
July 2003 Telelo

Chapter
78 SOMT Tutorial
This tutorial is intended to present how to combine object-oriented
analysis and SDL design in practise in a development process. This
is a method developed by Telelogic, known as the SOMT method,
SDL-oriented Object Modeling Technique.

We will demonstrate, using an Access Control system as example,
the various activities and models in SOMT together with the pro-
vided tool support for SOMT in Telelogic Tau.

Through the tutorial you will practise on various exercises that will
get you familiar with the SDL suite tools as well as the SOMT meth-
od.
gic Tau 4.5 User’s Manual ,um-st1 3835

Chapter 78 SOMT Tutorial
Introduction

Purpose of This Tutorial
This tutorial presents how to use the SOMT method and Telelogic Tau
in practise in a design process.

The working example is an Access Control system. The system shall
control the entrances to an office. Each employee working in the office
has a card and a personal code. To enter the office, the employee enters
a card into a card reader and types a personal code on a keypad. To exit
the office the employee presses an exit button.

You will perform the development process for the Access Control sys-
tem applying the SOMT method. The tutorial will guide you through
the development process step by step presenting a number of hands on
exercises for you to perform. The tutorial is expected to be read sequen-
tially.

After reading the tutorial, you should have gained knowledge about
how to apply the SOMT method on a development process.

Note: Platform differences

This tutorial, and the others that are possible to run on both the
UNIX and Windows platform, are described in a way common to
both platforms. In case there are differences between the platforms,
this is indicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running Telelogic Tau on your
platform. Only if a screen shot differ in an important aspect between
the platforms, two separate screen shots will be shown.
3836 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
Required Skills
It is assumed that you have a basic knowledge about UML and SDL. We
also recommend newcomers to acquaint themselves with the basic fea-
tures of the SDL suite tools. You can do this by practising on the exer-
cises in the tutorials provided for the different tools. Please see the pre-
vious chapters in this volume.

It is recommended that you have read the SOMT Methodology Guide-
lines starting in chapter 69 in the User’s Manual.

Preparations
1. Make a new empty directory of your own for the purpose of this tu-

torial, e.g. ~/somttutorial (on UNIX) or
C:\Telelogic\SDL_TTCN_Suite4.5\work\somttutorial (in
Windows).

2. Copy the SOMT tutorial directory and its subdirectories in
$telelogic/sdt/examples/somttutorial (on UNIX), or
C:\Telelogic\SDL_TTCN_Suite4.5\sdt\examples\somtt-
utorial (in Windows), into this new directory (contact if necessary
your system manager).

3. On UNIX, cd to your own subdirectory somttutorial

4. Start Telelogic Tau.

Note: Installation directory

On UNIX, the Telelogic Tau installation directory is pointed out
by the environment variable $telelogic. If this variable is not
set in your UNIX environment, you should ask your system manag-
er or the person responsible for the Telelogic Tau environment at
your site for instructions on how to set this variable correctly.

In Windows, the Telelogic Tau installation directory is assumed
to be C:\Telelogic\SDL_TTCN_Suite4.5 throughout this tu-
torial. If you cannot find this directory on your PC, you should ask
your system manager or the person responsible for the Telelogic Tau
environment at your site for the correct path to the installation direc-
tory.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3837

Chapter 78 SOMT Tutorial
5. Specify the source directory for the system by double clicking on
the Source directory symbol located second uppermost in the Orga-
nizer window. The source directory specifies where new documents
that you have created are saved by default, and from where to read
when opening and converting documents. Since there are multiple
versions of the Access Control system, each version with diagrams
stored on files with identical names (but in different directories),
omitting to specify the source directory may cause the wrong ver-
sion of a file to be opened.

6. In the Set Directories dialog that is opened, select the third radio
button associated with Source directory. In the text field, enter the
complete path and name of your own somttutorial directory, if
it is not there already. Press OK to close the dialog. (You do not
have to change any of the other options in this dialog.)

Preparing the Documentation Structure

What You Will Learn
• To prepare a SOMT project by making preparations in the Organiz-

er

Introduction to the Exercise
Your task is to modify the basic view of the Organizer to get the desired
document structure.

The result of the exercise will be an Organizer structure containing a
number of chapters and modules, see Figure 713 on page 3842. The
chapters will correspond to the different activities in SOMT and the
modules will correspond to the models in each activity.

Deleting Unwanted Chapters
When you start a new project with Telelogic Tau you will get the default
basic Organizer view, see Figure 711. (This view could be different if
you do not have the default preferences set). The Organizer contains a
few black lines with attached names, the chapters. The purpose of these
chapters is to group together collections of documents.
3838 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Preparing the Documentation Structure
We want each chapter in the Organizer view to represent an activity in
SOMT. The current chapters in the Organizer will not fit into our future
documentation structure so they should be removed.

Delete the unwanted chapters by following the steps below:

1. Make sure you have the basic view in the Organizer.

2. Select the chapter named Analysis Model.

3. Select the Remove command in the Edit menu or press the
<Delete> button. You also find the Remove command in the pop
up menu. The Remove dialog is issued asking you to Remove or to
Cancel the action.

4. Press the Remove button. The dialog disappears and the chapter is
deleted.

5. Repeat the steps above and remove all of the remaining chapters.

Figure 711: The basic Organizer view
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3839

Chapter 78 SOMT Tutorial
Adding New Chapters
You should now organize the Organizer view into chapters correspond-
ing to the different activities in the SOMT method, i.e. each chapter
should contain documents and diagrams from one particular activity.

You will have to add four chapters and they will be named
Requirements Documents, System Analysis Documents,

System Design Documents and Object Design Documents, respec-
tively.

First, add the Requirements Documents chapter:

1. Select the Add New command in the Edit menu. The Add New dia-
log arises with the Organizer radio button set.

2. Select the Chapter option in the option menu connected to the Or-
ganizer radio button.

3. Change the document name Untitled to
Requirements Documents.

4. Press the OK button or <Return>. A chapter named Requirements
Documents will appear as the uppermost chapter object.

5. Now repeat the steps above and add the three remaining chapters
and name them System Analysis Documents, System Design
Documents and Object Design Documents, respectively.

If the chapters show up in another order than the one you want in the
Organizer window, you may move a selected chapter by using the arrow
quick buttons in the tool bar.

6. If needed, move the chapters in the Organizer to get a structure cor-
responding to the one in Figure 712.
3840 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Preparing the Documentation Structure

Adding the Organizer Modules
The next step to take when preparing the document structure is to add
the Organizer modules. A module in the Organizer forms a naming
scope around the documents it contains. It may contain any kind of doc-
uments.

As each activity in SOMT consists of a number of models, it seems nat-
ural to let a model correspond to a module in the corresponding chapter.
You should now add the modules to the chapters in the Organizer struc-
ture.

1. Select the chapter named Requirements Documents.

2. Select the Add New command in the Edit menu.

3. In the Add New dialog, make sure that the Organizer radio button is
set. Select the Module option in the Organizer option menu.

4. Change the name Untitled to RequirementsUseCaseModel

Figure 712: The Chapter structure

Note:

You are not allowed to have any space characters in the name of a
module.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3841

Chapter 78 SOMT Tutorial
5. Press the OK button. A module named
RequirementsUseCaseModel appears in the Requirements
Documents chapter.

6. Now add the other modules to their respective chapter in the Orga-
nizer view. Let each model in a SOMT activity have its own mod-
ule. The document structure in the Organizer should look like
Figure 713 when you are finished.

This structure will form the framework to organize the forthcoming
documents around.

7. Save the Organizer structure and name the file
accesscontrol.sdt.

Now you have finished the preparations and you can start to develop the
Access Control system using the SOMT method.

Figure 713: The complete document structure
3842 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Identifying the Requirements

What You Will Learn
• To bring in external (requirements) documents into the Organizer

• To identify important concepts

• To use a data dictionary

• To identify actors and use cases and to compile the information
gained into textual documents

Figure 714: Overview of the SOMT process
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3843

Chapter 78 SOMT Tutorial
• To create a textual use case

• To create an MSC use case out of a textual use case

• To make a requirements object model

• To connect important concepts in the different documents with im-
plinks

• To perform consistency checks

Introduction to the Exercise
In this exercise you will perform the tasks associated with the require-
ments analysis activity. The purpose of the requirements analysis is to:

• Gain understanding of the problem domain - the Access Control
system and the environment in which it is going to exist.

• Find and understand all requirements imposed on the Access Con-
trol system.

Producing a complete requirements analysis would take too much time
in this tutorial. Therefore, you will only perform parts of every required
step of the process.

The result will not be a complete requirements structure, but you will
have acquired knowledge of how to use the SOMT method in the pro-
cess of identifying requirements.

Preparing the Exercise
You can use your own document structure from the previous exercise
(just move your accesscontrol.sdt file to the ReqA directory), or
use a provided solution.

1. Open the system file somttutorial/ReqA/accesscontrol.sdt
(on UNIX), or somttutorial\reqa\accesscontrol.sdt (in Win-
dows).

2. Check that the Source directory is set to somttutorial/ReqA/
(on UNIX), or somttutorial\reqa\ (in Windows), in the same
way as you did in the preparation to this tutorial (see “Preparations”
on page 3837).
3844 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Studying the Textual Requirements

Including External Textual Requirements

A textual document with requirements is the input to the Access Control
system development project and it will form the base from which the
Access Control system is developed. You will later on create implemen-
tation links (so called implinks) between the textual requirements docu-
ment and other models. This is done to make it possible to follow a re-
quirement through a number of models all the way down to code.

The textual requirements document of the Access Control system is
contained in a text file. This file should now be included in the Organiz-
er work area.

1. Select the module named TextualRequirementsModel in the
Requirements Documents chapter.

2. Select the Add Existing command in the Edit menu.

3. In the Add Existing dialog, change the filter to *.txt and press the
Filter button. Select the file TextualRequirements.txt and
press OK to add it.

4. The TextualRequirements document is now added to the module
TextualRequirementsModel in the Organizer and the Text Editor
showing the document is opened. The document looks like
Example 607.

Example 607: The textual requirements–––––––––––––––––––––––––

The task is to design the software to support a computerized Access
Control system. The purpose of the system is to control the accesses to
an office.

An entrance leading to an office can have four different security levels:

1. Always unlocked
2. Requires a card to unlock
3. Requires a card as well as a code to unlock
4. Always locked

The security levels of an office entrance can be altered during the day.

Each employee working in the office has a card with a personal code
consisting of four digits. To open a door with security level three, the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3845

Chapter 78 SOMT Tutorial
employee enters her card into a card reader and types her personal code
on a keypad. The time between consecutive keystrokes when typing the
code is not allowed to exceed three seconds. To enter through a door
with security level two, the employee just enters her card into a card
reader.

Each entrance leading into the office consists of a door with an electric
lock as well as a card reader, a keypad and a display on the outside, and
an exit button on the inside. The employee needs a card and a code to
enter the office. To exit, the employee just presses the exit button and
the door is unlocked for ten seconds.

All entrances communicate directly with a central controller which
makes sure that a validation of the correctness of cards and codes is per-
formed. The controller has access to a database consisting of all card
numbers and their corresponding personal codes. If the card is valid
and, in case of security level three, the corresponding code correct, the
door is unlocked for ten seconds and the employee may enter. In case of
an invalid or unregistered card, access to the office is not allowed. In
case of an incorrect code, the employee is informed of this and must try
again by entering the card into the card reader and retyping the personal
code.

The Access Control system must read its data, consisting of card num-
bers with their corresponding personal code, from a database. The data-
base is managed by using a separate management system that is not de-
veloped within the project. The system operator, who is running the
management system, is authorized to register new employees, cards and
codes, to change a code if the employee wishes so, to delete employees
from the database and to change the security level of an entrance. The
system operator is also responsible for initializing the Access Control
system. All the actions mentioned above are done using the manage-
ment system.

The system must be able to recover from computer and connection fail-
ures. If a connection between an entrance and the central controller is
lost, the door is locked from the outside not permitting anyone to enter
(i.e. security level four is set). It is, however, possible to open the door
from the inside by means of the exit button.

The system must be extensible to include new functions and be easily
maintained.

––
3846 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Creating Textual Endpoints

Now you should study the textual requirements document and mark all
concepts (nouns) that you find essential for the problem domain as link
endpoints. These marks will be very useful in later stages of the project.
In this tutorial most of the endpoints in the textual requirements docu-
ment have already been created. You task is to add the two missing
ones:

1. In the second sentence of the textual requirements document locate
the word “office” and mark it with the mouse.

When you mark an endpoint see to it that you only mark the word
itself and not any additional characters, like a space or a dot after the
word.

2. In the Link submenu in the Tools menu, choose Create Endpoint.

3. The text will be underlined indicating that the text fragment now is
a link endpoint.

4. Now, locate the word “entrance” in the third sentence and create an
endpoint out of it by repeating the procedure above.

5. If you go through the rest of the document you can see that the rest
of the important concepts already have been marked as endpoints.

