Chapter

54 Validating a System

Thischaptersprovidesgeneral information related to validation in
the SDL suite and describes the actions you perform when validat-
ing an SDL system.

For areferencetothevalidator user interface, see chapter 53, The
SDL Validator.

How to use Autolink, a part of the SDL Validator, isdescribed in

“Using Autolink” on page 1393 in chapter 36. TTCN Test Suite Gen-
eration.

July 2003 Telelogic Tau 4.5 User’ sManual 2319

Chapter 54 Validating a System

Introduction

2320

Application Areas

The Validator isatool intended to support engineersinvolved in devel-
opment of specificationsor designsusing SDL. Itisdesignedto givethe
engineers a possibility to increase the quality of their work and to auto-
mate time-consuming tasks. It is focused on the following major appli-
cation areas in the development process:

* It providesan automated fault detection mechanism that checksthe
robustness of the application and finds inconsistencies and prob-
lemsin an early stage of development. Thisis often referred to as
validating an SDL system. See “Validating an SDL System” on

page 2347.

» When verifying the system against requirements, the Validator pro-
vides apossibility to perform automatic verification of the require-
ments expressed using the M SC (M essage Sequence Chart) nota-
tion. See “Verifying an MSC” on page 2360.

» When designing safety-critical or complex systems the Validator
provides a possibility to test specific properties of the design. See
“Using Observer Processes’ on page 2367.

* When developing TTCN test cases, the Autolink feature of the Val-
idator can be used to create and use MSC test purposes and to gen-
erate TTCN test cases. See “Using Autolink” on page 1393 in chap-
ter 36, TTCN Test Suite Generation.

Structure of a Validator

An executable validator is built up in the same way as asimulator. See
“Structure of a Simulator” on page 2166 in chapter 51, Smulating a
System for more information.

The same interactive monitor system as for asimulator is used, but the
set of available commands differ. The graphical user interface to the
validator monitor, the Validator Ul, works in the same way asthe Sim-
ulator Ul, but the set of available command buttons differ. For adescrip-
tion of some other differences, see “ The Validator User Interface” on

page 2328.

Telelogic Tau 4.5 User's Manual July 2003

Underlying Principlesand Terms

Underlying Principles and Terms

July 2003

The SDL Validator is based on atechnique called state space explora-
tion, which is awell-known technique for automatic analysis of distrib-
uted systems. All state space exploration toolsfor SDL are based on the
idea of an automatic generation of the reachable state space for the SDL
systems.

For readersinterested in a more detailed description of the possibilities
given by state space exploration for validation of distributed systems
(focused on protocols), an excellent description is given in [16], see
“References’ on page 2402.

Behavior Trees

The SDL Validator operates on structures known as behavior trees or
reachability graphs. A behavior treeisatreestructurethat representsthe
behavior of an SDL system.

The nodes of the tree represent SDL system states. A system stateis de-
fined by:

The process instances that are active

The variable values of these processes

The SDL control flow state of the process instances

Any procedure calls (with local variables etc.)

Signals (with parameters) that are present in the queues of the sys-
tem

* Activetimers

» Etc.

The edges between the nodes in the tree represent atomic SDL events
that transfers the SDL system from one system state to another. There-
fore, the edges are also called behavior treetransitions. They can bein-
dividual SDL statements like tasks, inputs, outputs, etc. but also com-
plete SDL transitions, depending on how the Validator is configured.

The size and structure of the behavior tree can thus vary and is deter-
mined by a number of Validator options. These options affect the num-
ber of system states generated for an SDL transition, and the number of
possible behavior tree transitions from a state in the tree.

Telelogic Tau 4.5 User's Manual 2321

Chapter 54 Validating a System

2322

State Space Explorations

The set of all system states represented by the behavior treeiscalled the
state space of the system. By moving around in the behavior tree, the
behavior of the SDL system can be explored and the system states
reached can be examined. Thisisknown as state space exploration, and
it can be performed both manually and automatically.

Note:

The*“children” of anodein the behavior tree are not generated until
a state space exploration actually reaches that node, i.e, thetreeis
not a static structure generated when avalidator is started.

For each system state reached during state space exploration, a number
of rules are checked to detect errors or possible problemsin the SDL
system. If aruleisviolated, areport is generated to the user. By inves-
tigating the report and the system state where it was generated, the cause
of the error can be determined.

States and Paths

Theoriginal start state of the system iscalled the system start state. It is
the system state where the static processinstances have been created but
their initial start transitions have not been executed.

The current state is the system state that currently is under investiga-
tion. It is changed when manually navigating in the behavior tree, or
when going to the system state where areport has been generated. Ini-
tialy, it is set to the system start state.

The current root of the behavior tree can be any system state. A number
of Validator commands and features use it as a starting point of opera
tion. Initially, it is set up to the system start state, also known astheorig-
inal root of the behavior tree. If it isredefined, it isnot possibleto reach
a state above the current root in the behavior tree without resetting it
back to the original root.

A path between two states in the behavior tree can be denoted by a se-
guence of integers, each one indicating which transition was used to get
between two states in the path. The current path is a path that is set up
when manually navigating in the behavior tree, or when going to the
system state where areport has been generated. When set up, it isthe
path between the current root and the current state. The current path is

Telelogic Tau 4.5 User's Manual July 2003

Generating and Starting a Validator

changed when the Validator moves to a state that is not part of the cur-
rent path, e.g. when manually navigating to asystem state outside of the
current path. However, moving up and down along the current path does
not changeiit.

Generating and Starting a Validator

July 2003

There are two ways to generate and start a validator:
* A quick way in one single step, adequate for most situations

« A more complex way in several steps, giving you complete control
of the generation and start process.

In the following, the more complex way will be described first, to give
afull understanding of the process. The quick way is described in
“Quick Start of a Validator” on page 2325.

Generating a Validator

The Validator isimplemented as a precompiled run-time kernel to the

SDL to C Compiler. To start aValidator for an SDL system, or apart of
an SDL system, it isthus necessary to first generate an executable vali-
dator. Thisis done from the Organizer.

To generate an executable validator:
1. Select asystem, block, or process diagram in the Organizer.
. Select Make from the Generate menu. The Make dialog is opened.

. Turn on the options Analyze & generate code and Makefile.

2
3
4. From the Standard kernel option menu, select Validation.
5

. If you need to check the Analyzer options, click the Analyze Options
button. In the dialog, set the options and click the Set button. For
more information about these options, see “ Analyzing Using Cus-
tomized Options” on page 2548 in chapter 56, Analyzing a System.

Telelogic Tau 4.5 User's Manual 2323

Chapter 54 Validating a System

N

2324

6. Click the Make button.

A validator for the system is now generated in the current directory
with the name <systems> xxx.val (on UNIX), or

<system> xxx.exe (in Windows), wherethe xxx suffix isplat-
form or kernel/compiler specific. The Status Bar of the Organizer
reports the progress of the generation; the last message should be
“Compiler done.”

7. Open the Organizer Log window from the Tools menu and check
that no errors occurred and that a validator was generated.

— If errorswerefound, correct them and repeat the generation pro-
cess. See “Locating and Correcting Analysis Errors’ on page
2554 in chapter 56, Analyzing a System.

— If novalidator was generated, repeat the generation process, but
click the Full Make button in the Make dia og instead.

Starting a Validator

An executable validator can be run in two different modes; graphical
mode and stand-alone mode (textual mode).

Graphical Mode

In graphical mode, the Validator takes advantage of the graphical user
interface and integration mechanism of the SDL suite. A separate
graphical user interface, the Validator Ul, isstarted, giving accessto the
monitor system through the use of menus, command buttons, etc.

To start avalidator in graphical mode:

1. Select SDL > Validator Ul from the Organizer’s Tools menu. The
graphical user interface of the Validator is opened (see” The Graph-
ical Interface” on page 2328).

2. Select OpenfromtheValidator U’ sFilemenu. A File Selection Di-
alog dialog is opened.

— Alternatively, click the Open quick button in the tool bar.

3. Inthedialog, locate and select an executable validator and click OK.

A welcome message is printed in the text area of the Vaidator Ul. The
monitor system is now ready to accept commands. Please see “ Supply-
ing Values of External Synonyms’ on page 2326 for some additional in-
formation that may affect the start-up.

Telelogic Tau 4.5 User's Manual July 2003

Generating and Starting a Validator

Stand-alone Mode (Textual Mode)

In stand-alone mode, the Validator uses the input and output devices
currently defined on your computer, which provide atextual, command-
line based user interface. A very limited graphical support is provided
when running the Validator in this mode.

To start avalidator in stand-alone mode, the generated validator is exe-
cuted directly from the OS prompt, e.g.

csh% ./system vla.val

A welcome message is printed on the terminal:
Welcome to SDL VALIDATOR

Command :

The monitor system is now ready to accept commands. Please see” Sup-
plying Values of External Synonyms’ on page 2326 for some additional
information that may affect the start-up.

Note:

On UNIX, before avalidator can be run in stand-alone mode, you
must execute a command file from the operating system prompt.
Thefileiscaled telelogic.sou OF telelogic.profile andis
located in the binary directory that isincluded in your $path vari-
able.

For csh—compati ble shells: source <bin. dir>/telelogic.sou

S

July 2003

For sh-compatible shells: . <bin.dir>/telelogic.profile

Quick Start of a Validator

A validator can also be generated and automatically started in graphical
mode in one single step.

To quick start avalidator, click the Validate quick button in the Orga-
nizer’stool bar. The following things happen:

« A validator isgenerated by using the validator kernel that is speci-
fiedinthe Makedialog. (If no validator kernel is specified, adefault
validator kernel is used.)

Telelogic Tau 4.5 User's Manual 2325

Chapter 54 Validating a System

2326

e Thegraphical Validator Ul is started. If aValidator Ul with the
same validator name is already open, this Ul isreused. If another
Validator Ul isopen, adiaog isopened whereyou can select to start
anew Ul, or to reuse one of the existing Ul’s.

e Thegenerated validator is started from the Validator Ul.

Itispossibleto start avalidator for a part of an SDL system (a block or
aprocess) by selecting the block/process and then clicking on the Vali-
date button.

Restarting a Validator

An executing validator can be restarted from the beginning to reset its
state completely:

* Ingraphica mode, select Restart from the Validator Ul'sFile
menu. (Thisis the same as opening the same validator again.) A
confirmation dialog is opened.

* In stand-alone mode, the validator has to be exited with the Exit
command and then executed from the OS prompt again.

Supplying Values of External Synonyms

The SDL system for the validator may contain external synonyms that
do not have a corresponding macro definition (see “ External Syn-
onyms” on page 2580 in chapter 57, The Cadvanced/Chasic SDL to C
Compiler). In that case, you will be asked to supply the values of these
synonyms, either by selecting afile with synonym definitions or by en-
tering each synonym value from the keyboard.

In stand-al one mode, the following prompt appears:

External synonym file :

Enter the name of afile containing synonym definitions, or press
<Return> to be prompted for each synonym value.

In graphical mode, afile selection dialog is opened. Either select afile
(* . syn) containing synonym definitions, or press Cancel to be prompt-
ed for each value in aseparate dialog. In this dialog, the name and type
of the synonym is shown together with an input text field. Y ou can now
do one of the following:

Telelogic Tau 4.5 User's Manual July 2003

Generating and Starting a Validator

e Enter avalue and click OK.

* Click Default valueto get a“null” value for the synonym type en-
tered in theinput field. Accept or edit this value and click OK.

* Click Cancel to give the synonym a“null” value (without the pos-
sibility to edit the value).

» Click Cancel all to give the synonym and al following synonymsa
“null” value.

If asynonym fileis selected in the file selection dialog, thisfileisaso
used when the validator is restarted. (If you by any chance want to use
another synonym file you have to start a new Validator Ul.)

If you set the environment variable spTExTsYNFILE to afile before
starting the SDL suite, this file will automatically be used. If sp-
TEXTSYNFILE issetto“[[" al synonymsare given “null” values.

The syntax of asynonym fileis described in “Reading Values at Pro-
gram Start up” on page 2581 in chapter 57, The Cadvanced/Chasic SDL

to C Compiler.

Actions on Validator Start-up

When avalidator isstarted, the static processinstancesin the system are
created, but their initial transitions are not executed.

In some cases when the Validator is started, amessageis printed that it
is not possible to generate test values for all sorts and/or signal param-
eters. This has to do with the automatic test value generation mecha-
nismthat isused inthe Validator. It happensif there are signals coming
from the environment of the SDL system that have parameters of a sort
that the test value generation cannot handle. To overcome this, define
sometest valuesfor the sort that the Vaidator is complaining about. See
“Defining Signals from the Environment” on page 2375 for moreinfor-
mation.

July 2003 Telelogic Tau 4.5 User's Manual 2327

Chapter 54 Validating a System

The Validator User Interface

Monitor commandsin the Validator areissued inthe sasmeway asinthe
Simulator, sincethe samemonitor systemisused in both tools. Also, the
Validator Ul worksin the sameway asthe Simulator Ul. Please see“ls-
suing Monitor Commands’ on page 2173 for more information.

The Validator Ul can be customized in the same way as the Simulator
Ul. Please see “ Customizing the Simulator UI” on page 2181 for more
information.

However, there are afew differences between the user interface of the
Validator and the Simulator. These differences are described below.

Activating the Monitor

The vaidator’ s monitor system becomes active when the validator is
started, when atransition executed during navigation has completed,
when an automatic state space exploration has finished, when areport
with Abort action has been generated, or when an automatic state space
exploration is manually stopped.

These conditions arelisted in greater detail in “ Activating the Monitor”
on page 2231 in chapter 53, The SDL Validator.

The Graphical Interface
The graphical Validator Ul isillustrated in the figure below:

2328 Teldlogic Tau 4.5 User's Manual July 2003

TheValidator User Interface

| lelcome to the SDL YALIDATOR

Command @ Bit-Stote—Exploration

Starting bit stote exploration s
Search depth : 188
Hash table size : 1BABAAA bytes

Bit stote exploration stotistics s
Ho of reports: 1.

Generated stotes: 2569,

Truncated paths: 156,

Unique system states: 1887.

Size of hash table: SAABEAE (10A6AGE bytes)
HNo of bits set in hash table: 3643
Collision risk: 8 %

Max depth: 168

Current depth: -1

Min state =size: 65

Max state size: 128

Symbol coverage @ 108.88

Command 3

Figure 477: The Validator Ul

Since the set of available commands differ between the Simulator Ul
and the Validator Ul, the set of button modules and command buttons
isalsodifferent. In addition, three extramenusare availablein the menu
bar: Commands Menu, Optionsl Menu and Options2 Menu. The menu
choicesin these menus are similar to the command buttons in the sense
that each of them correspond to a certain monitor command.

The Command and Watch Windows

The Command and Watch windows are also available in the Validator
Ul. The difference compared to the Simulator Ul is:

* Inthe Command window, the default commands that are executed
are “List-Process -” and “Print-Trace 1”.

