
July 2003 Telelo

Chapter
43 The UML2SDL Utility
The UML2SDL utility converts a model described in UML to an
SDL system. This includes conversion of UML Static Structure di-
agrams to corresponding SDL concepts, as well as translation of
UML (Harel) State Chart diagrams to SDL process diagrams.

This chapter includes setup instructions and a description of the
functionality of the tool. In the end of the chapter, the mapping
rules are described.

This guide assumes that you are familiar with the concepts of UML
– static structure diagrams – as well as SDL.
gic Tau 4.5 User’s Manual ,um-st1 1763

Chapter 43 The UML2SDL Utility
Setting Up the UML2SDL Utility
To efficiently run the UML2SDL utility, you will need to set up a spe-
cialized Organizer menu bar containing the menu UML To SDL. This
modified Organizer menu is defined in the file org-menus.ini that is
located in /orca/uml2sdl/examples/ in the installation directory.
How to add the UML2SDL menu to the Organizer is described in

.

Converting UML Diagrams
When UML diagrams are to be converted into SDL diagrams, the UML
diagrams need to be placed within a module in the Organizer. The dia-
grams may be either static structure diagrams or state charts. If multiple
diagrams exist within the module, all diagrams will be converted at the
same time.

To convert UML diagrams in a module:

1. Select a diagram within the module.

2. Select the desired conversion alternative from the UML To SDL
menu (see below).

The UML2SDL converter will create a new module with the same name
as the converted module, but with the prefix “SDL_” added. The new
module will contain all the resulting SDL diagrams.

The UML To SDL Menu
The UML To SDL menu in the Organizer contains four alternatives:

• Generate SDL System – generates a system using the default trans-
formation options.

• Generate SDL Package – generates a package using the default
transformation options.

• Generate SDL System – allows you to configure the generation of
an SDL system using transformation options.

• Generate SDL Package – allows you to configure the generation of
an SDL package using transformation options.
1764 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Converting UML Diagrams
Transformation Options
The UML2SDL utility is run as a command-line tool, but is started from
the Organizer. If you select an alternative in the UML To SDL menu that
allows you to change the transformation options, a dialog is opened in
which you may specify the transformation options to UML2SDL:

If you select an alternative in the UML To SDL menu that uses the de-
fault transformation options, the dialog is not opened and none of the
options described below are used.

The UML2SDL utility accepts a set of flags which allow you to config-
ure the transformation:

uml2sdl [-a | -d | -l | -o | -p | -s] <module>

• -a

Avoid types: All «process» and «block» classes that can have a type
property, will automatically have this type set to “false”.

• -d <directory>

The name of the sub directory that will contain the generated SDL
files. A suggestion is given in the dialog, which you can alter. If the
directory name does not match an existing sub directory, a new one
will be created inside the current working directory.

• -l

Local types: Push all type definitions as low as possible in SDL
block hierarchies.

• -o

Output SDL/PR to stdout, that is, the generated SDL/PR will be out-
put in the Organizer log. No SDL diagram is created in the Organiz-
er.

Figure 340: Setting transformation options for a package generation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1765

Chapter 43 The UML2SDL Utility
• -p

If used, the UML package will be translated to an SDL package;
otherwise it will be translated to an SDL system. This option is pre-
set on the command line if you selected Generate SDL Package
from the UML To SDL menu.

• -s

Signal default: All operations with no return values are considered
to be signals and not remote procedures. If not used, only operations
following the «signal» stereotype or operations with a property
“{async}” will be mapped to signals.

• <module>
The name of the package or system that will be created. A sugges-
tion is given in the dialog, which you can alter.

Transformation Rules
The transformation rules for UML static structure diagrams are de-
scribed below. For information about the transformation rules applied
when converting state charts, please refer to

.

General
To ensure traceability between the UML model and the SDL model, all
mapped entities keep their name throughout the models.

An Organizer module is considered to represent a UML package. A
module may contain several UML static structure diagrams. The mod-
ule, including all UML static structure diagrams, is transformed into an
SDL package or system.

Each SDL system or package will also contain a block type representing
the architecture of the UML model.

