
Schedulability Analysis Using Uppaal:

Herschel-Planck Case Study

Marius Mikučionis1, Kim Guldstrand Larsen1, Jacob Illum Rasmussen1,
Brian Nielsen1, Arne Skou1, Steen Ulrik Palm2, Jan Storbank Pedersen2, and

Poul Hougaard2

1 Aalborg University, 9220 Aalborg Øst, Denmark,
{ marius | kgl | illum | bnielsen | ask } @cs.aau.dk

2 Terma A/S, 2730 Herlev, Denmark,
{ sup | jnp | poh } @terma.com

Abstract. We propose a modeling framework for performing schedula-
bility analysis by using Uppaal real-time model-checker [2]. The frame-
work is inspired by a case study where schedulability analysis of a satel-
lite system is performed. The framework assumes a single CPU hardware
where a fixed priority preemptive scheduler is used in a combination with
two resource sharing protocols and in addition voluntary task suspension
is considered. The contributions include the modeling framework, its ap-
plication on an industrial case study and a comparison of results with
classical response time analysis.

Keywords: schedulability analysis, timed automata, stop-watch automata,
model-checking, verification

1 Introduction

The goal of schedulability analysis is to check whether all tasks finish before
their deadline. Traditional approaches like [5] provide generic frameworks which
assume worst case scenario where worst case execution time and blocking times
are estimated and then worst case response times are calculated and compared
w.r.t. deadlines. Often, such conservative scenarios are never realized and thus
negative results from such analysis are often too pessimistic. The idea of our
method is to base the schedulability analysis on a system model with more de-
tails, taking into account specifics of individual tasks. In particular this will allow
a safe but far less pessimistic schedulability analysis to be settled using real-time
model checking. Moreover, the model-based approach provides a self-contained
visual representation of the system with formal, non-ambiguous interpretation,
simulation and other possibilities for verification and validation.

Our model-based approach is motivated by and carried out on example ap-
plications in a case study of Herschel-Planck satellite system. Compared with
classical response time analysis our model-based approach is found to uniformly
provide less pessimistic response time estimates and allow to conclude schedu-
lability of all tasks, in contrast to negative results obtained from the classical
approach.

2

Related Work. During the last years, timed automata modelling and analy-
sis of multitasking applications running under real-time operating systems has
received substantial research effort. Here the goals are multiple: to obtain less
pessimistic worst-case response time analysis compared with classical methods
for single-processor systems or to relax the constraints be of period task arrival
times of classical scheduling theory to task arrival patterns that can be described
using timed automata.

In [13] it is shown how a multitasking application running under a real-time
operating system compliant with an OSEK/VDX standard can be modelled by
timed automata. Use of this methodology is demonstrated on an automated
gearbox case study and the worst-case response times obtained obtained from
model-checking is compared with those provided by classical schedulability anal-
ysis showing that the model-checking approach provides less pessimistic results
due to a more detailed model and exhaustive state-space exploration.

Times tool [1] can be used to analyse single processor systems, however it sup-
ports only highest locker protocol (simplified priority ceiling protocol) [8]. An ap-
proach of [4] provides Java code transformation into Uppaal [2] timed-automata
for schedulability analysis. Similarly, we use the model-checking framework pro-
vided by Uppaal, where the modelling language is extended with stop-watches
and C-like code structures allows to express preemption, suspension and mixed
resource sharing using two different protocols, in a more intuitive way without
a need for more complex model transformations or workarounds.

A framework from [7] provides a generic set of tasks and resources that can be
instantiated with concrete parameters (specific offsets, release times, deadlines,
dependencies, periods) and processor resources together with their scheduling
policies (i.e., preemption vs. non-preemption, earliest deadline first, fixed prior-
ity, first-in-first-out). The instantiated system can then be analysed for schedu-
lability in a precise manner as all the concrete information is taken into account.
This means that the framework will be able to verify schedulability of some
systems that would otherwise be declared “non-schedulable” by other methods.
Although the framework is general to cover multi-processor systems it does not
tackle passive resource sharing protocols like priority ceiling or inheritance.

The remainder of the paper is organised as follows: in the next Section 2
we provide a brief overview of the Herschel-Planck satellite mission, its software
setup and the response time analysis already carried out by Terma. Section 3
describes our model-based methodology for solving the schedulability problem,
Section 4 presents the results of our method and compares it to traditional
response time analysis. Finally, Section 5 discusses conclusions and future work.

2 The Herschel-Planck Mission

The Herschel-Planck mission consists of two satellites: Herschel and Planck. The
satellites have different scientific objectives and thus the sensor and actuator
configurations differ, but both satellites share the same computational architec-

3

ture. The architecture consists of a single processor, real-time operating system
(RTEMS), basic software layer (BSW) and application software (ASW).

Terma A/S has performed an extended worst case response time analysis
described in [5] by analysing [11] and [12] resulting in [10] (we provide the nec-
essary details of those documents in this paper). The goal of the study is to
show that ASW tasks and BSW tasks are schedulable on a single processor with
no deadline violations. The framework uses preemptive fixed priority scheduler
and a mixture of priority ceiling and priority inheritance protocols for resource
sharing and extended deadlines (beyond period). In addition, some tasks need
to interact with external hardware and effectively suspend their execution for
a specified time. Due to suspension, this single-processor system has some ele-
ments of multi-processor systems since parts of activities are executed elsewhere
and the classical worst case response analysis (applicable to single-processor sys-
tems) is pushed into extreme. One of the results of [10] is that one task may
miss its deadline on Herschel (and thus the system is not schedulable) but this
violation has never been observed in neither stress testing nor deployment.

