
July 2003 Telelo

Chapter
74 System Design
This chapter gives a thorough description of the different models in
the system design activity and some guidelines on how to create
these models. A recommendation on consistency rules that are rel-
evant for the models in this activity as well as for the consistency be-
tween models from previous activities and this activity, is also in-
cluded.

The chapter requires that you are at least reasonable familiar with
SDL.
gic Tau 4.5 User’s Manual ,um-st1 3751

Chapter 74 System Design
System Design Overview
One of the most important issues of software development, if not the
most important of all, is to define the architecture of the system. Define
how the system is built up of smaller parts that in turn may be composed
of even smaller parts until each part is manageable by itself. The archi-
tecture is proposed in the system analysis architecture but the precise
definition of this structure is the major task of the system design activi-
ty.

The components of a system may have several different important func-
tions to fulfill:

• They act as a unit for work division. Different development teams
can be responsible for different components.

• They form a decomposition of the functionality. Each component
may be responsible for one aspect of the total functionality of the
system.

• They act as distribution units. The components can define how the
system is distributed in the physical world.

• They may act as technology units. The design of the different com-
ponents may use different notations and tools and, although SOMT
has its main focus on SDL, the system design activity also takes oth-
er possibilities into account.

The major inputs to the system design activity are the analysis object
model and the analysis use case model produced in the system analysis
activity. The system design is the process that based on these inputs de-
fine in detail how the system is decomposed into components and to de-
fine the interfaces between the different parts. This is illustrated in
Figure 646 that also shows the three major artifacts developed in the
system design; the design module structure, the architecture definition
and the design use case model. In addition to these formalized descrip-
tions there is often a need to specify non-functional aspects of the com-
ponents in a textual design documentation.
3752 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 System Design Overview
The architecture is in the system design formalized primarily using
SDL. In SDL the major structuring concept is the block and the notation
is the block diagram. Seen from an object-oriented point of view a block
is a container of objects. The block can either be directly described by
the objects that it contains or it is decomposed into lower level blocks.
The block structuring mechanism is discussed more in “Architecture
Definition” on page 3755.

Where the logical architecture defines the decomposition of logical
functionality the design module structure defines the decomposition
into work items. It defines the different modules the design teams can
start working on and also provides a mapping from the logical architec-
ture to design modules. In SDL the design modules are usually SDL
packages. The design module structure also takes a slightly broader per-
spective of the system to be built and describes how existing frame-
works, tools and components are incorporated into the development
structure.

The deployment description is a way to describe the physical distribu-
tion structure of the SDL system. It is also the place where the imple-
mentation strategy for different parts of the system can be described.

There should be a simple (if possible one-to-one) mapping between the
top levels of the architecture definition and some of the modules in the
design module structure. The benefit gained from a simple mapping is

Figure 646: Inputs and outputs of the System Design activity

Analysis
Object
Model

Analysis
Use Case

Model
Textual
Design

Documentation

Design
Module

Structure

Architecture
Definition

Design
Use Case

Model

System
Design

Deployment
Description
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3753

Chapter 74 System Design
that the design modules define the possibilities to divide the work on
different development teams and the logical blocks comprise well-de-
fined sets of functionality and responsibilities. If they do not map to
each other there is an obvious risk for complex interfaces between the
development teams.

As always when a system is decomposed into smaller parts one very im-
portant issue is how the interface between the parts are defined. In par-
ticular if the components are used as division of work load and designed
by different development teams the interface definition is the means to
communicate between the different groups and a common understand-
ing of the interface is crucial. There are two aspects of the interface:

• A static aspect, defining the operations or services that a block offers
• A dynamic aspect, that defines how the different blocks cooperate

to solve a common task

Both aspects are important and the definition of them is a vital part of
the system design activity.

In SOMT the major concepts used to define the static interface are the
SDL concepts signals and remote procedures, and the dynamic aspect
is a continued usage of use cases. However, since there very often is a
need to design parts of a system using other techniques than SDL or to
use existing modules, other interface definitions techniques are also
used in SOMT.

The major tasks to be performed in system design in an SDL based
project can thus essentially be summarized as the following:

1. Create an (incomplete) SDL system that is a starting point for the
formalization of the architecture of the application. This is further
discussed in “Architecture Definition” on page 3755.

