Chapter

30 TTCN Text Siite
Generation

Thischapter describestwo waysfor generating TTCN test suites
based on SDL specifications. Thefirst oneistouse TTCN Link,
which assists you in manual specification of test suites. The other
oneisto usethe Autolink feature of the SDL Validator, which al-
lows automatic generation of test suites.

For moreinformation about the SDL Validator, see chapter 53, The
SDL Validator.

Tutorialsfor TTCN Link and Autolink can be found in chapter 8,
Tutorial: The TTCN Link and chapter 9, Tutorial: The Autolink
Tool, in the TTCN Suite Getting Started.

July 2003 Telelogic Tau 4.5 User’ sManual 1347

I ntroduction

Introduction

Testing is one of the most important stepsin the devel opment of anew
product. Often, it isalso very time consuming and costly. As part of the
Conformance Testing M ethodology and Framework, the Tree and Tab-
ular Combined Notation (TTCN) has been defined asaformal language
for test suite specification. A test suite consists of four basic parts. The
test suite overview, the declarations, the constraints and the dynamic
behavior description.

In Telelogic Tau, TTCN test suite generation is supported by TTCN
Link and Autolink. They both use an SDL specification asthe basis for
test generation, but they differ in their functionality.

TTCN Link generatesthe TTCN declarations part automatically and
you useit for interactive building of test cases in the dynamic part.

Autolink is embedded in the SDL Validator. In addition to the SDL
specification, it uses M SCs for test purpose descriptions. With thisin-
put, Autolink generates the declarations, constraints and dynamic be-
havior description parts of a TTCN test suite automatically.

In comparison, the test generation features of Autolink are superior to
theones of TTCN Link. If for some reason the test purpose description
with MSCsis not applicable, then you should use TTCN Link. In any
case, test cases built with TTCN Link can be merged with test cases
generated by Autolink.

SDL Simulator
@ MSC Editor
Validator/
Autolink
@ TTCN Editor
TTCN Link

Figure 233: Overview of TTCN Link and Autolink

SDL Editor

July 2003 Telelogic Tau 4.5 User's Manual 1348

I ntroduction

July 2003

TTCN Link — Generation of Declarations

TTCN Link automatically generatesthe TTCN declarations part based
on an SDL specification. The default dynamic behavior tableis also
generated. It contains timeout and otherwise statements for each PCO,
which will ensure that any incorrect response from the implementation
under test alwayswill giveaFAIL verdict asaresult from thetest case.
After the default and constraints tables have been generated, you canin-
teractively build test cases.

When you use TTCN Link, there are four (five) phasesinvolved:
1. Inthe SDL Editor, you prepare an SDL specification.
2. Inthe Organizer, you generate a TTCN Link application.

3. Inthe TTCN suite, you use TTCN Link for generating the declara-
tions part.

4. Inthe TTCN suite, you interactively build test cases.

5. Optionally, you may also mergethetest suitewithaTTCN-MPfile,
possibly generated by Autolink.

For more information about TTCN Link, see“Using TTCN Link” on
page 1351.

Autolink — Generation of a Test Suite

Autolink can be used for automatic generation of TTCN test suites
based on an SDL specification and a number of MSCs. The stepsin-
volved when you use Autolink are:

1. Inthe SDL Editor, you specify the SDL system to be used.
2. Inthe Organizer, you generate a Validator.

3. IntheValidator, you define anumber of tracesthrough the SDL sys-
tem for which you want to derive test cases. Each trace is stored as
an MSC. Alternatively, you may create the MSCs manually in the
M SC Editor or generate them with the help of the SDL Simulator.

4. Inatext editor, you define an Autolink configuration. The configu-
ration tells Autolink how to map SDL signalsand signa parameters
onto TTCN constraint names, and how to group test cases and test

steps.

Telelogic Tau 4.5 User's Manual 1349

I ntroduction

5. Inthe Vadlidator, you generate intermediate representations of the
test cases and constraints from the MSCs. This can either be done
by state space exploration or by direct trandation to TTCN.

6. Inthe Validator, you may modify the generated constraints. After-
wards, theresult issaved ina TTCN-MP file.

7. The TTCN-MP file can be opened in the TTCN suite, and to com-
plete the test suite, the test suite overview hasto be generated. On
UNIX, you haveto generate it explicitly. In Windows, the overview
is generated automatically, for example before you print.

For more information about Autolink, see “Using Autolink” on page

1393.

SDL

SDL specification

~

Autolink

MSC test purposes

»
|

J

TTCN MP File |—

/

-

TTCN

Test suite
overview

Complete
TTCN test suite

\

/

Figure 234: Generation of a TTCN test suite with the TTCN suite and Autolink

July 2003

Telelogic Tau 4.5 User’s Manual

1350

Using TTCN Link

Using TTCN Link

July 2003

The phases involved when you are using TTCN Link —“Preparing for
the Generation of Declarations’ on page 1351, “ Generating the Decla-
rations” on page 1352 and “ Creating Test Cases” on page 1358 — will
be described below. Y ou can al so read about “ Showing SDL System In-
formation” on page 1360 and “Merging TTCN Test Suitesinthe TTCN
Suite” on page 1360.

Preparing for the Generation of Declarations

Beforeit is possible to generate the declarations, you have to do two
things:

1. Adapt the SDL system to the requirements of test generation and
TTCN Link.

2. Generate aLink executable for the SDL specification.

Adapting the SDL System

The major adaptation of the SDL system that you haveto do, isto mod-
ify it to properly describe the test architecture that is to be used. Basi-
cally, the requirement is that the channels from/to the environment of
the system must correspond to the points of control and observationin
the test suite. For example, the SDL system might be a specification of
a communication protocol where the lower side of the protocol in prac-
tise can only be accessed through anetwork. To be ableto create correct
test cases, you aso have to include the communication mediain the
SDL specification. Note however, that the specification of the media
does not have to be a detailed specification of the functiondity, only a
specification of the aspects relevant to the current testing situation.

Generating a Link Executable

Once the SDL specification describing the system to be tested and the
test architecture are finished, you can generate a Link executable. (A
Link executableis sometimes also referred to as state space generator.)
Y ou do thisin the same way aswhen you generate an SDL Simulator or
Validator.

Telelogic Tau 4.5 User's Manual 1351

Using TTCN Link

July 2003

To generate a Link executable:;

1. Select Make from the Generate menu in the Organizer.
The Make dialog will be opened.

Select Analyze & generate code.

Select Generate Makefile.

Select Use Standard Kernel and TTCN Link.

If necessary, change other options.

Click Full Make.

© g A~ 0w N

TheLink executablewill now be generated. It includes theinforma-
tion about the SDL specification that is needed for generation of the
TTCN declarations. The name of the executable will be

<sdl system names>_ xxx.link, Where xxx isdepending on the
compiler used.

Note:

Y ou should not changethe SDL system after you have generated the
Link executable. Such changeswill not affect the generated Link ex-
ecutable and therefore not affect the generation of declarations.

Generating the Declarations

There are two steps involved in generation of the declarations (and the
default table):

1. You select the Link Executable.
2. You start the generation.

Specifying the Link Executable

Before the actual generation of the TTCN declarations, you have to
specify the Link executable — and thereby the SDL system — to use.
There are two methods for doing this: associating the SDL and TTCN
systemsin the Organizer and explicitly selecting the Link executablein
the TTCN suite. In caseaLink executable hasbeen specified bothin the
Organizer and in the TTCN suite, the one selected in the TTCN suiteis
the executable that will be used.

Telelogic Tau 4.5 User’s Manual

1352

Using TTCN Link

July 2003

Also note that the TTCN test suite that you are going to generate the
declarations in, have to be created and added to the Organizer (and the
same system file asthe SDL system isincluded in).

Associating the SDL System with the TTCN Test Suite in the Organizer

1.
2.

In the Organizer, select the SDL system (the top node).
Select Associate from the Edit menu.

The Associate dialog will be opened.

In the dialog, select the TTCN test suite and click OK.

Theassociation will beindicated by anew icon placed under thetest
suiteicon.

Selecting the Link Executable in the TTCN Suite

1
2.

Make surethat thetest suiteis opened and that the Browser isactive.

Select Select Link Executable from the SDT Link menu. On UNIX, it
is the menu in the Browser.

The Select Link Executable dialog will be opened.
In the dialog, select the Link executable and click OK.

Note: External synonyms

The SDL system from which the Link executable is generated may
contain external synonyms that do not have a corresponding macro
definition (see “ External Synonyms” on page 2580 in chapter 57,
The Cadvanced/Chasic SDL to C Compiler). Such an SDL system
cannot be used with TTCN Link and you will get an error message
when trying to select the Link executable.

However, if you set the environment variable SDTEXTSYNFILE tO
asynonym definition file before starting Telelogic Tau, thisfilewill
automatically be used to define the external synonyms. If
SDTEXTSYNFILE issetto“[[” al synonymsaregiven “null” values.
The syntax of a synonym fileis described in “Reading Values at
Program Start up” on page 2581 in chapter 57, The Cadvanced/Cba-
sic DL to C Compiler.

Telelogic Tau 4.5 User's Manual 1353

Using TTCN Link

Generating the TTCN Declarations

When you have specified the Link executable, you can generate the dec-
larationsin the TTCN suite:

1. Select Generate Declarationsfrom the SDT Link menu. On UNIX, it
is the menu in the Browser.

Thiswill generate the declarations and a default table.
2. Expand the Declarations Part and take alook:
— One or more PCO type declarations have been generated.

— For each channel to/from the environment in the SDL system,
one PCO declaration has been generated.

— For each signa on these channels, one ASN.1 ASP/PDU decla-
ration has been generated.

— For each datatype that is used as a parameter on the signals
to/from environment, a TTCN/ASN.1 data type definition has
been generated if the data type cannot be mapped to a standard
TTCN datatype.

3. Expand the Dynamic Part. Y ou should see that a default behavior
tree called Otherwise Fail is generated. This contains otherwise
statements with verdict FAIL for all generated PCOs.

PCO Mapping

There aretwo aternatives available for generation of the PCO types: ei-
ther one PCO typeis generated for each channel in the SDL system or
only one PCO type is generated. Thisis defined by the configuration
command define-pco-type-mapping (see “PCO Type Generation
Strategy” on page 1368). The default is that only one PCO typeis gen-
erated.

If more than one PCO typeis generated, they are named < Channel-
Name>_Typeld. If only one PCO typeis generated it is called
PCO_Type.

July 2003 Telelogic Tau 4.5 User's Manual 1354

Using TTCN Link

ASP/PDU Mapping

The generated ASP/PDUSs are given the same name as the correspond-
ing SDL signal with one exception: If there are multiple PCO typesand
thereis one signal that can be transported on more than one channel to
the environment, this signal is divided into two ASPs, since an ASP
may only be associated with one PCO type. The ASPs are then given
names like <SDLSgnalName>_<PCOName>.

By default, ASPs are generated from the SDL signals. However, you
can changeit to PDUs by using the define-signal-mapping COM-
mand (see “ SDL Signal Mapping Strategy” on page 1369).

Data Type Mapping

The datatype mapping from SDL to TTCN/ASN.1 isdefined in thefol-
lowing table. In most cases atable containing an ASN.1 type definition
isgenerated for each datatype. In the table below, thisisindicated by a
“<TTCN name> -> <ASN.1 definition>" clause. The<TTCN name>is
the name used to denote the typein the test suite and the <ASN.1 defi-
nition>isthe ASN.1 typedefinition that isthe contents of the generated
table. If the TTCN nameis omitted, the name s given by the name of
the corresponding SDL datatype.

SDL datatype | TTCN/ASN.1datatype
structure -> SEQUENCE

array (with finite | -> SEQUENCE OF

index sort)

string -> SEQUENCE OF

bag ->SET OF

enumerated type | -> ENUMERATED

boolean BOOLEAN

character Character -> |A5String (SIZE (1))
charstring CharString -> |A5String

integer INTEGER

red Real -> REAL

natural Natura -> INTEGER (0 .. MAX)

July 2003 Telelogic Tau 4.5 User's Manual 1355

Using TTCN Link

SDL datatype | TTCN/ASN.1datatype

syntype -> subtype

choice -> CHOICE

bit Bit -> BIT STRING (SIZE (1))

bit_string BIT_STRING ->BIT STRING

octet Octet -> OCTET STRING (SIZE (1))

octet_string OCTET_STRING -> OCTET STRING
Objectldentifier | OBJECT_IDENTIFIER ->OBJECT IDENTIFIER
|A5String |A5String

NumericString NumericString
PrintableString | PrintableString
VisibleString VisibleString
Null NULL

Inadditionto the datatypesabove, datatypesdefinedin external ASN.1
modul es can also be used. These datatypes are mapped to definitionsin
the table named “ASN.1 Type Definitions by Reference” in the test
suite. For each datatype in the external ASN.1 module that is used on
signalsto/from the environment, one line defining the data type will be
generated in this table. Note that the Generate Declarations command
in the SDT Link menu assumes that the external ASN.1 moduleis setup
as adependency of the TTCN document.

No other data types than the ones mentioned above may occur on sig-
nals to/from the environment in the system.

Notethat SDL isnot case sensitivewhereas TTCN iscase sensitive. The
spelling of the names generated by TTCN Link is given by thedefining
occurrence of the corresponding SDL name. Also note that no transfor-
mation of names is performed during generation of the TTCN names.
Thismay in some cases lead to incorrect TTCN namesif for examplea
reserved word from TTCN is used in the SDL system. To fix this prob-
lem, you have to change the name in the SDL systemto alegal TTCN
name.

July 2003 Telelogic Tau 4.5 User's Manual 1356

Using TTCN Link

July 2003

Note that the SDL character NUL is mapped to NUL. Unfortunately,
NUL is not an IA5String allowed character. So this must manually be
changed to alegal character, e.g. ““. The NUL character is especially
interesting since uninitialized SDL characters are set to NUL.

Modifying the Generated Declarations

In some cases, you may find it useful to manually modify the declara-
tions that have been generated by TTCN Link before continuing with
the development of thetest cases. Therearein particular two interesting
cases:

e ASPsvs. PDUs.

TTCN Link automatically generates ASPsfor al signalsvisible on
the border of the SDL system unless defined otherwise by the de-
fine-signal-mapping option (see “SDL Signal Mapping Strategy”
on page 1369). If PDU definitions are more suitable for some of the
signals, thisisthe time to change them. The simplest way isto copy
the generated A SPs from the section ASN.1 ASP Type Definitions
and paste them as PDUsin the section ASN.1 PDU Type Definitions.

* ASPfield names.

The ASPsare generated based onthe SDL signals, and sincethe sig-
nalsin SDL have no parameter names (only types), TTCN Link au-
tomatically generatesnamesfor the ASPfields. Thefieldsaregiven
the name “ <type name><no>" where the <type name> is the name
of the type of this parameter (but always starting with anon-capital
letter to follow ASN.1 rules). It ishowever possibleto change these
names in the generated definitions, and if you do it before the test
cases are developed, the new manually defined names will also be
used in the test cases.

Regeneration of Declarations

It is possible to regenerate the declarations from an SDL system to in-
corporate new signals, channels and/or data type into the test suite. If
you select Generate Declarations from the SDT Link menu again, only
declarations with a name different from the existing test suite declara-
tions will be inserted into the test suite.

Telelogic Tau 4.5 User's Manual 1357

Using TTCN Link

July 2003

Creating Test Cases

To create test cases with TTCN Link, you use the Table Editor in the
TTCN suite. When TTCN Link isused, the test cases are synchronized,
that is, verified against the SDL specification.

In synchronized mode, the test case is guaranteed to be consistent with
the specification. Each action you perform during the development of
thetest casewill beincrementally verified by the state space exploration
part of TTCN Link. When atable isin synchronized mode, the SDT
Link menu of the UNIX Table Editor will contain new menu choicesfor
editing of the test case. In Windows, you can find the corresponding
commands in the Link dialog:

» Send will add asend statement to thetest case. Thisisamanual step
where you define the constraint to be associated with the send state-
ment.

* Receiveautomatically generatesall valid responsesfrom the system
under test. Thisimpliesthat you do not need to check with the spec-
ification which possible signalsthe system can send in the stateit is
driven to by the proceeding lines in the test case.

e Sart timer and Cancdl timer are also manual commands where
TTCN timers are started and cancelled. However, note that the tim-
eout event corresponding to the timer will be automatically generat-
ed as aresult of a Receive command.

« Attach test step will attach apreviously defined test step, while still
keeping the editor in synchronized mode.

If you modify the contents of the test case by using other menu choices,
the editor will leave the synchronized mode.

Theverdict for the generated test caselines, will alwaysbe either PASS
or INCONCLUSIVE since the generated receive lines will always cor-
respond to valid behaviors of the implementation under test.

A default test step, which consists of an otherwise fail for each PCO,
will ensure that an incorrect response from the implementation under
test always will give aFAIL verdict as aresult from the test case.

Telelogic Tau 4.5 User's Manual 1358

Using TTCN Link

Constraint Restrictions

The constraints that are used in send and receive statements in the test
cases, are subject to certain restrictions:

» They may not usetest suite or test case variables or test suite param-
eters.

» They must be “exactly” defined without any omits, any values,
ranges, wildcards, etc.

Thefollowing is however alowed in send and receive constraints atest
caseisresynchronized, eventhoughitisnot generated automatically for
receive constraints:

* The constraints can be structured/chained, that is, the constraints
can reference and use other constraints defined in the test suite.

* The constraints can use test suite constants.

» The constraints can be parametrized.

Creating Test Steps

It is often useful to structure the test case into test steps. To do this by
using TTCN Link:

1. Createthe TTCN statements that should be in the test step directly
inthetest casetable. This should of course be donein synchronized
mode.

2. Cut thelinesthat should form the test step from the test case.
3. Create atest step table.

4, Pastethelinesinto the new test step table and adjust the indentation
level.

5. Add an attach statement to the test case.

July 2003 Telelogic Tau 4.5 User's Manual 1359

Using TTCN Link

July 2003

Showing SDL System Information

When you use TTCN Link for creating atest case, it is possible to ac-
cess the SDL specification from the Table Editor.

To do thisyou first select aline in the test case. Then you have three
alternatives:

Select Show SDL from the SDT Link menu.

The SDL Editor will be opened and display the executed SDL sym-
bols that correspond to the sel ected test case line.

Select Show Coverage from the SDT Link menu.

