Chapter

5

July 2003

Tutorial: The SDL
Validator

The SDL Validator isthetool that you usefor validating the behav-
ior of your SDL systems, using state space exploration techniques.
In this chapter, you will practice“ hands-on” on the DemonGame

system.

Tobeproperly assimilated, thistutorial thereforeassumesthat you
have gone through the exercisesthat are availablein chapter 3, Tu-
torial: The Editors and the Analyzer aswell as chapter 4, Tutorial:
The SDL Simulator.

In order tolearn how to usethe Validator, read through thisentire
chapter. Asyou read, you should perform the exer cises on your
computer system asthey are described.

Telelogic Tau 4.5 SDL Suite Getting Started 187

Chapter 5 Tutorial: The SDL Validator

Purpose of This Tutorial

188

The purpose of thistutorial isto make you familiar with the essential
validation functionality in the SDL suite. With validation we mean ex-
ploring the state space of an SDL system with powerful methods and
tools that will find virtually any kind of possible run-time errors that
may be difficult to find with regular simulation and debugging tech-
niques.

Thistutoria isdesigned as a guided tour through the SDL suite, where
anumber of hands-on exercises should be performed on your computer
as you read this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not atutorial on SDL.

It is assumed that you have performed the exercisesin chapter 3, Tuto-
rial: The Editors and the Analyzer aswell as chapter 4, Tutorial: The
SDL Smulator before starting with the tutorial on the Validator.

Note: C compiler

Y ou must have a C compiler installed on your computer system in
order to validate an SDL system. Make sure you know what C com-
piler(s) you have access to before starting this tutorial.

Note: Platform differences

Thistutorial, and all tutorials that are possible to run on both the
UNIX and Windows platform, are described in away common to
both platforms. In case there are differences between the platforms,
thisisindicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shotswill only be shown for one of the platforms,
provided they contain the sameinformation for both platforms. This
meansthat the layout and appear ance of screen shots may differ
dlightly from what you see when running the SDL suitein your en-
vironment. Only if a screen shot differsin an important aspect be-

tween the platforms will two separate screen shots be shown.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Generating and Starting a Validator

Generating and Starting a Validator

In addition to simulating a system, it isalso possible to validate the sys-
tem using the SDL Validator. A validator can be used to automatically
find errors and inconsistencies in a system, or to verify the system
against requirements.

Inthe sameway asfor asimulator, you must generate an executable val-
idator and start it with a suitable user interface.

Note:

In order to generate avalidator that behaves as stated in the exercis-
es, you should use the SDL diagrams that are included in the Telel-
ogic Tau distribution instead of your own diagrams. To do this:

e On UNIX: Copy dl filesfrom the directory
Stelelogic/sdt/examples/demongame
to your work directory -~/demongame.

¢ In Windows: Copy al files from the directory
C:\Telelogic\SDL TTCN Suite4.5\sdt\examples\de-
mongame
to your work directory
C:\Telelogic\SDL_ TTCN Suite4.5\work\demongame.

If you generate avalidator from the diagrams that you have created
yourself, the scheduling of processes (i.e. the execution order) may
differ.

If you choose to copy the distribution diagrams, you must then re-
open the system file demongame.sdt from the Organizer.

What You Will Learn

» Toquickly generate and start an executable validator

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 189

Chapter 5 Tutorial: The SDL Validator

190

Quick Start of a Validator

A validator can be generated and started in the same way as described
earlier for the simulator, i.e., by using the Make dialog and the Tools
menu in the Organizer. However, we will now show a quicker way.

1. Make sure the system diagram icon is selected in the Organizer.

2. Click the Validate quick button. The following thingswill now hap-
pen, in rapid succession:

An executable validator is generated. M essages similar to when
generating a simulator are displayed in the Status Bar, ending
with“Analyzer done.” Thisisthe sameaction asmanually using
the Make dialog and selecting avalidator kernel. If you like, you
can verify that avalidator kernel has been used by looking at the
tail of the Organizer log.

A graphical user interface to the validator is started. The status
bar of the Organizer will read “Validator Ul started.” Thisisthe
same action as manually selecting Validator Ul from the Tools
menu.

The generated validator is started. The Validator Ul shows the
message “Welcome to SDL VALIDATOR.” Thisisthe same
action as manually using the Open quick button and selecting
the executable validator (named demongame xxx.val (on
UNIX), Or demongame_xxx.exe (in Windows), wherethe xxx
suffix is platform or kernel/compiler specific).

Note:

If you receive errors from the Make process (in the Organizer Log
window) or if no Validator is started, do as follows:

Open the Make dialog and change to a Validation kernel reflect-
ing the C compiler used on your computer system, e.g.
gce-Validation or Microsoft Validation.

Click the Full Make button and check that no errors where re-
ported.

Click the Validate quick button again. A Vaidator should now
be started as described above.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Generating and Starting a Validator

The Validator Ul looks like this:

g SDL Validator Ul - DemonGame_vlb_exe [_ (O] x|
File Wiew Buttons Log Commands Options] Options2 Autolink] Autolink2 Help
el il
M EXPLORE Group | =] =]
Sere | | e b e on i
Exhaustive | Tree Searchl VErify M3C | Command : |
Top | up | navigator |
Bottom | Down | Break |
[~ WIEW Graup |
[~ TEST wALUES Group | i _>|_|
~l|[command ;|

4

Figure 129: The main window of the Validator Ul

Asyou can see, the graphical user interface of avalidator isvery similar
to asimulator GUI, which you have learned to use in the previous exer-
cises. However, the button modules to the left are different and afew

extramenus are available.

A validator contains the same type of monitor system as asimulator.
The only difference is the set of available commands.

When avalidator isstarted, the static processinstancesin the system are
created (in this case Main and Demon), but their initial transitions are
not executed. The process in turn to be executed is the Main process.

Y ou can check this by viewing the process ready queue:

1. Locate the button module View in the left part of the window, and
click the Ready Q button. Thefirst entry in theready queueisMain,
waiting to execute its start transition.