6. Save the document.

7. Open the Link Manager. This is done by choosing Link Manager in
the Link submenu in the Tools menu. You can do this either in the
Organizer window or in the Text Editor window; the result will be
the same.

The Link Manager window will pop up showing all the endpoints of
the textual requirements document. The endpoint background color
is used to show the endpoint status. As the endpoints are newly cre-
ated, and the link file has not been saved yet, the background of the
endpoints is painted gray.

8. Save the link file from the File menu, giving it the name
Links.sli.

9. Close the Link Manager window.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3847

Chapter 78 SOMT Tutorial
Creating the Data Dictionary
A data dictionary is a textual document which should define all impor-
tant concepts found during the whole development process. It forms a
common vocabulary for the members of the project. It is a good idea to:

• Provide each item included in the data dictionary with a name and a
brief explanation.

• Categorize the concepts in nouns, verb phrases and relation phrases.

• Sort the concepts alphabetically.

• Have a section in the data dictionary for each activity. This might be
a good idea because a certain concept often has different meanings
in different activities. For example, a concept can be described by a
class in one activity and in the next activity it might be described by
a block with a corresponding process.

All the important objects, relations and verbs that you find in the textual
requirements should be included in the data dictionary. This has already
been done in an existing DataDictionary file, so you do not have to
do anything. Just add the existing file:

1. Add the existing DataDictionary.txt file to the
DataDictionaryModel module in the Organizer. The Text Editor
will show the DataDictionary.

2. Read through the document to get yourself acquainted with the
problem domain vocabulary.

All nouns, relation phrases and verb phrases in the data dictionary are
marked as link endpoints. This has been done to make it possible to do
entity matches between any model and the data dictionary. An entity
match checks that all entities in one model have matching entities in an-
other model. That is, we can check that all entities in a model really are
described in the data dictionary. This will be performed in “Entity
Match” on page 3865.

The example below shows a part of the requirements analysis data dic-
tionary.
3848 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Example 608: A data dictionary––––––––––––––––––––––––––––––––

Nouns/Objects

Access control system - A system to control the access rights to an of-
fice so that no unauthorized persons can enter without permission.

Card - Each employee working in the office gets a card and a corre-
sponding personal code. By means of this card and code, the employee
can get access to the office.

Cardnumber - The number that uniquely defines a card.

...

Relation Phrases

Card with code - Each employee in the office has a card with a personal
code.

Connection between central controller and entrance - There is a connec-
tion between every entrance and the central controller.

...

Verb Phrases

Change code - An operation done by the system operator to change the
code of a card.

Change Security Level - An operation done by the system operator to
alter the security level of an entrance.

Connection is lost - The connection between an entrance and the central
controller can sometimes fail. In case of broken connection nobody can
enter the office. It is, however, possible to leave the office.

...

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3849

Chapter 78 SOMT Tutorial
Creating the Use Case Model
The purpose of a use case model is to capture the requirements and
present them from the users point of view, thus, making it easier for the
intended users to validate the correctness of the requirements analysis.

The use case model consists of:

• A list of actors

• A list of use cases

• A number of MSCs (message sequence charts) and/or textual use
cases

The use case model is also a useful source of information when devel-
oping the requirements object model, see “Creating the Requirements
Object Model” on page 3861.

A use case is a sequence of actions showing a possible usage of a sys-
tem. Use cases developed during the requirements analysis activity
should mainly concern the interaction between the system and the users
of the system. No message exchanges within the system should be
shown.

Users of a system may be people, other systems or objects outside the
system border which interact with the system.

An actor is a user taking part in a use case. An actor is not supposed to
be an individual user, but rather represents one of the different roles a
user can play when interacting with the system.

There are different ways to describe a use case:

• A textual description of the use case

• A description of the use case using an MSC

• A combination of both a textual description and an MSC

Describing use cases using textual descriptions will make it easier to
model exceptions and alternative paths of action sequences. Describing
use cases using MSCs will make the use cases more formal and easier
to verify. Also, as MSCs will be used in the coming activities, it might
be a good idea to start using them already in the requirements analysis.
The tutorial will use both textual descriptions and MSCs in the require-
ments analysis activity, and only MSCs in the later activities.
3850 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Creating a List of Actors

Now it is time to create a list of actors. The list of actors should list the
actors by name, together with their respective responsibility.

1. In the Organizer, select the RequirementsUseCaseModel module
and choose Add New. In the Add New dialog, set the Text radio but-
ton and choose Plain in the corresponding option menu. Name the
new document ActorsList and set the toggle button Show in Ed-
itor. This will give you a new text document in the Organizer win-
dow and an empty Text Editor window will pop up.

2. Try to find the actors of the Access Control system by studying the
textual requirements in Example 607 on page 3845. For information
on how to find actors, see “Finding Actors” on page 3851 below.

3. List the actors by name in the newly created textual document to-
gether with a brief description of the actor’s role when interacting
with the system.

4. Mark the actors in the ActorsList as endpoints in the same way as
you did in “Creating Textual Endpoints” on page 3847.

5. Save the document giving it the name ActorsList.txt.

Finding Actors

You will find actors by studying the textual requirements. Useful ques-
tions to ask are:

• Which users will need services from the system to perform their
tasks?

• Which users are needed by the system to perform its tasks?

• Are there any external systems that use or are being used by our sys-
tem?

In practise, the activity of defining actors should be performed iterative-
ly. Try to find as many of the actors as possible now. If you do not be-
lieve you found them all, start creating some MSC use cases (as having
done some MSCs often makes it easier to determine the actors). Then
go back and complete the list of actors.

In our case with the Access Control system we find that an employee,
who daily interacts with the system, is an obvious candidate for the list
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3851

Chapter 78 SOMT Tutorial
of actors. Also, considering the third question above, it is obvious that
the management system is being used by our system and therefore
should be added to the list. The third actor, the door, may not be so easy
to find at a first glance, but when you have created the MSCs it will be-
come more evident that the door is an actor as well. The door’s interac-
tion with the system consists of notifying the system every time it is
opened or closed.

The example below shows a part of the list of actors.

Example 609: Part of a list of Actors––––––––––––––––––––––––––––

Employee - Someone who needs to enter and exit the office. To enter
the office, an employee must have a registered card and (depending on
the current security level) a corresponding personal code. To exit, the
employee must press an exit button to unlock the door.

ManagementSystem - The management system starts and maintains the
Access Control system. All changes to the database are handled by the
management system. The management system is run by a system oper-
ator.

...

––

Creating a List of Use Cases

When you have defined the set of actors it is time to describe the way
they interact with the system, which is done in use cases. The first step
is to create a list of all use cases. The list of use cases should list the use
cases by name together with a short description.

1. Add a new plain text document in the
RequirementsUseCaseModel module. Name it UseCaseList and
set the toggle button Show in Editor. Press OK.

2. Try to find the normal use cases and list them in the newly created
textual document. For information on how to find use cases, see
“Finding Use Cases” on page 3853.

3. To each use case, add a general one-sentence description of its func-
tionality.
3852 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
4. For each normal use case, examine which exceptions that can occur
and state these exceptions as well in the list.

5. Mark the use case names in the UseCaseList as endpoints.

6. Save the document giving it the name UseCaseList.txt.

Finding Use Cases

It is often quite easy to identify use cases by looking at the purpose of
the system. To verify that you have identified most of the important use
cases you should:

• look at the list of actors, and, for each actor,

• identify the tasks that the actor should be able to perform and the
tasks which the system needs the actor to perform. Each such task is
a candidate for a new use case. It is often very useful to check the
textual requirements document for verb phrases (or you could look
directly in the DataDictionary to see which verb phrases that have
been stated as important); these are possible candidates for use cas-
es.

Start with the employee actor and try to determine which actions he or
she needs to perform. There are different ways to enter an office, either
using a card or using both a card and a code. Both ways are obvious can-
didates for the use case list. Also, the employee must be able to exit the
office, this will be yet another use case.

The Management system must inform the Access Control system when
there has been a change in security level. This will be our fourth use
case.

As for the door actor, the task of notifying the system when a door is
opened and closed can be included in the enter/exit office use cases.
You should always try to make the use cases as complete as possible,
that is, make one complete use case instead of several minor ones.

When you have found the normal use cases, refine them by examining
the exceptions that are possible for each use case. Look in the textual
requirements document and try to find the exceptions that can occur.

In the case where an employee enters the office, the first thing that can
go wrong is that there is a connection failure between the entrance and
the central controller. Other possible things that can fail are that the card
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3853

Chapter 78 SOMT Tutorial
is invalid, the code is wrong, the time between consequent keystrokes
when typing the code is too long, and, finally, the door is never opened
even though it was unlocked. All these exceptional cases can be found
by studying the textual requirements thoroughly.

The example below shows a part of the use case list.

Example 610: Part of a Use Case List –––––––––––––––––––––––––––

Normal Cases:

Enter_Office_With_Card - Describes the interaction between an
employee and the Access Control system when the employee wants
to enter the office through a door with security level two.

Enter_Office_With_Card_And_Code - Describes the interaction be-
tween an employee and the Access Control system when the em-
ployee wants to enter the office through a door with security level
three.

Exit_Office - Describes the interaction between an employee and
the Access Control system when the employee wants to exit the of-
fice.

...

Exceptional Cases:

Exc_No_Connection

Exc_Invalid_Card

...

––

Creating a Textual Use Case

Now that we have a list of the actors to the system as well as a list of use
cases, we can start to create a more detailed description of the use cases.
A textual use case consists essentially of natural text structured into a
number of text fields, see “Describing a Textual Use Case” on page
3855. In this exercise we will only create one textual use case, as creat-
ing them all takes too much time. The use case we will focus on
3854 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
throughout the rest of the tutorial is the one where an employee enters
an office with both a card and a code.

1. Add a new textual document in the RequirementsUseCaseModel
module and name it Enter_Office_With_Card_And_Code.

2. Try to create the textual use case consisting of the fields described
in “Describing a Textual Use Case” on page 3855.

3. Create endpoints of the textual use case name (for consistency use
exactly the same name as you used in the list of use cases) and of the
actors involved in the use case.

4. Save the document giving it the name
Enter_Office_With_Card_And_Code.txt.

Describing a Textual Use Case

A textual use case should consists of the following fields:

• Name: The name of the use case.

• Actors: A list of the actors involved in the use case.

• Preconditions: A list of properties that must be true for this use case
to take place.

• Postconditions: A list of properties that are true when the use case
is finished.

• Description: A textual description of the normal sequence of events
that describe the interaction between the actors and the system.

• Exceptions: A list of exceptional interactions that complement the
normal flow of events described in the Description field. If an ex-
ception leads to different postcondition properties compared to the
normal sequence this should be noted.

The description field should thus describe what happens when every-
thing is going as expected. No exceptions should be considered here.
They are not described until the exceptions field.

The example below shows a textual description of the use case “Enter
office with card and code.”
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3855

Chapter 78 SOMT Tutorial
Example 611: A Textual Use Case––––––––––––––––––––––––––––––

Use case name: Enter_Office_With_Card_And_Code

Actor: Employee, door

Preconditions: System is initialized, security level three is set, and the
door is closed and locked. The display displays “Enter card”.

Postconditions: The door is closed and locked again.

Description: An employee enters a card into the card reader. The dis-
play displays “Enter code”. The employee enters a code consisting of
four digits using the keypad. The door is unlocked and “Please enter” is
displayed. The employee opens the door, enters the office and closes the
door again. The door is locked and “Enter card” is displayed.

Exceptions:

- If the employee enters an invalid or unregistered card, “Invalid card”
is displayed for three seconds and then “Enter card” is displayed.

- If the time between consequent keystrokes when typing the code ex-
ceeds three seconds, everything is interrupted and “Enter card” is dis-
played.

- If the employee types the wrong code, “Wrong code” is displayed for
three seconds and then “Enter card” is displayed.

- If the employee does not open the door within ten seconds after it has
been unlocked the door is locked again and “Enter card” is displayed.

- If there is no connection between the entrance and the central control-
ler and a card is entered, then the text “Connection failure” is displayed
for three seconds and then “Enter card” is displayed again.

––

Creating an MSC Use Case

The second notation for use cases used in SOMT is MSCs. Creating
MSCs for all the use cases and their exceptions takes too much time in
this tutorial. Therefore you will concentrate on the use case correspond-
ing to the textual description you just created,
3856 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Enter_Office_With_Card_And_Code, and one of its exceptions,
when an employee enters an invalid card.

1. Select the module RequirementsUseCaseModel and choose Add
New. In the Add New dialog, set the MSC radio button. Name the
document Enter_Office_With_Card_And_Code and set the Show
in Editor toggle button.

2. In the MSC Editor, try to create the MSC. Look at the textual de-
scription of the use case and describe it by means of the notations
defined for MSCs. Also, make references to exceptions at the points
where these can occur. Figure 715 shows an example of the com-
plete MSC.

– Each actor should be represented by a separate instance. The
Access Control system itself should also be represented by a
separate instance.

– Actions, displayed messages, etc. should be drawn as MSC
messages between the instances.

