
July 2003 Telelogic Ta

Chapter
5 Tutorial: The SDL

Validator
The SDL Validator is the tool that you use for validating the behav-
ior of your SDL systems, using state space exploration techniques.
In this chapter, you will practice “hands-on” on the DemonGame
system.

To be properly assimilated, this tutorial therefore assumes that you
have gone through the exercises that are available in chapter 3, Tu-
torial: The Editors and the Analyzer as well as chapter 4, Tutorial:
The SDL Simulator.

In order to learn how to use the Validator, read through this entire
chapter. As you read, you should perform the exercises on your
computer system as they are described.
u 4.5 SDL Suite Getting Started gs-s1 187

Chapter 5 Tutorial: The SDL Validator
Purpose of This Tutorial
The purpose of this tutorial is to make you familiar with the essential
validation functionality in the SDL suite. With validation we mean ex-
ploring the state space of an SDL system with powerful methods and
tools that will find virtually any kind of possible run-time errors that
may be difficult to find with regular simulation and debugging tech-
niques.

This tutorial is designed as a guided tour through the SDL suite, where
a number of hands-on exercises should be performed on your computer
as you read this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not a tutorial on SDL.

It is assumed that you have performed the exercises in chapter 3, Tuto-
rial: The Editors and the Analyzer as well as chapter 4, Tutorial: The
SDL Simulator before starting with the tutorial on the Validator.

Note: C compiler

You must have a C compiler installed on your computer system in
order to validate an SDL system. Make sure you know what C com-
piler(s) you have access to before starting this tutorial.

Note: Platform differences

This tutorial, and all tutorials that are possible to run on both the
UNIX and Windows platform, are described in a way common to
both platforms. In case there are differences between the platforms,
this is indicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running the SDL suite in your en-
vironment. Only if a screen shot differs in an important aspect be-
tween the platforms will two separate screen shots be shown.
188 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Generating and Starting a Validator
Generating and Starting a Validator
In addition to simulating a system, it is also possible to validate the sys-
tem using the SDL Validator. A validator can be used to automatically
find errors and inconsistencies in a system, or to verify the system
against requirements.

In the same way as for a simulator, you must generate an executable val-
idator and start it with a suitable user interface.

What You Will Learn
• To quickly generate and start an executable validator

Note:

In order to generate a validator that behaves as stated in the exercis-
es, you should use the SDL diagrams that are included in the Telel-
ogic Tau distribution instead of your own diagrams. To do this:

• On UNIX: Copy all files from the directory
$telelogic/sdt/examples/demongame

to your work directory ~/demongame.

• In Windows: Copy all files from the directory
C:\Telelogic\SDL_TTCN_Suite4.5\sdt\examples\de-

mongame

to your work directory
C:\Telelogic\SDL_TTCN_Suite4.5\work\demongame.

If you generate a validator from the diagrams that you have created
yourself, the scheduling of processes (i.e. the execution order) may
differ.

If you choose to copy the distribution diagrams, you must then re-
open the system file demongame.sdt from the Organizer.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 189

Chapter 5 Tutorial: The SDL Validator
Quick Start of a Validator
A validator can be generated and started in the same way as described
earlier for the simulator, i.e., by using the Make dialog and the Tools
menu in the Organizer. However, we will now show a quicker way.

1. Make sure the system diagram icon is selected in the Organizer.

2. Click the Validate quick button. The following things will now hap-
pen, in rapid succession:

– An executable validator is generated. Messages similar to when
generating a simulator are displayed in the Status Bar, ending
with “Analyzer done.” This is the same action as manually using
the Make dialog and selecting a validator kernel. If you like, you
can verify that a validator kernel has been used by looking at the
tail of the Organizer log.

– A graphical user interface to the validator is started. The status
bar of the Organizer will read “Validator UI started.” This is the
same action as manually selecting Validator UI from the Tools
menu.

– The generated validator is started. The Validator UI shows the
message “Welcome to SDL VALIDATOR.” This is the same
action as manually using the Open quick button and selecting
the executable validator (named demongame_xxx.val (on
UNIX), or demongame_xxx.exe (in Windows), where the _xxx
suffix is platform or kernel/compiler specific).

Note:

If you receive errors from the Make process (in the Organizer Log
window) or if no Validator is started, do as follows:

• Open the Make dialog and change to a Validation kernel reflect-
ing the C compiler used on your computer system, e.g.
gcc-Validation or Microsoft Validation.

• Click the Full Make button and check that no errors where re-
ported.

• Click the Validate quick button again. A Validator should now
be started as described above.
190 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Generating and Starting a Validator
The Validator UI looks like this:

As you can see, the graphical user interface of a validator is very similar
to a simulator GUI, which you have learned to use in the previous exer-
cises. However, the button modules to the left are different and a few
extra menus are available.

A validator contains the same type of monitor system as a simulator.
The only difference is the set of available commands.

When a validator is started, the static process instances in the system are
created (in this case Main and Demon), but their initial transitions are
not executed. The process in turn to be executed is the Main process.
You can check this by viewing the process ready queue:

1. Locate the button module View in the left part of the window, and
click the Ready Q button. The first entry in the ready queue is Main,
waiting to execute its start transition.

– If the View module appears to be empty, you have to click the
toggle button to the left of the module’s name. The button mod-
ule is then expanded. You may collapse and expand any button
module by using these toggle buttons:

Figure 129: The main window of the Validator UI
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 191

Chapter 5 Tutorial: The SDL Validator
– The buttons in the View module execute the same type of com-
mands as those in the Simulator UI.