July 2003 Telelogic Tau 4.5 User's Manual 2329

Chapter 54 Validating a System

Navigating in the State Space

The SDL Validator providesthe possibility to interactively walk around
in the behavior tree of an SDL system. Thisis also known as manually
navigating in the state space. A dedicated graphical tool, the Navigator,
isavailableintheValidator to facilitate manual navigating. However, it
is possible to use manual navigation without using the Navigator tool.

The Navigator is intended to be used in three different situations:

1. Whenlearning how astate space exploration tool like the Validator
works, the Navigator is aconvenient tool for interactively investi-
gating the behavior tree of an SDL system.

2. When using automatic state space exploration, thereis sometimes a
need to start the exploration from a different starting point than the
system start state of the SDL system. In this case, the Navigator can
be used to walk to asuitable system state, from which the automatic
exploration can be started.

3. When investigating a report generated during automatic explora-
tion, the Navigator can be used to check the alternative behaviors
that are possible on the path to the reported situation.

To open the Navigator tool, use one of the following methods:
» Select Show Navigator from the Commands menu.
* Inthe button module Explore, click the Navigator button.

* Enter the command Show-Navigator.

2330 Teldlogic Tau 4.5 User's Manual July 2003

Navigating in the State Space

July 2003

Up 1:
Transition START
Pld :Demon:1

State : start state
I

Mext 1: Mext 2

QUTPUT from EMY. | | TIMER signal sent
Signal : Mewgame | | Timer T
Receiver : hMain:1 Receiver : Demon:1

Figure 478: The Navigator

The boxes shown in the Navigator represent the behavior tree transi-
tions leading to and from the current system state. They are labelled
Up 1 (for the transition leading to the current state) and Next 1, Next 2,
etc. (for the transitions leading from the current state).

To close the Navigator, click the Close quick button in the tool bar.

Moving Up in the Behavior Tree

To move one level up in the behavior tree, use one of the following
methods:

* Inthe Navigator, double-click the Up node, or select Up 1 from the
pop-up menu available on the Up node.

* Inthe button module Explore, click the Up button.
» Enter the command Tree-Walk 1.
To move more than one level up in the behavior tree at once:

* Enter the command Tree-Walk, followed by the number of levelsto
move up.

Telelogic Tau 4.5 User’ s Manual 2331

Chapter 54 Validating a System

2332

To move to the current root of the behavior tree, i.e. the top of the cur-
rent path, use one of the following methods:

* Inthe Navigator, select Up to top from the pop-up menu available
on the Up node.

* Inthe button module Explore, click the Top button.

» Enter the command Top.

Moving Down in the Behavior Tree

To seethe possible Next nodeswhen the Navigator isnot opened, enter
the command List-Next. This gives anumbered list of all transitions
leading from the current state.

To move one level down in the behavior tree, use one of the following
methods:

» Inthe Navigator, double-click one of the Next nodes, or select Goto
from the pop-up menu available on the Next nodes. Thiswill follow
the branch one step.

* Enter the command Next, followed by the number of the Next node,
i.e. the number of the transition to execute.

To move more than one level down in the behavior tree at once:

» Enter the command Random-Down, followed by the number of lev-
elsto move down. For each level, atransition is chosen at random.

» Enter the command Continue-Until-Branch, or in the Navigator, se-
lect Continue from the popup menu available on the Next nodes.
Thiswill follow the branch several steps until there are more than
one transition possible

Moving Along the Current Path

The current path can be seen as the path in the behavior tree that has
been explored last. It is set up when going to areport (see “Going to a
Report” on page 2346) and when interactively walking down the behav-
ior tree.

Telelogic Tau 4.5 User's Manual July 2003

Navigating in the State Space

July 2003

The transitions making up the current path are labelled with three aster-
isks“***” in the nodes in the Navigator. However, no such marking is
present when the transitions are listed with the List-Next command.

To move up along the current path, use the Up or Top commands as de-
scribed in “Moving Up in the Behavior Tree” on page 2331 (above).

Tomoveonelevel down along the current path, use one of thefollowing
methods:

* Inthe Navigator, double-click the Next node labelled with three as-
terisks“***” or select Goto from the pop-up menu available on this
node.

* Inthe button module Explore, click the Down button.
* Enter the command Down 1.

To move more than onelevel down aong the current path at once, enter
the command Down, followed by the number of levels to move down.

To move to the bottom of the current path, use one of the following
methods:

* Inthe button module Explore, click the Bottom button.

e Enter the command Bottom.

Redefining the Current Root

The current root of the behavior treeisinitially set up to the system start
state. The current root is automatically redefined to the current state
when using M SC verification (see“Verifying an MSC” on page 2360).
It can also be redefined as an effect of changing validator options (see
“ Affecting the State Space” on page 2389).

In addition, you can at any time redefine the current root to either the
current state or back to the system start state. To do this, enter the com-
mand Define-Root. Select or enter Current to redefine the current root
to the current state. Select or enter Original to redefine the current root
to the system start state.

Telelogic Tau 4.5 User's Manual 2333

Chapter 54 Validating a System

Going to a System State

2334

When using the Validator it is quite common that there is a need to go
to a specific system state, for instance to be able to start an automatic
state space exploration from this point. This section describe some pos-
sibilitiesto in an efficient way get to the wanted system state, called the
target state below.

Using Manual Navigation

In many cases the simplest way is to use the Navigator tool or the nav-
igation commands to interactively traverse the path to the target state.
Manual navigation is described in “Navigating in the State Space” on
page 2330.

Returning to an Already Reached State

Itispossibleto return to a state that has been reached in an earlier stage
when using the Validator. Three methods will be discussed:

* Using Path Commands
» Using the Command Log
 Using MSC Trace.

The benefit of thefirst two techniquesisthat the exact sametarget state
will be reached. The drawback is that these techniques will not work as
soon as either the SDL system or the state space options have been
changed (see " State Space Options” on page 2396).

The benefit of the M SC techniqueisthat it isless vulnerableto changes
inthe state space optionsor inthe SDL system. The drawback isthat the
exact sametarget state may not be reached. We only know that the path
to the reached system state will satisfy the generated M SC trace.

Using Path Commands
To go to the target state using path commands:

1. When inthe target state, enter the command Print-Path. The path
from the root state to the current state is printed. The path isa se-

Telelogic Tau 4.5 User's Manual July 2003

Going to a System State

2.

guence of integers indicating which transitions must be chosen to
get to the current state.

At alater stage, enter the command Goto-Path, followed by the path
printed above.

Using the Command Log
To go to the target state using the command log:

1.

Before navigating to the target state, select Start Command Log
from the Log menu, or enter the command Command-L 0g-On.
Specify afilename on which all subseguent monitor commandswill
be stored.

Navigate to the target state.

Select Sop Command Log from the Log menu, or enter the com-
mand Command-L 0g-Off. The command |ogging is stopped and the
fileis closed.

Return to the same state in which the command log was started.

Execute the commands stored in the file by selecting Include Com-
mand Script from the Commands menu, or enter the command
Include-File. Select or specify the earlier file name.

Using MSC Trace
To go to the target state using M SC trace:

1.

July 2003

When in the target state, generate an M SC trace from the root state
tothe current state. Enter the command M SC-L og-File, followed by
afile name.

Return to the root state by using the Top command.

Go to the end of the MSC trace by verifying the MSC. See “Verify-
ing an MSC” on page 2360.

Telelogic Tau 4.5 User's Manual 2335

Chapter 54 Validating a System

Using an MSC

If an M SC is created that describesthe events|eading to the target state,
verifying thisM SC gives a possibility to go to a system state that satis-
fiesthe MSC in an efficient way. It does not matter if the MSC is man-
ually created, generated from the Simulator or from the Validator itself
(asdiscussed in “Using MSC Trace” on page 2335, above). However,
the exact sametarget state may not be reached by this method. We only
know that the path to the reached system state will satisfy the generated
MSC trace.

Using a User-Defined Rule

If the target state can be described in terms of process states, variable
values, etc., a convenient way to get to a state that satisfies the descrip-
tion isto use a user-defined rule (see “Using User-Defined Rules’ on

page 2385).
To go to atarget state using a user-defined rule:

1. Definetheruledescribing the target state (see “Managing User-De-
fined Rules’ on page 2386).

2. Definethe report action for user-defined rules reports to be Abort
(see “Report Action” on page 2394). Thiswill cause an automatic
exploration to stop as soon asastateisreached that satisfiestherule.

3. Start an automatic state space exploration (see “Using aDefault Ex-
ploration” on page 2347).

4. Go to the state where the rule was satisfied and a report was gener-
ated (see “Going to a Report” on page 2346).

The benefit with this method is that it isfast and efficient, especialy if
the target state is on a considerable depth in the state space. The draw-
back isthat sometimesthere are shorter pathsto the target state than the
one that was automatically generated.

2336 Teldlogic Tau 4.5 User's Manual July 2003

Tracing, Logging and Viewing Facilities

Tracing, Logging and Viewing Facilities

July 2003

In the Vaidator, the same kind of commands as in the Simulator are
available for tracing the execution, logging the user interaction and ex-
amining the system. There are afew differences, described below.

Tracing the Execution

Textual Trace

Inthe Validator, the same type of printed traceinformation isavailable
for executed transitions as in the Simulator; see “ Textual Trace” on
page 2187. Unlikethe Simulator, however, thereisno command to start
continuously printing the textual trace; instead, a command must be ex-
plicitly used whenever atrace is wanted.

» Toprintatextual tracefor thetransitionsleading to the current state,
enter the command Print-Trace, followed by the number of transi-
tionsto trace. That is, Print-Trace 1 prints the trace for the latest
transition. The same information as for afull trace during simula-
tion is printed.

» By default, the command Print-Trace 1 isexecuted in the Command
window of the Validator Ul, i.e., acontinuous trace isin practice
available in graphical mode.

Graphical SDL Trace

Graphical trace of SDL symbolsin the source GR diagramsisavailable.
The graphical tracein the Validator selects all symbols that were exe-
cuted in thetransition leading to the current state. Thisis different from
the Simulator, where GR trace selects the next symbol to be executed.

* Toenableor disable continuous graphical trace, enter the command
SDL-Trace. This command toggles the graphical trace; the current
state of thetraceisprinted after the command is executed. When the
trace first is enabled, an SDL Editor is opened as soon as the next
transition is executed.

* IntheValidator Ul, the graphical trace can be controlled from the
Commands menu. The command Toggle SDL Trace toggles the
trace between enabled and disabled.

Telelogic Tau 4.5 User's Manual 2337

Chapter 54 Validating a System

2338

MSC Trace

M SC trace enabl es tracing of executed eventsin an M SC Editor. When
thetracefirst is enabled, an M SC Editor is opened, showing the events
executed up until the current state, and the current path is set up. After
that, the trace is continuously updated in the MSC Editor as transitions
are executed. This means that events are added when you navigate
down the behavior tree, the selected event is changed when you navi-
gate up, and the MSC is redrawn when you move outside the current
path.

» Toenable or disable continuous MSC trace, enter the command
M SC-Trace. Thiscommand togglesthetrace; the current state of the
trace is printed after the command is executed.

* IntheVadidator Ul, the MSC trace can be controlled from the
Commands menu. The command Toggle MSC Trace toggles the
trace between enabled and disabled.

The M SC trace from the current root to the current state can also be
saved on alog file, which later may be opened from an MSC Editor. To
save such an MSC log, enter the command M SC-L og-File, followed by
the file name. The MSC log file should be given the file extension
.mpr.

Before an MSC trace is started, you may define what types of events
that will be traced. See “M SC Trace Options’ on page 2395 for more
information.

Logging the User Interaction

Theinteraction between the user and the Validator can belogged onfile
in exactly the same way asin the Simulator. See “L ogging the User In-
teraction” on page 2210 in chapter 51, Smulating a System for morein-
formation.

Examining the System

The current state of the system can be examined in the sasme way asin
the Simulator. The View commands availablein the View module of the
Validator Ul are generally the same ones as in the View module of the
Simulator Ul.

Telelogic Tau 4.5 User's Manual July 2003

Tracing, Logging and Viewing Facilities

Current Process and Scope

Some of the commands used for examining the system operate on aspe-
cific process instance, the current process, identified by the current
scope. A scope is areference to aprocess instance, areference to a ser-
vice instance if the process contains services, and possibly areference
to a procedure instance called from this process/service (the current
procedure).

The scope is automatically set by the validator to the process instance
that executed in the transition leading to the current system state. You
may change the scopeif you would like to examine another process, ser-
vice or procedure instance.

July 2003

To print the current process/service scope, click the Scope buttonin
the View module, or enter the command Scope.

To set the current process/service scope:

— Click the Set Scope button in the View modul e, or enter the com-
mand Set-Scope. This command takes one parameter, aprocess
instance, and optionally if the process contains services, a sec-
ond parameter which specifies a service name.

— Select or enter the name of a process instance.

— If the process instance contains services, select or enter the
name of a service instance.

— Thescopeis set to the specified process/service, at the bottom
procedure call.

To print the procedure call stack for the process/service instance de-
fined by the current scope, click the Call Stack button in the View
module, or enter the command Stack.

To change the procedure scope within the current process/service
scope, you can move the scope one step up or down in the procedure
call stack. Click the Up or Down button in the View modul e, or enter
the command Scope-Up or Scope-Down. Going up from a service
leads to the process containing the service. To go down in aservice
within a process, select or enter the name of the service instance.

Telelogic Tau 4.5 User's Manual 2339

Chapter 54 Validating a System

2340

Commands to Examine the System

The available commands are shortly described below. See “Examining
the System” on page 2196 in chapter 51, Smulating a System for more
information.

» Tolist the processinstancesin the ready queue, enter the command
List-Ready-Queue, or click the Ready Q button.

« Toprint overview information about process instances, enter the
command List-Process, or click the Process List button.

» Toexamineaprocessinstance, enter the command Examine-Pid, or
click the Process button. The process instance must be specified as
thefirst parameter.

» Tolistal signa instancesin theinput port of a processinstance, en-
ter the command List-1nput-Port, or click the Input Port button. The
process instance must be specified as the first parameter.

» Toexamineasigna intheinput port of aprocessinstance, enter the
command Examine-Signal-Instance, or click the Sgnal button. The
process instance must be specified as the first parameter.

e Tolistal currently activetimers, enter the command List-Timer, or
click the Timer List button.

¢ Toexamine atimer instance, enter the command
Examine-Timer-Instance, or click the Timer button.

» Toexamine avariable of aprocess instance, enter the command
Examine-Variable, or click the Variable button. The processin-
stance must be specified as the first parameter.

Telelogic Tau 4.5 User's Manual July 2003

Performing Automatic State Space Explorations

Performing Automatic State Space
Explorations

July 2003

This section describes how to perform an automatic state space explo-
ration and how to examine the results. The application areasin which
automatic state space exploration are used are further described in“Val-
idating an SDL System” on page 2347, “Verifying an MSC” on page
2360, “Using Observer Processes’ on page 2367 and “Using Autolink”
on page 1393 in chapter 36, TTCN Test Suite Generation.