– An exception is drawn by adding an MSC reference symbol, lo-
cated last in the MSC Editor’s symbol menu. An MSC reference
symbol is a reference to another MSC, described in a separate
MSC diagram. The symbol is added to one of the instance axes.
By convention, MSC exceptions are named “exc” followed by
the name of the exception. To connect the symbol to all three ax-
es, select Connect from the Edit menu. Press the Global button
to connect the reference symbol to all axes.

3. Save the MSC diagram giving it the name
Enter_Office_With_Card_And_Code.msc.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3857

Chapter 78 SOMT Tutorial
Figure 715: An MSC example
3858 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
4. Create a new module in the Requirements Documents chapter in
the Organizer. Name the module MSC_Exceptions_ReqA.

5. Add a new MSC document to the newly created module in the Or-
ganizer and name the document Exc_Invalid_Card.

6. In the MSC Editor, try to create the exception, i.e. describe what
happens when an employee has entered an invalid card.

7. Save the diagram giving it the name Exc_Invalid_Card.msc.

8. In the Organizer view, select the MSC Exc_Invalid_Card and
then choose Associate in the Edit menu. The Associate dialog ap-
pears.

9. Choose to associate the Exc_Invalid_Card MSC with the
Enter_Office_With_Card_And_Code MSC as it is an exception
to this use case.

The Requirements Documents chapter should now look like in
Figure 717.

In reality you repeat the steps above for all the use cases found and as-
sociate each one of them with its exceptions. In this tutorial, however,

Figure 716: An MSC exception example
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3859

Chapter 78 SOMT Tutorial
we will not create the entire use case model as that would take too much
time.

Now, when we have our use cases and a data dictionary we will contin-
ue the activity with producing a requirements object model. In practise,
you should work with all the models in parallel. The activities in SOMT
are not supposed to be performed in a sequential order, rather, produc-
ing the models is a highly iterative process.

Figure 717: The Requirements Documents chapter
3860 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Creating the Requirements Object Model
The requirements object model is intended to capture the objects, the re-
lations between these objects and other concepts of the real world that
are of importance for the application we intend to build. There are dif-
ferent types of concepts that can be described in this model. The two
major diagram types show the logical structure of the data and informa-
tion and the context of the system.

Relations between objects in the model will be expressed through asso-
ciations, aggregations and inheritance.

Creating a Requirements Object Model

Now you should create the requirements object model.

1. In the Organizer, select the RequirementsObjectModel module
and choose Add New. In the Add New dialog, set the UML radio but-
ton and make sure the Object Model option in the UML option menu
is set. Name the new document LogicalStructure and set the
toggle button Show in Editor. This will pop up an empty OM Editor
window.

2. Try to find the objects, see “Identifying the Objects” on page 3863.

3. Enter the classes found into the object model diagram in the OM Ed-
itor and give them a suitable name. As you can see, every class is
automatically marked as an endpoint.

4. Relate the classes by means of associations, aggregations and inher-
itance, see “Identifying the Relations” on page 3864.

5. Consider if multiplicity is needed on any of the associations and if
so, add it. (Double-click a line to bring up the Line Details dialog.)

6. To increase the readability of the model, name the associations or
attach role names to the classes. The diagram should look some-
thing like in Figure 718 when you are finished.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3861

Chapter 78 SOMT Tutorial
7. Save the diagram giving it the name logicalstructure.som.

8. Add yet another object model to the RequirementsObjectModel
module in the Organizer. Name it ContextDiagram.

9. In the diagram, show the system and the external actors interacting
with it. Use collapsed class symbols (select Collapse from the Edit
menu). The classes are automatically marked as endpoints.

10. Clear the endpoint on the Access_Control_System class as we
will not need this. (Select Clear Endpoint from the Link submenu in
the Tools menu.)

11. Save the diagram giving it the name contextdiagram.som.

Figure 718: The logical structure

*

*

*

3862 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Identifying the Objects

The main input sources to the requirements object model are the textual
requirements, the use case model and the data dictionary. Other sources
of information are domain experts, textbooks etc.

A classical way to find the objects is to study the textual requirements
and note all nouns (or look directly in the nouns section in the data dic-
tionary). If a particular noun appears in many places, the concept is
probably important for the problem domain and should be modeled in
the requirements object model.

The use cases are also helpful for finding the objects. They define the
actors that interact with the system and these are obvious object candi-
dates. Other likely object candidates are the entities that are transported
in to or out of the system. The use cases are helpful in identifying these
concepts as well.

The requirements object model should at least describe all concepts that
are visible on the outside of the system. This includes all physical enti-
ties that a user can see as well as the knowledge a user must have to use
the system. It is, however, not only concepts outside the system that
should be modeled in the requirements object model. Concepts inside
the system that are so obvious that we know of them already at this stage
should be dealt with as well. In our Access Control system, for instance,
it is quite easy to see that the system itself is built up of a central control
and a number of entrances, each having its own local control. Therefore,

Figure 719: The Context diagram
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3863

Chapter 78 SOMT Tutorial
in the requirements object model, we do not model the heart of the sys-
tem as one class, but as two communicating classes.

Identifying the Relations

The information sources when identifying relations between objects are
the same as when identifying the objects. Look for relation phrases in
the textual requirements (or use the data dictionary as an information
source). You may also take a look at each object and ask the questions:

1. What services does the object provide?

2. Does the object need services from other objects to complete its ser-
vices?

If the object needs services from other objects, identify these objects
and model the relations in the object model.

There are three different types of relations, described below.

The Association Relation

The association relation describes how different classes relate to each
other by means of information exchange.

The Aggregation Relation

The aggregation relation is a special case of the association relation and
it describes a “consists of” relation. For example: a document consists
of paragraphs.

Figure 720: An Association relation

Figure 721: An Aggregation relation

*

*

3864 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
The Inheritance Relation

The inheritance relation describes an “is a” relation. For example: a car
is a vehicle.

Entity Match
Now it is time to do some consistency checks between the created mod-
els. When you do an entity match you check that all entities in one mod-
el have matching entities in another model.

1. Open the Link Manager. The window popping up shows all end-
points from the models you have created during the requirements
analysis activity.

2. To be able to perform an entity match you must be in entity mode
(i.e. not in endpoint mode). Press the Show endpoints or entities
button in the Tool bar to change to entity mode. (The view in the
Link Manager window will look just the same, since one entity cor-
responds to exactly one endpoint in all our models.)

The first thing we will check is that all important concepts in the textual
requirements model are described in the data dictionary.

3. Choose Consistency Check in the Tools menu. The Consistency
Check dialog appears and you are asked to choose between a link
check and an entity match. Set the entity match radio button and
press Continue.

4. A new dialog appears and you are asked to select the documents
representing the from group. Select the
TextualRequirementsModel module and press Continue. (As you
can see, the text document in the module is also selected when you
select the module.)

Figure 722: An Inheritance relation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3865

Chapter 78 SOMT Tutorial
5. Yet another dialog appears asking you to select the documents rep-
resenting the to group. Select the DataDictionaryModel module
and press Check.

6. The Link Manager window will show the result of the entity match
in a new consistency view. Entities from the from group are shown
as normal endpoints and entities from the to group are shown as
dashed endpoints. The links shown are temporary links created by
the Link Manager to indicate matching entities, see Figure 723.

7. As you can see, if you scroll through the Link Manager window, all
the concepts from the textual requirements have a matching entity
in the data dictionary. (An endpoint from the to group without a
matching link from it would have indicated that no corresponding
entity could be found in the to group.)

There are a few more consistency checks which you can perform at this
point:

• Check that all entities in the requirements object model are de-
scribed in the data dictionary.

– Let the RequirementsObjectModel module form the from
group and the DataDictionary module the to group.

– As you can see from the result all concepts but the four different
security levels have been described in the data dictionary.

• Check that all important concepts in the textual use cases are de-
scribed in the data dictionary and in the use case list. Important con-
cepts in a textual use case are the actors and the use case name. The
actors should be described in the data dictionary and in the actors
list. The use case name should be described in the use case list.

– In this case the from group will be the textual use case,
Enter_Office_With_Card_And_Code, and the to group will
be the DataDictionary, the ActorsList and the

Figure 723: Matching entities
3866 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
UseCaseList. (You can select any number of individual docu-
ments in the list, not only modules.)

– The result shows that the use case name was found in the
UseCaseList and that the actors were described both in the data
dictionary and in the list of actors.

• Check that all actors in the use cases are modeled in the context di-
agram and vice versa.

– First, the Actorslist will form the from group and the
Context Diagram will form the to group, then we will do an-
other entity match with the groups vice versa.

Creating Implinks
Now that we know that all our models are consistent, it is time to add
the implinks. Implinks are used to enable traceability between the mod-
els.

We will start with creating implinks from the concepts in the textual re-
quirements to the requirements object model, in particular the logical
structure diagram.

1. Open the Link Manager by selecting it in the submenu Link in the
Tools menu if it is not already open.

2. Make sure the window shows endpoint view, not entity view or con-
sistency view. If necessary, press the Show endpoint or entities
quick button.

In the Link Manager window you see all the endpoints from the dif-
ferent models in the requirements analysis activity. If you scroll to
the very end of the window you can see how many endpoints and
links you have in your system. There should be no links at this point.

3. To check that all endpoints are present in the Link Manager win-
dow, choose Check Endpoints in the Tools menu.

4. The Check Endpoints window will pop up showing if any previous-
ly unknown endpoints were found. If so, select these and press Add.
Then press Continue.

5. Another version of the Check Endpoints window pops up showing
if any invalid endpoints were found. In such case you can choose to
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3867

Chapter 78 SOMT Tutorial
delete these by pressing Delete. Press OK when you are done and
want to close the dialog.

6. To be able to create the implinks between the textual requirements
and the classes in the logical structure you only need to see the end-
points from these diagrams in the Link Manager window. You do
not have to see all the other endpoints. Therefore, choose Filter in
the View menu.

The Filter dialog pops up and you can choose to set filter settings for
links, endpoint or documents, by selecting from the option menus.

7. Choose to set the filter for documents and select that the only docu-
ments to be shown should be the textual requirements and the logi-
cal structure documents.

8. Press Apply and then Done.

9. In the Link Manager window, highlight the endpoint Text Office
by first selecting the endpoint and then clicking the Highlight quick
button in the tool bar. The endpoint is highlighted with a frame
around it.

10. Create an implink to the Class Office by first selecting the class
and then pressing the Create Link quick button in the tool bar. The
Create Link dialog will open.

11. Name the link Implementation Link and press the Create button.
A link from the text “office” to the class Office is created.

The rest of the links between the textual requirements and the object
model diagram are created in a similar way. You can do this if you want,
or go to the next exercise, where this has been done, and check out the
result.

Links from the UseCaseList to the different MSCs and their excep-
tions should also be created. You cannot do this here however, as you
have not created all the use cases.

What we aim at here is to create links from the textual requirements,
through the object models of the different activities, to the SDL design.
Simultaneously we want to create links from the list of use cases,
through the use case models in the different activities, to the SDL de-
sign. The result of this will be that we can trace a design decision back-
wards to requirements through either object models or use case models.
3868 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Identifying the Requirements
Summary
After having completed an entire requirements analysis, the
Requirements Document chapter the Organizer view should look like
in Figure 724.

Figure 724: The entire requirements analysis document structure
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3869

Chapter 78 SOMT Tutorial
Performing the System Analysis

What You Will Learn
• To identify and present the logical architecture of a system which

includes refining the object model from the previous phase

• To refine use cases from the previous phase

• To use the Paste As mechanism

Figure 725: Overview of the SOMT process
3870 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
Introduction to the Exercise
In this exercise you will perform the system analysis activity. The pur-
pose of the exercise is to outline a logical model of the Access Control
system. This model will fulfil the requirements that were identified in
the requirements analysis. In other words, the purpose of this activity is
to identify the objects that are needed in the Access Control system and
the services these objects should provide.

Producing a complete system analysis structure takes too much time.
Thus, you will only perform parts of every step necessary to produce the
complete structure.

The input to the system analysis activity is a complete requirements
structure with the two main models:

• requirements object model

• requirements use case model

The output from the system analysis activity are the two models:

• analysis object model

• analysis use case model

These two models should be created in parallel through a number of it-
erations.

Preparing the Exercise
1. Open the system file somttutorial/SysA/accesscontrol.sdt

(on UNIX), or somttutorial\sysa\accesscontrol.sdt (in
Windows).

2. Check that the Source directory is set to somttutorial/SysA/
(on UNIX), or somttutorial\sysa\ (in Windows).

What you see in the Organizer window is a complete requirements anal-
ysis structure with all implinks made.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3871

Chapter 78 SOMT Tutorial
Creating the Analysis Object Model
The analysis object model is a refinement of the requirements object
model. However, when transferring from the requirements analysis to
the system analysis you change the focus.

During the requirements analysis the focus is on understanding the
problem and the problem domain. In the system analysis the focus is to
model a solution and to understand the logical structure of the system
that will be the solution to the stated problem. This change of focus
should be reflected by the analysis object model.