2. If required, resize the Validator UI window so that all button mod-
ules are visible. You may also reduce the width of the text area. In
the exercises to come, you will have a number of windows open at
the same time.

Basics of a Validator
Before you start working with the validator exercises, you should have
an understanding about the basic concepts of the SDL Validator.

• When examining an SDL system using the validator, the SDL sys-
tem is represented by a structure called a behavior tree. In this tree
structure, a node represents a state of the complete SDL system. The
collection of all such system states is known as the state space of the
system.

• By moving around in the behavior tree, you can explore the behav-
ior of the SDL system and examine each system state that is encoun-
tered. This is called state space exploration, and it can be performed
either manually or automatically.

• The size and structure of the behavior tree is determined by a num-
ber of state space options in the validator. These options affect the
number of system states generated for a transition in an SDL process
graph, and the number of possible branches from a state in the be-
havior tree.

Figure 130: A collapsed button module

Expand/
collapse
button
192 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Navigating in a Behavior Tree
Navigating in a Behavior Tree
In this first exercise, we will explore the state space of the Demongame
system by manually navigating in the behavior tree. The validator will
then behave in a way similar to when running a simulator. However,
there are also important differences, which will be pointed out.

By default, the validator is set up in a way that results in a state space as
small as possible. In this set-up, a transition between two states in the
behavior tree always corresponds to a complete transition in the SDL
process graphs. Also, the number of possible branches from a state is
limited to a minimum.

What You Will Learn
• To use the Navigator tool
• To get printed trace and GR trace

Setting Up the Exploration
When interactively exploring the behavior tree, a validator tool called
the Navigator is used.

1. Start the Navigator by clicking the Navigator button in the Explore
module. The Navigator window is opened:

Figure 131: The Navigator tool
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 193

Chapter 5 Tutorial: The SDL Validator
The Navigator shows part of the behavior tree around the current
system state. In general, the upper box represents the behavior tree
transition leading to the current state, i.e., the transition that just has
been executed. The boxes below represent the possible tree transi-
tions from the current state. They are labelled Next 1, Next 2, etc.
and have not yet been executed.

Since the system now is in its start state, there is no up node. The
only next node is the start transition of Main.

2. To be able to see the printed trace familiar from simulation, open the
Command window from the View menu. (The trace is not printed in
the main window of the validator.)

3. To switch on GR trace of SDL symbols, select Toggle SDL Trace
from the Commands menu in the Validator window; SDL trace is
now enabled. However, an SDL Editor will not be opened until the
first transition is executed.

Using the Navigator
1. In the Navigator, execute the next transition by double-clicking on

the Next 1 node. The following happens, in order:

– In the Navigator, the Up 1 node shows the just executed transi-
tion, while the Next 1 node shows the next possible transition,
the start transition of Demon. You have now moved down to a
system state in the next level of the behavior tree.

– An SDL Editor is opened and the symbols that were just execut-
ed becomes selected. Note the difference compared to the sim-
ulator, where the SDL Editor instead selects the next symbol to
be executed.

Figure 132: The last and next transition
194 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Navigating in a Behavior Tree
– The Command window shows the printed trace for the executed
transition, the start transition of Main (you may have to scroll or
resize the window to see the trace):

2. If needed, move and resize all opened windows to make them com-
pletely visible and still fit on the screen together.

3. Double-click the Next 1 node to execute the next transition. The
start transition of Demon is traced in the Command window and in
the SDL Editor.

At this stage, neither of the two active processes can continue with-
out signal input: Main awaits the signal Newgame from the environ-
ment, and Demon awaits the sending of the timer signal T. These are
the two transitions from the current state now shown in the Naviga-
tor as Next 1 and Next 2. As you can see, the transitions in the boxes
are described by the same type of information as in a printed trace.

This means that the validator gives information of all possible tran-
sitions from the current system state, even though they have not
been executed yet. (This information cannot easily be obtained
when running a simulator.)

Figure 133: The printed trace for the executed transition

Figure 134: Transition descriptions in the Navigator
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 195

Chapter 5 Tutorial: The SDL Validator
4. Send the timer signal by double-clicking the Next 2 node. The Com-
mand window tells us that the timer signal is sent and the Navigator
shows that the next transition is the input of the timer T.

5. Execute the next transition by double-clicking the Next 1 node. This
is where the dynamic error in the Demongame system occurs, as ex-
plained in the simulator tutorial earlier (see “Dynamic Errors” on
page 153 in chapter 4, Tutorial: The SDL Simulator). Instead of
showing the next transition, the Navigator displays the error mes-
sage in the next box.

– The error message can also be found in the tail of the Command
window, if you scroll the Print-Trace module.

We cannot go further down this branch of the behavior tree, since a
reported error by default truncates the tree at the current state. In-
stead, we will back up to the state where we could select the output
of Newgame.

6. Double-click the Up 1 node to go back to the previous state. Repeat
this action again to go to the state we were in after step 3 above. This
way of backing up in the execution is not possible when running a
simulator, as you may have noticed when running the Simulator tu-
torial.

Figure 135: The dynamic error

Figure 136: The tail of the Print-Trace module
196 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Navigating in a Behavior Tree
You should also note that the Next 2 node is marked with three as-
terisks “***”. This is used to indicate that this is the transition we
have been backing up through:

7. Execute the Next 1 transition instead. The printed trace shows that
the signal Newgame was sent from the environment. The Main pro-
cess is ready to receive the signal. Note that you do not have to send
the signal yourself; this is taken care of automatically by the valida-
tor.

