
CISS

Test case design techniques II:
Blackbox testing



CISS

• Black-box testing (or functional testing):
• Equivalence partitioning

• Boundary value analysis

• Cause-effect graphing

• Behavioural testing

• Random testing

• Error guessing etc…

• How to use black-box and white-box testing in combination

• Basics :  heuristics and experience

Overview

Domain analysis



CISS

Black box testing

SUT

requirements

input

events

output

y

x

domain testing



CISS

Black-box: Three major approaches

• Analysis of the input/output domain of the program:
• Leads to a logical partitioning of the input/output domain into 

‘interesting’ subsets
• Analysis of the observable black-box behaviour:

• Leads to a flow-graph-like model, which enables application of 
techniques from the white-box world (on the black-box model)

• Heuristics
• Techniques like risk analysis, random input, stress testing



CISS

Types of Testing



CISS
implementation

code

detailed design

requirements

specification

acceptance
test

system
test

module
test

unit-test

V - Model

integration
test

architecture
spec

acceptance test spec

system test spec

integration test spec

module test spec

unit 
test spec



CISS

• Divide all possible inputs into classes (partitions) such that

• There is a finite number of input equivalence classes

• You may reasonably assume that

• the program behaves analogously for inputs in the same class

• a test with a representative value from a class is sufficient

• if representative detects fault then other class members

will detect the same fault  

Black-box :  Equivalence Partitioning



CISS

Strategy :

• Identify input equivalence classes

• Based on conditions on inputs / outputs in specification / description

• Both valid and invalid input equivalence classes

• Based on heuristics and experience
• “input x in [1..10]” → classes :   x < 1,  1 ≤ x ≤ 10,  x > 10
• “enumeration  A, B, C → classes :  A,  B,  C,  not{A,B,C,}
• ……..

• Define one / couple of test cases for each class

• Test cases that cover valid eq. classes

• Test cases that cover at most one invalid eq. class

Black-box :  Equivalence Partitioning



CISS

• Test a function for calculation of absolute value of an integer

• Equivalence classes :

Condition Valid eq. classes Invalid eq. Classes

nr of inputs 1 0,  > 1

Input type integer non-integer

particular abs < 0,    >= 0

Example :  Equivalence Partitioning

• Test cases :
x = -10, x = 100

x = “XYZ”, x = - x = 10  20



CISS

A Self-Assessment Test   [Myers]

“A program reads three integer values. The three 
values are interpreted as representing the lengths of 
the sides of a triangle. The program prints a message 
that states whether the triangle is scalene (uligesidet), 
isosceles (ligebenet) , or equilateral (ligesidet).”

•Write a set of test cases to test this program.



CISS

A Self-Assessment Test   [Myers]

1. valid scalene triangle ?
2. valid equilateral triangle ?
3. valid isosceles triangle ?
4.   3 permutations of previous ?
5. side = 0 ?
6. negative side ?
7. one side is sum of others ?
8. 3 permutations of previous ?

9. one side larger than sum of
others ?

10. 3 permutations of previous ?
11. all sides = 0 ?
12. non-integer input ?
13. wrong number of values ?
14. for each test case:  is

expected output specified ?
15. check behaviour after

output was produced ?

Test cases for:



CISS

• Test a program that computes the sum of the first value integers

as long as this sum is less than maxint. Otherwise an error 

should be reported. If value is negative, then it takes the 

absolute value

• Formally:

Given integer inputs  maxint and  value compute result :

result = if  this  <=  maxint,   error otherwise

Example :  Equivalence Partitioning

∑
K=0

|value|

k



CISS

• Equivalence classes :
Condition Valid eq. classes Invalid eq. classes
Nr of inputs 2 < 2,   > 2
Type of input int int int no-int,   no-int int
Abs(value) value < 0,   value ≥ 0 
maxint ∑ k ≤ maxint,

∑ k  >  maxint

• Test Cases : maxint value result

Valid 100 10 55
100 -10 55
10 10 error

Invalid 10 - error
10    20    30 error
“XYZ” 10 error
100 9.1E4 error

Example :  Equivalence Partitioning



CISS

• Based on experience / heuristics :

