
July 2003 Telelo

Chapter
54 Validating a System
This chapters provides general information related to validation in
the SDL suite and describes the actions you perform when validat-
ing an SDL system.

For a reference to the validator user interface, see chapter 53, The
SDL Validator.

How to use Autolink, a part of the SDL Validator, is described in
“Using Autolink” on page 1393 in chapter 36, TTCN Test Suite Gen-
eration.
gic Tau 4.5 User’s Manual ,um-st1 2319

Chapter 54 Validating a System
Introduction

Application Areas
The Validator is a tool intended to support engineers involved in devel-
opment of specifications or designs using SDL. It is designed to give the
engineers a possibility to increase the quality of their work and to auto-
mate time-consuming tasks. It is focused on the following major appli-
cation areas in the development process:

• It provides an automated fault detection mechanism that checks the
robustness of the application and finds inconsistencies and prob-
lems in an early stage of development. This is often referred to as
validating an SDL system. See “Validating an SDL System” on
page 2347.

• When verifying the system against requirements, the Validator pro-
vides a possibility to perform automatic verification of the require-
ments expressed using the MSC (Message Sequence Chart) nota-
tion. See “Verifying an MSC” on page 2360.

• When designing safety-critical or complex systems the Validator
provides a possibility to test specific properties of the design. See
“Using Observer Processes” on page 2367.

• When developing TTCN test cases, the Autolink feature of the Val-
idator can be used to create and use MSC test purposes and to gen-
erate TTCN test cases. See “Using Autolink” on page 1393 in chap-
ter 36, TTCN Test Suite Generation.

Structure of a Validator
An executable validator is built up in the same way as a simulator. See
“Structure of a Simulator” on page 2166 in chapter 51, Simulating a
System for more information.

The same interactive monitor system as for a simulator is used, but the
set of available commands differ. The graphical user interface to the
validator monitor, the Validator UI, works in the same way as the Sim-
ulator UI, but the set of available command buttons differ. For a descrip-
tion of some other differences, see “The Validator User Interface” on
page 2328.
2320 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Underlying Principles and Terms
Underlying Principles and Terms
The SDL Validator is based on a technique called state space explora-
tion, which is a well-known technique for automatic analysis of distrib-
uted systems. All state space exploration tools for SDL are based on the
idea of an automatic generation of the reachable state space for the SDL
systems.

For readers interested in a more detailed description of the possibilities
given by state space exploration for validation of distributed systems
(focused on protocols), an excellent description is given in [16], see
“References” on page 2402.

Behavior Trees
The SDL Validator operates on structures known as behavior trees or
reachability graphs. A behavior tree is a tree structure that represents the
behavior of an SDL system.

The nodes of the tree represent SDL system states. A system state is de-
fined by:

• The process instances that are active
• The variable values of these processes
• The SDL control flow state of the process instances
• Any procedure calls (with local variables etc.)
• Signals (with parameters) that are present in the queues of the sys-

tem
• Active timers
• Etc.

The edges between the nodes in the tree represent atomic SDL events
that transfers the SDL system from one system state to another. There-
fore, the edges are also called behavior tree transitions. They can be in-
dividual SDL statements like tasks, inputs, outputs, etc. but also com-
plete SDL transitions, depending on how the Validator is configured.

The size and structure of the behavior tree can thus vary and is deter-
mined by a number of Validator options. These options affect the num-
ber of system states generated for an SDL transition, and the number of
possible behavior tree transitions from a state in the tree.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2321

Chapter 54 Validating a System
State Space Explorations
The set of all system states represented by the behavior tree is called the
state space of the system. By moving around in the behavior tree, the
behavior of the SDL system can be explored and the system states
reached can be examined. This is known as state space exploration, and
it can be performed both manually and automatically.

For each system state reached during state space exploration, a number
of rules are checked to detect errors or possible problems in the SDL
system. If a rule is violated, a report is generated to the user. By inves-
tigating the report and the system state where it was generated, the cause
of the error can be determined.

States and Paths
The original start state of the system is called the system start state. It is
the system state where the static process instances have been created but
their initial start transitions have not been executed.

The current state is the system state that currently is under investiga-
tion. It is changed when manually navigating in the behavior tree, or
when going to the system state where a report has been generated. Ini-
tially, it is set to the system start state.

The current root of the behavior tree can be any system state. A number
of Validator commands and features use it as a starting point of opera-
tion. Initially, it is set up to the system start state, also known as the orig-
inal root of the behavior tree. If it is redefined, it is not possible to reach
a state above the current root in the behavior tree without resetting it
back to the original root.

A path between two states in the behavior tree can be denoted by a se-
quence of integers, each one indicating which transition was used to get
between two states in the path. The current path is a path that is set up
when manually navigating in the behavior tree, or when going to the
system state where a report has been generated. When set up, it is the
path between the current root and the current state. The current path is

Note:

The “children” of a node in the behavior tree are not generated until
a state space exploration actually reaches that node, i.e., the tree is
not a static structure generated when a validator is started.
2322 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generating and Starting a Validator
changed when the Validator moves to a state that is not part of the cur-
rent path, e.g. when manually navigating to a system state outside of the
current path. However, moving up and down along the current path does
not change it.

Generating and Starting a Validator
There are two ways to generate and start a validator:

• A quick way in one single step, adequate for most situations

• A more complex way in several steps, giving you complete control
of the generation and start process.

In the following, the more complex way will be described first, to give
a full understanding of the process. The quick way is described in
“Quick Start of a Validator” on page 2325.

Generating a Validator
The Validator is implemented as a precompiled run-time kernel to the
SDL to C Compiler. To start a Validator for an SDL system, or a part of
an SDL system, it is thus necessary to first generate an executable vali-
dator. This is done from the Organizer.

To generate an executable validator:

1. Select a system, block, or process diagram in the Organizer.

2. Select Make from the Generate menu. The Make dialog is opened.

3. Turn on the options Analyze & generate code and Makefile.

4. From the Standard kernel option menu, select Validation.

5. If you need to check the Analyzer options, click the Analyze Options
button. In the dialog, set the options and click the Set button. For
more information about these options, see “Analyzing Using Cus-
tomized Options” on page 2548 in chapter 56, Analyzing a System.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2323

Chapter 54 Validating a System
6. Click the Make button.

A validator for the system is now generated in the current directory
with the name <system>_xxx.val (on UNIX), or
<system>_xxx.exe (in Windows), where the _xxx suffix is plat-
form or kernel/compiler specific. The Status Bar of the Organizer
reports the progress of the generation; the last message should be
“Compiler done.”

7. Open the Organizer Log window from the Tools menu and check
that no errors occurred and that a validator was generated.

– If errors were found, correct them and repeat the generation pro-
cess. See “Locating and Correcting Analysis Errors” on page
2554 in chapter 56, Analyzing a System.

– If no validator was generated, repeat the generation process, but
click the Full Make button in the Make dialog instead.

Starting a Validator
An executable validator can be run in two different modes; graphical
mode and stand-alone mode (textual mode).

Graphical Mode

In graphical mode, the Validator takes advantage of the graphical user
interface and integration mechanism of the SDL suite. A separate
graphical user interface, the Validator UI, is started, giving access to the
monitor system through the use of menus, command buttons, etc.

To start a validator in graphical mode:

1. Select SDL > Validator UI from the Organizer’s Tools menu. The
graphical user interface of the Validator is opened (see “The Graph-
ical Interface” on page 2328).

2. Select Open from the Validator UI’s File menu. A File Selection Di-
alog dialog is opened.

– Alternatively, click the Open quick button in the tool bar.

3. In the dialog, locate and select an executable validator and click OK.

A welcome message is printed in the text area of the Validator UI. The
monitor system is now ready to accept commands. Please see “Supply-
ing Values of External Synonyms” on page 2326 for some additional in-
formation that may affect the start-up.
2324 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generating and Starting a Validator
Stand-alone Mode (Textual Mode)

In stand-alone mode, the Validator uses the input and output devices
currently defined on your computer, which provide a textual, command-
line based user interface. A very limited graphical support is provided
when running the Validator in this mode.

To start a validator in stand-alone mode, the generated validator is exe-
cuted directly from the OS prompt, e.g.

csh% ./system_vla.val

A welcome message is printed on the terminal:

Welcome to SDL VALIDATOR

Command :

The monitor system is now ready to accept commands. Please see “Sup-
plying Values of External Synonyms” on page 2326 for some additional
information that may affect the start-up.

Quick Start of a Validator
A validator can also be generated and automatically started in graphical
mode in one single step.

To quick start a validator, click the Validate quick button in the Orga-
nizer’s tool bar. The following things happen:

• A validator is generated by using the validator kernel that is speci-
fied in the Make dialog. (If no validator kernel is specified, a default
validator kernel is used.)

Note:

On UNIX, before a validator can be run in stand-alone mode, you
must execute a command file from the operating system prompt.
The file is called telelogic.sou or telelogic.profile and is
located in the binary directory that is included in your $path vari-
able.
For csh-compatible shells: source <bin.dir>/telelogic.sou
For sh-compatible shells: . <bin.dir>/telelogic.profile
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2325

Chapter 54 Validating a System
• The graphical Validator UI is started. If a Validator UI with the
same validator name is already open, this UI is reused. If another
Validator UI is open, a dialog is opened where you can select to start
a new UI, or to reuse one of the existing UI’s.

• The generated validator is started from the Validator UI.

It is possible to start a validator for a part of an SDL system (a block or
a process) by selecting the block/process and then clicking on the Vali-
date button.

Restarting a Validator
An executing validator can be restarted from the beginning to reset its
state completely:

• In graphical mode, select Restart from the Validator UI’s File
menu. (This is the same as opening the same validator again.) A
confirmation dialog is opened.

• In stand-alone mode, the validator has to be exited with the Exit
command and then executed from the OS prompt again.

Supplying Values of External Synonyms
The SDL system for the validator may contain external synonyms that
do not have a corresponding macro definition (see “External Syn-
onyms” on page 2580 in chapter 57, The Cadvanced/Cbasic SDL to C
Compiler). In that case, you will be asked to supply the values of these
synonyms, either by selecting a file with synonym definitions or by en-
tering each synonym value from the keyboard.

In stand-alone mode, the following prompt appears:

External synonym file :

Enter the name of a file containing synonym definitions, or press
<Return> to be prompted for each synonym value.

In graphical mode, a file selection dialog is opened. Either select a file
(*.syn) containing synonym definitions, or press Cancel to be prompt-
ed for each value in a separate dialog. In this dialog, the name and type
of the synonym is shown together with an input text field. You can now
do one of the following:
2326 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generating and Starting a Validator
• Enter a value and click OK.

• Click Default value to get a “null” value for the synonym type en-
tered in the input field. Accept or edit this value and click OK.

• Click Cancel to give the synonym a “null” value (without the pos-
sibility to edit the value).

• Click Cancel all to give the synonym and all following synonyms a
“null” value.

If a synonym file is selected in the file selection dialog, this file is also
used when the validator is restarted. (If you by any chance want to use
another synonym file you have to start a new Validator UI.)

If you set the environment variable SDTEXTSYNFILE to a file before
starting the SDL suite, this file will automatically be used. If SD-
TEXTSYNFILE is set to “[[“ all synonyms are given “null” values.

The syntax of a synonym file is described in “Reading Values at Pro-
gram Start up” on page 2581 in chapter 57, The Cadvanced/Cbasic SDL
to C Compiler.

Actions on Validator Start-up
When a validator is started, the static process instances in the system are
created, but their initial transitions are not executed.

In some cases when the Validator is started, a message is printed that it
is not possible to generate test values for all sorts and/or signal param-
eters. This has to do with the automatic test value generation mecha-
nism that is used in the Validator. It happens if there are signals coming
from the environment of the SDL system that have parameters of a sort
that the test value generation cannot handle. To overcome this, define
some test values for the sort that the Validator is complaining about. See
“Defining Signals from the Environment” on page 2375 for more infor-
mation.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2327

Chapter 54 Validating a System
The Validator User Interface
Monitor commands in the Validator are issued in the same way as in the
Simulator, since the same monitor system is used in both tools. Also, the
Validator UI works in the same way as the Simulator UI. Please see “Is-
suing Monitor Commands” on page 2173 for more information.

The Validator UI can be customized in the same way as the Simulator
UI. Please see “Customizing the Simulator UI” on page 2181 for more
information.

However, there are a few differences between the user interface of the
Validator and the Simulator. These differences are described below.

Activating the Monitor
The validator’s monitor system becomes active when the validator is
started, when a transition executed during navigation has completed,
when an automatic state space exploration has finished, when a report
with Abort action has been generated, or when an automatic state space
exploration is manually stopped.

These conditions are listed in greater detail in “Activating the Monitor”
on page 2231 in chapter 53, The SDL Validator.

The Graphical Interface
The graphical Validator UI is illustrated in the figure below:
2328 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Validator User Interface
Since the set of available commands differ between the Simulator UI
and the Validator UI, the set of button modules and command buttons
is also different. In addition, three extra menus are available in the menu
bar: Commands Menu, Options1 Menu and Options2 Menu. The menu
choices in these menus are similar to the command buttons in the sense
that each of them correspond to a certain monitor command.

The Command and Watch Windows
The Command and Watch windows are also available in the Validator
UI. The difference compared to the Simulator UI is:

• In the Command window, the default commands that are executed
are “List-Process -” and “Print-Trace 1”.

Figure 477: The Validator UI
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2329

Chapter 54 Validating a System
Navigating in the State Space
The SDL Validator provides the possibility to interactively walk around
in the behavior tree of an SDL system. This is also known as manually
navigating in the state space. A dedicated graphical tool, the Navigator,
is available in the Validator to facilitate manual navigating. However, it
is possible to use manual navigation without using the Navigator tool.

The Navigator is intended to be used in three different situations:

1. When learning how a state space exploration tool like the Validator
works, the Navigator is a convenient tool for interactively investi-
gating the behavior tree of an SDL system.