Thiswill display the Coverage Viewer and coverage information
for the current test case.

Select Show MSC from the SDT Link menul.

The MSC Editor will be opened with a generated MSC diagram
showing the execution path from the start of the SDL system to the
state corresponding to the selected linein the test case. This may be
particularly useful if you need to find out how unexpected receive
statements are possible.

Merging TTCN Test Suites in the TTCN Suite

By using TTCN Link, you can only generate the declarations and create
the dynamic tables. Either you could add the constraints and dynamic
tables manually or merge the TTCN Link generated test suite with one
generated by Autolink. A test suite generated by Autolink isin TTCN-
MP format and contains constraints, declarations and dynamic tables.

To merge the test suites:

1. Makesurethat thetest suitethat you want to mergethe MPfileinto

—that is, the destination document — is opened and active.
In Windows, select Autolink Merge from the File menu.

On UNIX, select Autolink Merge from the SDT Link menu in the
Browser.

A dialog will be opened.

Telelogic Tau 4.5 User's Manual 1360

Using TTCN Link

July 2003

3. Find and select the M Pfilethat you want to mergewith the currently
opened test suite.

4, Click OK (in Windows) or Merge (on UNIX).

The MP file you selected will be merged into the currently opened
test suite.

To completethetest suiteon UNIX, you also haveto generatethetest
suite overview. In Windows, the overview is generated automatical -
ly, for example before you print, and after that it is kept updated.

The merge will only work if the two test suites do not conflict. A con-
flict occursif any TTCN object in the MPfile hasthe same name as any
TTCN object in the destination document. However, if such a conflict
is detected, the merge will continue but the conflicting object in the MP
filewill be skipped.

Constraints will be merged in a special way. For example, the MP file
may containaTTCN ASP constraint called constraint1 that refersto the
type typel which is of theincompatibletype TTCN PDU TypeDef. Be-
cause of this, acopy of constraintl will be inserted asa TTCN PDU
congtraint instead. However, this “type conversion” islimited. An
ASN.1 constraint will not be converted to aTTCN constraint or vice
versa.

Summary of TTCN Link

TTCN Link supportstest case development and there are two major ob-
jectives:

» Tohelp solving the consistency problem that arises as soon asthere
are two different descriptions of the same system, in this case the
SDL specification and the TTCN test suite.

» To supply an environment that, based on the SDL specification,
supports test suite development during the TTCN design. Both by
directly using the SDL specification, for example to generate the
declarations, and by providing access to the SDL specification di-
rectly from the TTCN suite.

Telelogic Tau 4.5 User's Manual 1361

Using TTCN Link

Overview of the TTCN Link Algorithm

This section will give a brief introduction to the algorithm used by
TTCN Link to synchronize atest case with an SDL system.

The Composed System

The system that TTCN Link analyzesis the composed system that con-
sists of both the SDL specification and the TTCN test case that isinter-
actively created.

SDL specification

TTCN
test case

o

Figure 235: A composed SDL/TTCN system

The connection between the SDL system and the TTCN test caseiscre-
ated by connection of the channelsto/from environment in the SDL sys-
tem to the PCOs in the test suite.

State Space Exploration

The technique used by TTCN Link is based on state space exploration
(sometimesreferred to asreachability analysis) of the system composed
of the SDL system together with the test case that is being created. The
state space of this system can be viewed as a graph, where the nodes
represent system states and the edges represent actions that can be per-
formed by the system.

July 2003 Telelogic Tau 4.5 User's Manual 1362

Using TTCN Link

July 2003

start system —% Q
state y \ < SDL/TTCN system states
C£ Q<— SDL/TTCN actions

Figure 236: A state space fragment

Each system state represents the combined system in one moment in
time. It contains information of for example;

What SDL process instances exist

The variable values of all the process instances

The control flow state of the instances

Any procedure calls, including local variablesin the procedures
The current line number of the test case

Any started timers, both SDL and TTCN timers

The actions represented by the edges are either SDL actions like input,
output, tasks, etc., or TTCN actions like send, receive or start timer.

Essentially, the algorithm to generate the state space of the combined
system is the following, where two global variables — StateSpace (a
graph that will contain the state space of the system) and TreatList (alist
of statesthat is yet to be treated by the algorithm) — are used:

1.
2.

Create the start system state and add it to StateSpace and TreatList.

Remove one state (in step 34 called the current state) from
TreatList.

Compute all possible actions that can be performed in the current
state and the resulting system state that will be reached when the re-
spective action has been performed.

Telelogic Tau 4.5 User's Manual 1363

Using TTCN Link

4. For each action/resulting state:

— If theresulting state was not already in StateSpace, add it to
TreatList.

— Add the action/resulting state to StateSpace.

5. If TreatList is empty: Terminate algorithm, the state space of the
system is now represented by the graph in StateSpace.

If TreatList is not empty: Go to step 2.

Incremental State Space Exploration

Sinceyou interactively create the test case that describesthe TTCN part
of the combined SDL/TTCN system, it is not possible for TTCN Link

to compute the entire state space at once. Instead, the state space explo-
ration is performed in an incremental fashion in the following way:

1. You compute the state space that can be reached without any action
by the test case.

2. Whenyou TTCN Link to add aTTCN statement to aleaf in the test
tree, you add the corresponding TTCN action(s)/resulting system
state(s) to the state space.

3. Generatethe state space that can be reached from the newly created
system state(s) without any further action by the test case.

4. Goto step 2.

The consequence of this agorithm is that the state space of the com-
bined SDL/TTCN system is explored in an incremental fashion, where
each increment corresponds to a command you have given. Also the
structure of the state space is influenced by the incremental way that it
isgenerated. The state space can be visualized as atree structure, where
each node represents one line in the test case and a subpart of the state
space, to be more precise, the subpart of the state space where the test
case has executed this particular line but not the next one.

July 2003 Telelogic Tau 4.5 User's Manual 1364

Using TTCN Link

July 2003

Nodes corresponding

C{% to lines in the
R \ test case

% i?‘f‘/ 5

4
Subspaces in the ;F%;
state space for the % AT .4
SDL/TTCN system
Figure 237: A structured state space

Since each linein thetest caseis created by acommand from you, each
node with its associated part of the state space can also be viewed asthe
state space increment that was created by a specific command.

Random Walk Exploration

The default state space exploration algorithm used by TTCN Link isthe
algorithm described in the previous sections. Thisisusually referred to
as exhaustive exploration since it exhaustively explores the state space
until all reachable states has been generated. The benefit of this algo-
rithm is that when the exploration is finished, you can be sure that all
possible combinations and alternatives are explored, that is, if TTCN
Link generates two aternativesin areceive statement, the algorithm
guaranteesthat there are no morevalid alternatives. However, the draw-
back isthat the algorithm requires all statesin the state space to be kept
in primary memory. For large SDL systemsthis may not always be pos-
sible with the computers available. The response time may also be un-
acceptable for interactive work with large systems.

Tobeabletouse TTCN Link even in these cases, a second exploration
algorithm is also provided. This isthe random walk algorithm that, in-
stead of exploring the entire state space, explores random pathsin the

state space using the algorithm described below. The input to the algo-
rithmisaset of start states called StartL ist and a maximum depth of the
exploration (MaxDepth) and the number of repetitions (Rep):

Telelogic Tau 4.5 User's Manual 1365

Using TTCN Link

July 2003

1. Select one state (in step 24 called the current state) from StartList.

2. Compute all possible actions that can be performed in the current
state and the resulting system states that will be reached when the
respective action has been performed.

3. If no actions could be performed from the current state or if the
depth of the current random walk is MaxDepth, the current random
walk is pruned. If the number of random walks performed so far is
less than Rep, go to step 1, otherwise terminate the algorithm.

4. If actions could be performed and the depth isless than MaxDepth,
select one of the generated states as a new current state and go to
step 2.

The benefit with the random walk algorithm isthat not more than afew
system states (the current state and its successors) need to be kept in the
memory at the time. The drawback isthat there is no guarantee that the
entire state spaceis explored, so, for example, even if TTCN Link gen-
erates only one receive alternative, it is possible that there are more a-
ternatives.

To accomplish the best, both from exhaustive exploration and random
walk, atwo-step approach can be used when you use TTCN Link for
large SDL systems:

1. Develop thetest casesinteractively by using the random walk algo-
rithm with a small number of repetitions (1-3).

2. Verify that no more receive aternatives were possible by resyn-
chronizing the test cases and using the exhaustive exploration algo-
rithm. Or, if thisis not possible due to lack of memory, use random
walk with a high number of repetitions (at least 10, preferably 50—
100).

This strategy gives both good performance when you interactively cre-
ate the test cases and a good verification of the correctness of the test
case during the automatic resynchronize. The execution time of the ran-
dom walk agorithm is proportional to the number of repetitions.

You select which algorithmtouseinthe .1inkinit file(on UNIX) or
the linkinit.com file (in Windows) by using the
define-algorithm command as described in section “Configuring
the TTCN Link Executable” on page 1367.

Telelogic Tau 4.5 User’s Manual

1366

Using TTCN Link

July 2003

Summary of the TTCN Link Algorithm

The algorithm used by TTCN Link to resynchronizea TTCN test case
with an SDL system, isbased on an incremental state space exploration
of the state space of the composed system. The system consists of the
SDL specification, together with the test case under construction. Inthe
state space exploration, each command that you give will cause a new
part of the state space to be explored, that is, the part that corresponds
to the TTCN statement line that is inserted by the command. Two dif-
ferent exploration algorithms are available: exhaustive exploration and
random walk. Exhaustive exploration is used for interactive develop-
ment of test cases for asmall SDL system and for verification of test
cases for large systems. Random walk is used for interactive develop-
ment of test cases for large SDL systems.

Configuring the TTCN Link Executable

This section describes the various options that can be used to configure
the Link executable. Y ou can change the options by giving the corre-
sponding commandsin afilecaled . 1inkinit (on UNIX) or
linkinit.com (in Windows) in the target directory. The options that
can be set are:

Exploration Algorithm
Random Walk Depth

Random Walk Repetitions
PCO Type Generation Strategy
SDL Signal Mapping Strategy
Stable State

Timer Mode

Transition

Scheduling

MSC Trace

These options will be described below.

Itisalso possible to add user-defined rulesto the .1inkinit file(on
UNIX) or the 1inkinit.com file(in Windows) in order to prune the
state space that is explored by Link. The user-defined rules are de-
scribed in “User-Defined Rules’ on page 1376.

Telelogic Tau 4.5 User's Manual 1367

Using TTCN Link

July 2003

Exploration Algorithm
What exploration algorithm is used, is defined by the command

define-algorithm [exhaustive|randomwalk]
and has the default value exhaustive. The differences between the
different algorithms are described in section “Overview of the TTCN
Link Algorithm” on page 1362.

Random Walk Depth
The maximum depth of each random walk is defined by the command

define-randomwalk-depth <integers>

and has the default value 500.

Random Walk Repetitions

The number of times arandom walk is performed when a state space is
explored by using this algorithm is defined by the command

define-randomwalk-repetitions <integers

with adefault value of 3.

PCO Type Generation Strategy
The PCO Type generation strategy is defined by the command

define-pco-type-mapping [system|channel]
and has default value system.

» If the parameter givenis system then only one PCO typeisgener-
ated for the entire system.

o If the parameter is channel then one PCO typeis generated for
each channel to/from the environment.

The choice also hasan impact onthe ASPsthat are generated from SDL
signals. Usually the name of the A SPisthe same asthe name of the SDL
signal. However, if one PCO typeis generated for each channel to/from
the environment and one SDL signal can appear on more than one of
these channels, then one ASP is generated for each channel it appears
on. Thisis needed since an ASP can only be associated with one PCO
type. The names of the signals are in this case defined as <signal
name>_<channel name>.

Telelogic Tau 4.5 User’s Manual

1368

Using TTCN Link

July 2003

SDL Signal Mapping Strategy

The SDL signalsthat appear on channelsto/from the environment in the
SDL system are either mapped to ASN.1 PDU or ASN.1 ASP defini-
tionsin the test suite. The mapping is defined by the command

define-signal-mapping [asp|pdul
and has default value asp.

Stable State
The stable state option is defined by the command

define-stable [on|off]
and has the default value on.

It works like this:

Consider the situation when an empty test case has been resynchro-
nized. The Link executable will now have computed the state space that
can be reached without any input from or output to the tester. Usually,
the state space looks something like this:

/\
/\/

\/

Figure 238: Original state space

where 0 isthe start state, 1-4 are intermediate states and 5 is a stable
statewhereall internal queuesinthe SDL system are empty and nothing
more can happen without any input from the tester.

Let us now give asend command. Thisimplies that new states are cre-
ated as send transitions areadded to the state space.

If the stable state assumptionis off then we add one send transi-
tion toeach stateintheoriginal state space, the new state space looks
something like this:

Telelogic Tau 4.5 User's Manual 1369

Using TTCN Link

0

e Oa

19+ 1 2 > 5y

/\/

\/

5a
Figure 239: The new state space with stable state assumption “ off”

whereall states called something with ‘@ are new. Now the states space
that contains states that can be reached from the ‘a states without any
input from or output to the tester is explored.

Onthe other hand, if the stable state assumptionis on thenweonly add
a send transition tothe stable state, giving anew state space [ook-
ing like:

/O\
2

/\/

\/

5a
Figure 240: The new state space with stable state assumption “ on”

Now, only the states that can be reached from “5a”’ without any input
from or output to the tester are explored. This state spaceis of course a
lot smaller that the one above.

July 2003 Telelogic Tau 4.5 User's Manual 1370

Using TTCN Link

Timer Mode

Thisisan option that in most cases will not have to be changed. The op-
tion defineshow to interpret timeout actions compared with all other ac-
tionsin the system. The option is changed by the command:

define-timer-mode [long | short]
The default is 1ong.

If the timer modeis 1ong, timeout actions will never occur if thereis
an internal event possible in the system. Essentially, the assumption is
that the performance of the test system and IUT is good enough to en-
sure that the execution time for the actions are very small compared to
the timeout times. Consider a system with the following state space
when the 1ong timer modeis used:

0
-
1/ 2
- K
3

‘ <« limeout

4

Figure 241: Sate space with timer mode “ long”
In this system, the timeout event does not occur until no other event can
happen. Thetransition|eading to states 1-3 areall usual transitions—for

example. inputs and outputs — so the timeout will only occur in state 3,
where no other event is possible.

If the timer mode would have been short, the state space would have
looked differently:

July 2003 Telelogic Tau 4.5 User's Manual 1371

Using TTCN Link

July 2003

Ob‘/)/o\

1 2
i'/ \ / \Zb
1b 3

.

Figure 242: Sate space with timer mode “ short”

The reason is that the timeout event now is possiblein all the states 0-3.

Transition

The transition option defines what is considered to be an atomic transi-
tion in the state space and is defined by the command:

define-transition [‘sdl’ | ' symbol’]
The default value is symbol.

If thetransition optionissetto sd1, then SDL processgraph transitions
areconsidered atomic. Thismeansthat therewill beno statesin the state
space where SDL processes are in the middle of a process graph transi-
tion. In all system statesin the state space, the processes will always be
in aprocess graph state.

If the transition option isset to symbo1, the SDL process graph transi-
tions are not considered to be atomic. In theory, this would imply that
the processes could be interrupted anywhere during the execution of a
transition. However, it turns out that for test generation purposesit is
enough if the process graph transitions are divided at the points where
one process communicates with another process, for example after an
output or a create. A sequence of tasks or decisionsis still viewed as
atomic.

The consequence of thisisthat therewill be moretransitionsin the state
spaceif thetransition optionis symbol thanif itis sda1l. Consider a
simple system with only one process. L et this process have atransition
like:

Telelogic Tau 4.5 User’s Manual

Using TTCN Link

state xx;
input stl;
output sig2;
output sig3;
output sig4
nextstate st2;

If the transition option is sd1, there will only be one transition in the
state space that corresponds to the process graph transition above:

X : process is in state stl

Y : process is in state st2
If thetransition optionis symbo1, therewill beasequence of transitions
in the state space:

X : process is in state stl

| input stl; output sig2;

X1

| output sig2;

X2

| output sig3;

X3

| output sig4; nextstate st2;
Y : process is in state st2

Thiswill of course give alot bigger state space.

Scheduling
The scheduling option is defined by the command

define-scheduling [‘first’|’all’]
This option controls how many processes are allowed to executein a
given system state. If the optionisset to first, only one process (the
firstintheready queue) isallowed to execute. If theoptionissetto a11,
all processesthat can execute are allowed to do it. The default valueis
all.

Consider an SDL system with two static processes. If the scheduling op-
tionis a11, theinitia part of the state space for this system will proba-
bly look like:

July 2003 Telelogic Tau 4.5 User's Manual 1373

Using TTCN Link

July 2003

0
-
l/ 2
-
3

Figure 243: Sate space with scheduling as*“ all”

where

Oistheinitia state (both processes areinthe start symbol).

1 isthe state where the first process has executed its start transition
while the second processis still inits start symbol.

2 isthe state where the second process has executed its start transi-
tion while the first processis still inits start symbol.

3 isthe state where both processes have executed their start transi-
tions.

On the other hand, if the scheduling optionis first, it will look like:

¢
+

2
Figure 244: Sate space with scheduling as “ first”

where

Oistheinitia state (both processes arein the start symbol).

listhe state where the first process has executed its start transition
while the second processis still inits start symbol.

2 isthe state where both processes have executed their start transi-
tions.

Telelogic Tau 4.5 User’s Manual

1374

Using TTCN Link

If there arelots of processes, therewill be asignificant differencein the
size of the state space depending on how the scheduling optionisset!

MSC Trace

The M SC trace options control what isdisplayedinthe M SCsgenerated
by TTCN Link. There are two different M SC trace options controlling
if states and actionsin the SDL system are showed as M SC condition

symbols and M SC action symbols. The options are set by thefollowing

commands:
define-MSC-trace-actions [‘on’ | ‘off’]
define-MSC-trace-states [‘on’ | ‘off’]

The default value for both optionsis ‘off’.

