Chapter

12

July 2003

System Analysis

Thischapter givesathorough description of thedifferent modelsin
the system analysisactivity aswell assomeguidelineson how to cre-
ate these models. A recommendation on consistency rulesthat are
relevant for the modelsin thisactivity and for the consistency be-
tween the modelsfrom the previousactivity and thisactivity, isalso
included.

Telelogic Tau 4.5 User’ sManual 3721

Chapter 72 System Analysis

System Analysis Overview

3722

While the purpose of the requirements analysisis to understand the
problem to be solved and the requirements this puts on the system, the
purpose of the system analysisis to understand the architecture of the
system itself. Essentially the issue of the system analysisisto find out
what objects are needed to implement the requirements on the system.
This means that the system analysis to alarge extent is an analysis of
the information that is needed to be represented in the system and the
structure of the system itself. Information is here used in a broad sense
which includes not only the data to be manipulated in the system but
also the containers for agorithms and interfaces.

Thesystemanalysisin SOMT isvery similar to corresponding activities
in other object-oriented analysis methods and the major input and out-
puts of this activity areillustrated in Figure 635.

Analysis
Require- .
ments Object
Object Model \ Model
System
Anaysis
Require- / i
ments
Analysis
Use Case Textual
Analysis Use Case
i
pystem ’ : Model
Operations Documentation
Model

Figure 635: The major inputs and outputs of the system analysis activity

The main input to the system analysis is the requirements object model
and use cases devel oped during the requirements analysis and the main
output is another object model, the analysis object model that describes
the logical architecture of the system. In addition to this model a use
case model isalso created in the system analysis to describe the dynam-
ic aspects of the architecture and textual analysisdocumentationis used
to document analysis results not suitable to be express as use cases or
object models. The different models will be discussed in detail in the
following sections, the analysis object model in “Analysis Object Mod-

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

€l” on page 3723 and the use cases in “Analysis Use Case Model” on
page 3735.

Thetasksto perform in the system analysis activity are thus essentially
the following:

1. Start defining aninitial version of the analysis object model, in par-
ticular concentrating on creating an overall architecture of the appli-
cation.

2. Then start refining some of the most important requirements use
cases to check that the architecture defined in the analysis object
model will work.

3. Continue by iterating between modifying/refining the analysis ob-
ject model and creating more analysis use cases, either by refining
requirements use cases or by describing particular mechanismsin
the application.

In parallel with the tasksaboveit may also be necessary to study various
aspects of the chosen architecture, e.g. with respect to non-functional
requirements. These results can be documented in the textual analysis
documentation.

Analysis Object Model

July 2003

The intention with the analysis object model isthat it isa meansto de-
scribethe architecture, i.e. the main objectsthat need to beimplemented
in the completed system. The notations used are the same as for the re-
guirements object model in the requirements analysis. An overview of
the notationsis given in “Object Model Notation” on page 3670 and in
“State Chart Notation” on page 3674.

At afirst glance the requirements object model in the requirements anal -
ysis and the analysis object model in the system analysis seem similar
but there are several reasons to distinguish between them. The major
motivation is that the purpose of the models are different: The purpose
of the requirements object model isto investigate and describe the prob-
lem that the system is to solve and the environment that the system isto
operatein, whilethe purpose of the system analysis model isto analyze
and definethe architecture of the system itself. Another more pragmatic
differenceisthat the requirements object model consists of objectsvis-
ible on the border of the system and outside the system, e.g. users of the

Telelogic Tau 4.5 User's Manual 3723

Chapter 72 System Analysis

3724

system, while the system analysis object model is focused on the inter-
nal object structure of the system.

In the sameway asthe requirements object model can be structured into
anumber of different diagrams, the analysis object model can naturally
al so be decomposed into more than one diagram. Thisis even moreim-
portant than it was for the requirements object model sincethe analysis
object model tendsto be much larger than the requirements object mod-
el.

