
July 2003 Telelo

Chapter
72 System Analysis
This chapter gives a thorough description of the different models in 
the system analysis activity as well as some guidelines on how to cre-
ate these models. A recommendation on consistency rules that are 
relevant for the models in this activity and for the consistency be-
tween the models from the previous activity and this activity, is also 
included.
gic Tau 4.5 User’s Manual ,um-st1 3721



Chapter 72 System Analysis
System Analysis Overview
While the purpose of the requirements analysis is to understand the 
problem to be solved and the requirements this puts on the system, the 
purpose of the system analysis is to understand the architecture of the 
system itself. Essentially the issue of the system analysis is to find out 
what objects are needed to implement the requirements on the system. 
This means that the system analysis to a large extent is an analysis of 
the information that is needed to be represented in the system and the 
structure of the system itself. Information is here used in a broad sense 
which includes not only the data to be manipulated in the system but 
also the containers for algorithms and interfaces.

The system analysis in SOMT is very similar to corresponding activities 
in other object-oriented analysis methods and the major input and out-
puts of this activity are illustrated in Figure 635.

The main input to the system analysis is the requirements object model 
and use cases developed during the requirements analysis and the main 
output is another object model, the analysis object model that describes 
the logical architecture of the system. In addition to this model a use 
case model is also created in the system analysis to describe the dynam-
ic aspects of the architecture and textual analysis documentation is used 
to document analysis results not suitable to be express as use cases or 
object models. The different models will be discussed in detail in the 
following sections, the analysis object model in “Analysis Object Mod-

Figure 635: The major inputs and outputs of the system analysis activity

System

Operations

Model

Require-
ments 

Object Model

System
Analysis

Require-
ments

Use Case

Analysis

Object 

Model

Analysis

Use Case

Model

Textual

Analysis

Documentation
3722 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
el” on page 3723 and the use cases in “Analysis Use Case Model” on 
page 3735.

The tasks to perform in the system analysis activity are thus essentially 
the following:

1. Start defining an initial version of the analysis object model, in par-
ticular concentrating on creating an overall architecture of the appli-
cation.

2. Then start refining some of the most important requirements use 
cases to check that the architecture defined in the analysis object 
model will work.

3. Continue by iterating between modifying/refining the analysis ob-
ject model and creating more analysis use cases, either by refining 
requirements use cases or by describing particular mechanisms in 
the application.

In parallel with the tasks above it may also be necessary to study various 
aspects of the chosen architecture, e.g. with respect to non-functional 
requirements. These results can be documented in the textual analysis 
documentation.

Analysis Object Model
The intention with the analysis object model is that it is a means to de-
scribe the architecture, i.e. the main objects that need to be implemented 
in the completed system. The notations used are the same as for the re-
quirements object model in the requirements analysis. An overview of 
the notations is given in “Object Model Notation” on page 3670 and in 
“State Chart Notation” on page 3674.

At a first glance the requirements object model in the requirements anal-
ysis and the analysis object model in the system analysis seem similar 
but there are several reasons to distinguish between them. The major 
motivation is that the purpose of the models are different: The purpose 
of the requirements object model is to investigate and describe the prob-
lem that the system is to solve and the environment that the system is to 
operate in, while the purpose of the system analysis model is to analyze 
and define the architecture of the system itself. Another more pragmatic 
difference is that the requirements object model consists of objects vis-
ible on the border of the system and outside the system, e.g. users of the 
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3723



Chapter 72 System Analysis
system, while the system analysis object model is focused on the inter-
nal object structure of the system.

In the same way as the requirements object model can be structured into 
a number of different diagrams, the analysis object model can naturally 
also be decomposed into more than one diagram. This is even more im-
portant than it was for the requirements object model since the analysis 
object model tends to be much larger than the requirements object mod-
el.

The Logical Architecture of the System
The major purpose of the analysis object model is to describe an object 
structure that defines the logical architecture of the application. It de-
scribes how the application at a certain level of abstraction can be con-
sidered to be divided into a number of subsystems or objects that togeth-
er fulfil the requirements posed on the application. 

For each class that is identified in the logical architecture the most im-
portant issue is to note the responsibilities of this class. Why is the class 
included into the architecture? What is it supposed to do? The responsi-
bilities of an object of a specific class are described by answers to a set 
of questions:

• What information or knowledge is the object responsible for main-
taining?