— If the View module appearsto be empty, you have to click the
toggle button to the left of the modul€e’ s name. The button mod-
uleisthen expanded. Y ou may collapse and expand any button
module by using these toggle buttons:

July 2003 Telelogic Tau 4.5 SDL Suite Getting Started

191

Chapter 5

Tutorial: The SDL Validator

192

2.

Expand/
collapse —p»| 1l VIEW Group |
button

Figure 130: A collapsed button module

— The buttons in the View modul e execute the same type of com-
mands as those in the Simulator Ul.

If required, resize the Validator Ul window so that all button mod-
ules are visible. Y ou may also reduce the width of the text area. In
the exercises to come, you will have a number of windows open at
the same time.

Basics of a Validator

Before you start working with the validator exercises, you should have
an understanding about the basic concepts of the SDL Validator.

When examining an SDL system using the validator, the SDL sys-
tem is represented by a structure called abehavior tree. In thistree
structure, anode representsastate of the complete SDL system. The
collection of all such system statesisknown asthe state space of the
system.

By moving around in the behavior tree, you can explore the behav-
ior of the SDL system and examine each system state that isencoun-
tered. Thisiscalled state space exploration, and it can be performed
either manually or automatically.

The size and structure of the behavior tree is determined by a num-
ber of state space optionsin the validator. These options affect the
number of system statesgenerated for atransitioninan SDL process
graph, and the number of possible branches from a state in the be-
havior tree.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Navigating in a Behavior Tree

Navigating in a Behavior Tree

July 2003

Inthisfirst exercise, wewill explore the state space of the Demongame
system by manually navigating in the behavior tree. The validator will
then behave in away similar to when running a simulator. However,
there are also important differences, which will be pointed out.

By default, thevalidator is set up in away that resultsin a state space as
small as possible. In this set-up, atransition between two statesin the
behavior tree always corresponds to a complete transition in the SDL
process graphs. Also, the number of possible branches from a state is
limited to a minimum.

What You Will Learn

» To usethe Navigator tool
* Toget printed trace and GR trace

Setting Up the Exploration

When interactively exploring the behavior tree, avalidator tool called
the Navigator is used.

1. Start the Navigator by clicking the Navigator button in the Explore
module. The Navigator window is opened:

¥s Navigator H=]
X% = 218 2]

No up node

Next 1:

Transition START
Pld :Main:1
State : start state

|»

Figure 131: The Navigator tool

Teldlogic Tau 4.5 SDL Suite Getting Started 193

Chapter 5 Tutorial: The SDL Validator

194

The Navigator shows part of the behavior tree around the current
system state. In general, the upper box represents the behavior tree
transition leading to the current state, i.e., thetransition that just has
been executed. The boxes below represent the possible tree transi-
tions from the current state. They are labelled Next 1, Next 2, etc.
and have not yet been executed.

Since the system now isin its start state, there is no up node. The
only next node is the start transition of Main.

. Tobeableto seetheprinted tracefamiliar from simulation, openthe

Command window from the View menu. (Thetraceisnot printedin
the main window of the validator.)

. To switch on GR trace of SDL symbols, select Toggle SDL Trace

from the Commands menu in the Validator window; SDL traceis
now enabled. However, an SDL Editor will not be opened until the
first transition is executed.

Using the Navigator

In the Navigator, execute the next transition by double-clicking on
the Next 1 node. The following happens, in order:

— Inthe Navigator, the Up 1 node shows the just executed transi-
tion, while the Next 1 node shows the next possible transition,
the start transition of Demon. Y ou have now moved down to a
system state in the next level of the behavior tree.

Up 1

Transition START
Pld :Main:1
State : start state

I

Mext 1

Transition START
Pid :Demon:1

State : start state

Figure 132: Thelast and next transition

— An SDL Editor isopened and the symbolsthat were just execut-
ed becomes selected. Note the difference compared to the sim-
ulator, where the SDL Editor instead selects the next symbol to
be executed.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Navigating in a Behavior Tree

July 2003

2.

— The Command window showsthe printed trace for the executed
transition, the start transition of Main (you may haveto scroll or
resize the window to see the trace):

% Print- Trace 1 Command

44k Transition START
FId = Main:d

* State @ start state
4okt NEXTSTATE Game_OFf

Figure 133: The printed trace for the executed transition

If needed, move and resize al opened windows to make them com-
pletely visible and still fit on the screen together.

Double-click the Next 1 node to execute the next transition. The
start transition of Demon istraced in the Command window and in
the SDL Editor.

At this stage, neither of the two active processes can continue with-
out signal input: Main awaitsthe signal Newgame from the environ-
ment, and Demon awaitsthe sending of thetimer signal T. Theseare
the two transitions from the current state now shown in the Naviga-
tor asNext 1 and Next 2. Asyou can see, the transitions in the boxes
are described by the same type of information asin a printed trace.

Up 1

Transition START
Pid :Demon:l
State : start state

MWext 1. Mext 2

OUTPUT from EMY. TMER signal sent.
Signal Mewgarme | | Timer T
Receiver : Main:1 Receiver: Demon;1

Figure 134: Transition descriptionsin the Navigator

This means that the validator gives information of all possible tran-
sitions from the current system state, even though they have not
been executed yet. (This information cannot easily be obtained
when running a simulator.)

Teldlogic Tau 4.5 SDL Suite Getting Started 195

Chapter 5 Tutorial: The SDL Validator

196

4. Sendthetimer signal by double-clicking the Next 2 node. The Com-

mand window tells usthat the timer signal is sent and the Navigator
shows that the next transition is the input of the timer T.

Execute the next transition by double-clicking the Next 1 node. This
iswhere the dynamic error in the Demongame system occurs, as ex-
plained in the simulator tutorial earlier (see“ Dynamic Errors’” on
page 153 in chapter 4, Tutorial: The SDL Smulator). Instead of
showing the next transition, the Navigator displays the error mes-
sage in the next box.

Mo down node

Errorin SDL Qutput of signal
Bump

Mo possible receiver found
Sender: Demon:1

Figure 135: The dynamic error

— Theerror message can also befound in thetail of the Command
window, if you scroll the Print-Trace module.