Little emphasis should be put on implementation aspects during the sys-
tem analysis activity. Questions regarding the implementation of the so-
lution will very likely hide our actual problem.

A glance at the headlines may give you the impression that the activity
of creating the analysis object model is a sequential activity, but it is not.
You will probably not first add all the necessary classes, then the rela-
tions, and finally specify the attributes and operations. This is, however,
the way the text is structured here to make it readable and to highlight
the important tasks of the activity.

Creating a Logical Architecture

Now it is time to create the logical architecture diagram.

1. Select the AnalysisObjectModel module in the System
Analysis Documents chapter in the Organizer.

2. Add a new object model diagram and name it
LogicalArchitecture.

3. Open the LogicalStructure diagram from the previous activity as
well as the new LogicalArchitecture diagram in the OM Editor.

Adding Classes to the Logical Architecture

Now you should start adding classes to the logical architecture diagram.
For information on how to find the classes, see “Finding Classes” on
page 3874.

Several of the classes in the requirements object model can be trans-
ferred as-is to the analysis object model. The provided Paste As mech-
anism lets you transfer objects from one model to another while auto-
3872 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
matically creating implinks between the objects in the two separate
models. This mechanism should be used here, see below.

4. Select the class CentralControl in the LogicalStructure dia-
gram and choose Copy in the Edit menu.

5. Go to the LogicalArchitecture diagram by selecting it in the Di-
agrams menu.

6. Choose Paste As in the Edit menu. The Paste As dialog is opened.

7. Set the option menu to Class and see to it that the Create link toggle
button is set. Press the Paste As button.

8. Select where in the LogicalArchitecture diagram you want to
place the CentralControl object.

Now you have created a class named CentralControl in your
LogicalArchitecture diagram. The class is connected with an im-
plink to the CentralControl class in the LogicalStructure dia-
gram. The link is indicated by the filled triangle on the class symbol.

9. Repeat the procedure above with the class Entrance but name the
new class EntranceUnit as this is a more descriptive name.

10. The classes Cardreader, Keypad, Display and ExitButton are
obvious interfaces to our system and, also, parts of an
EntranceUnit. Repeat the procedure above with these classes. As
it is often useful to name objects according to their function, give the
new classes names of the form xxxInterface.

One class in the requirements object model may result in several classes
in the analysis object model. One reason may be that the class provides
so much functionality that splitting the class into several smaller may be
convenient. Another reason may be that a class identified in the require-
ments object model needs services from other, not yet introduced class-
es. Consequently these classes should be introduced at this point of the
development process.

In practice, the actions in the two cases above are the same. The newly
introduced classes should be linked to the original class in the require-
ments object model. In our example this is the case with the class Door.
In the requirements object model we have one single class representing
the door. Further analysis, however, shows that the door object includes
both a door lock as well as a door sensor. This aggregation structure
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3873

Chapter 78 SOMT Tutorial
should be shown in the analysis object model. See section “Finding Re-
lations” on page 3876.

11. Copy the class Door in the LogicalStructure diagram.

12. Paste it three times as a class in the LogicalArchitecture dia-
gram and see to it that the implinks are created at the same time.
Name the new classes DoorUnit, DoorLockInterface and
DoorSensorInterface respectively.

Now look at the classes you have so far in the LogicalArchitecture
diagram. Think about the tasks of the different objects. As you can see
there is no class that can handle the logic, that is, an object that is re-
sponsible for what happens at an entrance. Therefore, you should add
such an object and name it EntranceCtrl, see below. The EntranceC-
trl will be a part of the EntranceUnit.

13. Copy the class Entrance from the LogicalStructure diagram.

14. Paste it as a class in the LogicalArchitecture and rename the
class, giving it the name EntranceCtrl.

15. Also, copy and paste the SecurityLevel class and its subclasses.

Classes in the requirements object model that only exist outside the sys-
tem border or classes that do not provide any necessary services should
not be transferred at all to the analysis object model.

Finding Classes

Useful sources where you can find objects that may be included in the
analysis object model are:

• the requirements object model

• interfaces that the system will have to the environment

• use cases

When you intend to transfer objects from the requirements object model
to the analysis object model, consider the following to validate each re-
quirements object:

• Decide if the system needs information about the object to fulfill its
task.

• If the answer is “yes” then add the class to the analysis object model.
3874 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
Another useful way to find the objects is to examine which interfaces
the system needs. Often the application area itself makes it obvious
what interfaces must exist. To find the interface objects, go through the
list of actors and, for each actor, decide which interfaces that are needed
to the system.

The use cases from the system analysis activity are also a useful source
for finding the objects. The problem is that we have not created these
use cases yet. As stated before, the work done in each activity is often
done iteratively. This is a typical situation where an iteration is needed
as some objects in the analysis object model may not be found until we
have created and inspected the analysis use case model.

When you have created the MSCs you should examine them to check
which interface objects that are involved and which internal objects that
are modified. Also, check if there is a control object that might handle
the logic of the use case or if there is a need to introduce such an object
in the analysis object model.

Adding Relations to the Logical Architecture

When you have identified all classes it is time to add the relations. For
information about how to add relations, see “Finding Relations” on
page 3876.

In our Access Control system example, most of the relations from the
requirements object model can be preserved.

1. Connect the CentralControl to the EntranceUnit with an asso-
ciation. Add multiplicity to the association. The CentralControl
may be connected to several EntranceUnits but the Access Con-
trol system has only one CentralControl.

2. Connect the EntranceUnit to the DoorUnit with an aggregation.
One EntranceUnit consists of only one DoorUnit.

3. The DoorUnit consists of a DoorLockInterface and a
DoorSensorInterface. Add aggregations from the DoorUnit to
the DoorLockInterface and to the DoorSensorInterface.

4. Connect the rest of the classes you have added with necessary asso-
ciations, aggregations and generalizations. Also consider if multi-
plicity is needed or not.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3875

Chapter 78 SOMT Tutorial
Finding Relations

Useful sources that may assist the process of finding relations are:

• the requirements object model (preserving and modifying existing
relations)

• analysis use case model

• textual requirements

The process of finding new relations and verifying old ones are closely
related to the process of creating the analysis use case model. It is main-
ly a question about which other objects the object needs to know about
to be able to provide its services. Also generalizations and aggregational
dependencies have to be considered, see “Identifying the Relations” on
page 3864.

Adding Attributes to the Logical Architecture

Now we have come to the point where it is time to add the attributes.
For information on how to find the attributes, see “Identifying At-
tributes” on page 3876.

There are not many classes in our LogicalArchitecture diagram that
need any attributes. In fact there is only one, the class Display. This
class must be able to display different text messages depending on the
situation at hand. Therefore:

1. Define Text to be an attribute of the class DisplayInterface.

Identifying Attributes

Attributes can be found in:

• the requirements model (keeping existing attributes)
• the textual use cases
• the textual requirements

Attributes describe a property of an object and often correspond to
nouns. For example, possible attributes of an object “Person” may be
eye color, weight, shoe size, and so on. Attributes that may describe a
vehicle are owner, color, current speed, current gear, and direction.
3876 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
Adding Operations to the Logical Architecture

The last thing to add to the logical structure object model are the oper-
ations. For information on how to find the operations, see “Identifying
Operations” on page 3878.

Add the operations Open, Close, Lock and Unlock to the assembly
class DoorUnit. This implies that you also must add the operations
Open and Close to the class DoorSensorInterface and Unlock and
Lock to the class DoorLockInterface.

1. Select the class DoorUnit.

2. Click on the operations section in the class.

3. Add the operations Open, Close, Lock and Unlock.

4. Repeat the procedure for the classes DoorLockInterface and
DoorSensorInterface adding their respective operations.

5. Continue to add the missing operations of the other classes in the di-
agram. When you are finished, your diagram should look something
like in Figure 726.

6. Save the diagram.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3877

Chapter 78 SOMT Tutorial
Identifying Operations

Sources that may support the identification of operations are:

• the requirements object model

• the analysis use case model (the messages in the MSC diagrams)

• the data dictionary (the description of the objects)

By studying the responsibilities of each object is it possible to identify
a set of operations that will provide the services assigned to the object.

Figure 726: The logical architecture
3878 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
Let one operation perform only one task. However, the class should not
contain too many public operations. A large public interface of a class
may indicate that the object is assigned too many responsibilities. In-
stead the object should probably be split and the responsibilities of the
object should be distributed between several objects.

The easiest way to find the operations is probably to look at the MSC
messages in the system analysis use cases. The messages can often be
considered as operations in the analysis object model. A message re-
ceived by an instance in an MSC corresponds to an operation on the cor-
responding class. Note that the operations on the classes representing
subsystems define the interface of this subsystem and should often also
exist as operations on some of the objects within the subsystem.

Creating an Information Diagram

Now it is time to create an information diagram. This diagram describes
the concepts outside the system that the system must know of to fulfill
its task. In our Access Control system example, Card and Code are two
such concepts.

1. Add a new object model diagram to the Organizer in the module
AnalysisObjectModel. Name the diagram
InformationDiagram.

2. Open the LogicalStructure diagram from the previous activity
and the new InformationDiagram in the OM Editor.

3. Select and copy the classes Card and Code in the
LogicalStructure diagram and paste them as classes in the
InformationDiagram, while automatically creating the implinks.

4. Consider if any or both of the classes should have any attributes.

5. Associate the classes with each other.

6. Save the diagram.

Your diagram should look like in Figure 727 when you are finished.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3879

Chapter 78 SOMT Tutorial
Creating the Analysis Use Case Model
The design of the two models in the system analysis activity, the object
model and the use case model, is usually going on in parallel. The mod-
els view the Access Control system from two different perspectives, a
dynamic perspective and a static perspective.

The analysis use case model shows the dynamic aspects and consists of
a set of MSC diagrams. These diagrams may be categorized into two
types:

• Refined requirements use cases

• Behavior pattern use cases

Refined Requirements Use Case

A refined requirement use case is what it reads like. Each valid use case
from the requirements use case model is transferred to the analysis use
case model and redesigned and refined to the analysis object model.

The purpose of the refined use cases is to validate whether the analysis
object model really implements the requirements. At the same time the
analysis use case model is an important source of information for iden-
tifying operations on the classes in the object model.

In the analysis use case model, the use cases are documented preferably
using MSCs. MSC diagrams are more formal and correspond better to
the object model than textual use cases.

Each instance in the MSC diagram corresponds to an object or sub-
system in the analysis object model. The level of abstraction you choose
is a trade-off between detail and clarity.

Figure 727: The Information diagram
3880 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
An object which encapsulates interfaces and just transfers the calls to
other objects without adding much functionality may be omitted, but
objects providing crucial functionality should be part of the MSC.

Creating a Refined Requirements Use Case

Now you should create an analysis use case of the
Enter_Office_With_Card_And_Code use case from the requirements
analysis activity.

1. Create a new MSC diagram in the AnalysisUseCaseModel mod-
ule and name it Enter_Office_With_Card_And_Code_SysA.

2. Open the requirements use case
Enter_Office_With_Card_And_Code. The system analysis use
case is based on the requirements use case and it is therefore useful
to use the latter as a reference (using copy and paste).

3. Create the MSC on subsystem level, that is, replace the original sys-
tem instance with instances of EntranceUnit and
CentralControl.

4. Create endpoints of the three instances in the MSC diagram. (Select
Create Endpoint from the Link submenu in the Tools menu.)

5. For each message in the requirements use case decide which in-
stances that exchange that particular message in the analysis use
case. Also consider which additional messages you need to add. All
message exchanges inside the system that we did not consider in the
requirements use cases have to be added at this point. Also, make
references to exceptions at the points where these can occur.

6. Replace the four ReadDigit signals with an MSC reference symbol
referring to the MSC ReadCode. ReadCode is a behavior pattern
which you will create later, see “Behavior Pattern Use Cases” on
page 3883.

7. Save the diagram.

8. In the Organizer, create an endpoint out of the newly created MSC
diagram. (This is done in the same way as in the editors.)

9. Open the Link Manager and connect this endpoint to the
Enter_Office_With_Card_And_Code MSC from the require-
ments use case model. Name the link Implementation Link.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3881

Chapter 78 SOMT Tutorial
The created MSC should look like in Figure 728.

Figure 728: A system analysis MSC use case

MSC Enter_Office_With_Card_And_Code_SysA

Employee EntranceUnit CentralControl

ReadCard

ValidateCard

exc No_Connection

ValidateCardReply

exc Invalid_Card

Display
’Enter Code’

ReadCode

ValidateCode

ValidateCodeReply

exc Wrong_Code

Display
’Please enter’

exc Door_Not_Opened

DoorTimer(10)

Open

Close

Display

’Enter card’
3882 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
The rest of the requirements use cases and their respective exceptions
are refined in a similar way. This will not be done in this tutorial be-
cause that would take too much time.

Behavior Pattern Use Cases

A behavior pattern is a detailed use case that may be used to examine
special communication patterns in detail. A behavior pattern is part of
an ordinary use case and most often several use cases share a behavior
pattern. A use case may include none or several behavior patterns.