2. Define the design module structure. Draw a diagram that illustrates
the structure and create the necessary packages etc. as described in
“Design Module Structure” on page 3757.

3. Define the physical distribution strategy for the SDL system, see
“Deployment Description” on page 3760.

4. Define the static interfaces as discussed further in “Static Interface
Definitions Using SDL” on page 3761.

5. Define the dynamic aspects of the interfaces by a continued use of
use cases. See section “Design Use Case Model” on page 3764.
3754 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Architecture Definition
There is, as we will see in “Object Design” on page 3771, a close rela-
tion between the system design activity and the object design activity in
the sense that the object design activity is concerned with the represen-
tation and behavior of the objects and the system design deals with the
distribution of the objects into blocks and defining the communication
paths between the objects.

The rest of this chapter will discuss the system design activity. SDL will
frequently be used to define the architecture and interfaces and exam-
ples of SDL diagrams will be used throughout the chapter. A complete
presentation of the SDL language is however outside the scope of this
document. For more information, please consult either the Z.100 stan-
dard itself [23], or a text book about SDL like [27].

Architecture Definition
When using SDL to design a system the architecture of the system is de-
fined by the block diagrams. They define how the system is decom-
posed into blocks and how these blocks either form the leaves of the
block hierarchy or are further decomposed into smaller blocks. Essen-
tially this block structure is a formalization of the logical architecture
from the system analysis.

As an example, consider once again the access control system. The sys-
tem controls the doors of a building to unlock the doors when an autho-
rized user wants to enter or exit the building. The task in system design
is to define how to structure this system. One natural choice is a distrib-
uted structure where the control of each door is localized close to the
door and a central controller keeps all common information about au-
thorized users, cards and codes. Furthermore one special block is re-
sponsible for the handling of an operator panel. A logical architecture
that described this was illustrated in Figure 641 on page 3733 in chapter
72, System Analysis. The SDL diagram that shows a beginning of a for-
malization of this architecture is depicted in Figure 647.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3755

Chapter 74 System Design
In this diagram we can see the blocks CentralC, Door and OperatorC
that are instances of the block types CentralCtrl, DoorCtrl and Opera-
torCtrl. CentralC contains the common information base about cards,
codes etc. that are registered in the system. Door is the block responsi-
ble for the control of each door and OperatorC handles the operator
communication. The diagram also shows how the blocks communicate
using the channels DoorCh and OperatorCh. Note that there are five
doors in the building in this case and that this is shown by defining Door
to be a block instance set. The types DoorCtrl, CentralCtrl and Opera-
torCtrl are assumed to be defined in the packages BasicOperation and
OperatorMan that are referenced in the USE clause in the top of the di-
agram.

Figure 647: The architecture of the Access Control system defined
by an (incomplete) SDL system diagram

USE BasicOperation,

System AccessControl 1(1)

OperatorC:

Door (5):
DoorCtrl

CentralC:

OperatorCh

DoorCh

OperatorMan;

CentralCtrl

OperatorCtrl
3756 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Module Structure
Design Module Structure
The purpose of the design module structure is to show the actual com-
ponents the application will be built from. The module structure should
depict the actual source code modules etc. that the application will con-
tain. A number of different aspects must be taken into account when de-
fining the module structure:

• The implementation strategy for each module: Some modules may
be designed in SDL with automatic C code generation. Other mod-
ules may be manually designed and implemented in a programming
language and yet other modules may need a hardware implementa-
tion.

• Existing utility modules that can be reused in the new application

• Existing architectural frameworks that can be reused in the applica-
tion

• Of-the-shelf utility modules that can be purchased and used in the
application

Especially the reuse of existing architectural frameworks is very com-
mon and very beneficial. Most applications are not built from scratch,
they are rather extensions/modifications of old applications and the de-
sign module structure is the place to show how this is done.

One notation that can be used in SOMT to describe the design module
structure is object model instance diagrams, where the instances repre-
sent the different modules. Where relevant, the attribute field can be
used to show what components of the logical architecture are contained
in the modules. As an example consider a typical SDL application run-
ning on a small microprocessor where a proprietary real-time operating
system is used. A possible module structure is shown in Figure 648.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3757

Chapter 74 System Design
In this example the top-level of the application is described in the SDL
system AccessAppl which is defined using the types defined in the
packages BasicOperation and OperatorMan, both of which uses com-
mon types defined in the UtilityTypes package. The application will run
on the already existing real time operating system MyRTOS. To make
the C code generated from the SDL system run on MyRTOS a C code
module Adaptation is used that defines the necessary interfaces.