The system is required to be schedulable in four instances: Herschel in nom-
inal and event modes and Planck in nominal and event modes. The processor
consumption should be less than 45% for Herschel and less than 50% for Planck.

In response time analysis, in order to prove schedulability it is enough to
calculate worst case response times (WCRT) for every task and compare it with
its deadline: if for every task the WCRT does not exceed the correspond deadline
the system is schedulable.

Figure 1 shows the work-flow performed by Terma A/S: the deadline require-
ments are obtained from ASW and BSW documentation, worst case execution
times (WCET) of BSW are obtained from BSW documentation [12] and ASW
timings are obtained from time measurements. The tasks are carefully picked
and timings aggregated (documented in [10]) and processed by the proprietary
Terma tool Schedule which performs worst case response time analysis as de-
scribed in [5] and the outcome is processor utilisation and worst case response
times (WCRT) for each task. The system is schedulable when for every task i

WCRT i is less than its Deadlinei, i.e. the task always finishes before its deadline.
We use the index i as a global task identifier.

We provide only the formulas used in response time analysis and refer to [5]
for details on how this analysis works. The important property of the analysis
is that it always takes conservative estimates of blocking times even though the
actual blocking may not appear, thus resulting in too pessimistic response times.
WCRT i is calculated by recursive formula for task computation windows w(q)
which may overlap with another task release (due to deadline extending past
period), where q is the number of window starting with 0, hp(i) is a set of tasks
with higher priority than i. Then the longest window is taken as WCRT:

wn+1
i (q) = Blockingi + (q + 1)WCET i +

∑

j∈hp(i)

⌈ wn
i (q)

Period j

⌉

WCET j

Responsei(q) = wn
i (q)− qPeriod i

4

Blocking_i

Deadline_i

WCET_i

Offset_i

Period_i

ASW:

Blocking_i

Deadline_i

WCET_i

Offset_i

Period_i

BSW:

Response
Time

Analysis

WCRT_i

Utilization_i

Worst Case

Simulation

measurements

& calculations

Documentation

BSW STSB [12]

Fig. 1: Work-flow of schedulability analysis [10].

WCRTi = max
q

Responsei(q)

Blockingi denotes the blocking time when task i is waiting for a shared re-
source being occupied by a lower priority task. Blocking times calculation is
specific to the resource sharing protocol used. BSW tasks use priority inheri-
tance protocol and thus their blocking times are calculated using the following
equation:

Blockingi =

R
∑

r=1

usage(r, i)WCETCriticalSection(r)

ASW tasks use priority ceiling protocol and therefore their blocking times are:

Blockingi =
R

max
r=1

usage(r, i)WCETCriticalSection(r)

The matrix usage(r, i) captures how resource r is used by the tasks: usage(r, i) =
1 if r is used by at least one task with a priority less than task i and at least one
task with a priority greater than or equal to task i, otherwise usage(r, i) = 0.

Some BSW tasks are periodic and some sporadic, but we simplify the model
by considering all BSW tasks as periodic. ASW tasks are started by periodic task
MainCycle. In order to obtain more precise results, [10] splits the analysis into
0-20ms and 20-250ms windows, distinguishes two operating modes and analyse
six cases in total separately. However, one case shows up as not schedulable
anyway and application of our framework improves this result by showing that
all tasks finish within their deadlines.

Resource Usage by Tasks. Some tasks require shared resources and those are
protected by semaphore locking to ensure exclusive usage. Sometimes tasks use
resources repeatedly (locking and unlocking several times). When the resource
semaphore is locked, a task may suspend its execution by calling hardware ser-
vices and waiting for the hardware to finish thus temporarily releasing the pro-
cessor for other tasks. The processor may be released multiple times during one

5

semaphore lock. In response time analysis, the processor utilisation is computed
by dividing a sum of worst case execution times by duration of analysed time
window.

3 Model-Based Schedulability Methodology

This section explains the principles and concepts used throughout the modelling
framework and then describes the modelling templates in detail.

The main idea is to translate schedulability analysis problem into a reach-
ability problem for timed automata and use the real-time model-checker Up-

paal to find worst case blocking and response times, processor utilisation and
to check whether all the deadlines are met. In our modelling framework clocks
and stopwatches control task release patterns, track task execution progress,
check response time against deadline bound and thus all the computations are
performed by model-checker according to the model, in contrast to carefully
customised specific formula.

The framework consists of the following process models: fixed priority pre-
emptive CPU scheduler, a number of task models and one process for ensuring
global invariants. We provide several templates for task models: for periodic tasks
and for tasks with dependencies, all of which are parameterised with concrete
program control flow and may be customised to a particular resource sharing
protocol. Our approach takes the same task descriptions as [10] and produces
results which are more optimistic and provides the proof that all the tasks will
actually finish before the deadline.

We use stopwatches to track task progress and stop the task progress dur-
ing preemption. In Uppaal, the stopwatch support is implemented through a
concept of derivative over clock, where the derivative can be either 1 (valuation
progresses with a rate of 1 as regular clocks) or 0 (valuation is not allowed to
progress – the clock is stopped). Syntactically stop-watch expressions appear in
invariant expressions in a form of x′ == c, where x is declared of type clock

and c is an integer expression which evaluates to either 0 or 1. The reachabil-
ity analysis of stopwatch automata is implemented as an over-approximation in
Uppaal, but the approximation still suffices for safety properties like checking
if a deadline can ever be violated.
The following outlines the main modelling ingredients:

– One template for the CPU scheduler.
– One template for “idle” task to keep track of CPU usage times.
– One template for all BSW tasks, where resources are locked based on priority

inheritance protocol.
– One template for MainCycle ASW task, which is released periodically, starts

other ASW tasks and locks resources based on priority ceiling protocol.
– One template for all other ASW tasks, which is released by synchronisations,

and locks resources based on priority ceiling protocol.
– Task specialisation is performed during process instantiation by providing

individual list of operations encoded into flow array of structures.