2. When using automatic state space exploration, there is sometimes a
need to start the exploration from a different starting point than the
system start state of the SDL system. In this case, the Navigator can
be used to walk to a suitable system state, from which the automatic
exploration can be started.

3. When investigating a report generated during automatic explora-
tion, the Navigator can be used to check the alternative behaviors
that are possible on the path to the reported situation.

To open the Navigator tool, use one of the following methods:

• Select Show Navigator from the Commands menu.

• In the button module Explore, click the Navigator button.

• Enter the command Show-Navigator.
2330 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Navigating in the State Space
The boxes shown in the Navigator represent the behavior tree transi-
tions leading to and from the current system state. They are labelled
Up 1 (for the transition leading to the current state) and Next 1, Next 2,
etc. (for the transitions leading from the current state).

To close the Navigator, click the Close quick button in the tool bar.

Moving Up in the Behavior Tree
To move one level up in the behavior tree, use one of the following
methods:

• In the Navigator, double-click the Up node, or select Up 1 from the
pop-up menu available on the Up node.

• In the button module Explore, click the Up button.

• Enter the command Tree-Walk 1.

To move more than one level up in the behavior tree at once:

• Enter the command Tree-Walk, followed by the number of levels to
move up.

Figure 478: The Navigator
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2331

Chapter 54 Validating a System
To move to the current root of the behavior tree, i.e. the top of the cur-
rent path, use one of the following methods:

• In the Navigator, select Up to top from the pop-up menu available
on the Up node.

• In the button module Explore, click the Top button.

• Enter the command Top.

Moving Down in the Behavior Tree
To see the possible Next nodes when the Navigator is not opened, enter
the command List-Next. This gives a numbered list of all transitions
leading from the current state.

To move one level down in the behavior tree, use one of the following
methods:

• In the Navigator, double-click one of the Next nodes, or select Goto
from the pop-up menu available on the Next nodes. This will follow
the branch one step.

• Enter the command Next, followed by the number of the Next node,
i.e. the number of the transition to execute.

To move more than one level down in the behavior tree at once:

• Enter the command Random-Down, followed by the number of lev-
els to move down. For each level, a transition is chosen at random.

• Enter the command Continue-Until-Branch, or in the Navigator, se-
lect Continue from the popup menu available on the Next nodes.
This will follow the branch several steps until there are more than
one transition possible

Moving Along the Current Path
The current path can be seen as the path in the behavior tree that has
been explored last. It is set up when going to a report (see “Going to a
Report” on page 2346) and when interactively walking down the behav-
ior tree.
2332 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Navigating in the State Space
The transitions making up the current path are labelled with three aster-
isks “***” in the nodes in the Navigator. However, no such marking is
present when the transitions are listed with the List-Next command.

To move up along the current path, use the Up or Top commands as de-
scribed in “Moving Up in the Behavior Tree” on page 2331 (above).

To move one level down along the current path, use one of the following
methods:

• In the Navigator, double-click the Next node labelled with three as-
terisks “***”, or select Goto from the pop-up menu available on this
node.

• In the button module Explore, click the Down button.

• Enter the command Down 1.

To move more than one level down along the current path at once, enter
the command Down, followed by the number of levels to move down.

To move to the bottom of the current path, use one of the following
methods:

• In the button module Explore, click the Bottom button.

• Enter the command Bottom.

Redefining the Current Root
The current root of the behavior tree is initially set up to the system start
state. The current root is automatically redefined to the current state
when using MSC verification (see “Verifying an MSC” on page 2360).
It can also be redefined as an effect of changing validator options (see
“Affecting the State Space” on page 2389).

In addition, you can at any time redefine the current root to either the
current state or back to the system start state. To do this, enter the com-
mand Define-Root. Select or enter Current to redefine the current root
to the current state. Select or enter Original to redefine the current root
to the system start state.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2333

Chapter 54 Validating a System
Going to a System State
When using the Validator it is quite common that there is a need to go
to a specific system state, for instance to be able to start an automatic
state space exploration from this point. This section describe some pos-
sibilities to in an efficient way get to the wanted system state, called the
target state below.

Using Manual Navigation
In many cases the simplest way is to use the Navigator tool or the nav-
igation commands to interactively traverse the path to the target state.
Manual navigation is described in “Navigating in the State Space” on
page 2330.

Returning to an Already Reached State
It is possible to return to a state that has been reached in an earlier stage
when using the Validator. Three methods will be discussed:

• Using Path Commands
• Using the Command Log
• Using MSC Trace.

The benefit of the first two techniques is that the exact same target state
will be reached. The drawback is that these techniques will not work as
soon as either the SDL system or the state space options have been
changed (see “State Space Options” on page 2396).

The benefit of the MSC technique is that it is less vulnerable to changes
in the state space options or in the SDL system. The drawback is that the
exact same target state may not be reached. We only know that the path
to the reached system state will satisfy the generated MSC trace.

Using Path Commands

To go to the target state using path commands:

1. When in the target state, enter the command Print-Path. The path
from the root state to the current state is printed. The path is a se-
2334 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Going to a System State
quence of integers indicating which transitions must be chosen to
get to the current state.

2. At a later stage, enter the command Goto-Path, followed by the path
printed above.

Using the Command Log

To go to the target state using the command log:

1. Before navigating to the target state, select Start Command Log
from the Log menu, or enter the command Command-Log-On.
Specify a file name on which all subsequent monitor commands will
be stored.

2. Navigate to the target state.

3. Select Stop Command Log from the Log menu, or enter the com-
mand Command-Log-Off. The command logging is stopped and the
file is closed.

4. Return to the same state in which the command log was started.

5. Execute the commands stored in the file by selecting Include Com-
mand Script from the Commands menu, or enter the command
Include-File. Select or specify the earlier file name.

Using MSC Trace

To go to the target state using MSC trace:

1. When in the target state, generate an MSC trace from the root state
to the current state. Enter the command MSC-Log-File, followed by
a file name.

2. Return to the root state by using the Top command.

3. Go to the end of the MSC trace by verifying the MSC. See “Verify-
ing an MSC” on page 2360.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2335

Chapter 54 Validating a System
Using an MSC
If an MSC is created that describes the events leading to the target state,
verifying this MSC gives a possibility to go to a system state that satis-
fies the MSC in an efficient way. It does not matter if the MSC is man-
ually created, generated from the Simulator or from the Validator itself
(as discussed in “Using MSC Trace” on page 2335, above). However,
the exact same target state may not be reached by this method. We only
know that the path to the reached system state will satisfy the generated
MSC trace.

Using a User-Defined Rule
If the target state can be described in terms of process states, variable
values, etc., a convenient way to get to a state that satisfies the descrip-
tion is to use a user-defined rule (see “Using User-Defined Rules” on
page 2385).

To go to a target state using a user-defined rule:

1. Define the rule describing the target state (see “Managing User-De-
fined Rules” on page 2386).

2. Define the report action for user-defined rules reports to be Abort
(see “Report Action” on page 2394). This will cause an automatic
exploration to stop as soon as a state is reached that satisfies the rule.

3. Start an automatic state space exploration (see “Using a Default Ex-
ploration” on page 2347).

4. Go to the state where the rule was satisfied and a report was gener-
ated (see “Going to a Report” on page 2346).

The benefit with this method is that it is fast and efficient, especially if
the target state is on a considerable depth in the state space. The draw-
back is that sometimes there are shorter paths to the target state than the
one that was automatically generated.
2336 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Tracing, Logging and Viewing Facilities
Tracing, Logging and Viewing Facilities
In the Validator, the same kind of commands as in the Simulator are
available for tracing the execution, logging the user interaction and ex-
amining the system. There are a few differences, described below.

Tracing the Execution

Textual Trace

In the Validator, the same type of printed trace information is available
for executed transitions as in the Simulator; see “Textual Trace” on
page 2187. Unlike the Simulator, however, there is no command to start
continuously printing the textual trace; instead, a command must be ex-
plicitly used whenever a trace is wanted.

• To print a textual trace for the transitions leading to the current state,
enter the command Print-Trace, followed by the number of transi-
tions to trace. That is, Print-Trace 1 prints the trace for the latest
transition. The same information as for a full trace during simula-
tion is printed.

• By default, the command Print-Trace 1 is executed in the Command
window of the Validator UI, i.e., a continuous trace is in practice
available in graphical mode.

Graphical SDL Trace

Graphical trace of SDL symbols in the source GR diagrams is available.
The graphical trace in the Validator selects all symbols that were exe-
cuted in the transition leading to the current state. This is different from
the Simulator, where GR trace selects the next symbol to be executed.

• To enable or disable continuous graphical trace, enter the command
SDL-Trace. This command toggles the graphical trace; the current
state of the trace is printed after the command is executed. When the
trace first is enabled, an SDL Editor is opened as soon as the next
transition is executed.

• In the Validator UI, the graphical trace can be controlled from the
Commands menu. The command Toggle SDL Trace toggles the
trace between enabled and disabled.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2337

Chapter 54 Validating a System
MSC Trace

MSC trace enables tracing of executed events in an MSC Editor. When
the trace first is enabled, an MSC Editor is opened, showing the events
executed up until the current state, and the current path is set up. After
that, the trace is continuously updated in the MSC Editor as transitions
are executed. This means that events are added when you navigate
down the behavior tree, the selected event is changed when you navi-
gate up, and the MSC is redrawn when you move outside the current
path.

• To enable or disable continuous MSC trace, enter the command
MSC-Trace. This command toggles the trace; the current state of the
trace is printed after the command is executed.

• In the Validator UI, the MSC trace can be controlled from the
Commands menu. The command Toggle MSC Trace toggles the
trace between enabled and disabled.

The MSC trace from the current root to the current state can also be
saved on a log file, which later may be opened from an MSC Editor. To
save such an MSC log, enter the command MSC-Log-File, followed by
the file name. The MSC log file should be given the file extension
.mpr.

Before an MSC trace is started, you may define what types of events
that will be traced. See “MSC Trace Options” on page 2395 for more
information.

Logging the User Interaction
The interaction between the user and the Validator can be logged on file
in exactly the same way as in the Simulator. See “Logging the User In-
teraction” on page 2210 in chapter 51, Simulating a System for more in-
formation.

Examining the System
The current state of the system can be examined in the same way as in
the Simulator. The View commands available in the View module of the
Validator UI are generally the same ones as in the View module of the
Simulator UI.
2338 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Tracing, Logging and Viewing Facilities
Current Process and Scope

Some of the commands used for examining the system operate on a spe-
cific process instance, the current process, identified by the current
scope. A scope is a reference to a process instance, a reference to a ser-
vice instance if the process contains services, and possibly a reference
to a procedure instance called from this process/service (the current
procedure).

The scope is automatically set by the validator to the process instance
that executed in the transition leading to the current system state. You
may change the scope if you would like to examine another process, ser-
vice or procedure instance.

• To print the current process/service scope, click the Scope button in
the View module, or enter the command Scope.

• To set the current process/service scope:

– Click the Set Scope button in the View module, or enter the com-
mand Set-Scope. This command takes one parameter, a process
instance, and optionally if the process contains services, a sec-
ond parameter which specifies a service name.

– Select or enter the name of a process instance.

– If the process instance contains services, select or enter the
name of a service instance.

– The scope is set to the specified process/service, at the bottom
procedure call.

• To print the procedure call stack for the process/service instance de-
fined by the current scope, click the Call Stack button in the View
module, or enter the command Stack.

• To change the procedure scope within the current process/service
scope, you can move the scope one step up or down in the procedure
call stack. Click the Up or Down button in the View module, or enter
the command Scope-Up or Scope-Down. Going up from a service
leads to the process containing the service. To go down in a service
within a process, select or enter the name of the service instance.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2339

Chapter 54 Validating a System
Commands to Examine the System

The available commands are shortly described below. See “Examining
the System” on page 2196 in chapter 51, Simulating a System for more
information.

• To list the process instances in the ready queue, enter the command
List-Ready-Queue, or click the Ready Q button.

• To print overview information about process instances, enter the
command List-Process, or click the Process List button.

• To examine a process instance, enter the command Examine-PId, or
click the Process button. The process instance must be specified as
the first parameter.

• To list all signal instances in the input port of a process instance, en-
ter the command List-Input-Port, or click the Input Port button. The
process instance must be specified as the first parameter.

• To examine a signal in the input port of a process instance, enter the
command Examine-Signal-Instance, or click the Signal button. The
process instance must be specified as the first parameter.

• To list all currently active timers, enter the command List-Timer, or
click the Timer List button.

• To examine a timer instance, enter the command
Examine-Timer-Instance, or click the Timer button.

• To examine a variable of a process instance, enter the command
Examine-Variable, or click the Variable button. The process in-
stance must be specified as the first parameter.
2340 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing Automatic State Space Explorations
Performing Automatic State Space
Explorations

This section describes how to perform an automatic state space explo-
ration and how to examine the results. The application areas in which
automatic state space exploration are used are further described in “Val-
idating an SDL System” on page 2347, “Verifying an MSC” on page
2360, “Using Observer Processes” on page 2367 and “Using Autolink”
on page 1393 in chapter 36, TTCN Test Suite Generation.

In the Validator, three types of automatic state space explorations can
be used, implemented as different algorithms:

• Bit state exploration, an efficient algorithm for reasonably large
SDL systems.

• Random walk, a simple algorithm that can be used for very large
SDL systems.

• Exhaustive exploration, an algorithm suited only for small SDL sys-
tems.

The characteristics of these algorithms are further described in “Config-
uring the Validator” on page 2388. They have the following in com-
mon:

• They start from the current system state, which means that you may
have to navigate to a suitable start state before the exploration is
started.

• They explore the state space down to a certain depth from the start
state, to avoid exploring an infinite state space forever.