The Logical Architecture of the System

The major purpose of the analysis object model isto describe an object
structure that defines the logical architecture of the application. It de-
scribes how the application at a certain level of abstraction can be con-
sidered to be divided into anumber of subsystems or objectsthat togeth-
er fulfil the requirements posed on the application.

For each class that isidentified in the logical architecture the most im-
portant issueisto note the responsibilities of thisclass. Why isthe class
included into the architecture? What isit supposed to do? The responsi-
bilities of an object of a specific class are described by answersto a set
of questions:

« What information or knowledge is the object responsible for main-
taining?

— Thisisdescribed by the attributes of the class.
* What should the object be able to do?
— Described by the operations of the class.
« What other objects doesthe object need to know to fulfill itsrespon-
sibilities?
— Defines associations and aggregations to other classes.

» Aretheresponsibilities of objects of thisclass similar to that of oth-
er classes?Isit “the same as class ... except that...”?

— Definesinheritance relations.

The result when identifying different objects and answering the ques-
tions above is one (or more) class diagrams that describe the architec-
ture of the system. The responsibilities are described by the operations

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

July 2003

and attributes. The associations between the classesin the model repre-
sent needs for objectsto be aware of other objectsto be ableto fulfil its
task. Asan example, consider Figure 636 that describesthe architecture
of the access control system.

DoorCirl CentralCirl [OperatorCirl
DoorStatus L ards

DisplaySta- Codes Log

fus Validate

HandleDigit

HandleCard

Figure 636: Object model diagram describing the system architecture

Note that object analysis model can be viewed as a refinement of the
context diagrams in the requirements object model.

Finding the Objects

The objects in the analysis object model can come from several differ-
ent sources. Some useful examples are:

» objects from the requirements object model
* oObjectsfrom interfaces
* Objectsfrom use cases

These different sources are described in the following sections.

Requirements Object Model as Source of Objects

The requirements object model is of course one of the major sources of
objects for the analysis object model, in particular for the information
modeling part. Since the requirements object model should contain
most of the objectsin the problem domain alot of them will probably
haveto be represented in the system and should thus be part of the anal-
ysis object model. Note however, that in this case it is not the same ob-
ject that is found in the requirements object model and the analysis ob-
ject model. The object in the analysis object model isin this case acon-
tainer of information about the “real” object that is modeled in the
requirements object model. In many cases of course entire inheritance
and/or aggregation hierarchies can bereused in the analysis object mod-
el asillustrated in Figure 637. Notice that the Guard object is not need-

Telelogic Tau 4.5 User's Manual 3725

Chapter 72 System Analysis

3726

ed to be represented in the system and thusis not introduced in the anal-
ysis Object Model.

Requirements Object Model Analysis Object Model
Person Person
—
Guard Regular_ Operator Regular_ Operator
user user

Figure 637: Reuse of requirements object model in the analysis object model

The objects found in the requirements object model usually have one
thing in common, they represent entities in the real world that the sys-
tem needs to store information abouit.

An agorithm to find the information objects needed by the system
based on the requirements object model can thus be phrased as follows.

« For al objects in the requirements object model:

— Decideif the system needsinformation about this object to fulfil
its task.

— Iftheanswer is“yes’ then add it to the analysis object model us-
ing Paste as to get the implinks and thus provide traceability
back to the requirements object model.

Objects from Interfaces

Another useful way to find objectsisto consider the interfaces that the
system will have to the environment. It is often very useful to introduce
aspecia kind of object that hides the specific features about how to ac-
cess the interface from the rest of the system. In [18] these kind of ob-

jects are called interface objects. Where do we get the interface objects
from? There are several different sourcesto search:

e Theapplication areaitself, which in some cases make it obvious
what interfaces must exist in the system.

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

July 2003

* Theusecasesfrom the requirements analysis can be searched for in-
terface objects:

— They may explicitly identify someinterface, e.g. “ The user en-
tersacard into the card reader”.