Behavior patterns let refined requirements use cases be presented in a
higher abstraction level, making these less complex and easier to under-
stand. By focusing use cases on special parts of the system it is easier to
understand and maintain the requirements on the involved objects.

Creating a Behavior Pattern

The refined use case that you just created was created on subsystem lev-
el. With the help of behavior patterns we can describe what really hap-
pens at a certain point in the use case, i.e. which objects that interact and
the messages that they exchange. In our case, where we will create a be-
havior pattern for the task of reading a code, we have to replace the
MSC instance EntranceUnit with the MSC instances
KeypadInterface and EntranceCtrl.

1. Create a new Organizer module in the System Analysis
Documents chapter. Name it BehaviorPatterns.

2. In the MSC Editor, create the behavior pattern ReadCode, see
Figure 729.

3. Save the diagram using the name Behavior_Pattern_ReadCode.

4. In the Organizer, associate the behavior pattern MSC with the use
case MSC which it really is a part of. That is, associate it with
Enter_Office_With_Card_And_Code_SysA.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3883

Chapter 78 SOMT Tutorial
The System Analysis Documents chapter should now look like in
Figure 730.

Figure 729: A behavior pattern example
3884 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
Requirements Traceability
One important aspect in this activity is the relation between the models
created here and the models created in the requirements analysis activ-
ity. We want to be able to check:

• That all requirements have been implemented

• Which system analysis object that implements a certain requirement

• Which requirement that is implemented by a certain object in the
analysis object model

The means to check the issues above is through consistency checks.
There are two types of consistency checks:

• Entity matches
• Link checks

We will start with a link check and then we will perform an entity
match.

Figure 730: The System Analysis Documents chapter
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3885

Chapter 78 SOMT Tutorial
Link Check

The first thing to check is that all entities described in the logical struc-
ture in the requirements object model are either represented in the anal-
ysis object model or not really needed by the application.

1. Open the Link Manager. A link check can be performed in both en-
tity and endpoint view, so it does not matter which view you have
in the window.

2. Choose Consistency Check in the Tools menu to perform a link
check.

3. The Consistency Check dialog pops up asking you to select the doc-
uments representing the from group. Select the
LogicalStructure object model and press Continue.

4. Yet another Consistency Check dialog appears, now asking you to
select the documents representing the to group. Select the
AnalysisObjectModel module (this will also highlight the docu-
ments in the module) and press Check.

5. The Link Manager will show the result of the link check. You can
see that all entities from the requirements, except the system opera-
tor, employee, database, management system and office, are repre-
sented in the analysis object model. These are concepts on the out-
side of the system and, thus, not really needed by the application.

To follow links from one model to another we use the Traverse com-
mand. To see how this works follow the steps below:

6. Go to the LogicalArchitecture diagram in the OM Editor and
select the class CentralControl.

7. In the Link submenu in the Tools menu, choose Traverse.

8. The OM Editor will open the LogicalStructure diagram and the
CentralControl class will be selected. Go yet another step back-
wards by choosing Traverse in this diagram.

9. The Traverse Link dialog pops up asking you to select a link to
traverse. The class is the one we just came from so you should
choose the text fragment and press Traverse Link.

10. The Text Editor opens and the endpoint centralcontrol is select-
ed.
3886 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Analysis
In the same way we traversed from system analysis to requirements
here, you can also traverse from the requirements to system analysis.
Try this!

Entity Match

Now it is time for another consistency check. This time you should
check that the instances in the MSC diagram correspond to classes in the
object model or to actors that interact with the system.

1. See to it that you have entity view in the Link Manager window. If
not, press the Show endpoint or entities button in the tool bar.

2. Choose Consistency Check in the Tools menu. Set the entity match
radio button in the Consistency Check dialog and press Continue.

3. As a document representing the from group, select the MSC
Enter_Office_With_Card_And_Code_SysA.

4. As documents representing the to group, select the
AnalysisObjectModel module and the ActorsList.

5. The result shows that all MSC instances really are described in the
analysis object model or in the list of actors.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3887

Chapter 78 SOMT Tutorial
Summary
After having completed an entire system analysis, the System
Analysis Document chapter would look like in Figure 731.

Figure 731: The entire system analysis document structure
3888 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
Performing the System Design

What You Will Learn
• To create a design module structure

• To define the static interfaces in packages

• To make an architecture definition of the system

• To make formalized testable use cases

• To use the Paste As mechanism when transferring from the system
analysis activity to the system design activity

Figure 732: Overview of the SOMT process
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3889

Chapter 78 SOMT Tutorial
Introduction to the Exercise
This is an exercise on system design. In this activity we no longer make
use of object models; from now on SDL will be used. You will learn
how to map concepts from the analysis object model from the previous
activity into an SDL model. Mapping object-oriented concepts to SDL
concepts forces you to make several design decisions. Support for these
design decisions is provided through the Paste As mechanism. This ex-
ercise will teach you to make use of this support.

Useful sources for information in the system design activity are the
analysis object model and the analysis use case model. The first pro-
vides information about the static structure and is useful when structur-
ing the system into units. The latter provides information about the dy-
namic structure and is useful for the definition of the interfaces between
the units.

Major tasks to perform in the system design are:

• Define the design module structure.

• Define the static interfaces.

• Create an SDL system structure as a starting point for the formaliza-
tion of the architecture.

• Define the dynamic aspects of the interfaces by a continued use of
use cases.

Producing a complete system design structure in the tutorial takes too
much time. Thus, you will only perform parts of every step necessary to
produce a system design structure.

Preparing the Exercise
1. Open the system file somttutorial/SysD/accesscontrol.sdt

(on UNIX), or somttutorial\sysd\accesscontrol.sdt (in
Windows).

2. Check that the Source directory is set to somttutorial/SysD/
(on UNIX), or somttutorial\sysd\ (in Windows).

What you now see in the Organizer window is a complete requirements
analysis and system analysis structure.
3890 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
Design Module Structure
An important part of the system design is to divide the system into units
considering division of work, distribution of functionality and physical
distribution.

The purpose of the design module structure is to show the actual source
code modules the application will be built from. The most important as-
pect of the module structure is that it forms the basis for dividing the
work load on different development teams.

In our Access Control system example we have two different sub-
systems, EntranceUnit and CentralControl. It might be the case that
these subsystems are implemented by two different teams. Therefore, it
seems natural to introduce two different modules, each module being
described by the concept of a package. The contents of the packages
will not be defined until the architecture definition, the task here is only
to identify the modules needed.

The notation that will be used in this tutorial to describe the design mod-
ule structure is the object model instance diagram where the instances
represent the different modules.

Creating a Design Module Structure

1. Add a new object model diagram to the Organizer in the module
DesignModuleStructure and name the document
DesignModuleStructure.

2. In the OM Editor, create a first object instance symbol representing
the whole SDL system. Name it using the name
SDL_System_Access_Control.

3. Decide which modules, i.e. packages, the SDL system is to make
use of. In this example it might be suitable to introduce two different
modules, one for each subsystem. Therefore, create two more object
instances and name them CentralControlPackage and
EntranceUnitPackage respectively.

4. Draw associations from the SDL system module to the two new
modules. The associations describe that the SDL system uses these
two packages.

5. Create yet another module which will consist of all common types
and signals. This package is used by the other two packages and thus
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3891

Chapter 78 SOMT Tutorial
also by the SDL system itself. Name the module
UtilityTypesPackage and draw the associations. Your diagram
should now look like in Figure 733.

6. Create endpoints out of the three packages. (Endpoints are not cre-
ated automatically for object instance symbols.)

7. Save the diagram giving it the name
designmodulestructure.som.

Creating the Architecture Definition
When using SDL to design a system, the architecture is defined by
block diagrams which define how the system is decomposed into
blocks. The block diagrams are more or less a formalization of the anal-
ysis object model.

The first thing we will do when defining the architecture is to define the
contents of the packages introduced in the design module structure, see
“Defining the Packages” on page 3893. The UtilityTypesPackage
will contain data type declarations that are common to the subsystems
of the system. Signals/remote procedures that make up the interface be-
tween the subsystems will also be defined in the
UtilityTypesPackage. The other two packages,
CentralControlPackage and EntranceUnitPackage, will contain
block types and the signals/remote procedures that make up the inter-
face to the particular block. If you have many signals it is often useful
to structure these into signal lists.

Figure 733: The Design Module Structure
3892 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
The basic mechanism used in SOMT when going from analysis to de-
sign is the Paste As mechanism. This is used here when defining the sig-
nal interfaces, the blocks and block types, and, to some extent, the data
type declarations.

The second task to do when creating the architecture definition is to de-
fine the system by means of SDL block diagrams, see “Creating the
SDL System Diagram” on page 3898.

Defining the Packages

Mapping Object Models to SDL Block Types

You should now define the two block types, CentralControl and
EntranceUnit in their respective package using the Paste As mecha-
nism.

1. Add three new SDL packages to the ArchitectureDefinition
module in the Organizer and name them according to the modules
in the design module structure.

2. Open the LogicalArchitecture diagram in the
AnalysisObjectModel module.

3. Select the class CentralControl and copy it.

4. Go to the SDL Editor and the CentralControlPackage diagram
and choose Paste As. The Paste As dialog is opened.

5. Paste the class CentralControl as a Block Type (use the option
menu) and create an implementation link from the copied object to
the pasted object at the same time. The link is automatically created
by default.

6. Copy and paste the class EntranceUnit as a block type in the
EntranceUnitPackage in a similar way.

Mapping Object Models to SDL Interface Definitions

Now it is time to design the interfaces of the newly pasted blocks. Inter-
face definitions in SDL are defined using signals and/or remote proce-
dure calls. Consequently, this is what is produced when mapping a class
to an SDL interface.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3893

Chapter 78 SOMT Tutorial
Note that the signals that constitute the interface between our sub-
systems should be described in the UtilityTypesPackage. The rest of
the signals, i.e. signals that are not exchanged between the subsystems
should be described now. Signals from the environment to the sub-
system and signals inside the subsystem are such signals.

1. Once again, go to the LogicalArchitecture diagram in the Anal-
ysisObjectModel and copy the class EntranceUnit.

2. Go to the SDL Editor and the EntranceUnitPackage diagram and
paste the class as a Text symbol with SDL interface. See to it that an
implementation link is created at the same time.

If you look at the signal definition you see that the
ChangeSecurityLevel signal is present. This is a signal ex-
changed between our two subsystems and, thus, should not be de-
clared here.

3. Delete the ChangeSecurityLevel signal.

4. Add the signal parameters. The signals ReadCard and ReadDigit
are the only ones that need parameters. See Figure 734.

5. Save the diagram, giving it the name entranceunitpackage.sun.

6. Go back to the LogicalArchitecture diagram and copy the class
CentralControl.

7. Paste it as a text symbol with SDL interface in the
CentralControlPackage.

Figure 734: The EntranceUnitPackage
3894 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
8. If you look at the signal definition you realize that the
ValidateCard, ValidateCode and RegisterEntrance signals
are signals exchanged between our subsystems and, thus, should not
be defined here. Therefore, delete these signals from the signal def-
inition.

9. Add a signal parameter of the type integer to the
ChangeSystemSecurity signal, see Figure 735.

10. Save the diagram, giving it the name
centralcontrolpackage.sun.

It is now time to define the last package, the UtilityTypesPackage.
It will define the common data types needed in the subsystems as well
as the interface between the subsystems. To define the package you
should use the same procedure as above.

1. Copy the class CentralControl from the LogicalArchitecture
diagram.

2. Paste it as a text symbol with SDL interface in the
UtilityTypesPackage diagram.

3. Delete the signal ChangeSystemSecurity as this has already been
defined in the CentralControlPackage (because it is a signal
from the environment).

4. Add signal parameters to the three remaining signals.

Figure 735: The CentralControlPackage
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3895

Chapter 78 SOMT Tutorial
5. Continue with copying the class EntranceUnit and paste it as a
text symbol with SDL interface in the UtilityTypesPackage.

6. Remove all signals that have already been defined, i.e., all but the
ChangeSecurityLevel signal.

Note that the Validate commands (ValidateCard and ValidateCode)
have to be implemented with signals and not remote procedure calls.
This is due to the fact that we must be able to keep track of how long it
takes before we get the answer of a validation (to find out if there is a
connection failure or not). As a consequence of this, the reply signals to
the Validate commands have to be defined here.

7. Add the two signals ValidateCardReply and
ValidateCodeReply to the latest pasted signal definition.

8. Add signal parameters to the three signals in the definition.

Mapping Object Models to SDL NewTypes

Now it is time to declare the common data types. In our Access Control
system example the concepts of card and code are data types common
to all parts of the system.

The data type Card is best declared as a SYNTYPE. You will have to
do this declaration manually as there is no support in the Paste As mech-
anism for pasting something as a SYNTYPE. In declaring the data type
Code, however, the Paste As mechanism can be used.