The performance and results of a state space exploration are also highly
dependent on how the state space is configured. This is discussed in
“State Space Options” on page 2396.

The most important monitor commands concerning state space explora-
tions are available in the Explore module in the Validator UI.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2341

Chapter 54 Validating a System
Executing an Exploration
The different types of explorations are started in the following way:

• To start a bit state exploration, enter the command
Bit-State-Exploration, or click the Bit-State button.

• To start a random walk, enter the command Random-Walk, or click
the Random Walk button.

• To start an exhaustive exploration, enter the command
Exhaustive-Exploration (there is no button for this command).

When the exploration is started, a message is printed stating the options
used for this exploration type (see “Configuring the Validator” on page
2388):

** Starting bit state exploration **
Search depth : 100
Hash table size : 1000000 bytes

** Starting exhaustive exploration **
Search depth : 100

** Starting random walk **
Depth : 100
Repetitions : 100

By default, the exploration continues until it is finished, i.e., until the
state space has been fully explored according to the exploration options.
During the exploration, a status message is repeatedly printed after a
certain number of transitions or states have been generated.

To stop an exploration manually, click the Break button in the Validator
UI, or hit <Return> in stand-alone mode. A stopped exploration may

Note:

The button Verify MSC starts a bit state exploration, configured to
suit MSC verification. This is further described in “Verifying an
MSC” on page 2360.

Note:

Depending on how an exploration is configured, it may take a con-
siderable amount of time to finish!
2342 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing Automatic State Space Explorations
be continued by issuing the same exploration command again. You are
then asked whether to continue the exploration from the state where it
was stopped, or restart the exploration from the same start state as be-
fore.

When the exploration is finished or stopped, some exploration statistics
are printed (see “Interpreting Exploration Statistics” on page 2343). By
default, a tool called the Report Viewer is also opened (see “Examining
Reports” on page 2344).

The Validator always returns to the start state of the exploration when
it is finished or stopped.

Rules Checked During Exploration
During state space exploration, a number of rules are checked to detect
errors or possible problems in the SDL system. If a rule is satisfied, a
report is generated to the user.

The rules are used to find design errors, typically caused by unexpected
behaviors of the SDL system. Often the errors are caused by events hap-
pening at the same time in different parts of the system, for example
when a signal is received from the environment of the system at the
same time as a timer expires. So-called signal races are often part of the
error situations that are found.

Apart from the predefined rules, an additional rule can be defined by the
user to check for other properties of the system. See “Using User-De-
fined Rules” on page 2385 for more information.

Interpreting Exploration Statistics
The different exploration algorithms print somewhat different statistics.
The important statistics to note are the following:

• No of reports: x

The number of error situations found. How to investigate the reports
are described in “Examining Reports” on page 2344.

• Truncated paths: x

The number of times the exploration reached the maximum search
depth. The execution path is at that stage truncated and the explora-
tion continues in another state. If this value is greater than 0, parts
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2343

Chapter 54 Validating a System
of the state space have not been explored. However, this is a normal
situation for SDL systems with infinite state spaces.

• Collision risk: x

For bit state explorations, the risk (in percent) for collisions in a
hash table used to represent the generated system states (see “Bit
State Exploration Options” on page 2390). This value should be
very small, 0-1%; otherwise, the size of the hash table may have to
be increased. If collisions occur, some execution paths may be trun-
cated by mistake.

• Current depth: x

The search depth reached at the moment the exploration was fin-
ished or stopped. If this value is -1, the exploration finished by itself.
If the depth is greater than 0, the exploration was stopped. In this
case, it may be continued from this depth, as described in “Execut-
ing an Exploration” on page 2342.

• Symbol coverage: x

The percentage of the SDL symbols in the system that have been
reached during the exploration. If this value is less than 100, parts
of the system have not been explored.

What actions to take depending on the printed statistics is discussed in
“Validating an SDL System” on page 2347.

Examining Reports
When an exploration has been performed, the reported error situations
should be examined. A dedicated graphical tool, the Report Viewer, is
available in the Validator to facilitate the report examination. However,
it is possible to examine the reports without using the Report Viewer.

The Report Viewer is by default automatically opened when an explo-
ration has been performed. To open the Report Viewer manually, either
select Show Report Viewer from the Commands menu, or enter the com-
mand Show-Report-Viewer.
2344 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing Automatic State Space Explorations
The nodes in the Report Viewer are structured in three levels and show,
from top to bottom:

• The total number of generated reports

• The different types of reports (errors) and the number of reports of
that type

• The actual reports with error message and trace information, and the
exploration depth where the error was generated (this level of the
tree is by default collapsed).

To close the Report Viewer, click the Close quick button in the tool bar.

To list the reports when the Report Viewer is not opened, enter the com-
mand List-Reports, which prints a numbered list of all reports.

Changing the Displayed Structure

Generally, to expand or collapse a node in the Report Viewer, double-
click the node or select Expand or Collapse from the popup menu avail-
able on the nodes. This works for the top node and the report type nodes;
for report nodes, see “Going to a Report” on page 2346 (below).

To show the whole report structure, select Expand Substructure from
the popup menu available on the top node. To collapse the whole struc-

Figure 479: The Report Viewer
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2345

Chapter 54 Validating a System
ture, select Collapse from the same pop-up menu, or double-click the
expanded top node.

To switch between a tree structure and a list structure, click on the
Structure quick button. The list structure makes it possible to easier see
the different reports and report types when a large number of reports
have been found.

Going to a Report

When “going to a report,” the Validator goes to the system state where
the report was generated. You can then examine the reported situation
further.

To go to a report using the Report Viewer:

1. Expand the report structure to show the desired report node.

2. Double-click the report node, or select Goto from the pop-up menu
available on the report node.

To go to a report using monitor commands:

1. List the reports by entering the command List-Reports, and note the
number of the desired report.

2. Enter the command Goto-Report, followed by the report number.

After going to a report, the Navigator tool is updated and the current
path is set up. You can walk along the path to the error by using the Nav-
igator; see “Moving Along the Current Path” on page 2332.

By default, an MSC Editor is also opened, showing the MSC trace from
the current root to the state where the report was generated.
2346 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating an SDL System
Validating an SDL System
This section describes how to use the automatic state space exploration
facilities in the Validator to look for inconsistencies and design errors
in an SDL system. The idea is essentially to test the robustness of the
application, the responses to unexpected situations. Essentially the val-
idation is an attempt to answer questions like:

• What happens if a user does not press the buttons in the order as-
sumed by the designer?

• What happens if the scheduling algorithm of the operating system
that supports the application is changed?

• What happens if the environment happens to send an input to the
system at the same time as a timer expires?

...and all other questions the designer never ever would imagine.

It is assumed that the SDL system is of moderate size and complexity;
techniques for validating large SDL systems are described in “Validat-
ing Large Systems” on page 2352.

Using a Default Exploration
When you are to use the Validator to try finding errors in a new SDL
system for the first time, you are advised to start a bit state exploration
using the default options.

To validate a system opened in the Validator:

1. If you already have executed commands for the opened validator,
you should reset the validator. Enter the command Reset, or click
the Reset button in the Explore module. This is especially important
if you earlier have loaded an MSC into the Validator.

2. You should also make sure you use the default state space and ex-
ploration options. Enter the command Default-Options, or click the
Default button in the Explore module.

3. Start a bit state exploration (see “Executing an Exploration” on page
2342). Let the exploration run for at least 10-20 minutes.

4. If the exploration has not finished by itself, stop it manually (see
“Executing an Exploration” on page 2342). The Report Viewer is
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2347

Chapter 54 Validating a System
opened and the exploration statistics is printed. Note especially
what the symbol coverage is.

5. Use the Report Viewer to go to each of the reported situations (see
“Examining Reports” on page 2344). Navigate along the current
path to the report and use the tracing and viewing facilities to exam-
ine the report.

6. If you find errors in the system, you may decide to correct them im-
mediately. In that case, generate a new validator for the corrected
system and rerun the validation, as described above. Otherwise, you
should check if the validation is to be considered finished (see be-
low).

Determining if the Validation is Finished
When all reports have been checked and the found errors possibly have
been corrected, the next question arises: When are we finished validat-
ing the system? To answer this question, look at these aspects:

• What was the symbol coverage reported in the statistics after the au-
tomatic exploration?

• Did the exploration finish by itself or was it stopped by the user?

The following possibilities now exist:

1. The symbol coverage is 100% and the exploration finished by itself.

All symbols have been executed and furthermore most orderings of
the possible actions have been tested. In this case it is probably not
worthwhile continuing the validation; you may consider it finished.

However, not all orderings of possible actions have been tested,
since the search may have been truncated, collisions may have oc-
curred in the hash table, and more orderings are possible by config-
uring the state space exploration differently. If you want, you can
change the validator options and start a new exploration (see “Using
Advanced Validation” on page 2351 and “Configuring the Valida-
tor” on page 2388).

2. The symbol coverage is 100% but the exploration was manually
stopped.
2348 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating an SDL System
In this case, it may still be worthwhile to continue the exploration
until it finishes by itself. More reports may be generated, as there are
still orderings of the possible actions that have not been executed.

3. The symbol coverage was less than 100%.

Parts of the system have never been reached during the exploration.
In this case, the validation cannot be considered finished, even if the
exploration finished by itself. The reasons and possible solutions for
low symbol coverage are discussed next.

Handling Low Symbol Coverage
If the symbol coverage after an exploration is 100%, all parts of the sys-
tem have been executed at least once. If the symbol coverage is less than
100%, the possible reasons why parts of the state space have not been
reached are listed below.

• The exploration was manually stopped before all symbols were
reached.

In this simple case, you should continue the exploration until it fin-
ishes by itself.

• The test values were inappropriate.

Test values are used to define the set of possible signals from the en-
vironment. The automatically generated test values may not suit all
SDL systems. This may for example cause the execution to never
execute one branch of a decision statement. To overcome this prob-
lem, redefine the test values for the appropriate signal parameter.
For more information on test values, see “Defining Signals from the
Environment” on page 2375.

• The exploration was pruned after a report.

In most cases the Validator will prune the exploration of a particular
path as soon as a report has been found, i.e., the exploration will not
continue beneath the state in question. If you have examined such a
report and has decided not to do anything about it, the Validator will
still prune the search when it finds the report the next time. To over-
come this problem, change the report action for this particular report
type from prune to continue. See “Configuring the Validator” on
page 2388 for more information.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2349

Chapter 54 Validating a System
• Some parts of the system are, in fact, unreachable.

If some parts of the SDL system are not reachable at all, it may be
an indication that there is a design error in the system.

• There are problems with timer expirations.

The validator is by default configured in a way that tries to reduce
the size of the state space. It will always try to execute internal ac-
tions (e.g. tasks, decisions, internal input and outputs) before any
timers are allowed to expire. The assumption is that the system will
always execute fast enough to ensure that no timers will expire (the
timers may of course expire when waiting for input from the envi-
ronment). To make a more complete test of this type of situation, see
“Using Advanced Validation” on page 2351.

• The search depth was too small.

The default search depth is 100. This may not be enough for some
systems, e.g. a system with a very long initialization phase. In some
cases, it is possible to overcome this problem simply by increasing
the search depth (see “Configuring the Validator” on page 2388).
However, the techniques discussed in “Validating Large Systems”
on page 2352 are often more suitable.

• The state space is too big.

Many SDL systems of reasonable complexity quite simply have
state spaces that are too big; it is not possible to explore the entire
state space in one exploration. Characteristic for this situation is a
low symbol coverage, truncated paths, and either manually stopped
exploration or a high (>10%) collision risk. This situation is dis-
cussed in “Validating Large Systems” on page 2352.

To find out which parts of the system that have not been reached, a tool
called the Coverage Viewer is used. To start the Coverage Viewer, se-
lect Show Coverage Viewer from the Commands menu, or enter the
command Show-Coverage-Viewer. If the symbol coverage was less
than 100%, the Coverage Viewer will display a tree structure represent-
ing the parts of the system that have not been executed.
2350 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating an SDL System
Using Advanced Validation
The default options for the state space exploration, in particular the op-
tions that define the structure of the state space, are optimized to give
good results for a first validation of a system. They are intended first of
all to test for internal inconsistencies in the SDL system and to get a
good process graph coverage. This assumes a reasonably “nice” envi-
ronment, i.e., the environment only sends signals when nothing can
happen internally in the system.

This has the benefit of reducing the size of the state space while still pre-
serving a good process graph coverage. The drawback is that some error
situations are never detected. One particular class of errors that never
will be detected using the default options can be characterized as signal
races caused by signals sent from the environment, or timer expirations
that happen at the same time. An example is a situation where a com-
munication protocol ends up in an inconsistent system state when two
connect requests are sent to the different access points at the same time.

To detect these types of errors it is necessary to change the options and
perform a second set of explorations for the SDL system. The suitable
settings of the options are called advanced options. When using these
values for the options, the state space will get very large for most SDL
systems. It is thus usually not possible to get a complete coverage of the
state space, even if some of the techniques described in “Validating
Large Systems” on page 2352 have been used. To anyway be able to get
good results, the best strategy is to use the random walk algorithm when
exploring the state space. See “Using Random Walk Exploration” on
page 2358 for more information.

To set advanced options, click the Advanced button in the Explore mod-
ule. In stand-alone mode, you have to enter a number of commands to
achieve the same result; see “Setting Advanced Options” on page 2401
for information on which commands to use.

For a more in-depth explanation of the state space options, see “State
Space Options” on page 2396.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2351

Chapter 54 Validating a System
Validating Large Systems
This section discusses various techniques that are useful when design-
ing and validating large SDL systems. A large system is, in this context,
a system that has a state space that is too large to be completely explored
using one automatic state space exploration. The techniques are prag-
matic and intended to give a reasonable chance of finding any errors
even though the complete state space is not searched.