– This is described by the attributes of the class.

• What should the object be able to do?

– Described by the operations of the class.

• What other objects does the object need to know to fulfill its respon-
sibilities?

– Defines associations and aggregations to other classes.

• Are the responsibilities of objects of this class similar to that of oth-
er classes? Is it “the same as class ... except that...”?

– Defines inheritance relations.

The result when identifying different objects and answering the ques-
tions above is one (or more) class diagrams that describe the architec-
ture of the system. The responsibilities are described by the operations 
3724 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
and attributes. The associations between the classes in the model repre-
sent needs for objects to be aware of other objects to be able to fulfil its 
task. As an example, consider Figure 636 that describes the architecture 
of the access control system.

Note that object analysis model can be viewed as a refinement of the 
context diagrams in the requirements object model.

Finding the Objects
The objects in the analysis object model can come from several differ-
ent sources. Some useful examples are:

• objects from the requirements object model
• objects from interfaces
• objects from use cases

These different sources are described in the following sections.

Requirements Object Model as Source of Objects

The requirements object model is of course one of the major sources of 
objects for the analysis object model, in particular for the information 
modeling part. Since the requirements object model should contain 
most of the objects in the problem domain a lot of them will probably 
have to be represented in the system and should thus be part of the anal-
ysis object model. Note however, that in this case it is not the same ob-
ject that is found in the requirements object model and the analysis ob-
ject model. The object in the analysis object model is in this case a con-
tainer of information about the “real” object that is modeled in the 
requirements object model. In many cases of course entire inheritance 
and/or aggregation hierarchies can be reused in the analysis object mod-
el as illustrated in Figure 637. Notice that the Guard object is not need-

Figure 636: Object model diagram describing the system architecture

DoorCtrl

DoorStatus

DisplaySta-
tus

HandleDigit

HandleCard

CentralCtrl

Cards

Codes

Validate

OperatorCtrl

Log

1+
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3725



Chapter 72 System Analysis
ed to be represented in the system and thus is not introduced in the anal-
ysis Object Model.

The objects found in the requirements object model usually have one 
thing in common, they represent entities in the real world that the sys-
tem needs to store information about.

An algorithm to find the information objects needed by the system 
based on the requirements object model can thus be phrased as follows.

• For all objects in the requirements object model:

– Decide if the system needs information about this object to fulfil 
its task.

– If the answer is “yes” then add it to the analysis object model us-
ing Paste as to get the implinks and thus provide traceability 
back to the requirements object model.

Objects from Interfaces

Another useful way to find objects is to consider the interfaces that the 
system will have to the environment. It is often very useful to introduce 
a special kind of object that hides the specific features about how to ac-
cess the interface from the rest of the system. In [18] these kind of ob-
jects are called interface objects. Where do we get the interface objects 
from? There are several different sources to search:

• The application area itself, which in some cases make it obvious 
what interfaces must exist in the system.

Figure 637: Reuse of requirements object model in the analysis object model

Person

Regular_

user

Operator

Person

Regular_

user

Operator

Requirements Object Model Analysis Object Model

Guard
3726 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
• The use cases from the requirements analysis can be searched for in-
terface objects:

– They may explicitly identify some interface, e.g. “The user en-
ters a card into the card reader”.

– Since they define actors that communicate with the system, each 
actor must use some kind of interface when interacting with the 
system, even if it is not stated explicitly which interface that is 
used. So by starting with the actor we may analyze what inter-
faces he/she will need. If nothing else the actor itself may intro-
duce an interface object.

One important motivation for introducing interface objects is to make 
modification of the system easier. If the hardware of an interface is 
changed, e.g. the card readers of an access control system, then the logic 
of how to handle them is encapsulated in one object. This makes it likely 
that this object is the only thing that needs to be changed in the software.

Performance requirements are another motivation to introduce interface 
objects. Very often the interfaces can be a bottleneck with respect to 
performance. By encapsulating the interface in one object providing 
high-level operations to the rest of the system it is possible to make an 
optimized implementation of this object, e.g. making special purpose 
hardware or enhance the performance.