In the Validator, three types of automatic state space explorations can
be used, implemented as different algorithms:

» Bit state exploration, an efficient algorithm for reasonably large
SDL systems.

» Random walk, asimple agorithm that can be used for very large
SDL systems.

» Exhaustive exploration, an algorithm suited only for small SDL sys-
tems.

The characteristics of these algorithms are further described in “ Config-
uring the Validator” on page 2388. They have the following in com-
mon:

» They start from the current system state, which meansthat you may
have to navigate to a suitable start state before the exploration is
started.

» They explore the state space down to a certain depth from the start
state, to avoid exploring an infinite state space forever.

The performance and results of a state space exploration are also highly
dependent on how the state space is configured. Thisisdiscussed in
“ State Space Options’ on page 2396.

The most important monitor commands concerning state space explora-
tions are available in the Explore module in the Validator Ul.

Telelogic Tau 4.5 User's Manual 2341

Chapter 54 Validating a System

2342

Executing an Exploration
The different types of explorations are started in the following way:

» To start ahit state exploration, enter the command
Bit-State-Exploration, or click the Bit-Sate button.

e Tostart arandom walk, enter the command Random-Walk, or click
the Random Walk button.

» To start an exhaustive exploration, enter the command
Exhaustive-Exploration (there is no button for this command).

Note:

The button Verify MSC starts a bit state exploration, configured to
suit MSC verification. Thisis further described in “Verifying an
MSC" on page 2360.

When the exploration is started, amessage is printed stating the options
used for this exploration type (see “ Configuring the Validator” on page

2388):

** Starting bit state exploration **
Search depth : 100
Hash table size : 1000000 bytes

** Starting exhaustive exploration **
Search depth : 100

** Starting random walk **
Depth : 100
Repetitions : 100

By default, the exploration continues until it is finished, i.e., until the
state space has been fully explored according to the expl oration options.
During the exploration, a status message is repeatedly printed after a
certain number of transitions or states have been generated.

Note:

Depending on how an exploration is configured, it may take a con-
siderable amount of time to finish!

To stop an exploration manually, click the Break button in the Validator
Ul, or hit <return> in stand-alone mode. A stopped exploration may

Telelogic Tau 4.5 User's Manual July 2003

Performing Automatic State Space Explorations

July 2003

be continued by issuing the same exploration command again. Y ou are
then asked whether to continue the exploration from the state where it
was stopped, or restart the exploration from the same start state as be-

fore.

When the exploration isfinished or stopped, some exploration statistics
are printed (see “Interpreting Exploration Statistics’ on page 2343). By
default, atool called the Report Viewer isalso opened (see Examining
Reports’ on page 2344).

The Validator always returns to the start state of the exploration when
it isfinished or stopped.

Rules Checked During Exploration

During state space exploration, anumber of rules are checked to detect
errors or possible problemsin the SDL system. If aruleis satisfied, a
report is generated to the user.

Therulesare used to find design errors, typically caused by unexpected
behaviors of the SDL system. Often the errors are caused by events hap-
pening at the same time in different parts of the system, for example
when asignal is received from the environment of the system at the
sametime asatimer expires. So-called signal races are often part of the
error situations that are found.

Apart from the predefined rules, an additional rule can be defined by the
user to check for other properties of the system. See “Using User-De-
fined Rules” on page 2385 for more information.

Interpreting Exploration Statistics

Thedifferent exploration algorithms print somewhat different statistics.
The important statistics to note are the following:

® No of reports: x
The number of error situationsfound. How to investigate the reports
are described in “ Examining Reports’ on page 2344.

* Truncated paths: x
The number of times the exploration reached the maximum search
depth. The execution path is at that stage truncated and the explora-
tion continues in another state. If thisvalueis greater than 0, parts

Telelogic Tau 4.5 User's Manual 2343

Chapter 54 Validating a System

of the state space have not been explored. However, thisisanormal
situation for SDL systems with infinite state spaces.

® Collision risk: x
For bit state explorations, the risk (in percent) for collisionsin a
hash table used to represent the generated system states (see “Bit
State Exploration Options” on page 2390). This value should be
very small, 0-1%; otherwise, the size of the hash table may haveto
beincreased. If collisions occur, some execution paths may be trun-
cated by mistake.

® Current depth: x
The search depth reached at the moment the expl oration was fin-
ished or stopped. If thisvalueis-1, the exploration finished by itself.
If the depth is greater than 0, the exploration was stopped. In this
case, it may be continued from this depth, as described in “ Execut-
ing an Exploration” on page 2342.

* Symbol coverage: X
The percentage of the SDL symbolsin the system that have been
reached during the exploration. If thisvalueisless than 100, parts
of the system have not been explored.

What actions to take depending on the printed statisticsis discussed in
“Validating an SDL System” on page 2347.

Examining Reports

When an exploration has been performed, the reported error situations
should be examined. A dedicated graphical tool, the Report Viewer, is
availablein the Validator to facilitate the report examination. However,
it is possible to examine the reports without using the Report Viewer.

The Report Viewer is by default automatically opened when an explo-
ration has been performed. To open the Report Viewer manually, either
select Show Report Viewer from the Commands menu, or enter the com-
mand Show-Report-Viewer.

2344 Teldlogic Tau 4.5 User's Manual July 2003

Performing Automatic State Space Explorations

July 2003

I1 ClutputI | 1 Create ‘

|
Error in SOL Qutput
of signal Bump
Mo possible
receier found
Sender. Demon:1
Depth: 4

Figure 479: The Report Viewer

Thenodesin the Report Viewer are structured in three levelsand show,
from top to bottom:

* Thetotal number of generated reports

» Thedifferent types of reports (errors) and the number of reports of
that type

» Theactual reportswith error message and traceinformation, and the
exploration depth where the error was generated (this level of the
tree is by default collapsed).

To closethe Report Viewer, click the Close quick button in the tool bar.

To list the reports when the Report Viewer is not opened, enter the com-
mand List-Reports, which prints anumbered list of all reports.

Changing the Displayed Structure

Generally, to expand or collapse a node in the Report Viewer, double-

click the node or select Expand or Collapse from the popup menu avail-
able onthe nodes. Thisworksfor thetop node and the report type nodes,

for report nodes, see “ Going to a Report” on page 2346 (below).

To show the whole report structure, select Expand Substructure from
the popup menu available on the top node. To collapse the whole struc-

Telelogic Tau 4.5 User’ s Manual 2345

Chapter 54 Validating a System

ture, select Collapse from the same pop-up menu, or double-click the
expanded top node.

To switch between atree structure and alist structure, click on the

i % I Sructure quick button. Thelist structure makesit possibleto easier see
the different reports and report types when alarge number of reports
have been found.

Going to a Report

When “going to areport,” the Validator goes to the system state where
the report was generated. Y ou can then examine the reported situation
further.

To go to areport using the Report Viewer:
1. Expand the report structure to show the desired report node.

2. Double-click the report node, or select Goto from the pop-up menu
available on the report node.

To go to areport using monitor commands:

1. Listthereportsby entering the command List-Reports, and note the
number of the desired report.

2. Enter the command Goto-Report, followed by the report number.

After going to areport, the Navigator tool is updated and the current
pathisset up. Y ou can walk along the path to the error by using the Nav-
igator; see “Moving Along the Current Path” on page 2332.

By default, an M SC Editor is al so opened, showing the M SC trace from
the current root to the state where the report was generated.

2346 Teldlogic Tau 4.5 User's Manual July 2003

Validating an SDL System

Validating an SDL System

July 2003

This section describes how to use the automatic state space exploration
facilitiesin the Validator to look for inconsistencies and design errors
inan SDL system. Theideais essentially to test the robustness of the
application, the responses to unexpected situations. Essentially the val-
idation is an attempt to answer questions like:

» What happensif a user does not press the buttons in the order as-
sumed by the designer?

* What happens if the scheduling algorithm of the operating system
that supports the application is changed?

* What happens if the environment happens to send an input to the
system at the same time as atimer expires?

...and all other questions the designer never ever would imagine.

It is assumed that the SDL system is of moderate size and complexity;
techniques for validating large SDL systems are described in “Validat-
ing Large Systems’ on page 2352.

Using a Default Exploration

When you are to use the Validator to try finding errorsin a new SDL
system for the first time, you are advised to start a bit state exploration
using the default options.

To validate a system opened in the Validator:

1. If you aready have executed commands for the opened validator,
you should reset the validator. Enter the command Reset, or click
the Reset button in the Explore module. Thisisespecially important
if you earlier have loaded an MSC into the Validator.

2. You should also make sure you use the default state space and ex-
ploration options. Enter the command Default-Options, or click the
Default button in the Explore module.

3. Startabit stateexploration (see” Executing an Exploration” on page
2342). Let the exploration run for at least 10-20 minutes.

4. If the exploration has not finished by itself, stop it manually (see
“Executing an Exploration” on page 2342). The Report Viewer is

Telelogic Tau 4.5 User's Manual 2347

Chapter 54 Validating a System

2348

opened and the exploration statistics is printed. Note especially
what the symbol coverageis.

5. Usethe Report Viewer to go to each of the reported situations (see
“Examining Reports’ on page 2344). Navigate along the current
path to the report and use thetracing and viewing facilities to exam-
ine the report.

6. If youfind errorsin the system, you may decide to correct them im-
mediately. In that case, generate a new validator for the corrected
system and rerun the validation, as described above. Otherwise, you
should check if the validation isto be considered finished (see be-
low).

Determining if the Validation is Finished

When all reports have been checked and the found errors possibly have
been corrected, the next question arises: When are we finished validat-
ing the system? To answer this question, look at these aspects:

» What wasthe symbol coverage reported in the statistics after the au-
tomatic exploration?

» Didthe exploration finish by itself or was it stopped by the user?
The following possibilities now exist:
1. Thesymbol coverageis100% and the exploration finished by itself.

All symbols have been executed and furthermore most orderings of
the possible actions have been tested. In this caseit is probably not
worthwhile continuing the validation; you may consider it finished.

However, not all orderings of possible actions have been tested,
since the search may have been truncated, collisions may have oc-
curred in the hash table, and more orderings are possible by config-
uring the state space exploration differently. If you want, you can
changethe validator options and start anew exploration (see* Using
Advanced Validation” on page 2351 and " Configuring the Valida-
tor”_on page 2388).

2. The symbol coverage is 100% but the exploration was manually
stopped.

Telelogic Tau 4.5 User's Manual July 2003

Validating an SDL System

July 2003

3.

In this case, it may still be worthwhile to continue the exploration
until it finishesby itself. Morereports may be generated, asthereare
still orderings of the possible actions that have not been executed.

The symbol coverage was less than 100%.

Parts of the system have never been reached during the exploration.
Inthiscase, thevalidation cannot be considered finished, evenif the
exploration finished by itself. The reasons and possible solutionsfor
low symbol coverage are discussed next.

Handling Low Symbol Coverage

If the symbol coverage after an exploration is 100%, all parts of the sys-
tem have been executed at least once. If the symbol coverageislessthan
100%, the possible reasons why parts of the state space have not been
reached are listed below.

The exploration was manualy stopped before all symbols were
reached.

In this simple case, you should continue the exploration until it fin-
ishes by itself.

The test values were inappropriate.

Test values are used to define the set of possible signals from the en-
vironment. The automatically generated test values may not suit all
SDL systems. This may for example cause the execution to never
execute one branch of adecision statement. To overcome this prob-
lem, redefine the test values for the appropriate signal parameter.
For moreinformation on test values, see” Defining Signalsfrom the
Environment” on page 2375.

The exploration was pruned after areport.

In most casesthe Validator will prunethe exploration of aparticular
path as soon asareport has been found, i.e., the exploration will not
continue beneath the state in question. If you have examined such a
report and has decided not to do anything about it, the Validator will
still prune the search when it finds the report the next time. To over-
comethisproblem, changethe report action for this particular report
type from prune to continue. See “Configuring the Validator” on
page 2388 for more information.

Telelogic Tau 4.5 User's Manual 2349

Chapter 54 Validating a System

2350

» Some parts of the system are, in fact, unreachable.

If some parts of the SDL system are not reachable at all, it may be
an indication that there is a design error in the system.

e Thereare problems with timer expirations.

The validator is by default configured in away that tries to reduce
the size of the state space. It will alwaystry to execute internal ac-
tions (e.g. tasks, decisions, internal input and outputs) before any
timers are allowed to expire. The assumption isthat the system will
always execute fast enough to ensure that no timerswill expire (the
timers may of course expire when waiting for input from the envi-
ronment). To make amore complete test of thistype of situation, see
“Using Advanced Validation” on page 2351.

e The search depth was too small.

The default search depth is 100. This may not be enough for some
systems, e.g. asystem with avery long initialization phase. In some
cases, it is possible to overcome this problem simply by increasing
the search depth (see “ Configuring the Validator” on page 2388).
However, the techniques discussed in “Validating L arge Systems’
on page 2352 are often more suitable.

» The state space istoo big.

Many SDL systems of reasonable complexity quite smply have
state spaces that are too big; it is not possible to explore the entire
state space in one exploration. Characteristic for this situation isa
low symbol coverage, truncated paths, and either manually stopped
exploration or ahigh (>10%) collision risk. This situation is dis-
cussed in “Validating Large Systems”’ on page 2352.

To find out which parts of the system that have not been reached, atool
called the Coverage Viewer is used. To start the Coverage Viewer, se-
lect Show Coverage Viewer from the Commands menu, or enter the
command Show-Coverage-Viewer. If the symbol coverage was less
than 100%, the Coverage Viewer will display atree structure represent-
ing the parts of the system that have not been executed.

Telelogic Tau 4.5 User's Manual July 2003

Validating an SDL System

Using Advanced Validation

The default options for the state space exploration, in particular the op-
tions that define the structure of the state space, are optimized to give
good resultsfor afirst validation of asystem. They are intended first of
all to test for internal inconsistenciesin the SDL system and to get a
good process graph coverage. This assumes a reasonably “nice” envi-
ronment, i.e., the environment only sends signals when nothing can
happen internally in the system.

Thishasthe benefit of reducing the size of the state space whilestill pre-
serving agood process graph coverage. The drawback isthat someerror
situations are never detected. One particular class of errors that never
will be detected using the default options can be characterized as signal
races caused by signals sent from the environment, or timer expirations
that happen at the same time. An example is a situation where acom-
munication protocol ends up in an inconsistent system state when two
connect requests are sent to the different access points at the sametime.

To detect these types of errorsit is necessary to change the options and
perform a second set of explorations for the SDL system. The suitable
settings of the options are called advanced options. When using these
values for the options, the state space will get very large for most SDL
systems. It isthus usually not possibleto get acomplete coverage of the
state space, even if some of the techniques described in “Validating
Large Systems’ on page 2352 have been used. To anyway be ableto get
good results, the best strategy isto use the random walk algorithm when
exploring the state space. See “Using Random Walk Exploration” on
page 2358 for more information.