8. Execute the next transition. The printed trace and the SDL trace
show that Main now is in the state Game_On. The Navigator dis-
plays the start transition of the newly created Game process.

9. Execute the start transition of Game. The Navigator will now show
the different signal inputs that are required to continue execution:
Endgame, Probe, Result, and the timer T.

Figure 137: Marking a transition that has been backed through

Figure 138: Signal inputs required for continued execution

Three
asterisks
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 197

Chapter 5 Tutorial: The SDL Validator
If the number of transitions from a state is large, it may be difficult
to see them all in the Navigator when a tree structure is used. To
overcome this problem, you can change the display to a list struc-
ture.

10. Click the Toggle Tree quick-button to see how the list structure
looks like. Now it is easier to see the possible signals.

11. Change back to the tree structure.

We will not continue further down in the behavior tree in this exer-
cise. Figure 140 on page 199 shows the part of the behavior tree we
have explored so far. The nodes in the figure represent states of the
complete SDL system. Each node lists the active process instances
that have changed since the previous system state, what process
state they are in and the content of their input queues. The arrows
between the nodes represent the possible tree transitions. They are
tagged with a number and the SDL action that causes the transition.
The arrow numbers are the same numbers as printed in the Next
nodes in the Navigator.

Note that this is a somewhat different view of the behavior tree com-
pared to the Navigator. In the Navigator, the nodes represent the tree
transitions and the process states are not shown.

Figure 139: The list structure
198 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Navigating in a Behavior Tree
Figure 140: A Demongame behavior tree

Main
start

–

Demon
start

–

1

1 2

1 1

output Newgame output timer T

input Newgame input timer T

1start process

start process

Node notation:

No.SDL action

transition

1start process

error!

output
Newgame

output
output
Probe

output
Result

1 2 3 4
timer T

Main
Game_Off

–

Demon
Generate

–

Main
Game_Off
Newgame

Demon
Generate

T

Main
Game_On

–

Game
start

–

Demon
Generate

–

Game
Losing

–

Process
State

Queue
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 199

Chapter 5 Tutorial: The SDL Validator
More Tracing and Viewing Possibilities
In this exercise, we will take a look at some of the additional tracing and
viewing possibilities of the validator.

What You Will Learn
• To print a complete trace from the start state
• To use the view commands
• To use the MSC trace facility
• To go to a state by using the path commands

Using the View Commands
1. Make sure you are still in the same state as after the last step in the

previous exercise.

To see a complete printed trace from the start state to the current
state, you can use the Print-Trace command. As parameter, it takes
the number of levels back to print the trace from.

2. On the input line of the Validator UI, enter the command pr-tr 9
(you can use any large number). The trace is printed in the text area
of the main window. This trace gives an overview of what has hap-
pened in the SDL system so far.

3. The SDL Validator supports the same viewing possibilities as the
SDL Simulator. Click the Timer List button in the View module to
list the active timer set by the Demon process.

4. Examine the GameP variable in the Main process by first setting the
scope to the Main process (click the Set Scope button and select the
Main process), and then clicking the Variable button and selecting
the GameP variable.

– You may also use the Watch window in the validator to contin-
uously monitor the values of variables.
200 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 More Tracing and Viewing Possibilities
Using MSC Trace
In addition to textual and graphical traces, the validator can also per-
form an MSC trace.

1. First, turn off SDL trace by selecting Toggle SDL Trace from the
Commands menu. Then, turn on MSC trace from the same menu.
An MSC Editor is opened, showing a Message Sequence Chart for
the trace from the start state to the current state.

– You may also close down the SDL Editor to avoid having too
many windows on-screen.

2. When the MSC appears, execute, with a double-click, one of the
signal transitions in the Navigator, e.g. Probe. The message is ap-
pended to the MSC (but it is not yet consumed).

3. Go up a few levels in the Navigator.

Figure 141: The current MSC trace

Game_3

Game

Demon_2
Demon

Main_1
Main

env_0

Losing

Game_On

Generate

Game_Off

MSC ValidatorTrace

NewgameNewgame

T(1.0000)T(1.0000)

text ’Validator trace
generated by
SDL Validator 4.0’;
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 201

Chapter 5 Tutorial: The SDL Validator
Note how the selection in the MSC Editor changes to reflect the
MSC event corresponding to the current state!

4. Go down again, but select a different path than before, i.e., send one
of the other signals.

Note how the MSC diagram is redrawn to show the new behavior of
the system!

5. Toggle MSC trace off in the Commands menu. Unless other MSC
diagrams were opened, the MSC Editor is closed.

Going to a State Using Path Commands
You can use the commands Print-Path and Goto-Path to return to a
state where you have been before.

1. Execute the command Print-Path from the input line. The output
represents the path taken in the behavior tree from the start state to
the current state.

Command : print-path
1 1 1 1 1 3 0

– The numbers in the path are the same as the transition numbers
in the Navigator, and the arrow numbers shown in Figure 140 on
page 199.

2. Go up a few levels in the Navigator.

3. In the text area, locate the path printed by the Print-Path command
above (you may have to scroll the text area). On UNIX, select the
numbers in the path with the mouse by dragging the mouse to the
end of the line. Make sure you select the final zero.