Classes
The UML2SDL utility makes some basic assumptions about how a
class should be interpreted in the SDL context. The basic approach is
however to instruct the tool by using stereotypes. A stereotype is a meta
classification of a class. The tool relies on the following stereotypes:
1766 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Transformation Rules
• A class with the stereotype «newtype» becomes an SDL newtype.
• A class with the stereotype «process» becomes an SDL process.
• A class with the stereotype «block» becomes an SDL block.

A class may have attributes and operations. Depending on how the class
is interpreted, attributes become variables in a process, or fields in a
struct. An attribute have a name and a type; the type may be omitted.
The notation for the attribute is:

< name > [‘:’ < type >]

An operation has a name. It may also contain parameters and return val-
ues. An operation with a return value is translated to a remote proce-
dure; otherwise it is translated to a signal. The notation of an operation
is:

< name > [‘(‘ { < parameter > [‘:’ < type >] }*
‘)’] [‘:’ < return value >]

A UML static structure diagram may contain references to classes de-
fined in other packages. Such classes are given the name according to
the following notation:

< Name of external package > ‘::’ < class name >

Each externally defined class will generate a use clause, referring to the
external package, in the generated SDL system or package.

Figure 341: A class with the stereotype « process »

Figure 342: The notation for a process
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1767

Chapter 43 The UML2SDL Utility
Relations

Inheritance

Two classes connected with an inheritance relationship will generate an
inheritance clause in the subtype. If two «process» classes are related by
the inheritance relationship, there will be an inheritance clause in the
process type representing the subclass.

Inheritance relationships between two «newtype» classes are not al-
lowed due to limitations in SDL.

Aggregation

Two classes may be related by an aggregation. Depending on the con-
text the following translations will be made:

An aggregation between a «block» class and a «process» class will
place the process inside the generated block type:

Figure 343: An inheritance relationship in the UML model will result in an
inheritance relationship in the SDL model
1768 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Transformation Rules
An aggregation between a «process» class and a «newtype» class will
place a variable of the newtype in the process. The newtype definition
will be placed in the block containing the process.

Association

Two classes connected with an association will be transformed as two
classes and connected with a signal-route and/or a channel depending
on the context.

Figure 344: Aggregation expressed in UML and the generated
SDL diagrams in the Organizer view
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1769

Chapter 43 The UML2SDL Utility
In above, two classes “Partner” and “otherProc” are con-
nected by an association. In the generated SDL the two processes “oth-
erProc” and “Partner” will exist in two separate blocks and they will be
able to communicate through a channel and two signal routes.

State Charts

State Charts placed inside the module will be converted together with
the other diagrams inside that module. The converter assumes that if a
state chart has the same name as a process then the converter will try to
merge the resulting SDL process behavior into the diagram of that pro-
cess.

Figure 345: Communicating classes
1770 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 A Small Example
A Small Example
This example is intended to show how the UML2SDL utility can be
used. The example contains a small analysis model of a game – the De-
mon game – which is intended to be implemented in SDL through a de-
sign model. The Demon game is used as an example in other parts of the
Telelogic Tau documentation. For example, see

.

Model Relationships
The purpose of an analysis model is to identify the problem: what is to
be done? The following model is the design model which identifies the
solution. The design model answers the question how it is to be done.
Good practice is to have clear dependencies between the two models,
that is, traceability. Traceability is one of the key factors in a successful
project.

Very often, the analysis model can be reused when the design model is
created. The information provided by the problem statement is needed
in the design model. The purpose of the UML2SDL utility is to auto-
mate this reuse as much as possible.

The Analysis Model

The Class Diagram

The analysis model is presented in . It contains a set of class-
es which describes an overview of the Demon game. A pure analysis
model might not be as detailed as the one given in the example, but the
level of detail in the example is chosen to highlight the functionality of
the UML2SDL utility.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1771

Chapter 43 The UML2SDL Utility
All operations of the classes in the Analysis Object Model will be
mapped to signals since no operation contains a return value. Aggregate
classes containing «process» classes, or marked with the stereotype
«block», like GameBlock and DemonBlock, will become SDL blocks.
The aggregations also tell the UML2SDL utility where to place the
«process» classes. For example, the process Demon will be placed in-
side the block DemonBlock and the other processes will be placed in-
side the GameBlock.