— Sincethey define actorsthat communicate with the system, each
actor must use some kind of interface when interacting with the
system, evenif it is not stated explicitly which interface that is
used. So by starting with the actor we may analyze what inter-
faces he/she will need. If nothing el se the actor itself may intro-
duce an interface object.

One important motivation for introducing interface objectsisto make
modification of the system easier. If the hardware of an interfaceis
changed, e.g. the card readers of an access control system, thenthelogic
of how to handlethem isencapsul ated in one object. Thismakesitlikely
that this object isthe only thing that needsto be changed in the software.

Performance requirements are another motivation tointroduceinterface
objects. Very often the interfaces can be a bottleneck with respect to
performance. By encapsulating the interface in one object providing
high-level operations to the rest of the system it is possible to make an
optimized implementation of this object, e.g. making special purpose
hardware or enhance the performance.

As an example consider the access control system and specifically the
Enter building use case described in text in Example 603 on page 3705.
From thistext we can directly find anumber of interfaces: acard reader,
adisplay, adoor lock, etc. All of these are likely candidatesto result in
interface objects in the analysis object model. When describing the in-
terface objectsit is usually fruitful to use acommunication style class

diagram to show how they interact with the external actor and the rele-
vant objectsin theanaysis object model. If theinteractionisnon-trivial

it might also be agood ideato show the interaction pattern using one or
more M SC use cases that describe the different ways this particular ob-
ject interacts with its environment.

Telelogic Tau 4.5 User's Manual 3727

Chapter 72 System Analysis

3728

Objects from Use Cases

The use cases can be used as atool to find the objects that are needed.
The strategy is to take a use case and investigate how the functionality
that isimplied by the use case is distributed among the objects in the
anaysis object model. One way to do thisisto produce an MSC that de-
scribes the interaction as described in “Analysis Use Case Model” on
page 3735. Check which interface objects are involved, which internal
objects are modified or accessed and consider the question of introduc-
ing a special controller object to encapsul ate the sequencing of the use
case. Isthere already acontrol object that might take on the responsibil -
ity, or isthere a need to create a new control object to handle the logic
of the use case?

Consider for examplethe Enter building use case described textually in
Example 603 on page 3705 and using an MSC in Figure 628 on page

3707. Since this use case contains a sequence of steps the system needs
to represent that essentially has to do with the state of one of the doors
and the associated lock and other devices, aspecia control object Door-
Control seems natural to introduce. This could give an object model di-

agram asin Figure 638.

CardReader |
Interface

\Door_

Control

Display_ /
Interface
Keyboard_ DoorLock _ Doorsensor
Interface Interface Interface i

Figure 638: An object model diagram that introduces the DoorControl object

Notice that the objects in this object model correspond to the interface
objects that more or less directly could be extracted from the use case

text together with the new control object. It may in this context be useful
to namethe objectsaccording to their function. Theinterface objectsare

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

July 2003

in this example called “ XXInterface” and the control objects “XXCon-
trol” or something similar.

Notice that this model also introduces associations between the inter-
face objects and the control object. These associations represent the
communication paths that are needed among the objects. In one way or
another information will flow following these associations.

Another type of object that might be found when analyzing the use cases
are DataServer objects. These objects define the access possibilities to
(complex) data structures. There are several possible sources to search
for these type of objects:

* Theobject structuresthat come from the requirements object model
represent information that has to be stored in the system. In many
casesthereis aneed for a DataServer object that “owns’ thisinfor-
mation and that provides an accesstoit. So, investigating the objects
from the requirements object model and how they are to be used is
away to identify DataServer objects.

» A second source of information is given by the use cases, sincethey
often express the need for some kind of computation that involves
several, related objects. When thereis aneed for amore complex al-
gorithm that operates on an object structure a DataServer object
might be useful.