An Example of a .linkinit / linkinit.com File

Thisfollowing .1inkinit file(on UNIX) Of linkinit.com file(in
Wwindows) will changethe exploration a gorithm to random walk and set
the number of repetitionsto 2:

define-algorithm random
define-random-rep 2

Thisisauseful configuration when you work interactively with TTCN
Link, since the random walk algorithm is quicker and requires less
memory than the exhaustive algorithm. But, since the random walk in
Some cases can miss some aternative receive statement, a useful strat-
egy isthefollowing: Use the configuration above when you work inter-
actively with TTCN Link. However, when you have finished with atest
case or a number of test cases, check that the assumptions are valid by
resynchronizing with the exhaustive algorithm or alarger number of
repetitions.

Note that in the commandsinthe .1inkinit file (on UNIX) and the
linkinit.com file(in Windows) can beabbreviated aslong asthey are
unique.

July 2003 Telelogic Tau 4.5 User's Manual 1375

Using TTCN Link

July 2003

User-Defined Rules

User-defined rules can be used during state space exploration to prune
the search performed by the TTCN Link. Whenever a system stateis
found that matches the defined rule, the search is pruned at this partic-
ular state. This can be useful in order to remove specific exceptional be-
havior from the test cases that are designed and instead handle these in
aspecial default test step.

Consider an SDL specification that containsa clock processthat has
atimer intervaltimeout. Everytimethe intervaltimeout e€x-
pires, asigna pisplayTime iSsenttotheenvironment of the SDL sys-
tem. Since this can happen at any time during the execution, there will
bean aternative at all receive statements corresponding to the reception
of thissignal. To avoid this, it is better to add areceive statement in the
default dynamic behaviour that skips this signal.

To achieve thiswith TTCN Link, you have to do two things:
» Definearulethat prunesthe state space at appropriate places.

* Modify the default dynamic behaviour that is generated by TTCN
Link.

A rulethat prunes the state space whenever the intervaltimer €x-
piresisthe following:

def-rule sitype(signal (clock:1))=intervaltimeout;

The statements that need to be added to the default behaviour are:

PCO?DisplayTime DisplayTime Match All
RETURN
These lines will cause the tester to ignore DisplayTime signal s sent
from the system.

A rule essentialy gives the possibility to define predicates which de-
scribe properties of one particular system state. As soon as this predi-
cate matches a system state, TTCN Link will prune the search. A rule
consists of a predicate (as described below) followed by a semicolon
;). Inarule, al identifiers and reserved words can be abbreviated as
long as they are unique.

Telelogic Tau 4.5 User’s Manual

1376

Using TTCN Link

July 2003

Note:

Only one rule can be used at any moment. If more than oneruleis
needed, reformulate the rules as one rule, by using the boolean op-
erators described below.

Predicates
The following types of predicates exist:

* Quantifiers over process instances and signalsin input ports
* Boolean operator predicates such as “and”, “not” and “or”
» Relationa operator predicates such as“=" and “>"

Parenthesis are allowed to group predicates.

Quantifiers

The quantifiers listed below are used to define rule variables denoting
process instances or signals. The rule variables can be used in process
or signal functions described later in this section.

exists <RULE VARIABLE> [: <PROCESS TYPE>]
[| <PREDICATE>]

This predicate istrueif there exists a process instance (of the specified
type) for which the specified predicateistrue. Both the processtype and
the predicate can be excluded. If the process type is excluded, all pro-
cessinstances are checked. If the predicateis excluded, it is considered
to betrue.

all <RULE VARIABLE> [: <PROCESS TYPE>]
[| <PREDICATE>]

Thispredicateistruefor al processinstances (of the specified type) for
which the specified predicateistrue. Both the processtype and the pred-
icate can be excluded. If the process type is excluded, all processin-
stances are checked. If the predicateis excluded, it is considered to be
true.

siexists <RULE VARIABLE> [: <SIGNAL TYPE>]
[- <PROCESS INSTANCE>] [| <PREDICATE>]

Thispredicateistrueif asignal (of the specified type) existsintheinput
port of the specified process for which the specified predicateistrue. If
no signal typeis specified, al signals are considered. If no processin-
stance is specified, the input ports of all process instances are consid-

Telelogic Tau 4.5 User's Manual 1377

Using TTCN Link

July 2003

ered. If no predicate is specified, it is considered to be true. The speci-
fied process can be either arule variable that has previously been de-
finedinan exists or all predicate, or aprocessinstance identifier
(<PROCESS TYPE>:<INSTANCE NO>).

siall <RULE VARIABLE> [: <SIGNAL TYPE>]
[- <PROCESS INSTANCE>] [| <PREDICATE>]

This predicate istrue for all signals (of the specified type) in the input
port of the specified process for which the specified predicateistrue. If
no signal type is specified, al signals are considered. If no processis
specified, the input ports of all process instances are considered. If no
predicate is specified, it is considered to be true. The specified process
can be either arule variable that has previously been defined in an
exists OF all predicate, or aprocessinstanceidentifier (<PROCESS
TYPE>: <INSTANCE NO>).

Boolean Operator Predicates

Thefollowing boolean operators are included (with the conventional in-
terpretation):
not <PREDICATE>

<PREDICATE> and <PREDICATE>
<PREDICATE> or <PREDICATE>

Theoperatorsarelisted in priority order, but the priority can be changed
by parenthesis.

Relational Operator Predicates
The following relational operator predicates exist:

<EXPRESSION> = <EXPRESSION>
<EXPRESSION> != <EXPRESSION>
<EXPRESSION> < <EXPRESSION>
<EXPRESSION> > <EXPRESSION>
<EXPRESSION> <= <EXPRESSION>
<EXPRESSION> >= <EXPRESSION>

Theinterpretation of these predicatesis conventional. The operatorsare
only applicable to data types for which they are defined.

Expressions

The expressionsthat are possible to usein relational operator predicates
are of the following categories:

» Process functions: Extract values from process instances

Telelogic Tau 4.5 User’s Manual

Using TTCN Link

July 2003

« Signal functions: Extract values from signals
* Globd functions: Examine global aspects of the system state
e SDL literals: Conventional SDL constant values

Process Functions

Most of the process functions must have a process instance as a param-
eter. This process instance can be either arule variable that has previ-
ously been definedinan exists or all predicate, aprocessinstance
identifier (<PROCESS TYPE>:<INSTANCE NO>) or afunction that re-
turns aprocessinstance, e.g. sender Or from.

state (<PROCESS INSTANCE>)
Returnsthe current SDL state of the processinstance.

type (<PROCESS INSTANCE>)
Returns the type of the process instance.

iplen(<PROCESS INSTANCE>)
Returns the length of the input port queue of the process instance.

sender (<PROCESS INSTANCE>)

Returnsthe value of theimperative operator sender (a processinstance)
for the process instance.

parent (<PROCESS INSTANCE>)

Returnsthe value of the imperative operator parent (aprocessinstance)
for the process instance.

offspring(<PROCESS INSTANCE>)

Returns the value of the imperative operator offspring (a process in-
stance) for the process instance.

self (<PROCESS INSTANCE>)

Returnsthevalue of theimperative operator self (aprocessinstance) for
the process instance.

signal(<PROCESS INSTANCE>)
Returnsthe signal that isto be consumed if the processinstanceisin an
SDL state. Otherwise, if the processinstanceisin the middle of an SDL
process graph transition, it returns the signal that was consumed in the
last input statement.

Telelogic Tau 4.5 User's Manual 1379

Using TTCN Link

July 2003

<PROCESS INSTANCE> -> <VARIABLE NAME>
Returns the value of the specified variable. If <PROCESS INSTANCE>

isapreviously defined rulevariable, the exists or all predicatethat
defined the rule variable must a so include a process type specification.

<RULE VARIABLE>

Returns the processinstance value of <RULE VARIABLE>, Which must
be arule variable bound to a processinstancein an exists Or all
predicate.

Signal Functions

Most of the signal functions must have asignal asaparameter. Thissig-
nal can be either arule variable that has previously been defined in an
siexists Or siall predicate, or afunction that returnsasignal, e.g.
signal.

sitype(<SIGNAL>)
Returns the type of the signal.

to(<SIGNAL>)
Returns the process instance value of the receiver of the signal.

from(<SIGNAL>)
Gives the process instance value of the sender of the signal.

<RULE VARIABLE> -> <PARAMETER NUMBER>
Returns the value of the specified signal parameter. The siexists or
siall predicatethat defined therulevariablemust alsoincludeasignal
type specification.

<RULE VARIABLE>

Returnsthe signal value of <RULE VARIABLE>, Which must bearule
variable boundto asignal ina siexists Or siall predicate.

Global Functions
maxlen()

Gives the length of the longest input port queue in the system.

instno([<PROCESS TYPE>])

Returns the number of instances of type <PrRocEss TYPEs. If
<PROCESS TYPE> isexcluded the total number of process instancesis
returned.

Telelogic Tau 4.5 User’s Manual

1380

Using TTCN Link

July 2003

depth ()
Gives the depth of the current system state in the behavior tree/state
space.

SDL Literals

<STATE ID>
The name of an SDL state.

<PROCESS TYPE>
The name of a process type.

<PROCESS INSTANCE>

A process instance identifier of the format
<PROCESS TYPE>:<INSTANCE NO>, €.¢. Initiator:1.

<SIGNAL TYPE>
The name of asignal type.

null
SDL null process instance value

env

Returns the value of the process instance in the environment that is the
sender of all signals sent from the environment of the SDL system.

<INTEGER LITERAL>
true

false

<REAL LITERAL>
<CHARACTER LITERAL>
<CHARSTRING LITERAL>

SDL Restrictions

The restrictions imposed on the SDL specification by TTCN Link are
basically of four different kinds:

* General SDL restrictions

e State space exploration restrictions
« Datatype mapping restrictions

» TTCN namerestrictions

Telelogic Tau 4.5 User's Manual 1381

Using TTCN Link

July 2003

General SDL Restrictions

TTCN Link is based on the SDL to C compiler and has thus the same
restrictions as the Simulator and Validator which are also based on the
SDL to C compiler. The major restrictions are:

No context parameters
No channel substructures
No signal refinements

No axioms, literal mappings, inheritance or name class literalsin
abstract data types

For more information about the general SDL restrictions see “SDL Re-
strictions” on page 33 in chapter 2, Release Notes, in the Release Guide.

State Space Exploration Restrictions

TTCN Link is based on state space exploration of the combined state
space of the SDL system and the TTCN test case. Since thereisonly a
finite amount of memory available in computers, this means that there
will be restrictions on the size of the state space that can be handled. It
is not possible to give a numeric value on this restriction since it de-
pends both onthe SDL system and on the computer, but TTCN Link has
been successfully used on SDL systemswith morethan 10 processeson
a SPARCstation 10 computer. Also see “Overview of the TTCN Link
Algorithm” on page 1362.

Data Type Mapping Restrictions

Only the data types described in section “ Generating the Declarations’
on page 1352 are allowed on the channels to/from the system.

TTCN Name Restrictions

The mapping of concepts from SDL to TTCN generates alot of names
in TTCN. For example, thesignalsin SDL will become ASPS/PDUsin
TTCN and SDL datatypeswill become TTCN data types. The names
of the generated entities are taken directly from the names on the corre-
sponding SDL entity. Thiswill lead to problemsiif, for example, the
names are reserved wordsin TTCN. In this case, the namesin the SDL
system have to be changed.

Telelogic Tau 4.5 User's Manual 1382

TTCN Link Commandsin the TTCN suite

TTCN Link Commands in the TTCN suite

July 2003

TTCN Link Commands in the TTCN Suite on
UNIX

This section describes the extra menu choices that are available in the
TTCN suite when TTCN Link isused on UNIX.

Browser Commands in the SDT Link Menu

The following menu choices are available in the Browser SDT Link
menu:

* Sdlect Link Executable
* Generate Declarations

Select Link Executable

M akes a connection between atest suite and the corresponding SDL
system. Inthefiledialog that opens, aLink executable should be select-
ed. If thefileisnot alegal Link executable, the selection will fail.

When aLink executableis selected, aplace holder for it isstored in the
test suite. It is possible to change the Link executable if, and only if,
there is no test case which uses the current SDL system (i.e. thereisno
synchronized test case).

It isalso possible to select a Link executable by associating the SDL
system with the TTCN system in the Organizer. However, aLink exe-
cutable selected inthe TTCN suite will override an executable sel ected
in the Organizer.

See also “Externa synonyms’ on page 1353.

Generate Declarations

Generates TTCN versions of the relevant type declarations in the SDL
system. Themenu choiceisonly availableif aLink executable hasbeen
selected.

The generated objectsusethe ASN.1 syntax. They are automatically an-
alyzed after they have been generated. Thisis necessary for later oper-
ations and usage of these types. If there is no other declarations (types)
in the test suite (e.g. the test suite is empty), the analysis will not fail.

On the contrary if other declarations (types) already exist, the analysis

Telelogic Tau 4.5 User's Manual 1383

TTCN Link Commandsin the TTCN suite

may fail due to name conflicts and incorrect references. The error mes-
sages of thisanalyzing will not be displayed. To check if the generated
declarations are analyzed, use the Selector and the Show Error Message
command on the incorrect tables.

At the sametimethat the declarations are generated, a Default table will
be generated. It consists of an otherwise statement for each PCO and a
timeout statement.

No timer will be generated from the SDL system. If the design of the
test suite requires any timers they must be defined manually.

More detail sabout the generated tablesetc. can befoundin “ Generating
the Declarations’ on page 1352.

Table Editor Commands in the SDT Link Menu

To generate atest case (the behaviour description of atest case), thetest
case table must be in synchronized mode. In synchronized mode, the
test case is synchronized (has an established connection) with the se-
lected Link executable.

Once in synchronized mode, the test case editor will stay in this mode
aslong as only commands from the SDT Link menu are used. As soon
as any field in the table (besides the comment fields) is edited, the syn-
chronized modewill beterminated. It ishowever possibleto analyzethe
test case without leaving the synchronized mode.

The following commands are available from a Table Editor for test cas-
es or test steps. They are applied on a behaviour line (they insert a new
behaviour line below/after the behaviour line with the input focus)
henceit isrequired that the test case or the test step either is empty or
has the input focus on aleaf row.

When each of these commandsis performed the input focus is moved
to the new generated behaviour line.

Send

Receive

Start Timer
Cancel Timer
Attach
Resynchronize
Show SDL
Show MSC

July 2003 Telelogic Tau 4.5 User's Manual 1384

TTCN Link Commandsin the TTCN suite

July 2003

» Show Coverage
« Show Options

Send

Adds a send statement below/after the behaviour line with the input fo-
cus. The new behaviour line will have an increased indent level com-
pared with the previous one.

Twpes Constraints

ICON e Gpen |

MSAP2 MDATreq Refresh|
MDATINd
IDATreq
ICOMconf
IDISind
Parameters:li EE

|

Figure 245: Send dialog

The send statement with the selected PCO, ASP/PDU and constraint
will be verified by the selected SDL system. If the verification does not
fail, asend statement is generated and inserted bel ow/after the row with
the input focus. For amore detailed description of thisdialog, see*Add
Send Statement” on page 1172 in chapter 26, The TTCN Table Editor
(on UNIX).

Receive

Adds appropriated receive and/or timeout statement(s) bel ow/after the
behaviour line with the input focus. The new row(s) will have the same

Telelogic Tau 4.5 User’ s Manual 1385

TTCN Link Commandsin the TTCN suite

indent level. Thisindent level will be increased compared with the pre-
vious one.

For each retrieved receive statement from the SDL system, a new Con-
straint is generated if thereis no appropriate Constraint (a Constraint
with asimilar value). The new Constraint will be named with aunique
name and will be analyzed. This new nameis used in the Constraints
Ref column.

Start Timer
Adds a start timer statement below/after the behaviour line with the in-

put focus. The new behaviour line will have an increased indent level
compared to the previous one.

Timers
120 Delay
Ok Cancel Halp

Figure 246: Sart Timer dialog

The start timer statement with the selected timer will be verified with
the selected SDL system. If the verification does not fail, a start timer
statement is generated and inserted bel ow/after the behaviour line with
the input focus. For amore detailed description of thisdialog see“Add
Send Statement” on page 1172 in chapter 26, The TTCN Table Editor

(on UNIX).

July 2003 Telelogic Tau 4.5 User’ s Manual 1386

TTCN Link Commandsin the TTCN suite

July 2003

Cancel Timer
Analogousto Sart Timer.

Attach

Adds an attachment statement bel ow/after the row with the input focus.
Thenew behaviour linewill have anincreased indent level compared to
the previous one.

Thetest step dialog used by this command issimilar to thedialog in the
TableEditor. The sel ected test step (the behaviour linesin the behaviour
description) will be verified with the SDL system. The test step must
have passed analysis before this operation.

Resynchronize

Verifiesthetest casein aTable Editor using the previously chosen Link
executable. Thetablewill change modeto the synchronized mode. This
command is available from Table Editors for test cases and only if an
SDL system is selected.

If the test case does not have any default reference and there is more
than one default in thetest suite, aselection dialog pops up and adefault
must be selected. If the test suite contains only one default, it will be se-
lected automatically. If the test case already has a default, no change
will be made.

If the test case (or the test step) contains behaviour lines, they will be
verified withthe current SDL system. If theverification of any linefails,
the table will keep the normal mode.

Show SDL

Opensthe SDL Editor with the symbols selected which were executed
inthe SDL system and are associated with the behaviour line which has
theinput focus. More precisely, the SDL symbolswhich were executed
after the current test case line but before the next test case line, are se-
lected exactly.

Show MSC

Opens the MSC Editor with a process level MSC that illustrates the ex-
ecution path from the start of the SDL system to the state corresponding
to the behaviour line with input focus.

Telelogic Tau 4.5 User's Manual 1387

TTCN Link Commandsin the TTCN suite

July 2003

Show Coverage

Opensthe Coverage Viewer that displaystest coverage information for
the current test case. The test coverage displays how many times each
symbol in the SDL system has been executed during the generation of
the test case. Note that the important information is not the exact num-
ber of times a particular symbol has been executed (since thisis depen-
dent upon the particular algorithm used by the Link executable). The
important information iswhether asymbol has been executed or not. If
asymbol inthe SDL system has not been executed when generating the
test case, the requirement defined by this symbol isnot tested by the test
case.

Show Options

Shows the current settings of the configuration parameters that control
the way the Link executable explores the state space of the combined
SDL/TTCN system.

TTCN Link Commands in the TTCN Suite in
Windows

In Windows, different TTCN Link commands are included in the SDT
Link menu and the Link dialog. The menu choicesinthe SDT Link menu
are used for selecting the Link executable, generating declarations and
for showing execution information. By using the Link dialog, you can

generate various statements.

