Chapter

/8

July 2003

SOMT Tutorial

Thistutorial isintended to present how to combine object-oriented
analysisand SDL design in practisein a development process. This
isamethod developed by Telelogic, known asthe SOMT method,
SDL -oriented Object Modeling Technique.

Wewill demonstrate, using an Access Control system as example,
the various activitiesand modelsin SOMT together with the pro-
vided tool support for SOMT in Telelogic Tau.

Through thetutorial you will practise on various exer cisesthat will
get you familiar with the SDL suitetoolsaswell asthe SOMT meth-
od.

Telelogic Tau 4.5 User’ sManual 3835

Chapter 78 SOMT Tutorial

Introduction

3836

Purpose of This Tutorial

Thistutorial presents how to use the SOMT method and Telelogic Tau
in practise in a design process.

The working example is an Access Control system. The system shall
control the entrances to an office. Each employee working in the office
hasacard and apersonal code. To enter the office, the employee enters
acard into acard reader and types a personal code on akeypad. To exit
the office the employee presses an exit button.

Y ou will perform the development process for the Access Control sys-
tem applying the SOMT method. The tutorial will guide you through
the development process step by step presenting a number of hands on
exercisesfor you to perform. Thetutoria isexpected to be read sequen-
tialy.

After reading the tutorial, you should have gained knowledge about
how to apply the SOMT method on a development process.

Note: Platform differences

Thistutorial, and the others that are possible to run on both the
UNIX and Windows platform, are described in away common to
both platforms. In case there are differences between the platforms,
thisisindicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shotswill only be shown for one of the platforms,
provided they contain the sameinformation for both platforms. This
means that thelayout and appear ance of screen shots may differ
dlightly from what you see when running Telelogic Tau on your

platform. Only if ascreen shot differ in animportant aspect between

the platforms, two separate screen shots will be shown.

Telelogic Tau 4.5 User's Manual July 2003

I ntroduction

July 2003

Required Skills

Itisassumed that you have abasic knowledgeabout UML and SDL. We
a so recommend newcomers to acquaint themselves with the basic fea-
tures of the SDL suitetools. Y ou can do this by practising on the exer-
cisesin the tutorials provided for the different tools. Please see the pre-
vious chapters in this volume.

It isrecommended that you have read the SOMT Methodology Guide-
lines starting in chapter 69 in the User’s Manual.

Preparations

1. Makeanew empty directory of your own for the purpose of thistu-
torial, eg. ~/somttutorial (on UNIX) Or
C:\Telelogic\SDL_TTCN Suite4.5\work\somttutorial (in
Windows).

2. Copy the SOMT tutorial directory and its subdirectoriesin
Stelelogic/sdt/examples/somttutorial (on UNIX), Or
C:\Telelogic\SDL TTCN Suite4.5\sdt\examples\somtt-
utorial (in Windows), intothisnew directory (contact if necessary
your system manager).

Note: Installation directory

On UNIX, the Telelogic Tau installation directory is pointed out
by the environment variable $telelogic. If thisvariableisnot
set in your UNIX environment, you should ask your system manag-
er or the person responsible for the Telelogic Tau environment at
your site for instructions on how to set this variable correctly.

In Windows, the Telelogic Tau installation directory is assumed
tobe c:\Telelogic\SDL TTCN suite4.5 throughout thistu-
torial. If you cannot find this directory on your PC, you should ask
your system manager or the person responsiblefor the Telelogic Tau
environment at your sitefor the correct path to theinstallation direc-

tory.
3. On UNIX, cd toyour own subdirectory somttutorial

4, Start Telelogic Tau.

Telelogic Tau 4.5 User's Manual 3837

Chapter 78 SOMT Tutorial

5. Specify the source directory for the system by double clicking on
the Source directory symbol located second uppermost in the Orga-
nizer window. The source directory specifieswhere new documents
that you have created are saved by default, and from where to read
when opening and converting documents. Since there are multiple
versions of the Access Control system, each version with diagrams
stored on files with identical names (but in different directories),
omitting to specify the source directory may cause the wrong ver-
sion of afileto be opened.

6. Inthe Set Directories dialog that is opened, select the third radio
button associated with Source directory. In the text field, enter the
complete path and name of your own somttutorial directory, if
it is not there already. Press OK to close the dialog. ('Y ou do not
have to change any of the other optionsin this dialog.)

Preparing the Documentation Structure

3838

What You Will Learn
» ToprepareaSOMT project by making preparationsin the Organiz-
er

Introduction to the Exercise

Y our task isto modify the basic view of the Organizer to get the desired
document structure.

The result of the exercise will be an Organizer structure containing a
number of chapters and modules, see Figure 713 on page 3842. The
chapters will correspond to the different activitiesin SOMT and the
modules will correspond to the modelsin each activity.

Deleting Unwanted Chapters

When you start anew project with Telelogic Tau you will get the default
basic Organizer view, see Figure 711. (This view could be different if

you do not have the default preferences set). The Organizer contains a
few black lineswith attached names, the chapters. The purpose of these
chaptersis to group together collections of documents.

Telelogic Tau 4.5 User's Manual July 2003

Preparing the Documentation Structure

July 2003

% Drganizer

File Edit “iew Generate Toolz Help

=\l o sl 223 Al s[et 8] 28 2]
-
o ChTelelogicTaudDBINWWINIZSE!

—_ Analysis Model

— UsedFiles

—_— SDL System Structure
— TTCHMN Test Specification

— (Other Documents

Figure 711: The basic Organizer view

We want each chapter in the Organizer view to represent an activity in
SOMT. The current chaptersin the Organizer will not fit into our future
documentation structure so they should be removed.

Delete the unwanted chapters by following the steps below:

1
2.
3.

Make sure you have the basic view in the Organizer.
Select the chapter named analysis Model.

Select the Remove command in the Edit menu or press the
<Delete> button. You aso find the Remove command in the pop
up menu. The Remove dialog is issued asking you to Remove or to
Cancel the action.

Press the Remove button. The dialog disappears and the chapter is
deleted.

Repeat the steps above and remove al of the remaining chapters.

Telelogic Tau 4.5 User's Manual 3839

Chapter 78 SOMT Tutorial

Adding New Chapters

Y ou should now organize the Organizer view into chapters correspond-
ing to the different activitiesin the SOMT method, i.e. each chapter
should contain documents and diagrams from one particular activity.

Y ou will have to add four chapters and they will be named
Requirements Documents, System Analysis Documents,
System Design Documents and Object Design Documents, respec-
tively.

First, add the Requirements Documents chapter:

1. Select the Add New command in the Edit menu. The Add New dia-
log arises with the Organizer radio button set.

2. Select the Chapter option in the option menu connected to the Or-
ganizer radio button.

3. Change the document name untitled to
Requirements Documents.

4. Pressthe OK button or <Return>. A chapter named rRequirements
Documents Will appear as the uppermost chapter object.

5. Now repeat the steps above and add the three remaining chapters
and namethem system Analysis Documents, System Design
Documents and Object Design Documents, respectively.

If the chapters show up in another order than the one you want in the
Organizer window, you may move asel ected chapter by using thearrow
quick buttons in the tool bar.

6. |If needed, move the chaptersin the Organizer to get a structure cor-
responding to the onein Figure 712.

