performed

on M� and state s� where s and s� are equivalent states�

For CTL such equivalence notion is bisimulation equivalence� Informally

speaking two models are bisimilar if each transition in the one model can be

simulated by the other and vice versa�

De�nition �
� �Bisimulation equivalence�

Let M � �S�R�Label� and M� � �S �� R��Label�� be two CTL�models over the

same set of atomic propositions AP� Relation B is a bisimulation if and only if

for all �s� s�� � B we have�

�� when R�s� s�� then  s�� � S �� R��s�� s��� such that �s�� s
�
�� � B� and


� when R��s�� s��� then  s� � S�R�s� s�� such that �s��� s�� � B� and

�� Label�s� � Label��s���
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M and M� are said to be bisimulation equivalent� denoted M � M�� if there

exists a bisimulation B for any initial state s� of M and initial state s�� of M�

such that �s�� s
�
�� � B�

Stated in words� states s and s� are bisimilar if they are labelled with the same

atomic propositions� and if all possible outgoing transitions of s can be simulated

by transitions emanating from s�� and vice versa� It follows by the above de�nition

that bisimulation is an equivalence relation� The notion of bisimulation can be

extended to fair CTL�models �cf� Chapter �� by requiring that each fair path

starting at s in M can be simulated by a bisimilar fair path starting st s� in M��

Example ��� Consider the following two modelsM andM�� These models are

bisimilar� in particular� states that have an identical shading are bisimilar� Since

for each state s � M a bisimilar state s� � M� exists�M�M�� �End of

f p g
f q g

f r g

f p� q g

f q g
f p� q g

f p g
f q g

f r g

f p� q g

M�M
Figure 	��� Two bisimilar CTL�models

example��

Theorem ���

For any CTL��formula � and CTL�modelsM andM��

M�M� � �M�� s� j� � if and only ifM� s j� ���

This is in fact a strong preservation result� since both negative and positive

results carry over� model checking of M� is complete with respect to M� since
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if M� j� � then M j� � �positive result� and if M� �j� � then M �j� � �negative

result�� In case the model M� is much smaller than M� it is therefore bene�cial

to take M� instead for model checking� knowing that all results of this �faster�

validation carry over to the original case�

Notice that the implication in the reverse direction also holds� if the validity

of all CTL��formulas is the same for two given models� then these models are

bisimulation equivalent� To decide whether two given models are bisimulation

equivalent� an algorithm based on partition re�nement can be used �Paige and

Tarjan� ������ For a model with j S j states and j R j transitions� the worst�case

time complexity of this algorithm is O�j R j � log j S j��

In case no signi�cant reduction can be obtained using bisimulation equiva�

lence� a more substantial reduction of the state space can be obtained by ���

restricting the logic� and �
� relaxing the requirement that the validity of all

formulas is invariant for all equivalent models� An example of such approach

is to restrict the logic by disallowing existential path quanti�ers� and by using

a pre�order relation �that is� a re�exive and transitive relation� instead of an

equivalence relation between models� For an appropriate pre�order relation � 

usually a simulation relation �a �half� bisimulation�  the idea is to obtain�

M�M� � �M� j� � � M j� ��

for arbitrary � that does not contain any existential path�quanti�er� Note that

this is a weak preservation of validity� if we check � on M� then if M� j� � we

also have M j� �� but if M� �j� �� this does not imply that the original model

M does not satisfy �� Thus� in this case positive results carry over� but negative

results do not�

Exercises

Exercise ��� Let F be a function on tuples of � boolean variables which is de�ned

by F �x�� x�� y�� y�� � �x� � y�� � �x� � y���
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�� Construct a ROBDD B with ordering x� � x� � y� � y� that represents F �

�� Construct a ROBDD B� with ordering x� � y� � x� � y� that represents F �

�� Argue that both ROBDDs indeed represent F � i�e� prove that fB� � fB� � F �

Exercise ��� Let F be a function on tuples of n �n � �� boolean variables which

is de�ned by F �x�� � � � � xn� � � if and only if the number of variables xi with value

� is even� Construct the ROBDD for this function for n � � using the ordering

x� � � � � � xn�

Exercise ��� Let s � S� Prove that all transitions in enabled�s� 
 ample�s� are

independent of those in ample�s�� That is� for all a � enabled�s� 
 ample�s� and

b � ample�s� prove that �a� b� � I� �Hint� by contradiction��

Exercise ��� Consider the Kripke structure M depicted below�

s� s�

s�

f r g

� f p� q g
s�

f p� q g

Let � � s� s� s� s� s� s� s� s� s� s� s� s� s� a �nite path through M and b� � s� s� s� s� s�

s� s� s� s� s�� Are these two paths stuttering equivalent or not� If so� indicate the

blocks that correspond�

Exercise �	� Consider the following part of an original �i�e� non�reduced� state space�

f p g

f q g

f q g

a

abc

b

s�

s� s�f p g

s�
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Let �a� b� � I and assume ample�s�� � f b g �thus� state s� is not visited during the

search�� Show using the conditions on ample sets that�

�a� c � enabled�s��

�b� a c �st b a c�
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