The SDT Link menu and the Link dialog will be explained below.

The SDT Link Menu
The following menu choices are included in the SDT Link menu:

Select Link Executable
Generate Declarations
Show SDL

Show MSC

Show Coverage

Show Options

Telelogic Tau 4.5 User’s Manual

1388

TTCN Link Commandsin the TTCN suite

July 2003

Select Link Executable

M akes a connection between atest suite and the corresponding SDL
system. Opens adialog in which you may select the Link executable.

Itisalso possibleto specify the Link executable in the Organizer by as-
sociating the SDL system with the TTCN system. However, aLink ex-
ecutable selected inthe TTCN suitewill override an executabl e selected
in the Organizer.

See also “Externa synonyms’ on page 1353.

Generate Declarations

Generates TTCN versions of the relevant type declarationsin the SDL
system. Themenu choiceisonly availableif aLink executable hasbeen
selected.

The generated objectsusethe ASN.1 syntax. They are automatically an-
alyzed after they have been generated. Thisis necessary for later oper-
ations and usage of these types.

At the same time as the declarations are generated, a Default table will
be generated. It consists of an otherwise statement for each PCO and a
timeout statement.

Timerswill not be generated from the SDL system. If the design of the
test suite requires any timers, they must be defined manually.

Show SDL

Opens an SDL Editor with the symbols selected which were executed

in the SDL system and are associated with the selected behaviour line.
More precisely, the SDL symbolswhich were executed after the current
test case line but before the next test case line, are selected exactly.

Show MSC

Opens an M SC Editor with a process level MSC that illustrates the ex-
ecution path from the start of the SDL system to the state corresponding
to selected the behaviour line.

Telelogic Tau 4.5 User's Manual 1389

TTCN Link Commandsin the TTCN suite

July 2003

Show Coverage

Opensan SDL CoverageViewer that displaystest coverageinformation
for the current test case. The test coverage displays how many times
each symbol inthe SDL system has been executed during the generation
of the test case. Note that the important information is not the exact
number of timesa particular symbol has been executed (sincethisisde-
pendent upon the particular agorithm used by the Link executable). The
important information iswhether asymbol has been executed or not. If
asymbol in the SDL system has not been executed when the test case
was generated, the requirement defined by this symbol is not tested by
the test case.

Show Options

Shows the current settings of the configuration parameters that control
the way the Link executable explores the state space of the combined
SDL/TTCN system.

The Link Dialog

The Link dialog can be opened from the SDT Link menu. The Link dia-
log can only be used when a behaviour lineis selected in the table or if

the table does not yet contain abehaviour line. When the Link dialog is
opened, the current table automatically becomes synchronized with the
Link executable, that is, the table is read-only. The only time synchro-

nization islost for the current table, iswhen TTCN Link isactivated in

another table or when you insert a behaviour line from the Data Dictio-
nary dialog in the current table.

The Link dialog has almost the same appearance asthe Data Dictionary
diaog. A listin the lower left corner of the dialog makes it possible to
switch between the Link and Data Dictionary dialog. For more informa-

tion about the DataDictionary, see" Creating Behaviour Lines’ on page
1253 in chapter 31, Editing TTCN Documents (in Windows).

The operationsavailableinthe Link dialog will be described below. The
operations are applied on a selected behaviour line and the result is that
anew behaviour line is inserted below/after. The test case or the test
step must be empty or aleaf row must be selected.

Telelogic Tau 4.5 User’s Manual

1390

TTCN Link Commandsin the TTCN suite

Data Dictionary for <not connected> B

Send/Receive |T|me| | Attachmentl

r PCO

The Send/Receive Tab

Generate a send statement by selecting a PCO, ASP/PDU, constraint,
etc. When you press the Apply button, the statement will be verified by
the selected SDL system. If the verification succeeds, a new send state-
ment will be inserted below the selected behaviour line.

MEAP2

Typi Constraint; Cangtraint P;
Hame Type Value

(O]
[ad]

r Timner

Aszsignment Qualifiar
O Stant |
:l' O Cancel I I

Eehavior Lin

’7|\SAP‘I 1 [COHreq

Constraint Werdict

Link - Generate Receives Apply | Clear | Close |

July 2003

Figure 247: Generating send statements

Generate receives and/or timeout statement(s) below the selected be-
haviour line by clicking the Generate Receives button. The new row(s)
will all have the ssmeindent level. Thisindent level will beincreased
compared with the previous one.

Thisoperation is only valid when the current selected behaviour lineis
aleaf row.

For each retrieved receive statement from the SDL system, anew Con-
straint is generated if there is no appropriate constraint (a constraint
with asimilar value). The new constraint will be named with a unique
name and will be analyzed. This new name is used in the Constraints
Ref column.

Telelogic Tau 4.5 User's Manual 1391

TTCN Link Commandsin the TTCN suite

The Timer Tab

Generateatimer statement by selecting Start or Cancel and atimer from
the listbox (optional for Cancel). When you click the Apply button, the
timer statement will be verified against the SDL system. If the verifica-
tion succeeds, atimer statement will be generated and inserted below
the selected behaviour line. The new behaviour line will have an in-
creased indent level compared to the previous one.

Send | Timer | Abtachment I

= Timer r Delay [ms]

® Btart
€ Cancel

O Timeout

Behavior Lin r Congtraint Werdict
I | —

Figure 248: Generating timer statements

The Attachment Tab

When you select an attachment and click Apply, an attachment state-
ment will be generated bel ow the selected behaviour line. The new line
will have an increased indent level compared to the previous one.

The selected test step (the behaviour linesin the behaviour description)
will be verified with the SDL system. The test step must have passed
analysis before this operation.

Note:
TTCN Link does not support attachment parameters.

July 2003 Telelogic Tau 4.5 User's Manual 1392

Using Autolink

Using Autolink

The generation of aTTCN test suite with Autolink proceedsin several

~

_

J

-

steps.
User
.) Define Modify
Specify system Define paths configuration constraints
Autolink
SDL system MSCs configuration
Autolink \
Y |/ /) \
Generate Translate MSCs TTCN suite
test cases into test cases
A A

Test case
representation

e)

Constraints)=

v

Generate TTCN

TTCN-MP file

Generate test
suite overview

Complete TTCN
test suite

Convert TTCN-

July 2003

J

.

MP file

Figure 249: Test suite generation with Autolink

Telelogic Tau 4.5 User’s Manual

1393

Using Autolink

You start by specifying an SDL system, see “ Specifying the SDL Sys-
tem and Performing Other Preparations” on page 1394. Based on this
SDL specification, you generate aV alidator application which includes
Autolink.

Next, you define M SC test cases, see “Defining MSC Test Cases’ on
page 1396, which describe the purpose of the test cases of your test
suite. They are stored on disk as system level MSCs, that is, MSCs with
only oneinstance axisfor the SDL system and one or moreinstanceaxis
for the environment. Test cases may contain test steps which are stored
as separate system level MSCs on disk.

Y ou may also want to define an Autolink configuration, see “Defining
an Autolink Configuration” on page 1411, in order to guide the naming
and parameterization of constraints. Autolink can also be configured to
store test cases into a hierarchy of test groups.

The next step isto generate test cases, see “ Trandating M SCsinto Test
Cases” on page 1416. This can be done either by a state space explora-
tion of the SDL system or by directly tranglating system level MSCs
into test cases. In any case, the result is an internal representation for
each test case. At the sametime, alist of constraintsis generated. These
constraints can be renamed and merged, see “Modifying Constraints’
on page 1417. Y ou can also add new constraints manually.

Finally, you generate a TTCN test suite, see“Generatinga TTCN Test
Suite” on page 1419, based on the test case representations and the list
of constraints. The test suiteis stored on disk in TTCN-MP format. On
UNIX, you canimport thisfilein the TTCN suite; in Windows, you can
simply open it in the TTCN suite. On both platforms, you can convert
the TTCN-MP file to the graphical TTCN format in the Organizer.

On the following pages, the steps will be described in more detail.

Specifying the SDL System and Performing
Other Preparations

Before you start the Validator, directories must be created where you
will store test case and test step representations. If there are no appro-
priate directories:

» Createonedirectory for test cases and one directory for test stepsin
your working directory.

July 2003 Telelogic Tau 4.5 User's Manual 1394

Using Autolink

Specifying the SDL System

Y ou have to specify an SDL system in order to create a Validator. At
minimum, you must specify all channels to the environment of your
system and all signals sent via these channels. With such aminimal
specification, you can use Autolink to translate MSCs directly into
TTCN by using the Translate-M SC-Into-Test-Case command. The ad-
vantages and disadvantages of using this command are described in
“Translating MSCsinto Test Cases’ on page 1416.

Generating and Starting a Validator

When you have specified the SDL system, you can generate and start
the Validator. How to do thisisdescribed in “ Generating and Starting a
Validator” on page 2323 in chapter 54, Validating a System.

Specifying Directories
Before you start defining test cases and test steps, you have to specify
where they are to be saved:

1. IntheValidator, select Autolink: Test Cases Directory from the
Options2 menu.

— Thiscorresponds to the command Define-M SC-T est-Cases-Di-
rectory.

2. Inthedialog that will bedisplayed, select thetest case directory that
you previously created and click OK.

3. Select Autolink: Test Seps Directory from the Options2 menu.

— This corresponds to the command Define-M SC-Test-Steps-Di-
rectory.

4. Inthediaog that will bedisplayed, select thetest step directory that
you previously created and click OK.

When you later leave the Validator, you can save these values.

July 2003 Telelogic Tau 4.5 User's Manual 1395

Using Autolink

July 2003

Defining MSC Test Cases

In Autolink, an MSC test caseis derived from apath. A path isase-
guence of events that have to be performed in order to go from a start
state to an end state. There are two ways to define M SC test cases:

1. Interactive simulation and manual specification

2. Automatic computation by Autolink (see“Defining MSC Test Cas-
es Automatically - Coverage Based Test Generation” on page 1410)

Defining MSC Test Cases Interactively

The creation of MSC test cases by interactive simulation proceedsin
several steps:

1. Specify the start state of the test case.

If this state isidentical to the root of the behavior tree, nothing has
to be done. Otherwise, you must navigate to the desired state, for ex-
ample by using the Navigator, selecting a previously defined report
or verifying an MSC. Then you set theroot to the current state with
the pefine-Root Current command.

Note:

Autolink always considersthe current root of the behavior treeto be
the start state of a path.

Also note that when atest caseis generated, the root hasto be the
sameasit was at the moment of the test case definition. Y ou haveto
keep track of the start state with Print-Path and Goto-Path, for ex-
ampleif you want to leave the Validator temporarily.

2. Navigate through the system to the desired end state.
3. Select MSC: Save Test Case from the Autolinkl menu.
— This corresponds to the Save-M SC-Test-Case command.

An MSC test case consists of oneinstance axis for the SDL system and
a separate instance axis for each channel to/from the environment. In
TTCN terms, the single SDL system instance represents the System Un-
der Test (SUT). The environment instances represent the Points of Con-
trol and Observation (PCO); PCOs are the interface between the test
system and the SUT.

Telelogic Tau 4.5 User’s Manual

1396

Using Autolink

The system level MSC that will be saved containsthe observable events
of the path between the start and the end state. Observable events repre-
sent the external interaction that takes place between the SDL system
and its environment. (During conformance testing, external interaction
takes place between the implementation and the test system.)

Figure 250 shows an M SC test case.

MSC inres
| ISAP1 | | inres | | MSAP2
ICONreq
MDATind
(CR, zero, 0)
MDATreq
(CC, one, 55)
ICONconf
IDATreq
©
MDATind
(DT, one, 0)
MDATreq
(AK, one, 55)
IDISreq
IDISind
MDATind
(DR, one, 55)

Figure 250: An MSC test case

Incorporating Test Steps in Test Cases

Typically, test cases are structured logically into several parts, for ex-
ample a preamble, atest body and a postamble. These parts are called
test steps. Y ou may incorporate test stepsin atest case by using MSC
references.

July 2003 Telelogic Tau 4.5 User's Manual 1397

Using Autolink

Figure 251 shows an M SC with two M SC references. Each of the refer-
enced M SCs represents a separate test step; they are called Preamble

and Postamble.

MSC inres2

| ISAP1 | |

inres

| | MSAP2 |

(

Preamble

B

IDATreq

©)

MDATind

(DT, one, 0)

MDATreq

(AK, one, 55)

Postamble

[
—

—

)
—

MSC Preamble

MSC Postamble

| ISAP1 |

| inres |

| MSAP2 |

| ISAP1 | | inres | | MSAP2

ICONreq
MDATind
(CR, zero,0)
MDATreq
- (CC, one, 55)
ICONCconf
T

IDISreq

IDISind

MDATInd

(DR, one, 55)

ﬁ__

July 2003

Figure 251: An MSC with a preamble and a postamble

Test steps are stored with the same file extension as test cases (. mpr).
They are created in analogy to test cases with Save-M SC-Test-Step.

If you want to create a test case with a preamble and a postamble, sev-
eral steps are necessary:

1. Make surethat you have specified the directories for test cases and
test steps as described in “ Specifying Directories’ on page 1395.

Telelogic Tau 4.5 User’s Manual

1398

Using Autolink

July 2003

o

6
7
8.
9

Set the root of the state space to the start state of the test case by us-
ing the command Define-Root Current.

Navigate to the end of the path of the preamble.
Use Save-M SC-Test-Step to save the preamble.

Set the root of the state space to the current state by using the com-
mand Define-Root Current.

Navigate to the end of the path of the test body.
Use Save-M SC-Test-Case to save the test case/test body.

Set the root of the space to the current state.
Navigate to the end state of the test case.

10. Use Save-M SC-Test-Step to save the postamble.

11. Add two M SC references manually to the M SC test case with the

MSC Editor.

Alternatively, you may create asingle M SC test case and split the file
into preamble, test body and postambl e afterwards.

Test steps may refer to other test steps, but not to test cases. During test
case generation, Autolink keepstrack of the nested structure of test cas-
es and test steps.

Note:

When Autolink generates test cases (see Generate-Test-Case and
Translate-M SC-Into-Test-Case), the semantics of MSC references
and M SC reference expressions are different from the semantics
given in the ITU-T Recommendation Z.120!

Autolink requiresthat atest step is completely evaluated before the
next test step starts, i.e. it synchronizes among references, whereas
Z.120 considers M SC references as macros which do not haveto be
evauated as a unit.

Withregardto Figure 251, thismeansthat all signals of thetest body
inmi_inres2 haveto be evauated before the postamble starts.

Telelogic Tau 4.5 User's Manual 1399

Using Autolink

July 2003

Using Timers

Autolink supports test suite timers. There are three types of timers
which are commonly needed in test sequences:

1. A global timer is specified to guarantee that test cases end even if
they are blocked during execution due to an error. By default, Au-
tolink generates aglobal timer T_Global automatically and startsit
at the beginning of each test case. At the end of each test sequence,
T_Global is cancelled. The automatic generation of timers can be

enabled and disabled with the Define-Global -Timer command.

2. A delaying timer is used to delay the sending of asignal from the
tester to the SUT. This may be done for several reasons; for exam-
ple, the sending isdelayed on purposeto specify aninvalid behavior

of the environment.

3. A guardingtimer isused to check that the SUT sendsasignal within

a predefined amount of time.

Delaying and guarding timers have to be specified manually on the en-

vironment instances in test case MSCs. As an example, the MSC in

Figure 252 containsaguarding timer T_Guard oninstance |SAP1 and a

delaying timer T_Wait on instance MSAP2.

T_Guard is set prior to sending asignal to the SUT and reset after the

corresponding response from the SUT. If message ICONconf isre-

ceived in time, test execution proceeds normally. Otherwise, atimeout
of T_Guardwill be caught inthe Default Dynamic Behavior description

and lead to afail verdict.

Thesetting of timer T_Wait isfollowed immediately by atimeout event,

causing the tester to delay the sending of message MDATreqg.

Note:

Test suite timers are part of the environment of the SUT. Corre-
spondingly, there is no explicit relation between these timers and
any timerswhich might be used within the system. Autolink simply
translates timer set events on environment instancesinto TTCN
START Operations, timer reset eventsinto TTCN cancEL operations
and timeout eventsinto TTCN TIMEOUT events. However, timer
eventson any M SC instance belonging to the SUT are not translated
into TTCN statements.

Telelogic Tau 4.5 User’s Manual

1400

Using Autolink

July 2003

MSC guarddelay
[SAPT | [ires] [MsaP2
T_Guard
(10 ms)
ICONreq
MDATiInd
CR.) T_Wait
(PIX_Wait ms)
MDATreq
9 ICONconf (CC, one, 55)
> IDISreq
IDISind
MDATInd
(DR, one,)

Figure 252: Test case MSC with guarding and delaying timer

Autolink createstimer declarations automatically from the information
which it findsin the test case M SCs. From the MSC in Figure 252, Au-
tolink generates a declaration for timer T_Guard with the default dura-
tion set to 10 and ms as unit. Correspondingly, the default duration for
T_Wait is set to the test suite parameter PIX_Wait and its unit is set to
ms as well. Autolink also generates a declaration for PIX_Wait.

Thisimplicit declaration mechanism is convenient if the test suite con-
sists of only onetest case. If there are more test cases using timers, dec-
laration conflicts may arise since timers are declared globally for the

test suite. In order to solve this problem, Autolink provides the Define-
Timer-Declaration command to explicitly declare test suite timers. Ex-
plicit timer declarations can not be modified by implicit declarations. It
is therefore recommended to define al timer declarations explicate be-
foretest case computation starts. In that case, only the timer name must
be provided for timer set eventsin the test case MSCs. The duration is
optional (Autolink usestheduration valueif itisnot empty and different
from the default duration specified in the declaration). Finally, the unit
can be omitted from the test case M SCsif an explicit declaration exists.

Telelogic Tau 4.5 User's Manual 1401

Using Autolink

The use of test suitetimersand their declaration isexplained in more de-
tail in “Test Suite Timers’ on page 1445. With respect to timers, the
TTCN output generated by Autolink depends on the test architecture.
Thisisalso discussed in “Test Suite Timers” on page 1445.

Defining Multiple Test Cases by HMSC Diagrams

HM SC diagrams can be used to illustrate the relationship between var-
ious test cases. For example, even though test cases normally have dif-
ferent test purposes, they might share the same preamble and postam-
ble. This commonness can be graphically expressed by the use of an
HM SC diagram such as the one in Figure 253.