3840 Teldlogic Tau 4.5 User's Manual July 2003

Preparing the Documentation Structure

% Organizer *

File Edit “iew Gererate Toolz Help

.

ree CihTelelogicTaudOvwvorkisomitutorial
—_— Redquirements Documents

—_ ystemn Analysis Documents

— Systemn Design Documents

—— Object Dasign Documents

Figure 712: The Chapter structure

Adding the Organizer Modules

The next step to take when preparing the document structure is to add
the Organizer modules. A module in the Organizer forms a naming
scope around the documentsit contains. It may contain any kind of doc-
uments.

Aseach activity in SOMT consists of anumber of models, it seems nat-
ural tolet amodel correspond to amodulein the corresponding chapter.
Y ou should now add the modul es to the chaptersin the Organizer struc-
ture.

1. Select the chapter named Requirements Documents.
2. Select the Add New command in the Edit menu.

3. Inthe Add New dialog, make sure that the Organizer radio buttonis
set. Select the Module option in the Organizer option menu.

4. Changethe nameuntitled tO RequirementsUseCaseModel

Note:

Y ou are not allowed to have any space characters in the name of a
module.

July 2003 Telelogic Tau 4.5 User's Manual 3841

Chapter 78 SOMT Tutorial

5. Pressthe OK button. A module named
RequirementsUseCaseModel appearsintheRrequirements
Documents chapter.

6. Now add the other modules to their respective chapter in the Orga-
nizer view. Let each model in a SOMT activity have its own mod-
ule. The document structure in the Organizer should ook like
Figure 713 when you are finished.

Reguirements Documents
TextuglRequirementsModel
DotoDictionaryModel

ReguirementsUseCaseModel

m] fm] [[

ReguirementsobjectModel
System Anolysis Documents

AnolysisUseCasemModel

] [m

AnolysisobjectModel

System Design Documents
DesignModuleStructure
Architecturebefinition

DesignUseCoseModel

Object Design Documents

SDL_DesignmModel
Figure 713: The complete document structure

This structure will form the framework to organize the forthcoming
documents around.

7. Savethe Organizer structure and name the file
accesscontrol.sdt.

Now you havefinished the preparations and you can start to develop the
Access Control system using the SOMT method.

3842 Teldlogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

Identifying the Requirements

July 2003

Textual requirements model ftext)

Requiremerts Requiremerts
Requirements object rmodel | use case model
Fnahysis (class diagram) (teatMASC)

[
a
Analysis ' Analysis 2
object rmodel o use case model _g
System ielass diagram) [tevtAdS 0 n
Analysis g
System design 1 use cl:j:sslg:nodel
System model 501 i
Design : MMSCATCN)
- Object design
polect model, 0L
Implementation| Code, hardware, tc

Figure 714: Overview of the SOMT process

What You Will Learn

To bring in external (requirements) documents into the Organizer
To identify important concepts
To use adata dictionary

To identify actors and use cases and to compile the information
gained into textual documents

Telelogic Tau 4.5 User’ s Manual 3843

Chapter 78 SOMT Tutorial

3844

* Tocreate atextual use case
* Tocreate an MSC use case out of atextual use case
» To make arequirements object model

» To connect important conceptsin the different documents with im-
plinks

e To perform consistency checks

Introduction to the Exercise

In this exercise you will perform the tasks associated with the require-
ments analysis activity. The purpose of the requirements analysisisto:

e Gain understanding of the problem domain - the Access Control
system and the environment in which it is going to exist.

* Find and understand all requirements imposed on the Access Con-
trol system.

Producing a complete requirements analysis would take too much time
inthistutorial. Therefore, you will only perform parts of every required
step of the process.

The result will not be a complete requirements structure, but you will
have acquired knowledge of how to use the SOMT method in the pro-
cess of identifying requirements.

Preparing the Exercise

Y ou can use your own document structure from the previous exercise
(just moveyour accesscontrol.sdt filetothe reqga directory), or
use a provided solution.

1. Openthesystemfile somttutorial/ReqghA/accesscontrol.sdt
(on UNIX), Or somttutorial\rega\accesscontrol.sdt (in Win-
dows).

2. Check that the Source directory issetto somttutorial/Regh/
(on UNIX), Oor somttutoriall\rega\ (in Windows), in the same
way asyou did inthe preparation to thistutorial (see " Preparations’

on page 3837).

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

Studying the Textual Requirements

Including External Textual Requirements

A textual document with requirementsistheinput to the Access Control
system development project and it will form the base from which the
Access Control systemisdeveloped. Y ou will later on createimplemen-
tation links (so called implinks) between the textual requirements docu-
ment and other models. This is done to make it possible to follow are-
quirement through a number of models all the way down to code.

The textual requirements document of the Access Control system is
contained in atext file. Thisfile should now beincluded in the Organiz-
er work area.

1. Select the module named TextualRequirementsModel inthe
Requirements Documents chapter.

2. Select the Add Existing command in the Edit menu.

3. Inthe Add Existing dialog, changethe filter to * . txt and pressthe
Filter button. Select thefile TextualRequirements.txt and
press OK to add it.

4, TheTextualRequirements documentisnow added tothe module
TextualRequirementsModel inthe Organizer and the Text Editor
showing the document is opened. The document looks like

Example 607.

Example 607: The textual requirements

Thetask isto design the software to support a computerized Access
Control system. The purpose of the system isto control the accessesto
an office.

An entrance leading to an office can have four different security levels:

1. Always unlocked

2. Requiresacard to unlock

3. Requiresacard aswell as acode to unlock
4. Alwayslocked

The security levels of an office entrance can be altered during the day.

Each employee working in the office has a card with a personal code
consisting of four digits. To open a door with security level three, the

Telelogic Tau 4.5 User's Manual 3845

Chapter 78 SOMT Tutorial

3846

employee enters her card into acard reader and types her personal code
on akeypad. Thetime between consecutive keystrokes when typing the
code is not allowed to exceed three seconds. To enter through a door
with security level two, the employee just enters her card into acard
reader.

Each entrance |eading into the office consists of adoor with an electric
lock aswell asacard reader, akeypad and adisplay on the outside, and
an exit button on the inside. The employee needs a card and a code to
enter the office. To exit, the employee just presses the exit button and
the door is unlocked for ten seconds.

All entrances communicate directly with a central controller which
makes sure that a validation of the correctness of cardsand codesis per-
formed. The controller has access to a database consisting of al card
numbers and their corresponding personal codes. If the card isvalid
and, in case of security level three, the corresponding code correct, the
door isunlocked for ten seconds and the employee may enter. In case of
aninvalid or unregistered card, access to the office is not allowed. In
case of anincorrect code, the employeeisinformed of thisand must try
again by entering the card into the card reader and retyping the personal
code.

The Access Control system must read its data, consisting of card num-
bers with their corresponding personal code, from a database. The data-
base is managed by using a separate management system that is not de-
veloped within the project. The system operator, who is running the
management system, isauthorized to register new employees, cardsand
codes, to change acodeif the employee wishes so, to delete employees
from the database and to change the security level of an entrance. The
system operator is also responsible for initializing the Access Control
system. All the actions mentioned above are done using the manage-
ment system.

The system must be able to recover from computer and connection fail-
ures. If a connection between an entrance and the central controller is
lost, the door is locked from the outside not permitting anyone to enter
(i.e. security level four isset). It is, however, possible to open the door
from the inside by means of the exit button.

The system must be extensible to include new functions and be easily
maintained.

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

Creating Textual Endpoints

Now you should study the textual requirements document and mark all
concepts (nouns) that you find essential for the problem domain aslink
endpoints. These markswill be very useful inlater stages of the project.
In thistutorial most of the endpointsin the textual requirements docu-
ment have already been created. Y ou task isto add the two missing
ones:

1. Inthe second sentence of the textual requirements document locate
the word “office” and mark it with the mouse.

When you mark an endpoint see to it that you only mark the word
itself and not any additional characters, like aspace or adot after the
word.