1. Declare the Card concept as a SYNTYPE in the
UtilityTypespackage, see Figure 736.

2. Open the InformationDiagram in the AnalysisObjectModel
and copy the class Code.

3. Go to the SDL Editor and the UtilityTypesPackage and choose
Paste As. The Paste As dialog is opened.

4. Paste the class Code as a NEWTYPE with graphical operator or as
NEWTYPE with textual operator (it does not matter which one you
choose as the class Code has no operator) and see to it that an im-
plementation link is created at the same time. This will only give
you the structure, you have to fill in all relevant information your-
self.
3896 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
5. As it is a type we are declaring, change the name Code to CodeType.
Define the CodeType concept to be an array consisting of four inte-
gers (you will have to delete the word STRUCT). The index type of
the array should be integer and you will have to define this type too,
see Figure 736.

6. Declare a SYNONYM NbrOfEntrances that will be used to alter
the number of entrances we are to control in our system. For now,
you can set the value of the variable to 1, see Figure 736.

Before you save and close the diagram you should create an implemen-
tation link between the class Card from the InformationDiagram to the
definition of Card in this diagram. You have earlier used the Link Man-
ager to manually create links. We will now show how to use the entity
dictionary for this.

The entity dictionary is available in all editors and lists all entities in the
system, i.e. all modules, diagrams, and endpoints. The main usage of the
entity dictionary is to reuse names of entities, but it can also be used to
create links.

1. In the UtilityTypesPackage diagram, select the text symbol con-
taining the Card definition.

2. From the Window menu, choose Entity Dictionary. The Entity Dic-
tionary window is opened. You will recognize the structure and
icons of chapters, modules and diagrams from the Organizer win-
dow. In addition, all endpoints are listed beneath the corresponding
diagram.

3. Scroll the Entity Dictionary window until you find the class Card in
the InformationDiagram in the AnalysisObjectModel module.
Select the icon representing the class Card. (Make sure not to dou-
ble-click an icon, since that will copy the name of the icon into the
current diagram!)

4. In the Entity dictionary, press the Create Link quick button.

5. The Create Link dialog pops up. (This is the same dialog as when
you created links in the Link Manager.) Set the from radio button,
name the link Implementation Link and press Create.

6. Close the Entity dictionary by using the Close quick button.

7. Save the diagram, giving it the name utilitytypespackage.sun.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3897

Chapter 78 SOMT Tutorial
8. In the Organizer, create endpoints out of the three packages.

Creating the SDL System Diagram

Now you should define the system structure, something which is to be
done by means of SDL blocks in a system diagram.

1. Add an SDL system diagram to the ArchitectureDefinition
module in the Organizer and name it AccessControl.

2. Copy the class CentralControl in the LogicalArchitecture di-
agram and paste it as a Block in the system diagram. See to it that
an implementation link is created at the same time.

3. Also, copy and paste the class EntranceUnit as a block.

4. Change the name of the block instances, from CentralControl to
theCentralControl and from EntranceUnit to
theEntranceUnit. Also, define which block type the blocks are an
instance of, see Figure 737.

5. There will often be more than one entrance in a building and there-
fore you should define the block theEntranceUnit as a block in-
stance set. (Use the variable NbrOfEntrances defined in the
UtilityTypesPackage.)

Figure 736: The UtilityTypespackage
3898 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
The two blocks theCentralControl and theEntranceUnit must
be able to communicate with each other as well as with the environ-
ment. The next step is to create all necessary channels in the system
diagram.

6. Draw the channels through which the blocks communicate and
name them and the gates with suitable names. Also, draw the chan-
nels to/from the environment. State which signals that run on a cer-
tain channel. To identify the signals consult the
AnalysisObjectModel made in the system analysis.

7. At this point we see the need to introduce a new signal, the
EnvDisplay signal which goes from the EntranceUnit to the en-
vironment (i.e, to the display hardware). This signal contains infor-
mation that is to be read by persons in the system environment. The
parameter of this signal is Charstring. Define it in the
EntranceUnitPackage.

8. Reference the packages the SDL system makes use of in a USE
clause in the top of the diagram. Your system diagram should now
look like in Figure 737.

9. Save the diagram, giving it the name accesscontrol.ssy.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3899

Chapter 78 SOMT Tutorial
Refining the EntranceUnit – Mapping Aggregations

Considering the aggregation structure in the LogicalArchitecture
diagram, the block EntranceUnit may be divided into several sub-
blocks.

When mapping an aggregation structure from the analysis object model
to an SDL diagram, the most common choice is to map the assembly
class to a block type. Classes which are part of the assembly class will
be mapped to process types, or, if the part class itself is an assembly
class, to block types.

The block type corresponding to an assembly class will thus contain
processes or blocks.

Figure 737: The Access Control system diagram
3900 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
The process types and block types should be placed in a suitable pack-
age to enable reuse. The instances of the types should then be placed in
the appropriate system or block diagram to form the system.

Mapping Classes to Block Types and Signal Interfaces

1. Select the class DoorUnit in the LogicalArchitecture diagram.
Copy it and paste it as a block type in the EntranceUnitPackage.

2. Call the Paste As command again. This time, choose to paste the
class as a text symbol with SDL interface in the
EntranceUnitPackage.

3. The resulting signal definition contains two signals that already
have been defined in the package, namely Open and Close. There-
fore, delete these signals in the newly pasted signal definition.

Mapping Classes to Blocks

Now it is time to place a block instance of the DoorUnit block type in
the EntranceUnit block type.

1. Double-click on the EntranceUnit block type in the
EntranceUnitPackage diagram. The Edit dialog pops up, press
OK. The Add Page dialog pops up. Create a block interaction page.

2. For the third time, choose Paste As and paste the class DoorUnit as
a block in the EntranceUnit block diagram. The block will be
named DoorUnit.

Figure 738: Mapping aggregation to a block type

Assembly

Part1 Part2

1 *

Assembly

Paste As
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3901

Chapter 78 SOMT Tutorial
3. Change the block name so it is marked as an instance of the block
type according to the SDL syntax. Change the name to
theDoorUnit:DoorUnit.

Introducing new Block Types

Since SDL does not allow processes and blocks at the same level you
have to create two more block types to be placed in the
EntranceUnitPackage. These block types will be used as containers
to the remaining classes that will be mapped to processes and process
types. Give the first block type the name EntranceInterface. We in-
troduce this block as a generic term for all those classes that represent
an interface to the system, i.e. the cardreader, the keypad, the display
and the exitbutton. The second block type to be placed in the
EntranceUnitPackage is EntranceCtrl.

1. Copy the class DisplayInterface in the LogicalArchitecture
diagram.

2. Paste it as a block type and as a text symbol with SDL interface in
the EntranceUnitPackage.

3. Rename the block type and give it the name EntranceInterface.

4. Add a signal parameter called MessageType to the Display signal
definition. By using this type for messages the EntranceCtrl does
not have to handle strings. This solution makes the system indepen-
dent of the language used, see “Performing an Iteration” on page
3928 for an example on how this works.

5. Define the NEWTYPE MessageType, see Figure 739.

6. Also, paste the class DisplayInterface as a block in the
EntranceUnit block diagram. Rename the block and give it the
name theEntranceInterface:EntranceInterface.

7. Using the Entity Dictionary, create implementation links between
the CardReaderInterface, KeypadInterface and ExitButtonInterface
classes in the LogicalArchitecture diagram and the
EntranceInterface block type and block.

Note that you do not have to paste these three classes as SDL inter-
faces as their operations have already been defined as signals in the
EntranceUnitPackage.
3902 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
8. Now, copy and paste the class EntranceCtrl as a block type and as
a text symbol with SDL interface in the EntranceUnitPackage.

9. Delete the signal ChangeSecurityLevel as this already has been
defined in the UtilityTypesPackage.

10. Add signal parameters where they are needed i.e. to the signals
ReceiveCard and ReceiveCode.

11. Also, paste the class as a block in the block type EntranceUnit di-
agram. Give the block the name
theEntranceCtrl:EntranceCtrl.

The EntranceUnitPackage will look like in Figure 739.

The block type EntranceUnit diagram should now contain three
blocks: theDoorUnit, theEntranceInterface and
theEntranceCtrl.

Figure 739: The EntranceUnitPackage
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3903

Chapter 78 SOMT Tutorial
Defining the Communication Structure

Now you should define the communication structures within the block
type EntranceUnit. Define the channels needed for the three blocks
theEntranceCtrl, theEntranceInterface and theDoorUnit to
communicate.

To define the channels in the block type EntranceUnit, follow the
steps described below.

1. Identify necessary channels.

2. Identify the signals that should be carried by the channels. You get
a lot of information from the AnalysisObjectModel here.

3. Name the channels and the gates.

4. The complete block diagram for EntranceUnit should look some-
thing like in Figure 741.

Figure 740: The block Type EntranceUnit
3904 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
When you have completed the architecture definition, the System
Design Documents chapter should look like in Figure 742.

Figure 741: The complete structure of the block Type EntranceUnit
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3905

Chapter 78 SOMT Tutorial
Creating the Design Use Case Model
In system design we continue with the use of use cases, this time to de-
fine the dynamic interfaces between the blocks in the system.

In our example, the block theEntranceUnit in the system diagram is split
into the three blocks, theEntranceCtrl, theEntranceInterface and the-
DoorUnit. The use cases will consist of the block instances theCentral-
Control, theEntranceCtrl, theEntranceInterface and theDoorUnit as
well as an instance representing the environment.

The use cases must be formalized to a sufficient degree of detail, a level
that is consistent with the level of detail found in the static interface def-
inition. Also, the level of detail must be precise enough to make the de-
sign use cases act as detailed test specifications.

Figure 742: The System Design Documents chapter
3906 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
Formalizing Use Cases

A number of things have to be done when formalizing and refining anal-
ysis use cases to design use cases.

• Check that each MSC instance head has a corresponding block in
the architecture definition. The use cases define the dynamic inter-
face between the blocks in the system and thus all blocks have to be
represented.

• The MSC instances corresponding to actors in the system environ-
ment should have env_ stated in their instance head before the ac-
tual name, e.g. env_Employee.

• The MSC instances must have names corresponding to block in-
stances as it is the instances that communicate. That is, the name of
those instances that have been defined as block types in the SDL
package structure must be changed to the corresponding block in-
stance name. E.g. the MSC instance CentralControl can no long-
er have this name; the name has to be changed to
theCentralControl according to the architecture definition.

• The messages often have to be replaced with a sequence of message
exchanges.

• The MSC messages have to be complemented with parameters ac-
cording to the definition of signals and remote procedures in the ar-
chitecture definition. It should not be the name of the parameter that
should be added but a value that the parameter can take. Alterna-
tively the parameters can be skipped entirely.

Creating a Formalized Use Case

Now you should begin to formalize and refine one of the use cases from
the system analysis.

1. Add a new MSC diagram to the DesignUseCaseModel module in
the Organizer.

2. In the Add New dialog, set the toggle button Copy existing file. As
the file to be copied, select the MSC
Enter_Office_With_Card_And_Code_SysA from the system
analysis activity. This file can be found in the
somttutorial/sysanalysis directory.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3907

Chapter 78 SOMT Tutorial
3. In the MSC Editor, rename the instance head Employee to
env_Employee and change/add the other instance head names.
They should conform to the names used on the block instances in
the SDL system diagram and the blocks in the EntranceUnit block
diagram in the architecture definition.

4. For each message, decide if it has to be exchanged with a sequence
of messages. If so, add these new messages to the MSC.

5. Add parameters to the messages. Look at the definition of the sig-
nals in the architecture definition and add parameters to those mes-
sages that are defined to have parameters. E.g. the message
ReadCard should have a parameter consisting of the card. Note that
it is not the parameter name Card that is to be used here but an ex-
ample of a value that the parameter can take, e.g. 123.

6. Rename the use case and save it under its new name,
Enter_Office_With_Card_And_Code_SysD (use Save As).

The exceptions and behavior patterns to this use case must also be for-
malized.

The other design use cases are created in a similar way. All design use
cases should also be connected with implementation links to the corre-
sponding analysis use case and exception. This is done in order to make
it possible to check that all use cases from the requirements analysis and
system analysis have been refined to design use cases.

Consistency Checks
Now the time has come to performing consistency checks on the models
created in system design.

Entity Match

The first thing to check is that the actual modules (SDL packages) used
in the design are consistent with the design module structure.

1. In the Link Manager, choose Consistency Check in the Tools menu
and set the entity match radio button. Note that you have to be in en-
tity mode to be able to perform an entity match.

2. Let the packages in the ArchitectureDefinition form the from
group and the DesignModuleStructure module the to group.
3908 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the System Design
The result shows that all packages in the ArchitectureDefinition
really are described in the DesignModuleStructure. The consistency
view (i.e. the resulting Link Manager window) also shows the contents
of the packages. As you can see there are no matching entities to the
block references, block types, etc. in the DesignModuleStructure.
There should not be any, so just ignore this.

Link Check

By doing a link check we will first check that all objects in the analysis
object model are mapped to the architecture definition.

1. Once more, choose Consistency Check in the Tools menu and per-
form a link check. It does not matter which view you have in the link
Manager window, a link check can be performed in either view.