The following techniques are discussed:

• Decomposed Exploration
• Using MSCs to Limit the Search
• More Efficient Bit-State Exploration
• Reducing the State Space Size
• Using Random Walk Exploration
• Incremental Validation.

Decomposed Exploration
The idea when using decomposed explorations is to use a number of
reasonably small explorations instead of one big exploration. Quite of-
ten the behavior of an SDL system can be divided into a number of
“phases” or “features.” The idea is to explore each of these phases or
features separately. The benefit with this approach is that it is a lot easier
to explore the different phases separately than trying to explore the
combination of all phases. The drawback is that errors that are caused
by an interaction between different phases or features are not found.
However, for large SDL systems it is sometimes the only possible meth-
od that at least can give a complete symbol coverage.

The process of finding which and how many partial explorations that
are necessary is a combination of an iterative process and a planning is-
sue where the possible features and phases that can be subject to a par-
tial exploration are identified. If an incremental design process is used
it is often possible to use the different iterations to guide the choice of
partial explorations; compare with “Incremental Validation” on page
2359.
2352 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Large Systems
A common strategy used to find the needed partial explorations is es-
sentially the following:

1. Start an exploration from the system start state.

2. Check all reports and correct the errors in the system. Generate a
new validator and make another exploration.

3. When all found reports have been fixed, check the symbol coverage.
If the coverage is 100%, the validation is finished; otherwise, con-
tinue with the next step.

4. Use the Coverage Viewer to check which parts of the SDL system
that need more testing.

5. Go to a suitable system state and start a new exploration from there.

6. Repeat the process until the symbol coverage is 100%.

There are two issues of this strategy:

• Where to start each partial exploration.

• How to limit each partial exploration.

Where to Start a Partial Exploration

The problem of identifying where to start a new exploration is of course
system dependent and requires knowledge of the SDL system. The tool
to use in this case is the Coverage Viewer, which shows exactly what
parts of the SDL system that have been executed during the exploration
and what parts have not been executed. Once a system state has been
chosen the next issue is how to get there in the Validator. There are
number of possible ways to do this; see “Going to a System State” on
page 2334.

How to Limit a Partial Exploration

The next problem is to limit each partial exploration to the intended part
of the state space. There exists a number of factors which can be used
to influence the extent of an exploration:

• The search depth

• The signals from the environment

• User-defined rules
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2353

Chapter 54 Validating a System
The search depth is the simplest limiting factor to use. By reducing the
search depth, e.g. to 10 or 20, the size of the exploration will of course
be considerably reduced compared to the default depth of 100.

By changing the list of signals that can be sent from the environment it
is possible to control which parts of the system that will be exercised by
an exploration. For example, if we are interested in testing the data
transfer phase of a connection-oriented protocol specification, a good
strategy would be the following:

• Go to a system state where the connection is established.

• Define the signals from environment to be only the signals relevant
for the data transfer, and start the exploration. For a description of
how to define and remove signals from the list of signals that can be
sent from the environment, see “Defining Signals from the Environ-
ment” on page 2375.

User-defined rules also give a possibility to limit the extent of an explo-
ration. Define a rule that matches the system states where the explora-
tion should be pruned and check that the report action for user-defined
rules is to prune the search. For example, the rule
state(initiator:1)=idle would prune the exploration whenever
the initiator process entered the state Idle. User-defined rules are de-
scribed in “Using User-Defined Rules” on page 2385.

Using MSCs to Limit the Search
Another possibility that sometimes is useful to control the exploration
of the state space is to use MSCs to guide the exploration. This is par-
ticularly useful for SDL systems with a design that uses restrictions on
the possible behavior of the environment of the system. It might, for ex-
ample, be known that the signals A, B and C always will come in this
order from the environment of the system. In this case it is not interest-
ing to analyze what will happen if the signals will come in a different
order.

An MSC can be loaded to guide the search by using the command Load-
MSC. Once an MSC is loaded, both interactive navigation in the state
space, e.g. by using the Navigator, and automatic exploration will only
search the parts of the state space that correspond to the loaded MSC.

This means that if you want to go back to normal exploration, you have
to clear the loaded MSC by using the commands Clear-MSC or Reset.
2354 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Large Systems
Note how the test values are used when an MSC is loaded. It is allowed
to leave out parameters to messages in the MSC. If a parameter is left
out on a signal from the environment, the test values are used to deter-
mine the parameter values that are actually sent to the system. This is a
useful feature when using MSCs to limit the search. See section “Veri-
fying an MSC” on page 2360 for more details.

Another useful hint when using MSCs is to always use system level
MSCs to guide the state space exploration. A system level MSC will al-
low a larger part of the state space to be explored than a block or process
level MSC.

An MSC loaded into the Validator must comply with some require-
ments; see “Requirements for MSC Verification” on page 2366.

More Efficient Bit-State Exploration
The bit-state search uses a hash value based algorithm to store the state
space that is traversed. Unfortunately the computation of hash values
from a system state is an expensive operation and most of the execution
time in a bit-state search is spent calculating hash values. The execution
time for the hash algorithm is in most situations proportional to the size
of each system state. The max and min system state size used by the
hash algorithm is included in the statistics printed after each bit state
search and should be checked if the search is slow. (See “Bit-State-Ex-
ploration” on page 2233).

If the size of a system state is big (> 10,000 bytes) the bit state execution
of the validator will be fairly slow. In these cases it might be worthwhile
to try to optimize the performance by reducing the state size that the val-
idator uses when computing hash values. This can be done by informing
the validator to skip a number of variables when computing hash values.
The validator includes a command Define-Variable-Mode that is in-
tended for this purpose. (See “Define-Variable-Mode” on page 2256.)
For example the command:

define-variable-mode monitor subscrTab skip

will make the validator skip all subscrTab variables in monitor pro-
cesses.

A typical example of where this feature is useful is if the system in-
cludes a big array (or other big data structure) that is initialized at the
start up of the system and that after the initialization is known to be con-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2355

Chapter 54 Validating a System
stant in the part of the state space that is explored. The correct way to
take advantage of this in the validator is to:

1. Go to a system state where the array is initialized. (See “Going to a
System State” on page 2334 for more info about how to navigate in
the state space.)

2. Redefine the root to the current state. (See “Define-Root” on page
2251.)

3. Change the mode of the table variable to “Skip”.

4. Start the bit-state exploration.

Using this strategy it is possible to considerably increase the perfor-
mance of the validator.

Another situation where the variable mode can be changed to “Skip” is
when there are variables in the system that is known not to have any in-
fluence on the dynamic behavior of the system. See “Variables Not In-
fluencing the Dynamic Behavior” on page 2358.

Reducing the State Space Size
There is a number of ways to reduce the state space that is necessary to
explore by using knowledge and assumptions about the SDL system.
Usually this is based on the fact that the state space of an SDL system
contains various “sub state spaces” that are equivalent except for some
detail, which is not very interesting for the purpose of the validation.
Some examples of such details are:

• The value of local variables

• The number of instances of process types

• The size of large data structures.

• Variables that do not influence the dynamic behavior.

Local Variable Values

An example of the way local variable values influence the size of the
state space is the following: Consider a situation where a process con-
tains an integer variable that counts the number of times a particular sig-
nal comes from the environment, and then replies with this number
when requested to do so from the environment. It is obviously not espe-
2356 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Large Systems
cially interesting to try to investigate the behavior of the SDL system for
all possible values of this local variable. Instead a reasonable set of val-
ues should be selected and the state space exploration guided by this se-
lection.

A user-defined rule (see “Using User-Defined Rules” on page 2385)
provides an efficient means to reduce the size of the state space by put-
ting restrictions on variable values. In the example above a reasonable
restriction might be that we only would like check what happens the
first three times the variable is increased. A rule that expresses this is:

proc:1->var < 4;

Once this rule is defined and the report action for user-defined rule vio-
lation is set to Prune (which is the default), only the interesting parts of
the state space are explored.

Number of Process Instances

Another issue is the number of process instances that are used for each
process type. If the number is large and all of them do the same thing,
for example by modeling different connections in a connection oriented
protocol, it is probably not very useful to try to explore the combination
of all instances. Instead, it is better to restrict the number of instances
allowed in the exploration. This can be achieved with the command
Define-Max-Instance (see “Maximum Number of Instances” on page
2400). If preferred, it is also possible to use a user-defined rule or an ob-
server process to achieve the same result.

Size of Large Data Structures

A third area where the validator performance is reduced is when large
data structures, e.g. arrays, are used in the SDL system. A large data
structure has two unfavorable effects on a state space exploration:

• The size of the reachable state space increases extremely rapidly as
the size of the data structure increases.

• The efficiency of the bit state algorithm is decreased as the size of
system states increase. Essentially the time to compute a new sys-
tem state is linear to the size of the system states.

A good idea in this context is to, whenever possible, try to reduce the
size of any large data structures in the SDL system before performing
validation. Another possibility is to skip the variable when computing
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2357

Chapter 54 Validating a System
hash values as described in “More Efficient Bit-State Exploration” on
page 2355.

Variables Not Influencing the Dynamic Behavior

In many situations an SDL system contains a number of variables that
does not have any impact on the dynamic behavior of the system. Es-
sentially all variables that does not (directly or indirectly) have any in-
fluence on the path taken through a decision or the expression used
when computing the receiver of a signal in output/RPC call will not in-
fluence the dynamic behavior of the system.

These variables can safely be ignored when performing a state space
search. This can be accomplished by instructing the validator to skip
these variables using the Define-Variable-Mode command. (See “De-
fine-Variable-Mode” on page 2256.) This will in many cases drastically
reduce the size of the state space that the validator needs to search and
is an efficient way to improve the performance of the validator.

Note that implicit variables like Sender/Parent/Offspring are also con-
sidered as variables in this respect. In particular Sender can be of inter-
est to skip if it is not used, since it may change value every time a signal
is received.

As an example, if Sender is not used in a process ‘p’ the following com-
mand will make the validator ignore the Sender implicit variable when
comparing two system states:

define-variable-mode p Sender skip

Using Random Walk Exploration
In some situations it is not possible to use the more elaborated tech-
niques described in this section to cope with the problem of validating
large SDL systems. The time and resources available for the validation
may simply be too limited. A possible strategy to use when validating
very large SDL systems is to use the random walk exploration strategy
instead of the bit state algorithm.

The reason is that the random walk algorithm gives a possibility to get
a partial exploration of the state space that is randomly chosen. Further-
more, the symbol coverage of the exploration is determined only by
how long the exploration is allowed to run. The drawback with the al-
gorithm is that if it is allowed to run for a long time, so that significant
2358 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Large Systems
parts of the state space already have been covered, there is no mecha-
nism to avoid that already explored paths are explored once more.

How to start a random walk exploration is described in “Executing an
Exploration” on page 2342. The random walk exploration algorithm is
further described in “Random Walk Options” on page 2391.

The best way to get an idea of what has been tested when using random
walk is to use the Coverage Viewer to check the symbol coverage. Even
if this is not the same as the coverage of the system state space, it will
show if there are large portions of the system that have not been reached
by the exploration.

Incremental Validation
A common way to develop large SDL specifications and designs in
practice is to use an incremental development strategy. First a base
functionality is implemented and then various features are added in an
incremental fashion. When this type of development process is used, a
good way to plan the validation of the system is to let the different in-
crements define the state space explorations that should be performed.

First a number of state space explorations are executed with different
start states, and perhaps different test values. Together these explora-
tions should give a good process graph coverage of the SDL system rep-
resenting the base functionality.

For each increment that is added, a number of additional explorations is
performed that will cover the new features in the SDL system.

It is also probably worthwhile to define command scripts that automat-
ically can execute the various explorations that should be run to achieve
a good process graph coverage. This makes it possible to run all of the
various explorations in an straight-forward way for each new increment
that is added to the system.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2359

Chapter 54 Validating a System
Verifying an MSC
MSC verification is one the major application areas for the SDL Vali-
dator. This section describes how to use the Validator to get started with
MSC verification. It also gives some ideas of how to organize MSCs to
be able to use common initialization MSCs and shows how to use batch
files to achieve an efficient regression testing of an SDL system using
MSC verification.

The first prerequisite for MSC verification is of course that we have an
MSC that describes some desirable behavior that can be used to check
the SDL system against. This MSC can be interactively created using
the MSC Editor as part of a requirement analysis, but it is also possible
to use MSCs created as execution traces in the SDL Simulator or the
Validator itself as input to the MSC verification.

It is worth noticing that the MSC does not have to be a process level
MSC. It is possible to use MSCs where the MSC instances correspond
to SDL blocks and systems, and even mixed MSCs where some instanc-
es correspond to processes and other to blocks.

There are some requirements on MSCs to be used for MSC verification;
see “Requirements for MSC Verification” on page 2366.

The characteristics of the MSC verification algorithm is further de-
scribed in “MSC Verification Options” on page 2392.

Basic MSC Verification
To verify an MSC for a system opened in the Validator:

1. If necessary, go to a system state that corresponds to the start of the
MSC to verify. If the MSC describes events from the start of the sys-
tem, go to the system start state. You may have to reset the validator
first, especially if you already have an MSC loaded.

2. To start the MSC Verification, click the Verify MSC button in the
Explore module, or enter the command Verify-MSC.

3. The MSC that you want to verify has to be specified. Either select it
in the File Selection Dialog that appears (in graphical mode), or en-
ter the name of the file on the command line (in stand-alone mode).
2360 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Verifying an MSC
4. A bit state exploration adapted to suit MSC verification is per-
formed. After the exploration statistics, the result of the MSC veri-
fication is presented. If it was possible to find an execution trace that
was consistent with the MSC, the text

** MSC <MSC name> verified **

is printed, where <MSC name> is the name of the MSC that was
checked. If it was not possible to find a consistent execution trace,
the following text is printed:

** MSC <MSC name> NOT VERIFIED **

5. If the MSC was not verified, check the generated reports using the
Report Viewer. There will be a number of “MSCViolation” reports.
These reports identify the execution paths which violate the MSC,
i.e., paths that contain events that are not part of the MSC. You may
investigate these reports by using the method described in “Exam-
ining Reports” on page 2344.