As an example consider the access control system and specifically the 
Enter building use case described in text in Example 603 on page 3705. 
From this text we can directly find a number of interfaces: a card reader, 
a display, a door lock, etc. All of these are likely candidates to result in 
interface objects in the analysis object model. When describing the in-
terface objects it is usually fruitful to use a communication style class 
diagram to show how they interact with the external actor and the rele-
vant objects in the analysis object model. If the interaction is non-trivial 
it might also be a good idea to show the interaction pattern using one or 
more MSC use cases that describe the different ways this particular ob-
ject interacts with its environment.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3727



Chapter 72 System Analysis
Objects from Use Cases

The use cases can be used as a tool to find the objects that are needed. 
The strategy is to take a use case and investigate how the functionality 
that is implied by the use case is distributed among the objects in the 
analysis object model. One way to do this is to produce an MSC that de-
scribes the interaction as described in “Analysis Use Case Model” on 
page 3735. Check which interface objects are involved, which internal 
objects are modified or accessed and consider the question of introduc-
ing a special controller object to encapsulate the sequencing of the use 
case. Is there already a control object that might take on the responsibil-
ity, or is there a need to create a new control object to handle the logic 
of the use case?

Consider for example the Enter building use case described textually in 
Example 603 on page 3705 and using an MSC in Figure 628 on page 
3707. Since this use case contains a sequence of steps the system needs 
to represent that essentially has to do with the state of one of the doors 
and the associated lock and other devices, a special control object Door-
Control seems natural to introduce. This could give an object model di-
agram as in Figure 638.

Notice that the objects in this object model correspond to the interface 
objects that more or less directly could be extracted from the use case 
text together with the new control object. It may in this context be useful 
to name the objects according to their function. The interface objects are 

Figure 638: An object model diagram that introduces the DoorControl object

CardReader_

Interface

Display_

Interface

DoorLock_

Interface

Keyboard_

Interface

Door_

Control

DoorSensor_

Interface
3728 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
in this example called “XXInterface” and the control objects “XXCon-
trol” or something similar.

Notice that this model also introduces associations between the inter-
face objects and the control object. These associations represent the 
communication paths that are needed among the objects. In one way or 
another information will flow following these associations.

Another type of object that might be found when analyzing the use cases 
are DataServer objects. These objects define the access possibilities to 
(complex) data structures. There are several possible sources to search 
for these type of objects:

• The object structures that come from the requirements object model 
represent information that has to be stored in the system. In many 
cases there is a need for a DataServer object that “owns” this infor-
mation and that provides an access to it. So, investigating the objects 
from the requirements object model and how they are to be used is 
a way to identify DataServer objects.

• A second source of information is given by the use cases, since they 
often express the need for some kind of computation that involves 
several, related objects. When there is a need for a more complex al-
gorithm that operates on an object structure a DataServer object 
might be useful.

By once more analyzing the Enter building use case described in 
Example 603 on page 3705 we can see that there is a need for a check-
ing mechanism that determines if the code a user enters is the correct 
code associated with the card he previously has entered. This indicates 
the need for a CardAndCodeDataServer object that is responsible for 
maintaining the information about cards and code. Furthermore we can 
see that a likely operation on this object is a Validate operation that tells 
if one particular combination of card and code is correct. This may give 
an object model as in Figure 639.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3729



Chapter 72 System Analysis
Finding Attributes and Operations
As discussed above the attributes and operations are used as a means to 
describe the responsibilities of objects. They describe the purpose of in-
troducing an object into the model by answering the questions:

• What should the object be able to do?

• What information or knowledge is the object responsible for main-
taining?

In practise, the attributes can be found for example:

• In the use cases
• In the requirements object model (by keeping already described at-

tributes)
• In the textual requirements

Some useful sources of operations are:

• The requirements object model (keeping the existing operations)
• The analysis use case model (the messages in the MSC diagrams)

The MSC messages in the analysis use case model can often be consid-
ered for operations in the analysis object model. Consider the behavior 
patterns in the use case model as well, since they often describe the 
functionality on a more detailed level.

Figure 639: An object model diagram introducing the 
CardAndCodeDataServer object

Card_

Info

Code_

Info

CardAndCode_

DataServer

Validate

**
3730 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
Finding Associations
As discussed above the associations are used to show how object of one 
class need to know other objects. Usually the associations are found 
when analyzing the responsibilities of the classes since the motivation 
for introducing an association is that it is needed by a particular object.