6

– Each task (either ASW or BSW) uses the following clocks and data variables:
• Task and its clocks are parameterised by identifier id.
• Execution time is modelled by a stopwatch job[id] which is reset when

the task is started and stopped by a global invariant when the task is
not being run on the processor. A worst case execution time (WCET)
guard ensures that task cannot finish before WCET elapses. To ensure
progress, the clock job[id] is constrained by an invariant of WCET so
that the task releases the processor as soon as it has finished computing.

• A local clock x controls when the task is released and is reset upon task
is released. The task then moves to an error state if x is greater than its
deadline.

• A local clock sub controls progress and execution of individual opera-
tions.

• A local integer ic is an operation counter.
• Worst case response time for task id is modelled by a stopwatchWCRT [id]

which is reset when the task is started and is allowed to progress only
when the task is ready (global invariant WCRT [id]′ == ready [id] en-
sures that). In addition WCRT [id] is reset when the task is finished in
order to allow model checker to apply active clock reduction to speed
up analysis as the value of this clock is no longer used. The worst case
response time is estimated as maximum value of WCRT [id].

• An error location is reachable and error variable is set to true if there
is a possibility to finish after deadline.

Further we explain the most important model templates, while the complete
model is available for download at http://www.cs.aau.dk/~marius/Terma/ .

3.1 Processor Scheduler

Figure 2a shows the model of CPU scheduler. In the beginning Scheduler ini-
tialises the system (computes the current task priorities by computing default
priority based on id and starts the tasks with zero offset) and in location Running

waits for tasks to become ready or current task to release the CPU resource.
When some task becomes ready, it adds itself to the taskqueue and signals on
enqueue channel, thus moving Scheduler to location Schedule. From location
Schedule, the Scheduler compares the priority of a current task cprio[ctask]

with highest priority in the queue cprio[taskqueue[0]] and either returns to
Running (nothing to reschedule) or preempts the current task ctask, puts it into
taskqueue and schedules the highest priority task from taskqueue.

The processor is released by a signal release[CPU R], in which case the
Scheduler pulls the highest priority task from taskqueue and optionally notifies
it with broadcast synchronisation on channel schedule (the sending is performed
always in non-blocking way as receivers may ignore broadcast synchronisations).

The taskqueue always contains at least one ready task: IdleTask. Figure 2b
shows how IdleTask reacts to Scheduler events and computes the CPU usage time
with stopwatch usedTime, the total CPU load is then calculated as usedTime

globalTime .

http://www.cs.aau.dk/~marius/Terma/

7

add(taskqueue,ctask),
runs[ctask]=0,
ctask=poll(taskqueue)

main()

runs[ctask]=1

runs[ctask]=0,
ctask=poll(taskqueue)

enqueue?
release[CPU_R]?

preempt[ctask]!

schedule[ctask]!

initialize!

Running

Schedule

cprio[ctask]>=
cprio[taskqueue[0]]

Preempt

taskqueue[0]>0 &&
cprio[ctask]<
cprio[taskqueue[0]]

(a) Template for CPU scheduler.

preempt[0]?

schedule[0]?

idleTime’==0
CPUIdleCPUUsed

usedTime’==0

(b) Idle task model.

Fig. 2: Models for CPU scheduler and the simplest task.

3.2 Tasks Templates

Figure 3 shows the parameters which describe each periodic task: period duration
showing how often the task is started, offset showing how far into the cycle the
task is started (released), deadline is measured from the instance when task is
started and worst case execution time within deadline.

Task times:

Period

WCET

Deadline

Offset

release

time
WCRT

Fig. 3: Periodic task execution parameters.

Figure 4 shows a template used by MainCycle which is started periodically.
At first MainCycle waits for Offset time to elapse and moves to location Idle by
setting the clock x to Period. Then the process is forced to leave Idle location
immediately, to signal other ASW tasks, add itself to the ready task queue
and arrive to location WaitForCPU. When MainCycle receives notification from
scheduler it moves to location GotCPU and starts processing commands from the
flow array. There are four types of commands:

1. LOCK is executed from location tryLock where the process attempts to
acquire the resource. It blocks if the resource is not available and retries
by adding itself to the processor queue again when resource is released. It
continues to location Next by locking the resource if the resource is available.

2. UNLOCK simply releases the resource and moves on to location Next. The
implementation of locking and unlocking is shown in Listing 1.2.

3. SUSPEND releases the processor for specified amount of time, adds itself to
the queue and moves to location Next. The task progress clock job[id] is not
increasing but the response measurement clock WCRT [id] is.

8

UNLOCK==flow[ic].cmd

avail(flow[ic].res)runs[id] &&
END!=flow[ic].cmd &&
x<=Deadline

x>Deadline

COMPUTE==
flow[ic].cmd

starting

!avail(flow[ic].res)

runs[id] &&
job[id]>=WCET &&
x<=Deadline

LOCK==
flow[ic].cmd

Finishing

x==Periodx==Offset

x>Deadline

x>Deadline

runs[id] &&
sub==flow[ic].delay

SUSPEND==
flow[ic].cmd

x>Deadline

sub==flow[ic].delay

runs[id] &&
END==flow[ic].cmd &&
x<=Deadline

x>Deadline

schedule[id]?

enqueue!

schedule[id]?

release[CPU_R]!

enqueue!

release[CPU_R]!

release[flow[ic].res]! release[CPU_R]!

release[flow[ic].res]?

