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Practical
Verification 
of Embedded
Software

A
dvances in processor speed, memory capac-
ities, sensors, and peripherals have enabled
the inexpensive fabrication of sophisticated
products ranging from mobile phones and
hi-fi equipment to highly complex software

in cars and airplanes. Unfortunately, the lack of good
design methods and tools is a major bottleneck in the
development of these products, particularly those with
a short life cycle such as consumer electronics and
household appliances. Developing embedded software
for large, complicated applications requires models
that are both intellectually manageable and physically
realizable. Choosing a modeling technique is a com-
promise between conflicting goals: Models must be
easy to comprehend and construct, but they also must
be practicable and provide platforms for analysis.

Academia and commercial tool developers have pro-
posed various embedded software models that repre-
sent different emphases on these goals.1-3 In the model
we describe, efficient realizations and correctness
receive high priority at the expense of descriptive fea-
tures.

Because embedded software is firmware—and there-
fore difficult or impossible to replace—its correctness is
of paramount importance. Furthermore, embedded
applications are often manufactured in large quantities,
making it expensive to correct software errors.
Exhaustive verification—a technique that implicitly
checks all possible computations—is a practical alterna-
tive for ensuring the correctness of embedded software.
Our work demonstrates that the visualState commercial
design tool can verify even the largest industrial applica-
tions—comprising more than 1,000 concurrent compo-
nents—in a few minutes on a standard PC.

The compositional backward technique is a new
algorithm that dramatically improves runtimes com-
pared with the algorithms traditionally used for
exhaustive verification. We developed this algorithm to
check safety properties, but it has been extended to han-
dle a larger class of properties including liveness.4-5

Our algorithm dramatically improves verification
runtimes by decoupling independent states and col-
lapsing states that behave similarly. We have obtained
encouraging results using this algorithm to exhaus-
tively verify embedded controllers used in large indus-
trial applications. Previous versions of visualState
(http://www.visualstate.com), the commercial tool that
incorporates the compositional backward technique
for developing embedded software, have been used in
hundreds of industrial applications.

EXHAUSTIVE VERIFICATION
As with most other software, manufacturers use

tests to verify the correctness of embedded software.
However, a simple example demonstrates why—
despite its extensive use—software testing is grossly
insufficient to ensure the correctness of even modestly
complex embedded software. Assume that a human
operator uses the control panel shown in Figure 1 to
control two plane motors. The control panel has sev-
eral buttons and two warning lights (the solid bars on
top). Each button incorporates a small light showing
whether the button is enabled—that is, whether press-
ing it will have some effect. From time to time, each
subpanel enters a critical phase indicated by the warn-
ing light at the top, showing that the corresponding
motor is becoming overheated. The plane can still
operate if one subpanel is in the critical phase; however,
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both subpanels must never go critical simultaneously.
Testing the control panel by repeatedly pushing

enabled buttons and checking that the double-critical
phase never results would probably persuade a
designer that it is operating correctly.6 (You can try
this yourself on an interactive demo of a random test
at http://www.itu.dk/research/vvs/verian.html. So far,
no one has found a manual sequence of button acti-
vations that results in both subpanels going critical.)

Although we have run simulation tests—activated
by randomly pushing one of the two to seven enabled
buttons on the control panel—for several weeks, we
have not found a computation that causes both sub-
panels to go critical simultaneously. After trying the
interactive version and watching the test at length, you
might conclude that this is a working design in which
it isn’t possible to trigger the critical phase for both com-
ponents simultaneously. However, you would be
wrong. It is indeed possible to push enabled buttons in
a sequence such that both functions enter their critical
phases. This sequence (consisting of 38 steps) may be
found in a few seconds using exhaustive verification.

Because this example is much simpler than many
applications found in practical use, it is surprising that
the bug that the exhaustive verification reveals is not
found by testing the application on a set of sample data.

This example in which the operator chooses between
two or three different operations in each step of the
computation is typical of embedded applications. For
example, mobile phone or remote control applications
typically entail a choice between a small set of actions
at any one point. If there are k choices in each step,
after n steps there are kn different test sequences. If only
a small fraction of the kn sequences leads to an error,
conventional testing by simulation is highly unlikely
to detect the error. In most cases, only a systematic gen-
eration of test data, which essentially amounts to an
exhaustive verification, reveals such tricky mistakes.