6. If the MSC was successfully verified, there will be a
“MSCVerification” report (there may also be a number of
“MSCViolation” reports, but they can be discarded). You do not
have to go to this report; the Validator automatically goes to the
state where the MSC was verified. This means that the current path
is set up automatically.

7. To verify another MSC from the same start state, go to the top of the
current path. It is now possible to directly start a new MSC verifica-
tion, as described above (you do not have to reset the validator).

Note: Illegal characters in path name

Please note that verifying an MSC fails if the path name of the MSC
contains “(“ or “)”.

Note:

When MSC verification is started, the current root of the behavior
tree is redefined to the current state. This feature is used in the next
section, “Verifying a Combination of MSCs Using High-Level
MSCs” on page 2363. (It also means that you may have to reset the
validator to be able to reach the system start state again.)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2361

Chapter 54 Validating a System
Converting Instances Before Verification
Before an MSC is loaded into the Validator for verification, it is possi-
ble to perform instance conversion of the MSC. Instance conversion
will convert the name of an instance to another name.

This is useful if you want to verify some, but not all, instances in an
MSC with an SDL system. For instance, you may have an MSC describ-
ing a complete system but an SDL system for only a part of the system.
In this case, you can convert the not wanted instances to be considered
as environment in the Validator, without changing the MSC.

Note that if you have more than one instance representing the environ-
ment, the environment instances must be separated using channel
names.

Instance conversion is performed before an MSC is loaded into the Val-
idator by entering the command “Define-Instance-Conversion From-
String ToString” for each instance name to be converted. All instance
conversions can be listed by entering the command List-Instance-Con-
version, and all instance conversion can be cleared by entering the com-
mand Clear-Instance-Conversion.

Example 325 –––

Consider an MSC with three process instances A, B and C. The SDL
system specifies the behavior for instance A, but not for B or C. Before
verifying the MSC, B can be converted to “channelB” and C to “chan-
nelC”, where channelB is the existing SDL channel that will be used for
communication between the existing A process and the non-existing
process B, and channelC is the existing SDL channel that will be used
for communication between the existing A process and the non-existing
process C.

This is accomplished by entering the Validator commands:

Define-Instance-Conversion B "channelB"
Define-Instance-Conversion C "channelC"

The MSC can now be verified.

––
2362 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Verifying an MSC
Verifying a Combination of MSCs Using High-
Level MSCs
The high-level MSC that are available in MSC’96 provide a very con-
venient possibility to describe how many small MSCs are combined to
form a larger use case or scenario. The Validator support verification of
high-level MSCs.

As an example, consider a situation where we have an MSC “init” that
will describe some initialization phase that is needed to set up the SDL
system to some “connected” state from where two features are accessi-
ble. These features are described by the MSCs “datatrans” and “finish”.
If this would be a communication protocol, the “init” might be a con-
nection establishment, and “datatrans” and “finish” successful data
transfer and connection release. This situation could be described using
the high-level MSC in Figure 480.

To check this combination of MSCs simply verify the “inres1” high-
level MSC and the validator will generate one MSC verification report
for each sequence of “leaf MSCs” that can be verified. In this case there
will be reports for “init, finish”, “init, datatrans, finish”, “init, datatrans,
datatrans, finish”, etc. until the max depth for MSC verification has
been reached.

Figure 480 A high-level MSC

inres1 1(1)

init

connected

datatrans finish
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2363

Chapter 54 Validating a System
State of the Validator after MSC Verification
When an MSC verification has been done, the current state of the vali-
dator is different depending on how many MSC verification reports has
been found:

• If 0 or more than 1 MSC verification report has been generated the
current state of the validator is the system state where the MSC ver-
ification was started from.

• If exactly 1 MSC verification report was generated the current state
is the state where this report was found.

This is in many cases useful when using MSCs to navigate to a specific
system state, especially in combination with command scripts as de-
scribed in the next section. Note that if the MSC that is verified is an
“old style” MSC without high-level MSCs or MSC reference expres-
sions then there will always be at most one MSC verification report and
this type of MSCs is thus best when using MSCs for navigation.

Using Batch MSC Verification
An efficient test strategy when incrementally developing SDL systems
is to use regression testing. A set of MSCs describe the requirements on
the SDL system and new MSCs are incrementally added to the set when
new features are implemented in the SDL system. Each time a new fea-
ture is implemented the resulting system should be tested against all the
old MSCs as well as the new ones, to make sure that no new errors have
been introduced.

To accomplish this using the Validator the most efficient way is to use
the command script facility in the Validator. A command script is sim-
ply a text file containing a number of Validator commands, usually one
command per line. A command file can be loaded into the Validator by
selecting Include Command Script from the Tools menu, or by entering
the command Include-File.
2364 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Verifying an MSC
Example 326: Batch MSC Verification ––––––––––––––––––––––––––

A command script that when loaded will perform MSC verification for
some requirements described as MSCs may look like:

log-on msc.log
verify-msc inres1.mrm
reset
verify-msc init2.msc
verify-msc inres2.mrm
quit

The command Log-On is used to store the output from the verification
on the file msc.log.

––

Note in Example 326 how the MSC init2 was used to set up the start
state for the verification of the high-level MSC inres2.

Verifying Message Parameters
When verifying an MSC, the parameters of the messages in the MSC
can sometimes be crucial and need to be verified, and sometimes be un-
important for the behavior in question. To support this, the verification
of MSCs in the Validator allows three different levels of matching of
message parameters:

• No parameters are given for the message.

• Only some of the parameters are given.

• All of the parameters are given.

If no parameters are given, all possible actual parameters are accepted.
If the signal is sent from the environment to the system, the parameter
values that are defined using the test value facility are used by the Val-
idator when exploring the state space of the system.

When only some of the parameters are to be given, only the given pa-
rameters are checked during the exploration. The notation used to show
that a specific parameter should be ignored during the verification is to
simply leave out this parameter in the parameter list. For example, if
only the second and fifth parameter should be used during the verifica-
tion the parameter list would be “,2,,,true” in the MSC. Trailing com-
mas can be left out, so if a signal has five parameters and only the first
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2365

Chapter 54 Validating a System
two are to be verified, the parameter list might be “1,2” which would ig-
nore the last three parameters.

When only some of the parameters are given for a signal from the envi-
ronment, the rest of the parameters are taken from the test value defini-
tions when executing the signal output during state space exploration.

If all parameters are given, they are of course all checked.

Requirements for MSC Verification
The MSCs that can be loaded into the Validator must comply with the
following rules:

• It must be possible to map each MSC instance to either the environ-
ment, a channel to/from the environment, the entire SDL system, a
block, or a process. This mapping is done by matching the name of
the MSC instance with the names of the corresponding SDL enti-
ties. However, the name of an MSC instance can be changed before
verification, see “Converting Instances Before Verification” on
page 2362.

• PId values are not allowed as parameters to MSC messages from the
environment of the SDL system. PId values are allowed on internal
messages and messages to the environment, but the values are not
checked during the exploration.

• If the MSC is on process level, only one static instance of each pro-
cess type is allowed in the MSC. There is no limit to the number of
dynamically created MSC instances.

• Only the following events/symbols are interpreted in an old-style
MSC. All other events are ignored or will not be accepted by the
Validator.

– input
– output
– set
– reset
– timeout
– create
– stop
– global MSC reference symbol without substitution and gates
– condition
2366 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Observer Processes
• Only the following symbols are allowed in a high level MSC:

– start symbol
– end symbol
– MSC reference symbol without substitution and gates.
– condition symbol (ignored during verification)
– connection point.

• In MSC reference symbols it is allowed to use MSC reference ex-
pressions with the operators:

– alt
– par
– seq
– exc
– opt
– loop

Using Observer Processes
The purpose of an observer process is to make it possible to check more
complex requirements on the SDL system than can be expressed using
MSCs. The basic idea is to use SDL processes (called observer process-
es) to describe the requirements that is to be tested and then include
these processes in the SDL system. Typical application areas include
feature interaction analysis and safety-critical systems.

To be useful, the observer processes must be able to inspect the SDL
system without interfering with it and also generate reports that convey
the success or failure of whatever they are checking.

To accomplish this, three features are included in the Validator:

Note:

Conditions are interpreted as a synchronization point if Define-
Condition-Check is set to “on”, otherwise they are ignored. For
more information, see “Synchronizing Test Events with Condi-
tions” on page 1406 in chapter 36, TTCN Test Suite Generation.
Set, reset and timeout events on MSC instances representing SDL
channels to the environment are only accepted by the Autolink test
generation commands Generate-Test-Case and Translate-MSC-
Into-Test-Case. For all other Validator commands which load an
MSC, timer events on environment instances are ignored and the
Validator generates a warning.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2367

Chapter 54 Validating a System
• The observer process mechanism.

By defining processes to be observer processes, the Validator will
start to execute in a two-step fashion. First, the rest of the SDL sys-
tem will execute one transition, and then all observer processes will
execute one transition and check the new system state.

• The assert mechanism.

The assert mechanism enables the observer processes to generate
reports during state space exploration. These reports will show up
in the list of generated reports in the Report Viewer. The details of
the assertion mechanism is discussed in “Using Assertions” on page
2387.

• The Access abstract data type.

The purpose of the Access abstract data type is to give the observer
processes a possibility to examine the internal states of the other
processes in the system. Using the Access ADT it is possible to
check variable values, contents of queues, etc., without any need to
modify the observed processes. See “The Access Abstract Data
Type” on page 2370 for more details.

A simple observer process is illustrated in Figure 481.
2368 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Observer Processes
This process will check if the variable Counter in the Initiator process
ever becomes equal to 2.

Two characteristics for the observer processes are:

• the use of continuous signals with tests that use Access operator to
check the internal state of other processes, and

• the use of assertions to report the result.

To use observer processes:

1. Create the observer processes in the SDL Editor. You should place
the observer processes in a special block that you include in the di-
agram structure of the SDL system. In this block, you also need to
specify an INCLUDE directive for the Access ADT:

/*#INCLUDE ‘access.pr’ */

Figure 481: A simple observer process

;
signalset ;

Process Observer 1(1)

/* This process illustrates how to access
variable values when performing state
space exploration using the Validator. */

DCL
 I PId;

I := GetPId(’Initiator’,1)

TestState

vInteger(I,’Counter’)=2;
priority 1

Report
(‘Counter=2’)

true;
priority 2

-

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2369

Chapter 54 Validating a System
2. In the generated validator, define each observer process by using the
command Define-Observer, followed by the name of the process
type. All instances of the process type will now become observer
processes.

3. Perform a state space exploration. If an assertion defined in an ob-
server process is satisfied, an “Assertion” report is generated. To
simplify the observer processes, an “Observer” report will also be
generated whenever there is an observer process that cannot exe-
cute.

In some cases the Observer reports are not convenient and they can then
be turned off with the Define-Report-Continue (that will cause the ex-
ploration to continue past a reported situation) and the Define-Report-
Log command (that can be used to turn off the logging a s specific report
type, e.g. Observer reports)

The Access Abstract Data Type
The Access abstract data type is an ADT intended to be used together
with observer processes to make it possible to access the internal state
of other processes from an observer process. The ADT is defined in the
file access.pr that resides in the ADT directory together with the rest
of the ADTs supplied together with the SDL suite. Unlike the rest of the
ADTs the Access ADT is a special purpose ADT that only works with
the Validator kernel.

The Access ADT defines a number of SDL operators. The signatures of
these operators are defined as follows:

 GetPID : CharString, integer -> PId;
 /* Returns the PId value of a process instance

 par 1: the name of the process type
 par 2: instance number of the process instance
 */

 ActivePID : integer -> PId;
 /* Return the PId of the process that executes.
 Returns NULL if no process executes.
 Observer processes are not taken into account.

 The integer parameter is a dummy parameter
 needed since operators must have parameters. */

 GetState : PId -> CharString;
 /* Returns the name of the current state of a
2370 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Observer Processes
 process instance (or previous if the process
 is not in a state)

 par 1: the pid of the process instance */

 GetNoOfInst: charstring -> integer;
 /* Returns the number of instances for a
 particular process type

 par 1: the name of the process type */

 terminated: PId -> boolean;
 /* Returns true if the process instance is
 terminated otherwise false

 par 1: The PId value of the process instance */

 GetProcedure: PId -> charstring;
 /* Returns the name of the procecure a process
 instance currently has called. If no procedure
 is called ‘none’ is returned

 par 1: The PId value of the process instance */

 InProcedure: PId, CharString -> boolean;
 /* Returns true if a process instance currently
 executes in a specific procedure, otherwise
 false

 par 1: The PId value of the process instance
 par 2: The name of the procedure */

 GetNoOfSignals: PID -> integer;
 /* Returns the number of signals currently in the
 input port of a process.

 par 1: The PId value of the process instance */

 GetSignalType: PId, integer -> charstring;
 /* Returns the name of the signal type for a
 signal in the input port of a process instance

 par 1: The PId value of the process instance.
 par 2: A number (>=1) identifying the signal */

 InQueue: PId, charstring -> boolean;
 /* Returns true if a process instance currently
 has a signal of a specific type in its input
 port queue

 par 1: The PId value of the process instance.
 par 2: The name of the signal type. */

 /* Variable access functions. These functions return
 a variable value that corresponds to one of the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2371

Chapter 54 Validating a System
 variables of a process instance as specified by
 the parameters.

 par 1: The PId value of the process instance.
 par 2: Variable name */

 v : PId, charstring -> integer;
 vInteger : PId, charstring -> integer;
 v : PId, charstring -> real;
 vReal : PId, charstring -> real;
 v : PId, charstring -> boolean;
 vBoolean : PId, charstring -> boolean;
 v : PId, charstring -> Character;
 vCharacter : PId, charstring -> Character;
 v : PId, charstring -> Time;
 vTime : PId, charstring -> Time;
 v : PId, charstring -> Duration;
 vDuration : PId, charstring -> Duration;
 v : PId, charstring -> Charstring;
 vCharstring : PId, charstring -> Charstring;
 v : PId, charstring -> PId;
 vPId : PId, charstring -> PId;

 EnvOutput : CharString -> Boolean;
 /* Returns true if the transition currently
 executing is caused by a signal from the
 environment with a specified name, otherwise
 false

 par 1: The name of the signal type */

The Access ADT also includes a utility procedure called Report that if
called from an observer process will generate an Assertion report in the
validator. The procedure takes a charstring as parameter and this is the
string that will be presented in the Assertion report.