% Print- Trace 1 Command

SET on timer T at 1.0088
NEXTSTATE Generate

Error in SDL Output of signal Bump
Ho possible receiver found

Sender : Demon:l

Figure 136: Thetail of the Print-Trace module

We cannot go further down this branch of the behavior tree, since a
reported error by default truncates the tree at the current state. In-
stead, we will back up to the state where we could select the output
of Newgame.

Double-click the Up 1 node to go back to the previous state. Repesat
thisaction againto go to the statewe werein after step 3 above. This
way of backing up in the execution is not possible when running a
simulator, as you may have noticed when running the Simulator tu-
torial.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Navigating in a Behavior Tree

Y ou should also note that the Next 2 node is marked with three as-
terisks “***” Thisis used to indicate that thisis the transition we
have been backing up through:

Up 1

Transition START

Pld :Demon:1
State : start state
I l A
MNext 1: R Iext 21
QUTPUT from EMNY. TIMER signal sent
Signal : Mewgame | | Timer T
Receiver : Main:1 Receiver : Demon:1

Three
asterisks

Figure 137: Marking a transition that has been backed through

7. Executethe Next 1 transition instead. The printed trace shows that
the signal Newgame was sent from the environment. The Main pro-
cessisready to receivethe signal. Note that you do not have to send
the signal yourself; thisistaken care of automatically by the valida-

tor.

8. Execute the next transition. The printed trace and the SDL trace
show that Main now isin the state Game_On. The Navigator dis-
plays the start transition of the newly created Game process.

9. Executethe start transition of Game. The Navigator will now show
the different signal inputs that are required to continue execution:
Endgame, Probe, Result, and the timer T.

Up 1

Transition START

Pld : Game:1
State : start state
I
[I I 1
Mext 1. Mext 2: Wext 3 Mext
QOUTPUT from ENY. | | QUTPUT from ERM. | | QUTPUT from EMY. | | TIMER signal sent
Signal : Endgame Signal : Probe Signal Result Timer T
Receiver : Main:1 Receiver: Game:1 Receiver : Game:1 Receiver : Demon:1

Figure 138: Sgnal inputs required for continued execution

Telelogic Tau 4.5 SDL Suite Getting Started

197

Chapter 5

Tutorial: The SDL Validator

11

198

% 10.

If the number of transitions from a stateislarge, it may be difficult
to see them all in the Navigator when atree structureis used. To
overcome this problem, you can change the display to alist struc-
ture.

Click the Toggle Tree quick-button to see how the list structure
lookslike. Now it is easier to see the possible signals.

[Up 1: Transition START PId : Game:1 State : start state |

Mext 1 QUTPUT from EMNY. Signal : Endgame Feceiver : Main:1 |
Next 2: OUTPUT from ENV. Signal : Probe Receiver : Game:1 |
Mext 3: QUTPUT from ENV. Signal ; Result Receiver : Game:1 |

Mext 4 TIMER signal sent Timer : T Receiver : Demon:1 |

Figure 139: Thelist structure
Change back to the tree structure.

We will not continue further down in the behavior tree in this exer-
cise. Figure 140 on page 199 shows the part of the behavior tree we
have explored so far. The nodes in the figure represent states of the
complete SDL system. Each node lists the active process instances
that have changed since the previous system state, what process
state they are in and the content of their input queues. The arrows
between the nodes represent the possible tree transitions. They are
tagged with anumber and the SDL action that causes the transition.
The arrow numbers are the same numbers as printed in the Next
nodes in the Navigator.

Notethat thisisasomewhat different view of the behavior tree com-
pared to the Navigator. Inthe Navigator, the nodes represent thetree
transitions and the process states are not shown.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Navigating in a Behavior Tree

Node notation:

Process
State
Queue

SDL action

transition

Main
start

Demon
start

start process

1

Main
Game_Off

start process

1

Demon
Generate

output Newgame

output timer T

1
Main Demon
Game_Off Generate
Newgame T
input Newgame L1 input timer T L 1
Main Game Demon
Game_On| start Generate
start process & 1
Game error!
Losing
output 1 2 3 4 output
Newgame butput output timer T
Probe Result
Figure 140: A Demongame behavior tree
July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 199

Chapter 5 Tutorial: The SDL Validator

More Tracing and Viewing Possibilities

Inthisexercise, wewill takealook at some of the additional tracing and
viewing possihilities of the validator.

What You Will Learn

» To print acomplete trace from the start state
* Tousetheview commands

» Tousethe MSC trace facility

» Togoto astate by using the path commands

Using the View Commands

1. Makesureyou are still in the same state as after the last step in the
previous exercise.

To see acomplete printed trace from the start state to the current
state, you can usethe Print-Trace command. As parameter, it takes
the number of levels back to print the trace from.

2. Ontheinput line of the Validator Ul, enter thecommand pr-tr 9
(you can use any large number). Thetraceisprinted in the text area
of the main window. This trace gives an overview of what has hap-
pened in the SDL system so far.

3. The SDL Validator supports the same viewing possihilities as the
SDL Simulator. Click the Timer List button in the View module to
list the active timer set by the Demon process.

4. Examinethe GameP variablein the Main processby first setting the
scope to the Main process (click the Set Scope button and select the
Main process), and then clicking the Variable button and selecting
the GameP variable.

— You may also use the Watch window in the validator to contin-
uously monitor the values of variables.

200 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

More Tracing and Viewing Possibilities

July 2003

Using MSC Trace

In addition to textua and graphical traces, the validator can also per-

form an MSC trace.

1. First, turn off SDL trace by selecting Toggle SDL Trace from the

Commands menu. Then, turn
An MSC Editor is opened, sh

on MSC trace from the same menu.
owing a Message Sequence Chart for

the trace from the start state to the current state.

— You may aso close down the SDL Editor to avoid having too

many windows on-screen

MSC ValidatorTrace

Main

text 'Validator trace
generated by
SDL Validator 4.0’;

Demon

Figure 141: Th

env_0 | | Main_1 | |Demon_2|
Game_O
<) T(1.0000)
< Generatg
Newgame

 Losingy

e current MSC trace

2. When the M SC appears, execute, with a double-click, one of the
signal transitions in the Navigator, e.g. Probe. The message is ap-
pended to the MSC (but it is not yet consumed).