4. In the input line, enter goto-path and the path printed by the
Print-Path command. On UNIX, paste in the path numbers by posi-
tioning the mouse pointer at the end of the entered text and clicking
the middle mouse button.

5. Hit <Return> to execute the command. You now end up in the pre-
vious state.

– If you make an error while entering the path numbers, you can
clear the input line by using the <Down> arrow key and try
again.
202 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
Validating an SDL System
In the previous exercises, we have navigated manually in the behavior
tree. We have also found an error situation by studying the Navigator
and the printed trace in the Command window.

In this exercise, we will show how to find errors and possible problems
by automatically exploring the state space of the Demongame system.
This is referred to as validating an SDL system.

What You Will Learn
• To perform an automatic state space exploration
• To examine reported errors using the Report Viewer
• To change state space and exploration options
• To restrict the state space without affecting the behavior
• To check the system coverage of an exploration
• To use user-defined rules
• To perform a random walk exploration

Performing a Bit State Exploration
Automatic state space exploration can be performed using different al-
gorithms. The algorithm called bit state exploration can be used to effi-
ciently validate reasonably large SDL systems. It uses a data structure
called a hash table to represent the system states that are generated dur-
ing the exploration.

An automatic state space exploration always starts from the current sys-
tem state. Since we want to explore the complete Demongame system,
we must first go back to the start state of the behavior tree.

1. Go to the top of the tree by clicking the Top button in the Explore
module.

2. Start a bit state exploration by clicking the Bit-State button. After a
few seconds, a tool called the Report Viewer is opened. We will
soon describe this window; in the meantime, just move it away from
the main window.

3. For a small system such as Demongame, the exploration is finished
almost immediately and some statistics are printed in the text area.
They should look something like:
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 203

Chapter 5 Tutorial: The SDL Validator
** Starting bit state exploration **
Search depth : 100
Hash table size : 1000000 bytes

** Bit state exploration statistics **
No of reports: 1.
Generated states: 2569.
Truncated paths: 156.
Unique system states: 1887.
Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 3642
Collision risk: 0 %
Max depth: 100
Current depth: -1
Min state size: 68
Max state size: 124
Symbol coverage : 100.00

Of the printed information, you should note the following:

– Search depth : 100

The search depth limits the exploration; it is the maximum
depth, or level, of the behavior tree. If this level is reached dur-
ing the exploration, the current path in the tree is truncated and
the exploration continues in another branch of the tree. It is pos-
sible to change the search depth by setting an option in the Val-
idator UI.

– No of reports: 1.

The exploration found one error situation. This error will be ex-
amined in the next exercise.

– Truncated paths: 156.

The maximum depth was reached 156 times, i.e., there are parts
of the behavior tree that were not explored. This is a normal sit-
uation for SDL systems with infinite state spaces. Demongame
is such a system, since the game can go on forever.

– Collision risk: 0 %

The risk for collisions was very small in the hash table that is
used to represent the generated system states. If this value is
greater than zero, the size of the hash table may have to be in-
creased by setting an option; otherwise, some paths may be trun-
cated by mistake. This situation will not occur in this tutorial.
204 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
– Symbol coverage : 100.00

All SDL symbols in the system were executed during the explo-
ration. If the symbol coverage is not 100%, the validation cannot
be considered finished. This situation will occur in a later exer-
cise.

Examining Reports
The error situations reported from a state space exploration can be ex-
amined in the Report Viewer. The Report Viewer window displays the
reports in the form of boxes in a tree structure.

• The top box shows how many reports there are (in this case only
one).

• On the next level in the report tree, there is one box for each type of
report, stating the number of reports of that type.

• On the next level, it is possible to see the actual reports. However,
this level of the tree is by default collapsed, indicated by the small
triangle icon below the report type boxes.

Figure 142: The Report Viewer

Number of
reports

Report
type

Collapsed
box indicator
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 205

Chapter 5 Tutorial: The SDL Validator
1. To expand the report, double-click on the report type box Output.
You will now see a box reporting the error we have found manually
earlier. In addition, the tree depth of the error situation is shown.

If you look in the Navigator and Command windows, you can see
that the validator is still in the start state of the system, even though
a state space exploration has been performed. We will now go to the
state where the error has occurred.

2. Double-click the report box in the Report Viewer. The following
things will now happen:

– The printed trace of the error situation is displayed in the text
area of the Validator UI and in the Command window.

– The Navigator moves to the error state and displays the error.

– An MSC Editor is opened, showing the MSC trace to the current
state. You can see that the signal Bump was not received by any
process, since the Game process has not yet been created. You
should move the MSC Editor window so that it does not cover
the other windows.

Once you have used the Report Viewer to go to a reported situation,
you can easily move up and down the path to this state. Simply use
the Up and Down buttons in the Explore module, instead of double-
clicking a node in the Navigator:

3. Move up two steps by using the Up button. Of the two transitions
possible from this state, the one that is part of the path leading to the
error is indicated by three asterisks “***” (see Figure 137 on page
197). This is the transition chosen when using the Down button.

Figure 143: An expanded report
206 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
4. Move up to the top of the tree (click the Top button in the Explore
module). Move down again to the error by using the Down button
repeatedly.

Note that you do not have to chose which way to go when the tree
branches. The path to the error is remembered by the validator until
you manually chose another transition.

Exploring a Larger State Space
We will now run a more advanced bit state exploration, with a different
setting of the state space options. This will make the state space much
larger, so that more error situations can be found.