2. Let the AnalysisObjectModel form the from group and the
ArchitectureDefinition module form the to group.

The result shows that most of the objects from the analysis object model
are described as block types and block references in the architecture
definition. Many of the objects have also been mapped to an interface
definition. The fact that some classes have no corresponding mapping
indicates that these classes probably should reside as processes inside
some of the mapped blocks. This holds e.g. for the
DoorSensorInterface and the DoorLockInterface as well as for
the SecurityLevel classes.

At this point you can also select any block or block type in the architec-
ture definition and choose Traverse link. The corresponding class in the
analysis object model will then be selected. By choosing Traverse link
again you can follow a link all the way back to the textual requirements.
It is also possible to follow a link in the other direction, i.e. from the tex-
tual requirements via the object models, to the design. Try this!
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3909

Chapter 78 SOMT Tutorial
Summary
After having completed an entire system design the corresponding doc-
ument structure in the Organizer would look like in Figure 743.

Figure 743: The entire System Design Documents structure
3910 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
Performing the Object Design

What You Will Learn
• To transfer the analysis object model into a consistent object design

model in SDL

• To use the Paste As functionality to assist the task

• To perform design level testing

Figure 744: Overview of the SOMT process
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3911

Chapter 78 SOMT Tutorial
Introduction to the Exercise
In this exercise you will perform the object design activity. This activity
is, like the system design activity, focused on SDL. However, while the
system design is focused on how to structure the architecture and how
to decompose the system into blocks, the object design is focused on de-
composing the blocks into processes and defining the behavior of the
single processes.

The object design activity may be divided into three separate tasks:

1. Map the classes and associations in the analysis object model to
suitable SDL concepts.

2. Choose a set of essential use cases and define the behavior of the
SDL processes and data types that implement these use cases.

3. Elaborate the design by introducing more use cases and refine the
SDL design to handle also these use cases.

Preparing the Exercise
The input to this activity should be a complete requirements analysis,
system analysis and system design structure.

1. Open the system file somttutorial/ObjD/accesscontrol.sdt
(on UNIX), or somttutorial\objd\accesscontrol.sdt (in
Windows).

2. Check that the Source directory is set to somttutorial/ObjD/
(on UNIX), or somttutorial\objd\ (in Windows).

Mapping Active Objects to SDL
An object with its own behavior is called active object. The opposite is
an object which acts as an information container - a passive object. Ac-
tive objects are, most often, mapped to SDL process types. Active ob-
jects may also sometimes, as was the case in the system design activity,
be mapped to block types.

The default choice in the Paste As mechanism is to paste a class copied
from an object model diagram as a process type in an SDL diagram.

The attributes of the copied object will be pasted as variables. The op-
erations will be pasted either as signals or as remote procedures of the
3912 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
process type. This depends on whether the operations are synchronous
or asynchronous.

Mapping to Process Types

Now it is time to map the classes in the analysis object model that
should be mapped to SDL process types. In this example you should
map the processes which will reside within the block type
EntranceInterface.

The classes which should reside as processes in the block
EntranceInterface are: the CardreaderInterface, the
KeypadInterface, the DisplayInterface and the
ExitButtonInterface.

1. Copy and paste each class from the LogicalArchitecture dia-
gram as a Process Type in the EntranceUnitPackage.

2. Open the block type EntranceInterface diagram in the SDL Ed-
itor by double-clicking on the corresponding block type symbol in
the EntranceUnitPackage. Press OK in the Edit dialog. In the Add
Page dialog choose to create a process interaction page.

3. Copy each class once again and paste it as a Process in the block
type EntranceInterface diagram.

When pasting e.g. the class KeypadInterface as a process, the process
will get the same name as the class. This name should be changed since
the syntax for process instances requires both an instance name and the
name of the corresponding process type. The number of statically and
dynamically created instances must also be stated.

Figure 745: Mapping a class to a process type

Analysis model
(object model)

Design model
(SDL)

Paste AsDoorControl

DoorControl
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3913

Chapter 78 SOMT Tutorial
4. Name the process theKeypadInterface. The process
theKeyPadInterface should have one statically created instance
and it should not be possible to create any instances dynamically.
The following text should thus be written in the process name area:
theKeyPadInterface(1,1):KeyPadInterface.

(If the Remove Reference Symbol dialog appears, just click OK.)

5. Change the other three process names too, according to the above.

Now the block type EntranceInterface should contain four process-
es named: theCardreaderInterface, theKeyPadInterface,
theExitButtonInterface and theDisplayInterface.

Figure 746: The block type EntranceInterface
3914 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
Defining the Communication Structure

You have already specified the channels to and from the block
theEntranceInterface (this was done in the block type
EntranceUnit). Now you have to connect the processes within this
block with the outside.

Creating a communication structure between processes and the border
of the block is made in the same way as creating communication struc-
tures between blocks, with one difference. The terminology specifies
signal routes instead of channels as the name for the communication
structures at this level. However, there is no practical difference be-
tween signal routes and channels.

Now, edit the block type EntranceInterface diagram:

1. Connect each process with the border of the block with a signal
route in each direction.

2. Give the gate of the input signal to each process the name Entry and
the other gate the name Exit.

3. Specify the signals that are transported on each signal route. Consult
the system analysis object model and the specification of the block
theEntranceUnit to find all signals you should specify.

4. Connect the signal routes with the channels by specifying the appro-
priate gate for each signal route.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3915

Chapter 78 SOMT Tutorial
Figure 747: The complete structure of the block type EntranceInterface
3916 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
Defining the Object Behavior
The activity of describing object behavior is a pure SDL design activity.
This section is intended to describe how to structure this activity. It will
not focus on specific SDL details.

The most important source of information in this activity are the use
cases which specify the signal calls and responses to and from the
blocks and processes in the system.

The design of the processes is best made iteratively:

• Select a subset of use cases which describe the most common inter-
action sequences. Create a basic version of the processes that corre-
spond to these use cases.

• Second, you should introduce a couple of more use cases. Edit the
behavior of the processes making them correspond to the extended
subset of use cases.

• Continue with introducing more use cases. Edit the processes to
cover these, until the behavior of the objects correspond to the com-
plete set of use cases.

Using MSCs to describe the use cases makes it fairly simple to identify
the states and transitions of the processes. A transition in a process
graph is an input signal, often followed by one or more output signals
from the actual process in a use case.

If the situation occurs that two use cases are difficult to combine, you
should consider to split the process in question into two separate pro-
cesses, one process for each use case.

An example is the block type EntranceInterface which have a quite
complex structure of input and output signals. However, by dividing the
block type into four separate processes, each one of these processes be-
comes fairly simple.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3917

Chapter 78 SOMT Tutorial
Defining the Basic Behavior of a Process

1. Take a look at the process type KeypadInterface. You will see
that the process has a signal set of only two signals: the input signal
ReadDigit and the output signal ReceiveCode.

2. If you study the MSC diagram
Enter_Office_With_Card_And_Code_SysD and the behavior
pattern ReadCode you see that four ReadDigit signals generate the
output signal ReceiveCode.

Figure 748: The signal sequence of the process theKeyPadInterface
3918 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
Creating the behavior of the process out of this information is a
quite easy task. Adding the timer, which provides the time-out func-
tionality, will make the first version of the behavior specification of
the process complete.

3. In the EntranceUnitPackage, double-click on the
KeypadInterface process type symbol.

4. In the process type diagram, define the basic behavior of the pro-
cess.

Defining the Data of a Process

The processes will of course also need some data containers, entity vari-
ables and control variables. The control variables, such as loop counters
and flags, are identified during the object design. Entity variables are
most often identified during the system analysis and they may be
mapped to the process diagrams from the analysis diagrams.

If we take a look at the process theKeyPadInterface again we will
notice that we need to introduce a counter to control the number of times
a digit will be read before the signal ReceiveCode will be sent. We will

Figure 749: Basic behavior of the KeypadInterface process type
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3919

Chapter 78 SOMT Tutorial
also need an index to place the read digit in the correct position of the
Code array.

1. Place a text symbol in the diagram and declare a CodeIndexType
named i in the process.

2. The parameter of the ReadDigit signal is of type integer. Declare a
variable named Digit of type integer.

3. The parameter of the ReceiveCode signal is of type CodeType.
Therefore, declare a variable Code of this type.

4. Change the name of the gate GKeypadInterface to Entry.

5. Also, add an Exit gate and the signal ReceiveCode going out of the
process type.

6. Declare a timer KeyStrokeTimer with duration 3.

7. Refine the behavior of the process.

8. Save the diagram.
3920 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
The rest of the processes in the system are created in a similar way.
However, this will not be done in this tutorial.

Figure 750: The complete process type KeypadInterface
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3921

Chapter 78 SOMT Tutorial
Design Testing
SDL makes it possible to test the system already during the design. It is
possible to simulate an SDL system taking both concurrency and distri-
bution into account. It is also possible to verify requirements specified
in MSCs using the Validator.

The MSC diagrams may, with no or little effort, be used directly as in-
put to the Validator. This makes the requirements verification simple
and efficient.

Preparing the Design Testing

To be able to test your design you must have a complete system.

1. Open the system file
somttutorial/objdesign/accesscontrol.sdt (on UNIX), or
somttutorial\objdesign\accesscontrol.sdt (in Windows).
What you see in the Organizer now is a complete system structure.
All four documentation chapters representing activities from the
SOMT method are complete.

2. Check that the Source directory is set to
somttutorial/objdesign/ (on UNIX), or
somttutorial\objdesign\ (in Windows).

Simulating the System

Simulating the system gives information about how different parts re-
spond to certain inputs and how different parts of the system interacts
with other parts. Simulating is often done during the object design to
test different parts of the system.

The complete system should also be tested using the simulator to verify
that the whole system works as it is intended to.

Try to simulate the system AccessControl. Follow the steps below to
make a simulator version of the system AccessControl.

1. Select the system AccessControl in the Organizer.

2. Choose the Make option in the Generate menu.

3. In the Make dialog, choose the code generator to be Cbasic.

4. Choose the standard kernel to be Simulation.
3922 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
5. Press Full Make. The system will be automatically analyzed. If
there are any warnings you can ignore them. These warnings show
up because we have not used all our declared signal lists. As they
are just warnings, not errors, you can ignore them.

6. When the make process is finished, start the Simulator by choosing
Simulator UI in the SDL submenu in the Tools menu.

7. In the SDL Simulator UI window, open the file
accesscontrol1_smb.sct (on UNIX), or
accesscontrol1_smb.exe (in Windows). Now you can simulate
the system, as you have learned in previous tutorials.

Validating the System

When the design of the system is finished you want to verify that the
system meets the requirements. This is quite easily done in the SDL
suite by using the SDL Validator.

MSCs from the system design are used as input to the Validator.

The requirements use case model is the essential part of the require-
ments and is often the specification of the system which the customer
and the contractor agree upon. Thus, by verifying the system with the
MSCs from the system design you are verifying that the system meets
the customers requirements.

By making it possible to verify the customers requirements already in
the object design and not in a special system design test phase, as in an
ordinary design process, you save a lot of effort and time.

Now you should validate some of the MSCs from the system design ac-
tivity.

1. Select the system AccessControl in the Organizer.

2. Choose the Make option in the Generate menu.

3. In the Make dialog, choose the code generator to be Cbasic.

4. Choose the standard kernel to be Validation.

5. When the Make process is finished, start the Validator UI and open
the file accesscontrol1_vlb.val (on UNIX), or
accesscontrol1_vlb.exe (in Windows). Now the system is
ready to be validated.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3923

Chapter 78 SOMT Tutorial
6. Press the Verify MSC button and choose the system design MSC di-
agram enter_office_with_card_sysd.msc which you can find
in the directory somttutorial/sysdesign.

7. If the verification succeeds, you will get the message “** MSC
<Diagram name> verified **”.

It is perhaps too much work to verify all the MSC diagrams of the sys-
tem design activity during this tutorial and you may quit when you feel
that you have understood the principle of how to verify an SDL system.

If all diagrams can be verified against the system, then it is verified that
the system also meets the requirements specified in the beginning of this
tutorial.

Consistency Checks
There are mainly two consistency checks that should be performed in
the object design activity:

• Check that all objects from the analysis object model have been im-
plemented in the design.

• Check that the design model correctly implements the requirements
from the design use cases.

The second consistency check is done through design level testing, see
“Design Testing” on page 3922. The first one will be performed through
a link check, see below.

Link Check

In our complete Access Control system there are implementation links
from the system analysis models to both the system design models and
the object design models. This implies that we must check our analysis
object model against both these design models to see if all the classes
have been implemented in the design.

• Perform a link check. Let the analysis object model form the from
group. The architecture definition and the SDL design model will
form the to groups.

The result shows that all classes but the class SecurityLevel have cor-
responding processes, blocks, signal interfaces or procedures in the de-
sign. The SecurityLevel does not have any behavior of its own, it is
3924 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing the Object Design
implemented through its subclasses, and, therefore, the result is just as
we want it.