Figure 346: The Analysis Object Model

Analysis 1(1)

«process»

Probe
Result
EndGame
Bump

Game

«process»
JackpotGame «process»

DoubleStake

DoubleGame

«process»
SuperGame

«process»

Newgame
NewJackpotGame
NewDoubleGame
Endgame
Probe
Result
DoubleStake
NewSuperGame
Bump

Main

«actor»

Win
Lose
Score(score: integer)

Player

«process»
ProcessDemon

Newgame
NewJackpotGame
NewDoubleGame
Probe
Result
Endgame
DoubleStake
NewSuperGame

GameBlock
«block»

DemonBlock
1772 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 A Small Example
Associations between classes are mapped to channels and signal routes.
The association between the two classes GameBlock and DemonBlock
will become a channel between the corresponding blocks. The associa-
tion between the classes Main and the ProcessDemon will result in a
path of communication between the resulting processes.

The inheritance relationship between the Game class and its sub-classes
will become inheritance relationships between the corresponding pro-
cesses as well. Since associations are inherited in UML but signal routes
or channels are not inherited in SDL, the UML2SDL utility creates sig-
nal routes/channels for inherited associations. This results in signal
routes between the process Main and Game, as well as between Main
and the sub-processes of Game.

Classes with the stereotype «actor» is mapped as communication with
the environment. In our example the class Player will become a channel
to the environment. The operations of the class Player will be signals to
the environment.

The State Charts

There exist two state charts named Main and Game in the module that
will be converted, see . The intention of using state charts in
the analysis is to get an overview of the behavior of important classes,
see . The state charts will be transformed together with the
class diagram. Since two «process» classes Main and Game exist the re-
sult of the UML to SDL conversion will be two complete process de-
scriptions.

Figure 347: The module that will be converted.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1773

Chapter 43 The UML2SDL Utility
The Design Model
The nature of software engineering always requires design information
to be added to the analysis at some stage, because we can never solve a
problem without providing a solution. This is also true when the
UML2SDL utility is used.

Typically, information that needs to be added is behavior that is not de-
scribed at the UML level. For instance, there is no good way of describ-
ing behavior that is redefined in a sub-class at the UML level. For ex-
ample, such behavior is added to the sub-processes of process Game.
Also, there was no need of modeling the simple behavior of ProcessDe-
mon at the stage of analysis, but we have to do that in the design.

Besides adding the basic behavior, we also need to provide a full design.
This includes actions like introducing variables, timers, etc. For exam-
ple, in the process Main we need to describe how the process is respon-
sible for the creation of Game processes, see .

Figure 348: The behavior of Game.

1(1)Game

Winning

Losing

BumpBump

EndGame

EndGame

Probe^Lose
Result^Score(Count)

Probe^Win Result^Score(Count)
1774 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 A Small Example
When these steps are taken, the Demon game should be complete and
possible to simulate like other SDL systems.

Summary
The intention with the UML2SDL utility is to automate the transfer
from the analysis model to the design model as much as possible. The
transfer will most likely include manual steps, but in theory it is possible
to generate an SDL model which is detailed enough to simulate.

Figure 349: The complete process Main

Process Main 1(1)

DCL
GameP Pid;

Game_Off Game_Off Game_Off

Game_Off NewJackpotGame NewDoubleGame NewSuperGame

Newgame JackpotGame DoubleGame SuperGame

Game GameP:=
Offspring

GameP:=
Offspring

GameP:=
Offspring

GameP:=
Offspring

Game_On Game_On Game_On

Game_On Game_On

DoubleStake Bump Probe Result Endgame

DoubleStake
TO GameP

Bump
TO GameP

Probe
TO GameP

Result
TO GameP

EndGame
TO GameP

Game_On Game_On Game_On Game_On GameP:=
null

Game_Off
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1775

Chapter 43 The UML2SDL Utility
1776 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	43 The UML2SDL Utility
	Setting Up the UML2SDL Utility
	Converting UML Diagrams
	The UML To SDL Menu
	Transformation Options

	Transformation Rules
	General
	Classes
	Relations
	Inheritance
	Aggregation
	Association
	State Charts

	A Small Example
	Model Relationships
	The Analysis Model
	The Class Diagram
	The State Charts

	The Design Model
	Summary