Note:

HM SCs are not supported by Generate-Test-Case but only by
Trandate-M SC-Into-Test-Case.

MSC Test 1(1)

Preamble

Inopportune

Postamble

Figure 253: Three test cases described by one HMSC diagram

When the HM SC Test istaken asinput, Autolink will create three test
caseswhich consist of thetest steps Preamble/Valid/Postamble, Pream-
ble/Invalid/Postamble and Preambl e/l nopportune/Postambl e.

Thegenera interpretation of HM SCs can be described by asimplerule:
Autolink generates a separate test case for each possible path through

an HM SC. Of course, HM SCs may have more than one node with sev-
eral outgoing edges, resulting in apotentially large number of test cases.

July 2003 Telelogic Tau 4.5 User's Manual 1402

Using Autolink

July 2003

Note:

Autolink does not translate loops directly into equivalent constructs
in TTCN. Instead it handles loops by unrolling. Therefore, you
should not introduce loopsin HMSC diagrams.

All test cases need to have unique names. With regard to the HM SC Test
in Figure 253, the resulting test cases will be named Test_Valid,
Test_Invalid and Test_Inopportune. Whenever thereisabranch in the
HMSC, the name of the succeeding M SC referenceis postfixed to the
name of the top-level MSC (separated by *).

Describing Indeterministic Behaviour by Inline and
Reference Expressions

Sometimes, a system under test may not behave deterministically. For
example, there may be unpredictablefailures. A tester should be ableto
handl e such situations. By the use of inline expressions and MSC refer-
ence expressions, it is possible to describe test cases where the tester re-
acts flexibly depending on the system behaviour.

If some of your test cases only differ slightly at some point in the test
case, you may also useinline and reference expressions to describe dif-
ferent behaviour of the tester. In that case, Autolink generates separate
test cases.

Autolink supports the following operatorsin M SC expressions:

» Thealternative operator (a1t) is suitable for the description of sit-
uations where the continuation of atest case depends on the former
output of the system. If both alternatives start with asignal sent from
the system to the tester (i.e. the environment), Autolink will gener-
ate two branches within asingle test case.

On the other hand, the operator may also be used to specify two a-
ternative test sequences. If both alternatives start with asignal sent
from the tester (environment) to the system, Autolink will generate
two distinct test cases.

» Theoptional operator (opt) can be used, e.g., to accept signals
which may or may not be sent by the system or to react to unexpect-
ed signalsin away that the test case can be continued normally af-
terwards.

Telelogic Tau 4.5 User's Manual 1403

Using Autolink

» The exception operator (exc) isintended to be used for error han-
dling. An exception expression may contain signals which prevent
the test system from continuing the regular test execution. In MSC
ConnectionRequest (Figure 254 on page 1404), the reception of sig-
na IDISnd immediately stops the test case. Optionally, an excep-
tion includes a sequence of signals which bring the system under
test back into a stable testing state. An exception always resultsin
an “INCONC" verdict.

* Theloop operator (1oop) can be used to describe the iterative exe-
cution of a(portion of @) test case. Asin HM SCs, Autolink does not
translate loop expressions directly into equivalent constructsin
TTCN. Instead, it handles loops by unrolling. If no upper loop
boundary is given, the loop is evaluated up to three times.

* Finally, the sequence operator (seq) can be used within reference
expressions in order to state that one test step follows another.

Note:

Autolink does not support the parallel (par) and substitution
(subst) operator within inline and reference expressions.

MSC ConnectionRequest

ISAP1 | inres ISAP2

ICONreq

IDISind

ICONind

ICONresp

ICONCconf

Figure 254: Test case with exception handling

July 2003 Telelogic Tau 4.5 User's Manual 1404

Using Autolink

Of course, the usage of the different operatorsis not restricted to the ap-
plications described above. On the other hand, not all M SCs containing
inline or reference expressions may describe sensible test cases.

Synchronization among MSC expressions

As mentioned before, Autolink synchronizes at the beginning and the
end of M SC references. This modification of the semantics givenin the
M SC standard is motivated by the ability to consider separate MSCs as
different test steps. If we cannot guarantee that all eventsin one MSC
are evaluated before the next MSC is entered, we cannot draw aline be-
tween two subsequent test steps.

M SC reference expressions are ageneralization of plain M SC referenc-
es. Autolink generates distinct TTCN test steps for each of the MSCs
involved in the expression. For that reason, it makes sense to synchro-
nize at M SC references, too.

When it comesto inline expressionsit is not really necessary to syn-
chronize at their beginning and their end. However, for consistency Au-
tolink synchronize at inline expressions, as well.

There are situations where synchronization among inline expressionsis
preferable, whereas in other casesthe TTCN output and Autolink’s er-
ror messages may be confusing.

In Figure 255, two examples are given. For MSC Syncl, Autolink will
generate a test case where either ReceiveB or ReceiveC is anticipated
before the test execution proceeds with SendD. If Autolink did not syn-
chronize at the end of the alternative expression, SendD would be sent
before ReceiveB (please note that Autolink prioritizes send events).
Moreover, since both alternatives are combined in a single behaviour
tree, SendD would erroneously become an alternative to ReceiveC!

Unfortunately, there are al so cases where synchronization resultsin un-
expected TTCN test cases. For the second MSC in Figure 255, Autolink
will try to generate the following event tree:

Envl ! SendA
Env2 ? OptReceiveB
Envl ! SendC
Env2 ? ReceiveD
Envl ! SendC
Env2 ? ReceiveD

July 2003 Telelogic Tau 4.5 User's Manual 1405

Using Autolink

July 2003

Of course, Autolink detects that there is a conflict among the two alter-
natives OptReceiveB and SendC and will print awarning.

Whenever Autolink issuesawarning, you should carefully inspect your
M SC test case definition. For example, when MSC Sync2 isinterpreted
asatest case, it isunclear how long atester shall wait until it outputs
SendC. On the other hand, if OptReceiveB is not logically caused by
SendA or may received at any time, a possible solution would be to
move SendC above the optional expression. In this case, no conflict
arises.

Synchronizing Test Events with Conditions

The messagesin MSCs are only partialy ordered. If atest generation
tool would generate all possible test sequences, then send events could
appear as aternativesto receive eventsin TTCN test cases, making
them indeterministic. To solve this problem, three solutions are possi-
ble:

1. Eventsreceived by the tester are prioritized over events sent to the
SUT.

2. Eventssent to the SUT are prioritized over events received by the
tester.

3. All messagesin the MSC are evaluated from top to bottom. In that
case, only one sequence of test eventsis generated.

The first alternative may lead to deadlocks and therefore it is not sup-
ported by Autolink. Alternative three may be selected with the Define-
Autolink-Generation-Mode command.

By default, Autolink uses the second alternative and prioritizes events
which are sent from the test system to the SUT over events which are
received by the tester from the SUT.

Telelogic Tau 4.5 User’s Manual

1406

Using Autolink

July 2003

MSC Syncl
[e] sut | [Enwv2
SendA
alt 1
ReceiveB
_______________________________________ 1
ReceiveC
1
SendD
ReceiveE

MSC Sync2
[Eni] SuT | [Em2
SendA
opt 1
OptReceiveB
1
SendC
ReceiveD

Figure 255: Synchronization among inline expression

Telelogic Tau 4.5 User’s Manual

1407

Using Autolink

July 2003

MSC Sync_Example

L~ 1 & | [] [¢©

Request

(B)

Indication

QY

Response

Confirmation

Request

®)

Busylndication

Figure 256: Synchronization example 1

However, there are situations where this “send immediately” strategy
leads to incorrect test cases. Consider the following small example: A
calls B, B acceptsthe call, then C triesto call B and gets abusy signal.
A corresponding M SC test purpose description would look similar to
theonein Figure 256. What test sequence will Autolink generate? First,
the tester will send request (B) to the SUT through PCO A. Next, Re-
quest (B) will besent to the SUT through PCO C, since thisisthe next
send event on any of the tester instances.

Telelogic Tau 4.5 User’s Manual

1408

Using Autolink

July 2003

MSC Sync_Example_2

L~ | L8 | [| [¢
Request
(B)
Indication
QY]
Response
Confirmation
< SyncPoint >
Request
(B)
Busylndication

Figure 257: Synchronization example 2

Most likely, thisis not what you have anticipated intuitively; the tester
should send the second rRequest (B) only after it hasreceived confir-
mation through PCO A. Thisiswhere explicit synchronization with
conditions comesin. Figure 257 containsthe same M SC as Figure 256,
with aglobal condition added between the reception of confirmation
at PCO A and the sending of request (B) through PCO C. If the Au-
tolink synchronization option is turned on (with Define-Condition-
Check), then events bel ow the condition can only be executed if all
events above the condition have been executed as well. The condition
effectively becomes a synchronization point. In the example, the send-
ing of Request (B) through C will be delayed until confirmation has
been received at PCO A. The name in the condition is required by the
ITU Recommendation Z.120, however it is only considered as a com-
ment and does not have any semantics.

Telelogic Tau 4.5 User's Manual 1409

Using Autolink

Note:

The condition check option also applies to the MSC verification
function of the Validator.

Listing and Clearing Test Cases and Test Steps

e UseList-MSC-Test-Cases-And-Test-Steps for listing all MSC test
cases and test stepsthat are defined in the current test cases and test
steps directories.

e UseClear-MSC-Test-Case to delete an MSC test case.
» Use Clear-M SC-Test-Step to delete an MSC test step.

Note:

Autolink distinguishes between the MSC test case name (which is
the name of the system level M SC) and the name of the file on disk
that contains the M SC test case. Usually, these names are identical
except for the file extension.

When accessing the test cases and the test steps directory, Autolink
aways refersto the file names, meaning that you al so have to spec-
ify thefile extension (either .mpr Or .msc)

Defining MSC Test Cases Automatically -
Coverage Based Test Generation

One common method to generate atest suiteisto select anumber of test
cases which, taken together, obtain a high coverage of the SDL specifi-
cation. ldeally, this coverage should be 100%. In that case, every SDL

symbol in the specification is executed at least once during test genera-
tion.

Autolink provides a specia state space exploration technique, called
Tree Walk, which is optimized for finding paths through the state space
of the SDL specification that result in a high SDL symbol coverage.
Tree Walk combines the advantages of both the depth-first and breadth-
first search strategy - it is able to visit states located deep in the reach-
ability graph and to find a short path to a particular state at the same
time.

e TouseTree Walk, apply the Tree-Walk command.

July 2003 Telelogic Tau 4.5 User's Manual 1410

Using Autolink

July 2003

The execution of Tree Walk is controlled by two options:
1. The maximum computation time (specified in minutes)
2. Thetargeted coverage (specified in percent)

When Tree Walk isused, it generates areport for each sequence of tran-
sitionsin the state space that increases the number of visited SDL sym-
bols. These reports can be converted into system level M SCs with the
command Save-Reports-as-M SC-Test-Cases.

Defining an Autolink Configuration

Autolink offersaspecial language for defining rulesfor the naming and
parameterization of constraints, theintroduction of test suite parameters
and constants, and the distribution of test cases and test steps into test
groups.

» To specify Autolink configuration rules, use the command Define-
Autolink-Configuration.

Whileit ispossible to define an Autolink configuration on thefly at the
Validator command prompt, it is better to write a command file which
includes the configuration.

* Toload thisfile, use the Include-File command.

The command correspondsto the menu choice Configuration: Load
in the Autolink2 menu.

» Toremove aloaded configuration, use the Clear-Autolink-Config-
uration command.

» Todisplay thecurrent configuration, use the Print-Autolink-Config-
uration command.

» Tosaveaconfiguration, use the Save-Autolink-Configuration com-
mand.

See dlso:

* ‘“Trandation Rules’ on page 1421 for an introduction to translation
rules.

e “Test Suite Structure Rules’ on page 1427 for the methodology for
test suite structure rules.

Telelogic Tau 4.5 User's Manua 1411

Using Autolink

« “Syntax and Semantics of the Autolink Configuration” on page
1433 for adetailed description of the configuration language.

Computing Test Cases

Once you have defined a set of MSC test cases, you can compute inter-
nal test case representations for each M SC test case.

e Tocompute MSC test cases, use the Generate-Test-Case command.

A bit-state exploration will be started which aims at finding all pos-
sible sequences of observable events that conform to the MSC. In
addition, Autolink searches for inconclusive events. These are
events that represent deviations from the behavior specified in the
M SC test case, but which are valid aternatives according to the
SDL specification.

Either asingle test case or a set of test cases in the current test cases di-
rectory may be generated at the sametime, depending on the parameter
of Generate-Test-Case. If an already generated test caseis regenerated,
its former internal representation and its corresponding constraint defi-
nitions are replaced.

Note:

If the SDL specification is not detailed enough in the sense that it
doesnot model thesignal flow in agiven M SC, the generation of the
test casefails. M SCswhich cannot be verified can still be converted
into test cases with the Translate-M SC-Into-Test-Case command,
which is described in “Transating MSCs into Test Cases’ on page
1416.

Inline expressions, M SC reference expressions and HM SC dia-

gramsare not supported by Generate-Test-Case. (However, you can
use these structural conceptsfor Transate-M SC-Into-Test-Case.) If
you want to generate test cases based on HM SCs, you have to trans-
form your HM SC diagrams into basic MSCsfirst. Y ou can do this
by verifying the HM SCs and saving all MSC Verification reports as
MSC test cases (command Save-Reports-as-M SC-Test-Cases).

With complex systems, test generation may takeawhile. To avoid time-
consuming test generation failures, you should verify all MSCsfirst.

* To verify al MSC, use the Verify-M SC command.

July 2003 Telelogic Tau 4.5 User's Manual 1412

Using Autolink

July 2003

In most cases, MSC verification takes only a fraction of thetime
needed for test generation.

Listing and Clearing Generated Test Cases

You can list al generated test cases with the List-Generated-Test-
Cases command.

You can clear all generated test cases with the Clear-Generated-
Test-Case command.

Displaying and Saving the Internal Representation

Y ou can display theinternal representation of a generated test case
—without having to save the test suite and start the TTCN suite —
with the Print-Generated- T est-Case command.

Y ou can save an internal test case representation with the Save-Gen-
erated-Test-Case command.

Y ou can load an internal test case representation back into memory
with the L oad-Generated- T est-Cases command.

This makes it possible to distribute the generation of a set of test cases
to several computers. When all test cases have been generated and saved
inindividual files, they can be reloaded on a single machine and saved
as acomplete test suite.

State Space Exploration Parameters

There are several parameters which influence the state space explora-
tion:

Y ou can set the maximum search depth with the Define-Autolink-
Depth command (default value is 1000).

If the search depth is set too low, this may result inincomplete pass
paths. Since the maximum search depth normally has no impact on
the performance of the state space search, it is recommended that
you always use alarge value (> 1000).

Y ou can resize the hash table with the Define-Autolink-Hash-Ta-
ble-Size command (default size is 1,000,000 bytes).

Increasing the hash table size may be necessary if the SDL system
is rather complex.

Telelogic Tau 4.5 User's Manual 1413

Using Autolink

« Normally, Autolink changes the regular Validator state space op-
tions, because the default values of the Validator are not sufficient
for generating correct test cases.

For example, for the Inres protocol specification, the following
commands are issued:

Define-Scheduling All
Define-Transition Symbol-Sequence
Define-Symbol-Time Zero
Define-Priorities 2 1 3 2 2
Define-Channel-Queue ISAP1 On
Define-Channel-Queue MSAP2 On
Define-Max-Input-Port-Length 10

Other SDL systems require different Define-Channel-Queue com-
mands.

Autolink automatically resets the original options when atest case
generationisfinished. Therefore, previously defined reportsarestill
valid (unless they were generated by verifying an MSC).

If you do not want to use the default settings for any reason, usethe
Define-Autolink-State-Space-Optionsof £ command. Thisdisables
the automatic setting of Autolink’s default options.

Test Case Generation Messages
After the generation of atest case, some warnings or error messages
may be displayed:

e Error: Autolink did not find any complete pass paths.
No test case is generated.

This message appears if no final TTCN pass verdict has been as-
signed to any event in the internal test case representation.

The most common reason for test generation failureisthat the MSC
does not describe avalid trace of the SDL system. Hence, before
running Autolink, you should check that the M SC test case can in-
deed be verified using command Verify-M SC.

The error message above may also appear if the maximum search
depth is set too low. Check the state space exploration statistics
which are displayed by Autolink at the end of the test case genera
tion. If the number of truncated pathsis greater than zero, you
should increase the maximum search depth. The required value for

July 2003 Telelogic Tau 4.5 User's Manua 1414

Using Autolink

July 2003

the search depth depends both on the length of the test case and on
the selected state space options of the Validator.

Autolink may asofail if you do not specify thesignal parametersin
the MSC test cases, but instead use global test values. Make sure
that at least all signals sent into the system are fully specified in the
MSC.

Warning: Incomplete pass path found.
The first event X on the incomplete branch
gets an ‘INCONC’ verdict.

This message is displayed if a path in the state space is pruned be-
foreafinal TTCN pass verdict has been assigned to an observable
event. (Notethat in this context apass path refersto theinternal test
case representation whereas otherwise, a path refersto the state
space of the SDL system.) If this happens, the first event X of the
incomplete subtree isreassigned asa TTCN inconc verdict, and the
rest of the subtree is discarded.

Thereasonsfor apass path being pruned are numerous. The system
level MSC may not be verifiable, for example if the state spaceis
too restricted, or there may be a path in the state space of the SDL
system that only partialy verifiesthe MSC. A common problem is
the maximum search depth being too low (see above).

Warning: Alternative events found for send event.
Inconclusive events are deleted.

For test generation, it is assumed that signals which can be sent to
the system are sent instantaneously. Therefore, aternatives to send
events are not desired.

With the default options of Autolink, this message should not ap-
pear. If you use your own Autolink options, check whether Input
from ENV has the highest priority. To correct the problem, you
should usethe Define-Priorities command with parametersx1 1 x2
X3 x4, wherex; > 1.

Warning: No translation rule can be applied to the
following signal: <Signal Name>

If you definean Autolink configuration containing translation rules,
Autolink assumes that you want to map all SDL signals onto con-
straints with the help of user-defined rules. Hence, you will be

Telelogic Tau 4.5 User's Manua 1415

Using Autolink

warned if thereisasignal in atest case to which no translation rule
can be applied.

e Warning: There are events following an event with fi-
nal ‘PASS’ verdict.