2. Inthe Link submenu in the Tools menu, choose Create Endpoint.

3. Thetext will be underlined indicating that the text fragment now is
alink endpoint.

4. Now, locatetheword “entrance” in the third sentence and create an
endpoint out of it by repeating the procedure above.

5. If you go through the rest of the document you can see that the rest
of the important concepts already have been marked as endpoints.

6. Savethe document.

7. OpentheLink Manager. Thisisdone by choosing Link Manager in
the Link submenu in the Tools menu. Y ou can do this either in the
Organizer window or in the Text Editor window; the result will be
the same.

TheLink Manager window will pop up showing all the endpoints of
thetextual requirements document. The endpoint background color
is used to show the endpoint status. As the endpoints are newly cre-
ated, and the link file has not been saved yet, the background of the
endpointsis painted gray.

8. Savethelink file from the File menu, giving it the name
Links.sli.

9. Closethe Link Manager window.

Telelogic Tau 4.5 User's Manual 3847

Chapter 78 SOMT Tutorial

3848

Creating the Data Dictionary

A datadictionary is atextual document which should define all impor-
tant concepts found during the whole development process. It formsa
common vocabulary for the members of the project. It isa good ideato:

» Provide each item included in the data dictionary with anameand a
brief explanation.

» Categorizethe conceptsin nouns, verb phrases and relation phrases.
» Sort the concepts al phabetically.

» Haveasectioninthedatadictionary for each activity. Thismight be
agood idea because a certain concept often has different meanings
in different activities. For example, aconcept can be described by a
classin one activity and in the next activity it might be described by
a block with a corresponding process.

All theimportant objects, relations and verbsthat you find in the textual
reguirements should beincluded in the datadictionary. Thishasalready
been donein an existing patabictionary file, so you do not have to

do anything. Just add the existing file:

1. Addtheexisting patabictionary.txt filetothe
DataDictionaryModel modulein the Organizer. The Text Editor
will show the patabpictionary.

2. Read through the document to get yourself acquainted with the
problem domain vocabulary.

All nouns, relation phrases and verb phrases in the data dictionary are
marked as link endpoints. This has been done to make it possible to do
entity matches between any model and the data dictionary. An entity
match checksthat all entitiesin one model have matching entitiesin an-
other model. That is, we can check that all entitiesin amodel really are
described in the data dictionary. Thiswill be performed in “Entity
Match” on page 3865.

The example below shows a part of the requirements analysis data dic-
tionary.

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

Example 608: A data dictionary
Nouns/Objects

Access control system - A system to control the access rights to an of -
fice so that no unauthorized persons can enter without permission.

Card - Each employee working in the office gets a card and a corre-
sponding personal code. By means of this card and code, the employee
can get access to the office.

Cardnumber - The number that uniquely defines a card.

Relation Phrases

Card with code - Each employeein the office has a card with a personal
code.

Connection between central controller and entrance - Thereisaconnec-
tion between every entrance and the central controller.

Verb Phrases

Change code - An operation done by the system operator to change the
code of acard.

Change Security Level - An operation done by the system operator to
alter the security level of an entrance.

Connectionislost - The connection between an entrance and the central
controller can sometimesfail. In case of broken connection nobody can
enter the office. It is, however, possible to |eave the office.

July 2003 Telelogic Tau 4.5 User's Manual 3849

Chapter 78 SOMT Tutorial

3850

Creating the Use Case Model

The purpose of a use case model is to capture the requirements and
present them from the users point of view, thus, making it easier for the
intended users to validate the correctness of the requirements analysis.

The use case model consists of :
e Alist of actors
e Alist of use cases

* A number of MSCs (message sequence charts) and/or textua use
cases

The use case model is also a useful source of information when devel-
oping the requirements object model, see " Creating the Requirements
Object Model” on page 3861.

A use case is a sequence of actions showing a possible usage of a sys-
tem. Use cases devel oped during the requirements analysis activity
should mainly concern the interaction between the system and the users
of the system. No message exchanges within the system should be
shown.

Users of a system may be people, other systems or objects outside the
system border which interact with the system.

An actor isauser taking part in ause case. An actor is not supposed to
be anindividual user, but rather represents one of the different rolesa
user can play when interacting with the system.

There are different ways to describe a use case:

» A textual description of the use case

* A description of the use case using an MSC

* A combination of both atextual description and an MSC

Describing use cases using textual descriptions will make it easier to
model exceptions and alternative paths of action sequences. Describing
use cases using M SCs will make the use cases more formal and easier
to verify. Also, as MSCswill be used in the coming activities, it might
be agood ideato start using them already in the requirements analysis.
The tutorial will use both textual descriptions and MSCsin the require-
ments analysis activity, and only MSCsin the later activities.

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

Creating a List of Actors

Now it istimeto create alist of actors. Thelist of actors should list the
actors by name, together with their respective responsibility.

1.

In the Organizer, select the RequirementsUseCaseModel module
and choose Add New. Inthe Add New dial og, set the Text radio but-
ton and choose Plain in the corresponding option menu. Name the
new document actorsList and set the toggle button Show in Ed-
itor. Thiswill give you a new text document in the Organizer win-
dow and an empty Text Editor window will pop up.

Try to find the actors of the Access Control system by studying the
textual requirementsin Example 607 on page 3845. For information
on how to find actors, see “Finding Actors’ on page 3851 below.

List the actors by name in the newly created textual document to-
gether with abrief description of the actor’ s role when interacting
with the system.

Mark theactorsinthe actorsList asendpointsin the sameway as
you did in “ Creating Textual Endpoints” on page 3847.

Save the document giving it the name actorsList. txt.

Finding Actors

Y ou will find actors by studying the textual requirements. Useful ques-
tionsto ask are:

Which users will need services from the system to perform their
tasks?

Which users are needed by the system to perform its tasks?

Arethereany external systemsthat use or are being used by our sys-
tem?

In practise, the activity of defining actors should be performed iterative-
ly. Try to find as many of the actors as possible now. If you do not be-
lieve you found them all, start creating some M SC use cases (as having
done some M SCs often makes it easier to determine the actors). Then
go back and complete the list of actors.

In our case with the Access Control system we find that an employee,
who daily interacts with the system, is an obvious candidate for the list

Telelogic Tau 4.5 User's Manual 3851

Chapter 78 SOMT Tutorial

3852

of actors. Also, considering the third question above, it is obvious that
the management system is being used by our system and therefore
should be added to thelist. The third actor, the door, may not be so easy
tofind at afirst glance, but when you have created the MSCsit will be-
come more evident that the door is an actor aswell. The door’ sinterac-
tion with the system consists of notifying the system every timeit is
opened or closed.

The example below shows a part of thelist of actors.

Example 609: Part of a list of Actors

Employee - Someone who needs to enter and exit the office. To enter
the office, an employee must have aregistered card and (depending on
the current security level) a corresponding personal code. To exit, the
employee must press an exit button to unlock the door.

ManagementSystem - The management system starts and maintainsthe
Access Control system. All changes to the database are handled by the
management system. The management system is run by a system oper-
ator.

Creating a List of Use Cases

When you have defined the set of actorsit is time to describe the way
they interact with the system, which is donein use cases. The first step
isto createalist of all use cases. Thelist of use cases should list the use
cases by name together with a short description.

1. Add anew plain text document in the
RequirementsUseCaseModel module. Nameit usecaseList and
set the toggle button Show in Editor. Press OK.