By once more analyzing the Enter building use case described in
Example 603 on page 3705 we can see that thereis a need for a check-
ing mechanism that determines if the code a user entersis the correct
code associated with the card he previously has entered. Thisindicates
the need for a CardAndCodeDataServer object that is responsible for
maintaining the information about cards and code. Furthermore we can
seethat alikely operation on thisobject isa Validate operation that tells
if one particular combination of card and code is correct. Thismay give
an object model asin Figure 639.

Telelogic Tau 4.5 User's Manual 3729

Chapter 72 System Analysis

3730

CardAndCode_
DataServer
Validate
* *
Card_ Code_
Info Info

Figure 639: An object model diagram introducing the
CardAndCodeDataServer object

Finding Attributes and Operations

Asdiscussed above the attributes and operations are used as ameansto
describe the responsibilities of objects. They describe the purpose of in-
troducing an object into the model by answering the questions:

* What should the object be able to do?

» What information or knowledge is the object responsible for main-
taining?

In practise, the attributes can be found for example:

* Inthe use cases

* Inthe requirements object model (by keeping already described at-

tributes)
* Inthetextua requirements

Some useful sources of operations are:
» Therequirements object model (keeping the existing operations)
* Theanalysis use case mode (the messagesin the M SC diagrams)

The M SC messages in the analysis use case model can often be consid-
ered for operationsin the analysis object model. Consider the behavior
patterns in the use case model as well, since they often describe the
functionality on amore detailed level.

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

July 2003

Finding Associations

Asdiscussed above the associations are used to show how object of one
class need to know other objects. Usually the associations are found
when analyzing the responsibilities of the classes since the motivation
for introducing an association isthat it is needed by a particular object.

However, some other sources where it is useful to look for the associa-
tions are:

» Therequirements object model (preserving or modifying existing
relations)

» Thetextua requirements

e Theanaysis use case model

In particular the last source, the use cases areimportant. The activity of
finding associationsin the analysis object model and the activity of con-
structing the analysis use case model are closely related.

Describing Object Behavior

Sometimesit is useful to describe the behavior of the objects presented
inthe Logical Architecture. The Analysis Use Case Model describes
how objects of the Logical Architecture interact. State Charts describe
how these objects reactsinternally asaresult of the interaction present-
ed in the Analysis Use Case Model.

Telelogic Tau 4.5 User's Manual 3731

Chapter 72 System Analysis

3732

Local_Station

(1dle

CardEntry“EnterCode

‘ WaitCode ‘

.—D(_WailKey1 WailKeys)

Key

Key Key

Reset

(WailKeyz (wmmeyz;)

Key"CardAndCode

Ok*Unlock

COpened"Lock -
4C\»Va|10pened

Figure 640: A state chart describing the behavior of an object

Itisnot necessary to describethe behavior of every objectintheLogical
Architecture. The focus should be on objects with complex behavior
and where complex data structures are dependent of the state of their ob-
ject. Modeling the behavior of an object will lead to abetter knowledge
of how the object will function internally. “Which are the actions of the
object?’, and “what data structures are needed?’ are some questions
that may be answered. If an object istoo complicated it might be neces-
sary to divide its class into several smaller classes which should be re-
flected in the corresponding class diagram. In other words: the relation-
ship between the Logical Architecture diagram and the Object Behavior
diagram is bidirectional.

When creating a state chart, the Logical structure is the obvious source
of information. It is necessary to consider the object’s class specifica-
tion when specifying its behavior. An operation on a class will lead to
transitions in the behavior model. A transition may lead to an internal
action or a sending of an event to an external object. A transition may
also lead to value changes of the object’s attributes. If these attribute
changes are important they should be reflected in the state chart. The
operations on the class may also be found in the Analysis Use Case
Model together with the possible sending of events.