Suspended

Computing

Error

WaitForCPU2WaitForCPU

StartASW!

GotCPU

Idle

Next
tryLock Blocked

enqueue!

blocked[id]=1

ic=0, job[id]=0,
WCRT[id]=0, ready[id]=0

lockCeil(flow[ic].res, id),
ic++, sub=0

blocked[id]=0

add(taskqueue, id),
x=0, job[id]=0,
WCRT[id]=0, ready[id]=1

error=1

error=1

add(taskqueue, id),
susp[id]=false,
ic++, sub=0

susp[id]=true,
sub=0

error=1

x=Period

unlockCeil(flow[ic].res, id),
ic++, sub=0

error=1

ic++, sub=0

sub=0

add(taskqueue, id)

error=0

x<=Period

sub’==runs[id]
&& sub<=0

x<=Offset

sub’==runs[id] &&
sub<=flow[ic].delay

job[id]<=WCET

sub<=
flow[ic].delay

Fig. 4: MainCycle task: periodically starts ASW functions.

4. COMPUTE makes the task stay in location Computing for at least the spec-
ified duration of pure running time, i.e. the clock sub is stopped whenever
the task is preempted and runs[id] is set to 0. Once the required amount of
CPU time is consumed, the process moves on to location Next.

From location Next, the process is forced by runs[id] invariant to continue with
the next operation: if it is not the END and it is running, then it moves back to
GotCPU to process next operation, and it moves to Finishing if it’s the END. In
Finishing location the process consumed CPU for the remaining time so that
complete WCET is exhausted and then it moves back to Idle. From locations
Next and Finishing the outgoing edges are constrained to check whether the
deadline has been reached since the last task release (when x was set to 0), and
edges force the process into Error location if x > Deadline.

The flow for MainCycle is very simple: it computes for its WCET while keep-
ing a lock on Sgm R. A more sophisticated example of flow is in Listing 1.1. We
do not know the exact times the resources are locked and the points in time are
chosen arbitrarily, thus it may not necessarily lead to worst-case blocking timed
for higher priority tasks.

The template for BSW tasks is almost the same as MainCycle, except that
1) BSW tasks do not have to start other ASW tasks and thus from Idle they
go directly to WaitForCPU with enqueueing edge, 2) instead of ceiling protocol
(lockCeil and unlockCeil) it uses inheritance (lockInh and unlockInh) and 3) it
boosts the owners priority by calling boostPrio(flow [ic].res, id) on the edge from
tryLock to Blocked. BSW tasks have their own local clock x, while MainCycle

shares its x with other ASW tasks.

9

Other ASW tasks are started by MainCycle, thus instead of broadcast shout
synchronisation on StartASW channel they have receive synchronisation on StartASW.
Also, they share the same clock x with MainCycle, because response time is mea-
sured from the same 20ms offset (as in [10], so that the results are comparable).

Figure 1 shows the description of PrimaryF from [10] as an example that we
used to create flow structure. This particular description consists of six activities.

Table 1: The description of PrimaryF task from [10] inputs.

Primary Functions

- Data processing 20577/2521

Icb_R(LNS: 2, LCS: 1200, LC: 1600, MaxLC: 800)

- Guidance 3440/0

- Attitude determination 3751/1777

Sgm_R(LNS: 5, LCS: 121, LC: 1218, MaxLC: 236)

- PerformExtraChecks 42/0

- SCM controller 3479/2096

PmReq_R(LNS: 4, LCS: 1650, LC: 3300, MaxLC: 3300)

- Command RWL 2752/85

Each activity is described by two numbers (CPU time / BSW service time, BSW
service time is included in CPU time, thus is not used in our model), followed by
resource usage pattern if any. The resource usage is described by the following
parameters:

LNS – total number of times the CPU has been released while the resource was
locked (task suspension count).

LCS – total time the CPU has been released while the resource was locked
(task suspension duration).

LC – total time the resource has been locked.
MaxLC – the longest time the resource has been locked.

From this description we use only LCS and LC, where we assume that LC-
LCS is the CPU busy time while the resource is locked. Listing 1.1 shows an
example of detailed control flow structure for PrimaryF task, where the numbers
mean the time duration and comments relate each step to an item in Table 1.
Listing 1.2 shows functions for priority inheritance and priority ceiling protocols,
which use owner and cprio to track current resource owner and task priority.