To set advanced options, click the Advanced button in the Explore mod-
ule. In stand-alone mode, you have to enter a number of commands to

achievethe sameresult; see “ Setting Advanced Options’ on page 2401
for information on which commands to use.

For amore in-depth explanation of the state space options, see “ State
Space Options’ on page 2396.

July 2003 Telelogic Tau 4.5 User's Manual 2351

Chapter 54 Validating a System

Validating Large Systems

2352

This section discusses various techniques that are useful when design-
ing and validating large SDL systems. A large system s, in this context,
asystem that hasa state spacethat istoo large to be completely explored
using one automatic state space exploration. The techniques are prag-
matic and intended to give areasonable chance of finding any errors
even though the complete state space is not searched.

The following techniques are discussed:

Decomposed Exploration

Using MSCs to Limit the Search
More Efficient Bit-Sate Exploration
Reducing the Sate Space Sze
Using Random Walk Exploration
Incremental Validation.

Decomposed Exploration

The idea when using decomposed explorationsis to use a number of
reasonably small explorationsinstead of one big exploration. Quite of -
ten the behavior of an SDL system can be divided into a number of
“phases’ or “features.” Theideaisto explore each of these phases or
features separately. Thebenefit with thisapproachisthat itisalot easier
to explore the different phases separately than trying to explore the
combination of all phases. The drawback is that errors that are caused
by an interaction between different phases or features are not found.
However, for large SDL systemsit is sometimesthe only possible meth-
od that at least can give a complete symbol coverage.

The process of finding which and how many partial explorations that
are necessary isacombination of an iterative process and aplanning is-
sue where the possible features and phases that can be subject to a par-
tial exploration are identified. If an incremental design processis used
it is often possible to use the different iterations to guide the choice of
partial explorations; compare with “Incremental Validation” on page
2359.

Telelogic Tau 4.5 User's Manual July 2003

Validating L arge Systems

July 2003

A common strategy used to find the needed partial explorationsis es-
sentialy the following:

1. Start an exploration from the system start state.

2. Check al reports and correct the errorsin the system. Generate a
new validator and make another exploration.

3. Whenall found reports have been fixed, check the symbol coverage.
If the coverage is 100%, the validation is finished; otherwise, con-
tinue with the next step.

4. Usethe Coverage Viewer to check which parts of the SDL system
that need more testing.

5. Goto asuitable system state and start anew exploration from there.
6. Repeat the process until the symbol coverage is 100%.

There are two issues of this strategy:

* Whereto start each partia exploration.

* How tolimit each partial exploration.

Where to Start a Partial Exploration

The problem of identifying whereto start anew exploration isof course
system dependent and requires knowledge of the SDL system. Thetool
to usein this caseisthe Coverage Viewer, which shows exactly what
parts of the SDL system that have been executed during the exploration
and what parts have not been executed. Once a system state has been
chosen the next issue is how to get there in the Validator. There are
number of possible waysto do this; see “Going to a System State” on

page 2334.

How to Limit a Partial Exploration

The next problemisto limit each partial exploration to theintended part
of the state space. There exists a number of factors which can be used
to influence the extent of an exploration:

e Thesearch depth
* Thesignals from the environment

e User-defined rules

Telelogic Tau 4.5 User's Manual 2353

Chapter 54 Validating a System

2354

The search depth is the simplest limiting factor to use. By reducing the
search depth, e.g. to 10 or 20, the size of the exploration will of course
be considerably reduced compared to the default depth of 100.

By changing the list of signalsthat can be sent from the environment it
ispossibleto control which parts of the system that will be exercised by
an exploration. For example, if we are interested in testing the data
transfer phase of a connection-oriented protocol specification, a good
strategy would be the following:

» (o to asystem state where the connection is established.

» Definethe signalsfrom environment to be only the signalsrelevant
for the data transfer, and start the exploration. For a description of
how to define and remove signals from thelist of signalsthat can be
sent from the environment, see “ Defining Signals from the Environ-
ment” on page 2375.

User-defined rules also give apossibility to limit the extent of an explo-
ration. Define arule that matches the system states where the explora-
tion should be pruned and check that the report action for user-defined
rulesisto prune the search. For example, the rule
state(initiator:1)=idle would prune the exploration whenever
the initiator process entered the state Idle. User-defined rules are de-
scribed in “Using User-Defined Rules’ on page 2385.

Using MSCs to Limit the Search

Another possibility that sometimesis useful to control the exploration
of the state space isto use M SCs to guide the exploration. Thisis par-
ticularly useful for SDL systems with adesign that uses restrictions on
the possible behavior of the environment of the system. It might, for ex-
ample, be known that the signals A, B and C alwayswill comein this
order from the environment of the system. In thiscaseit is not interest-
ing to analyze what will happen if the signalswill comein a different
order.

An MSC can be loaded to guide the search by using the command L oad-
MSC. Once an MSC isloaded, both interactive navigation in the state

space, e.g. by using the Navigator, and automatic exploration will only

search the parts of the state space that correspond to the loaded M SC.

Thismeansthat if you want to go back to normal exploration, you have
to clear the loaded M SC by using the commands Clear-M SC or Reset.

Telelogic Tau 4.5 User's Manual July 2003

Validating L arge Systems

July 2003

Note how the test values are used when an MSC isloaded. It isallowed
to leave out parameters to messages in the MSC. If aparameter is left
out on asignal from the environment, the test values are used to deter-
mine the parameter values that are actually sent to the system. Thisisa
useful feature when using M SCs to limit the search. See section “Veri-
fying an MSC” on page 2360 for more details.

Another useful hint when using MSCsis to always use system level

M SCsto guide the state space exploration. A system level MSC will al-
low alarger part of the state spaceto be explored than ablock or process
level MSC.

An MSC loaded into the Validator must comply with some require-
ments; see “Regquirements for MSC Verification” on page 2366.

More Efficient Bit-State Exploration

The bit-state search uses a hash val ue based a gorithm to store the state
space that is traversed. Unfortunately the computation of hash values
from asystem state is an expensive operation and most of the execution
timein abit-state search is spent cal culating hash values. The execution
time for the hash algorithm isin most situations proportional to the size
of each system state. The max and min system state size used by the
hash algorithm isincluded in the statistics printed after each bit state
search and should be checked if the search is slow. (See “ Bit-State-Ex-
ploration” on page 2233).

If the size of asystem stateisbig (> 10,000 bytes) the bit state execution
of thevalidator will befairly slow. Inthese casesit might beworthwhile
to try to optimize the performance by reducing the state size that the val-
idator useswhen computing hash vaues. Thiscan be done by informing
thevalidator to skip anumber of variableswhen computing hash values.
The validator includes a command Define-Variable-Mode that is in-
tended for this purpose. (See “Define-Variable-Mode” on page 2256.)
For example the command:

define-variable-mode monitor subscrTab skip

will makethevalidator skip al subscrTab variablesin monitor pro-
Cesses.

A typical example of where this featureis useful isif the system in-
cludes abig array (or other big data structure) that isinitialized at the
start up of the system and that after the initialization is known to be con-

Telelogic Tau 4.5 User's Manual 2355

Chapter 54 Validating a System

2356

stant in the part of the state space that is explored. The correct way to
take advantage of thisin the validator is to:

1. Goto asystem state where the array isinitialized. (See“Going to a
System State” on page 2334 for more info about how to navigatein
the state space.)

2. Redefine the root to the current state. (See “ Define-Root” on page
2251))

3. Change the mode of the table variable to “ Skip”.
4. Start the bit-state exploration.

Using this strategy it is possible to considerably increase the perfor-
mance of the validator.

Another situation where the variable mode can be changed to “ Skip” is
when there are variables in the system that is known not to have any in-
fluence on the dynamic behavior of the system. See “Variables Not In-
fluencing the Dynamic Behavior” on page 2358.

Reducing the State Space Size

Thereisanumber of waysto reduce the state space that is necessary to
explore by using knowledge and assumptions about the SDL system.
Usually thisis based on the fact that the state space of an SDL system
contains various “sub state spaces’ that are equivalent except for some
detail, which is not very interesting for the purpose of the validation.
Some examples of such details are;

* Thevalueof local variables
e The number of instances of process types
» Thesize of large data structures.

» Variablesthat do not influence the dynamic behavior.

Local Variable Values

An example of the way local variable values influence the size of the
state space is the following: Consider a situation where a process con-
tainsan integer variable that counts the number of times aparticular sig-
nal comes from the environment, and then replies with this number
when requested to do so from the environment. It is obviously not espe-

Telelogic Tau 4.5 User's Manual July 2003

Validating L arge Systems

July 2003

cially interesting totry to investigate the behavior of the SDL system for
all possible values of thislocal variable. Instead a reasonable set of val-
ues should be selected and the state space exploration guided by this se-
lection.

A user-defined rule (see “Using User-Defined Rules’ on page 2385)
provides an efficient means to reduce the size of the state space by put-
ting restrictions on variable values. In the example above a reasonable
restriction might be that we only would like check what happens the
first three times the variable is increased. A rule that expressesthisis:

proc:1l->var < 4;
Oncethisruleis defined and the report action for user-defined rule vio-
lation is set to Prune (which isthe default), only the interesting parts of
the state space are explored.

Number of Process Instances

Another issueisthe number of processinstances that are used for each
process type. If the number islarge and all of them do the same thing,
for example by modeling different connectionsin a connection oriented
protocol, it isprobably not very useful to try to explore the combination
of all instances. Instead, it is better to restrict the number of instances
allowed in the exploration. This can be achieved with the command
Define-Max-Instance (see “ Maximum Number of Instances’ on page
2400). If preferred, it isalso possible to use auser-defined rule or an ob-
server process to achieve the same result.

Size of Large Data Structures

A third area where the validator performance is reduced is when large
data structures, e.g. arrays, are used in the SDL system. A large data
structure has two unfavorable effects on a state space exploration:

» Thesize of the reachabl e state space increases extremely rapidly as
the size of the data structure increases.

« Thegéefficiency of the bit state algorithm is decreased as the size of
system states increase. Essentialy the time to compute anew sys-
tem state is linear to the size of the system states.

A good ideain this context is to, whenever possible, try to reduce the
size of any large data structures in the SDL system before performing
validation. Another possibility isto skip the variable when computing

Telelogic Tau 4.5 User's Manual 2357

Chapter 54 Validating a System

2358

hash values as described in “More Efficient Bit-State Exploration” on
page 2355.

Variables Not Influencing the Dynamic Behavior

In many situations an SDL system contains a number of variables that
does not have any impact on the dynamic behavior of the system. Es-
sentially all variables that does not (directly or indirectly) have any in-
fluence on the path taken through a decision or the expression used
when computing the receiver of asignal in output/RPC call will not in-
fluence the dynamic behavior of the system.

These variables can safely be ignored when performing a state space
search. This can be accomplished by instructing the validator to skip
these variables using the Define-V ariable-M ode command. (See “De-
fine-Variable-Mode” on page 2256.) Thiswill in many casesdrastically
reduce the size of the state space that the validator needs to search and
is an efficient way to improve the performance of the validator.

Note that implicit variables like Sender/Parent/Offspring are a so con-

sidered as variables in this respect. In particular Sender can be of inter-
est to skip if itisnot used, sinceit may change value every time asignal

isreceived.

Asan example, if Sender isnot usedinaprocess‘p’ thefollowing com-
mand will make the validator ignore the Sender implicit variable when
comparing two system states:

define-variable-mode p Sender skip

Using Random Walk Exploration

In some situationsiit is not possible to use the more elaborated tech-
niques described in this section to cope with the problem of validating
large SDL systems. Thetime and resources available for the validation
may simply be too limited. A possible strategy to use when validating
very large SDL systemsisto use the random walk exploration strategy
instead of the bit state algorithm.

The reason is that the random walk algorithm gives a possibility to get
apartial exploration of the state space that is randomly chosen. Further-
more, the symbol coverage of the exploration is determined only by
how long the exploration is allowed to run. The drawback with the al-
gorithmisthat if it is allowed to run for along time, so that significant

Telelogic Tau 4.5 User's Manual July 2003

Validating L arge Systems

parts of the state space already have been covered, there is no mecha
nism to avoid that already explored paths are explored once more.

How to start arandom walk exploration is described in “ Executing an
Exploration” on page 2342. The random walk exploration algorithm is
further described in “ Random Walk Options” on page 2391.

The best way to get an idea of what has been tested when using random
walk isto usethe Coverage Viewer to check the symbol coverage. Even
if thisis not the same as the coverage of the system state space, it will
show if there arelarge portions of the system that have not been reached
by the exploration.

Incremental Validation

A common way to develop large SDL specifications and designs in
practice isto use an incremental development strategy. First a base
functionality isimplemented and then various features are added in an
incremental fashion. When this type of development processis used, a
good way to plan the validation of the system isto let the different in-
crements define the state space explorations that should be performed.

First anumber of state space explorations are executed with different
start states, and perhaps different test values. Together these explora
tions should give agood process graph coverage of the SDL system rep-
resenting the base functionality.

For each increment that is added, anumber of additional explorationsis
performed that will cover the new features in the SDL system.

It is also probably worthwhile to define command scripts that automat-
ically can execute the various explorationsthat should be runto achieve
agood process graph coverage. This makesit possible to run all of the
various explorationsin an straight-forward way for each new increment
that is added to the system.

July 2003 Telelogic Tau 4.5 User's Manual 2359

Chapter 54 Validating a System

Verifying an MSC

2360

MSC verification is one the major application areas for the SDL Vali-
dator. This section describes how to use the Validator to get started with
MSC verification. It also gives some ideas of how to organize MSCsto
be able to use common initialization M SCs and shows how to use batch
filesto achieve an efficient regression testing of an SDL system using
MSC verification.

Thefirst prerequisite for MSC verification is of course that we have an
MSC that describes some desirable behavior that can be used to check
the SDL system against. This MSC can be interactively created using
the M SC Editor as part of arequirement analysis, but it is also possible
to use M SCs created as execution traces in the SDL Simulator or the
Validator itself asinput to the MSC verification.

It isworth noticing that the M SC does not have to be a process level
MSC. It is possible to use M SCs where the M SC instances correspond
to SDL blocksand systems, and even mixed M SCswhere some instanc-
es correspond to processes and other to blocks.

There are some requirements on M SCsto be used for M SC verification;
see “Requirements for MSC Verification” on page 2366.

The characteristics of the MSC verification algorithm is further de-
scribed in “M SC Verification Options” on page 2392.

Basic MSC Verification
To verify an MSC for a system opened in the Validator:

1. If necessary, go to asystem state that correspondsto the start of the
MSC to verify. If the M SC describes events from the start of the sys-
tem, go to the system start state. Y ou may haveto reset the validator
first, especially if you already have an M SC loaded.

2. To start the MSC Verification, click the Verify MSC button in the
Explore module, or enter the command V erify-M SC.

3. TheMSC that you want to verify hasto be specified. Either select it
in the File Selection Dialog that appears (in graphical mode), or en-
ter the name of the file on the command line (in stand-alone mode).