Telelogic Tau 4.5 User's Manual July 2003

Analysis Object Model

July 2003

Architecture of Large Systems

For large applicationsit is also often necessary to divide the analysis
model into more than one module, e.g. to facilitate an analysis by more
than one team. One possible strategy for doing thisisarecursive ap-
proach where we first make an architecture on ahigh level, where each
class represents a subsystem. Then each subsystem is refined by a sep-
arate team. It isimportant to be vary careful about the responsibilities
of the classes in the top-level architecture, as described by their at-
tributes and operations, since they will form the input to the different
analysis teams.

Inthiscontext it isuseful to use aggregationsto describe a“ subsystem”

or “is-composed-of” relation, i.e. to describe how the system is decom-
posed into partsthat recursively are decomposed into smaller parts. As
an example, consider Figure 641 that describes the structure of the ac-

cess control system. In this example the system is composed of one or

more DoorCirls, one Central Ctrl and one OperatorCtrl. The OperatorC-
trl isitself composed of acomponent handling remote communication

(RemoteCom) and a UserInterface.

[AccessControl
1+
DoorCirl CentralCtrl [OperatorCirl
RemoteCom serinterface

Figure 641: Using aggregations to describe the access control system

Note that the usage of aggregation as a means to describe subsystem re-
lations has an impact on the object structure. Since the assembly classes
are used to represent aggregation of classes and not single objects, they
should in general not have any “intelligence” by themselves. Thisim-
plies that the operations provided by the aggregate classes in practise

Telelogic Tau 4.5 User's Manual 3733

Chapter 72 System Analysis

3734

should be implemented by one or more of the parts classes that the ag-
gregate class contain.

It isagood practise to make the decomposition into modules aligned
with the top-level architecture. Onetop level module architecture of the
upper level of the application, identifying the responsibilities of the sub-
systems. The leaf classes of this top level architecture are then defined
in separate modules possible by different analysisteams. The top level
modul e then forms an interface or contract between the analysis teams.

Itisimpossible to give any rulesfor how to find the best way to divide
asystem into subsystems, but most authors agree on some measures to
tell if a certain decomposition is agood one. The following two rules
arefrom [5] describing OMT guidelines for decomposition interpreted
inthe SOMT context:

* Thestructure must be designed so that most interactions are within
the subsystems and not across the boundaries.

» A system should not be divided into too many subsystems, 20 is
probably too many. It is better to use a hierarchy of subsystemsin-
stead.

The subsystems may be chosen based on several different approaches,
but the mgjor ideaisto group together objects, that together provide a
certain function to the rest of the system, into a subsystem which then
can be used as an abstraction of the entire group of objects.

Telelogic Tau 4.5 User's Manual July 2003

Analysis Use Case M odel

Analysis Use Case Model

July 2003

The purpose of the analysis use case model isto show the dynamic view
of how the functionality of the system is decomposed in the same way
asthe analysis object model describes the static view of the decomposi-
tion. Thisimplies that the internal communication between the various
parts of the system isthe major concern for this activity. Two different
types of use cases can be distinguished in the analysis use case model:

* Refined requirements

* Behavior pattern use cases

Refined Requirements

The analysis use cases that are refined requirements are smply the use
cases from the requirements analysisrefined to the analysis object mod-
el level. Each requirements use case is distributed among the objects
fromtheanalysis object model. The purpose of these use casesismainly
to document how the logical architecture as described in the analysis
object model is capable of implementing the requirements that are ex-
pressed by the use cases. In practice thisis done by taking each of the
use cases defined in the requirements analysis and reformulate it in
terms of the objects that are defined in the analysis object model. It is
possible to use both the textual use case notation and the M SC notation
to represent the use cases, but since the purpose of the analysis use case
model isto show how the functionality is distributed among the objects
the MSC notation is especially useful. Asin the requirements analysis,
HM SCs can be used to simplify the use case model.

Consider again the access control system with alogical architecture ac-
cording to Figure 636 on page 3725 where the system is divided into a
DoorCtrl, aCentral Ctrl and an OperatorCtrl components. If wetakethe
Enter building use case as defined by an MSC in Figure 628 on page
3707 and replace the system with the three components we get an MSC
as shown in Figure 642.