Most of the spectacular examples of software bugs
that have caused major damage or great loss resemble
this example. In each case, an unexpected combina-
tion of events led to a state that was neither antici-
pated nor tested. The lesson in each case seems to be
the same: Designers need techniques that allow them
to exhaustively traverse the reachable state space.

During the past 10 to 15 years, designers have pro-
vided a number of data structures and algorithms capa-
ble of handling very large practical examples.4, 7-9

Although theory tells us that there must be examples
that cannot be handled, our experience indicates that
these examples rarely occur in practice.

THE STATE MACHINE MODEL
We use a state machine model that describes a

computation as transitions between a fixed set of
states. The visualState tool is a conceptually simple

state machine model that has received widespread
practical use. The state machine model primarily cap-
tures the computation’s control flow; it handles data
manipulation such as arithmetic and nontrivial data
structures separately. This distinction between control
and data is common practice in hardware design, and
it is also a very useful distinction in software design.

The visualState tool is an extension of a Mealy
machine that allows concurrency.10 It can be viewed
as a simplified version of Statecharts2 and the Require-
ments State Machine Language.3 The design consists
of a fixed number of concurrent, finite-state machines
that have pairs of input events and output actions asso-
ciated with the transitions on the machines. The com-
putational model is synchronous: All machines react
upon each input event in lockstep; concatenating the
output that the individual machines generate yields the
total output. Adding transitions with guards express-
ing conditions on the local state of other machines
leads to further synchronization between machines.

The simplified videocassette recorder model shown
in Figure 2 comprises three state machines: 

• MOTOR determines the tape’s speed and direc-
tion. That is, the tape can either stop (STOP),
move forward (FW), or move backward (BW).

• POWER indicates whether power is on (ON) or
off (OFF).

• HEAD indicates whether the playing head is up
(UP) or down (DOWN).

The machines change state as reactions to the input
events: on, off, up, down, stop, FW, and BW. For all
events except stop, at most one machine is reacting.
The event stop synchronously resets the HEAD and
the MOTOR to their initial states: up and stop. In this
design, some transitions are guarded with conditions
on local states of other machines. In particular, the
HEAD can only be lowered once POWER is turned
on. The MOTOR in turn can only be brought to move
(forward or backward) once the HEAD is lowered.
This simple design does not generate any actions or
outputs. However, in a more complete design, transi-
tions would generate actions for physically lowering
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Figure 1. Control panel for controlling two plane motors. Each button has a small light
showing whether it is enabled. The red warning light at the top shows whether the cor-
responding motor is becoming overheated.
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or lifting the playing head, changing the rotational
direction of the motor, and so forth.

CHECKING PROPERTIES
VisualState predefines seven generic properties that

any well-formed state machine model should satisfy.
The failure of a design to satisfy a particular check
indicates a design error. For example, the tool deter-
mines whether the design has a deadlock, that is, a
state in which none of the machines can react on any
input event—clearly an undesired property in an
embedded application. The tool also checks that any
transition becomes enabled after some sequence of
input events, and similarly, that any local state is
entered after some sequence of input events.
Transitions never enabled and local states never
entered amount to dead code, which clearly ought not
to be present in well-designed software.

The remaining four generic properties are

• no machine has a deadlock,
• no machine has two transitions from the same

state that can be enabled simultaneously (corre-
sponding to nondeterminism), 

• all outputs are used, and
• all inputs are used.

All of these predefined checks address the prob-
lem of determining whether a given combination of
local states is reachable. For example, the check that
a given transition becomes enabled after some se-
quence of input events is reduced to a question of
reachability by considering the local state from which
the transition originates and the local states men-
tioned in the transition guard. If this combination of
local states is reachable, a sequence of inputs enables
the transition.

VisualState’s design contributes to practical success
because it checks from a fixed number of predefined
properties rather than requiring the designer to choose
and formalize properties. This characteristic makes

the procedure automatic, like checking that a program
is syntactically correct.

Our research takes a more general viewpoint regard-
ing reachability checking, focusing on whether certain
combinations of local states of individual machines can
be reached after some sequence of input events.

VERIFICATION ALGORITHMS
We can use either forward or backward iteration to

determine whether a given combination of states is
reachable. Both of these techniques are fully automatic
and complete in the sense that they always terminate
and answer yes if and only if the state is reachable.
However, their performance is radically different. 