1. Go back to the top of the behavior tree (use the Top button).

2. In the Options1 menu, select Advanced. This sets a number of the
available state space options in one step, as you can see by the com-
mands executed in the text area:

Command : def-sched all

Command : def-prio 1 1 1 1 1

Command : def-max-input-port 2
Max input port length is set to 2.

Command : def-rep-log maxq off
No log for MaxQueueLength reports

Note that the Navigator now shows two possible transitions from
the start state; this is an immediate effect of the larger state space.

3. In addition, we will increase the search depth of the exploration
from 100 (the default) to 300. From the Options2 menu, select Bit-
State: Depth. In the dialog, enter 300 and click OK.

Figure 144: Specifying Depth = 300
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 207

Chapter 5 Tutorial: The SDL Validator
Since the behavior tree becomes much larger with these option set-
tings, the exploration will take longer to finish. We will therefore
show how to stop the exploration manually.

4. Start a new bit state exploration. In the text area, a status message is
printed every 20,000 transitions that are executed. Stop the explora-
tion after one of the first status messages by pushing the Break but-
ton in the Explore module. The text area should now display some-
thing like this:

*** Break at user input ***

** Bit state exploration statistics **
No of reports: 2.
Generated states: 50000.
Truncated paths: 1250.
Unique system states: 21435.
Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 41557
Collision risk: 0 %
Max depth: 300
Current depth: 235
Min state size: 68
Max state size: 168
Symbol coverage : 100.00

Note the following differences in the printed information compared
to the previous exploration:

– No of reports: 2.

The exploration found an additional error situation. This is an
effect of more transitions being able to execute from each state
in the behavior tree.

– Max depth: 300
Current depth: <number>
The exploration was at the printed depth in the behavior tree at
the moment it was stopped. However, since the exploration uses
a depth-first algorithm, the maximum depth of 300 was reached
at an earlier stage. The exploration may be continued from the
current depth if you wish to explore the remaining parts of the
behavior tree.

Note:

If the exploration finishes by itself before you have had a chance to
stop it manually, redo this exercise from step 1. on page 207 but in-
crease the search depth even more, e.g. 400 or 500.
208 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
5. In the Report Viewer, open the two report type boxes to see both re-
ports with a double-click on each. The Report Viewer window
should now look something like:

6. For now, just note on which depth each of the reported situations oc-
curred; do not double-click any of the reports. (The depths may be
different from the ones shown in the figure.)

7. Continue the exploration by clicking the Bit-State button again. A
dialog is opened, asking if you would like to continue the interrupt-
ed exploration or restart it from the beginning.

Figure 145: The two reports as displayed in the window

Figure 146: Continuing the exploration
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 209

Chapter 5 Tutorial: The SDL Validator
8. In the dialog, select Continue and click OK. Wait for the exploration
to finish by itself.

9. In the Report Viewer, open the two reports again. Note that the
depth values have changed. This is because only one occurrence of
each report is printed; the one found at the lowest depth so far.

10. Go to the state where an unsuccessful create of the Game process
was reported (double-click the Create report).

11. To see what caused the unsuccessful create, look at the MSC trace.

At the receipt of the last Newgame signal, the Main process at-
tempts to create a Game process. However, the already active Game
process has not yet consumed the previous GameOver signal, and
has therefore not been terminated. Since you cannot have more than
one instance of the Game process in the Demongame system, the
process create could not be executed!

Restricting the State Space
The Validator makes it possible to limit the state space in several differ-
ent ways. We will now explore one of these methods that in many cases
is very efficient. This is done by using the Define-Variable-Mode com-
mand.

This command is used to instruct the Validator to ignore certain vari-
ables when matching states during the state space exploration. The

Figure 147: The report about an unsuccessful process create
210 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
mode can for each variable be set to either “Skip” or “Compare”. The
implication of setting the mode to “Skip” is that the search may be
pruned even if a new state is encountered during the search. This hap-
pens if the only difference between the new state and a previously vis-
ited state is that the values of some of the skipped variables are different.

We will now apply this to our DemonGame system. The variable Count
in the Game process keeps track of the current score for the game, and
the value of this variable does not have any real impact on the behavior
of the system. So, we will now instruct the validator to ignore this vari-
able when performing a search.

1. Go to the top of the tree by clicking on the Top button.

2. Enter the command define-variable-mode in the command line
in the Validator UI, select the Game process in the first dialog, the
Count variable in the second dialog and Skip in the last dialog. You
have now instructed the Validator to ignore the Count variable.

3. Start a bit state exploration by clicking on the Bit-State button. (Se-
lect to Restart the exploration if a dialog is opened.)

4. When the search stops compare it with the previous exploration.
The only difference between the two explorations is that the second
one ignores the Count variable. However, while the first exploration
took a long time to finish, the second one only took a few seconds!
The printed statistics show very small numbers in comparison.

The lesson to learn from this is that it in many cases it is possible to dras-
tically reduce the time needed for explorations by checking the vari-
ables in the system. Look for variables that do not have any impact on
the behavior (i.e. that does not influence decision statements or the ex-
pression used in an “output to” statement). Also look for variables that
do not change their value during the exploration. This can for example
be arrays that are initialized at system start up but then never changes
(or at least not changed in the intended exploration). The mode for these
types of variables should be set to “Skip”.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 211

Chapter 5 Tutorial: The SDL Validator
Checking the Validation Coverage
If the symbol coverage after an automatic state space exploration is less
than 100%, the Coverage Viewer can be used to check what parts of the
system that have not been executed. To attain a symbol coverage less
than 100% for the Demongame system, we will set up the exploration
in a special way.