We have now completed the design of the system. It is possible to pick
an endpoint in the textual requirements and follow the implink from it,
through the object models, to SDL. It is also possible to traverse links
the other way, i.e. from design to requirements. Try this!

The use cases are also connected to each other, from requirements to de-
sign, as can be seen in the view of the link file in the Link Manager win-
dow.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3925

Chapter 78 SOMT Tutorial
Summary
After having completed an entire object design the corresponding doc-
ument structure in the Organizer would look like in Figure 751.

Figure 751: The entire Object Design Documents structure
3926 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
Implementation

The implementation of the system lies outside the scope of this tutorial.
For information about the implementation activity, see the SOMT
Methodology Guidelines starting in chapter 69 in the User’s Manual.

Figure 752: Overview of the SOMT process
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3927

Chapter 78 SOMT Tutorial
Performing an Iteration

What You Will Learn
• To introduce changes to a system in a controlled way
• To use the implementation links to assist you in the activity

Introduction to the Exercise
During the life time of a system new requirements and changes in exist-
ing requirements are almost always introduced. We have to be able to
handle these requirement changes and adapt the system to the new situ-
ation in a controlled way. We call this process iteration. An iteration
may also be planned in advance in, for example, incremental develop-
ment.

This section will describe the scenario of an iteration caused by the in-
troduction of an additional requirement.

Preparing the Exercise
As input to this exercise we will use the complete Access Control sys-
tem.

1. Open the system file somttutorial/Iter/accesscontrol.sdt
(on UNIX), or somttutorial\iter\accesscontrol.sdt (in
Windows).

2. Check that the Source directory is set to somttutorial/Iter/
(on UNIX), or somttutorial\iter\ (in Windows).

3. Create a new chapter and name it Iteration Documents.

4. Add a new module called AdditionalTextualRequirements to
the new chapter.

5. Add the existing file AdditionalTextualRequirements.txt to
the new module.
3928 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing an Iteration
Studying the Additional Requirements
• Open the additional textual requirements document if it is not al-

ready open. The example below shows the document.

Example 612: Additional requirements –––––––––––––––––––––––––

The system should be able handle the languages English, German and
French. One version of the system should handle a specific language
and the system should be easily configured to handle a new language.

––

As stated in the example above, the task is to redesign the system so it
can handle different languages. The design should be made in a way that
makes it easy to configure the system to new languages.

The words English, German and French are marked as endpoints in the
document.

Examining the Consequences
Now it is time to validate what consequences the new requirement has
on the system. The new requirement identify one object that may be af-
fected, the Display object.

1. Study the requirements regarding the Display in the original textu-
al requirements document. You should find that the new require-
ment does not contradict with the original requirements.

2. Traverse the implementation link from the text fragment Display
in the original textual requirements. The logical structure diagram
in the requirements object model will pop up with the class Display
selected.

3. With the class still selected, choose Traverse Link once more and
follow the link to the logical architecture diagram in the analysis ob-
ject model. The class DisplayInterface, with operation Display
and attribute Text will be selected. The class is a part of the class
EntranceUnit. It also has a connection to the class
EntranceCtrl, see Figure 753.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3929

Chapter 78 SOMT Tutorial
4. Continue to follow the link of the class DisplayInterface, from
the logical architecture to the package EntranceUnitPackage. The
class is connected with the block type EntranceInterface and the
process type DisplayInterface as well as with the signal inter-
face defining the signal Display.

5. You can also follow the implementation links from the class
DisplayInterface to the block theEntranceInterface (within
the block type EntranceUnit) and to the process
theDisplayInterface (within the block type
EntranceInterface).

6. Open the block type EntranceInterface in the Object Design
Documents structure. Study the signal routes leading to and from
the process theDisplayInterface. You will notice two signals:

Figure 753: Part of the Logical Architecture diagram
3930 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing an Iteration
Display and EnvDisplay. Examining the two signals with help of
the Signal Dictionary will give you information about the signals.
EnvDisplay has the parameter Charstring and the signal
Display has the parameter MessageType.

7. Open the process type DisplayInterface. Study the behavior.
You will notice that it is possible to change the content of the
EnvDisplay signal without affecting the behavior of the process
type. It also seems like the required changes to the system are lim-
ited to the process type DisplayInterface.

Introducing Changes in Documents
Now you should introduce the necessary changes to the system to get
the desired behavior. Changes should be made in a controlled way. All
documents affected of the changes should be edited, to keep the consis-
tency.

Updating the Data Dictionary

1. Open the data dictionary. Include information presented in the addi-
tional requirements to the data dictionary.

2. Save the file as DataDictionary.txt in the current directory.

Updating the Requirements Object Model

As we saw earlier, the change we have to introduce to the system is fo-
cused on the process type DisplayInterface. The new requirement
specify that one version of the system should handle a specific language
and the only language dependent part of the system is the process type
DisplayInterface.

It seems natural to introduce a class for each one of the languages En-
glish, German and French in the logical structure diagram. These class-
es should be subclasses to the class Display, i.e. an inheritance struc-
ture is needed.

1. Add the three new classes to the logical structure diagram in the re-
quirements object model. Name the classes FrenchDisplay,
EnglishDisplay and GermanDisplay respectively.

2. Link the classes with the corresponding text in the additional textual
requirements document.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3931

Chapter 78 SOMT Tutorial
3. Save the diagram as logicalstructure.som in the current direc-
tory.

4. Make a link from the class Display to the class
DisplayInterface in the logical architecture diagram in the anal-
ysis object model.

Updating the Analysis Object Model

In the logical architecture diagram we have to create an inheritance hi-
erarchy corresponding to the inheritance hierarchy in the logical struc-
ture.

1. Create the three subclasses to the class DisplayInterface. Name
the classes EnglishDisplayInterface,
GermanDisplayInterface and FrenchDisplayInterface.

2. Create implementation links to the corresponding classes in the log-
ical structure diagram. (An alternative here would have been to copy
the classes from the logical structure diagram and paste them as
classes in the logical architecture diagram. The implementation
links would then have been created automatically.)

3. Traverse the link from the class DisplayInterface to the process
type DisplayInterface in the EntranceUnitPackage.

Figure 754: The class Display and its subclasses
3932 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing an Iteration
Updating the SDL Design

Now it is time to make some changes to the SDL design, making it cor-
respond to the logical architecture. The inheritance hierarchy of the
DisplayInterface classes should be mapped to an inheritance hierar-
chy of process types.

1. Create two new process types in the EntranceUnitPackage. Name
the process types GermanDisplayInterface and
FrenchDisplayInterface. The already existing
DisplayInterface process type will function as the
EnglishDisplayInterface.

2. Mark these process types as endpoints and create links between
them and the corresponding classes in the logical architecture. (Al-
ternatively, use the Copy-Paste As mechanism.)

Now, edit the DisplayInterface process type to make it more
general and suitable for reuse.

3. Double-click on the DisplayInterface process type in the
EntranceUnitPackage.

4. Create a variable of type charstring for each possible message
that can be sent to the environment. You will need eight such vari-
ables.

5. Put the text Virtual in the start symbol.

6. Insert a task symbol just after the start symbol.

7. In the task symbol you should initialize the message variables to the
corresponding message.

8. Edit each output symbol making it use the corresponding message
variable as a parameter instead of a text string. The process type
DisplayInterface will use English language.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3933

Chapter 78 SOMT Tutorial
9. Save the diagram in the current working directory.

After editing the DisplayInterface process type it is time to create
the process types GermanDisplayInterface and the
FrenchDisplayInterface. For each process follow the steps below:

10. Open a graph page for each process type by double-clicking on the
corresponding process type symbol in the EntranceUnitPackage.
Press OK in the edit dialog.

11. In the additional heading you should enter the text:
INHERITS DisplayInterface ADDING;

12. Place a start symbol in the diagram and enter the text REDEFINED in
the symbol.

13. Connect a task symbol to the start symbol. The task is to initialize
the message variables to the appropriate messages. Do not use na-
tional characters.

14. Connect a state symbol with the task symbol and name it
Wait_for_signal.

15. Save the diagrams.

Figure 755: The process type DisplayInterface
3934 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Performing an Iteration
Now the necessary behavior is described and it is time to show how to
configure the system to make use of the new design.

Configuring the System

The necessary design is done and we want to configure our system to
make use of the new design. Following the steps below will configure
the system to a German version.

1. Open the block type EntranceInterface.

2. Select the process theDisplayInterface and change the text
theDisplayInterface(1,1):DisplayInterface to
theDisplayInterface(1,1):GermanDisplayInterface

3. Now you can analyze the system. Perhaps you want to simulate the
new version of the system; if so, follow the steps described in
“Simulating the System” on page 3922.

Figure 756: The process type GermanDisplayInterface

Process Type GermanDisplayInterface 1(1)

REDEFINED

EnterCard:= ’Karte bitte’,
EnterCode:=’Geheimnummer bitte’,

DoorIsOpen:=’Tur geoeffnet’,
DoorIsLocked:=’Tur geschlossen’,

InvalidCard:=’Karte nicht registriert’,
WrongCode:=’Falche Eingabe’,

CodeTimeOut:=’Zeit abgelaufen’,
ConnectionFailure:= ’Kein Computer Kontakt’

Wait_for_signal
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3935

Chapter 78 SOMT Tutorial
Now you have completed the iteration exercise.

Figure 757: The block type EntranceInterface

Block Type EntranceInterface 1(1)

theCardreaderInterface(1,1):
CardreaderInterface

theKeypadInterface(1,1):
KeypadInterface

theExitButtonInterface(1,1):
ExitButtonInterface

theDisplayInterface(1,1):
GermanDisplayInterface

G1

ReadCard,
ReadDigit,
PressExit,
Display

G1
ToCr

ReadCard

Entry

FrCr

ReceiveCard
ExitG2

G1
ToKp

ReadDigit
Entry

FrKp

ReceiveCode
ExitG2

G1
ToEb

PressExit
Entry

FrEb

ReceivePressExit

Exit
G2

G1
ToD

Display

Entry

FrD

EnvDisplay
ExitG3

G2

EnvDisplay,
ReceivePressExit,
ReceiveCode,
ReceiveCard G3 EnvDisplay
3936 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 To Conclude...
To Conclude...
You have now learned the steps of the SOMT method, and we hope you
have enjoyed the tour.

Once again we would like to point out that the activities are presented
in a sequential order in this tutorial just to simplify the reading. In prac-
tise, the task of developing a system using SOMT is a highly iterative
process. One activity may start before the preceding activity is complet-
ed and the models inside an activity are usually created in parallel.

The SOMT method is intended to support the development process, not
to control it. In other words, it is a proposed way of working. For your
own work, you should not feel that you are locked by SOMT, but pick
the parts that suit you best.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3937

Chapter 78 SOMT Tutorial
3938 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	78 SOMT Tutorial
	Introduction
	Purpose of This Tutorial
	Required Skills
	Preparations

	Preparing the Documentation Structure
	What You Will Learn
	Introduction to the Exercise
	Deleting Unwanted Chapters
	Adding New Chapters
	Adding the Organizer Modules

	Identifying the Requirements
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Studying the Textual Requirements
	Including External Textual Requirements
	Creating Textual Endpoints

	Creating the Data Dictionary
	Creating the Use Case Model
	Creating a List of Actors
	Creating a List of Use Cases
	Creating a Textual Use Case
	Creating an MSC Use Case

	Creating the Requirements Object Model
	Creating a Requirements Object Model
	Identifying the Objects
	Identifying the Relations

	Entity Match
	Creating Implinks
	Summary

	Performing the System Analysis
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Creating the Analysis Object Model
	Creating a Logical Architecture
	Adding Classes to the Logical Architecture
	Adding Relations to the Logical Architecture
	Adding Attributes to the Logical Architecture
	Adding Operations to the Logical Architecture
	Creating an Information Diagram

	Creating the Analysis Use Case Model
	Refined Requirements Use Case
	Behavior Pattern Use Cases

	Requirements Traceability
	Link Check
	Entity Match

	Summary

	Performing the System Design
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Design Module Structure
	Creating a Design Module Structure

	Creating the Architecture Definition
	Defining the Packages
	Creating the SDL System Diagram
	Refining the EntranceUnit – Mapping Aggregations

	Creating the Design Use Case Model
	Formalizing Use Cases

	Consistency Checks
	Entity Match
	Link Check

	Summary

	Performing the Object Design
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Mapping Active Objects to SDL
	Mapping to Process Types
	Defining the Communication Structure

	Defining the Object Behavior
	Defining the Basic Behavior of a Process
	Defining the Data of a Process

	Design Testing
	Preparing the Design Testing
	Simulating the System
	Validating the System

	Consistency Checks
	Link Check

	Summary

	Implementation
	Performing an Iteration
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Studying the Additional Requirements
	Examining the Consequences
	Introducing Changes in Documents
	Updating the Data Dictionary
	Updating the Requirements Object Model
	Updating the Analysis Object Model
	Updating the SDL Design
	Configuring the System

	To Conclude...