An example of the usage of some of the operators is:

P := GetPId(‘Initiator’, 1),
CS := GetState(P)

This example assigns the PId value of the first Initiator process to the
PId variable P, and then assigns the name of the state of this process to
the charstring variable CS.

An example of a statement that will access the variable value for one of
the variables of another process instance is:

LocalVar := v(P,’Var’)

In this example we assume that we have a PId variable P that identifies
a process that has a variable Var of type for which a v operator is de-
2372 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Observer Processes
fined. The statement will access the value of Var and assign it to the
local variable LocalVar.

The operators for accessing the value of a variable are given in two ver-
sions for each predefined simple type: the v operator and the vXXX op-
erator, where XXX is the name of the type. They are equivalent and the
only time there is a need to use the vXXX operator is when it is not pos-
sible to resolve by context which of the v operators that is intended.

To access variables of sorts that are syntypes to the predefined simple
types, the v operator for the corresponding predefined simple type can
be used.

Accessing variable of structured types, enumeration types and user-de-
fined types is a bit more complex. There are two possible ways to do it.
Either define the v operator for the type in question, or use the #CODE
operator and access the variable value using a C macro XVV.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2373

Chapter 54 Validating a System
Example 327: Structured Types in Observer Processes––––––––––––

Consider the following structure definition:

 newtype MSDUType
 struct
 id IPDUType;
 num Sequencenumber;
 data ISDUType;
 endnewtype MSDUType;

A v operator for this type can be defined as:

newtype MSDUTypeAccess
literals NotUsedMSDUTypeAccess;
operators
 v /*#NAME ’XVNAME(MSDUType)’*/ :
 PId, charstring -> MSDUType;
/*#ADT (H)
#TYPE
#define MSDUType #SDL(MSDUType)
*/
endnewtype MSDUTypeAccess;

Once this definition is in place, variable values for the complex data
type can conveniently be accessed using the new v operator. Note also
that it is possible to access the values of the fields of the structure in a
simple way:

LocalVar := v(P,’MSDUVar’)!id

If the type is one of the types passed as values, according to the table in
“Parameter Passing to Operators” on page 2606 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler, XVNAME should be substituted to
XVNAME2.

However, if the values of the complex type only is accessed in a few
places, it is possible to access them directly using the #CODE operator
as illustrated in the following example:

LocalVar := #CODE(‘XVV(#SDL(P),”Var”,#SDL(MyType))’)

In this example we assume that we have a PId variable P that identifies
a process that has a variable Var of type MyType. The statement will
access the value of Var and assign it to the local variable LocalVar.

––
2374 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Defining Signals from the Environment
Defining Signals from the Environment
A problem common to all state space exploration techniques is related
to the treatment of the environment of the SDL system under analysis.
As an example, consider the situation during state space exploration
where a signal with an integer parameter can be received from the envi-
ronment. Since there is an infinite number of integer values, there will
be an infinite number of successors of the current system state: one
where the parameter value is 0, one where the parameter value is 1, etc.

This is obviously a situation that is not acceptable when performing
state space exploration. The SDL Validator allows three different strat-
egies to avoid situations like this:

1. Create a closed system by specifying the environment of the system
using SDL. This will solve the problem but introduces a new one; it
is necessary to create an SDL model of the environment.

2. Specify the signals that can be sent from the environment to the sys-
tem. This is a simple way to avoid the problem. By enumerating the
signals with their parameters that the environment can send, a finite
branching is guaranteed at each system state in the state space.

3. Use an MSC to guide the state space exploration. Since the MSC de-
fines what signals the environment can send and their ordering, a
limited part of the state space can be explored.

The second strategy is the most common and the test value feature of
the Validator is designed to make it easy to define the signals from the
environment.

Test Values
When the Validator is started a list of signals is automatically computed
that will be used as the possible signals from the environment during
state space exploration. The signal list is generated based on the concept
of test values. Test values can be defined for data types and for signal
parameters. When generating the signal list the Validator checks for
each signal that can come from the environment which test values are
defined for its parameters (or for the parameter data types). It then gen-
erates one signal instance for each combination of test values for the pa-
rameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2375

Chapter 54 Validating a System
Each time the Validator is in a state where input from the environment
is possible during state space exploration, the list of signals defined by
the test values is consulted.

The default test values for the simple data types are:

For other data types, test values are determined according to the follow-
ing:

• Enumerated types: All values in the type

• Subranges of the predefined data types: All values in the range

• Structures: All combinations of the test values of the individual
fields

• Arrays: All combinations of the test values of the component type.

• Ref types: NULL + pointers to the test values for whatever the Ref
points to.

• Own types: NULL

Data Type Default Test Values

Integer -55, 0, 55

Boolean true, false

Real -55, 0, 55

Natural 0, 55

Character ‘a’

Charstring “test”

Duration 0

Time 0

PId Environment PId

Bit 0, 1

Octet 00, FF

Bit_string ’01’B

Octet_string ’00FF’H
2376 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Defining Signals from the Environment
• ORef types: NULL

Test Values Restrictions and Options
Two restrictions are posed on the computed test values:

• If the number of test values for a data type or signal parameter ex-
ceeds a maximum number, randomly chosen test values will be gen-
erated.

• If the number of signal instances for a particular signal type exceeds
a maximum number, randomly chosen signal instances will be gen-
erated for this signal type.

Two commands exist for setting options related to the above restric-
tions:

• To define the maximum number of test values for any data type or
signal parameter, enter the command Define-Max-Test-Values, fol-
lowed by the number of test values. The default is 10.

• To define the maximum number of signal instances for any signal
type, enter the command Define-Max-Signal-Definitions, followed
by the number of signal instances. The default is 10.

Defining and Listing Test Values
The default test values are defined to be useful for a large number of ap-
plications, but they sometimes need to be modified. In some cases there
are unnecessarily many test values and to enhance the performance of
the state space exploration some test values can be cleared. In other cas-
es the automatic test value generation cannot handle some of the data
types used, so the test values must be manually defined.

Changing the test values are therefore only needed if you would like to
fine-tune the behavior of the Validator, or if the signals from the envi-
ronment have parameters that are of a user-defined or unusual data type.

Note:

These options affect the state space; see “Affecting the State Space”
on page 2389.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2377

Chapter 54 Validating a System
Test values can be defined and cleared on three “levels”: on data types,
on individual signal parameters, and on signal instances. When test val-
ues are defined or cleared, the list of signals from the environment is re-
generated. You are recommended to define test values either on data
types and individual signal parameters, or on signal instances; do not
combine both these methods.

The monitor commands concerning test values are available in the Test
Values module in the Validator UI.

Test Values for Data Types

The following commands operate on the test values for a data type
(sort).

• To define a new test value for a sort, enter the command
, or click the Def Value button. The parameters are the sort and the
value. Example:

 integer 20

• To list the new test values defined for all sorts, enter the command
List-Test-Values, or click the List Value button.

• To clear all test values for a sort, enter the command
Clear-Test-Values, or click the Clear Value button. As parameter,
you either specify the sort, or ‘-’ which means all sorts.

Test Values for Signal Parameters

The following commands operate on the test values for individual pa-
rameters to a signal.

• To define a new test value for a signal parameter, enter the com-
mand Define-Parameter-Test-Value, or click the Def Par button.
The parameters are the signal, the ordinal number of the signal pa-
rameter, and the value. Example:

Define-Parameter-Test-Value Score 1 -5

Note:

Changing test values affects the state space; see “Affecting the State
Space” on page 2389.
2378 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Defining Signals from the Environment
• To list the new test values defined for all signal parameters, enter the
command List-Parameter-Test-Values, or click the List Par button.

• To clear all test values for a signal parameter, enter the command
Clear-Parameter-Test-Values, or click the Clear Par button. As pa-
rameter, you specify the signal and the ordinal number of the signal
parameter. You may use ‘-’ for the parameter number, which means
all signal parameters, or just ‘-’ for the signal, which means all sig-
nal parameters for all signals.

Test Values for Signal Instances

The following commands operate on the test values for a specific signal
instance.

• To define a new set of test values for a signal instance, enter the
command Define-Signal, or click the Def Signal button. The param-
eters are the signal and an optional set of values for the parameters.
Multiple Define-Signal commands may be used to define several
signal instances of the same signal type, but with different values.
Example:

Define-Signal Test 10 ’hello’ true
Define-Signal Test -5 ’bye’

• The command Extract-Signal-Definitions-From-MSC analyzes ba-
sic MSCs in textual form (with suffix .mpr) and extracts all signals
sent from the environment axes to the system axis. If a signal defi-
nition is found which does not already exist, it is added automatical-
ly by calling Define-Signal.

• To list all currently defined signal instances, enter the command
List-Signal-Definitions, or click the List Signal button.

• To clear all test values for a signal type, enter the command
Clear-Signal-Definitions, or click the Clear Signal button. As pa-
rameter, you specify the signal, or ‘-’ which means all signals.

Note:

The signals defined using this command are cleared when the signal
list is regenerated, e.g. if a test value is defined for a sort or a signal
parameter.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2379

Chapter 54 Validating a System
Saving Test Values

The current set of test values can be saved on file and later be recreated
by reading in the file again. The file will contain monitor commands
that recreates the saved set of test values and discards any other test val-
ues.

To save the test values, enter the command Save-Test-Values, followed
by a file name. To read in the saved test values again, enter the com-
mand Include-File, followed by the file name.
2380 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Systems That Use the Ref Generator
Validating Systems That Use the Ref
Generator

The Ref generator (see “The Ref Generator” on page 112 in chapter 2,
Data Types, in the SDL Suite Methodology Guidelines) is used to create
pointer structures to be used in SDL systems. The Validator supports
the Ref generator, but imposes some restrictions on the usage of it due
to the special requirements caused by state space exploration.

Variables that are defined to be Ref’s to something can be used in two
ways, either as a pointer to some other variable or as a pointer to a dy-
namically allocated memory area. Both ways of using Ref types are
supported by the Validator.

To handle dynamically allocated data areas the Validator creates a spe-
cial data structure as part of each system state. This data structure is a
list of all data areas allocated by Alloc (the Ref operator that allocates
a new data area) and data areas allocated in external C code (see “Vali-
dating Systems with External C Code” on page 2382). The list contains
for each data area in addition to the area itself information about e.g. the
sort of the data area and the size of the data area. Whenever the Valida-
tor copies a system state, the list of dynamically allocated data areas is
also copied and all Ref variables are set up corresponding to the new
copy of the list.

Some restrictions/simplifications are needed when using Ref sorts in the
Validator:

• Variables may not be defined to be of the VoidStar or VoidStarStar
sorts, since the Validator needs to know the sort and size of what is
pointed to. This is not known for VoidStar and VoidStarStar sorts.

• A simplification is made when comparing two system states for
equivalence (both in exhaustive exploration and in the hash function
used by bit state exploration): Two Ref variables are considered
equivalent if the data they are pointing to are equivalent. This may
in some cases prune the search in situations where it should not have
been pruned. Note that equivalence tests in the SDL system works
correctly, if two Ref variables are compared using ‘=’ they are con-
sidered the same only if they contain the same pointer value.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2381

Chapter 54 Validating a System
Note that the handling of pointers in the Validator introduces a signifi-
cant overhead that unfortunately reduces the number of transitions per
second that is executed by the Validator.

When performing state space exploration, the Validator checks the us-
age of Ref variables when copying system states and reports several dif-
ferent types of problems including:

• memory leaks, and

• pointers to released or never allocated memory.

For more information about the reports see “REF Errors” on page 2306
in chapter 53, The SDL Validator.

Validating Systems with External C Code
the SDL suite allows the usage of external C code together with an SDL
system and this is also true for the Validator. In many cases it is possible
to directly use the Validator on a system that uses external C code. How-
ever, due to the special requirements of state space exploration, some
restrictions must hold for the external C code, and some modifications
may have to be done to the external code to make it functions properly
with the Validator.

To be able to perform a state space exploration it must be possible for
the Validator to make a complete copy of a system state, including all
data structures that are implemented directly in C code. The Validator
must also be able to modify each copy of a system state separately. This
has some implications:

• variables defined in C code cannot be handled by the Validator,

• C unions may not contain pointers, data types implemented by
pointers (like the SDL types string and bag) or SDL PIds, and

• some restrictions on the usage of pointers are needed since the C
pointers in SDL are treated like Ref types (see “Validating Systems
That Use the Ref Generator” on page 2381).

If there are variables in C code, this will not be detected by the validator.
It may appear as if the Validator works, but the variables defined in C
code will not be copied when the Validator copies a system state. When
the value of a variable is changed by an action performed in one system
2382 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Validating Systems with External C Code
state, this value will change the value for all system states that the Val-
idator currently handles. This implies e.g. that when the Validator back-
tracks during an automatic exploration to test more possible successors
of a particular system state, the values of variables defined in C may be
different from the values they had the previous time the system state
was visited and the state space exploration will not be correct.