However, some other sources where it is useful to look for the associa-
tions are:

• The requirements object model (preserving or modifying existing 
relations)

• The textual requirements
• The analysis use case model

In particular the last source, the use cases are important. The activity of 
finding associations in the analysis object model and the activity of con-
structing the analysis use case model are closely related.

Describing Object Behavior
Sometimes it is useful to describe the behavior of the objects presented 
in the Logical Architecture. The Analysis Use Case Model describes 
how objects of the Logical Architecture interact. State Charts describe 
how these objects reacts internally as a result of the interaction present-
ed in the Analysis Use Case Model.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3731



Chapter 72 System Analysis
It is not necessary to describe the behavior of every object in the Logical 
Architecture. The focus should be on objects with complex behavior 
and where complex data structures are dependent of the state of their ob-
ject. Modeling the behavior of an object will lead to a better knowledge 
of how the object will function internally. “Which are the actions of the 
object?”, and “what data structures are needed?” are some questions 
that may be answered. If an object is too complicated it might be neces-
sary to divide its class into several smaller classes which should be re-
flected in the corresponding class diagram. In other words: the relation-
ship between the Logical Architecture diagram and the Object Behavior 
diagram is bidirectional.

When creating a state chart, the Logical structure is the obvious source 
of information. It is necessary to consider the object’s class specifica-
tion when specifying its behavior. An operation on a class will lead to 
transitions in the behavior model. A transition may lead to an internal 
action or a sending of an event to an external object. A transition may 
also lead to value changes of the object’s attributes. If these attribute 
changes are important they should be reflected in the state chart. The 
operations on the class may also be found in the Analysis Use Case 
Model together with the possible sending of events.

Figure 640: A state chart describing the behavior of an object
3732 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Object Model
Architecture of Large Systems
For large applications it is also often necessary to divide the analysis 
model into more than one module, e.g. to facilitate an analysis by more 
than one team. One possible strategy for doing this is a recursive ap-
proach where we first make an architecture on a high level, where each 
class represents a subsystem. Then each subsystem is refined by a sep-
arate team. It is important to be vary careful about the responsibilities 
of the classes in the top-level architecture, as described by their at-
tributes and operations, since they will form the input to the different 
analysis teams.

In this context it is useful to use aggregations to describe a “subsystem” 
or “is-composed-of” relation, i.e. to describe how the system is decom-
posed into parts that recursively are decomposed into smaller parts. As 
an example, consider Figure 641 that describes the structure of the ac-
cess control system. In this example the system is composed of one or 
more DoorCtrls, one CentralCtrl and one OperatorCtrl. The OperatorC-
trl is itself composed of a component handling remote communication 
(RemoteCom) and a UserInterface.

Note that the usage of aggregation as a means to describe subsystem re-
lations has an impact on the object structure. Since the assembly classes 
are used to represent aggregation of classes and not single objects, they 
should in general not have any “intelligence” by themselves. This im-
plies that the operations provided by the aggregate classes in practise 

Figure 641: Using aggregations to describe the access control system

AccessControl

DoorCtrl CentralCtrl OperatorCtrl
1+

RemoteCom UserInterface
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3733



Chapter 72 System Analysis
should be implemented by one or more of the parts classes that the ag-
gregate class contain.

It is a good practise to make the decomposition into modules aligned 
with the top-level architecture. One top level module architecture of the 
upper level of the application, identifying the responsibilities of the sub-
systems. The leaf classes of this top level architecture are then defined 
in separate modules possible by different analysis teams. The top level 
module then forms an interface or contract between the analysis teams.

It is impossible to give any rules for how to find the best way to divide 
a system into subsystems, but most authors agree on some measures to 
tell if a certain decomposition is a good one. The following two rules 
are from [5] describing OMT guidelines for decomposition interpreted 
in the SOMT context:

• The structure must be designed so that most interactions are within 
the subsystems and not across the boundaries. 

• A system should not be divided into too many subsystems, 20 is 
probably too many. It is better to use a hierarchy of subsystems in-
stead.