Listing 1.1: Operation flow for PrimaryF task.
�

1 const ASWFlow t PF f = { // Primary Functions:
2 { LOCK, Icb R, 0 }, // 0) −−−−− Data processing
3 { COMPUTE, CPU R, 1600−1200 }, // 1) computing with Icb R
4 { SUSPEND, CPU R, 1200 }, // 2) suspended with Icb R
5 { UNLOCK, Icb R, 0 }, // 3)
6 { COMPUTE, CPU R, 20577−(1600−1200) }, // 4) computing without Icb R
7 { COMPUTE, CPU R, 3440 }, // 5) −−−−− Guidance
8 { LOCK, Sgm R, 0 }, // 6) −−−−− Attitude determination
9 { COMPUTE, CPU R, 1218−121 }, // 7) computing with Sgm R

10 { SUSPEND, CPU R, 121 }, // 8) suspended with Sgm R
11 { UNLOCK, Sgm R, 0 }, // 9)
12 { COMPUTE, CPU R, 3751−(1218−121) }, //10) computing without Sgm R

10

13 { COMPUTE, CPU R, 42 }, //11) −−−−− Perform extra checks
14 { LOCK, PmReq R,0 }, //12) −−−−− SCM controller
15 { COMPUTE, CPU R, 3300−1650 }, //13) computing with PmReq R
16 { SUSPEND, CPU R, 1650 }, //14) suspended with PmReq R
17 { UNLOCK, PmReq R, 0 }, //15)
18 { COMPUTE, CPU R, 3479−(3300−1650) }, //16) computing without PmReq R
19 { COMPUTE, CPU R, 2752 }, //17) −−−−− Command RWL
20 FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN // fill the array
21 };

� �

Listing 1.2: Resource locking based on two different protocols.
�

1 /∗∗ Check if the resource is available : ∗/
2 bool avail (resid t res) { return (owner[res]==0); }
3 /∗∗ Lock the resource based on priority ceiling protocol : ∗/
4 void lockCeil(resid t res , taskid t task) {
5 owner[res] = task; // mark resource occupied by task
6 cprio [task] = ceiling [res]; // assume the priority of resource
7 }
8 /∗∗ Unlock the resource based on priority ceiling protocol : ∗/
9 void unlockCeil(resid t res , taskid t task){

10 owner[res] = 0; // mark resource as released
11 cprio [task] = def prio(task); // return to default priority
12 }
13 /∗∗ Boost the priority of resource owner based on priority inheritance protocol : ∗/
14 void boostPrio(resid t res , taskid t task) {
15 if (cprio [owner[res]] <= def prio(task)) {
16 cprio [owner[res]] = def prio (task)+1;
17 sort(taskqueue);
18 }
19 }
20 /∗∗ Lock the resource based on priority inheritance protocol : ∗/
21 void lockInh(resid t res , taskid t task) {
22 owner[res] = task; // mark resource occupied by task
23 }
24 /∗∗ Unlock the resource based on priority inheritance protocol : ∗/
25 void unlockInh(resid t res , taskid t task) {
26 owner[res] = 0; // mark resource as released
27 cprio [task] = def prio(task); // return to default priority
28 }

� �

3.3 System Model Instantiation

Listing 1.3 shows how tasks are instantiated. Listing 1.4 shows system declaration
using priorities which help enforce the specified priorities in verification. The
resulting model is deterministic, thus the expected state space shape is narrow
(single sequence of steps) but potentially very deep.

Initial experiments showed that in fact the state space is so deep thatUppaal

exhausts the memory in a few minutes by storing most of the state space just
to check for loops and ensure the verification termination. To address this issue
a sweep-line method [6] is used. The basic idea behind sweep-line method is to
store only those passed states which have the greatest progress measure and
purge the rest, thus effectively releasing and reusing most of the memory.

Listing 1.3: Task instantiation.
�

1 // taskid,Offset,Period, flow, WCET, Deadline
2 RTEMS RTC = BSW(1, 0, 10000, WCET f, 13, 1000);
3 AswSync SyncPulselsr=BSW(2, 0,250000, WCET f, 70, 1000);
4 Hk SamplerIsr = BSW(3,62500,125000, WCET f, 70, 1000);
5 SwCyc CycStartIsr= BSW(4, 0,250000, WCET f, 20, 1000);

11

6 SwCyc CycEndIsr= BSW(5,200000,250000, WCET f, 100, 1000);
7 Rt1553 Isr = BSW(6, 0, 15625, WCET f, 70, 1000);
8 Bc1553 Isr = BSW(7, 0, 20000, WCET f, 70, 1000);
9 Spw Isr = BSW(8, 0, 39000, WCET f, 70, 2000);

10 Obdh Isr = BSW(9, 0,250000, WCET f, 70, 2000);
11 RtSdb P 1 = BSW(10, 0, 15625, WCET f, 150, 15625);
12 RtSdb P 2 = BSW(11, 0,125000, WCET f, 400, 15625);
13 RtSdb P 3 = BSW(12, 0,250000, WCET f, 170, 15625);
14 // #13 is reserved for ASW resource priority ceiling
15 FdirEvents =ASWspor(14,20000,250000, WCET f, 5000, 230220);
16 NominalEvents 1=ASWspor(15,20000,250000, WCET f, 720, 230220);
17 mainCycle = MainCycle(16,20000,250000, 400, 230220, ASWclock);
18 HkSampler P 2 = BSW(17,62500,125000, WCET f, 500, 62500);
19 HkSampler P 1 = BSW(18,62500,250000, WCET f, 6000, 62500);
20 Acb P = BSW(19,200000,250000,WCET f, 6000, 50540);
21 IoCyc P = BSW(20,200000,250000,WCET f, 3000, 50540);
22 //ASW: id, start, finish , flow, WCET, Deadline
23 primaryF = ASW(21,StartASW,Done, PF f, 34050, 59600, ASWclock);
24 rCSControlF= ASW(22,StartASW,Done, RCS f, 4070, 239600, ASWclock);
25 Obt P = BSW(23, 0,1000000,Obt f, 1100, 100000);
26 Hk P = BSW(24, 0,250000, WCET f, 2750, 250000);
27 StsMon P = BSW(25,62500,250000,StsMon f,3300, 125000);
28 TmGen P = BSW(26, 0,250000, WCET f, 4860, 250000);
29 Sgm P = BSW(27, 0,250000, Sgm f, 4020, 250000);
30 TcRouter P = BSW(28, 0,250000, WCET f, 500, 250000);
31 Cmd P = BSW(29, 0,250000, Cmd f, 14000, 250000);
32 NominalEvents 2= BSW(30,20000,250000, WCET f, 1780, 230220);
33 secondF 1 = ASW(31,StartASW, Done, SF1 f, 20960, 189600, ASWclock);
34 secondF 2 = ASW(32,StartASW, Done, SF2 f, 39690, 230220, ASWclock);
35 Bkgnd P = BSW(33, 0,250000, WCET f, 200, 250000);