In this example it is very likely that some of the modules will be devel-
oped within the project (the AccessAppl and the modules it uses) while
others are already existing (like the real time operating system) and
some can be taken from previous projects and be modified to fit the cur-
rent project (like the Adaptation module).

The most important aspect of the module structure is that it forms the
basis for dividing the work load on different development teams. This
is in many cases the major reason to decompose the system into design
modules. However, another reason may be the issue of reuse.

The design for reuse can in this context be viewed as an activity that de-
fines the design module structure based on other premises than the ar-
chitecture as discussed so far in this chapter. Consider for example the
access control system decomposed as in Figure 647 on page 3756,
where the system is divided into three different parts according to essen-
tially the physical distribution that is needed in the application. There
may in this example exist concepts that can be used in more than one of
the subsystems. Examples may include knowledge about some passive

Figure 648: The module structure of the Access Control system using
an in-house real time operating system

AccessAppl:

SDL system

BasicOperation:

package

DoorCtrl

CentralCtrl

OperatorMan :

package

OperatorCtrl

UtilityTypes:

package

MyRTOS

Adaptation:

 C code

uses

uses

uses

uses

runs on
3758 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Module Structure
data structure, like the concept of a card, but also entire functionalities
like the concept of time seen as a clock functionality.

The identification of these type of components is also a task of the sys-
tem design. It is particularly important if the different subsystems are to
be designed by different design teams. It is also important to identify
common components to avoid duplicate work and lower the complexity
of the individual subsystems.

The concept that is used to describe the different modules is the pack-
age. A package is essentially a container of SDL types, this may range
from system types and block types over process types down to signals
and data types. When a package is used by an SDL system the types de-
fined in the package can be referenced from within the SDL system. For
example, in the access control system we may decide that we need a
package UtilityTypes (as in Figure 648) that defines the common data
types needed in the different subsystems.

Another issue that needs to be handled in the system design is to analyze
the consequences of the requirements on different configurations of the
system. Are there any optional parts or functionality? In many cases the
optional parts are captured by different modules in the system structure,
but sometimes, like if there would be an optional requirements on a syn-
chronized clock in all parts of the access control system, it is distributed
over the different blocks in the system. If this is the case a package is
the most useful concept to use to encapsulate the optional feature.

The discussion so far has been about reuse within one development
project focused on one specific application. There is however also the
issue of reuse outside the local project. When using an object-oriented
approach to the analysis and design the objects tend to be fairly general
and applicable in more than one project. If the objects in a particular part
of the system are defined as types in a package this will form a good
foundation for reusing the objects in future projects. This implies that
there may be a reason to use a package structure that is different from
the block structure of the system. The package structure reflects the de-
composition into packages as defined by the possibility for reuse while
the block structure defines the current system structure.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3759

Chapter 74 System Design
Deployment Description
The purpose of the deployment description is to define the physical dis-
tribution of the application and also define the practical details on how
to build the different parts.

The specific objectives for a deployment description might vary during
different activities: during design we are more concerned on describing
on how to verify or validate the design, i.e. how to simulate the design
in different ways, while in later activities it is desired to specify the final
application build process for the application structure. It is therefor pos-
sible to have several deployment descriptions for one system.

There is a textual format for defining a deployment description – for
more information, see “Build Scripts” on page 2572 in chapter 57, The
Cadvanced/Cbasic SDL to C Compiler, in the User’s Manual.

Example of a textual deployment description, i.e. build script:

set-kernel SCTAAPPLCLENV
set-env-header on
program UserPart
component system AccessControl / block LocalStation
make-template-file UserMake.tpm
generate-micro-c
program CentralPart
component system AccessControl / block CentralUnit
make-template-file CentralMake.tpm
generate-advanced-c
3760 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Static Interface Definitions Using SDL
Static Interface Definitions Using SDL
SDL offers two major means to define the interfaces of a block:

• Signals (for asynchronous communication)
• Remote procedure (for synchronous communication)

When signals are used to define the interface to a block they define the
communication items that can be sent to and from the block. A signal
can represent a service to be carried and it contains all relevant data that
is associated with the request. A useful way to structure the signals if
one particular interface contains many signals is to define signal lists
that group together related signals. Consider the CentralCtrl block
above. This block has two interfaces, one to the Door blocks and one to
the OperatorCtrl block. The interface to the Door blocks can in SDL be
defined as in Figure 649.