1. Go to the top of the tree.

2. First, we need to restore the smaller, default state space. Select De-
fault from the Options1 menu. Note that the Navigator changes back
to display only a single possible transition from the top node.

3. To avoid reaching all system states, we will reduce the search depth
of the exploration from 100 to just 10. Use the Bit-State: Depth
menu choice from the Options2 menu and specify a maximum depth
of 10.

4. Start a bit state exploration. The printed statistics should now in-
form you that the symbol coverage is about 82%.

– If the symbol coverage still is 100%, select Reset from the
Options1 menu and repeat steps 3 and 4 above.

5. To find out which parts of the Demongame system that have not
been reached, open the Coverage Viewer from the Commands
menu.

A symbol coverage tree is displayed, showing all symbols which
have not been executed yet.

6. Change to a transition coverage tree by clicking the Tree Mode
quick-button.
212 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System

You can now see that none of the transitions from the state Winning
in the Game process has been executed. To explore this part of the
system in the validator, you can go to the state Winning and start a
new exploration from there. How to do this is explained in the fol-
lowing exercises.

Going to a State Using User-Defined Rules
To go to a particular system state, you could use the Navigator to man-
ually find the state by studying the transition descriptions and the print-
ed trace in the Command window. This can be both tedious and diffi-
cult, especially for larger systems than Demongame. Instead, we will
show an easier way: by using a user-defined rule.

When performing state space exploration, the validator checks a num-
ber of predefined rules in each system state that is reached. It is when
such a rule is satisfied that a report is generated.

Figure 148: The transition coverage tree
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 213

Chapter 5 Tutorial: The SDL Validator
In this exercise, we will show how to define a new rule to be checked
during state space exploration. The rule will be used to find the state
Winning in the Game process.

1. Make sure you still are at the top of the behavior tree.

2. Define a new rule by selecting Define Rule from the Commands
menu. In the dialog that appears, enter the rule definition
state(Game:1)=Winning

This very simple rule says that the state of the process instance
Game:1 must be equal to Winning. By defining the rule, a report
will be generated when a state space exploration reaches a state that
satisfies the rule.

3. Start a bit state exploration. Since we have not changed any of the
options since the last exploration the same statistics will be printed,
with the exception that an additional report is generated.

4. From the Report Viewer, go to the reported situation where the user-
defined rule was satisfied. You have now reached the first place in
the behavior tree where the Game process is in the state Winning.

5. We now instruct the validator to use this state as the root of the be-
havior tree. To do this, enter the command define-root on the in-
put line and select Current in the dialog.

We can now change options, define a new rule or load an MSC. These
new settings will then be used in all explorations based on the new root.
Also all list/goto-path commands will use the path from the new root
and the MSC trace will give the trace from the new root.

6. Before continuing, do not forget to clear the user-defined rule. To
do this, enter the command clear-rule on the input line.

Figure 149: Specifying a new rule
214 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Validating an SDL System
In our case we will only clear the rule and start another type of state
space exploration from this state; a random walk.

Performing a Random Walk
Apart from bit state exploration, there is another exploration method
known as random walk. A random walk simply explores the behavior
tree by repeatedly choosing a random path down the tree. This is mainly
useful for SDL systems where the state space can be very large. But also
for a small system like Demongame, it can be as effective as other ex-
ploration methods.

1. Start a random walk exploration from the current state by clicking
the Random Walk button. From the printed statistics, you can see
that the symbol coverage now has become 100%.

2. Load the Coverage Viewer with the new coverage information by
selecting Show Coverage Viewer from the Commands menu.
Change to transition coverage and display the whole tree. Note that
all transitions have executed a large number of times. When the ex-
ploration selects a random path down the tree, there is no mecha-
nism to avoid that already explored paths are explored once more.
Therefore, the same transition may be executed any number of times

3. Exit the Coverage Viewer from the File menu.

4. Reset the system by selecting Reset from the Options1 menu. You
are now back at the top of the tree, and the root of the tree is reset to
the original root, the start state of the system.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 215

Chapter 5 Tutorial: The SDL Validator
Verifying a Message Sequence Chart
Another main area of use for a validator is to verify a Message Sequence
Chart. To verify an MSC is to check if there is a possible execution path
for the SDL system that satisfies the MSC. This is done by loading the
MSC and performing a state space exploration set up in a way suitable
for verifying MSCs.

What You Will Learn
• To verify an MSC

Verifying a System Level MSC
In this exercise, we will verify one MSC made on the system level, i.e.,
an MSC that only defines signals to and from the environment. The
name of the MSC file is SystemLevel.msc and is located in the same
directory as the remaining files for the DemonGame example. The MSC
is shown in the figure below.
216 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Verifying a Message Sequence Chart
1. Reset the system. This time do it by choosing Restart in the File
menu. Choose “No” if you are asked to save options. The Restart
command will actually terminate the running Validator and start it
again.

2. Start an MSC verification by clicking the Verify MSC button. A file
selection dialog is opened, in which you select the MSC to verify.

3. Select SystemLevel.msc and click OK. A state space exploration
is now started, which is guided by the loaded MSC.

In the printed statistics, note that the exploration is completed with-
out any truncated paths. This is because the loaded MSC restricts
the size of the behavior tree; only the parts dealing with the events
in the MSC are executed. The maximum depth of it is not more than
20.