� �

Periodic models—like the ones for schedulability—do not have inherent progress
measure, so we propose to create an artificial one based on how many cycles the
system has executed so far, and then reset it to zero once it reaches a pre-specified
limit. In fact, such drops in progress measure are tolerated by generalised sweep-
line method [9], which is also implemented in Uppaal. The progress measure
is based on the variable cycle defined on line 8 in Listing 1.4, incremented by
guarded loops in Global process (Fig. 5) after each 250ms and is reset together
with all the global clocks to zero once the CYCLELIMIT is reached. The process
Global also takes care of global invariants on job[i] and WCRT [i] stopwatches of
each task i.

Listing 1.4: System declaration using Uppaal priorities.
�

1 system Scheduler, Bkgnd P < secondF 2 < secondF 1 < NominalEvents 2 < Cmd P <
2 TcRouter P < Sgm P < TmGen P < StsMon P < Hk P < Obt P < rCSControlF <
3 primaryF < IoCyc P < Acb P < HkSampler P 1 < HkSampler P 2 <
4 mainCycle < NominalEvents 1 < FdirEvents < RtSdb P 3 < RtSdb P 2 < RtSdb P 1

< Obdh Isr <
5 Spw Isr < Bc1553 Isr < Rt1553 Isr < SwCyc CycEndIsr < SwCyc CycStartIsr <
6 Hk SamplerIsr < AswSync SyncPulselsr <
7 RTEMS RTC, IdleTask, Global;
8 progress { cycle; }

� �

Further, we explore some values of CYCLELIMIT in order to minimise the
verification resources. We postulate that a good heuristics is to explore at least to
a hyper-period (least common multiple of periods) of all the periodic processes
before reseting the cycle counter. There are the following different periods in
the system: 125000, 15625, 20000, 39000, 250000 and 1000000µs, therefore a
potential hyper-period is 39000000µs, or 156 cycles of 250ms each, but it can be
much larger due to non-trivial resource sharing and task interaction.

12

cycle=0, globalTime=0,
usedTime=0, idleTime=0,
WCRT[0]=0

cycle++

Done?
globalTime==cycle*CYCLE
&& cycle<CYCLELIMIT

globalTime==cycle*CYCLE
&& cycle==CYCLELIMIT

globalTime<=cycle*CYCLE &&
forall(i: taskid_t) job[i]’==runs[i] &&
forall(i: taskid_t) WCRT[i]’==ready[i]

Fig. 5: Global process enforce invariants on stopwatches and cyclic progress.

3.4 Verification Queries

The following is a list of queries used to check schedulability properties:

– Check if the system is schedulable (the error state is not reachable):
E<> error

– Check if any task can be blocked at all: E<> exists(i:taskid t) blocked[i]

– Find the total worst CPU usage: sup: usedTime, idleTime

– Find the worst case response times: sup: WCRT[0], WCRT[1], ... WCRT[33]

– Find worst case blocking times, where B[i] is a stopwatch growing when task
i is blocked: sup: B[0], B[1], B[2], ... B[33]

A sup-query explores the entire reachable state space and computes the maxi-
mum (supremum) value of an argument expression, which is useful for computing
several bounds at once. However, in such queries, Uppaal treats the specified
clocks as active, therefore the exploration can be significantly slower when the
clock list is large. Therefore, we create a separate model to estimate blocking
times instead WCRT by purging expressions with WCRT [id] and adding B[id]
reset statements on edges from tryLock to Blocked in order to save half of
expensive stopwatches.

4 Results

The results of our model-based framework consist of three parts: visualisation
of a schedule in Gantt chart, worst case response times estimates and CPU
utilisation estimation with verification benchmarking based on cycle limit.

Visualisation. A Gantt chart can be used to visualise a trace of the system, thus
providing a rich picture for inspection. For example, in the generated chart, it can
be seen that Cmd P is blocked more than 5 times during the first cycle, while
blocking times for PrimaryF and StsMon P are significantly long only starting
from the second cycle. Listing 1.5 shows a chart declaration accepted by Uppaal

TIGA [3] which assigns colours for each line (T for task lines, R for resource
lines) based on the state (ready, running, blocked or suspended; locked and used,
locked and preempted or locked and suspended respectively).

Listing 1.5: Specification for Gantt chart.
�

1 gantt {
2 T(i: taskid t) :
3 (ready[i] && !runs[i]) −> 1,// green: ready
4 (ready[i] && runs[i]) −> 2, // blue: running
5 (blocked[i]) −> 0, // red: blocked

13

6 susp[i] −> 9; // cyan: suspended
7 R(i: resid t) :
8 (owner[i]>0 && runs[owner[i]]) −> 2, // blue: locked and actively used
9 (owner[i]>0 && !runs[owner[i]] && !susp[owner[i]]) −> 1, // green: locked, preempted

10 (owner[i]>0 && susp[owner[i]]) −> 9; // cyan: locked and suspended
11 }

� �

Verification and CPU Load Estimates. Uppaal takes about 2min (112s) to
verify that the system is schedulable and about 3 times as much to find WCRT
on a Linux laptop PC with Intel Core 2 Duo 2.2GHz processor.