2. Try tofind the normal use cases and list them in the newly created
textual document. For information on how to find use cases, see
“Finding Use Cases’ on page 3853.

3. Toeachusecase, add ageneral one-sentence description of itsfunc-
tionality.

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

4. For each normal use case, examine which exceptionsthat can occur
and state these exceptions as well in thelist.

5. Mark the use case names in the usecaseList asendpoints.

6. Savethe document giving it the name usecaseList. txt.

Finding Use Cases

It is often quite easy to identify use cases by looking at the purpose of
the system. To verify that you haveidentified most of theimportant use
cases you should:

* |ook at thelist of actors, and, for each actor,

» identify the tasks that the actor should be able to perform and the
tasks which the system needs the actor to perform. Each suchtask is
acandidate for anew use case. It is often very useful to check the
textual requirements document for verb phrases (or you could look
directly in the DataDictionary to see which verb phrases that have
been stated as important); these are possible candidates for use cas-
€s.

Start with the employee actor and try to determine which actions he or
she needs to perform. There are different waysto enter an office, either
using acard or using both acard and a code. Both ways are obvious can-
didatesfor the use caselist. Also, the employee must be able to exit the
office, thiswill be yet another use case.

The Management system must inform the Access Control system when
there has been a change in security level. Thiswill be our fourth use
case.

Asfor the door actor, the task of notifying the system when adoor is
opened and closed can be included in the enter/exit office use cases.
Y ou should always try to make the use cases as compl ete as possible,
that is, make one complete use case instead of several minor ones.

When you have found the normal use cases, refine them by examining
the exceptions that are possible for each use case. Look in the textual
reguirements document and try to find the exceptions that can occur.

In the case where an employee enters the office, the first thing that can
go wrong isthat there is a connection failure between the entrance and
the central controller. Other possiblethingsthat can fail arethat the card

Telelogic Tau 4.5 User's Manual 3853

Chapter 78 SOMT Tutorial

3854

isinvalid, the code is wrong, the time between consequent keystrokes
when typing the code istoo long, and, finally, the door is never opened
even though it was unlocked. All these exceptional cases can be found
by studying the textual requirements thoroughly.

The example below shows a part of the use case list.

Example 610: Part of a Use Case List

Normal Cases:

Enter_Office With_Card - Describes the interaction between an
employee and the Access Control system when the employee wants
to enter the office through a door with security level two.

Enter_Office With_Card_And_Code- Describestheinteraction be-
tween an employee and the Access Control system when the em-
ployee wants to enter the office through a door with security level
three.

Exit_Office - Describes the interaction between an employee and
the Access Control system when the employee wants to exit the of-
fice.

Exceptional Cases:
Exc_No_Connection

Exc_Invalid_Card

Creating a Textual Use Case

Now that we have alist of the actorsto the system aswell asalist of use
cases, we can start to create amore detail ed description of the use cases.
A textual use case consists essentially of natural text structured into a
number of text fields, see " Describing a Textual Use Case” on page
3855. In this exercise we will only create one textual use case, as creat-
ing them all takes too much time. The use case we will focus on

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

throughout the rest of the tutorial is the one where an employee enters
an office with both a card and a code.

1.

Add a new textual document in the RequirementsUseCaseModel
module and name it Enter Office With Card And Code.

Try to create the textual use case consisting of the fields described
in “Describing a Textual Use Case” on page 3855.

Create endpoints of the textual use case name (for consistency use
exactly the same nameasyou used in thelist of use cases) and of the
actorsinvolved in the use case.

Save the document giving it the name
Enter Office With Card And Code.txt.

Describing a Textual Use Case
A textual use case should consists of the following fields:

Name: The name of the use case.
Actors: A list of the actorsinvolved in the use case.

Preconditions: A list of propertiesthat must betruefor thisuse case
to take place.

Postconditions: A list of properties that are true when the use case
isfinished.

Description: A textual description of the normal sequence of events
that describe the interaction between the actors and the system.

Exceptions: A list of exceptional interactions that complement the
normal flow of eventsdescribed inthe pescription field. If an ex-
ception leads to different postcondition properties compared to the
normal sequence this should be noted.

The description field should thus describe what happens when every-
thing is going as expected. No exceptions should be considered here.
They are not described until the exceptions field.

The example below shows atextual description of the use case “ Enter
office with card and code.”

Telelogic Tau 4.5 User's Manual 3855

Chapter 78 SOMT Tutorial

3856

Example 611: A Textual Use Case

Use case name: Enter_Office_ With_Card_And_Code
Actor: Employee, door

Preconditions: System isinitialized, security level threeis set, and the
door is closed and locked. The display displays “Enter card”.

Postconditions: The door is closed and locked again.

Description: An employee enters a card into the card reader. The dis-
play displays “Enter code”. The employee enters a code consisting of
four digits using the keypad. The door is unlocked and “ Please enter” is
displayed. The employee opensthedoor, entersthe office and closesthe
door again. The door islocked and “Enter card” is displayed.

Exceptions:

- If the employee enters an invalid or unregistered card, “Invalid card”
is displayed for three seconds and then “Enter card” is displayed.

- If the time between consequent keystrokes when typing the code ex-
ceeds three seconds, everything is interrupted and “Enter card” is dis-

played.

- If the employee types the wrong code, “Wrong code” is displayed for
three seconds and then “Enter card” is displayed.

- If the employee does not open the door within ten seconds after it has
been unlocked the door islocked again and “Enter card” is displayed.

- If there is no connection between the entrance and the central control-
ler and acard is entered, then the text “ Connection failure” is displayed
for three seconds and then “Enter card” is displayed again.

Creating an MSC Use Case

The second notation for use cases used in SOMT is MSCs. Creating
MSCsfor al the use cases and their exceptions takes too much timein
thistutorial. Therefore you will concentrate on the use case correspond-
ing to the textual description you just created,

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

Enter Office With Card And_Code, and one of its exceptions,
when an employee enters an invalid card.

1. Select the module RequirementsUseCaseModel and choose Add
New. In the Add New dialog, set the MSC radio button. Name the
document Enter Office With Card And Code and setthe Show
in Editor toggle button.

2. Inthe MSC Editor, try to create the MSC. Look at the textual de-
scription of the use case and describe it by means of the notations
defined for M SCs. Also, makereferencesto exceptions at the points
where these can occur. Figure 715 shows an example of the com-
plete MSC.

— Each actor should be represented by a separate instance. The
Access Control system itself should also be represented by a
separate instance.

— Actions, displayed messages, etc. should be drawn asMSC
messages between the instances.

— Anexceptionisdrawn by adding an MSC reference symbol, lo-
cated last inthe M SC Editor’ s symbol menu. An M SC reference
symbol is areference to another MSC, described in a separate
MSC diagram. The symbol isadded to one of the instance axes.
By convention, M SC exceptions are named “exc” followed by
the name of the exception. To connect the symbol to all three ax-
es, select Connect from the Edit menu. Press the Global button
to connect the reference symbol to all axes.