Note the line that tells if the MSC was verified or violated:

** MSC SystemLevel verified **

Figure 150: A system level MSC

Environment Demongame

MSC SystemLevel

EndgameEndgame

Score

(1)

Score

(1)

ResultResult

WinWin

ProbeProbe

NewgameNewgame
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 217

Chapter 5 Tutorial: The SDL Validator
In this case the MSC was verified, i.e., the behavior described in the
MSC was indeed possible. In the Report Viewer, however, one (or
two) of the reports is a violation of the loaded MSC, while the other
one is a verification of the MSC. The exploration may very well find
states that violate the MSC; it is the existence of states that verify
the MSC that determines the result of the verification.

4. Go to the state where the MSC was verified. The printed trace in the
Command window shows that the Main process has received the
Endgame signal, and sent the GameOver signal to the Game pro-
cess:

* OUTPUT of GameOver. Receiver: Game:1
* Signal GameOver received by Game:1

5. Take a look at the MSC trace and compare it with the loaded MSC
in Figure 150 on page 217. Note that the loaded MSC only defines
signals to and from the environment and therefore is less detailed
than the MSC trace. An MSC trace in the validator is always made
on the process level.

Figure 151: Violations and verifications of the MSC
218 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Verifying a Message Sequence Chart
Figure 152: The MSC trace

The trace in the figure does not show the condition symbols that indicates the state
of the processes.

Game_6
Game

Demon_4
Demon

Main_3
Main

env_0

Game_6

MSC ValidatorTrace

GameOverGameOver

EndgameEndgame

Score

(1)

Score

(1)

ResultResult

WinWin

ProbeProbe

T(1.0000)T(1.0000)

BumpBump

T(1.0000)T(1.0000)

Newgame

Validator trace
generated by
SDL Validator 4.0
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 219

Chapter 5 Tutorial: The SDL Validator
Exiting the Validator UI
The first part of the validator tutorial is now finished. Close the valida-
tor windows in the following way:

1. To close the Navigator and the Report Viewer, click the Close quick
button in these windows.

2. To close the Command window, select Close from the File menu.

3. Exit the Validator UI from the File menu. You may be asked in a
dialog whether to save changes to the Validator options.

4. If you select Yes and click OK, the option settings are saved in a file
called .valinit (on UNIX), or valinit.com (in Windows). This
file is read each time the Validator UI is started from the same di-
rectory, or when the validator is restarted or reset from the Validator
UI. You should select No and click OK.

Figure 153: Saving changed options
220 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Using Test Values
Using Test Values
In this final exercise we will explore the test value feature in the Vali-
dator. This feature is used to control the way the environment interacts
with the system during state space exploration. In practise, the test val-
ues define what signals will be sent from the environment to the system,
including the exact values of their parameters.

In this part of the Validator tutorial we will use another SDL system, the
Inres system.

1. Copy the Inres system from the installation to a working directory
of your own. Copy all files from the directory
$telelogic/sdt/examples/inres (on UNIX), or
C:\Telelogic\SDL_TTCN_Suite4.5\sdt\examples\inres (in
Windows).

What You Will Learn
• To examine and use the automatically generated test values
• To manually change the test values

Using the Automatic Test Value Generation
When the Validator is started, test values for a number of SDL sorts are
automatically generated. For example, all integer parameters will have
the test values -55, 0 or 55. We will now take a look at the automatically
generated test values for the Inres system.

1. Open the Inres system file from the Organizer’s File menu. If any
part of the existing DemonGame system needs saving, you are first
prompted to do so before the Open file dialog appears. Locate the
file inres.sdt that you have copied and open it.

2. Generate and start a Validator for the system by clicking on the Val-
idate quick button; see “Quick Start of a Validator” on page 190 for
more information. If you are asked in a dialog whether to start a new
Validator UI or use an existing one, select the existing validator in
the list and click OK.

3. Expand the Test Values button module in the Validator UI and make
the window bigger so you can see all the buttons.

The button module contains four rows of buttons. The top three but-
tons List Value, Def Value And Clear Value make it possible to de-
fine test values for each sort (data type) in the SDL system. The
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 221

Chapter 5 Tutorial: The SDL Validator
middle row with the buttons List Par, Def Par and Clear Par han-
dles test values for specific signal parameters. The bottom rows han-
dles test values for entire signals.

4. Click on the List Value button to see what default test values have
been generated. The following values should be listed:

Sort integer:
0
-55
55

Sort Sequencenumber:
zero
one

Sort IPDUType:
CR
CC
DR
DT
AK

As you can see, there were test values defined for the predefined sort
integer and for two system specific enumerated sorts Sequencenum-
ber and IPDUType. For enumerated types, all the values will by de-
fault be used as test values if there are 10 or less values. Note that
only sorts that appear on parameters to signals to or from the envi-
ronment are listed.

5. Click on the List Signal button to see what signals will be sent to the
system based on the test values for the sorts.

You should now see a list of signals similar to the following. Note
that there might be differences in the parameters to the MDATreq
signal since this is computed using a random function that is de-
pending on the compiler used.