The subsystems may be chosen based on several different approaches, 
but the major idea is to group together objects, that together provide a 
certain function to the rest of the system, into a subsystem which then 
can be used as an abstraction of the entire group of objects.
3734 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Use Case Model
Analysis Use Case Model
The purpose of the analysis use case model is to show the dynamic view 
of how the functionality of the system is decomposed in the same way 
as the analysis object model describes the static view of the decomposi-
tion. This implies that the internal communication between the various 
parts of the system is the major concern for this activity. Two different 
types of use cases can be distinguished in the analysis use case model:

• Refined requirements

• Behavior pattern use cases

Refined Requirements
The analysis use cases that are refined requirements are simply the use 
cases from the requirements analysis refined to the analysis object mod-
el level. Each requirements use case is distributed among the objects 
from the analysis object model. The purpose of these use cases is mainly 
to document how the logical architecture as described in the analysis 
object model is capable of implementing the requirements that are ex-
pressed by the use cases. In practice this is done by taking each of the 
use cases defined in the requirements analysis and reformulate it in 
terms of the objects that are defined in the analysis object model. It is 
possible to use both the textual use case notation and the MSC notation 
to represent the use cases, but since the purpose of the analysis use case 
model is to show how the functionality is distributed among the objects 
the MSC notation is especially useful. As in the requirements analysis, 
HMSCs can be used to simplify the use case model. 

Consider again the access control system with a logical architecture ac-
cording to Figure 636 on page 3725 where the system is divided into a 
DoorCtrl, a CentralCtrl and an OperatorCtrl components. If we take the 
Enter building use case as defined by an MSC in Figure 628 on page 
3707 and replace the system with the three components we get an MSC 
as shown in Figure 642.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3735



Chapter 72 System Analysis
In this MSC we can see that the original system instance is replaced by 
instances of DoorCtrl, CentralCtrl and OperatorCtrl. This use case deals 
mainly with the handling of user interaction at the door and since this is 
the responsibility of the DoorCtrl most of the action is performed by this 
component. Only the validation of the card and code is performed cen-
trally. 

It is easy to see that the strategy outlined above is extendable to allow a 
decomposition of a system into not only one level of components, but 
into a hierarchy of components. For each new level of decomposition 
all use cases that involve the decomposed components are taken as input 
to the validation of the new decomposition. The component that was de-
composed is replaced by the new components and new versions of the 
use cases are created.

Figure 642: The Enter Building use case distributed over a logical architecture

MSC Enter_Building
U:User DC:DoorCtrl C:CentralCtrl O:OperatorCtrl D:Door

Card

Display ’Enter code’

Digit

Digit

Digit

Digit

Validate

Accept

Unlock

Display ’Please enter’

Open

Close

Lock

Display ’Enter card’
3736 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis Use Case Model
Behavior Patterns
When designing the object structure for a system there is often a need 
to document behavior patterns that involve one or more objects that par-
ticipate to fulfill a common objective. Sometimes this can be described 
in the refined requirements use cases, but there are two advantages of 
creating special use cases for specific mechanisms and behavior pat-
terns:

• By describing detailed communication patterns in special use cases, 
the refined requirements use cases can be on a higher level of ab-
straction and are not made unnecessary complex.

• By focusing special use cases on specific parts of the system, it is 
easier to understand and maintain the requirements of the involved 
object than if these where distributed among all the refined require-
ments use cases.

As an example consider the keyboard interface of the access control ap-
plication. The purpose of the keyboard is to allow the user to enter a 
code consisting of four digits. In a refined requirements use case show-
ing a user entering an office by pushing the digits on a keyboard this can 
be shown using an MSC reference symbol, as in Figure 643.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3737



Chapter 72 System Analysis
What happens when the user enters a code is thus described in the MSC 
Enter_Code. We see that it is the user and the DoorControl object that 
are involved in this interaction.

However, there is of course a specific protocol for Keyboard objects 
that defines how they interact with the user and the DoorCtrl that is not 
shown on the abstraction level of the refined requirements use case. 
This may for example look like in Figure 644, which shows the behav-
ior pattern use case Enter_Code.

Figure 643: Part of a refined requirements use case

MSC Enter_Building

U:User DC:DoorControl C:CentralCtrl

Card

Display

’Enter code’

Enter_Code

Validate

Accept
3738 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Textual Analysis Documentation
Other examples of behavior patterns that may need special use cases are 
internal communication between different parts of a system using prox-
ies (i.e. local dummy objects that are used instead of a remote object and 
hides the communication aspect from the user of the proxy), initializa-
tion protocols that describe how various objects are created and ex-
change information, and in general all other tactical solutions to prob-
lems that need a special explanation in the system analysis.