Telelogic Tau 4.5 User's Manual July 2003

Verifyingan MSC

July 2003

Note: lllegal characters in path name

Please note that verifying an MSC failsif the path name of the MSC
contains“(* or“)”.

4. A bit state exploration adapted to suit MSC verification is per-
formed. After the exploration statistics, the result of the MSC veri-
ficationispresented. If it was possibleto find an execution trace that
was consistent with the MSC, the text

** MSC <MSC name> verified **

is printed, where <M SC name> is the name of the MSC that was
checked. If it was not possible to find a consistent execution trace,
the following text is printed:

** MSC <MSC name> NOT VERIFIED **

5. If the MSC was not verified, check the generated reports using the
Report Viewer. Therewill beanumber of “M SCViolation” reports.
These reports identify the execution paths which violate the MSC,
i.e., pathsthat contain eventsthat are not part of the MSC. Y ou may
investigate these reports by using the method described in “ Exam-
ining Reports” on page 2344.

6. If the MSC was successfully verified, there will be a
“MSCVerification” report (there may aso be a number of
“MSCViolation” reports, but they can be discarded). Y ou do not
have to go to this report; the Vaidator automatically goesto the
state where the M SC was verified. This means that the current path
is set up automaticaly.

7. Toverify another M SC from the same start state, go to thetop of the
current path. Itisnow possibleto directly start anew M SC verifica-
tion, as described above (you do not have to reset the validator).

Note:

When MSC verification is started, the current root of the behavior
tree isredefined to the current state. This feature is used in the next
section, “Verifying a Combination of MSCs Using High-L evel
MSCs’ on page 2363. (It also means that you may have to reset the
validator to be able to reach the system start state again.)

Telelogic Tau 4.5 User's Manual 2361

Chapter 54 Validating a System

2362

Converting Instances Before Verification

Before an MSC isloaded into the Validator for verification, it is possi-
ble to perform instance conversion of the MSC. Instance conversion
will convert the name of an instance to another name.

Thisisuseful if you want to verify some, but not all, instancesin an
MSC with an SDL system. For instance, you may have an M SC describ-
ing acomplete system but an SDL system for only a part of the system.
In this case, you can convert the not wanted instances to be considered
as environment in the Validator, without changing the MSC.

Notethat if you have more than one instance representing the environ-
ment, the environment instances must be separated using channel
names.

Instance conversion is performed before an MSC isloaded into the Val-
idator by entering the command “ Define-Instance-Conversion From-
String ToString” for each instance name to be converted. All instance
conversions can be listed by entering the command List-1nstance-Con-
version, and all instance conversion can be cleared by entering the com-
mand Clear-Instance-Conversion.

Example 325

Consider an M SC with three process instances A, B and C. The SDL
system specifies the behavior for instance A, but not for B or C. Before
verifying the MSC, B can be converted to “ channelB” and C to “chan-
nelC”, where channel B isthe existing SDL channel that will be used for
communication between the existing A process and the non-existing
process B, and channelC is the existing SDL channel that will be used
for communi cation between the existing A process and the non-existing
process C.

Thisis accomplished by entering the Validator commands:

Define-Instance-Conversion B "channelB"
Define-Instance-Conversion C "channelC"

The MSC can now be verified.

Telelogic Tau 4.5 User's Manual July 2003

Verifyingan MSC

July 2003

Verifying a Combination of MSCs Using High-
Level MSCs

The high-level MSC that are available in MSC’ 96 provide avery con-
venient possibility to describe how many small M SCs are combined to
form alarger use case or scenario. The VValidator support verification of
high-level MSCs.

As an example, consider a situation where we have an MSC “init” that
will describe some initialization phase that is needed to set up the SDL
system to some “connected” state from where two features are accessi-
ble. Thesefeatures are described by the M SCs*“ datatrans’ and “finish”.
If this would be a communication protocol, the “init” might be a con-
nection establishment, and “datatrans’ and “finish” successful data
transfer and connection release. This situation could be described using
the high-level MSC in Figure 480.

inresl 1(1)

)

datatrans

Figure 480 A high-level MSC

To check this combination of MSCs simply verify the “inresl” high-
level MSC and the validator will generate one M SC verification report
for each sequence of “leaf MSCs”’ that can be verified. Inthiscasethere
will bereportsfor “init, finish”, “init, datatrans, finish”, “init, datatrans,
datatrans, finish”, etc. until the max depth for MSC verification has
been reached.

Telelogic Tau 4.5 User's Manual 2363

Chapter 54 Validating a System

2364

State of the Validator after MSC Verification

When an M SC verification has been done, the current state of the vali-
dator isdifferent depending on how many M SC verification reports has
been found:

» |f 0 or morethan 1 MSC verification report has been generated the
current state of the validator is the system state where the M SC ver-
ification was started from.

« If exactly 1 MSC verification report was generated the current state
is the state where this report was found.

Thisisin many cases useful when using M SCsto navigate to a specific
system state, especially in combination with command scripts as de-
scribed in the next section. Note that if the MSC that is verified isan
“old style” MSC without high-level MSCs or MSC reference expres-
sionsthen therewill always be at most one M SC verification report and
thistype of MSCsisthus best when using M SCs for navigation.

Using Batch MSC Verification

An efficient test strategy when incrementally developing SDL systems
isto useregression testing. A set of M SCsdescribe the requirementson
the SDL system and new M SCsareincrementally added to the set when
new features are implemented in the SDL system. Each time anew fea-
tureisimplemented the resulting system should be tested against all the
old MSCsaswell asthe new ones, to make sure that no new errors have
been introduced.

To accomplish this using the Validator the most efficient way isto use
the command script facility in the Validator. A command script is sim-
ply atext file containing a number of Validator commands, usually one
command per line. A command file can be loaded into the VValidator by
selecting Include Command Script from the Tools menu, or by entering
the command Include-File.

Telelogic Tau 4.5 User's Manual July 2003

Verifyingan MSC

July 2003

Example 326: Batch MSC Verification

A command script that when loaded will perform MSC verification for
some requirements described as M SCs may look like:

log-on msc.log
verify-msc inresl.mrm
reset

verify-msc init2.msc
verify-msc inres2.mrm
quit

The command Log-On is used to store the output from the verification
onthefile msc.log.

Note in Example 326 how the MSC init2 was used to set up the start
state for the verification of the high-level MSC inres2.

Verifying Message Parameters

When verifying an MSC, the parameters of the messagesin the MSC
can sometimes be crucial and need to be verified, and sometimes be un-
important for the behavior in question. To support this, the verification
of MSCsin the Validator alows three different levels of matching of
message parameters:

* No parameters are given for the message.
* Only some of the parameters are given.
« All of the parameters are given.

If no parameters are given, all possible actual parameters are accepted.
If the signal is sent from the environment to the system, the parameter
values that are defined using the test value facility are used by the Val-
idator when exploring the state space of the system.

When only some of the parameters are to be given, only the given pa-
rameters are checked during the exploration. The notation used to show
that a specific parameter should be ignored during the verification isto
simply leave out this parameter in the parameter list. For example, if
only the second and fifth parameter should be used during the verifica-
tion the parameter list would be “,2,,,true” in the MSC. Trailing com-
mas can be left out, so if asignal hasfive parameters and only the first

Telelogic Tau 4.5 User's Manual 2365

Chapter 54 Validating a System

two areto be verified, the parameter list might be“1,2” which would ig-
nore the last three parameters.

When only some of the parameters are given for asignal from the envi-
ronment, the rest of the parameters are taken from the test value defini-
tions when executing the signal output during state space exploration.

If all parameters are given, they are of course all checked.

Requirements for MSC Verification

The MSCs that can be loaded into the Validator must comply with the
following rules:

2366

It must be possible to map each M SC instance to either the environ-
ment, a channel to/from the environment, the entire SDL system, a
block, or aprocess. This mapping is done by matching the name of
the M SC instance with the names of the corresponding SDL enti-
ties. However, the name of an M SC instance can be changed before
verification, see “ Converting Instances Before Verification” on

page 2362.

Pld valuesare not allowed as parametersto M SC messagesfrom the
environment of the SDL system. Pid values are allowed on internal
messages and messages to the environment, but the values are not
checked during the exploration.

If the MSC ison process level, only one static instance of each pro-
cesstypeisalowed in the MSC. Thereis no limit to the number of
dynamically created M SC instances.

Only the following events/symbols are interpreted in an old-style
MSC. All other events are ignored or will not be accepted by the
Validator.

— input

— output

— set

— reset

— timeout

— create

— stop

— globa MSC reference symbol without substitution and gates
— condition

Telelogic Tau 4.5 User's Manual July 2003

Using Observer Processes

Note:

Conditions are interpreted as a synchronization point if Define-
Condition-Check is set to “on”, otherwise they are ignored. For
more information, see “ Synchronizing Test Events with Condi-
tions” on page 1406 in chapter 36, TTCN Test Suite Generation.
Set, reset and timeout events on M SC instances representing SDL
channels to the environment are only accepted by the Autolink test
generation commands Generate-Test-Case and Trandate-M SC-
Into-Test-Case. For all other Validator commands which load an
MSC, timer events on environment instances are ignored and the

Validator generates a warning.

» Only the following symbols are allowed in a high level M SC:

— start symbol
— end symbol
— MSC reference symbol without substitution and gates.
— condition symbol (ignored during verification)
— connection point.
e InMSC reference symbolsit is allowed to use M SC reference ex-
pressions with the operators:

— at
- 5q
- exc
— opt
— loop

Using Observer Processes

July 2003

The purpose of an observer processisto makeit possibleto check more
complex requirements on the SDL system than can be expressed using
MSCs. Thebasicideaisto use SDL processes (called observer process-
es) to describe the requirements that is to be tested and then include
these processesin the SDL system. Typical application areasinclude
feature interaction analysis and safety-critical systems.

To be useful, the observer processes must be able to inspect the SDL
system without interfering with it and al so generate reports that convey
the success or failure of whatever they are checking.

To accomplish this, three features are included in the Validator:

Telelogic Tau 4.5 User's Manual 2367

Chapter 54 Validating a System

2368

The observer process mechanism.

By defining processes to be observer processes, the Validator will
start to execute in atwo-step fashion. First, the rest of the SDL sys-
tem will execute onetransition, and then all observer processeswill
execute one transition and check the new system state.

The assert mechanism.

The assert mechanism enables the observer processes to generate
reports during state space exploration. These reports will show up
in the list of generated reports in the Report Viewer. The details of
the assertion mechanismisdiscussedin “Using Assertions’ on page
2387.

The Access abstract data type.

The purpose of the Access abstract datatype isto give the observer
processes a possibility to examine the internal states of the other
processes in the system. Using the Access ADT it is possible to
check variable values, contents of queues, etc., without any need to
modify the observed processes. See “ The Access Abstract Data
Type’ on page 2370 for more details.

A simple observer processisillustrated in Figure 481.

Telelogic Tau 4.5 User's Manual July 2003

Using Observer Processes

Process Observer

1(2)

variable values when performing state
space exploration using the Validator.

/* This process illustrates how to acceﬁ
*/

O

GetPld(Initiatgr’,1)

TestState

[]
vintegér(l,’Counts(’)=2; true;
priority 1 priority 2

Report
(‘Counter=2")

Figure 481: A simple observer process

This process will check if the variable Counter in the Initiator process
ever becomes equal to 2.

Two characteristics for the observer processes are:

» theuse of continuous signals with tests that use Access operator to
check the internal state of other processes, and

» theuse of assertionsto report the result.
To use observer processes:

1. Createthe observer processesin the SDL Editor. Y ou should place
the observer processes in a special block that you include in the di-
agram structure of the SDL system. In this block, you also need to
specify an INCLUDE directive for the Access ADT:

/*#INCLUDE ‘access.pr’ */

July 2003 Telelogic Tau 4.5 User's Manual 2369

Chapter 54 Validating a System

2370

2. Inthegenerated validator, define each observer process by using the
command Define-Observer, followed by the name of the process
type. All instances of the process type will now become observer
processes.

3. Perform a state space exploration. If an assertion defined in an ob-
server process is satisfied, an “ Assertion” report is generated. To
simplify the observer processes, an “Observer” report will also be
generated whenever there is an observer process that cannot exe-
cute.

In some casesthe Observer reports are not convenient and they can then
be turned off with the Define-Report-Continue (that will cause the ex-
ploration to continue past a reported situation) and the Define-Report-
Log command (that can be used to turn off thelogging as specific report
type, e.g. Observer reports)

The Access Abstract Data Type

The Access abstract datatypeisan ADT intended to be used together
with observer processes to make it possible to access the internal state
of other processes from an observer process. The ADT isdefined in the
file access.pr that resides in the apT directory together with the rest
of the ADTssupplied together with the SDL suite. Unliketherest of the
ADTsthe Access ADT isaspecial purpose ADT that only works with
the Validator kernel.

The Access ADT definesanumber of SDL operators. The signatures of
these operators are defined as follows:

GetPID : CharString, integer -> PId;
/* Returns the PId value of a process instance

par 1: the name of the process type
par 2: instance number of the process instance

*/

ActivePID : integer -> PId;
/* Return the PId of the process that executes.
Returns NULL if no process executes.
Observer processes are not taken into account.

The integer parameter is a dummy parameter
needed since operators must have parameters. */

GetState : PId -> CharString;
/* Returns the name of the current state of a

Telelogic Tau 4.5 User's Manual July 2003

Using Observer Processes

process instance (or previous if the process
is not in a state)

par 1: the pid of the process instance */

GetNoOfInst: charstring -> integer;
/* Returns the number of instances for a
particular process type

par 1: the name of the process type */

terminated: PId -> boolean;
/* Returns true if the process instance is
terminated otherwise false

par 1: The PId value of the process instance */

GetProcedure: PId -> charstring;
/* Returns the name of the procecure a process
instance currently has called. If no procedure
is called ‘none’ is returned

par 1: The PId value of the process instance */

InProcedure: PId, CharString -> boolean;
/* Returns true if a process instance currently
executes in a specific procedure, otherwise
false

par 1: The PId value of the process instance
par 2: The name of the procedure */

GetNoOfSignals: PID -> integer;
/* Returns the number of signals currently in the
input port of a process.

par 1: The PId value of the process instance */

GetSignalType: PId, integer -> charstring;
/* Returns the name of the signal type for a
signal in the input port of a process instance

par 1: The PId value of the process instance.
par 2: A number (>=1) identifying the signal */

InQueue: PId, charstring -> boolean;
/* Returns true if a process instance currently
has a signal of a specific type in its input
port queue

par 1: The PId value of the process instance.
par 2: The name of the signal type. */

/* Variable access functions. These functions return
a variable value that corresponds to one of the

July 2003 Telelogic Tau 4.5 User's Manual 2371

Chapter 54 Validating a System

variables of a process instance as specified by
the parameters.

par 1: The PId value of the process instance.
par 2: Variable name */

v : PId, charstring -> integer;
vInteger : PId, charstring -> integer;
v : PId, charstring -> real;

vReal : PId, charstring -> real;
v : PId, charstring -> boolean;
vBoolean : PId, charstring -> boolean;

v : PId, charstring -> Character;
vCharacter : PId, charstring -> Character;
v : PId, charstring -> Time;

vTime : PId, charstring -> Time;

v : PId, charstring -> Duration;

vDuration : PId, charstring -> Duration;

v : PId, charstring -> Charstring;
vCharstring : PId, charstring -> Charstring;
v : PId, charstring -> PId;

vPId : PId, charstring -> PId;

EnvOutput : CharString -> Boolean;

/* Returns true if the transition currently
executing is caused by a signal from the
environment with a specified name, otherwise
false

par 1: The name of the signal type */

The Access ADT aso includes a utility procedure called Report that if
called from an observer process will generate an Assertion report in the
validator. The procedure takes a charstring as parameter and thisisthe
string that will be presented in the Assertion report.