Telelogic Tau 4.5 User's Manual 3735

Chapter 72 System Analysis

3736

R

MSC Enter_Building

n [uuser | [DC:DoorCt] [C:CenwalCtri] [O:Operatorcuj [D:Door
1 Card

Display r'Enter col de':l

Digit

Digit

Digit

Digit

Validate

Accept

Unlock
Display [’Please nter’:l

Open

Close

Lock
Display [’Enter ard']

Figure 642: The Enter Building use case distributed over a logical architecture

In this M SC we can see that the origina system instanceis replaced by
instances of DoorCtrl, Central Ctrl and OperatorCtrl. Thisuse case deals
mainly with the handling of user interaction at the door and sincethisis
theresponsibility of the DoorCtrl most of theaction isperformed by this
component. Only the validation of the card and code is performed cen-
trally.

It iseasy to seethat the strategy outlined aboveis extendableto allow a
decomposition of a system into not only one level of components, but
into a hierarchy of components. For each new level of decomposition
all use casesthat involvethe decomposed componentsaretaken asinput
to the validation of the new decomposition. The component that was de-
composed is replaced by the new components and new versions of the
use cases are created.

Telelogic Tau 4.5 User's Manual July 2003

Analysis Use Case M odel

July 2003

Behavior Patterns

When designing the object structure for a system there is often a need
to document behavior patternsthat invol ve one or more objectsthat par-
ticipate to fulfill acommon objective. Sometimes this can be described
in the refined requirements use cases, but there are two advantages of
creating special use cases for specific mechanisms and behavior pat-
terns:

» By describing detailed communication patternsin specia use cases,
the refined requirements use cases can be on a higher level of ab-
straction and are not made unnecessary complex.

» By focusing special use cases on specific parts of the system, it is
easier to understand and maintain the requirements of the involved
object than if these where distributed among all the refined require-
ments use cases.

Asan example consider the keyboard interface of the access control ap-
plication. The purpose of the keyboard is to allow the user to enter a
code consisting of four digits. In arefined requirements use case show-
ing auser entering an office by pushing the digits on akeyboard thiscan
be shown using an M SC reference symbol, asin Figure 643.

Telelogic Tau 4.5 User's Manual 3737

Chapter 72 System Analysis

MSC Enter_Building

U:User | ‘ DC:DoorControl | | C:CentralCtrl

Display

[’Enter code’]

[Enter_Code j

Validate

Accept

Figure 643: Part of a refined requirements use case

What happens when the user enters a code isthus described inthe MSC
Enter_Code. We seethat it is the user and the DoorControl object that
areinvolved in this interaction.

However, there is of course a specific protocol for Keyboard objects
that defines how they interact with the user and the DoorCtrl that is not
shown on the abstraction level of the refined requirements use case.
This may for example look like in Figure 644, which shows the behav-
ior pattern use case Enter_Code.

3738 Teldlogic Tau 4.5 User's Manual July 2003

Textual Analysis Documentation

MSC Enter_Code

'""“"_E* [uuser]| [KB:Keyboard] [DC:DoorContrdi

O GetCodg
Digit
Digit

Digit

Digit

Code

Figure 644: A behavior pattern use case showing the
protocol for Keyboard interface objects

Other examples of behavior patternsthat may need special use casesare
internal communication between different parts of a system using prox-
ies(i.e. local dummy objectsthat are used instead of aremote object and
hides the communication aspect from the user of the proxy), initializa-
tion protocols that describe how various objects are created and ex-
change information, and in general all other tactical solutionsto prob-
lems that need a specia explanation in the system analysis.