3. Savethe MSC diagram giving it the name
Enter Office With Card And Code.msc.

July 2003 Telelogic Tau 4.5 User's Manual 3857

Chapter 78 SOMT Tutorial

MSC Enter_Of fice_With_Cord_and_code

I
1 B
' '
[I a
Emplodes | | AT SoEten | | [===T
Readcard
|: 2xc Ho_Connection J
T T T
L exc Invalid_card J
Dizplay [‘Entef code’]
[exc Kegstroke_Timeout J
ReadDigit ‘
|: exc Kegstroke_Timedut J
ReadDigit
L =mC Heustroke_Timsout J
ReqdDigit ‘
[exc Kegstroke_Timeout J
ReadDigit + ‘
[=xc Wrong_Code)
Unlock
Displag [Flease snter ']
[mwc Door _Mot_opsted J

Dok Timer (1@

open
Receivelpen
e
Close
RecoiveClose
| EecsiveClors |

Lock

Display ["Entef cara’]

Figure 715: An MSC example

3858 Telelogic Tau 4.5 User' s Manual July 2003

Identifying the Requirements

July 2003

8.

Create anew moduleintherRequirements Documents chapterin
the Organizer. Name the module Msc_Exceptions RegA.

Add anew MSC document to the newly created module in the Or-
ganizer and name the document Exc_Invalid Card.

In the MSC Editor, try to create the exception, i.e. describe what
happens when an employee has entered an invalid card.

Save the diagram giving it the name Exc Invalid Card.msc.

MSC Exc_Invalid_Cord

Ermployes | | AC System |

Dizsplay
TInvalid card’]

DisplagTimer (33}

Display

[’Er‘ﬂ:er cc,n'cl':l

Figure 716: An MSC exception example

In the Organizer view, select the MSC Exc_Invalid card and
then choose Associate in the Edit menu. The Associate dialog ap-
pears.

Choose to associate the Exc_Invalid card MSC with the
Enter Office With Card And Code MSC asitisan exception
to this use case.

The Requirements Documents Chapter should now look likein
Figure 717.

In reality you repeat the steps above for al the use cases found and as-
sociate each one of them with its exceptions. In this tutorial, however,

Telelogic Tau 4.5 User's Manual 3859

Chapter 78 SOMT Tutorial

3860

wewill not create the entire use case model asthat would take too much
time.

Reguirements Documents
TextualReguirementsmodel
= TextuolRequirements

DotabictionaryModel
=" DotaDictionary

RequirementsUseCasemodel

RequirementsobjectModel

MSC_Exceptions_Rega
(57| Exc_Invalid_Card
Figure 717: The Requirements Documents chapter

Now, when we have our use cases and adata dictionary we will contin-
uethe activity with producing a requirements object model. In practise,
you should work with all themodelsin parallel. Theactivitiesin SOMT
are not supposed to be performed in a sequential order, rather, produc-
ing the modelsis a highly iterative process.

Telelogic Tau 4.5 User’s Manual July 2003

Identifying the Requirements

Creating the Requirements Object Model

Therequirements object model isintended to capture the objects, there-
lations between these objects and other concepts of the real world that
are of importance for the application we intend to build. There are dif-
ferent types of concepts that can be described in this model. The two
major diagram types show thelogical structure of the dataand informa-
tion and the context of the system.

Relations between objects in the model will be expressed through asso-
ciations, aggregations and inheritance.

Creating a Requirements Object Model
Now you should create the requirements object model.

1. Inthe Organizer, select the RequirementsobjectModel module
and choose Add New. Inthe Add New dialog, set the UML radio but-
ton and make surethe Object Model optioninthe UML option menu
is set. Name the new document LogicalsStructure and setthe
toggle button Show in Editor. Thiswill pop up an empty OM Editor
window.

2. Try tofind the objects, see “Identifying the Objects’ on page 3863.

3. Enter the classesfound into the object model diagram in the OM Ed-
itor and give them a suitable name. Asyou can see, every classis
automatically marked as an endpoint.

4. Relatethe classes by means of associations, aggregations and inher-
itance, see “ldentifying the Relations” on page 3864.

5. Consider if multiplicity is needed on any of the associations and if
so, add it. (Double-click alineto bring up the Line Details diaog.)

6. Toincrease the readability of the model, name the associations or
attach role names to the classes. The diagram should ook some-
thing like in Figure 718 when you are finished.

July 2003 Telelogic Tau 4.5 User's Manual 3861

Chapter 78 SOMT Tutorial

LogicalStructure 1y
= = =
Security_ | | Security_ || Secunity_ || Security_ Office 4 works in | Employee |Has p Card
levell level2 leveld leveld

*

as
[=
System_ Code
Operator
*
=, =,
Security_ Entrance Central_ | Management._
level 4Has 4 Communicates with | Control 4 Maintains System
Communicates with
IMaintains
hd
=
Door CartdReader Display Keypad Exit_ Data_
Button Base

Figure 718: Thelogical structure
7. Savethediagram giving it the name logicalstructure. som.

8. Add yet another object model to the RequirementsobjectModel
module in the Organizer. Name it contextDiagram.

9. Inthediagram, show the system and the external actors interacting
with it. Use collapsed class symbols (select Collapse from the Edit
menu). The classes are automatically marked as endpoints.

10. Clear the endpoint on the Access Control System Classaswe
will not need this. (Select Clear Endpoint from the Link submenuin
the Tools menu.)

11. Save the diagram giving it the name contextdiagram. som.

3862 Telelogic Tau 4.5 User' s Manual July 2003

Identifying the Requirements

July 2003

ContextDiagram
Door
=
Employee Access_Control_
System
Management_
System

Figure 719: The Context diagram

Identifying the Objects

Themain input sources to the requirements object model arethetextual
reguirements, the use case model and the data dictionary. Other sources
of information are domain experts, textbooks etc.

A classical way to find the objectsis to study the textual requirements
and note all nouns (or look directly in the nouns section in the data dic-
tionary). If a particular noun appears in many places, the concept is
probably important for the problem domain and should be modeled in
the requirements object model.

The use cases are also helpful for finding the objects. They define the
actors that interact with the system and these are obvious object candi-
dates. Other likely object candidates are the entities that are transported
into or out of the system. The use cases are helpful in identifying these
concepts as well.

The requirements object model should at |east describe all conceptsthat
arevisible on the outside of the system. Thisincludes all physical enti-
tiesthat a user can see aswell asthe knowledge a user must haveto use
the system. It is, however, not only concepts outside the system that
should be modeled in the requirements object model. Conceptsinside
the system that are so obviousthat we know of them already at thisstage
should be dealt with aswell. In our Access Control system, for instance,
it isquite easy to seethat the systemitself isbuilt up of acentral control
and anumber of entrances, each havingitsownlocal control. Therefore,

Telelogic Tau 4.5 User's Manual 3863

Chapter 78 SOMT Tutorial

in the requirements object model, we do not model the heart of the sys-
tem as one class, but as two communicating classes.

Identifying the Relations

Theinformation sourceswhen identifying rel ations between objectsare
the same as when identifying the objects. Look for relation phrasesin
the textual requirements (or use the data dictionary as an information
source). You may aso take alook at each object and ask the questions:

1. What services does the object provide?

2. Doesthe object need services from other objectsto completeits ser-
vices?

If the object needs services from other objects, identify these objects
and model the relations in the object model.

There are three different types of relations, described below.

The Association Relation

The association relation describes how different classes relate to each
other by means of information exchange.

waorks for

*

Person Company

Figure 720: An Association relation

The Aggregation Relation

The aggregation relation isa special case of the association relation and
it describes a“ consists of” relation. For example: a document consists

of paragraphs.

*

Document .. Paragraph

Figure 721: An Aggregation relation

3864 Teldlogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

The Inheritance Relation

Theinheritance relation describesan “isa’ relation. For example: acar
isavehicle.

Yehicle

i

Car

Figure 722: An Inheritance relation

Entity Match

Now it istime to do some consistency checks between the created mod-
els. When you do an entity match you check that all entitiesin one mod-
el have matching entitiesin another model.