An example of the usage of some of the operatorsis:
P := GetPId(‘Initiator’, 1),
CS := GetState(P)

This example assigns the Pld value of the first Initiator process to the
Pld variable P, and then assigns the name of the state of this process to
the charstring variable CS.

An example of astatement that will access the variable value for one of
the variables of another process instanceis:

LocalVar := v(P,’Var’)

In this example we assume that we have a Pld variable p that identifies
aprocessthat hasavariable var of typefor whicha v operator isde-

2372 Teldlogic Tau 4.5 User's Manual July 2003

Using Observer Processes

July 2003

fined. The statement will accessthe value of var and assign it to the
local variable Localvar.

The operators for accessing the value of avariable are given in two ver-
sionsfor each predefined simpletype: the v operator and the vxxx op-
erator, where XXX isthe name of thetype. They are equivalent and the
only timethereisaneed to use the vxxx operator iswhenit isnot pos-
sible to resolve by context which of the + operators that is intended.

To access variables of sorts that are syntypes to the predefined simple
types, the v operator for the corresponding predefined simpletype can
be used.

Accessing variable of structured types, enumeration types and user-de-
fined typesisabit more complex. There are two possible waysto do it.
Either definethe ~ operator for the typein question, or use the #cope
operator and access the variable value using a C macro xvv.

Telelogic Tau 4.5 User's Manual 2373

Chapter 54 Validating a System

Example 327: Structured Types in Observer Processes
Consider the following structure definition:

newtype MSDUType
struct
id IPDUType;
num Sequencenumber;
data ISDUType;
endnewtype MSDUType;

A v operator for this type can be defined as:

newtype MSDUTypeAccess
literals NotUsedMSDUTypeAccess;
operators

v /*#NAME ’XVNAME (MSDUType) ’'*/ :

PId, charstring -> MSDUType;

/*#ADT (H)
#TYPE
#define MSDUType #SDL (MSDUType)
*

/
endnewtype MSDUTypeAccess;

Once thisdefinition isin place, variable values for the complex data
type can conveniently be accessed using the new v operator. Note also
that it is possible to access the values of the fields of the structurein a
simple way:

LocalVar := v (P,’MSDUVar’) !id
If thetypeisone of the types passed as values, according to thetablein
“Parameter Passing to Operators’ on page 2606 in chapter 57, The Cad-
vanced/Chasic SDL to C Compiler, XVNAME should be substituted to
XVNAME2.

However, if the values of the complex type only is accessed in afew
places, it is possible to access them directly using the #CODE operator
asillustrated in the following example:

LocalVar := #CODE (‘XVV (#SDL(P),”Var”, #SDL (MyType)) ')
In thisexample we assumethat we haveaPld variable p that identifies
aprocessthat hasavariable var of type myType. The statement will
accessthe value of var and assign it to thelocal variable Localvar.

2374 Teldlogic Tau 4.5 User's Manual July 2003

Defining Signals from the Environment

Defining Signals from the Environment

July 2003

A problem common to all state space exploration techniques is related
to the treatment of the environment of the SDL system under analysis.
As an example, consider the situation during state space exploration
where asignal with an integer parameter can be received from the envi-
ronment. Since there is an infinite number of integer values, there will
be an infinite number of successors of the current system state: one
where the parameter valueis 0, one where the parameter valueis 1, etc.

Thisis obviously a situation that is not acceptable when performing
state space exploration. The SDL Validator alows three different strat-
egiesto avoid situations like this:

1. Create aclosed system by specifying the environment of the system
using SDL. Thiswill solve the problem but introduces anew one; it
is necessary to create an SDL model of the environment.

2. Specify the signalsthat can be sent from the environment to the sys-
tem. Thisisasimpleway to avoid the problem. By enumerating the
signalswith their parametersthat the environment can send, afinite
branching is guaranteed at each system state in the state space.

3. Usean MSCto guidethe state space exploration. Sincethe MSC de-
fines what signals the environment can send and their ordering, a
limited part of the state space can be explored.

The second strategy is the most common and the test value feature of
the Validator is designed to make it easy to define the signals from the
environment.

Test Values

When the Validator isstarted alist of signalsisautomatically computed
that will be used as the possible signals from the environment during
state space exploration. Thesignal list isgenerated based on the concept
of test values. Test values can be defined for data types and for signal
parameters. When generating the signal list the VValidator checks for
each signal that can come from the environment which test values are
defined for its parameters (or for the parameter datatypes). It then gen-
eratesone signal instance for each combination of test valuesfor the pa-
rameters.

Telelogic Tau 4.5 User's Manual 2375

Chapter 54 Validating a System

Each time the Validator isin a state where input from the environment
is possible during state space exploration, the list of signals defined by
the test values is consulted.

The default test values for the simple data types are:

Data Type Default Test Values
Integer -55, 0, 55
Boolean true, false

Real -55, 0, 55
Natural 0, 55
Character ‘a

Charstring “test”

Duration 0

Time 0

pId Environment Pld
Bit 0,1

Octet 00, FF

Bit string '01'B
Octet_string "00FF' H

For other datatypes, test values are determined according to the follow-
ing:

» Enumerated types: All valuesin the type

e Subranges of the predefined data types: All valuesin the range

e Structures: All combinations of the test values of the individual
fields

* Arrays: All combinations of the test values of the component type.

» Ref types: NULL + pointersto the test values for whatever the Ref
pointsto.

e Owntypes. NULL

2376 Teldlogic Tau 4.5 User's Manual July 2003

Defining Signals from the Environment

July 2003

« ORef types: NULL

Test Values Restrictions and Options
Two restrictions are posed on the computed test values:

» |If the number of test values for adatatype or signal parameter ex-
ceeds amaximum number, randomly chosen test valueswill be gen-
erated.

« If thenumber of signal instancesfor aparticular signal type exceeds
amaximum number, randomly chosen signal instances will be gen-
erated for this signal type.

Two commands exist for setting options related to the above restric-
tions:

» To define the maximum number of test values for any data type or
signal parameter, enter the command Define-Max-Test-V alues, fol-
lowed by the number of test values. The default is 10.

» To define the maximum number of signal instances for any signal
type, enter the command Define-Max-Signal-Definitions, followed
by the number of signal instances. The default is 10.

Note:

These options affect the state space; see Affecting the State Space”
on page 2389.

Defining and Listing Test Values

The default test values are defined to be useful for alarge number of ap-
plications, but they sometimes need to be modified. In some casesthere
are unnecessarily many test values and to enhance the performance of
the state space exploration some test values can be cleared. In other cas-
es the automatic test value generation cannot handle some of the data
types used, so the test values must be manually defined.

Changing the test values are therefore only needed if you would liketo
fine-tune the behavior of the Validator, or if the signals from the envi-
ronment have parametersthat are of auser-defined or unusual datatype.

Telelogic Tau 4.5 User's Manual 2377

Chapter 54 Validating a System

2378

Note:

Changing test values affectsthe state space; see Affecting the State
Space” on page 2389.

Test values can be defined and cleared on three “levels’: on datatypes,
onindividual signal parameters, and on signal instances. When test val-
ues are defined or cleared, thelist of signals from the environment isre-
generated. Y ou are recommended to define test values either on data
types and individual signal parameters, or on signal instances; do not
combine both these methods.

The monitor commands concerning test values are available in the Test
Values module in the Validator Ul.

Test Values for Data Types

The following commands operate on the test values for a data type
(sort).

» Todefine anew test value for a sort, enter the command
, or click the Def Value button. The parameters are the sort and the
value. Example:

integer 20

* Tolist the new test values defined for all sorts, enter the command
List-Test-Vaues, or click the List Value button.

» Toclear dl test values for a sort, enter the command
Clear-Test-Values, or click the Clear Value button. As parameter,
you either specify the sort, or ‘-" which means all sorts.

Test Values for Signal Parameters

The following commands operate on the test values for individual pa-
rametersto asignal.

* Todefineanew test value for asignal parameter, enter the com-
mand Define-Parameter-Test-Value, or click the Def Par button.
The parameters are the signal, the ordinal number of the signal pa-
rameter, and the value. Example:

Define-Parameter-Test-Value Score 1 -5

Telelogic Tau 4.5 User's Manual July 2003

Defining Signals from the Environment

July 2003

Tolistthenew test valuesdefined for all signal parameters, enter the
command List-Parameter-Test-Values, or click the List Par button.

To clear al test values for asignal parameter, enter the command
Clear-Parameter-Test-Values, or click the Clear Par button. Aspa-
rameter, you specify the signal and the ordinal number of the signal
parameter. You may use ‘-’ for the parameter number, which means
all signal parameters, or just ‘-’ for the signal, which meansall sig-
nal parametersfor all signals.

Test Values for Signal Instances

Thefollowing commands operate on the test valuesfor aspecific signal
instance.

To define anew set of test values for asignal instance, enter the
command Define-Signal, or click the Def Sgnal button. The param-
etersare the signal and an optional set of values for the parameters.
Multiple Define-Signal commands may be used to define several
signal instances of the same signal type, but with different values.
Example:

Define-Signal Test 10 ‘hello’ true
Define-Signal Test -5 ‘bye’

Note:

The signal s defined using this command are cleared when the signal
listisregenerated, e.g. if atest valueis defined for asort or asignal
parameter.

The command Extract-Signal-Definitions-From-M SC analyzes ba-
sicMSCsintextual form (with suffix .mpr) and extractsal signals
sent from the environment axes to the system axis. If asignal defi-
nition is found which does not already exist, it is added automatical -

ly by calling Define-Signal.

To list dl currently defined signal instances, enter the command
List-Signal-Definitions, or click the List Sgnal button.

To clear al test values for asignal type, enter the command
Clear-Signal-Definitions, or click the Clear Sgnal button. As pa-
rameter, you specify the signal, or ‘-’ which means all signals.

Telelogic Tau 4.5 User's Manual 2379

Chapter 54 Validating a System

2380

Saving Test Values

The current set of test values can be saved on file and later be recreated
by reading in the file again. The file will contain monitor commands
that recreates the saved set of test values and discards any other test val-
ues.

To savethetest values, enter the command Save-Test-Values, followed
by afile name. To read in the saved test values again, enter the com-
mand Include-File, followed by the file name.

Telelogic Tau 4.5 User's Manual July 2003

Validating Systems That Usethe Ref Generator

Validating Systems That Use the Ref
Generator

July 2003

The Ref generator (see “ The Ref Generator” on page 112 in chapter 2,
Data Types, in the SDL Suite Methodology Guidelines) isused to create
pointer structuresto be used in SDL systems. The Validator supports
the Ref generator, but imposes some restrictions on the usage of it due
to the specia requirements caused by state space exploration.

Variables that are defined to be Ref’ s to something can be used in two
ways, either as a pointer to some other variable or as a pointer to a dy-
namically allocated memory area. Both ways of using Ref types are
supported by the Validator.

To handle dynamically allocated data areas the Validator creates a spe-
cia data structure as part of each system state. This data structureisa
list of all dataareasallocated by a110c (the Ref operator that allocates
anew data area) and data areas allocated in external C code (see“Vali-
dating Systems with External C Code” on page 2382). Thelist contains
for each dataareain addition to the areaitself information about e.g. the
sort of the data area and the size of the data area. Whenever the Valida-
tor copies a system state, the list of dynamically allocated dataareasis
also copied and all Ref variables are set up corresponding to the new
copy of thelist.

Somerestrictions/simplificationsare needed when using Ref sortsinthe
Validator:

» Variables may not be defined to be of the VoidStar or VoidStarStar
sorts, since the Validator needs to know the sort and size of what is
pointed to. Thisis not known for VVoidStar and VoidStarStar sorts.

» A simplification is made when comparing two system states for
equival ence (both in exhaustive exploration and in the hash function
used by bit state exploration): Two Ref variables are considered
equivalent if the datathey are pointing to are equivalent. This may
in some cases prunethe search in situationswhereit should not have
been pruned. Note that equivalence testsin the SDL system works
correctly, if two Ref variables are compared using ‘=’ they are con-
sidered the same only if they contain the same pointer value.

Telelogic Tau 4.5 User's Manual 2381

Chapter 54 Validating a System

Note that the handling of pointersin the Validator introduces a signifi-
cant overhead that unfortunately reduces the number of transitions per
second that is executed by the Validator.

When performing state space exploration, the VValidator checks the us-
age of Ref variableswhen copying system states and reports several dif-
ferent types of problems including:

e memory leaks, and
» pointersto released or never allocated memory.

For moreinformation about the reports see “ REF Errors’ on page 2306
in chapter 53, The SDL Validator.

Validating Systems with External C Code

2382

the SDL suite allowsthe usage of external C codetogether with an SDL
system and thisisalso truefor the Validator. In many casesitispossible
todirectly usethe Validator on asystem that usesexternal C code. How-
ever, due to the special requirements of state space exploration, some
restrictions must hold for the external C code, and some modifications
may have to be done to the external code to make it functions properly
with the Validator.

To be able to perform a state space exploration it must be possible for
the Validator to make a complete copy of a system state, including all
data structures that are implemented directly in C code. The Validator
must also be able to modify each copy of asystem state separately. This
has some implications:

» variables defined in C code cannot be handled by the Validator,

» Cunions may not contain pointers, data types implemented by
pointers (like the SDL types string and bag) or SDL Plds, and

» some restrictions on the usage of pointers are needed since the C
pointersin SDL aretreated like Ref types (see”Vaidating Systems
That Use the Ref Generator” on page 2381).

If therearevariablesin C code, thiswill not be detected by the validator.
It may appear asif the Validator works, but the variables defined in C
codewill not be copied when the Validator copies asystem state. When
thevalue of avariableischanged by an action performed in one system

Telelogic Tau 4.5 User's Manual July 2003

Validating Systemswith External C Code

July 2003

state, this value will change the value for al system states that the Val-
idator currently handles. Thisimpliese.g. that when the Validator back-
tracks during an automatic exploration to test more possible successors
of aparticular system state, the values of variables defined in C may be
different from the values they had the previous time the system state
was visited and the state space exploration will not be correct.