When using signals to define the interface of a block we do not put any
constraints on the execution strategies in the respective blocks, we only
define the data that is transported. However, in some cases, especially
when using a client-server based architecture, it is more convenient to
define the interface using remote procedures instead of signals. As an
example consider once more the CentralCtrl block. The major respon-
sibility of this block is to store the cards with their associated code.
Some possible operations on this data is to check weather a particular
card is registered and what the code for a particular card is. A remote
procedure definition of these operations is depicted in Figure 650.

Figure 649: An interface definition using signals

Figure 650: An interface definition using remote procedures

/* CentralCtrl door interface definition */
signal
 Validate(Card, Code), /* Check card and code authorization */
 Accept, /* Card and code accepted */
 Reject; /* Card and code rejected */
signallist CCService = Validate;
signallist CCServiceReply = Accept, Reject;

/* CentralCtrl interface definition */
remote procedure CardRegistered; fpar Card; returns Boolean;
remote procedure GetCode; fpar Card; returns Code;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3761

Chapter 74 System Design
In addition to the signals/remote procedures that are used to define the
interfaces in SDL there is of course also a need to define the data types
that are visible in the interface. This issue is to a large extent the same
as the issue of mapping passive objects to SDL data types. This is treat-
ed in more detail in section “Mapping a Passive Object” on page 3781.

Mapping Object Models to SDL Interface
Definitions

When mapping object model concepts to SDL there are two aspects that
need to be taken care of:

• The design of the interface
• The design of the object itself

In SOMT this implies that an analysis object is seen to have two differ-
ent descriptions in the design model, one description of the interface
and one description of the object itself. In the system design the focus
is on the interface definition so we will save the mapping from object
models to SDL object definitions until the next chapter (“Object De-
sign” on page 3771). However, defining the relation between the object
model concepts and the interfaces between the components of the sys-
tem is a very relevant issue for this section.

Since the basic mechanism in SOMT to go from analysis to design is us-
ing the Paste-As mechanism (see “Implinks and the Paste As Concept”
on page 3666) this is of course also used when defining the interfaces.
As seen in the previous section interface definitions in SDL are defined
using signals and/or remote procedure calls. Consequently this is what
is produced when mapping a class to an SDL Interface.

As an example consider the DisplayInterface objects in Figure 651 that
has one operation each.

Figure 651: The DisplayInterface objects

DisplayInterface

Display

DisplayInterface2

Display2{sync}
3762 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Interface Definitions
When mapping these objects to SDL interface definitions we get in the
first case the signal interface definition in Figure 652 (with the signal
Display) and in the second case the remote procedure definition in
Figure 653 (with a definition of the remote procedure Display2).

In SDL the natural way is to express interfaces by asynchronous signals,
therefore this mapping has been chosen to be the default. (It can also be
explicitly denoted with the word async within brackets, after the opera-
tion name.) If synchronous interface is preferred, this can be denoted by
the word sync. This is an extension of the original class diagram nota-
tion.

It is of course also possible to have a mixed signal/remote procedure in-
terface. In this case some of the operations are asynchronous and thus
mapped to signals while other are synchronous and thus mapped to re-
mote procedure definitions.

Figure 652: The signal interface from the DisplayInterface object in Figure 651

Figure 653: The remote procedure interface given by the DisplayInterface2 object
in Figure 651

signal Display;
signallist slDisplayInterface = Display;

remote procedure Display2;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3763

Chapter 74 System Design
Design Use Case Model
The static interface definition alone is not enough to define how the
blocks are supposed to cooperate to meet the requirements on the sys-
tem. In the requirements and system analysis, use cases were used to de-
scribe the requirements on the system. This is continued in the system
design to define the dynamic interface between the blocks in the system.
Essentially the idea is to take each one of the use cases found in the sys-
tem analysis and formalize this to a sufficient degree of detail that is
consistent with the level of detail that is found in the static interface def-
initions. The degree of detail must be precise enough to make the design
use cases act as detailed test specifications.