1.

Open the Link Manager. The window popping up shows all end-
points from the models you have created during the requirements
analysis activity.

To be able to perform an entity match you must be in entity mode
(i.e. not in endpoint mode). Press the Show endpoints or entities
button in the Tool bar to change to entity mode. (The view in the
Link Manager window will look just the same, since one entity cor-
responds to exactly one endpoint in all our models.)

Thefirst thing we will check isthat all important conceptsin thetextual
requirements model are described in the data dictionary.

3.

4.

Choose Consistency Check in the Tools menu. The Consistency
Check dialog appears and you are asked to choose between alink
check and an entity match. Set the entity match radio button and
press Continue.

A new diaog appears and you are asked to select the documents
representing the from group. Select the
TextualRequirementsModel moduleand pressContinue. (Asyou
can see, the text document in the module is also selected when you
select the module.)

Telelogic Tau 4.5 User's Manual 3865

Chapter 78 SOMT Tutorial

3866

5. Yet another dialog appears asking you to select the documents rep-

resenting the to group. Select the batabictionaryModel module
and press Check.

The Link Manager window will show the result of the entity match
in anew consistency view. Entities from the from group are shown
as normal endpoints and entities from the to group are shown as
dashed endpoints. The links shown are temporary links created by
the Link Manager to indicate matching entities, see Figure 723.

-.. Matching
1 7Y (Temporary link]

Text Office, Module DotaDictionarymodel

% Text O0ffice, Module TextualRegquirementsModel

Figure 723: Matching entities

Asyou can see, if you scroll through the Link Manager window, all
the concepts from the textual requirements have a matching entity
in the data dictionary. (An endpoint from the to group without a
matching link from it would have indicated that no corresponding
entity could be found in the to group.)

There are afew more consistency checks which you can perform at this
point:

Check that all entitiesin the requirements object model are de-
scribed in the data dictionary.

— LettheRequirementsobjectModel module form the from
group and the batabictionary module theto group.

— Asyou can seefrom the result all concepts but the four different
security levels have been described in the data dictionary.

Check that al important concepts in the textual use cases are de-
scribed in the data dictionary and in the use caselist. Important con-
ceptsin atextual use case are the actors and the use case name. The
actors should be described in the data dictionary and in the actors
list. The use case name should be described in the use case list.

— Inthis case the from group will be the textual use case,
Enter Office With Card And Code, and theto group will
bethe patabDictionary, the ActorsList and the

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

July 2003

UseCaseList. (You can select any number of individual docu-
mentsin thelist, not only modules.)

— Theresult shows that the use case name was found in the
UseCaseList andthat the actorsweredescribed both inthedata
dictionary and in thelist of actors.

* Check that all actorsin the use cases are modeled in the context di-
agram and vice versa.

— First, the actors1ist will form the from group and the
Context Diagram Will form theto group, then we will do an-
other entity match with the groups vice versa.

Creating Implinks

Now that we know that al our models are consistent, it is time to add
the implinks. Implinks are used to enable traceability between the mod-
els.

Wewill start with creating implinks from the conceptsin the textual re-
quirements to the requirements object model, in particular the logical
structure diagram.

1. Openthe Link Manager by selecting it in the submenu Link in the
Tools menu if it is not already open.

2. Make surethewindow showsendpoint view, not entity view or con-
sistency view. If necessary, press the Show endpoint or entities
quick button.

Inthe Link Manager window you see all the endpoints from the dif-
ferent models in the requirements analysis activity. If you scroll to
the very end of the window you can see how many endpoints and

linksyou havein your system. There should be no links at this point.

3. To check that all endpoints are present in the Link Manager win-
dow, choose Check Endpoints in the Tools menu.

4. The Check Endpointswindow will pop up showing if any previous-
ly unknown endpoints were found. If so, select these and press Add.
Then press Continue.

5. Another version of the Check Endpoints window pops up showing
if any invalid endpoints were found. In such case you can choose to

Telelogic Tau 4.5 User's Manual 3867

Chapter 78 SOMT Tutorial

3868

delete these by pressing Delete. Press OK when you are done and
want to close the dialog.

6. To be ableto create the implinks between the textual requirements
and the classesin the logical structure you only need to see the end-
points from these diagrams in the Link Manager window. Y ou do
not have to see all the other endpoints. Therefore, choose Filter in
the View menu.

TheFilter dialog pops up and you can chooseto set filter settingsfor
links, endpoint or documents, by selecting from the option menus.

7. Chooseto set the filter for documents and select that the only docu-
ments to be shown should be the textual requirements and the logi-
cal structure documents.

8. Press Apply and then Done.

9. IntheLink Manager window, highlight the endpoint Text office
by first selecting the endpoint and then clicking the Highlight quick
button in the tool bar. The endpoint is highlighted with aframe
around it.

10. Createanimplink tothe class office by first selecting the class
and then pressing the Create Link quick button in the tool bar. The
Create Link dialog will open.

11. Namethelink 1mplementation Link and pressthe Create button.
A link from the text “office” to the class Office is created.

The rest of the links between the textual requirements and the object
model diagram are created inasimilar way. Y ou can do thisif youwant,
or go to the next exercise, where this has been done, and check out the
result.

Links from the usecaseList to the different M SCs and their excep-
tions should also be created. Y ou cannot do this here however, as you
have not created al the use cases.

What we aim at hereisto create links from the textual requirements,
through the abject models of the different activities, to the SDL design.
Simultaneously we want to create links from the list of use cases,
through the use case models in the different activities, to the SDL de-
sign. The result of thiswill be that we can trace a design decision back-
wards to requirements through either object models or use case models.

Telelogic Tau 4.5 User's Manual July 2003

Identifying the Requirements

Summary

After having completed an entire requirements analysis, the
Requirements Document chapter the Organizer view should look like
in Figure 724.

Requirements Documents
TextualReguirementsMaodel
TextualReguirements

DataDicticrarygtMods1
Databicticrary. et

’E ReguirementslseCaseMade=1

—% ActorsList

_% UseCaselist

—% Enter_of fice_lith_Card_and_code
—'E‘ Enter_Of fice_lith_Card_And_Code
1 Exc_Door_MNot_Opened

Exc_Irwvalid_card
Exc_Keystroke_Timeout
Exc_ho_Cornection

1
1
1

—|___]' Exc_krong_Code

—% Erter_office_With_Card
—'E‘ Erter_office_With_Card
1 Exc_Door_Mot_tpened
T Exc_Irwvalid_Card

T Exc_Mo_Cornection
_% Exit_oOffice
—@ Exit_oOffice

E:___] Exc_Door _MNot_Opened
—% Charnge_Security_Level
—El Charnge_Security_Level

ReguirementsCobjsctModel
LogicalStructure

CortextDiagram

[E] M3C_Exceptions
[FF] Exc_MNo_Connection
77| Exc_Irwalid_cCard
77| Exc_Door_Hot_Opened
[F] Exc_Keystroke_Timeout
77| Exc_krong_Cods

Figure 724: The entire requirements analysis document structure

July 2003 Telelogic Tau 4.5 User’ s Manual 3869

Chapter 78 SOMT Tutorial

Performing the System Analysis

Textual requirements model tent)

Requirements Requirements
Requirsmerts object modeal uze caze model
Fnalysis (zlazs diagram) (et)
=
z
Pnalysis & Poalysis =
object modeal + uze caze model g
System (tlass diagram) (et S0 m
Pnalysis i
=1
Syt Syst;nlﬂ SdESLign A use E:sseigrllodel
ystem model, e
Deign MMSCATTCN)
: Object design
Object
Diesign model, S0L

Implementation|

Code, hardware, ete

Figure 725: Overview of the SOMT process

What You Will Learn

To identify and present the logical architecture of a system which

includes refining the object model from the previous phase
» Torefine use cases from the previous phase
* To usethe Paste As mechanism

3870

Telelogic Tau 4.5 User’s Manual July 2003

Performing the System Analysis

July 2003

Introduction to the Exercise

In this exercise you will perform the system analysis activity. The pur-
pose of the exerciseisto outline alogical model of the Access Control
system. This model will fulfil the requirements that were identified in
the requirements analysis. In other words, the purpose of thisactivity is
to identify the objectsthat are needed in the Access Control system and
the services these objects should provide.