3. Goup afew levelsin the Navigator.

Teldlogic Tau 4.5 SDL Suite Getting Started 201

Chapter 5 Tutorial: The SDL Validator

202

Note how the selection in the M SC Editor changes to reflect the
M SC event corresponding to the current state!

Go down again, but select adifferent path than before, i.e., send one
of the other signals.

Note how the M SC diagram isredrawn to show the new behavior of
the system!

Toggle MSC trace off in the Commands menu. Unless other MSC
diagrams were opened, the M SC Editor is closed.

Going to a State Using Path Commands

Y ou can use the commands Print-Path and Goto-Path to return to a
state where you have been before.

1

Execute the command Print-Path from the input line. The output
represents the path taken in the behavior tree from the start state to
the current state.

Command : print-path
1111130

— Thenumbersin the path are the same as the transition numbers
inthe Navigator, and the arrow numbers shown in Figure 140 on

page 199.
Go up afew levelsin the Navigator.

In the text area, locate the path printed by the Print-Path command
above (you may have to scroll the text area). On UNIX, select the
numbers in the path with the mouse by dragging the mouse to the
end of the line. Make sure you select the final zero.

Intheinput line, enter goto-path and the path printed by the
Print-Path command. On UNIX, paste in the path numbers by posi-
tioning the mouse pointer at the end of the entered text and clicking
the middle mouse button.

Hit <rReturn> toexecutethe command. Y ou now end up inthe pre-
vious state.

— If you make an error while entering the path numbers, you can
clear theinput line by using the <powns> arrow key and try

again.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

Validating an SDL System

July 2003

In the previous exercises, we have navigated manually in the behavior
tree. We have al'so found an error situation by studying the Navigator
and the printed trace in the Command window.

In this exercise, we will show how to find errors and possible problems
by automatically exploring the state space of the Demongame system.
Thisisreferred to as validating an SDL system.

What You Will Learn

To perform an automatic state space exploration

To examine reported errors using the Report Viewer

To change state space and exploration options

To restrict the state space without affecting the behavior
To check the system coverage of an exploration

To use user-defined rules

To perform arandom walk exploration

Performing a Bit State Exploration

Automatic state space exploration can be performed using different al-
gorithms. The algorithm called bit state exploration can be used to effi-
ciently validate reasonably large SDL systems. It uses a data structure

called a hash table to represent the system states that are generated dur-
ing the exploration.

An automatic state space exploration always starts from the current sys-
tem state. Since we want to explore the complete Demongame system,
we must first go back to the start state of the behavior tree.

1. Gotothetop of the tree by clicking the Top button in the Explore
module.

2. Start abit state exploration by clicking the Bit-State button. After a
few seconds, atool called the Report Viewer is opened. We will
soon describe thiswindow; in the meantime, just moveit away from
the main window.

3. For asmall system such as Demongame, the exploration isfinished
almost immediately and some statistics are printed in the text area.
They should look something like:

Teldlogic Tau 4.5 SDL Suite Getting Started 203

Chapter 5 Tutorial: The SDL Validator

204

** Starting bit state exploration **
Search depth : 100
Hash table size : 1000000 bytes

** Bit state exploration statistics *x*

No of reports: 1.

Generated states: 2569.

Truncated paths: 156.

Unique system states: 1887.

Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 3642

Collision risk: 0 %

°

Max depth: 100

Current depth: -1

Min state size: 68

Max state size: 124
Symbol coverage : 100.00

Of the printed information, you should note the following:

Search depth : 100

The search depth limits the exploration; it is the maximum
depth, or level, of the behavior tree. If thislevel isreached dur-
ing the exploration, the current path in the tree is truncated and
the exploration continuesin another branch of thetree. It is pos-
sible to change the search depth by setting an option in the Val-
idator UlI.

No of reports: 1.
The exploration found one error situation. This error will be ex-
amined in the next exercise.

Truncated paths: 156.

The maximum depth was reached 156 times, i.e., there are parts
of the behavior tree that were not explored. Thisisanormal sit-
uation for SDL systems with infinite state spaces. Demongame
is such a system, since the game can go on forever.

Collision risk: 0 %

Therisk for collisions was very small in the hash table that is
used to represent the generated system states. If thisvalueis
greater than zero, the size of the hash table may haveto be in-
creased by setting an option; otherwise, some paths may betrun-
cated by mistake. This situation will not occur in this tutorial.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

July 2003

— Symbol coverage : 100.00
All SDL symbolsin the system were executed during the explo-
ration. If thesymbol coverageisnot 100%, the validation cannot
be considered finished. This situation will occur in alater exer-
cise.

Examining Reports

The error situations reported from a state space exploration can be ex-
amined in the Report Viewer. The Report Viewer window displays the
reports in the form of boxes in atree structure.

©% Report Viewer [_ O]
X% =] 218 2]

Number of

reports

Report

type 1 Output

Collapsed —|

box indicator

Figure 142: The Report Viewer

* Thetop box shows how many reports there are (in this case only
one).

» Onthenext level inthereport tree, thereis one box for each type of
report, stating the number of reports of that type.

» Onthenext level, it is possible to see the actua reports. However,
thislevel of the treeis by default collapsed, indicated by the small
triangle icon below the report type boxes.

Teldlogic Tau 4.5 SDL Suite Getting Started 205

Chapter 5 Tutorial: The SDL Validator

206

1. To expand the report, double-click on the report type box Output.

Y ouwill now see abox reporting the error we have found manually
earlier. In addition, the tree depth of the error situation is shown.

Error in 5DL Qutput
of signal Bump

Mo possible
receiver found
Sender: Demon:1
Depth: 4

Figure 143: An expanded report

If you look in the Navigator and Command windows, you can see
that the validator is still in the start state of the system, even though
astate space expl oration has been performed. Wewill now go to the
state where the error has occurred.

Double-click the report box in the Report Viewer. The following
things will now happen:

— The printed trace of the error situation is displayed in the text
area of the Validator Ul and in the Command window.

— The Navigator movesto the error state and displays the error.

— AnMSC Editor is opened, showing the M SC traceto the current
state. Y ou can see that the signal Bump was not received by any
process, since the Game process has not yet been created. Y ou
should move the M SC Editor window so that it does not cover
the other windows.