ICONreq
IDATreq(0)
IDATreq(-55)
IDATreq(55)
IDISreq
MDATreq((. CR, zero, -55 .))
MDATreq((. CR, zero, -55 .))
MDATreq((. CC, one, 55 .))
MDATreq((. AK, one, 55 .))
MDATreq((. CR, one, 55 .))
MDATreq((. DT, one, -55 .))
MDATreq((. CC, one, 0 .))
222 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Using Test Values
MDATreq((. CC, one, -55 .))
MDATreq((. AK, one, 55 .))
MDATreq((. DR, one, 0 .))

The signals ICONreq and IDISreq have no parameters so there will
only be one signal definition for each of these signals. The IDATreq
signal has one integer parameter, and as you can see there will be
three test values for this signal, one for each of the test values for the
integer sort.

The MDATreq signal takes a parameter that is a structure with three
fields: one IPDUType, one Sequencenumber and one integer.
Whenever the Validator finds a structure, it tries to generate test val-
ues for the sort based on all combination of test values for each field.
However, if the number of test values is larger than a maximum val-
ue, a randomly chosen subset is used instead. The maximum num-
ber is by default 10, but can be changed with the Define-Max-Test-
Values command.

The consequence of this is that for the MDATreq signal, 10 differ-
ent randomly chosen parameter values are generated.

Now, let us check how the test values influence the behavior of the
system during state space exploration.

6. Start the Navigator by clicking on the Navigator button in the Ex-
plore button module.

7. Double-click on the down node 4 times (until there is more than one
alternative down node).

You should now have a choice between 11 different down nodes
that each one represents an input from the environment to the SDL
system. If you check the inputs more carefully, you will see that
these 11 inputs correspond to the test values defined for the signals
ICONreq and MDATreq.

This is the way the test values have an impact on the state space ex-
ploration. Whenever a signal can be sent from the environment to
the system, the Validator uses the test values defined for the signal
to determine what parameters to use when sending the signal.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 223

Chapter 5 Tutorial: The SDL Validator
Changing the Test Values Manually
Now, we will use the other commands in the Test Values button module
to manually change the test values.

1. Click on the Top button in the Explore module to return to the start
state in the state space.

First we will change the test values for integer to only test the values
1 and 99.

2. Click on the Clear Value button, select the integer type in the dialog
and give the value ‘-’ (a dash) in the value dialog. Dash indicates
that we would like to remove all test values currently defined for the
sort.

Note that the Validator tries to recompute test values for various
sorts and signals when you have changed the test values for integer.
Since integer is used in a number of other sorts and signals, the Val-
idator is now unable to compute test values for these sorts and sig-
nals.

3. Check the signal definitions that now is used by clicking on the List
Signal button. The current signal definitions should now be:

ICONreq
IDISreq

Since there are no test values for integer, only the signals that does
not contain integer parameters are listed. In this case this means that
only ICONreq and IDISreq would have been sent to the system from
the environment if you would start an exploration.

4. Click on the Def Value button, select integer in the sort dialog and
give the value 1 in the value dialog.

5. Click on the Def Value button once more. Select integer in the sort
dialog again, but this time give the value 99 in the value dialog.

6. Click on the List Signal button to check the signal definitions and
make sure that the signals with integer parameters are once again on
the list. This time with the test values 1 and 99.
224 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 So Far...
ICONreq
IDATreq(1)
IDATreq(99)
IDISreq
MDATreq((. AK, zero, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. DR, one, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, zero, 1 .))
MDATreq((. AK, one, 99 .))
MDATreq((. AK, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. CR, one, 1 .))

You have now explored some on the most frequently used test value
features in the Validator. There are also possibilities to set test values
for specific parameters and to enumerate all signal definitions manual-
ly. You can find more information about this in the section “Defining
Signals from the Environment” on page 2375 in chapter 54, Validating
a System, in the User’s Manual.

Exiting the Validator
To exit the Validator follow the same steps as before:

1. Select Exit from the File menu.

2. Choose Yes when asked whether you want to save the new options
or not. To select Yes in this dialog implies that commands that rec-
reates your new test value definitions will be saved in the file
.valinit (on UNIX) or valinit.com (in Windows).

So Far...
By practicing this and the previous tutorials, you have learned the basics
of the SDL suite and we hope you have enjoyed the “tour”. The exam-
ples you have been practising on, the DemonGame and Inres systems,
are however rather simple. To deepen your knowledge about the SDL
suite components, you may practise on a number of exercises that illus-
trate the advantages of SDL-92 when adopting an object-oriented de-
sign methodology. These exercises are described in chapter 6, Tutorial:
Applying SDL-92 to the DemonGame.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 225

Chapter 5 Tutorial: The SDL Validator
226 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

	5 Tutorial: The SDL Validator
	Purpose of This Tutorial
	Generating and Starting a Validator
	What You Will Learn
	Quick Start of a Validator
	Basics of a Validator

	Navigating in a Behavior Tree
	What You Will Learn
	Setting Up the Exploration
	Using the Navigator

	More Tracing and Viewing Possibilities
	What You Will Learn
	Using the View Commands
	Using MSC Trace
	Going to a State Using Path Commands

	Validating an SDL System
	What You Will Learn
	Performing a Bit State Exploration
	Examining Reports
	Exploring a Larger State Space
	Restricting the State Space
	Checking the Validation Coverage
	Going to a State Using User-Defined Rules
	Performing a Random Walk

	Verifying a Message Sequence Chart
	What You Will Learn
	Verifying a System Level MSC
	Exiting the Validator UI

	Using Test Values
	What You Will Learn
	Using the Automatic Test Value Generation
	Changing the Test Values Manually
	Exiting the Validator

	So Far...