In [10] CPU utilisation for 20-250ms window is estimated as 62.4%, and our
estimate for entire worst case cycle is 63.65% which is slightly larger, possibly
due to the fact that it also includes the consumption during 0-20ms window.

Table 2 shows Uppaal verification resources used for estimating WCRT and
CPU utilisation for various cycle limits. The instances where cycle limit is a
divisor or a multiple of a hyper-period (156) are in bold. Notice that for such
cycle limits the verification resources are orders of magnitude lower, and there is
nearly perfect linear correlation between cycle limit and resource usage in both
sub-sequences when evaluated separately (both coefficients are ≥ 0.993).

Table 2: Verification resources and CPU utilisation estimates.
cycle Uppaal resources Herschel CPU utilization
limit CPU, s Mem, KB States, # Idle, µs Used, µs Global, µs Sum, µs Used, %

1 465.2 60288 173456 91225 160015 250000 251240 0.640060
2 470.1 59536 174234 182380 318790 500000 501170 0.637580
3 461.0 58656 175228 273535 477705 750000 751240 0.636940
4 474.5 58792 176266 363590 636480 1000000 1000070 0.636480
6 474.6 58796 178432 545900 955270 1500000 1501170 0.636847
8 912.3 58856 352365 727110 1272960 2000000 2000070 0.636480

13 507.7 58796 186091 1181855 2069385 3250000 3251240 0.636734
16 1759.0 58728 704551 1454220 2545850 4000000 4000070 0.636463
26 541.9 58112 200364 2363640 4137530 6500000 6501170 0.636543
32 3484.0 75520 1408943 2908370 5091700 8000000 8000070 0.636463
39 583.5 74568 214657 3545425 6205745 9750000 9751170 0.636487
64 7030.0 91776 2817704 5816740 10183330 16000000 16000070 0.636458
78 652.2 74768 257582 7089680 12411420 19500000 19501100 0.636483
128 14149.4 141448 5635227 11633480 20366590 32000000 32000070 0.636456
156 789.4 91204 343402 14178260 24821740 39000000 39000000 0.636455
256 23219.4 224440 11270279 23266890 40733180 64000000 64000070 0.636456
312 1824.6 124892 686788 28356520 49643480 78000000 78000000 0.636455
512 49202.2 390428 22540388 46533780 81466290 128000000 128000070 0.636455
624 3734.7 207728 1373560 56713040 99286960 156000000 156000000 0.636455

Herschel CPU utilisation estimate does not improve much, therefore we con-
clude that individual cycles are very similar. The sum of idle and used times is
slightly larger than global supremum meaning that some cycles are only slightly
more stressed than others.

Worst Case Response Times. Table 3 shows the response timed from Uppaal

analysis in comparison to response time analysis by Terma. For most of BSW
tasks (1-12,17-18) resource patterns are not available and thus Uppaal could
not determine their blocking times. Blocking times by Terma also include the
suspension times related to locking of resources. We note that in all cases the
WCRT estimates provided by Uppaal are smaller (hence less pessimistic) than
those originally obtained [10]. In particular, we note that the task PrimaryF (task
21) is found to be schedulable using model-checking in contrast to the original
negative result obtained by Terma.

14

Table 3: Specification, blocking and worst case response times of individual tasks.
Specification Blocking times WCRT

ID Task Period WCET Deadline Terma Uppaal Diff Terma Uppaal Diff
1 RTEMS RTC 10.000 0.013 1.000 0.035 0 0.035 0.050 0.013 0.037
2 AswSync SyncPulseIsr 250.000 0.070 1.000 0.035 0 0.035 0.120 0.083 0.037
3 Hk SamplerIsr 125.000 0.070 1.000 0.035 0 0.035 0.120 0.070 0.050
4 SwCyc CycStartIsr 250.000 0.200 1.000 0.035 0 0.035 0.320 0.103 0.217
5 SwCyc CycEndIsr 250.000 0.100 1.000 0.035 0 0.035 0.220 0.113 0.107
6 Rt1553 Isr 15.625 0.070 1.000 0.035 0 0.035 0.290 0.173 0.117
7 Bc1553 Isr 20.000 0.070 1.000 0.035 0 0.035 0.360 0.243 0.117
8 Spw Isr 39.000 0.070 2.000 0.035 0 0.035 0.430 0.313 0.117
9 Obdh Isr 250.000 0.070 2.000 0.035 0 0.035 0.500 0.383 0.117