Once you have used the Report Viewer to go to areported situation,
you can easily move up and down the path to this state. Simply use
the Up and Down buttons in the Explore module, instead of double-
clicking anode in the Navigator:

Move up two steps by using the Up button. Of the two transitions
possiblefrom this state, the onethat is part of the path leading to the
error isindicated by three asterisks “***” (see Figure 137 on page
197). Thisisthe transition chosen when using the Down button.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

July 2003

4. Move up to the top of thetree (click the Top button in the Explore

module). Move down again to the error by using the Down button
repeatedly.

Note that you do not have to chose which way to go when the tree
branches. The path to the error is remembered by the validator until
you manually chose another transition.

Exploring a Larger State Space

Wewill now run amore advanced bit state exploration, with adifferent
setting of the state space options. Thiswill make the state space much
larger, so that more error situations can be found.

1
2.

Go back to the top of the behavior tree (use the Top button).

In the Optionsl menu, select Advanced. This sets a number of the
available state space options in one step, as you can see by the com-
mands executed in the text area:

Command : def-sched all
Command : def-prio 1 1 1 1 1

Command : def-max-input-port 2
Max input port length is set to 2.

Command : def-rep-log maxg off
No log for MaxQueueLength reports

Note that the Navigator now shows two possible transitions from
the start state; thisis an immediate effect of the larger state space.

In addition, we will increase the search depth of the exploration
from 100 (the default) to 300. From the Options2 menu, select Bit-
Sate: Depth. In the dialog, enter 300 and click OK.

Prompt
tdax depth :
integer > 0 oK |
J300

Cancel |

Figure 144: Specifying Depth = 300

Teldlogic Tau 4.5 SDL Suite Getting Started 207

Chapter 5 Tutorial: The SDL Validator

208

Since the behavior tree becomes much larger with these option set-
tings, the exploration will take longer to finish. We will therefore
show how to stop the exploration manually.

Start anew bit state exploration. In thetext area, a status messageis
printed every 20,000 transitionsthat are executed. Stop the explora-
tion after one of the first status messages by pushing the Break but-
ton in the Explore module. The text area should now display some-
thing like this:

x Break at user input ***

** Bit state exploration statistics **
No of reports: 2.

Generated states: 50000.

Truncated paths: 1250.

Unique system states: 21435.

Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 41557
Collision risk: 0 %

Max depth: 300

Current depth: 235

Min state size: 68

Max state size: 168

Symbol coverage : 100.00

Note:

If the exploration finishes by itself before you have had a chance to
stop it manually, redo this exercise from step 1. on page 207 but in-
crease the search depth even more, e.g. 400 or 500.

Note thefollowing differencesin the printed information compared
to the previous exploration:

No of reports: 2.

The exploration found an additional error situation. Thisisan
effect of more transitions being able to execute from each state
in the behavior tree.

Max depth: 300

Current depth: <number>

The exploration was at the printed depth in the behavior tree at
the moment it was stopped. However, sincethe exploration uses
adepth-first algorithm, the maximum depth of 300 was reached
at an earlier stage. The exploration may be continued from the

current depth if you wish to explore the remaining parts of the

behavior tree.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

5. Inthe Report Viewer, open the two report type boxes to see both re-
ports with a double-click on each. The Report Viewer window
should now look something like:

Errorin SOL Cutput | | Warning in SDL
of signal Bump Create: Processtype
Mo possible Game
receiver found Unsuccessful
Sender: Deman:1 create. Mumber of
Depth: 36 instances has
reached maximum
number.
Depth: 24

Figure 145: The two reports as displayed in the window

6. For now, just note on which depth each of the reported situations oc-
curred; do not double-click any of the reports. (The depths may be
different from the ones shown in the figure.)

7. Continue the exploration by clicking the Bit-State button again. A
dialog is opened, asking if you would like to continue the interrupt-
ed exploration or restart it from the beginning.

Select
Bit-state exploration already started :
Contirue ;l
Festart

ak I Sart | Cancel |

Figure 146: Continuing the exploration

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 209

Chapter 5 Tutorial: The SDL Validator

210

8. Inthediaog, select Continueand click OK. Wait for the exploration
to finish by itself.

9. Inthe Report Viewer, open the two reports again. Note that the
depth values have changed. Thisis because only one occurrence of
each report is printed; the one found at the lowest depth so far.

10. Go to the state where an unsuccessful create of the Game process
was reported (double-click the Create report).

Error in SOL Qutput | | WWarning in SDL
of signal Bump Create; Processtype
o possible Game
receiver found UUnsuccessful
Sender: Demon:1 create. Mumber of
Depth: 4 instances has
reached maximum
number.
Depth: 7

Figure 147: The report about an unsuccessful process create
11. To see what caused the unsuccessful create, look at the MSC trace.

At the receipt of the last Newgame signal, the Main process at-
temptsto create aGame process. However, the already active Game
process has not yet consumed the previous GameOver signal, and
has therefore not been terminated. Since you cannot have more than
one instance of the Game process in the Demongame system, the
process create could not be executed!

Restricting the State Space

The Validator makesit possibleto limit the state spacein several differ-
ent ways. Wewill now explore one of these methods that in many cases
isvery efficient. Thisisdone by using the Define-Variable-M ode com-
mand.

This command is used to instruct the VValidator to ignore certain vari-
ables when matching states during the state space exploration. The

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

July 2003

mode can for each variable be set to either “ Skip” or “Compare”. The
implication of setting the mode to “Skip” is that the search may be
pruned even if anew state is encountered during the search. This hap-
pensif the only difference between the new state and a previously vis-
ited stateisthat the values of some of the skipped variables are different.

Wewill now apply thisto our DemonGame system. The variable Count
in the Game process keeps track of the current score for the game, and
the value of this variable does not have any real impact on the behavior
of the system. So, we will now instruct the validator to ignore this vari-
able when performing a search.

1. Gotothetop of the tree by clicking on the Top button.

2. Enterthecommand define-variable-mode inthecommandline
in the Validator Ul, select the Game processin the first dialog, the
Count variablein the second dialog and Skip in thelast dialog. Y ou
have now instructed the Validator to ignore the Count variable.