• Testing boundary conditions of eq. classes is more effective 
i.e. values directly on, above, and beneath edges of eq. classes

• Choose input boundary values as tests in input eq. classes
instead of, or additional to arbitrary values

• Choose also inputs that invoke output boundary values
( values on the boundary of output classes )

• Example strategy as extension of equivalence partitioning:
• choose one  (n)  arbitrary value in each eq. class
• choose values exactly on lower and upper boundaries of eq. class
• choose values immediately below and above each boundary

( if applicable )

Black-box :  Boundary Value Analysis



CISS

• Test a function for calculation of absolute value of an integer

• Valid equivalence classes :
Condition Valid eq. classes Invalid eq. Classes

particular abs < 0,    >= 0

Example :  Boundary Value Analysis

• Test cases :
class x < 0,  arbitrary value: x = -10
class x >= 0,  arbitrary value x = 100
classes x < 0,  x >= 0,  on boundary : x = 0
classes  x < 0,  x >= 0,  below and above: x = -1,  x = 1



CISS

A Self-Assessment Test   [Myers]

1. valid scalene triangle ?
2. valid equilateral triangle ?
3. valid isosceles triangle ?
4.   3 permutations of previous ?
5. side = 0 ?
6. negative side ?
7. one side is sum of others ?
8. 3 permutations of previous ?

9. one side larger than sum of
others ?

10. 3 permutations of previous ?
11. all sides = 0 ?
12. non-integer input ?
13. wrong number of values ?
14. for each test case:  is

expected output specified ?
15. check behaviour after

output was produced ?

Test cases for:



CISS

• Given integer inputs  maxint and  value compute result :

result = if  this  <=  maxint,   error otherwise

Example :  Boundary Value Analysis

∑
K=0

|value|

k

• Valid equivalence classes :

Condition Valid eq. Classes

Abs(value) value < 0,   value ≥ 0 
maxint ∑ k  ≤ maxint,  ∑ k  > maxint

• Should we also distinguish between  maxint < 0  and  maxint >= 0 ?
maxint maxint < 0,   0 ≤ maxint < ∑ k,   maxint ≥ ∑ k



CISS

• Valid equivalence classes :

Abs(value) value < 0,   value ≥ 0 
maxint maxint < 0,   0 ≤ maxint < ∑ k,   maxint ≥ ∑ k

• Test Cases :

maxint value result maxint value result 

55 10 55 100 0 0
54 10 error 100 -1 1
56 10 55 100 1 1
0 0 0 …. …. ….

• How to combine the boundary conditions of different inputs ?
Take all possible boundary combinations ?  This may blow-up.

Example :  Boundary Value Analysis



CISS

• Black-box testing technique to analyse combinations
of input conditions

• Identify  causes and  effects in specification

↓ ↓
inputs outputs

current state       new state

• Make Boolean Graph linking causes and effects

• Annotate impossible combinations of causes and effects

• Develop decision table from graph with in each column
a particular combination of inputs and outputs

• Transform each column into test case

Black-box :  Cause Effect Graphing



CISS

∑ k ≤ maxint

∑ k > maxint

value < 0

value ≥ 0 

Black-Box :  Cause Effect Graphing

∑ k

error

and

xor
and

Causes ∑ k ≤ maxint 1 1 0 0

inputs ∑ k > maxint 0 0 1 1

value < 0 1 0 1 0

value ≥ 0 0 1 0 1

Effects ∑ k 1 1 0 0

outputs error 0 0 1 1



CISS

• Systematic method for generating test cases representing 

combinations of conditions

• Combinatorial explosion of number of possible combinations

• Some heuristics to reduce this combinatorial explosion

• Starting point is effects  (outputs)  then working ‘backwards’

• ‘light-weight’ formal methods:

transformation into semi-formal Boolean graph

• A technique : to be combined with others

Black-box :  Cause Effect Graphing



CISS

Black-box: behavioural specifications

• Many systems are partly specified through the interaction with
an environment, e.g.:
• Phone switches (dialing sequences)
• Typical PC applications (GUI dialogues)
• Consumer electronics (mobile phones)
• Control systems (cruise, navigation)