A benefit with the design use cases is the structured way in which they
are constructed. It is easy to verify that all requirements as expressed by
the requirements use cases and refined in the analysis use cases are han-
dled by the design use cases and this gives a formal link between the re-
quirements and the structure of the system that implements it.

In a development environment where the different blocks are developed
by different teams they also form a necessary common definition of the
responsibilities of their respective blocks and how their blocks are to to-
gether fulfill the requirements on the system.

From a practical perspective this puts some requirements on the nota-
tion used to describe the design use cases:

• It must be precise and formal enough to allow an specification of
test cases on a detailed level of abstraction.

• It should be possible to automatically check the design use cases
against the SDL design model.

• There must be a well-defined way to transform the design use cases
to executable test programs that can be executed in the target envi-
ronment against the application.

There are two levels of testing of interest for the design use case model:
• Module testing
• System testing

Module testing is intended to test one specific part of the system and
should check that this particular part of the system fulfills its require-
ments. The system testing is intended to test the integration of the dif-
ferent parts and check that they together fulfil the requirements on the
total system.
3764 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Use Case Model
The design use case models should form the basis for both kinds of test-
ing.

Another aspect of testing is when in the development project it is per-
formed. One of the benefits of SDL is that it is possible to test already
on the design model, essentially testing against a simulation of the SDL
system. In addition there is of course also a need to test the implemen-
tation in the target environment, but if the logics of the application al-
ready has been tested during design then the focus of the target testing
can be on target integration issues and the risk for logical errors in the
design is reasonably small. The design level testing is further discussed
in “Design Testing” on page 3810.

In SOMT two different alternative notations are used:

• MSC
• TTCN

Usage of MSC
MSCs can be used in a way that is precise and formal enough and can
automatically be checked against SDL design models. A benefit is that
it is used also in requirements analysis and system analysis and is intu-
itive and easy to understand also for non-experts. Notice however that
there is a difference between the analysis use cases and the design use
cases. The fairly abstract messages exchanged between the instances in
the analysis use cases must in the design use cases be refined to the level
of the static interface definitions, this may include specifying parameter
values that where left out and even replacing one message with a se-
quence of message exchanges. It may also often be necessary to have
more than one design use case for each analysis use case, for example
to handle a situation where the analysis use case has left out a parameter
and there is a need to test more than one combination of parameters.

Consider again the access control system with a decomposition accord-
ing to Figure 647 where the system is divided into a DoorCtrl, a Cen-
tralCtrl and an OperatorCtrl block. If we take the Enter building use
case as defined on requirements level by an MSC in Figure 628 on page
3707 and refined to the analysis use case in Figure 635 on page 3722 in
chapter 72, System Analysis. When further refining this to a design use
case we get an MSC as shown in Figure 654 where some of the messag-
es have been refined.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3765

Chapter 74 System Design
Note that an MSC describes both the requirements on the separate parts
of the system and the requirements on the whole system. This implies
that the same MSC can be used to define both module and system tests.

It is easy to see that the strategy outlined above is extendable to allow a
decomposition of a system into not only one level of blocks, but into a
hierarchy of blocks. For each new level of decomposition all use cases
that involve the decomposed block are taken as input to the validation
of the new decomposition. The block that was decomposed is replaced
by the new blocks and new versions of the use cases are created.

Usage of TTCN
TTCN is another notation that is suitable for formalizing use cases on
the design level. The benefit of TTCN is that it is a special purpose lan-
guage for test description including:

• Facilities for describing constraints on complex data values
• Preambles and postambles to show how to compose test cases

Figure 654: The Enter building use case distributed over an architecture

MSC Enter_Building
User DoorCtrl CentralCtrl OperatorCtrl Door

Card [23456]

Display ’Enter code’

Digit [1]

Digit[1]

Digit[1]

Digit[1]

Validate[23456,(:1,1,1,1:)]

Accept

Unlock

Display ’Please enter’

Open

Close

Lock

Display ’Enter card’
3766 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Use Case Model
• Possibilities to handle alternative outcomes of a test case
• A special “verdict” construct to define the outcome of a test case

TTCN is also an established notation for test description so there is good
tool support for executing TTCN test cases on target platforms.

The drawback is that it has not a particularly intuitive syntax, making it
more difficult for non-experts to maintain, create and review TTCN test
suites.