Implicit state representations
The reachable state space’s size grows exponentially

with the number of state machines in a design. Thus,
even moderately complex embedded controllers have
extremely large state spaces. This state-explosion prob-
lem quickly makes doing reachability checks by explic-
itly constructing the set of reachable states infeasible.

Instead of explicitly enumerating a design’s reach-
able states, we can construct the state space implicitly.
In this approach, Boolean predicates represent sets of
states, and Boolean variables encode each local
machine state. We can use the notation Mi = sj to rep-
resent a Boolean predicate stating that machine Mi is
in the local state sj. A Boolean function f (called the
characteristic function for the set) then represents a
set of states as follows: A state s is in the set of states
represented by f if and only if f(s) is true. Thus, a func-
tion f represents a set of states χ(f) given by

χ(ƒ) = {s | ƒ(s) = true}.

Notice that Boolean operations can perform the stan-
dard set operations on the characteristic functions for the
sets. For example, set-union corresponds to a disjunction

χ(ƒ1) ∪ χ(ƒ2) = χ(ƒ1 ∨ ƒ2).
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Figure 2. A simple
model of a videocas-
sette recorder. The
model consists of
three state machines:
MOTOR, HEAD, and
POWER.



In the videocassette recorder model shown in Figure
2, the Boolean function f given by 

ƒ = ¬(MOTOR = STOP) Λ (HEAD = UP)

represents the set of states

χ(ƒ) = {(FW,UP,OFF),(FW,UP,ON), 
(BW,UP,OFF),(BW,UP,ON)}.

The central observation is that storing (and manip-
ulating) Boolean predicates is often more efficient than
representing the elements of the set χ(f).

Forward technique
Given a set of states S, the reachability problem is

to determine whether the state s ∈ S is reachable. The
set S typically is given as a Boolean predicate defining
some combination of the local states of the individual
machines. For example, to determine whether the
local state BW in machine MOTOR in Figure 2 is
reachable, we check whether S given by the predicate
(MOTOR = BW) is reachable. 

A standard way to determine whether S is reach-
able is to first construct the set of reachable states and
then examine whether S intersects this set. Assume
that R is a Boolean function that represents the set of
reachable states. To test whether a state S intersects
R, you simply determine whether the Boolean func-
tion R Λ S is satisfiable. 

In Figure 3, Rk describes the set of states that can
be reached from s0 with input sequences no longer
than k. The function NEXT(Rk) determines the set of
states that can be reached in one transition from a
state in Rk. The set of reachable states R is obtained
when the above iteration converges (that is, when
Rk–1 = Rk).

Compositional backward technique
You can also use a backward iteration to determine

the reachability of a set of states S. Instead of starting
with the initial state s0, you start with the state S and
use the iteration shown in Figure 4 to construct the
set of states that can reach S (denoted B). The function
PREV(B) returns all states that can reach a state in B
in one transition. The state S is reachable if and only
if the initial state s0 is in B.

Notice that, compared with the forward iteration,
backward iteration has an apparent drawback when
performing many reachability checks: Instead of using
a single iteration to construct the reachable state space
R, each reachability question gives rise to a new back-
ward iteration (because the set B cannot be reused).
Our idea is to perform the backward iteration com-
positionally, involving a minimal number of machines.6

The compositional backward technique is based

on the concept of one machine being dependent on
another. A machine M is said to depend on M′ if M
has a transition with a guard referring to a local state
of M′. A set of machines Ι is dependency-closed if for
any machine M in Ι, all machines on which M
depends are also in Ι. Consider the videocassette
recorder model in Figure 2. Because machine HEAD
has a transition that depends on the machine
POWER, HEAD depends on POWER. The set of
machines {HEAD, POWER} is dependency-closed
because neither machine depends on the third
machine, MOTOR.

The compositional backward technique iterates
using only some subset, Ι, of the machines. Initially, Ι
contains the subset of machines with a local state in
S. Using the function PREV*(Ι,B), we determine all
the states that can reach a state in B through transi-
tions of the machines in Ι, making no assumptions
about the local states of the machines not in Ι. This
function is similar to the BACKWARD procedure in
Figure 4 except that it starts from the set of states B,
and the PREV function only considers machines in Ι. 