3. Start abit state exploration by clicking on the Bit-Sate button. (Se-
lect to Restart the exploration if adialog is opened.)

4. When the search stops compare it with the previous exploration.
The only difference between the two explorationsisthat the second
oneignoresthe Count variable. However, whilethefirst exploration
took along time to finish, the second one only took afew seconds!
The printed statistics show very small numbersin comparison.

Thelessontolearn fromthisisthat it in many casesit ispossibleto dras-
tically reduce the time needed for explorations by checking the vari-
ablesin the system. Look for variables that do not have any impact on
the behavior (i.e. that does not influence decision statements or the ex-
pression used in an “output to” statement). Also look for variables that
do not change their value during the exploration. This can for example
be arrays that are initialized at system start up but then never changes
(or at least not changed in the intended exploration). The modefor these
types of variables should be set to “ Skip”.

Teldlogic Tau 4.5 SDL Suite Getting Started 211

Chapter 5 Tutorial: The SDL Validator

212

X

Checking the Validation Coverage

If the symbol coverage after an automatic state space explorationisless
than 100%, the Coverage Viewer can be used to check what parts of the
system that have not been executed. To attain a symbol coverage less
than 100% for the Demongame system, we will set up the exploration
in aspecia way.

1
2.

Go to the top of the tree.

First, we need to restore the smaller, default state space. Select De-
fault from the Options1 menu. Notethat the Navigator changes back
to display only a single possible transition from the top node.

To avoid reaching al system states, we will reduce the search depth
of the exploration from 100 to just 10. Use the Bit-State: Depth
menu choi ce from the Options2 menu and specify amaximum depth
of 1o0.

Start a bit state exploration. The printed statistics should now in-
form you that the symbol coverage is about 82%.

— |If the symbol coverage still is 100%, select Reset from the
Optionsl menu and repeat steps 3 and 4 above.

To find out which parts of the Demongame system that have not
been reached, open the Coverage Viewer from the Commands
menu.

A symbol coverage tree is displayed, showing all symbols which
have not been executed yet.

Change to atransition coverage tree by clicking the Tree Mode
quick-button.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

July 2003

Transition Coverage Tree
Information from:

HMmpsdtval. cow
[]

Winning

Tk

GameOver Probe Result Bump

Figure 148: Thetransition coverage tree

Y ou can now seethat none of the transitions from the state Winning
in the Game process has been executed. To explore this part of the
system in the validator, you can go to the state Winning and start a
new exploration from there. How to do thisis explained in the fol-
lowing exercises.

Going to a State Using User-Defined Rules

To go to aparticular system state, you could use the Navigator to man-
ualy find the state by studying the transition descriptions and the print-
ed trace in the Command window. This can be both tedious and diffi-
cult, especialy for larger systems than Demongame. I nstead, we will
show an easier way: by using a user-defined rule.

When performing state space exploration, the validator checks a num-
ber of predefined rulesin each system state that is reached. It iswhen
such aruleis satisfied that areport is generated.

Teldlogic Tau 4.5 SDL Suite Getting Started 213

Chapter 5 Tutorial: The SDL Validator

214

In this exercise, we will show how to define a new rule to be checked
during state space exploration. The rule will be used to find the state
Winning in the Game process.

1
2.

Make sure you still are at the top of the behavior tree.

Define a new rule by selecting Define Rule from the Commands
menu. In the dialog that appears, enter the rule definition
state(Game:1) =Winning

Prompt

Rule definition :
oKk |
Cancel |

Istate[G ame:1]="inning

Figure 149: Specifying a new rule

This very simple rule says that the state of the process instance
Game:1 must be equal to Winning. By defining the rule, areport
will be generated when a state space exploration reaches a state that
satisfies therule.

Start a bit state exploration. Since we have not changed any of the
options since the last exploration the same statistics will be printed,
with the exception that an additional report is generated.

From the Report Viewer, go to the reported situation where the user-
defined rule was satisfied. Y ou have now reached the first place in
the behavior tree where the Game process is in the state Winning.

We now instruct the validator to use this state as the root of the be-
havior tree. To do this, enter the command define-root 0N thein-
put line and select Current in the dialog.

We can now change options, define a new rule or load an MSC. These
new settingswill then be used in all explorations based on the new root.
Also al list/goto-path commands will use the path from the new root
and the M SC trace will give the trace from the new root.

6.

Before continuing, do not forget to clear the user-defined rule. To
do this, enter the command clear-rule ontheinput line.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Validating an SDL System

In our case we will only clear the rule and start another type of state
space exploration from this state; a random walk.

Performing a Random Walk

Apart from bit state exploration, there is another exploration method
known as randomwalk. A random walk simply explores the behavior
tree by repeatedly choosing arandom path down thetree. Thisismainly
useful for SDL systemswherethe state space can bevery large. But also
for asmall system like Demongame, it can be as effective as other ex-
ploration methods.

1. Start arandom walk exploration from the current state by clicking
the Random Walk button. From the printed statistics, you can see
that the symbol coverage now has become 100%.

2. Load the Coverage Viewer with the new coverage information by
selecting Show Coverage Viewer from the Commands menu.
Changeto transition coverage and display the whole tree. Note that
al transitions have executed alarge number of times. When the ex-
ploration selects arandom path down the tree, there is no mecha-
nism to avoid that already explored paths are explored once more.
Therefore, the sametransition may be executed any number of times

3. Exit the Coverage Viewer from the File menu.

4. Reset the system by selecting Reset from the Optionsl menu. You
are now back at the top of the tree, and the root of thetreeisreset to
the original root, the start state of the system.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 215

Chapter 5 Tutorial: The SDL Validator

Verifying a Message Sequence Chart

216

Another main areaof usefor avalidator isto verify aMessage Sequence
Chart. To verify an MSC isto check if thereis apossible execution path
for the SDL system that satisfiesthe MSC. Thisis done by loading the
MSC and performing a state space exploration set up in away suitable
for verifying MSCs.