If TTCN is used to define both system and module testing each analysis
use case will result in several TTCN test cases, one for each part of the
system and then one for the entire system. As an example consider
Example 605, that shows a test case testing the requirements from the
Enter_Building use case on a DoorCtrl, and Example 606, that shows a
test case testing the requirements from the Enter_Building use case on
the entire AccessControl system.

Example 605: A TTCN test case testing a DoorCtrl ––––––––––––––––––––––––––––

1 UsrPCO?Card Card1
2 UsrPCO?Display Enter_Code
3 UsrPCO!Digit Digit1
4 UsrPCO!Digit Digit1
5 UsrPCO!Digit Digit1
6 UsrPCO!Digit Digit1
7 CentralPCO!Validate Validate_1
8 CentralPCO?Accept AcceptOK
9 DoorPCO!Unlock Unlock!
10 UserPCO!Display Please_Enter
11 DoorPCO?Open Open1
12 DoorPCO?Close Close1
13 DoorPCO!Lock Lock1
14 UserPCO!Display Enter_Card P

Example 606: A TTCN test case testing the AccessControl system–––––––––––––––

1 UsrPCO?Card Card1
2 UsrPCO?Display Enter_Code
3 UsrPCO!Digit Digit1
4 UsrPCO!Digit Digit1
5 UsrPCO!Digit Digit1
6 UsrPCO!Digit Digit1
7 DoorPCO!Unlock Unlock!
8 UserPCO!Display Please_Enter
9 DoorPCO?Open Open1
10 DoorPCO?Close Close1
11 DoorPCO!Lock Lock1
12 UserPCO!Display Enter_Card P

–––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3767

Chapter 74 System Design
The choice between MSC and TTCN as design use case notation is very
much influenced by application and development organization aspects:

• It is more efficient if the same test definitions can be used both for
design level testing and target testing, so the plans for how to per-
form the target level testing may have an implication for the choice
of notation. If the target testing should be done using a TTCN envi-
ronment then at least the system tests should be defined in TTCN
also for the design level testing.

• On the other hand, if the target tests are performed using an in-house
test script notation implying that the same notation can not be used
both in design and target testing, then MSC has the advantage of be-
ing a simpler notation and is already known and used in the previous
activities.

Textual Design Documentation
The SDL architecture definition and the design use cases form a speci-
fication of the static and dynamic aspect of the components from a func-
tional viewpoint. In many cases there is a need to extend this with more
information that is not suitable to express in SDL or as use cases. An
example may be a system that requires a user interface with windows,
menus etc. or a system with specific requirements on reliability or re-
sponse times for some or all of the components.

To give the possibility to express this type of specifications and also to
allow other types of design or project documentation in an environment
that is mainly SOMT and SDL oriented, the SOMT method gives a pos-
sibility to include textual documents in the system design documenta-
tion.
3768 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Consistency Checks
Consistency Checks
This section gives a number of examples of consistency checks that can
be made on the models produced in the system design.

• Check that there is a simple (preferably one-to-one) mapping be-
tween all the top-level subsystems in the architecture definition and
some of the design modules as defined in the design module struc-
ture.

• Check that the actual modules (SDL packages etc.) used in the de-
sign are consistent with the design module structure.

• Check that the subsystems in the logical architecture in the analysis
object model are mapped to the architecture definition in the design.

• Check that all use cases from the requirements analysis and system
analysis are refined to design use cases.

• Check that the instances in the design use cases correspond to the
blocks/processes in the architecture definition.

• Check that all objects in the analysis object model either has been
mapped to some interface definition or really are internal to their
module.

• Check that the different models conform to the rules for their re-
spective notation (like SDL and MSC).

Summary
The system design is an activity in which the architecture of the system
to be built is defined in SDL. Use cases from the analysis are refined to
a granularity that will be sufficient for describing the behavior of the
subsystems in the architecture. These use cases should be a source for
module and system testing in later activities.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3769

Chapter 74 System Design
3770 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	74 System Design
	System Design Overview
	Architecture Definition
	Design Module Structure
	Deployment Description
	Static Interface Definitions Using SDL
	Mapping Object Models to SDL Interface Definitions
	Design Use Case Model
	Usage of MSC
	Usage of TTCN

	Textual Design Documentation
	Consistency Checks
	Summary