If this set contains the initial state s0, we can con-
clude that S is reachable. If the set does not contain
s0, we cannot in general conclude that S is unreach-
able because the set of considered machines Ι may be
too small. Only when Ι is dependency-closed do we
know that adding more machines to Ι will not have

May 2000 71

R3
R2

R1

s0

FORWARD (s0) =
  k := 0
  R0 := {s0}
  do
        k := k + 1
        Rk := Rk−1 ∪  NEXT(Rk−1)
  while Rk−1 ≠ Rk

    return Rk

s0

B0 = S

BACKWARD (S) =
 k := 0
 B0 := {S}
 do
        k := k + 1
        Bk := Bk-1 ∪  PREV(Bk-1)
 while Bk-1 ≠ Bk

  return Bk

B2 B1

Figure 3. Using forward iteration to construct a set of states. 

Figure 4. Using backward iteration to construct a set of states.
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an effect on the resulting set of states, and we can con-
clude that S is not reachable.

ISREACHABLE(S) = 
Ι := {M : machines mentioned in the

predicate S }
B := S
repeat
Bnew := PREV*(I,B) 
if s0 ∈ Bnew then return true
if Ι is dependency-closed then  
return false

Extend Ι with at least one 
machine on which a machine in Ι
depends.

B := Bnew
forever

The compositional backward technique has the fol-
lowing unique properties:6

• It is compositional. It involves as few machines
as possible to settle a given reachability question.

• It is incremental. When it needs to include more
machines, it reuses the already computed portion
of the state space rather than having to start from
scratch.

• It includes new machines as needed according to
a dependency analysis.

• It allows early termination before inclusion of all
machines. It concludes reachability as soon as the
initial state is in the computed portion of the state
space; it concludes nonreachability when the
included machines constitute a dependency-
closed collection and the initial state has not yet
been encountered.

Using the dependency relation between the
machines is essential for efficiently analyzing large-
state machine models. Figure 5 shows the dependency
graph for the videocassette recorder and the Train2
design, which has 1,421 state machines. Each vertex
in the dependency graph represents a state machine,
and an edge from one vertex to another indicates that
one machine depends on another.

DESIGN TESTS
We applied the two techniques for performing

reachability checks to a range of industrial designs
covering various applications developed with
visualState. To demonstrate the efficiency of these
techniques, we selected the six machine models listed
in Table 1. These examples range in complexity from
small applications with as few as 10 state machines
up to Train2, one of the largest industrial applications
ever to be exhaustively verified.

We tested these designs to verify that they satisfy
the seven generic properties that a well-formed state
machine model requires. Each state machine model
requires numerous checks, with the largest requiring

Table 1. The characteristics of six machine models.

Number  Number of   Declared 
of state reachability size of Reachable

Model machines checks performed state space state space

Flow 10 240 105 17,040
AVS 12 176 107 1,438,416
Volvo 20 103 1011 9.2 × 109

N8 111 837 1040 —
Train1 373 1,664 10136 —
Train2 1,421 6,046 10476

(a) (b)

Motor

Head

Power

Figure 5. The depen-
dency graph for (a)
the videocassette
recorder in Figure 2
and (b) for the Train2
state machine model.
In the Train2 design,
the largest
dependency-closed
set contains only 234
of the 1,421
machines. 



close to 20,000 checks. However, implicational analy-
sis can substantially reduce the actual number of
checks required.11 For the applications we considered,
implicational analysis eliminated between 40 percent
and 94 percent of the checks.

Table 1 shows the reduced number of reachability
checks. The size of the reachable part of the declared
state space was computed from a forward iteration.
Forward iterations cannot find the reachable state
space for the two largest applications, and the size of
these is unknown.

Table 2 displays runtime data for the experiments.
The explicit forward column required 2 bits per state
in the declared state space.

We used a standard PC (166-MHz Pentium PC with
32 Mbytes of RAM running Linux) to test these appli-
cations. For the implicit representation and manipu-
lation of the state spaces, we used Reduced Ordered
Binary Decision Diagrams (ROBDDs),12 an efficient
data structure for Boolean functions. The forward
technique requires a single iteration to find the reach-
able state space, followed by a series of simple opera-
tions to determine the reachability checks. The
compositional backward technique requires per-
forming more costly iterations for each reachability
check, but it uses only a subset of the machines to per-
form the iterations. Taking the large number of checks
into account, it is therefore not clear how the two tech-
niques will compare.