Producing a complete system analysis structure takes too much time.
Thus, you will only perform parts of every step necessary to producethe
complete structure.

The input to the system analysis activity is a complete requirements
structure with the two main models:

* requirements object model

* requirements use case model

The output from the system analysis activity are the two models:
» analysisobject model

e analysisuse case model

These two models should be created in parallel through a number of it-
erations.

Preparing the Exercise

1. Openthesystemfile somttutorial/SysA/accesscontrol.sdt
(on UNIX), OF somttutorial\sysal\accesscontrol.sdt (in
Windows).

2. Check that the Source directory issetto somttutorial/Sysa/
(on UNIX), or somttutoriallsysa\ (in Windows).

What you seein the Organizer window isacompl ete requirements anal-
ysis structure with all implinks made.

Telelogic Tau 4.5 User's Manual 3871

Chapter 78 SOMT Tutorial

3872

Creating the Analysis Object Model

The analysis object model is arefinement of the requirements object
model. However, when transferring from the requirements analysis to
the system analysis you change the focus.

During the requirements analysis the focus is on understanding the
problem and the problem domain. In the system analysisthe focusisto
model a solution and to understand the logical structure of the system
that will be the solution to the stated problem. This change of focus
should be reflected by the analysis object model.

Little emphasis should be put on implementation aspects during the sys-
tem analysis activity. Questions regarding the implementation of the so-
[ution will very likely hide our actual problem.

A glance at the headlines may give you theimpression that the activity
of creating the analysis object model isasequential activity, but itisnot.
You will probably not first add all the necessary classes, then the rela-
tions, and finally specify the attributesand operations. Thisis, however,
the way the text is structured here to make it readable and to highlight
the important tasks of the activity.

Creating a Logical Architecture
Now it istime to create the logical architecture diagram.

1. SelecttheanalysisobjectModel moduleinthe system
Analysis Documents chapter in the Organizer.

2. Add anew object model diagram and name it
LogicalArchitecture.

3. Opentherogicalstructure diagramfrom thepreviousactivity as
well asthe new Logicalarchitecture diagram inthe OM Editor.

Adding Classes to the Logical Architecture

Now you should start adding classesto thelogical architecture diagram.
For information on how to find the classes, see “Finding Classes’ on
page 3874.

Several of the classes in the requirements object model can be trans-

ferred as-is to the analysis object model. The provided Paste As mech-
anism lets you transfer objects from one model to another while auto-

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Analysis

July 2003

matically creating implinks between the objects in the two separate
models. This mechanism should be used here, see below.

4., Selecttheclass centralcontrol inthe LogicalStructure dia-
gram and choose Copy in the Edit menu.

5. Gotothelrogicalarchitecture diagram by selectingitinthe Di-
agrams menul.

6. Choose Paste Asin the Edit menu. The Paste As dialog is opened.

7. Settheoption menuto Class and seeto it that the Createlink toggle
button is set. Press the Paste As button.

8. Select whereinthe Logicalarchitecture diagram you want to
place the centralcontrol object.

Now you have created a class named centralControl inyour
LogicalArchitecture diagram. The classis connected with anim-
plink to the centralcontrol classin the LogicalStructure dia-
gram. Thelink isindicated by thefilled triangle on the class symbol.

9. Repeat the procedure above with the class Ent rance but name the
new class Entranceunit asthisisamore descriptive name.

10. The classes cardreader, Keypad, Display and ExitButton are
obvious interfaces to our system and, also, parts of an
EntranceUnit. Repeat the procedure above with these classes. As
it isoften useful to name objectsaccording to their function, givethe
new classes names of the form xxxInterface.

Oneclassin therequirements object model may result in several classes
in the analysis object model. One reason may be that the class provides
so much functionality that splitting the classinto several smaller may be
convenient. Another reason may bethat aclassidentified intherequire-
ments object model needs services from other, not yet introduced class-
es. Consequently these classes should be introduced at this point of the
development process.

In practice, the actionsin the two cases above are the same. The newly
introduced classes should be linked to the original class in the require-
ments object model. In our examplethisisthe case with the class Door.
In the requirements object model we have one single class representing
the door. Further analysis, however, showsthat the door object includes
both a door lock as well as a door sensor. This aggregation structure

Telelogic Tau 4.5 User's Manual 3873

Chapter 78 SOMT Tutorial

3874

should be shown in the analysis object model. See section “Finding Re-
lations” on page 3876.

11. Copy the class boor in the Logicalstructure diagram.

12. Pasteit threetimesasaclassin the LogicalArchitecture dia
gram and see to it that the implinks are created at the same time.
Name the new classes DoorUnit, DoorLockInterface and
DoorSensorInterface respectively.

Now look at the classes you have so far inthe Logicalarchitecture
diagram. Think about the tasks of the different objects. Asyou can see
there is no class that can handle the logic, that is, an object that is re-
sponsible for what happens at an entrance. Therefore, you should add
such an object and nameit Entrancectrl, seebelow. The Entrancec-
trl will be apart of the Entranceunit.

13. Copy the class Ent rance from the Logicalstructure diagram.

14. Pasteit asaclassin the LogicalaArchitecture and renamethe
class, giving it the name Entrancectrl.

15. Also, copy and paste the securityLevel class and its subclasses.

Classesin the requirements object model that only exist outside the sys-
tem border or classes that do not provide any necessary services should
not be transferred at all to the analysis object model.

Finding Classes

Useful sources where you can find objects that may be included in the
analysis object model are:

» therequirements object model
» interfaces that the system will have to the environment
e Uusecases

When you intend to transfer objects from the requirements object model
to the analysis object model, consider the following to validate each re-
guirements object:

» Decideif the system needs information about the object to fulfill its
task.

« Iftheansweris“yes’ then add the classto the analysis object model.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Analysis

July 2003

Another useful way to find the objects is to examine which interfaces
the system needs. Often the application areaitself makesit obvious
what interfaces must exist. To find the interface objects, go through the
list of actorsand, for each actor, decide which interfacesthat are needed
to the system.

The use cases from the system analysis activity are also auseful source
for finding the objects. The problem is that we have not created these
use cases yet. As stated before, the work done in each activity is often
doneiteratively. Thisisatypical situation where an iteration is needed
as some objects in the analysis object model may not be found until we
have created and inspected the analysis use case model.

When you have created the M SCs you should examine them to check
whichinterface objectsthat areinvolved and which interna objectsthat
are modified. Also, check if thereis a control object that might handle
the logic of the use case or if thereis aneed to introduce such an object
in the analysis object model.

Adding Relations to the Logical Architecture

When you have identified all classesit istimeto add the relations. For
information about how to add relations, see “Finding Relations” on

page 3876.

In our Access Control system example, most of the relations from the
reguirements object model can be preserved.