10 RtSdb P 1 15.625 0.150 15.625 3.650 0 3.650 4.330 0.533 3.797
11 RtSdb P 2 125.000 0.400 15.625 3.650 0 3.650 4.870 0.933 3.937
12 RtSdb P 3 250.000 0.170 15.625 3.650 0 3.650 5.110 1.103 4.007
14 FdirEvents 250.000 5.000 230.220 0.720 0 0.720 7.180 5.153 2.027
15 NominalEvents 1 250.000 0.720 230.220 0.720 0 0.720 7.900 5.873 2.027
16 MainCycle 250.000 0.400 230.220 0.720 0 0.720 8.370 6.273 2.097
17 HkSampler P 2 125.000 0.500 62.500 3.650 0 3.650 11.960 5.380 6.580
18 HkSampler P 1 250.000 6.000 62.500 3.650 0 3.650 18.460 11.615 6.845
19 Acb P 250.000 6.000 50.000 3.650 0 3.650 24.680 6.473 18.207
20 IoCyc P 250.000 3.000 50.000 3.650 0 3.650 27.820 9.473 18.347
21 PrimaryF 250.000 34.050 59.600 5.770 0.966 4.804 65.470 54.115 11.355
22 RCSControlF 250.000 4.070 239.600 12.120 0 12.120 76.040 53.994 22.046
23 Obt P 1000.000 1.100 100.000 9.630 0 9.630 74.720 2.503 72.217
24 Hk P 250.000 2.750 250.000 1.035 0 1.035 6.800 4.953 1.847
25 StsMon P 250.000 3.300 125.000 16.070 0.822 15.248 85.050 17.863 67.187
26 TmGen P 250.000 4.860 250.000 4.260 0 4.260 77.650 9.813 67.837
27 Sgm P 250.000 4.020 250.000 1.040 0 1.040 18.680 14.796 3.884
28 TcRouter P 250.000 0.500 250.000 1.035 0 1.035 19.310 11.896 7.414
29 Cmd P 250.000 14.000 250.000 26.110 1.262 24.848 114.920 94.346 20.574
30 NominalEvents 2 250.000 1.780 230.220 12.480 0 12.480 102.760 65.177 37.583
31 SecondaryF 1 250.000 20.960 189.600 27.650 0 27.650 141.550 110.666 30.884
32 SecondaryF 2 250.000 39.690 230.220 48.450 0 48.450 204.050 154.556 49.494
33 Bkgnd P 250.000 0.200 250.000 0.000 0 0.000 154.090 15.046 139.044

5 Discussion

We have shown how the Uppaal model-checker can be applied for schedulability
analysis of a system with single CPU, fixed priorities preemptive scheduler, mix-
ture of periodic tasks and tasks with dependencies, and mixed resource sharing
protocols. Worst case response times (WCRT), blocking times and CPU utilisa-
tion are estimated by model-checker according to the system model structure.
Modelling patterns use stopwatches in a simple and intuitive way. A break-
through in verification scalability for large systems (more than 30 tasks) is
achieved by employing sweep-line method. Even better control over verification
resources can be achieved by carefully designing progress measure.

The task templates are demonstrated to be generic through many instanti-
ations with arbitrary computation sequences and specialised for particular re-
source sharing. The framework is modular and extensible to accommodate a
different scheduler and control flow can be expanded with additional instruc-
tions if some task algorithm is even more complicated. In addition, Uppaal

toolkit allows easy visualisation of the schedule in Gantt chart and the system
behaviour can be examined in both symbolic and concrete simulators.

15

The case study results include a self-contained non-ambiguous model which
formalises many assumptions described in [10] in human language. The verifica-
tion results demonstrate that the timing estimates correlate with figures from
the response time analysis [10]. The worst case response time of PrimaryF is in-
deed very close to deadline, but overall all estimates by Uppaal are lower (more
optimistic) and they all (WCRT 21 in particular) are below deadlines, whereas
the response time analysis found that PrimaryF may not finish before deadline
and does not provide any more insight on how the deadline is violated or whether
such behaviour is realizable.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES – a tool for
modelling and implementation of embedded systems. In: TACAS ’02: Proceedings
of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 460–464. Springer-Verlag, London, UK (2002)

2. Behrmann, G., David, A., Larsen, K.: A tutorial on Uppaal. Lecture Notes in
Computer Science pp. 200–236 (2004)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
Uppaal-tiga: Time for playing games! In: Proceedings of the 19th International
Conference on Computer Aided Verification. pp. 121–125. No. 4590 in LNCS,
Springer (2007)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based schedulability analysis of safety critical hard real-time java programs. In:
Bollella, G., Locke, C.D. (eds.) JTRES. ACM International Conference Proceeding
Series, vol. 343, pp. 106–114. ACM (2008)

5. Burns, A.: Preemptive priority based scheduling: An appropriate engineering ap-
proach. In: Principles of Real-Time Systems. pp. 225–248. Prentice Hall (1994)

6. Christensen, S., Kristensen, L., Mailund, T.: A Sweep-Line method for state space
exploration. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 450–464 (2001), http://dx.doi.org/10.1007/3-540-45319-9_31

7. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-Based Design for Embedded
Systems, chap. Model-Based Framework for Schedulability Analysis Using UP-
PAAL 4.1, pp. 93–119. CRC Press (2010)

8. Fersman, E.: A generic approach to schedulability analysis of real-time systems.
Acta Universitatis Upsaliensis (2003)

9. Kristensen, L., Mailund, T.: A generalised Sweep-Line method for safety prop-
erties. In: FME 2002:Formal Methods—Getting IT Right, pp. 215–229 (2002),
http://dx.doi.org/10.1007/3-540-45614-7_31

10. Palm, S.: Herschel-Planck ACC ASW: sizing, timing and schedulability analysis.
Tech. rep., Terma A/S (2006)

11. Terma A/S: Herschel-Planck ACMS ACC ASW requirements specification. Tech.
rep., Terma A/S (Issue 4/0)

12. Terma A/S: Software timing and sizing budgets. Tech. rep., Terma A/S (Issue 9)
13. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications

based on timed automata model. Real-Time Systems 38(1), 39–65 (2008)

http://dx.doi.org/10.1007/3-540-45319-9_31
http://dx.doi.org/10.1007/3-540-45614-7_31

	Schedulability Analysis Using Uppaal: Herschel-Planck Case Study