What You Will Learn
* Toverifyan MSC

Verifying a System Level MSC

In thisexercise, we will verify one M SC made on the system level, i.e.,
an M SC that only defines signals to and from the environment. The
name of theMSCfileis systemLevel.msc andislocated in the same
directory astheremainingfilesfor the DemonGame example. The M SC
is shown in the figure below.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Verifying a M essage Sequence Chart

MSC SystemLevel
Environment Demongame

Newgame
Probe

win |
Result

Score

@

Endgame

Figure 150: A systemlevel MSC

1. Reset the system. Thistime do it by choosing Restart in the File
menu. Choose “No” if you are asked to save options. The Restart
command will actually terminate the running Validator and start it
again.

2. Start an MSC verification by clicking the Verify MSC button. A file
selection dialog is opened, in which you select the MSC to verify.

3. Select systemLevel.msc andclick OK. A state space exploration
is now started, which is guided by the loaded M SC.

In the printed statistics, note that the exploration is completed with-
out any truncated paths. Thisis because the loaded M SC restricts
the size of the behavior tree; only the parts dealing with the events
in the M SC are executed. The maximum depth of it is not more than
20.

Note the line that tells if the MSC was verified or violated:

**x MSC SystemLevel verified *=*

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 217

Chapter 5 Tutorial: The SDL Validator

In this casethe M SC was verified, i.e., the behavior described in the
MSC was indeed possible. In the Report VViewer, however, one (or
two) of the reportsisaviolation of the loaded M SC, whilethe other
oneisaverification of theM SC. The exploration may very well find
states that violate the MSC,; it is the existence of states that verify
the M SC that determines the result of the verification.

2 MSCYiolation
[1

[1 MSCVerification |

M3SC Systemlevel
vialated

Event ™ QUTPUT
of Bump. Receiver:
null

Depth: 4

MSC Systemlevel

violated

Event: * QUTPUT
of Lose. Receiver:

eny

Depth: 7

MIC SystemLevel
verified
Depth: 14

Figure 151: Violations and verifications of the MSC

4. Gotothestate wherethe M SC wasverified. The printed tracein the
Command window shows that the Main process has received the
Endgame signal, and sent the GameOver signal to the Game pro-

Cess:
* OUTPUT of GameOver. Receiver: Game:1l
* Signal GameOver received by Game:1

5. Takealook at the M SC trace and compare it with the loaded MSC
in Figure 150 on page 217. Note that the |loaded M SC only defines
signals to and from the environment and therefore is less detailed
than the M SC trace. An MSC trace in the validator is always made
on the process level.

218 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Verifying a M essage Sequence Chart

July 2003

MSC ValidatorTrace

Validator trace
generated by
SDL Validator 4.0

Main Demon
env_0 | | Main_3 | |Demon_4|
T(1.0000)
Newgame
Bump
T(1.0000
Probe
Win
Result
Score
@
Endgame
Game_6
GameOver

Figure 152: The MSC trace

Thetracein the figure does not show the condition symbols that indicates the state

of the processes.

Telelogic Tau 4.5 SDL Suite Getting Started

219

Chapter 5

Tutorial: The SDL Validator

Exiting the Validator Ul

The first part of the validator tutorial is now finished. Close the valida-
tor windows in the following way:

220

w 1

To closethe Navigator and the Report Viewer, click the Close quick
button in these windows.

To close the Command window, select Close from the File menu.

Exit the Validator Ul from the File menu. Y ou may be asked in a
dia og whether to save changesto the VValidator options.

Select

Save options [yves] :

IYes

oK |

Figure 153: Saving changed options

If you select Yes and click OK, the option settings are saved in afile
caled .valinit (on UNIX),0Or valinit.com (in Windows). This
fileisread each time the Validator Ul is started from the same di-
rectory, or when the validator isrestarted or reset from the Validator
Ul. You should select No and click OK.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Using Test Values

Using Test Values

July 2003

Inthisfinal exercise we will explore the test value feature in the Vali-

dator. Thisfeatureis used to control the way the environment interacts
with the system during state space exploration. In practise, the test val-
uesdefine what signalswill be sent from the environment to the system,
including the exact values of their parameters.

Inthispart of the Validator tutorial wewill useanother SDL system, the
Inres system.

1. Copy the Inres system from the installation to a working directory
of your own. Copy all files from the directory
Stelelogic/sdt/examples/inres (on UNIX), or
C:\Telelogic\SDL_TTCN Suite4.5\sdt\examples\inres (in
Windows).

What You Will Learn

» To examine and use the automatically generated test values
e Tomanualy change the test values

Using the Automatic Test Value Generation

When the Validator is started, test values for anumber of SDL sortsare
automatically generated. For example, al integer parameters will have
thetest values-55, 0 or 55. Wewill now take alook at the automatically
generated test values for the Inres system.

1. Open the Inres system file from the Organizer’s File menu. If any
part of the existing DemonGame system needs saving, you are first
prompted to do so before the Open file dialog appears. Locate the
file inres.sdt that you have copied and open it.

2. Generateand start aValidator for the system by clicking on the Val-
idate quick button; see “ Quick Start of aValidator” on page 190 for
moreinformation. If you are asked in adialog whether to start anew
Validator Ul or use an existing one, select the existing validator in
thelist and click OK.

3. Expandthe Test Values button moduleintheValidator Ul and make
the window bigger so you can see al the buttons.

The button module contains four rows of buttons. The top three but-
tons List Value, Def Value And Clear Value make it possible to de-
fine test values for each sort (datatype) in the SDL system. The

Teldlogic Tau 4.5 SDL Suite Getting Started 221

Chapter 5 Tutorial: The SDL Validator

222

middle row with the buttons List Par, Def Par and Clear Par han-
dlestest valuesfor specific signal parameters. The bottom rows han-
dlestest values for entire signals.

Click on the List Value button to see what default test values have
been generated. The following values should be listed:

Sort integer:
0

-55

55

Sort Sequencenumber:
zZero
one

Sort IPDUType:

Asyou can see, there weretest val ues defined for the predefined sort
integer and for two system specific enumerated sorts Sequencenum-
ber and IPDUType. For enumerated types, al the valueswill by de-
fault be used as test valuesiif there are 10 or less values. Note that
only sorts that appear on parameters to signals to or from the envi-
ronment are listed.

Click ontheList Signal button to seewhat signalswill be sent to the
system based on the test values for the sorts.