In order to be ableto copy asystem state, the Validator must have exact
information about the sort of all data areas in the system to be able to
copy e.g. pointer-based data structures correctly. One consequence of
thisisthat the Validator cannot support the C union sort if the union
may contain pointer-based sorts, since the Validator cannot know the
current sort of the union and thus cannot deduce whether to treat the
union as apointer or not. SDL Plds are al so treated specially in the Val-
idator and can also not be part of a C union.

Pointers are frequently used in C code and when used together with the
SDL suitethey aretreated as the (nonstandard) SDL type Ref. The Val-
idator handles the Ref typesin a particular way (see“Validating Sys-
tems That Use the Ref Generator” on page 2381) and therestrictionson
variables of this sort also appliesto the usage of C pointersin datatype
in external C code.

When using dynamic memory allocation in extern C code some special
additions are needed for the Validator to work properly. Thisis needed
since the Validator keeps alist of al dynamically allocated data areas
aspart of each system state. If an external C function allocates memory,
the Validator must be informed about the data area that was allocated,
and the same holds when a C function releases memory. Thisis accom-
plished by calling two functions from the C code:

extern void UserMalloc (void *data) ;
extern void UserFree (void *data) ;

UserMalloc should be called when a data area has been allocated, and
UserFree should be called immediately before the data areaiis rel eased.
Both functions should have a pointer to the data area as parameter.

The purpose of UserMalloc isto insert anew element into the list of dy-
namically allocated data areasthat is maintained by the Validator. Note
that thereisno need to tell the VValidator what sort of datawas allocated
or itssize. Thisis handled automatically by the Validator simply by
finding the SDL entity (e.g. avariable) that points at the data area and
assuming that the sort and size given by thisentity is correct. If no SDL

Telelogic Tau 4.5 User's Manual 2383

Chapter 54 Validating a System

2384

entity can be found that pointsto the data area, thisis considered to be
an error and a Validator report is generated.

The purpose of the UserFree function isto inform the Validator that a
data area has been rel eased, and thus should be removed from thelist of
dynamically alocated data areas.

Thereexistsaspecial C macro XVALIDATOR_LIB that can beusedto
check in external C filesif the code is compiled together with the Vali-
dator kernel. It is thus possible to only include the calls to UserMal-
loc/UserFree when the C code is compiled together with the Validator
using this macro, asin the following example:

v = malloc(10);

#ifdef XVALIDATOR_LIB
UserMalloc((void *)v);
#endif

Telelogic Tau 4.5 User's Manual July 2003

Using User-Defined Rules

Using User-Defined Rules

July 2003

In the Validator, you may define a user-defined rule to be used during
state space exploration to check for properties of the encountered sys-
tem states. If a system state is found for which the user-defined rule is
true, areport will be generated. Note that only one user-defined rule
may be defined at atime.

Different Usages

There are three different situations in which a user-defined rule is use-
ful:

» To verify properties of the SDL system.

A user-defined rule describes properties of system states. By using
an automatic state space exploration, it isthus possible to verify the
existence of system states that satisfy the specified properties. If the
state spaceissmall enough to allow acomplete explorationitisalso
possible to verify that the state space does not contain any system
state with the specified property.

e To search for specific system states.

A user-defined rule makesit possibleto go to aspecific system state
in the state space without the need to use the navigating commands
of the validator monitor. By describing the desired state with arule
and using an automatic state space exploration, you can go directly
to the report that satisfied the rule. In this case, the report action for
the user-defined rule report should be set to Abort.

» Toreduce the state space to be explored.

For many SDL systems, the state space can be very large or evenin-
finite, which makesit difficult to perform a state space exploration
effectively. However, in many cases the state space contains large
subspacesthat for some reason are not interesting to explore. For in-
stance, they may be equivalent to other parts of the state space ex-
cept for the value of one particular variable. In such cases, a user-
defined rule can be used to restrict the exploration by defining sys-
tem states that are considered to be uninteresting. When such a state
isencountered, the explorationistruncated and continued in another
node.

Telelogic Tau 4.5 User's Manual 2385

Chapter 54 Validating a System

2386

Examples of Rules
An example of arule that checks a system property is:

exists P:Proc | P->var=12;

which istrue for all system states where there exists a process of type
“Proc” with avariable “var” that is equal to 12.

A simple example of arule that searches for a system state is:

state(initiator:1) =disconnected;
which istrue for al system states where the process instance
“initiator:1” isin the state “disconnected”.

A more complex example of such aruleis:
state (Game:1) =Winning and
sitype (signal (Game:1)) =Probe
whichistruefor all system stateswhere the state of the processinstance

“Game:1” isequal to “Winning” and the type of signal to be consumed
by the same process instance is “ Probe”.

An example of arule that reduces the state spaceis:

(Game:1->Count > 2) or (Game:1l->Count < -2)

which istrue for all system states where the absol ute value of the vari-
able“Count” in the process instance “Game:1" is greater than 2.

For afull description of the features and syntax of user-defined rules,
see “User-Defined Rules’ on page 2308 in chapter 53, The SDL Valida-
tor.

Managing User-Defined Rules

To define the user-defined rule, select Define Rule from the Commands
menu, or enter the command Define-Rul e, followed by the definition of
therule.

To clear the user-defined rule, enter the command Clear-Rule.

To print the definition of the current user-defined rule, enter the com-
mand Print-Rule.

To evaluate the user-defined rule in the current system state, i.e. to
check whether the ruleis satisfied, enter the command Evaluate-Rule.

Telelogic Tau 4.5 User's Manual July 2003

Using Assertions

Using Assertions

July 2003

Like most other run-time libraries to the SDL to C Compiler, the Vali-
dator library gives the user a possibility to define his own run-time er-
rorsor assertions. An assertionisatest that isperformed at run-time, for
example to check that the value of a specific variable is within the ex-
pected range. Assertionsare described by introducing #cope directives
with callsto the C function xassertError inaTASK. Seethefollow-
ing example.

Example 328: Assertion in C Code

TASK '’ /*#CODE
#ifdef XASSERT
if (#(I) < #(K))
xAssertError ("I is less than K");
#endif
*/

Inthe SDL Validator, the assertions are checked during state space ex-
ploration. Whenever xassertError iscalled during the execution of
atransition, areport is generated. The advantage of using thisway to de-
fine assertions, as opposed to using user-defined rules, isthat in-line as-
sertions are computed much more efficiently by the validator than the
user-defined rules.

The xassertError function, which has the following prototype:

extern void xAssertError (char *Descr)
takes a string describing the assertion as parameter and will produce an
SDL run-time error similar to the normal run-time errors. The function
isonly availableif the compilation switch X ASSERT isdefined. For the
standard librariesthisistrue for all libraries except the Application Li-
brary.

Telelogic Tau 4.5 User's Manual 2387

Chapter 54 Validating a System

Configuring the Validator

This section describe the various possibilities available to control the

behavior of the Validator using the options that can be defined for dif-
ferent features. The available options are grouped into a number of cat-
egories; each category and option will be described later in this section.

Managing Options

Each option can be set using amonitor command, usually named some-
thing similar to “ Define-<option>". Most options can also be set from
the menus Optionsl and Options2 in the Validator Ul. The monitor
command and menu choice associated with an option is listed together
with the description of the option.

If the options are changed during a session with the Validator, you will
be asked whether to save the options when you exit or restart the cur-
rently executing validator. If you save the options, the new values will
bestoredinafilenamed .valinit (on UNIX), O valinit.com (in
Windows), in the directory from where the SDL suite was started. This
filewill automatically be loaded the next time the Validator is started
from the same directory, thus restoring the previous options.

Some monitor commands operate on all the options:

e Toprintalist of al options and their current values, select
Show Options from either the Optionsl or Options2 menu, or enter
the command Show-Options. (A few of the options described here
arenot listed.)

» Toset al optionsto their predefined default values, click the
Default button in the Explore module, or enter the command
Default-Options. Note that this aso clears all reports.

» Tosetall optionsto their initial values, i.e. the values set when the
validator was started, click the Reset button in the Explore module,
or enter the command Reset.

2388 Teldlogic Tau 4.5 User's Manual July 2003

Configuring the Validator

Note:

Thiscommand also resetsthe validator completely and isequiv-
alent to restarting the validator from scratch. To just set the op-
tionsto their initial values without resetting the validator:

1. Set the optionsto their default values. See above.

2. Readinthefile .valinit (on UNIX), Or valinit.com (in
Windows); see above. Select Include Command Script from the
Commands menu, or enter the command Include-File.

Affecting the State Space

Some of the options affect, directly or indirectly, the size of the state
space and the structure of the behavior tree. Thiscan only be donewhile
being in the current root of the behavior tree, since the whole structure
of the tree may be affected. If such an option is changed when the vali-
dator isnot in the current root of the behavior tree, you have two choic-
es: either to change the current system state back to the current root, or
to redefine the current root to the current system state.

In this case, the following dialog is opened:

= Select
State space options changed.
Change root of behaviour tree to current system state :

ves
no

|
oK |

Figure 482: Changing the current root

To change the root to the current system state, select yes and click OK.
(In stand-alone mode, enter yes)

July 2003 Telelogic Tau 4.5 User's Manual 2389

Chapter 54 Validating a System

2390

To keep the current root and move back toit, select no and click OK. (In
stand-alone mode, enter no)

Note:

It isnot possible to cancel this operation, i.e. you haveto either
change the current root or the current system state.

Bit State Exploration Options

Bit state exploration is an efficient automatic state space exploration al-
gorithm for reasonably large SDL systems (for areference, see [16]). It
performsadepth-first search through the state space and usesabit array
to store the states that has been traversed during the search.

Every time a new system state is generated during the search, two hash
values are computed from the system state. The bit array is checked:

« If both of the positionsindicated by the hash values are already set,
the state is considered to have been previoudly visited. The search
of this particular path in the state space is pruned, and the search
backs up to a previous system state and continues el sewhere.

« If both of the positions are not set, the state is a new state that has
not been previoudly visited. Both position in the bit array are then
set and the search continues with the successor states.

Search Depth

The search depth isthe maximum depth the VValidator will explore apar-
ticular execution path in the state space. When this depth isreached, the
search is truncated and the search backs up to a previous system state.

» Default value: 100
* Command: Define-Bit-State-Depth
» Menu choice: Options2: Bit-Sate: Depth

Telelogic Tau 4.5 User's Manual July 2003

Configuring the Validator

July 2003

Hash Table Size

The size of the bit array used as hash table is an important factor defin-
ing the behavior of the bit state exploration. Thereasonisthat eachtime
anew stateis checked by comparing its hash values with previous hash
valuesthereisarisk for collision. The bigger the hash table is, the
smaller the collision risk is.

» Default value: 1,000,000 (bytes)
» Command: Define-Bit-State-Hash-Table-Size
e Menu choice: Options2: Bit-State: Hash Sze

Random Walk Options

Randomwalk is an automatic state space exploration algorithm that can
be useful for very large SDL systems. It performs a depth-first search
through the state space by selecting transitions to execute at random.

When the maximum search depth is reached during such a“random
walk,” the search is restarted from the original state again and a new
random walk is performed. However, there is no mechanism to avoid
that already explored paths are explored once more, i.e. asystem state
may be visited alarge number of times.

Search Depth

The search depth determines how many transitionswill be executed be-
fore the search is pruned and restarted from the beginning again.

e Default value: 100
¢ Command: Define-Random-Walk-Depth
* Menu choice: Options2: Random: Depth

Repetitions

The number of times the random walk search will be repeated from the
start state before the exploration is finished.

» Default value: 100
* Command: Define-Random-Walk-Repetitions
» Menu choice: Options2: Random: Repetitions

Telelogic Tau 4.5 User's Manual 2391

Chapter 54 Validating a System

Exhaustive Exploration Options

Exhaustive exploration is an automatic state space exploration ago-
rithm intended for small SDL systems where the requirements on cor-
rectness are very high.

The algorithm is a depth-first search through the state space similar to
the bit state search, but thereisno collision risk involved. Thereasonis
that all traversed system states are stored in primary memory, soitisal-
ways possible to determine whether anewly generated system state has
aready been visited during the search.

The drawback with the algorithm is that very much primary memory is
needed to be ableto store all traversed states. Thislimitsthe complexity
of the SDL systems the algorithm is applicable to.

Search Depth

The search depth isthe maximum depth the VValidator will explore apar-
ticular execution path in the state space. When thisdepth isreached, the
search is truncated and the search backs up to a previous system state.

e Default value: 100
e Command: Define-Exhaustive-Depth
e Menu choice: Options2: Exhaustive: Depth

MSC Verification Options

The MSC verification algorithm is abit state exploration that is adapted
to suit the needs of MSC verification:

AnMSC isawaysloaded to guide the search

» Thesearch depth is different from the depth used during usual bit
state exploration

* The searchis aborted as soon as the MSC has been verified.

2392 Teldlogic Tau 4.5 User's Manual July 2003

Configuring the Validator

Search Depth

The maximum depth searched by the algorithm. The intention is that
this depth always should be enough. If the M SC verification fails and
the number of truncationsis morethan O, thisdepth should be increased.

» Default value: 1,000
« Command: Define-M SC-V erification-Depth
* Menu choice: Not available

Timer Check Level

When verifying an MSC where there aretimersin the MSC and/or in
the SDL system, there is a choice of how to perform the matching be-
tween the timer eventsin the MSC and in the SDL system. The timer
check level determines how this matching should be done:

* 0: No checking of timer eventsis performed.

e 1:If atimer event exists in the M SC amatching timer event must
exist in the explored SDL path, but atimer event in the explored
SDL path is accepted even if there is no corresponding M SC timer
event.

e 2: All timer eventsin the M SC must match a corresponding timer
event in the explored SDL path, and vice versa.

The choice must be determined by the style of MSC that is used.

This option affects the state space; see “ Affecting the State Space” on
page 2389.

» Default value: 1
» Command: Define-Timer-Check-L evel
» Menu choice: Options2: MSC: Timer check level

July 2003 Telelogic Tau 4.5 User's Manual 2393

Chapter 54 Validating a System

2394

Report Options

For each report type, you can define the action performed when the re-
port is found and whether it should be reported to the user.

Report Action

The report action determines what action should be performed when a
report situation is encountered while performing state space explora-
tion. There are three possibilities:

» Continue: The search continues past the reported situation asiif it
never happened.

» Prune: The search is pruned and depending on the algorithm some
appropriate action istaken. For example, when using bit state explo-
ration, the search will back up one state and continue with the next
alternative transition, as if max search depth was reached and the
search truncated.

« Abort: The search is aborted and the command prompt displayed.

Note that for some report types, like Deadlock, the continue choiceis
impossible.

This option affects the state space; see “ Affecting the State Space” on
page 2389.

» Default value: Prunefor al report types

» Commands: Define-Report-Continue, Define-Report-Prune and
Define-Report-Abort

» Menu choices: Options2: Report: Continue, Options2: Report:
Prune and Options2: Report: Abort

Report Log

The report log setting defines whether the report should be recorded in
thelist of generated reports. If the report log is set to Off for aparticular
report type, these reports will never show up in the report list. Note
however that the report action still is performed, even though the report
isnot logged.