In order to be able to copy a system state, the Validator must have exact
information about the sort of all data areas in the system to be able to
copy e.g. pointer-based data structures correctly. One consequence of
this is that the Validator cannot support the C union sort if the union
may contain pointer-based sorts, since the Validator cannot know the
current sort of the union and thus cannot deduce whether to treat the
union as a pointer or not. SDL PIds are also treated specially in the Val-
idator and can also not be part of a C union.

Pointers are frequently used in C code and when used together with the
SDL suite they are treated as the (nonstandard) SDL type Ref. The Val-
idator handles the Ref types in a particular way (see “Validating Sys-
tems That Use the Ref Generator” on page 2381) and the restrictions on
variables of this sort also applies to the usage of C pointers in data type
in external C code.

When using dynamic memory allocation in extern C code some special
additions are needed for the Validator to work properly. This is needed
since the Validator keeps a list of all dynamically allocated data areas
as part of each system state. If an external C function allocates memory,
the Validator must be informed about the data area that was allocated,
and the same holds when a C function releases memory. This is accom-
plished by calling two functions from the C code:

extern void UserMalloc (void *data);
extern void UserFree (void *data);

UserMalloc should be called when a data area has been allocated, and
UserFree should be called immediately before the data area is released.
Both functions should have a pointer to the data area as parameter.

The purpose of UserMalloc is to insert a new element into the list of dy-
namically allocated data areas that is maintained by the Validator. Note
that there is no need to tell the Validator what sort of data was allocated
or its size. This is handled automatically by the Validator simply by
finding the SDL entity (e.g. a variable) that points at the data area and
assuming that the sort and size given by this entity is correct. If no SDL
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2383

Chapter 54 Validating a System
entity can be found that points to the data area, this is considered to be
an error and a Validator report is generated.

The purpose of the UserFree function is to inform the Validator that a
data area has been released, and thus should be removed from the list of
dynamically allocated data areas.

There exists a special C macro XVALIDATOR_LIB that can be used to
check in external C files if the code is compiled together with the Vali-
dator kernel. It is thus possible to only include the calls to UserMal-
loc/UserFree when the C code is compiled together with the Validator
using this macro, as in the following example:

...
v = malloc(10);
#ifdef XVALIDATOR_LIB
UserMalloc((void *)v);
#endif
2384 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using User-Defined Rules
Using User-Defined Rules
In the Validator, you may define a user-defined rule to be used during
state space exploration to check for properties of the encountered sys-
tem states. If a system state is found for which the user-defined rule is
true, a report will be generated. Note that only one user-defined rule
may be defined at a time.

Different Usages
There are three different situations in which a user-defined rule is use-
ful:

• To verify properties of the SDL system.

A user-defined rule describes properties of system states. By using
an automatic state space exploration, it is thus possible to verify the
existence of system states that satisfy the specified properties. If the
state space is small enough to allow a complete exploration it is also
possible to verify that the state space does not contain any system
state with the specified property.

• To search for specific system states.

A user-defined rule makes it possible to go to a specific system state
in the state space without the need to use the navigating commands
of the validator monitor. By describing the desired state with a rule
and using an automatic state space exploration, you can go directly
to the report that satisfied the rule. In this case, the report action for
the user-defined rule report should be set to Abort.

• To reduce the state space to be explored.

For many SDL systems, the state space can be very large or even in-
finite, which makes it difficult to perform a state space exploration
effectively. However, in many cases the state space contains large
subspaces that for some reason are not interesting to explore. For in-
stance, they may be equivalent to other parts of the state space ex-
cept for the value of one particular variable. In such cases, a user-
defined rule can be used to restrict the exploration by defining sys-
tem states that are considered to be uninteresting. When such a state
is encountered, the exploration is truncated and continued in another
node.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2385

Chapter 54 Validating a System
Examples of Rules
An example of a rule that checks a system property is:

exists P:Proc | P->var=12;

which is true for all system states where there exists a process of type
“Proc” with a variable “var” that is equal to 12.

A simple example of a rule that searches for a system state is:

state(initiator:1)=disconnected;

which is true for all system states where the process instance
“initiator:1” is in the state “disconnected”.

A more complex example of such a rule is:

state(Game:1)=Winning and
sitype(signal(Game:1))=Probe

which is true for all system states where the state of the process instance
“Game:1” is equal to “Winning” and the type of signal to be consumed
by the same process instance is “Probe”.

An example of a rule that reduces the state space is:

(Game:1->Count > 2) or (Game:1->Count < -2)

which is true for all system states where the absolute value of the vari-
able “Count” in the process instance “Game:1” is greater than 2.

For a full description of the features and syntax of user-defined rules,
see “User-Defined Rules” on page 2308 in chapter 53, The SDL Valida-
tor.

Managing User-Defined Rules
To define the user-defined rule, select Define Rule from the Commands
menu, or enter the command Define-Rule, followed by the definition of
the rule.

To clear the user-defined rule, enter the command Clear-Rule.

To print the definition of the current user-defined rule, enter the com-
mand Print-Rule.

To evaluate the user-defined rule in the current system state, i.e. to
check whether the rule is satisfied, enter the command Evaluate-Rule.
2386 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Assertions
Using Assertions
Like most other run-time libraries to the SDL to C Compiler, the Vali-
dator library gives the user a possibility to define his own run-time er-
rors or assertions. An assertion is a test that is performed at run-time, for
example to check that the value of a specific variable is within the ex-
pected range. Assertions are described by introducing #CODE directives
with calls to the C function xAssertError in a TASK. See the follow-
ing example.

Example 328: Assertion in C Code –––––––––––––––––––––––––––––

TASK ’’ /*#CODE
#ifdef XASSERT
 if (#(I) < #(K))
 xAssertError("I is less than K");
#endif
*/ ;

––

In the SDL Validator, the assertions are checked during state space ex-
ploration. Whenever xAssertError is called during the execution of
a transition, a report is generated. The advantage of using this way to de-
fine assertions, as opposed to using user-defined rules, is that in-line as-
sertions are computed much more efficiently by the validator than the
user-defined rules.

The xAssertError function, which has the following prototype:

extern void xAssertError (char *Descr)

takes a string describing the assertion as parameter and will produce an
SDL run-time error similar to the normal run-time errors. The function
is only available if the compilation switch XASSERT is defined. For the
standard libraries this is true for all libraries except the Application Li-
brary.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2387

Chapter 54 Validating a System
Configuring the Validator
This section describe the various possibilities available to control the
behavior of the Validator using the options that can be defined for dif-
ferent features. The available options are grouped into a number of cat-
egories; each category and option will be described later in this section.

Managing Options
Each option can be set using a monitor command, usually named some-
thing similar to “Define-<option>”. Most options can also be set from
the menus Options1 and Options2 in the Validator UI. The monitor
command and menu choice associated with an option is listed together
with the description of the option.

If the options are changed during a session with the Validator, you will
be asked whether to save the options when you exit or restart the cur-
rently executing validator. If you save the options, the new values will
be stored in a file named .valinit (on UNIX), or valinit.com (in
Windows), in the directory from where the SDL suite was started. This
file will automatically be loaded the next time the Validator is started
from the same directory, thus restoring the previous options.

Some monitor commands operate on all the options:

• To print a list of all options and their current values, select
Show Options from either the Options1 or Options2 menu, or enter
the command Show-Options. (A few of the options described here
are not listed.)

• To set all options to their predefined default values, click the
Default button in the Explore module, or enter the command
Default-Options. Note that this also clears all reports.

• To set all options to their initial values, i.e. the values set when the
validator was started, click the Reset button in the Explore module,
or enter the command Reset.
2388 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
Affecting the State Space
Some of the options affect, directly or indirectly, the size of the state
space and the structure of the behavior tree. This can only be done while
being in the current root of the behavior tree, since the whole structure
of the tree may be affected. If such an option is changed when the vali-
dator is not in the current root of the behavior tree, you have two choic-
es: either to change the current system state back to the current root, or
to redefine the current root to the current system state.

In this case, the following dialog is opened:

To change the root to the current system state, select yes and click OK.
(In stand-alone mode, enter yes)

Note:

This command also resets the validator completely and is equiv-
alent to restarting the validator from scratch. To just set the op-
tions to their initial values without resetting the validator:

1. Set the options to their default values. See above.

2. Read in the file .valinit (on UNIX), or valinit.com (in
Windows); see above. Select Include Command Script from the
Commands menu, or enter the command Include-File.

Figure 482: Changing the current root
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2389

Chapter 54 Validating a System
To keep the current root and move back to it, select no and click OK. (In
stand-alone mode, enter no)

Bit State Exploration Options
Bit state exploration is an efficient automatic state space exploration al-
gorithm for reasonably large SDL systems (for a reference, see [16]). It
performs a depth-first search through the state space and uses a bit array
to store the states that has been traversed during the search.

Every time a new system state is generated during the search, two hash
values are computed from the system state. The bit array is checked:

• If both of the positions indicated by the hash values are already set,
the state is considered to have been previously visited. The search
of this particular path in the state space is pruned, and the search
backs up to a previous system state and continues elsewhere.

• If both of the positions are not set, the state is a new state that has
not been previously visited. Both position in the bit array are then
set and the search continues with the successor states.

Search Depth

The search depth is the maximum depth the Validator will explore a par-
ticular execution path in the state space. When this depth is reached, the
search is truncated and the search backs up to a previous system state.

• Default value: 100
• Command: Define-Bit-State-Depth
• Menu choice: Options2: Bit-State: Depth

Note:

It is not possible to cancel this operation, i.e. you have to either
change the current root or the current system state.
2390 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
Hash Table Size

The size of the bit array used as hash table is an important factor defin-
ing the behavior of the bit state exploration. The reason is that each time
a new state is checked by comparing its hash values with previous hash
values there is a risk for collision. The bigger the hash table is, the
smaller the collision risk is.

• Default value: 1,000,000 (bytes)
• Command: Define-Bit-State-Hash-Table-Size
• Menu choice: Options2: Bit-State: Hash Size

Random Walk Options
Random walk is an automatic state space exploration algorithm that can
be useful for very large SDL systems. It performs a depth-first search
through the state space by selecting transitions to execute at random.

When the maximum search depth is reached during such a “random
walk,” the search is restarted from the original state again and a new
random walk is performed. However, there is no mechanism to avoid
that already explored paths are explored once more, i.e. a system state
may be visited a large number of times.

Search Depth

The search depth determines how many transitions will be executed be-
fore the search is pruned and restarted from the beginning again.

• Default value: 100
• Command: Define-Random-Walk-Depth
• Menu choice: Options2: Random: Depth

Repetitions

The number of times the random walk search will be repeated from the
start state before the exploration is finished.

• Default value: 100
• Command: Define-Random-Walk-Repetitions
• Menu choice: Options2: Random: Repetitions
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2391

Chapter 54 Validating a System
Exhaustive Exploration Options
Exhaustive exploration is an automatic state space exploration algo-
rithm intended for small SDL systems where the requirements on cor-
rectness are very high.

The algorithm is a depth-first search through the state space similar to
the bit state search, but there is no collision risk involved. The reason is
that all traversed system states are stored in primary memory, so it is al-
ways possible to determine whether a newly generated system state has
already been visited during the search.

The drawback with the algorithm is that very much primary memory is
needed to be able to store all traversed states. This limits the complexity
of the SDL systems the algorithm is applicable to.

Search Depth

The search depth is the maximum depth the Validator will explore a par-
ticular execution path in the state space. When this depth is reached, the
search is truncated and the search backs up to a previous system state.

• Default value: 100
• Command: Define-Exhaustive-Depth
• Menu choice: Options2: Exhaustive: Depth

MSC Verification Options
The MSC verification algorithm is a bit state exploration that is adapted
to suit the needs of MSC verification:

• An MSC is always loaded to guide the search

• The search depth is different from the depth used during usual bit
state exploration

• The search is aborted as soon as the MSC has been verified.
2392 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
Search Depth

The maximum depth searched by the algorithm. The intention is that
this depth always should be enough. If the MSC verification fails and
the number of truncations is more than 0, this depth should be increased.

• Default value: 1,000
• Command: Define-MSC-Verification-Depth
• Menu choice: Not available

Timer Check Level

When verifying an MSC where there are timers in the MSC and/or in
the SDL system, there is a choice of how to perform the matching be-
tween the timer events in the MSC and in the SDL system. The timer
check level determines how this matching should be done:

• 0: No checking of timer events is performed.

• 1: If a timer event exists in the MSC a matching timer event must
exist in the explored SDL path, but a timer event in the explored
SDL path is accepted even if there is no corresponding MSC timer
event.

• 2: All timer events in the MSC must match a corresponding timer
event in the explored SDL path, and vice versa.

The choice must be determined by the style of MSC that is used.

This option affects the state space; see “Affecting the State Space” on
page 2389.

• Default value: 1
• Command: Define-Timer-Check-Level
• Menu choice: Options2: MSC: Timer check level
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2393

Chapter 54 Validating a System
Report Options
For each report type, you can define the action performed when the re-
port is found and whether it should be reported to the user.

Report Action

The report action determines what action should be performed when a
report situation is encountered while performing state space explora-
tion. There are three possibilities:

• Continue: The search continues past the reported situation as if it
never happened.

• Prune: The search is pruned and depending on the algorithm some
appropriate action is taken. For example, when using bit state explo-
ration, the search will back up one state and continue with the next
alternative transition, as if max search depth was reached and the
search truncated.

• Abort: The search is aborted and the command prompt displayed.

Note that for some report types, like Deadlock, the continue choice is
impossible.

This option affects the state space; see “Affecting the State Space” on
page 2389.

• Default value: Prune for all report types
• Commands: Define-Report-Continue, Define-Report-Prune and

Define-Report-Abort
• Menu choices: Options2: Report: Continue, Options2: Report:

Prune and Options2: Report: Abort

Report Log

The report log setting defines whether the report should be recorded in
the list of generated reports. If the report log is set to Off for a particular
report type, these reports will never show up in the report list. Note
however that the report action still is performed, even though the report
is not logged.