When the MSC test case has been simulated completely, the SDL
system was not yet in astable state. Instead, it sent out one or more
additional signals which were not specified in the MSC test case.
Y ou should carefully review your test specification, since during a
test campaign you may not be able to successfully execute another
test case after the execution of the faulty test case.

Translating MSCs into Test Cases

If an SDL system is not fully specified, some or all MSCs may not be
converted into test cases if you use the Generate-Test-Case command.
Instead, you can use the Translate-M SC-Into-Test-Case command to
translate M SCs directly into the sameinterna test case format whichis
used for test cases generated by state space exploration. Therefore, you
can use all commands related to listing, displaying, removing, saving
and loading of test cases (introduced in “Computing Test Cases” on
page 1412) with directly translated test cases as well.

Furthermore, all rulesfor constraint naming (see” Translation Rules’ on
page 1421) and test grouping (see “ Test Suite Structure Rules’ on page
1427) apply to trandated test cases, too.

Note:

Sincethetranslation of M SCsinto test casesdoes not perform astate
space exploration, thereisno guaranteethat the M SCsand hencethe
test cases describe valid traces of the specification or the implemen-
tation, respectively. Instead, the validity of the test cases hasto be
assured by the developer. Furthermore, no inconclusive events can
be computed during MSC translation. Therefore, the resulting test
cases return afail verdict for any deviation from the behavior de-
scribed in the M SC.

Either aset of test casesin the current test cases directory or just asingle
one may betranslated at the same time, depending on the parameter of
Trangate-M SC-Into-Test-Case. If an already translated test case isre-
tranglated, its former internal representation and its constraint defini-
tions are replaced.

July 2003 Telelogic Tau 4.5 User's Manual 1416

Using Autolink

July 2003

Two different algorithms are available for M SC trandlation: With the
Define-Autolink-Generation-M ode command, you can choose the se-
mantics used to interpret M SCs during trand ation. By default, Autolink
usesthe standard semanticsof MSC. If the generation modeis set to “to-
tal ordering”, then the sequence of input and output eventsin the MSC
is determined straight from top to bottom. If there are two events on dif-
ferent environment instances, Autolink evaluates the event which is
closest to the top of the MSC first.

Note:

For test generation with state space exploration (using the Generate-
Test-Case command), total ordering is not supported.

MSC into TTCN Translation Messages

After the generation of atest case, some warnings or error messages
may be displayed:

e Error: No test case could be generated.
Please check whether the MSC contains separate in-
stance axes for each channel to the environment.

The Translate-M SC-Into-Test-Case command does not support the
trandation of M SCs with only one instance axis for the environ-
ment. Use M SCs with a separate instance axis for each channelsto
the environment (i.e. for each PCO).

e Warning: No translation rule can be applied to the
following signal: <Signal Name>

If you define an Autolink configuration containing translation rules,
Autolink assumes that you want to map all SDL signals onto con-
straints with the help of user-defined rules. Hence, you will be
warned if thereisasignal in atest case to which no translation rule
can be applied.

Modifying Constraints

It is highly recommended that you specify constraints naming and pa-
rameterization rulesin an Autolink configuration file. Otherwise, a ge-
neric name of the form <Test case name>_<three digit number> is as-
signed to each constraint during test case generation. However in the
latter case, you will probably find it useful to modify the constraints
generated by Autolink.

Telelogic Tau 4.5 User's Manua 1417

Using Autolink

* Usethe Rename-Constraint command to change the name of a con-
straint.

Besides renaming a constraint, it is also possible to merge two con-
straints. Do this by giving a constraint the same name as another
one. Then you will haveto select which of thetwo signal definitions
should be kept (unless they areidentical). Thereis one restriction:
Constraints with formal parameters cannot be overwritten by other
constraints.

See dso “Trandation Rules’ on page 1421.

» Use the Merge-Constraints command to merge two constraints by
potentially introducing formal parameters.

If the original constraints are used in test cases, their constraint ref-
erences will be updated. This means that the concrete signal param-
eters (which were replaced by formal parameters) will be moved to
the constraint references.

Note:

If you rename a constraint or merge two constraints, theinternal test
case descriptions are updated, too. The links between the eventsin
the test cases and their corresponding constraints remain consistent.

* Usethe Define-Constraint command to add new constraints to the
current list of constraints.

If a constraint with the same name but a different signal definition
aready exists, you will haveto choose what to do — rename the new
constraint, overwrite the old constraint or remove the new defini-
tion.

» Use the Parameterize-Constraint command to replace concrete sig-
nal parameter values in a constraint by formal (symbolic) parame-
ters. If the parameterized constraint is used in atest case, the param-
eter value is not lost, but maintained in the constraint references of
the referring test cases instead.

» Usethe Clear-Constraint command to delete a constraint.

» Usethe List-Constraints command to list all currently defined con-
straints.

¢ Usethe Save-Constraint command to save one or all constraints.

July 2003 Telelogic Tau 4.5 User's Manual 1418

Using Autolink

July 2003

Use the L oad-Constraints command to reload saved constraints.

Generating a TTCN Test Suite

Use the Save-Test-Suite command to save atest suitein a TTCN-
MPfile.

Theinternal representations of thetest caseswill be kept in memory
in order to alow you to save test suitesin different formats.

There are two fundamentally different formats to save test suites:
“Traditional” TTCN and concurrent TTCN. To switch between
these formats, use the Define-Concurrent-TTCN command. For a
detailed description of the concurrent TTCN format, see “ Concur-
rent TTCN” on page 1440.

By default, constraints are stored as ASN.1 ASP constraints, but be-
fore you generate a test suite, you may change an option to have
them stored as ASN.1 PDU constraints instead. To do this, use the
Define-TTCN-Signal-Mapping command. Y ou are also allowed to
select the correct type of constraint for each signal individually by
adding rules to an Autolink configuration (see “Defining ASP and
PDU Types’ on page 1431).

There are three possible output formats for test steps. Use the De-
fine-TTCN-Test-Steps-Format command to select an output for-
mat:

— One possihility isto store the test steps of asingle test case as
local trees. If atest step isused several times, only one behavior
description is generated.

— Test steps can aso be stored globally in the test step library. If
atest step isused several timesin different test cases, only one
behavior description is generated.

— A third alternative isto generate “flat” test cases by including
the events of the test steps directly in the test case dynamic be-
havior descriptions. In this case, no information about test steps
isput into the TTCN test suite.

Note:

A test step that is used in several places may lead to trees with dif-
ferent inconclusive events or different verdicts. In this case, they
will be given new, unique names.

Telelogic Tau 4.5 User's Manual 1419

Using Autolink

Preliminary Pass Verdicts

Test cases that are structured into preamble, test body and postamble
will automatically be assigned preliminary pass verdicts at the end of
the test body. However, test cases can contain an arbitrary number of
M SC references (and hence test steps). Therefore, preliminary pass ver-
dictswill be assigned to all eventsthat are directly followed by the last
top-level MSC referencein the test case. The preliminary pass verdicts
will only be assigned if no event follows the last M SC reference. The
event to which apreliminary passverdict isassigned may appear within
the test body as well as within atest step.

Test Suite Generation Messages

During the saving of atest suite, some warnings or error messages may
be displayed:

e Warning: Test step <TS> resulted in different trees.
The trees are renamed to ‘<TS> 1’, ‘<TS> 2’, etc. in
the test suite.

If an MSC test step isreused in several test cases, the resulting
TTCN test steps may be different. Typically, this warning appears
if atest step isused asapreamblein onetest case and then again as
acomplete test case by itself. In the latter case, afinal pass verdict
is assigned to the test case, while in the former oneit is not.

e Warning: No test suite structure rule defined for test
case/step ‘<TestCaseName/TestStepNames>' .

If you define an Autolink configuration containing test suite struc-
ture rules, Autolink assumes that you want to place all test cas-
eg/stepsin test groups defined by the test suite structure rules.
Hence, you will be warned if there exists atest case/step to which
no rule can be applied.

e Warning: Test suite parameter/constant ‘<Name>’' is
not unique.
It is renamed to ‘<Name>_1', ‘<Name> 2', etc. in the
test suite.

By using translation rules (see “Transation Rules’ on page 1421)
you can introduce test suite parameters and constants. These param-
eters and constants are checked for consistency in asimilar way as
test suites. With thewarning above, Autolink informsyou that it had
to renametest suite parameters/constantsin order to resolve naming
conflicts.

July 2003 Telelogic Tau 4.5 User's Manual 1420

Using Autolink

July 2003

Translation Rules

In “Modifying Constraints’ on page 1417, you have learned how to
change constraints. However, assigning sensible names to automatical-
ly generated constraints is a tedious task. Especialy if you haveto re-
finethe SDL specification and then to repeat the test generation process,
thereisalot of manual work. Moreover, the number of generated con-
straints may become very large if you do not use constraint parameter-
ization.

In order to address these problems and some additional issues, you can
specify so-called translation rules. Theserules control the look of atest
suite with regard to the following items:

1. Naming of constraints
2. Parameterization of constraints

3. Replacement of signal parameter valuesby wildcardsin aconstraint
declaration table

4. Introduction and naming of test suite parameters and test suite con-
stants

Trangdlation rules build one integral part of an Autolink configuration
(see also “Test Suite Structure Rules” on page 1427). Before you start
the test generation, you can develop an Autolink configuration file that
contains a Define-A utolink-Configuration command. The set of trans-
lation rules which tell Autolink how to construct constraints and treat
parameters for particular signals, are provided as a kind of long param-
eter to this command.

For some exampl es, see“ Examples of Translation Rules’ on page 1421.
More information can be found in “Defining an Autolink Configura-
tion” on page 1411 and “ Syntax and Semantics of the Autolink Config-
uration” on page 1433.

Examples of Translation Rules
A typical trandation rule may look like this:

Example 257

TRANSLATE MDATind
CONSTRAINT NAME "C_" + $0
PARS $1="Type"

Telelogic Tau 4.5 User's Manual 1421

Using Autolink

END

Example 257 explainshow signal MpaTind istranslated into an suitable
TTCN constraint. Therule above statesthat the name of aconstraint for
signal MpaTind consists of the concatenation of text "c_» and the
“nullth” parameter —which is the name of the signal itself. Therefore,
signa mMpaTind istrandated into aconstraint called ¢ _MDATind.

Additionally, the first parameter of the signal (referred to by $1) be-
comes a parameter of the constraint. The name of the formal parameter
is Type. Itis printed both in the Constraint Name line and the Con-
straint Value section of the constraint declaration table. The actua pa-
rameter of the constraint is printed in the dynamic behavior table of each
test case that uses this constraint.

A congtraint declaration table for signal MpaTind isshownin
Figure 258.

ASH.1 ASP Constraint Declaration

Constraint Mame : [C_MDATnd Type : IPDUTwpe)
ASP Type 1 MDATING

Derivation Path

Comments

Constraint Value

{iIFDUType! Type, sequencenumnber2 zero, iSDUType3 0}

Detailed Comments :

Figure 258: A constraint declaration with a formal parameter

It is also possible to define a single trandation rule for more than one
signal. Thisis especialy useful if similar signals exist which can be
treated in the same way.

July 2003 Telelogic Tau 4.5 User's Manual 1422

Using Autolink

July 2003

Example 258

TRANSLATE MDATind | MDATreq
CONSTRAINT NAME “C_“ + $0
PARS $1="Type”

END

If either MDATind Or MDATreq iSidentical to the signal for which acon-
straint isto be created during test generation, therulein Example 258 is
applied. Thevalue of so depends on the name of the actual signal in-
vestigated at run-time. Since the first signal parameter is alwaysto be
replaced by the formal parameter Type, theruleisonly vaid if each of
the aternative signals, i.e. MDATind, and MDATreq, hasat least one pa
rameter. When parsing an Autolink configuration, all translation rules
are checked automatically for validity.

Constraint names may not only be based on texts and signal names.
They can also depend onsignal parameters. Inatransationrule, asigna
parameter isreferred to by its number, prefixed with adollar character
(%). (Notethat Autolink only supports parameters on thetop level —itis
not possible to refer to acomponent of a nested parameter.)

In some cases, it is not desirable to use the value of asignal parameter
directly as part of a constraint name. For example, a protocol engineer
might encode complicated signal information with abbreviations or
numbers. But for the TTCN output, parameter val ues should be mapped
onto more meaningful expressions.

Therefore, you may define functions which take an arbitrary number of
parameters and map them onto text. In Example 259, the value of the
first parameter of signal MpaTind ispassed to function pouType. De-
pending on the concrete parameter value, which occurs during test case
generation, the function returns atext. This text forms the second part
of the constraint name.

Telelogic Tau 4.5 User's Manual 1423

Using Autolink

July 2003

Example 259

TRANSLATE MDATind
CONSTRAINT NAME "Medium " + PDUType ($1)

END
FUNCTION PDUType
$1 == "CR" : "Ind Connection_ Request"
$1 == "AK" : "Ind Acknowledge"
$1 == "DR" : "Ind Disconnection Request"
TRUE : "Indication"
END
Note:

Inatrandlationrule, $i referstothei-th parameter of thesignal for
which a congtraint is created. However in afunction, $i denotes
the i-th parameter which was passed to the function.

Y ou may define complex rules whose evaluation is guarded by condi-
tions. Thisisillustrated in Example 260.

Example 260
TRANSLATE "MDATind"

IF $1 == "CR" THEN
CONSTRAINT NAME "Medium Connection_ Request"

END

IF $1 == "AK" AND $2 == "zero" THEN
CONSTRAINT NAME "Medium Acknowledge Zero”

END

CONSTRAINT NAME “Medium Indication”
PARS $1="Type"
END

Conditional translations can be defined by |F-statements. Only if the
condition(s) following the 1r keyword ig/are satisfied, the constraint is
built according to the subsequent specification. A translation rule can
contain several 1r-clauses. Thefirst clause which condition is satisfied
(or which does not have an 1F statement at all) is chosen for trandation.

In the example above, signal MpaTind istrandated into a constraint
called Medium Connection Request if thefirst signal parameter
equals cr, and to aconstraint called Medium Acknowledge if thefirst
two signal parameters equal ax and zero respectively. If neither condi-
tion is satisfied, the unconditioned section is evaluated. In this case, a
constraint with nameMedium_Indication andformal parameter Type

Telelogic Tau 4.5 User's Manual 1424

Using Autolink

July 2003

is created. Note that the parameter definition is not taken into account if
any of the former |F-conditions is satisfied!

Sometimes, it is useful to indicate that a specific signal parameter isir-
relevant. For example, assumethat if the first parameter of signal MpaT-
ind is cRr, the values of the second and third parameter can be ignored.
Hence, you can replace them by wildcards in a constraint table. In
Example 261, amaTch statement is added that tells Autolink to replace
the values of the signal parameters 2 and 3 by asterisks. The resulting
constraint table is displayed in Figure 259.

Example 261

TRANSLATE "MDATind"

IF $1 == "CR" THEN

CONSTRAINT NAME "Medium Connection Request"
MATCH $2=n*||, $3=ll*"
END
CONSTRAINT NAME “Medium Indication”
PARS $1="Type”

END

Note:

The application of TTCN matching mechanismsisonly valid for re-
ceive events. Hence, you are not allowed to apply the maTch state-
ment to signals that become send eventsin TTCN.

ASN.1 ASP Constraint Declaration

Constraint Name : Mediurn_Connection_FRecuest
ASP Type 1 MDATING

Derivation Path

Comments

Constraint Value

JIFCUTypel CR, sequencenumber2 *, iSDUTvpe3 * }

Detailed Comments :

Figure 259: A constraint table with TTCN matching expressions

Trangdlation rules also allow to introduce test suite parameters and con-
stants. Test suite constants are useful if aconcrete parameter value does
not give any clues about its meaning and hence should be replaced glo-
bally by a more meaningful name. Test suite parameters should bein-
troduced if signal parameter values are implementation dependent. By
defining atest suite constant/parameter, a concrete signal parameter

Telelogic Tau 4.5 User's Manual 1425

Using Autolink

July 2003

valuein aconstraint table is replaced by a symbolic constant. The as-
signment of concrete valuesto symbolic test suite constants/parameters
ismade in additional TTCN tables which are created automatically by
Autolink.

Example 262 illustrates the use of test suite parameters and constants.
If the condition is satisfied, the second signal parameter is replaced glo-
bally by seqNo inthe TTCN test suite. The third signal parameter isre-
placed by atest suite parameter called Datavalue. This parameter re-
fersto PICS/PIXIT proformaentry p1cs Data.

If signal MDATreq has not been used for data transfer, the value of the
first signal parameter isreplaced by atest suite constant which nameis
based on the concrete signal parameter value. A constraint table and an
according constant table for this case is shown in Figure 260 and

Figure 261.

Example 262
TRANSLATE "MDATreq"
IF $1 == "DT" THEN
CONSTRAINT NAME "Medium Req Data Transfer"

TESTSUITE CONSTS $2="SegNo"
PARS $3="DataValue" / "PICS Data"
END
CONSTRAINT NAME "Medium Req " + PDUType ($1)
MATCH $3="*"
TESTSUITE CONSTS $1=PDUType ($1)
END

FUNCTION PDUType

$1 == "CC" : "ConConf"

$1 == "AK" : "Acknowledge"

$1 == "DR" : "DisconRequest"

$1 == "DT" : "DataTransfer"

$1 == "CR" : "ConRequest"
END

Telelogic Tau 4.5 User’s Manual

1426

Using Autolink

July 2003

ASN.1 ASP Constraint Declaration

Constraint Name : Mediumn_Feq_ConConf
ASP Type t MDAT e

Derivation Path

Comments

Constraint Value

JiIFCUTypel ConConf, sequencenumber2 one, iSDUTyped * }

Detailed Comments :

Figure 260: A constraint table with a test suite constant

Test Suite Constant Declarations

Constant Mame Type Value Cominents
Ackniowledoe 1P D Typoe AR
ConConf IFDUType CC

Detailed Comments :

Figure 261: A TTCN table for test suite constant declarations

An Autolink configuration typically consists of alarge number of trans-
lation ruleswhich are evaluated from top to bottom. If a constraint can-
not be constructed based on the given rules, a generic name will be as-
signed to the constraint, in the same way as when no translation rules
are defined.