This option affects the state space; see “ Affecting the State Space” on
page 2389.

Telelogic Tau 4.5 User's Manual July 2003

Configuring the Validator

July 2003

» Default value: On for all report types
» Command: Define-Report-Log
» Menu choice: Options2: Report: Report log

Report Viewer Autopopup

When an automatic state space exploration isfinished, the Report View-
er isnormally started automatically to present the found reports. In
some casesthismay beinconvenient, so thereisapossibility toturnthis
feature off.

e Default value: On
* Command: Define-Report-Viewer-Autopopup
e Menu choice: Optionsl: Report Viewer Auto Popup

MSC Trace Options

When the Validator performs an M SC trace, you can define what types
of events that are traced.

Action Trace

By default, actionslike tasks, decisions, etc. are not shown in the MSC
trace. Y ou may change this by setting action trace to On.

» Default value: Off
e Command: Define-M SC-Trace-Action
* Menu choice: Not available

State Trace

By default, changes in process states are shown in the MSC trace by
adding a condition symbol. Y ou may change this by setting state trace
to Off.

e Default value: On
e Command: Define-M SC-Trace-State
* Menu choice: Not available

Telelogic Tau 4.5 User's Manual 2395

Chapter 54 Validating a System

2396

MSC Trace Autopopup

When you go to areport, an MSC Editor is normally started automati-
cally to present the trace from the current root to the state where the re-
port was generated. |n some cases this may be inconvenient, so thereis
apossibility to turn this feature off.

» Default value: On
» Command: Define-M SC-Trace-Autopopup
» Menu choice: Optionsl: MSC Trace Auto Popup

State Space Options

The structure and size of the state space that can be generated for any
given SDL system can be modified in a number of ways using the state
space options. The default values are defined to make the state space as
small as possible to makethe Validator immediately useful for as many
applications as possible. This, however, also means that the search per-
formed by the Validator isfairly scarce compared to what is possible.
Some error situations may thus be overlooked during the search if they
only occur in a part of the state space that never is reached.

Since these options affect the state space, note the information in “ Af-
fecting the State Space” on page 2389.

Transition Type

There are two alternatives possible for the type of a behavior tree tran-
sition during state space exploration:

» |t canbeequal to acomplete SDL process graph transition (the val-
ue“SDL” in the command)

e It can beapart of such an SDL transition (the value
“Symbol-Sequence” in the command).

If it isequal to an SDL process graph transition, whenever such atran-
sition is started, it is completed before anything else is allowed to hap-
pen. Thisimpliesthat all processinstancesin all system statesin the be-
havior tree will always be in an SDL process graph state.

If itisonly apart of an SDL process graph transition, atransitioninthe
behavior tree is considered to be a sequence of eventsthat are local to
the process instance, followed by a non-local event. Examples of local
events are tasks and decisions; examples of non-local events are creates

Telelogic Tau 4.5 User's Manual July 2003

Configuring the Validator

July 2003

and inputs/outputs of signals from/to other process instances. The idea
of this aternativeisto model the ITU semanticsfor SDL as closely as
possible while still allowing optimized performance during state space
exploration.

» Default value: SDL
* Command: Define-Transition
» Menu choice: Optionsl: State Space: Transition

Scheduling Algorithm

The scheduling algorithm defines which of the process instancesin a
system state will be allowed to execute. There are two possible aterna
tives:

» All of the process instances in the ready queue are allowed to exe-
cute (the value “All” in the command)

* Only thefirst processinstance in the ready queueis allowed to exe-
cute (the value “First” in the command).

The ready queue is a queue containing al process instances that have
received asignal that can cause an immediate transition, but that have
not yet had the opportunity to execute this transition to its end.

If all processinstances are allowed to execute, the semanticsof ITU rec-
ommendation Z.100 are modeled. There will be one child node to the
current node in the behavior tree for each processinstance in the ready
queue.

If only thefirst processinstanceis allowed to execute, the semantics of
an application that has been generated by the SDL to C Compiler are
modeled. There will only be one child node to the current node in the
behavior tree, the first process instance in the ready queue.

» Default value: First
» Command: Define-Scheduling
» Menu choice: Optionsl: State Space: Scheduling

Event Priorities

The events that are represented in a behavior tree can be divided into
five classes:

Telelogic Tau 4.5 User's Manual 2397

Chapter 54 Validating a System

* Internal events: Eventslocal to the processesin the system, e.q.,
tasks, decisions, inputs, outputs.

e Input from ENV: Reception of signals from the environment. The
signal is put in theinput port of a process instance or on a channel
queue.

» Timeout events: Expiration of SDL timers. The timer signal is put
in the input port of a process instance.

* Channel outputs: A signal isremoved from achannel queue and put
into another channel queue or the input port of a process instance

» Spontaneous transitions: A transition in a process caused by input
of none.

To each of these event classes a priority of 1, 2, 3, 4 or 5 is assigned.
These priorities are used during state space exploration to determine
which transitions should be generated from each system state. The
events with priority 1 arefirst considered. Only if no events with prior-
ity 1 are possiblein the current state, the events with priority 2 are con-
sidered. Only if no eventswith priority 1 or 2 are possiblein the current
state are events with priority 3 considered, etc.

Notethat also the setting of the symbol time option will have an impact
on the eventsthat will can be executed in each system state; see section
“Transition Time” on page 2399.

Thetwo most common ways of assigning prioritiesto event classes are:
« All event classes are assigned priority 1.

* Internal events and channel outputs are assigned priority 1, and ex-
ternal, timeout and spontaneoustransition events are assigned prior-
ity 2 (the default).

Thefirst alternative represents the situation where no assumptions can
be made about the time scale for the different types of events. The sec-
ond alternative represents a situation where the internal delays are very
short compared to the timeout durations and execution speed of the en-
vironment.

» Default value: Priorities 1,2, 2,1, 2
* Command: Define-Priorities
» Menu choice: Optionsl: Sate Space: Priorities

2398 Teldlogic Tau 4.5 User's Manual July 2003

Configuring the Validator

July 2003

Transition Time

A common simplification made in the analysis of SDL systemsisto

consider the time it takes for a process to execute a symbol, e.g. an ac-
tion or output, to be zero. Thistimeis of course never zeroin areal sys-
tem, but in many casesthetimeisvery small compared to the timer du-
rations in the system, and can be neglected when analyzing the system.

Consider for example a situation where a process sets atimer with adu-
ration 5 and then executes something that may take along time, e.g. a
long loop, and then sets a timer with duration 1. If symbol timeis as-
sumed to be zero, the second timer will alwaysexpirefirst. If considered
to be non-zero, any one of the timers can potentially expire first.

The validator allows the user to choose whether to assume that the exe-
cution time for SDL symbolsis zero or undefined using the Define-
Symbol-Time command.

» Default value: Zero
e Command: Define-Symbol-Time
* Menu choice: Optionsl: Sate Space: Symbol time

Channel Queues

The Validator allows queues to be attached to and removed from all
channelsinthe SDL system. If aqueueisadded for achannd, itimplies
that when asignal is sent transported on this channel it will be put into
the queue associated with the channel. Then there will be a separate
transition in the state space that represents the forwarding of the signal
to the receiver (or the next channel queue).

» Default: No channels have queues
» Command: Define-Channel-Queue
» Menu choice: Optionsl: State Space: Channel queues

Maximum Input Port Length

Thelength of theinput port queuesis not infinitein the Validator, since
in practiceit islikely to be adesign error if the queues grow forever. If
the length of a queue exceeds the defined max length during state space
exploration, a“MaxQueuelength” report is generated.

» Default value: 3
e Command: Define-Max-Input-Port-L ength
* Menu choice: Optionsl: Sate Space: Input port length

Telelogic Tau 4.5 User's Manual 2399

Chapter 54 Validating a System

2400

Maximum Transition Length

To make it possible to detect infinite loops within atransition in the
state space, the maximum number of SDL symbols allowed to be exe-
cutedinonetransitionisdefined. If thisnumber isexceeded during state
space exploration, a“MaxTransLen” report is generated.

» Default value: 1,000
e Command: Define-Max-Transition-L ength
» Menu choice: Optionsl: State Space: Transition length

Maximum Number of Instances

To avoid infinite chains of create actions in the state space, the Valida-
tor uses amax number of allowed processinstancesfor any type. If this
number is exceeded during state space exploration, a“Create” report is
generated.

* Default value: 100
e Command: Define-Max-Instance
* Menu choice: Optionsl: Sate Space: Max instance

Maximum State Size

When the Validator is exploring the state space, an internal buffer is
used to store the system states. The size of this buffer defines the max-
imum size of the system states that the Validator can handle.

» Default value: 100,000 (bytes)
e Command: Define-Max-State-Size
» Menu choice: Optionsl: Sate Space: Max state size

Timer Progress

Onetest that can be made with the Validator isto look for non-progress
loops, i.e. loopsin the state space without any progress being made. The
intention with thistest isto look for situationswhere the SDL systemis
busy doing internal communication but to an outside observer looks
dead.

Thisoption definesif the expiration of atimer is considered as progress
when performing non-progress loop checking. See also “Non Progress
Loop Error” on page 2304 in chapter 53, The SDL Validator.

Telelogic Tau 4.5 User's Manual July 2003

Configuring the Validator

July 2003

» Default: On (timer expiration is considered to be progress)
» Command: Define-Timer-Progress
» Menu choice: Optionsl: Sate Space: Timer progress

Spontaneous Transition Progress

Onetest that can be made with the Validator isto look for non-progress
loops, i.e. loopsin the state space without any progress being made. The
intention with thistest isto look for situationswherethe SDL systemis
busy doing internal communication but to an outside observer looks
dead.

This option definesif aspontaneous transition is considered as progress
when performing non-progress loop checking. See aso “Non Progress
Loop Error”_on page 2304 in chapter 53, The SDL Validator.

» Default: On (spontaneous transition is considered to be progress)
* Command: Define-Spontaneous-T ransition-Progress
* Menu choice: Not available

Autolink Options

See section “ Computing Test Cases’ on page 1412 in chapter 36, TTCN
Test Suite Generation for a discussion of the Autolink options.

Setting Advanced Options

Advanced options can be set for state space explorations to achieve a
much larger state space than the default, thus allowing for special kind
of errorsto be detected. See “Using Advanced Validation” on page
2351 for more information.

To set advanced options, click the Advanced button in the Explore mod-
ule. This executes the following set of commands:

Define-Scheduling All
Define-Priorities 1 1 1 1 1
Define-Max-Input-Port-Length 2
Define-Report-Log MaxQueuelength Off

The reasoning behind these settings are:

» Thescheduling should beset to All, sincewein thiscasearelooking
for signal races and a characteristic property of signal race condi-
tionsisthat they are depending on the ordering of internal events.

Telelogic Tau 4.5 User's Manual 2401

Chapter 54 Validating a System

e Thepriorities should be set to 1 for al types of events.

» Toreducethe size of the state space, the maximum queue length
should be set to avery small number. The reason is that when the
environment isallowed to send signal sto the system at any time, the
gueuesthat canreceive signalsfrom theenvironment will grow very

rapidly.

» Sincealot of maximum queue length reportswill be generated with
these options, the report log for thisreport should be set to Off. Note
also that the report action for this report should be Prune (which is
the default).

References

[16] Holzmann, G.J:

Design and Validation of Computer Protocols
Prentice-Hall, 1991

ISBN 0-13-539834-7

2402 Teldlogic Tau 4.5 User's Manual July 2003

	54 Validating a System
	Introduction
	Application Areas
	Structure of a Validator

	Underlying Principles and Terms
	Behavior Trees
	State Space Explorations
	States and Paths

	Generating and Starting a Validator
	Generating a Validator
	Starting a Validator
	Graphical Mode
	Stand-alone Mode (Textual Mode)

	Quick Start of a Validator
	Restarting a Validator
	Supplying Values of External Synonyms
	Actions on Validator Start-up

	The Validator User Interface
	Activating the Monitor
	The Graphical Interface
	The Command and Watch Windows

	Navigating in the State Space
	Moving Up in the Behavior Tree
	Moving Down in the Behavior Tree
	Moving Along the Current Path
	Redefining the Current Root

	Going to a System State
	Using Manual Navigation
	Returning to an Already Reached State
	Using Path Commands
	Using the Command Log
	Using MSC Trace

	Using an MSC
	Using a User-Defined Rule

	Tracing, Logging and Viewing Facilities
	Tracing the Execution
	Textual Trace
	Graphical SDL Trace
	MSC Trace

	Logging the User Interaction
	Examining the System
	Current Process and Scope
	Commands to Examine the System

	Performing Automatic State Space Explorations
	Executing an Exploration
	Rules Checked During Exploration
	Interpreting Exploration Statistics
	Examining Reports
	Changing the Displayed Structure
	Going to a Report

	Validating an SDL System
	Using a Default Exploration
	Determining if the Validation is Finished
	Handling Low Symbol Coverage
	Using Advanced Validation

	Validating Large Systems
	Decomposed Exploration
	Where to Start a Partial Exploration
	How to Limit a Partial Exploration

	Using MSCs to Limit the Search
	More Efficient Bit-State Exploration
	Reducing the State Space Size
	Local Variable Values
	Number of Process Instances
	Size of Large Data Structures
	Variables Not Influencing the Dynamic Behavior

	Using Random Walk Exploration
	Incremental Validation

	Verifying an MSC
	Basic MSC Verification
	Converting Instances Before Verification
	Verifying a Combination of MSCs Using High- Level MSCs
	State of the Validator after MSC Verification
	Using Batch MSC Verification
	Verifying Message Parameters
	Requirements for MSC Verification

	Using Observer Processes
	The Access Abstract Data Type

	Defining Signals from the Environment
	Test Values
	Test Values Restrictions and Options
	Defining and Listing Test Values
	Test Values for Data Types
	Test Values for Signal Parameters
	Test Values for Signal Instances
	Saving Test Values

	Validating Systems That Use the Ref Generator
	Validating Systems with External C Code
	Using User-Defined Rules
	Different Usages
	Examples of Rules
	Managing User-Defined Rules

	Using Assertions
	Configuring the Validator
	Managing Options
	Affecting the State Space
	Bit State Exploration Options
	Search Depth
	Hash Table Size

	Random Walk Options
	Search Depth
	Repetitions

	Exhaustive Exploration Options
	Search Depth

	MSC Verification Options
	Search Depth
	Timer Check Level

	Report Options
	Report Action
	Report Log
	Report Viewer Autopopup

	MSC Trace Options
	Action Trace
	State Trace
	MSC Trace Autopopup

	State Space Options
	Transition Type
	Scheduling Algorithm
	Event Priorities
	Transition Time
	Channel Queues
	Maximum Input Port Length
	Maximum Transition Length
	Maximum Number of Instances
	Maximum State Size
	Timer Progress
	Spontaneous Transition Progress

	Autolink Options
	Setting Advanced Options

	References