Textual Analysis Documentation
In many cases there is a need to express aspects of the architecture or 
architecture related requirements in a textual format as a complement to 
the more structured object models and use cases. This may for example 
be to record experiments performed to check performance aspects of the 
architecture or other non-functional requirements. Other examples may 
include documentation of risk assessments performed in the system 
analysis phase.

To satisfy this need SOMT allows different textual documents to be in-
cluded among the analysis documentation.

Figure 644: A behavior pattern use case showing the 
protocol for Keyboard interface objects

MSC Enter_Code
U:User KB:Keyboard DC:DoorControl

Digit

Code

GetCode

Digit

Digit

Digit
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3739



Chapter 72 System Analysis
Requirements Traceability
One important aspect in the system analysis is the relation between the 
models that are created in this activity and the requirements, both exter-
nal requirements specifications and the models from the requirements 
analysis. Important questions are:

• Have all requirements been implemented?

• Which are the system analysis objects that implement one particular 
requirement?

• Which are the requirements that are implemented by one specific 
object in the analysis object model?

To be able to answer this type of questions it is important to create and 
maintain descriptions of the dependencies between concepts among the 
requirements and system analysis concepts. As discussed in “Implinks 
and the Paste As Concept” on page 3666 the means to do this in SOMT 
is given by what is called implementation links (or implinks for short). 
An implink is an association between two concepts where one of the 
concepts implements the other. One example is the implinks that exist 
between objects in the requirements object model and the correspond-
ing object in the analysis object model. Consider for example 
Figure 637 on page 3726 that illustrates how domain objects are mod-
eled in the analysis object model. In this case there should for example 
be an implink between the Operator object in the requirements object 
model and the Operator object in the analysis object model.

Another example is the links between use cases on different levels. 
Links between the requirements use cases and the analysis use cases 
show that the requirements are handled on the system analysis level.

In particular when doing “what if...” analysis of the consequences a 
modification or extension of the system has, these type of links are in-
valuable. For example consider the case where we would like to special-
ize the concept of an Operator into RegularOperator and ChiefOpera-
tor where the chief operator has some special privileges that a regular 
operator does not have. We then look at the requirements object model 
and try to understand what consequences this modification will have. 
With an implink we immediately see that the analysis object Opera-
torInfo will have to be changed and with further links from this object 
we can get a good idea of the consequences caused by the modification.
3740 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Consistency Checks
Consistency Checks
This section provides a list of consistency checks that can be made on 
the models produced by the system analysis.

• Check that all use cases from the requirements analysis have been 
refined to analysis use cases.

• Check that all entities in the requirements object model are either 
represented in the analysis object model or not really needed by the 
application.

• Check that the object model diagrams and MSCs conform to the 
static rules for each notation.

• Check that the instances in the MSCs correspond to classes in the 
object model or to actors that interact with the system.

• Check that the messages received by the instances in the MSCs cor-
respond to operations on the corresponding classes. Note that for re-
mote procedures there may be two messages in an MSC for one op-
eration, one message for the request and one for the reply. In this 
case the reply message should not have any corresponding opera-
tion.

Summary
The system analysis is an activity that is focused on understanding the 
system to be built. The major tools to facilitate and document the under-
standing of the system are the analysis object model and the analysis use 
case model. The analysis object model is intended to capture the objects 
that are needed in order to describe a solution of the problem.

The analysis use case model describes how the objects in the analysis 
object model cooperate to fulfill the requirements posed on the system 
by the use cases from the requirements analysis.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3741



Chapter 72 System Analysis
3742 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003


	72 System Analysis
	System Analysis Overview
	Analysis Object Model
	The Logical Architecture of the System
	Finding the Objects
	Requirements Object Model as Source of Objects
	Objects from Interfaces
	Objects from Use Cases

	Finding Attributes and Operations
	Finding Associations
	Describing Object Behavior
	Architecture of Large Systems

	Analysis Use Case Model
	Refined Requirements
	Behavior Patterns

	Textual Analysis Documentation
	Requirements Traceability
	Consistency Checks
	Summary