Test Suite Structure Rules

In TTCN, test cases can be combined in test groups. Each test group
aims at testing the system under test for one particular aspect. Test
groups again can be part of other higher level test groups, resultingin a
hierarchy of test groups.

Test steps can be put into test groups aswell. In thefollowing, test cases
and test steps will not be distinguished, as test structure rules apply to
both.

When you start designing atest suite, you should have a clear notion of
what the structure of the test suite will be. In fact, for successful test
suite development, it isimportant to first determinewhat should be test-
ed and how the tests can be classified, before individual test cases are
specified.

If you use Autolink for test generation, the test cases are described by
MSCs. Idedlly, the names of the M SCs should give information about

Telelogic Tau 4.5 User’ s Manual 1427

Using Autolink

the structure of the resulting test suite. Because of this, you may specify
rules for the automatic placing of test cases in different test groups, de-
pending on the names of the corresponding M SCs. These test suite
structure rules prevent you from repeating alot of manual work if you
regenerate the test suite due to a modification of the underlying SDL
specification. Moreover, test suite structure rules (TSS rules) also save
you alot of work if you create atest suite only once, sinceasinglerule
can be applied to several test cases. Aswill be shown in the example be-
low, one rule may be enough to describe the structure of acomplete test
suite.

Test suite structure rules are part of an Autolink configuration. Before
the test generation starts, you can write an Autolink configuration file
which contains a Define-Autolink-Configuration command. The TSS
rules are provided as akind of long parameter to this command.

For details on the Autolink configuration commands see " Defining an
Autolink Configuration” on page 1411. A precise description of the Au-
tolink configuration languageis given in “ Syntax and Semantics of the
Autolink Configuration” on page 1433.

Examples of Test Suite Structure Rules

In the following, it is assumed that you want to create atest suitein
which test cases can be classified according to three different criteria.
On thetop level, tests can be distinguished by whether they are related
to mandatory or optional capabilities. Onthe next level, tests may focus
on particular protocol phases, for example connection establishment,
datatransfer and disconnection. Finaly, valid, invalid or inopportune
behavior may be displayed. A resulting test suite should have the fol-
lowing structure:

Mandatory
Connection
Valid
Invalid
Inopportune
DataTransfer
Valid

Diééénnection
Optional
Itisfurther assumed that having this structurein mind, you have created
M SC test cases with the following names:

July 2003 Telelogic Tau 4.5 User's Manual 1428

Using Autolink

July 2003

V_Con Man 01
V_Dis_Man_ 01
IV_Data Man 01
IO Data_Opt_01
IO _Data_Opt_02

M SC test casesthat belong to the same test group are numbered sequen-
tialy.

Now, asimple TSS rule for the scenario above may look like this:

Example 263

PLACE V_Con_Man 01
IN "Mandatory" / "Connection" / "Valid"
END

Example 263 states that test case v_con Man 01 isintended to be
placed inthetest group valid. Sincethistest groupisplaced in another
test group (connection), you have to specify the complete path, com-
posed of al groupsin hierarchical order. The names of the test groups
areseparated by aslash (‘ /") in analogy to the notation of test group ref-
erencesin the TTCN standard.

If you want to place several test cases in the same test group, you can
use the alternative operator (‘ |") in the header of aTSSrule:

Example 264
PLACE IO Data Opt_01 | IO Data Opt_02
IN "Optional" / "DataTransfer" / "Inopportune"
END

Example 264 placeshoth 10 pata opt 01 and 10 Data Opt 02 in
test group oOptional/DataTransfer/Inopportune

Rules like the one shown in Example 263 and Example 264 can be ap-
plied to MSC test cases with arbitrary names. In the best case, you have
to write one TSS rule for each test group.

However, there isadirect relation between the M SC names and the test
groups. For example, thetwo characters 10 at thebeginning of an MSC
name indicate that the corresponding test case hasto be placed in atest
group called Inopportune. Using this information, the number of TSS
rules can be further reduced as explained below.

Telelogic Tau 4.5 User's Manual 1429

Using Autolink

July 2003

Y ou are allowed to use patterns in the header of atest suite structure
rule. The following characters have a special meaning when used in the
header:

‘*' matches zero or more arbitrary characters.
‘? matches exactly one arbitrary character.

“[...]" matches any single character in the enclosed lists. In order to
represent characters ranges, you can type two characters separated
by adash (‘-'). For example, “[a-z]” denotes an arbitrary lowercase

letter. If thefirst character isa‘ ', any character not enclosed is
matched.

Note:

Patternscan also be usedin asimilar way in the header of translation
rules. Thisis useful if signals with similar names are to be treated

equally.

Now consider the following complex rule and its auxiliary functions:

Example 265
PLACE mn + n n + men + n n + n ? ? ? n + n n + mn
IN OptMan(@5) / Phase(@3) / Behavior(@1)
END
FUNCTION OptMan
$1 == "Opt" : "Optional"
| $1 == "Man" : "Manual"
END
FUNCTION Phase
$1 == "Con" : "Connection"
$1 == "Data" : "DataTransfer"
$1 == "Dis" : "Disconnection"
END
FUNCTION Behavior
$1 == "V" : "valid"
$1 == "IV" : "Invalid"
$1 == "IO" : "Inopportune"
END

With therule in Example 265, all test cases can be placed in their ap-
propriate test groups.

Telelogic Tau 4.5 User's Manual 1430

Using Autolink

July 2003

When atest suite structure ruleis evaluated, it is first checked whether
one of the terms following the keyword pLack (which are separated by
“|") equals the name of the investigated test case. In the rule above,
thereis only oneterm consisting of 7 parts, called atoms. These atoms
are concatenated by the ‘ +* operator.

While Autolink simply has to compare strings in Example 263 and
Example 264, it has to find out whether a concrete test case name
matches the pattern in Example 265. If the test case name matches the
pattern, the atoms in the header of the TSS rule are instantiated.

If, for example, theruleisapplied totest case 10 Data opt 01 atrun-
time, thefirst atom (originally ‘*’) isset to “1O”. The value of the third
atom becomes “Data’, the value of the fifth atom becomes“ Opt” and
the value of the seventh atom becomes “01”. The second, fourth and
sixth atom remain unchanged as they do not contain any special charac-
ters.

In order to refer to the value of an atom in the rule header, you can use
the “at” operator (‘@’). For example, “ @5" refersto the value of the
fifth atom.

Additionally, you may define functions which map parameters onto
texts. In Example 265, “ @5” is passed to function optman. Depending
on the concrete parameter value which is passed at run-time, the func-
tion returns either thetext “Optional” or “Manual” (or an error message
if the first function parameter is neither “Opt” nor “Man”).

An Autolink configuration typically consists of a number of TSS rules
which are evaluated from top to bottom. If atest case or atest step can-
not be placed in atest group based on the given rules, Autolink places
it on top-level and prints an error message. In this case, you can modify
your rules, reload them and apply the Save-Test-Suite command again.

Defining ASP and PDU Types

When Autolink produces a TTCN test suite it creates several tablesin
the declarations part. Thesetables store information about sorts, ASN.1

Telelogic Tau 4.5 User's Manual 1431

Using Autolink

July 2003

datatypes and signa definitions used in the SDL system. By default,
Autolink applies the following rules:

1. SDL sort definitions are mapped onto ASN.1 type definitions.

2. ASN.1 datatypes defined externally in an ASN.1 module are listed
as ASN.1 type definitions by referencein TTCN.

3. SDL signal definitions become ASN.1 ASP type definitions. Asa
conseguence, if asignal isused in atest case, its corresponding
TTCN constraint is stored in an ASN.1 ASP constraint table.

Very often, this mapping is too strict. For example, during test execu-
tion atester may exchange both Abstract Service Primitives (A SPs) and
Protocol Data Units (PDUs) with the system under test. If you want to
store constraints as ASN.1 PDU constraints, you may use Define-
TTCN-Signal-Mapping with parameter PDU. However, in thiscaseall
signals are considered to be PDUs. Moreover, this command does not
apply to SDL sorts and ASN.1 data types.

In order to specify the correct for each different type of information,
Autolink provides two commands in its configuration language. These
commands start with either the keyword Asp-TYPES Or PDU-TYPES.
Y ou can usethem to declare single signalsand sortsas ASPsand PDUSs.

Example 266

ASP-TYPES
“ICONreg” , “ICONconf”, “IDATreqg”
END

PDU-TYPES
“pdu*”
END

In Example 265, three SDL signals, namely ICONreq, ICONconf and
IDATreq are specified as ASPs. The second rule states that all signals
and sortswhose name startswith “ pdu” shall be considered to be PDUs.
If constraintswith corresponding types are used, they are stored asPDU
congtraints as well.

Stripping signal definitions

When it comes to the automatic generation of TTCN test suites, one of
the drawbacks of SDL isthat any data which is exchanged between a

Telelogic Tau 4.5 User's Manual 1432

Using Autolink

July 2003

system and its environment has to be encapsulated in signals. Especial -
ly, if your SDL specification makes use of ASN.1 data types, thisre-
striction imposes a redundant embedding. On the other hand, the con-
cept of signals does not exist in TTCN. Instead, common data values
can be sent and received directly. For that reason, Autolink allows to
strip signals.

Consider asignal type defined as MDATreq(PDUType). If asignal of
thistypeisused in atest case, say MDATreq({ CC}), then Autolink
will generate a constraint of type MDATreq. However, what you may
want to generate is a constraint of type PDUType, i.e. the signal should
be stripped from its parameter.

Example 267

STRIP-SIGNALS
“MDATreqg”
END

PDU-TYPES
“PDUType”
END

Example 267 presents a short Autolink configuration statement that
tells Autolink to unwrap the signal parameter when generating con-
straints that are related to signal MDATreq in the SDL specification.

Please note that signal stripping can only be applied to signalsthat have
exactly one parameter! Moreover, the embedded parameter must be de-
clared either as PDU or as ASP. If these conditions do not hold, Au-
tolink refusesto strip the signal and issuesawarning. If asignal can be
stripped successfully, no declaration is generated for it inthe TTCN
declaration part, sinceit is not used in the constraints part.

Syntax and Semantics of the Autolink
Configuration

Autolink Configuration

The definition of an Autolink configuration is started with the keyword
Define-Autolink-Configuration andisterminated with End. It
consists of an arbitrary sequence of five different kinds of statements:

Telelogic Tau 4.5 User's Manual 1433

Using Autolink

Example 268: Syntax of Autolink configuration

<Start>

<Configurations

Tranglation rules, test suite structure rules, ASP/PDU typerules, signal
stripping rules and functions.

::= "Define-Autolink-Configuration"

<Configurations>

n End n

{ <TransRule> | <TSStructureRule>
<ASPTypesRule> | <PDUTypesRule>
<StripSignalsRule> | <Functions> }*

July 2003

Note:
If you want to define both translation rules and test suite structure
rules, you have to place them in the same configuration definition.

Rules and functions can be arbitrarily mixed in aconfiguration. There
is no need to place rules on top of afile, nor do you have to write for-
ward declarations for functions.

Note:

Autolink analyzes trandation rules and test suite structure rulesin
the order they have been defined. Asaconsequence, the order of the
definitionsis crucia if several rules can be applied.

Translation Rules
Trandation rules are evaluated whenever a constraint is created during
test case generation.

A trangdlation rule starts with the specification of the names of the sig-
nals to which it shall apply (denoted by <aAlternativeListOf-

Terms>).

Telelogic Tau 4.5 User's Manual 1434

Using Autolink

Example 269: Syntax of translation rules

<TransRule> ::= "TRANSLATE"
["SIGNAL"] <AlternativeListOfTerms>
<TransRuleIf>* [<TransRuleNoIf>]
n END n
<TransRuleIf> ::= "IF" <Conditions> "THEN"
<TransRuleNoIf> "END"
<TransRuleNoIf> ::= { "CONSTRAINT" <TransRuleConstraints> |
"TESTSUITE" <TransRuleTestSuite> }*
<TransRuleConstraint> ::= { "NAME" <Term> |

<TransRuleTestSuite>

<ParameterLi
<Parameterls>
<ParameterLi
<Parameter2>

"PARS" <ParameterListls> |

"MATCH" <ParameterListls }*
{ "CONSTS" <ParameterListl> |

"PARS" <ParameterList2> }*

stl> = <Parameterls> { "," <Parameterls> }*
= "$" <Number> "=" <Terms>]
st2> =

"$" <Numbers> "=" <Term>]

[

<Parameter2> { "," <Parameter2> }*
[
["/" <Term>]

July 2003

As sketched in the exampl e section, trandlations can be made dependent
on one or more conditions. Hence, the body of atranslation rule may
consist of one or more statements embedded by IF ... THEN ... END con-
structs. Thefirst group of statements whose preceding conditions are
satisfied (or which do not havean 1r statement at all) isevaluated. All
subsequent definitions areignored. If no conditionshold for agiven sig-
nal, Autolink looks for another translation rule which fits the signal.

There are two groups of directives starting with either the keyword
CONSTRAINT Or TESTSUITE.

Inthe coNsTRAINT part you can specify the name (keyword name) and
the formal parameters of a constraint (keyword pars) for one or more
given signals. Additionally, you can tell Autolink to replace signal pa-
rameter values by a TTCN matching mechanism (keyword mMaTch).
Please note that Autolink does not perform any checks concerning
matching mechanisms at run-time. It simply handles it as a textua re-
placement.

Inthe TESTSUITE part, you can specify that parameter values of asig-
nal arereplaced by test suite parameters and constants. The declaration
of constants is preceded by the keyword consTs, test suite parameter
areintroduced with pars.

It ispossible to declare a constraint parameter and a test suite con-
stant/parameter for the same signal parameter. However, Autolink en-

Telelogic Tau 4.5 User's Manual 1435

Using Autolink

July 2003

suresthat asignal parameter isnot mapped onto atest suite constant and
parameter at the sametime.

There exist several default valuesthat are used when an optional param-
eter is not specified:

» The default name of a constraint is defined by theterm ' ¢+ + 3o,
i.e. thesignal nameis prefixedby a ' c’.

» The default name of a constraint parameter is constructed by “Par”
+ <SignalNumber> (e.g. par3 for thethird parameter).

» If asignal parameter is specified after maTcH, but no termis given,
itsvauesisreplaced by ‘*’ in the constraint table.

* Thedefault name of atest suite constant is “TestSuiteConst”.
» Thedefault name of atest suite parameter is*“ TestSuitePar”.
* By default, thereisno PICS/PIXIT reference.

If there are name clashes, test suite constants and parameters are treated
similar to constraints and test steps. That means, if there are two con-
stants with the same name but different values, they are distinguished
by a sequence number.

Test Suite Structure Rules

Test suite structure rules are similar to translation rules. They share
most of the basic concepts, for exampleterms, functionsand conditions.
However, while translation rules are applied during test case genera-
tion, TSS rules are evaluated when you save atest suite with the Save-
Test-Suite command.

A test suite structure rule starts with the specification of the names of
the test cases to which it shall apply (denoted by <alterna-

tiveListOfTerms>).

Conditions can be used in the ssmeway asin trandationrules: Thefirst
IN statement whose preceding conditions are satisfied (or which is not
embedded in an IF ... THEN ... END Statement at al), is taken into ac-
count. All subsequent statements are ignored. If no conditions hold for
agiven test case/step, Autolink looks for another TSS rule that fits the
test case/step.

Telelogic Tau 4.5 User's Manual 1436

Using Autolink

Example 270: Syntax of test suite structure rules

<TSStructureRule>

"PLACE" <AlternativeListOfTerms>
<TSStructureRulelIf>*

[<TSStructureRuleNoIfs>]

n END n

<TSStructureRuleIfs> ::= "IF" <Conditions> "THEN"

<TSStructureRuleNoIf> "END"

<TSStructureRuleNoIfs> ::= "IN" <Term> { "/" <Term> }*

Example 271: Syntax for declaring ASP and PDU types

<ASPTypesRule>
<PDUTypesRule>

Example 272: Syntax for stripping signals

Declaring ASP and PDU Types

The rulesto declare ASP and PDU types are evaluated when a TTCN
test suite is saved on disk with the Save-Test-Suite command. Please
note that each of the rules can only be defined oncein an Autolink con-
figuration. However, thisisno restriction asyou can specify an arbitrary
number of signals and sortsin both rules.

"ASP-TYPES" <SequentialListOfTerms> "END"
"PDU-TYPES" <SequentiallListOfTerms> "END"

Stripping Signals

Rulesfor stripping signals are evaluated closely coupled with the rules
above for declaring ASP and PDU types. Autolink only strips asignal
if itsonly parameter is declared as ASP or PDU. Autolink only accepts
one stripping rulein a configuration.

<StripSignalsRule> ::= "STRIP-SIGNALS" <SequentialListOfTerms>

"END"

July 2003

Functions

Functions are identified uniquely by their names. If there are two func-
tions with exactly the same name, the one defined first is always evalu-
ated.

Functions are visible globally, that is, they can be called by any con-
straint or test suite structure rule and other functions. References to

Telelogic Tau 4.5 User's Manual 1437

Using Autolink

Example 273: Syntax of functions

<Function> ::
<Mappings> ::

<Mapping>

functions are resolved at run-time. If thereisacall to an unknown func-
tion, thetext "FunctionXXXNotFound" iSreturned.

"FUNCTION" <Identifier> <Mappings> "END"
<Mapping> { "|" <Mapping> }*
<Conditions> ":" <Term>

Example 274: Syntax of basic expressions

A function body consists of anumber of mapping rulesseparated by * |’.
Mapping rules specify the possible return values of afunction. A map-
ping is performed if its corresponding condition(s) hold. Mappings are
evaluated from top to bottom. If the conditions of al mappingsfail, a
function returnsthetext "NoconditionHoldsInFunctionXXXx".

Function parameters can be accessed in the same way as signal param-
etersin atrandation rule. For example, s$2 refersto the second param-
eter. In the context of functions, the reference $o denotes the name of
the function. Since parameters do not have a name, but are referred to
by their positioninstead, thereisno need to declare them in the function
header. If you try to access a parameter that has not been passed to the
function, the missing parameter isreplaced by the text
"ParOutOfRange".

Note:

In conditions, the existence of a particular parameter can be
checked. For example, condition

$4 == "ParOutOfRange"
checksif four parameters have been passed to the function.

Basic Expressions

The only data type defined in the Autolink configuration languageis
text. Whether you refer to asignal parameter or call afunction, the re-
sult of the operation is always a text.