Textual Analysis Documentation

July 2003

In many cases there is a need to express aspects of the architecture or
architecturerelated requirementsin atextual format asacomplement to
the more structured object models and use cases. This may for example
beto record experiments performed to check performance aspectsof the
architecture or other non-functional requirements. Other examples may
include documentation of risk assessments performed in the system
analysis phase.

To satisfy thisneed SOMT alows different textual documentsto bein-
cluded among the analysis documentation.

Telelogic Tau 4.5 User's Manual 3739

Chapter 72 System Analysis

Requirements Traceability

3740

One important aspect in the system analysisis the relation between the
modelsthat are created in this activity and the requirements, both exter-
nal requirements specifications and the model s from the requirements
analysis. Important questions are:

» Have al requirements been implemented?

» Whicharethesystem analysisobjectsthat implement one particul ar
requirement?

» Which are the requirements that are implemented by one specific
object in the analysis object model ?

To be able to answer thistype of questionsit isimportant to create and
maintain descriptions of the dependencies between concepts among the
requirements and system analysis concepts. As discussed in “Implinks
and the Paste As Concept” on page 3666 the means to do thisin SOMT
isgiven by what is called implementation links (or implinks for short).
An implink is an association between two concepts where one of the
concepts implements the other. One example is the implinks that exist
between objects in the requirements object model and the correspond-
ing object in the analysis object model. Consider for example

Figure 637 on page 3726 that illustrates how domain objects are mod-
eled in the analysis object model. In this case there should for example
be an implink between the Operator object in the requirements object
model and the Operator object in the analysis object model.

Another example is the links between use cases on different levels.
Links between the requirements use cases and the analysis use cases
show that the requirements are handled on the system analysis level.

In particular when doing “what if...” analysis of the consequences a
modification or extension of the system has, these type of links are in-
valuable. For example consider the case wherewewould like to special -
ize the concept of an Operator into RegularOperator and ChiefOpera-
tor where the chief operator has some special privileges that aregular
operator does not have. We then look at the requirements object model
and try to understand what consequences this modification will have.
With an implink we immediately see that the analysis object Opera-
torInfo will have to be changed and with further links from this object
we can get agood idea of the consegquences caused by the modification.

Telelogic Tau 4.5 User's Manual July 2003

Consistency Checks

Consistency Checks

This section provides alist of consistency checks that can be made on
the models produced by the system analysis.

Check that al use cases from the requirements anaysis have been
refined to analysis use cases.

Check that al entities in the requirements object model are either
represented in the analysis object model or not really needed by the
application.

Check that the object model diagrams and M SCs conform to the
static rules for each notation.

Check that the instances in the M SCs correspond to classesin the
object model or to actors that interact with the system.

Check that the messages received by the instancesin the M SCs cor-
respond to operations on the corresponding classes. Notethat for re-
mote procedures there may be two messagesin an MSC for one op-
eration, one message for the request and one for the reply. In this
case the reply message should not have any corresponding opera-
tion.

Summary

The system analysisis an activity that isfocused on understanding the
system to be built. The major toolsto facilitate and document the under-
standing of the system are the analysis object model and the analysisuse
casemodel. Theanalysisobject model isintended to capture the objects
that are needed in order to describe a solution of the problem.

July 2003

The analysis use case model describes how the objects in the analysis
object model cooperate to fulfill the requirements posed on the system
by the use cases from the requirements analysis.

Telelogic Tau 4.5 User's Manual 3741

Chapter 72 System Analysis

3742 Telelogic Tau 4.5 User' s Manual July 2003

	72 System Analysis
	System Analysis Overview
	Analysis Object Model
	The Logical Architecture of the System
	Finding the Objects
	Requirements Object Model as Source of Objects
	Objects from Interfaces
	Objects from Use Cases

	Finding Attributes and Operations
	Finding Associations
	Describing Object Behavior
	Architecture of Large Systems

	Analysis Use Case Model
	Refined Requirements
	Behavior Patterns

	Textual Analysis Documentation
	Requirements Traceability
	Consistency Checks
	Summary