Y ou should now see alist of signals similar to the following. Note
that there might be differences in the parameters to the MDATreq
signal since thisis computed using a random function that is de-
pending on the compiler used.

ICONreq
IDATreq(0)
IDATreq(-55)
IDATreq(55)
IDISreq
MDATreq((. CR, zero, -55 .))
((. CR, zero, -55 .))
((. CC, one, 55 .)
MDATreq((. AK, one, 55 .)
((
((
((

MDATreq((. CR, one, 55 .)
MDATreq((. DT, one, -55 .))
MDATreq((. CC, one, 0 .))

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Using Test Values

July 2003

MDATreq((. CC, one, -55 .))
MDATreq((. AK, one, 55 .))
MDATreq((. DR, one, 0 .))

The signalsICONreq and IDISreq have no parameters so there will
only beonesignal definition for each of these signals. The IDATreq
signal has one integer parameter, and as you can see there will be
threetest valuesfor thissignal, onefor each of thetest valuesfor the
integer sort.

The MDATreq signal takesaparameter that isastructurewith three
fields: one IPDUType, one Sequencenumber and one integer.
Whenever the Validator finds astructure, it triesto generate test val-
uesfor thesort based on al combination of test valuesfor eachfield.
However, if the number of test valuesislarger than amaximum val-
ue, arandomly chosen subset is used instead. The maximum num-
ber is by default 10, but can be changed with the Define-Max-Test-
Values command.

The consequence of thisisthat for the MDATreq signal, 10 differ-
ent randomly chosen parameter values are generated.

Now, let us check how the test values influence the behavior of the
system during state space exploration.

. Start the Navigator by clicking on the Navigator button in the Ex-

plore button module.

Double-click on the down node 4 times (until thereis more than one
alternative down node).

Y ou should now have a choice between 11 different down nodes
that each one represents an input from the environment to the SDL
system. If you check the inputs more carefully, you will see that
these 11 inputs correspond to the test values defined for the signals
ICONreq and MDATreq.

Thisistheway the test values have an impact on the state space ex-
ploration. Whenever a signal can be sent from the environment to
the system, the Validator uses the test values defined for the signal
to determine what parameters to use when sending the signal .

Teldlogic Tau 4.5 SDL Suite Getting Started 223

Chapter 5 Tutorial: The SDL Validator

224

Changing the Test Values Manually

Now, wewill usethe other commandsin the Test Values button module
to manually change the test values.

1

Click on the Top button in the Explore module to return to the start
state in the state space.

First wewill changethetest valuesfor integer to only test the values
1 and 99.

Click onthe Clear Value button, select theinteger typein the dialog
and givethe value ‘-’ (adash) in the value dialog. Dash indicates
that wewould liketo removeall test values currently defined for the
sort.

Note that the Validator tries to recompute test values for various
sorts and signals when you have changed the test valuesfor integer.
Sinceinteger isused in anumber of other sortsand signals, the Val-
idator is now unable to compute test values for these sorts and sig-
nals.

Check the signal definitionsthat now is used by clicking on the List
Signal button. The current signal definitions should now be:

ICONreq
IDISreq

Sincethere are no test values for integer, only the signals that does
not contain integer parametersarelisted. In this casethis meansthat
only ICONreqand I DI Sreq would have been sent to the system from
the environment if you would start an exploration.

Click on the Def Value button, select integer in the sort dialog and
givethevalue 1 inthevalue dialog.

Click on the Def Value button once more. Select integer in the sort
dialog again, but thistime give the value 99 inthe value diaog.

Click on the List Sgnal button to check the signal definitions and
make surethat the signal swith integer parameters are once again on
thelist. Thistime with the test values 1 and 99.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

So Far...

ICONreq

IDATreq (1)

IDATreq(99)

IDISreq

MDATreq((. AK, zero, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. DR, one, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, zero, 1 .))
MDATreq((. AK, one, 99 .))
MDATreq((. AK, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. CR, one, 1 .))

Y ou have now explored some on the most frequently used test value
featuresin the Vaidator. There are aso possibilities to set test values
for specific parameters and to enumerate all signal definitions manual-
ly. You can find more information about this in the section “Defining
Signals from the Environment” on page 2375 in chapter 54, Validating
a System, in the User’s Manual.

Exiting the Validator
To exit the Validator follow the same steps as before:

1.
2.

Select Exit from the File menu.

Choose Yes when asked whether you want to save the new options
or not. To select Yesin this dialog implies that commands that rec-
reates your new test value definitions will be saved in thefile
.valinit (on UNIX)Or valinit.com (in Windows).

So Far...

July 2003

By practicing thisand the previoustutorials, you havelearned the basics
of the SDL suite and we hope you have enjoyed the “tour”. The exam-
ples you have been practising on, the DemonGame and Inres systems,
are however rather simple. To deepen your knowledge about the SDL
suite components, you may practise on anumber of exercisesthat illus-
trate the advantages of SDL-92 when adopting an object-oriented de-
sign methodology. These exercises are described in chapter 6, Tutorial:
Applying SDL-92 to the DemonGarme.

Teldlogic Tau 4.5 SDL Suite Getting Started 225

Chapter 5 Tutorial: The SDL Validator

226 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

	5 Tutorial: The SDL Validator
	Purpose of This Tutorial
	Generating and Starting a Validator
	What You Will Learn
	Quick Start of a Validator
	Basics of a Validator

	Navigating in a Behavior Tree
	What You Will Learn
	Setting Up the Exploration
	Using the Navigator

	More Tracing and Viewing Possibilities
	What You Will Learn
	Using the View Commands
	Using MSC Trace
	Going to a State Using Path Commands

	Validating an SDL System
	What You Will Learn
	Performing a Bit State Exploration
	Examining Reports
	Exploring a Larger State Space
	Restricting the State Space
	Checking the Validation Coverage
	Going to a State Using User-Defined Rules
	Performing a Random Walk

	Verifying a Message Sequence Chart
	What You Will Learn
	Verifying a System Level MSC
	Exiting the Validator UI

	Using Test Values
	What You Will Learn
	Using the Automatic Test Value Generation
	Changing the Test Values Manually
	Exiting the Validator

	So Far...