<Term> = <Atom> { "+" <Atom> }*

<Atom> = "$" <Numbers> | "@" <Numbers> |
<Text> | <Identifiers |
<FunctionCalls

<FunctionCalls> ::= <Identifiers
"(" <SequentialListOfTerms> ")"

<SequentiallListOfTerms> ::= <Term> { "," <Terms> }*

July 2003

Telelogic Tau 4.5 User's Manual 1438

Using Autolink

<AlternativeListOfTerms> ::

<Conditions>

<Conditions>

= <Term> { "|" <Terms> }*
::= <Condition> { "AND" <Conditions> }*
= <Term> { "==" | "i=" } <Term> |
n TRUE n

July 2003

Texts are constructed by atoms and terms. A single atom can be one of
the following expressions, depending on the context in which the atom
isused:

A simpletext (e.9. "Request").

Anidentifier (e.9. Request).
Identifiers are treated as simple texts.

A pattern (e.g. "sig*").

Patterns can only be used in the header of constraint or test suite
structure rules (for details see “ Test Suite Structure Rules’ on page
1427).

A function call (e.g. opName ($3)).
Function calls are not allowed in the header of constraint or test
suite structure rules.

A referenceto asigna parameter (e.g. $2).
References to signal parameters can only be used in the body of
translation rules.

A reference to afunction parameter (e.g. $2).
References to function parameters can only be used in the body of
functions.

A reference to an atom in the header of a constraint or test suite
structurerule (e.g. @2).

References to atoms can only be used in the body of constraint and
test suite structure rules. Their application in combination with pat-
ternsisillustrated in “Test Suite Structure Rules’ on page 1427.

Since an atom always evaluates to atext and aterm is a concatenation
of single atoms, you are allowed to use term expressions for the speci-
fication of:

Constraint names

Constraint formal parameter names
Test suite parameter names

Test suite constant names

Telelogic Tau 4.5 User's Manual 1439

Using Autolink

July 2003

» Test caseltest step/test group names

Note:

The text obtained by referring to asignal parameter isidentical to
the output of the signal parameter valuein ASN.1 format.

A condition checks whether two texts are equal (==) or unequal (! =).
Thereis aso aspecia condition TRUE that always evaluates to true.

Conditions can be combined by anp. Only if al conditionsin aconjunc-
tion hold, the expression as awholeistrue.

Thereisno or operator for combination of conditions. However, due
to the consecutive evaluation of rules (from top to bottom), thisisnot a
restriction. For example, in afunction body, simply place both or-op-
erands in two subsequent mappings.

Concurrent TTCN

In the 1996 version of 1SO IS 9646-3, TTCN has been extended with
mechanismsto specify test suitesfor distributed test systems. These ex-
tensions are known as concurrent TTCN. This section explains what
will happen when you save your test suite in the concurrent TTCN for-
mat.

Declarations

Inadistributed test environment, the test system is composed of a set of
Parallel Test Components (PTC) which each handle one or more PCOs.
Thetest system also includes one Main Test Component (MTC) which
starts the PTCs and computes the final test verdict. The MTC may or
may not control PCOs. Themain and parallel test components exchange
Coordination Messages (CM) through Coordination Points (CP).

The collection of a number of test components and their connection
through coordination pointsis called atest configuration. A test suite
may contain more than one test configuration, and each test case hasto
be associated with a specific test configuration individually.

Coordination messages and corresponding constraints have to be de-
clared similar to messages exchanged with the system under test, but in
separate tables.

Telelogic Tau 4.5 User's Manual 1440

Using Autolink

Dynamic behavior description

In concurrent TTCN, the Test Case Dynamic Behaviour table only de-
scribes the behavior of the main test component. The behavior of paral-
lel test componentsis stored in Test Step Dynamic Behaviour tables.
Obvioudly, the behavior tables of every test component contain only
events observed at the PCOs and CPs attached to that test component.

Parallel test components are dynamically created by the main test com-
ponent. This is done by the inclusion of cREATE statements in the test
case behavior description. Similarly, the poNe event can be used in the
test case description to check the termination of parallel test compo-
nents. The final test case verdict is computed by the MTC from the ver-
dicts returned implicitly by all PTCs before their termination.

Synchronization of test components

With concurrent TTCN, synchronization among test components be-
comes a necessity. Each test component only gets a partial view of the
system under test and has no inherent knowledge of the state of the other
test components. Therefore, the correct order of test events can only be
established through the use of coordination messages. Consider the ex-
ample shown in “ Synchronizing Test Events with Conditions” on page
1406. If there are separate test components to control A, B and C, then
C definitely hasto wait for a coordination message before sending its
Request (B) messagetothe SUT. If it does not, the test verdict entirely
depends on the rel ative transmission time of the messages and the order
of their handling by the SUT.

The Autolink implementation of concurrent TTCN

Autolink generates concurrent TTCN specific information only during
the saving of atest suite. Therefore, it does not matter if concurrent
TTCN isenabled during the generation or translation of test cases. You
may generate your test cases, savethetest suitein non-concurrent form,
then turn on concurrence and save the test suite again.

July 2003 Telelogic Tau 4.5 User's Manua 1441

Using Autolink

Default_Configuration

Master
CP_I15aP1 CP_MSAP2
k. k.
PTC_ISAP1 PTC_MSAP2
|SAP MSAP2
k. k.

inres

Figure 262: Test configuration for theinres system

Declarations

Autolink supportsone kind of test architecture. From this generic archi-
tecture and the SDL specification of the system, a concrete test archi-
tectureis derived. The following declarations are generated automati-
caly:

¢ Onemaintest component called Master. The M TC does not control
any PCOs.

e One parallel test component for each PCO. The name of the test
component isprc_ + Name of the PCO.

» One coordination point between the MTC and each PTC. The name
of the coordination pointisce_ + Name of the PCO.

» Onetest configuration called pefault configuration, which
contains al test components and their connections with PCOs and
CPs.

Figure 262 showsthetest configuration whichisgenerated for theinres
System. In addition, the following declarations are generated:

* OneASN.1CM Type Definition. The name of the coordination
message is cu and its definition iS SEQUENCE {message Printa-
bleString}.

July 2003 Telelogic Tau 4.5 User's Manual 1442

Using Autolink

July 2003

* Two ASN.1CM Constraint Declarations, called
Proceed Indication and Ready Indication. Both constraints
define values for the coordination message cm.

CM, Proceed Indication and Ready Indication are used for coor-
dination messages between the main and parallel test components.
These messages are generated automatically (see Synchronization be-
low).

Note:

Thetest architecture and resulting default test configuration can not
be changed within Autolink. The coordination message and corre-
sponding constraints are not changeabl e neither.

Test Case Dynamic Behaviour

Test Case Hame ; Tni_synch2

Group 8

Purpose

Configuration : Default_Configuration
Default 1 Otherwise Fail
Comments

Selection Ref

Description

Hr

Label Behaviour Description Constraints Ref Verdict Comments

1

2

3
4

CREATE((PASS)
PTC_ISAP1 mi_syncha_PTC_ISAPT 3

CREATE(
PTC_MSAP2:mi_synch2_PTC_MSAP2)

+5Synchronization
7 DOME] PTC_ISAP1,PTC_MSAP2) i}

Detailed Comments :

Figure 263: Sample test case description for a main test component

Dynamic behavior description

Autolink splitsthe internal test case description into separate trees for
every test component. The Test Case Dynamic Behaviour table de-
scribesthe behavior of the main test component; itsnameis equal to the
name of the original M SC test description. Sincethe M TC does not con-
trol any PCOs, it only contains cReaTE statementsfor every PTC at the
beginning and apoNE event at the end. It may al so contain attached syn-
chronization test stepsin between. Figure 263 shows a sampletest case
description. The (pass) verdict on line 1 initializes the result variable
R. At the end of the test case, r contains the final test verdict.

Telelogic Tau 4.5 User’ s Manual 1443

Using Autolink

July 2003

Each parallel test component getsaTest Step Dynamic Behaviour table
of itsown. The name of thetest stepis Test casename+ _ + Test com-
ponent name.

Synchronization

Coordination messages are automatically generated by Autolink wher-
ever acondition appearsin the M SC test description. Asaconsequence
of thetest architecture used by Autolink, synchronizationisdoneviathe
main test component. Here is a description of the algorithm:

1. For each MSC environment instance connected to acondition: Send
a coordination message cM with constraint Ready Indication to
the MTC.

2. For each MSC environment instance connected to a condition
which has a send event immediately following the condition: Re-
ceive a coordination message cm with constraint
Proceed_Indication fromthe MTC.

Test Step Dynamic Behaviour
Test Step Mame : Synchronization
Group
Objective
Default i OtherwiseFail
Comments
Description
Mr | Label Behaviour Description Constrainks Ref Verdict Comments
1 CP_M3AP2 7 CM FReady_Indication
2 CP_I5AF1 7 CM FReady_Indication
3 CFP_I5A4F1 1 CM Proceed_Indication
4 CP_I5AF1 2 CM Ready_Indication
5 CP_MSAP2 7 CM Ready _Indication
[CP_I5AF1 1 CM Proceed _Indication
Detailed Comments : |

Figure 264: Synchronization test step for a main test component

From the viewpoint of aparallel test component, this means that when-
ever it reaches a synchronization point, it sends aready Indication
message to the MTC. If the event immediately following the synchro-
nization point is a send event, then the PTC first waitsfor a

Proceed Indication message, which it receivesfrom the MTC. All
coordination events are directly included in the dynamic behavior de-
scription of the PTC.

Telelogic Tau 4.5 User’'s Manual 1444

Using Autolink

July 2003

When it reaches a synchroni zation point, the main test component waits
for Ready Indication messagesfrom every PTCinvolvedinthe syn-
chronization. Afterwards, it sends proceed_Indication messagesto
al PTCswhich are about to send a message to the system under test.
Since the reception of coordination messages from different PTCs can
create alot of alternative paths, all synchronization eventsfor the MTC
are put into test steps. Figure 264 shows an example of a synchroniza-
tion test step for an MTC.

Note:

Coordination messages can not be specified manually in the MSC
test description. There are two reasons for this: First, the Validator
and Autolink can not handle messages drawn between environment
instances. Second, all instances in the M SC have to relate to achan-
nel in the SDL specification. Since the main test component has no
connection with the system under test, it is not possible to add an

MTC instance to the MSC.

Caveats

In order to streamline test suites and enhancetheir readability, Autolink
automatically merges test steps which contain identical behavior de-
scriptions. Furthermore, empty test steps are removed.

If your MSC test descriptions contain M SC references and concurrent
TTCN is used to save the test suite, then the test step streamlining of
Autolink may lead to unexpected results. For example, test steps for
parallel test components may be renamed unexpectedly. Within test
case and test step behavior descriptions, expected attachments of test
stepsmay be missing. Nevertheless, thesetest suitesare still correct and
correspond to the original test descriptions.

Test Suite Timers

Inthis section, details regarding the declaration and use of test suitetim-
ersin test case MSCsis discussed.

Timer declarations

Asexplainedin“Using Timers’ on page 1400, the recommended meth-
od for using test suite timers with Autolink isto explicitly declare all

timerswhich appear in the test suite with Define-Timer-Declaration be-
foretest generation is started. Nevertheless, it is possible to have amix-

Telelogic Tau 4.5 User's Manua 1445

Using Autolink

July 2003

ture of implicit and explicit declaration. Below, the rules are listed
which Autolink applieswhen creating or updating timer declarations. In
any case, the syntactical correctness of the timer nameis not checked.

Creation of a new explicit timer declaration

Autolink checksif the duration is an integer value or asyntactically
correct test suite parameter. If it is neither, then awarning is dis-
played and the duration field remains empty. If it is atest suite pa-
rameter, atest suite parameter declaration is created in addition to
the timer declaration.

No declaration is created if the unit is not valid.

Note:

Theonly possihility to specify an empty duration field on purposeis
to use an invalid string, e.g. adigit followed by a character.

Creation of a new implicit timer declaration

Autolink checksif the parameter field of the timer set symbol ends
with avalid unit, which meansthat there must be awhitespace char-
acter followed by either ps, ns, us, ms, sor min. If thisis the case,
then the value of the unit field is set and the rest of the string is con-
sidered to be the duration. If no valid unit can be found, then the
whole parameter field is considered to be the duration.

Autolink checksif the durationisan integer value or asyntactically
correct test suite parameter. If it is neither, then awarning is dis-
played and the duration field remains empty. If it isatest suite pa-
rameter, atest suite parameter declaration is created in addition to
the timer declaration.

Note:

Itistheresponsibility of thetest designer to make surethat either an
explicit timer declaration existsor that an implicit declaration is cor-
rect. Autolink does not guarantee that atest suite which containsim-
plicit timer declarations passes a TTCN syntax check.

Update of an explicit declaration with an explicit one

An existing explicit declaration can not be updated. A warning is dis-
played and the new declaration isignored.

Telelogic Tau 4.5 User's Manual 1446

Using Autolink

July 2003

The only way to remove existing timer declarationsisto use the Reset
command.

Update of an explicit declaration with an implicit one

An existing explicit declaration can not be updated. However, Autolink
checksif the unit of the implicit declaration matches the unit of the ex-
isting explicit declaration. If it does not match, awarning is displayed.

Update of an implicit declaration with an explicit one

Autolink checks if the unit of the new declaration isvalid. If it is not,
the existing implicit declaration is kept. If the unit isvalid, the implicit
declaration is replaced by the explicit one.

Update of an implicit declaration with an implicit one

» Autolink compares the unit of the existing declaration with the unit
of the new declaration:

— if theexisting unit is valid and the new oneisinvalid, then the
existing one is kept;

— if theexisting and the new unit areidentical, then the unit is not
changed;

— inall other cases, the unit field is cleared; thiswill resultin a
syntactically incorrect TTCN test suite.

» |fthedurationfield of the existing declaration isempty or aninteger
value and the new duration is atest suite parameter, then the test
suite parameter replaces the existing value.

Timer pitfalls

Timersin atest suite are declared globally. During test execution, each
participating test component receives a complete set of timerswhich it
can useindependently. With respect to the readability of atest suite, the
number of timer declarations should be minimized. This can be accom-
plished by declaring aminimal set of timers and reusing them in differ-
ent test case MSCs.

If concurrent TTCN is enabled, identically named timers may also be
used on different instances in the same M SC, because in the resulting
TTCN test case, each MSC instance is handled by a different test com-
ponent. However, if such an MSC is used in a non-concurrent context,

Telelogic Tau 4.5 User's Manua 1447

Using Autolink

July 2003

then Autolink may produce unexpected test sequences and care should
be taken.

Timer optimization

If concurrent TTCN output is enabled with Define-Concurrent-TTCN,

then the dynamic behavior descriptions are optimized with regard to the
placement of timer operations. If atimer START operation is followed

immediately by asend event, then the START operation is placed on the
same line as the send event. Correspondingly, if atimer CANCEL oper-
ation follows areceive event, then the CANCEL ismoved up to theline
with the receive event. Asan example, if the test sequence according to
thetest case MSC is

START T1
A ! someSignal
A ? anotherSignal
CANCEL T1

then Autolink optimizes this and generates the following test sequence:

A ! someSignal START T1
A ? anotherSignal CANCEL T1

Telelogic Tau 4.5 User's Manual 1448

	36 TTCN Test Suite Generation
	Introduction
	TTCN Link – Generation of Declarations
	Autolink – Generation of a Test Suite

	Using TTCN Link
	Preparing for the Generation of Declarations
	Adapting the SDL System
	Generating a Link Executable

	Generating the Declarations
	Specifying the Link Executable
	Generating the TTCN Declarations
	Modifying the Generated Declarations
	Regeneration of Declarations

	Creating Test Cases
	Constraint Restrictions
	Creating Test Steps

	Showing SDL System Information
	Merging TTCN Test Suites in the TTCN Suite
	Summary of TTCN Link
	Overview of the TTCN Link Algorithm
	The Composed System
	State Space Exploration
	Incremental State Space Exploration
	Random Walk Exploration
	Summary of the TTCN Link Algorithm

	Configuring the TTCN Link Executable
	Exploration Algorithm
	Random Walk Depth
	Random Walk Repetitions
	PCO Type Generation Strategy
	SDL Signal Mapping Strategy
	Stable State
	Timer Mode
	Transition
	Scheduling
	MSC Trace
	An Example of a .linkinit / linkinit.com File

	User-Defined Rules
	Predicates
	Expressions

	SDL Restrictions
	General SDL Restrictions
	State Space Exploration Restrictions
	Data Type Mapping Restrictions
	TTCN Name Restrictions

	TTCN Link Commands in the TTCN suite
	TTCN Link Commands in the TTCN Suite on UNIX
	Browser Commands in the SDT Link Menu
	Table Editor Commands in the SDT Link Menu

	TTCN Link Commands in the TTCN Suite in Windows
	The SDT Link Menu
	The Link Dialog

	Using Autolink
	Specifying the SDL System and Performing Other Preparations
	Specifying the SDL System
	Generating and Starting a Validator
	Specifying Directories

	Defining MSC Test Cases
	Defining MSC Test Cases Interactively
	Incorporating Test Steps in Test Cases
	Using Timers
	Describing Indeterministic Behaviour by Inline and Reference Expressions
	Synchronizing Test Events with Conditions
	Listing and Clearing Test Cases and Test Steps

	Defining MSC Test Cases Automatically - Coverage Based Test Generation
	Defining an Autolink Configuration
	Computing Test Cases
	Listing and Clearing Generated Test Cases
	Displaying and Saving the Internal Representation
	State Space Exploration Parameters
	Test Case Generation Messages

	Translating MSCs into Test Cases
	MSC into TTCN Translation Messages

	Modifying Constraints
	Generating a TTCN Test Suite
	Preliminary Pass Verdicts
	Test Suite Generation Messages

	Translation Rules
	Examples of Translation Rules

	Test Suite Structure Rules
	Examples of Test Suite Structure Rules

	Defining ASP and PDU Types
	Stripping signal definitions
	Syntax and Semantics of the Autolink Configuration
	Autolink Configuration
	Test Suite Structure Rules
	Declaring ASP and PDU Types
	Stripping Signals
	Functions
	Basic Expressions

	Concurrent TTCN
	Declarations
	Dynamic behavior description
	Synchronization of test components
	The Autolink implementation of concurrent TTCN

	Test Suite Timers
	Timer declarations
	Timer pitfalls
	Timer optimization