This option affects the state space; see “Affecting the State Space” on
page 2389.
2394 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
• Default value: On for all report types
• Command: Define-Report-Log
• Menu choice: Options2: Report: Report log

Report Viewer Autopopup

When an automatic state space exploration is finished, the Report View-
er is normally started automatically to present the found reports. In
some cases this may be inconvenient, so there is a possibility to turn this
feature off.

• Default value: On
• Command: Define-Report-Viewer-Autopopup
• Menu choice: Options1: Report Viewer Auto Popup

MSC Trace Options
When the Validator performs an MSC trace, you can define what types
of events that are traced.

Action Trace

By default, actions like tasks, decisions, etc. are not shown in the MSC
trace. You may change this by setting action trace to On.

• Default value: Off
• Command: Define-MSC-Trace-Action
• Menu choice: Not available

State Trace

By default, changes in process states are shown in the MSC trace by
adding a condition symbol. You may change this by setting state trace
to Off.

• Default value: On
• Command: Define-MSC-Trace-State
• Menu choice: Not available
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2395

Chapter 54 Validating a System
MSC Trace Autopopup

When you go to a report, an MSC Editor is normally started automati-
cally to present the trace from the current root to the state where the re-
port was generated. In some cases this may be inconvenient, so there is
a possibility to turn this feature off.

• Default value: On
• Command: Define-MSC-Trace-Autopopup
• Menu choice: Options1: MSC Trace Auto Popup

State Space Options
The structure and size of the state space that can be generated for any
given SDL system can be modified in a number of ways using the state
space options. The default values are defined to make the state space as
small as possible to make the Validator immediately useful for as many
applications as possible. This, however, also means that the search per-
formed by the Validator is fairly scarce compared to what is possible.
Some error situations may thus be overlooked during the search if they
only occur in a part of the state space that never is reached.

Since these options affect the state space, note the information in “Af-
fecting the State Space” on page 2389.

Transition Type

There are two alternatives possible for the type of a behavior tree tran-
sition during state space exploration:

• It can be equal to a complete SDL process graph transition (the val-
ue “SDL” in the command)

• It can be a part of such an SDL transition (the value
“Symbol-Sequence” in the command).

If it is equal to an SDL process graph transition, whenever such a tran-
sition is started, it is completed before anything else is allowed to hap-
pen. This implies that all process instances in all system states in the be-
havior tree will always be in an SDL process graph state.

If it is only a part of an SDL process graph transition, a transition in the
behavior tree is considered to be a sequence of events that are local to
the process instance, followed by a non-local event. Examples of local
events are tasks and decisions; examples of non-local events are creates
2396 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
and inputs/outputs of signals from/to other process instances. The idea
of this alternative is to model the ITU semantics for SDL as closely as
possible while still allowing optimized performance during state space
exploration.

• Default value: SDL
• Command: Define-Transition
• Menu choice: Options1: State Space: Transition

Scheduling Algorithm

The scheduling algorithm defines which of the process instances in a
system state will be allowed to execute. There are two possible alterna-
tives:

• All of the process instances in the ready queue are allowed to exe-
cute (the value “All” in the command)

• Only the first process instance in the ready queue is allowed to exe-
cute (the value “First” in the command).

The ready queue is a queue containing all process instances that have
received a signal that can cause an immediate transition, but that have
not yet had the opportunity to execute this transition to its end.

If all process instances are allowed to execute, the semantics of ITU rec-
ommendation Z.100 are modeled. There will be one child node to the
current node in the behavior tree for each process instance in the ready
queue.

If only the first process instance is allowed to execute, the semantics of
an application that has been generated by the SDL to C Compiler are
modeled. There will only be one child node to the current node in the
behavior tree, the first process instance in the ready queue.

• Default value: First
• Command: Define-Scheduling
• Menu choice: Options1: State Space: Scheduling

Event Priorities

The events that are represented in a behavior tree can be divided into
five classes:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2397

Chapter 54 Validating a System
• Internal events: Events local to the processes in the system, e.g.,
tasks, decisions, inputs, outputs.

• Input from ENV: Reception of signals from the environment. The
signal is put in the input port of a process instance or on a channel
queue.

• Timeout events: Expiration of SDL timers. The timer signal is put
in the input port of a process instance.

• Channel outputs: A signal is removed from a channel queue and put
into another channel queue or the input port of a process instance

• Spontaneous transitions: A transition in a process caused by input
of none.

To each of these event classes a priority of 1, 2, 3, 4 or 5 is assigned.
These priorities are used during state space exploration to determine
which transitions should be generated from each system state. The
events with priority 1 are first considered. Only if no events with prior-
ity 1 are possible in the current state, the events with priority 2 are con-
sidered. Only if no events with priority 1 or 2 are possible in the current
state are events with priority 3 considered, etc.

Note that also the setting of the symbol time option will have an impact
on the events that will can be executed in each system state; see section
“Transition Time” on page 2399.

The two most common ways of assigning priorities to event classes are:

• All event classes are assigned priority 1.

• Internal events and channel outputs are assigned priority 1, and ex-
ternal, timeout and spontaneous transition events are assigned prior-
ity 2 (the default).

The first alternative represents the situation where no assumptions can
be made about the time scale for the different types of events. The sec-
ond alternative represents a situation where the internal delays are very
short compared to the timeout durations and execution speed of the en-
vironment.

• Default value: Priorities 1, 2, 2, 1, 2
• Command: Define-Priorities
• Menu choice: Options1: State Space: Priorities
2398 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
Transition Time

A common simplification made in the analysis of SDL systems is to
consider the time it takes for a process to execute a symbol, e.g. an ac-
tion or output, to be zero. This time is of course never zero in a real sys-
tem, but in many cases the time is very small compared to the timer du-
rations in the system, and can be neglected when analyzing the system.

Consider for example a situation where a process sets a timer with a du-
ration 5 and then executes something that may take a long time, e.g. a
long loop, and then sets a timer with duration 1. If symbol time is as-
sumed to be zero, the second timer will always expire first. If considered
to be non-zero, any one of the timers can potentially expire first.

The validator allows the user to choose whether to assume that the exe-
cution time for SDL symbols is zero or undefined using the Define-
Symbol-Time command.

• Default value: Zero
• Command: Define-Symbol-Time
• Menu choice: Options1: State Space: Symbol time

Channel Queues

The Validator allows queues to be attached to and removed from all
channels in the SDL system. If a queue is added for a channel, it implies
that when a signal is sent transported on this channel it will be put into
the queue associated with the channel. Then there will be a separate
transition in the state space that represents the forwarding of the signal
to the receiver (or the next channel queue).

• Default: No channels have queues
• Command: Define-Channel-Queue
• Menu choice: Options1: State Space: Channel queues

Maximum Input Port Length

The length of the input port queues is not infinite in the Validator, since
in practice it is likely to be a design error if the queues grow forever. If
the length of a queue exceeds the defined max length during state space
exploration, a “MaxQueuelength” report is generated.

• Default value: 3
• Command: Define-Max-Input-Port-Length
• Menu choice: Options1: State Space: Input port length
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2399

Chapter 54 Validating a System
Maximum Transition Length

To make it possible to detect infinite loops within a transition in the
state space, the maximum number of SDL symbols allowed to be exe-
cuted in one transition is defined. If this number is exceeded during state
space exploration, a “MaxTransLen” report is generated.

• Default value: 1,000
• Command: Define-Max-Transition-Length
• Menu choice: Options1: State Space: Transition length

Maximum Number of Instances

To avoid infinite chains of create actions in the state space, the Valida-
tor uses a max number of allowed process instances for any type. If this
number is exceeded during state space exploration, a “Create” report is
generated.

• Default value: 100
• Command: Define-Max-Instance
• Menu choice: Options1: State Space: Max instance

Maximum State Size

When the Validator is exploring the state space, an internal buffer is
used to store the system states. The size of this buffer defines the max-
imum size of the system states that the Validator can handle.

• Default value: 100,000 (bytes)
• Command: Define-Max-State-Size
• Menu choice: Options1: State Space: Max state size

Timer Progress

One test that can be made with the Validator is to look for non-progress
loops, i.e. loops in the state space without any progress being made. The
intention with this test is to look for situations where the SDL system is
busy doing internal communication but to an outside observer looks
dead.

This option defines if the expiration of a timer is considered as progress
when performing non-progress loop checking. See also “Non Progress
Loop Error” on page 2304 in chapter 53, The SDL Validator.
2400 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Configuring the Validator
• Default: On (timer expiration is considered to be progress)
• Command: Define-Timer-Progress
• Menu choice: Options1: State Space: Timer progress

Spontaneous Transition Progress

One test that can be made with the Validator is to look for non-progress
loops, i.e. loops in the state space without any progress being made. The
intention with this test is to look for situations where the SDL system is
busy doing internal communication but to an outside observer looks
dead.

This option defines if a spontaneous transition is considered as progress
when performing non-progress loop checking. See also “Non Progress
Loop Error” on page 2304 in chapter 53, The SDL Validator.

• Default: On (spontaneous transition is considered to be progress)
• Command: Define-Spontaneous-Transition-Progress
• Menu choice: Not available

Autolink Options
See section “Computing Test Cases” on page 1412 in chapter 36, TTCN
Test Suite Generation for a discussion of the Autolink options.

Setting Advanced Options
Advanced options can be set for state space explorations to achieve a
much larger state space than the default, thus allowing for special kind
of errors to be detected. See “Using Advanced Validation” on page
2351 for more information.

To set advanced options, click the Advanced button in the Explore mod-
ule. This executes the following set of commands:

Define-Scheduling All
Define-Priorities 1 1 1 1 1
Define-Max-Input-Port-Length 2
Define-Report-Log MaxQueuelength Off

The reasoning behind these settings are:

• The scheduling should be set to All, since we in this case are looking
for signal races and a characteristic property of signal race condi-
tions is that they are depending on the ordering of internal events.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2401

Chapter 54 Validating a System
• The priorities should be set to 1 for all types of events.

• To reduce the size of the state space, the maximum queue length
should be set to a very small number. The reason is that when the
environment is allowed to send signals to the system at any time, the
queues that can receive signals from the environment will grow very
rapidly.

• Since a lot of maximum queue length reports will be generated with
these options, the report log for this report should be set to Off. Note
also that the report action for this report should be Prune (which is
the default).

References
[16] Holzmann, G.J:
Design and Validation of Computer Protocols
Prentice-Hall, 1991
ISBN 0-13-539834-7
2402 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	54 Validating a System
	Introduction
	Application Areas
	Structure of a Validator

	Underlying Principles and Terms
	Behavior Trees
	State Space Explorations
	States and Paths

	Generating and Starting a Validator
	Generating a Validator
	Starting a Validator
	Graphical Mode
	Stand-alone Mode (Textual Mode)

	Quick Start of a Validator
	Restarting a Validator
	Supplying Values of External Synonyms
	Actions on Validator Start-up

	The Validator User Interface
	Activating the Monitor
	The Graphical Interface
	The Command and Watch Windows

	Navigating in the State Space
	Moving Up in the Behavior Tree
	Moving Down in the Behavior Tree
	Moving Along the Current Path
	Redefining the Current Root

	Going to a System State
	Using Manual Navigation
	Returning to an Already Reached State
	Using Path Commands
	Using the Command Log
	Using MSC Trace

	Using an MSC
	Using a User-Defined Rule

	Tracing, Logging and Viewing Facilities
	Tracing the Execution
	Textual Trace
	Graphical SDL Trace
	MSC Trace

	Logging the User Interaction
	Examining the System
	Current Process and Scope
	Commands to Examine the System

	Performing Automatic State Space Explorations
	Executing an Exploration
	Rules Checked During Exploration
	Interpreting Exploration Statistics
	Examining Reports
	Changing the Displayed Structure
	Going to a Report

	Validating an SDL System
	Using a Default Exploration
	Determining if the Validation is Finished
	Handling Low Symbol Coverage
	Using Advanced Validation

	Validating Large Systems
	Decomposed Exploration
	Where to Start a Partial Exploration
	How to Limit a Partial Exploration

	Using MSCs to Limit the Search
	More Efficient Bit-State Exploration
	Reducing the State Space Size
	Local Variable Values
	Number of Process Instances
	Size of Large Data Structures
	Variables Not Influencing the Dynamic Behavior

	Using Random Walk Exploration
	Incremental Validation

	Verifying an MSC
	Basic MSC Verification
	Converting Instances Before Verification
	Verifying a Combination of MSCs Using High- Level MSCs
	State of the Validator after MSC Verification
	Using Batch MSC Verification
	Verifying Message Parameters
	Requirements for MSC Verification

	Using Observer Processes
	The Access Abstract Data Type

	Defining Signals from the Environment
	Test Values
	Test Values Restrictions and Options
	Defining and Listing Test Values
	Test Values for Data Types
	Test Values for Signal Parameters
	Test Values for Signal Instances
	Saving Test Values

	Validating Systems That Use the Ref Generator
	Validating Systems with External C Code
	Using User-Defined Rules
	Different Usages
	Examples of Rules
	Managing User-Defined Rules

	Using Assertions
	Configuring the Validator
	Managing Options
	Affecting the State Space
	Bit State Exploration Options
	Search Depth
	Hash Table Size

	Random Walk Options
	Search Depth
	Repetitions

	Exhaustive Exploration Options
	Search Depth

	MSC Verification Options
	Search Depth
	Timer Check Level

	Report Options
	Report Action
	Report Log
	Report Viewer Autopopup

	MSC Trace Options
	Action Trace
	State Trace
	MSC Trace Autopopup

	State Space Options
	Transition Type
	Scheduling Algorithm
	Event Priorities
	Transition Time
	Channel Queues
	Maximum Input Port Length
	Maximum Transition Length
	Maximum Number of Instances
	Maximum State Size
	Timer Progress
	Spontaneous Transition Progress

	Autolink Options
	Setting Advanced Options

	References