For comparison, we also performed the verifications
using an explicit representation of the state space. The
explicit representation requires 2 bits of memory for
each state in the declared state space. The declared
state space is the set of all possible states, computed as
the product of the local states of each of the state
machines. In contrast to ROBDDs, explicit represen-
tation is very sensitive to the size of the declared state
space, thus it is not feasible for larger state machine
models. Even a small state machine model with 109

states requires 256 Mbytes of memory. In contrast,
the implicit technique performs all the verifications
with modest use of memory (≤11 Mbytes).

As expected, the explicit technique succeeds only
with the smallest applications. The implicit forward
iteration is efficient for the four smallest designs, but
fails on the two largest designs. When the ROBDD
technique succeeds, it is fast, and it is superior to
explicit state enumeration even for designs with a
small number of reachable states.

For the largest state machine models, only the com-
positional backward technique succeeds. In fact, for
the four largest designs, it is the most efficient tech-
nique. For small applications, its performance is com-
parable to the forward technique despite the high
number of checks and the necessity to repeat back-
ward iterations for each check.

To understand why the compositional backward
technique is successful, we analyzed the Train2 design
in more detail. The largest dependency-closed set con-
tains 234 machines. Thus, no more than 234
machines out of a possible 1,421 are ever included in
the verification. In fact, except for an unsuccessful
check, fewer than 32 percent of the machines in a
dependency-closed set are ever needed.

GOING FURTHER
A hierarchical extension of the state machine model

describes complex applications more concisely. Since
its introduction in 1987 as the pioneer in hierarchical
descriptions, designers have accepted Statecharts2 as
a compact, practical notation for reactive systems. A
number of hierarchical specification formalisms are
now available, including the emerging Unified
Modeling Language.1

In a hierarchical state machine, the set of states con-
stitutes a nesting structure, and each state is either a
primitive or superstate containing a set of state
machines. To obtain an equivalent nonhierarchical
design in a hierarchical state machine, you can flatten
it. Flattening recursively introduces each superstate’s
associated state machine as a concurrent component.
Although flattening preprocessing is a conceptually
simple approach to verification, a state machine
model’s hierarchical depth limits the effectiveness of
this approach. Flattening increases the number of con-
current components, and all of the enclosing super-
states need to guard the transitions within the newly
generated machines. The high degree of dependencies
between these components degrades the composi-
tional backward technique’s performance. 

To address this problem, we extended the compo-
sitional backward technique to exploit its hierarchi-
cal structure by reusing earlier superstate reachability
checks to determine substate reachability.7 Figure 6
shows how the flattening approach degrades perfor-
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Table 2. Runtime of machine model applications in CPU seconds.

Implicit  
Number Explicit Implicit Implicit compositional
of state forward forward backward backward 

Model machines technique technique technique technique

Flow 10 5s 0.3s 3.1s 2.2s
AVS 12 679s 2.2s 4.3s 2.4s
Volvo 20 — 1.8s 2.0s 0.7s
N8 111 — — 666.0s 39.3s
Train1 373 — — 480.6s 11.1s
Train2 1,421 — — — 271.7s

— = Analysis depleted memory or runtime exceeded two hours without finishing.
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mance with increased hierarchical depth; in contrast,
the extended approach is insensitive to hierarchical
depth, and the performance even improves as the
depth increases.

Implementing the compositional backward tech-
nique with newer visualState versions has drasti-
cally increased the size of the state machine models

that it can verify in industrial applications. However,
because we can expect the execution time and mem-
ory requirement of any exhaustive verification algo-
rithm to grow exponentially with the design’s size, we
need to evaluate a verification technique on the basis
of its ability to solve problems in real applications. 

Although the compositional backward technique is
very successful in this respect, we did encounter a
problem with a compact zoom-camera state-machine
model. Even though this model contains only 36 state
machines, we could not find a technique that could
fully verify this application. This emphasizes the point
that simply counting the number of machines does not
provide a true measure of a verification task’s com-
plexity. Additional research is needed to more accu-
rately predict the difficulty of verifying a given design
with a given technique. ✸
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