• Typical specification formalisms:
• Use cases
• Sequence diagrams
• State machines

• In many situations, abstract test cases can be derived directly 
from such specifications

Will be elaborated later in this course



CISS

Example: Use case

One test per use case:
1. Subscribe
2. Place call
3. Answer call
4. Unsubscribe



CISS

Example: sequence diagrams

Test:
1. Key-digit
2. Key-digit
3. Key-digit
4. Key-digit
5. key-on

5 sec
3 sec



CISS

Example: state machine
Tests:

1. evArm
2. evDoor

1. evArm
2. evDoor
3. evDisarm



CISS

Black-box: syntax testing

• Many kinds of program inputs are syntax driven, e.g.:
• Command line input
• Web forms
• Language definitions 

• Normally, such inputs are analysed by standard parsers, 
however:
• Boundary conditions may still be useful to apply in order to check 

correct error handling
• The techniques for behavioural testing can be used 



CISS

Syntax testing example

• Commands::= put | get
Some tests:

1. p,u,t
2. g,e,t
3. q,u,t
4. p,u
5. p,u,s
6. ……….



CISS

Black-box: random/stochastic

• Basic idea: Drive the system through typical scenarios, extreme
scenarios, and rare scenarios in a random way.

• Motivation: Increase the chance of ‘hitting’ system faults.
• Application areas:

• Systems that run forever in some nondetermistic way, e.g. control 
systems and communication systems

• Systems with huge input domains
• Examples:

• Random mouse clicking/typing towards a GUI.
• Typical browser-user behaviour: (click;read;)* with a typical random 

distribution of waiting time
• Random walk through a specification state model while testing  



CISS

Black-box: stress testing

• Basic idea: Let the environment behave in an extreme way
towards the system in order to identify faults.

• Examples:
• Emulate an extreme number of web users of a given application
• Denial of service attacks
• Push ‘on/off’ on the cars cruise control a number of times followed 

by a turn-off of the motor and a ‘on’ push.
• Send a huge amount of buffers on a network connection as fast as

possible
• Power off the washing machine in any state



CISS

• Just  ‘guess’ where the errors are ……

• Intuition and experience of tester

• Ad hoc,  not really a technique

• Strategy:

• Make a list of possible errors or error-prone situations

( often related to boundary conditions )

• Write test cases based on this list

Black-box :  Error Guessing



CISS

• More sophisticated ‘error guessing’ :    Risk Analysis

• Try to identify critical parts of program  (high risk code sections):

• parts with unclear specifications

• developed by junior programmer while his wife was pregnant ……

• complex code :

measure code complexity - tools available  (McGabe, Logiscope,…)

• High-risk code will be more thoroughly tested

( or be rewritten immediately ….)

Black-box :  Error Guessing



CISS

• Black-box testing techniques :
• Equivalence partitioning

• Boundary value analysis

• Cause-effect graphing

• Error guessing

• Test derivation from formal specifications

• ………

• Which one to use ?
• None is complete

• All are based on some kind of heuristics

• They are complementary

Black-Box Testing:  Which One ?



CISS

• Always use a combination of techniques

• When a formal specification is available try to use it

• Identify valid and invalid input equivalence classes

• Identify output equivalence classes

• Apply boundary value analysis on valid equivalence classes

• Guess about possible errors

• Cause-effect graphing for linking inputs and outputs

Black-Box Testing:  Which One ?



CISS

• Don’t start with designing white-box test cases ! 

• Start with black-box test cases

(equivalence partitioning,  boundary value analysis,

cause effect graphing, test derivation with formal methods,  …..)

• Check white-box coverage

( statement-, branch-, condition-, ….. coverage )

• Use a  coverage tool – maybe combined with a Unit framework

• Design additional white-box test cases for not covered code

White-Box testing :  How to Apply ?



CISS

• Standard Gnu tool  gcov

• Only  statement coverage

• Compile your program under test with a special option

• Run a number of test cases

• A listing indicates how often each statement was executed

and percentage of statements executed

A Coverage Tool :  gcov