1. Connect the centralcontrol tothe EntranceUnit with an asso-
ciation. Add multiplicity to the association. The centralControl
may be connected to several EntranceUnits but the Access Con-
trol system hasonly one centralcControl.

2. Connect the Entrancetnit tothe poorunit with an aggregation.
One EntranceUnit consists of only one boorUnit.

3. TheDboorUnit consists of aboorLockInterface and a
DoorSensorInterface. Add aggregations from the boorunit to
the DoorLockInterface and to the DoorSensorInterface.

4. Connect therest of the classes you have added with necessary asso-
ciations, aggregations and generalizations. Also consider if multi-
plicity is needed or not.

Telelogic Tau 4.5 User's Manual 3875

Chapter 78 SOMT Tutorial

3876

Finding Relations
Useful sources that may assist the process of finding relations are:

» therequirements object model (preserving and modifying existing
relations)

e analysis use case model
e textua requirements

The process of finding new relations and verifying old ones are closely
related to the process of creating the analysis use case model. It ismain-
ly aquestion about which other objects the object needs to know about
tobeableto provideitsservices. Also generalizations and aggregational
dependencies have to be considered, see “Identifying the Relations” on

page 3864.

Adding Attributes to the Logical Architecture

Now we have cometo the point whereit is time to add the attributes.
For information on how to find the attributes, see “ldentifying At-
tributes’ on page 3876.

There are not many classesin our LogicalArchitecture diagram that
need any attributes. In fact thereis only one, the classpisplay. This
class must be able to display different text messages depending on the
situation at hand. Therefore:

1. DefineText to be an attribute of the class pisplayInterface.

Identifying Attributes
Attributes can be found in:

» therequirements model (keeping existing attributes)
» thetextual use cases
» thetextual requirements

Attributes describe a property of an object and often correspond to
nouns. For example, possible attributes of an object “Person” may be
eye color, weight, shoe size, and so on. Attributes that may describe a
vehicle are owner, color, current speed, current gear, and direction.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Analysis

July 2003

Adding Operations to the Logical Architecture

Thelast thing to add to the logical structure object model are the oper-
ations. For information on how to find the operations, see “Identifyin
Operations” on page 3878.

Add the operations open, Close, Lock and unlock to the assembly
class Doorunit. Thisimpliesthat you also must add the operations
Open and Close to the class boorsensorinterface and unlock and
Lock to the class DoorLockInterface.

1.

2
3.
4

Select the class boorUnit.
Click on the operations section in the class.
Add the operations open, Close, Lock and unlock.

Repeat the procedure for the classes DoorLockInterface and
DoorSensorInterface adding their respective operations.

Continue to add the missing operations of the other classesin thedi-
agram. When you arefinished, your diagram should look something
likein Figure 726.

Save the diagram.

Telelogic Tau 4.5 User's Manual 3877

Chapter 78 SOMT Tutorial

LogicalArchitecture

Central_ Entrance DoorUnit
Control Unit
Open
aliciate Card Change Security Level Close
aliciate Code Open Unlock
Chiange SysternSecurity Close Lock
RecisterEntrance Read Card
Fiea Digit
FressExit
Cardreader_ Keypad_ Display_ ExitButton_ DoorlLock_ DoorSensor_
Interface Interface Interface Interface Interface Interface
Text
Fiead Card Fieac Digit Display PressExit Unlock Open
Lack Cloze
Security_ Security_ Security_ Security_
Levell Level2 Level3d Leveld
Entrance_ | |
ctrl Jy
ChangeSecurity Level =
FieceiveOpen Security
ReceiveClose -
FieceiveCard Level
FeceiveCode
FeceivePressExit

Figure 726: The logical architecture
Identifying Operations
Sources that may support the identification of operations are;
» therequirements object model
» theanalysis use case model (the messagesin the MSC diagrams)
« thedatadictionary (the description of the objects)

By studying the responsibilities of each object isit possible to identify
a set of operations that will provide the services assigned to the object.

3878 Telelogic Tau 4.5 User' s Manual July 2003

Performing the System Analysis

July 2003

L et one operation perform only onetask. However, the class should not
contain too many public operations. A large public interface of a class
may indicate that the object is assigned too many responsibilities. In-
stead the object should probably be split and the responsibilities of the
object should be distributed between several objects.

The easiest way to find the operationsis probably to look at the MSC
messages in the system analysis use cases. The messages can often be
considered as operations in the analysis object model. A message re-
ceived by an instancein an M SC correspondsto an operation on the cor-
responding class. Note that the operations on the classes representing
subsystems define the interface of this subsystem and should often also
exist as operations on some of the objects within the subsystem.

Creating an Information Diagram

Now it istimeto create an information diagram. Thisdiagram describes
the concepts outside the system that the system must know of to fulfill
itstask. In our Access Control system example, card and code aretwo
such concepts.

1. Add anew object model diagram to the Organizer in the module
AnalysisObjectModel. Name the diagram
InformationDiagram.

2. Openthe Logicalstructure diagram from the previous activity
and the new Informationbiagram in the OM Editor.

3. Sdlect and copy the classes card and code in the
LogicalStructure diagram and paste them as classesin the
InformationDiagram, While automatically creating the implinks.

4. Consider if any or both of the classes should have any attributes.
5. Associate the classes with each other.

6. Savethe diagram.

Y our diagram should look like in Figure 727 when you are finished.

Telelogic Tau 4.5 User's Manual 3879

Chapter 78 SOMT Tutorial

3880

InfarmationDiagram

[SI—— [S—

Card Has b Code

Figure 727: The Information diagram

Creating the Analysis Use Case Model

The design of thetwo modelsin the system analysis activity, the object
model and the use case model, is usually going on in parallel. The mod-
els view the Access Control system from two different perspectives, a
dynamic perspective and a static perspective.

The analysis use case model shows the dynamic aspects and consists of
aset of MSC diagrams. These diagrams may be categorized into two

types:
» Refined requirements use cases

» Behavior pattern use cases

Refined Requirements Use Case

A refined requirement use caseiswhat it readslike. Each valid use case
from the requirements use case model is transferred to the analysis use
case model and redesigned and refined to the analysis object model.

The purpose of the refined use casesisto validate whether the analysis
object model really implements the requirements. At the same timethe
analysis use case model is an important source of information for iden-
tifying operations on the classes in the object model.

In the analysis use case model, the use cases are documented preferably
using MSCs. MSC diagrams are more formal and correspond better to
the object model than textual use cases.

Each instance in the MSC diagram corresponds to an object or sub-
systemintheanalysisobject model. Thelevel of abstraction you choose
isatrade-off between detail and clarity.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Analysis

An object which encapsulates interfaces and just transfers the calls to
other objects without adding much functionality may be omitted, but
objects providing crucia functionality should be part of the MSC.

Creating a Refined Requirements Use Case

Now you should create an analysis use case of the
Enter Office With Card And Code Usecasefromtherequirements
analysis activity.

1. Create anew MSC diagram in the AnalysisUseCaseModel mMod-
uleand nameit Enter Office With Card And Code SysA.

2. Open the requirements use case
Enter Office With Card And Code. The system analysisuse
case is based on the requirements use case and it is therefore useful
to use the latter as areference (using copy and paste).

3. Createthe MSC on subsystem level, that is, replace the original sys-
tem instance with instances of Entranceunit and
CentralControl.

4. Create endpoints of the threeinstancesin the M SC diagram. (Select
Create Endpoint from the Link submenu in the Tools menu.)

5. For each message in the requirements use case decide which in-
stances that exchange that particular message in the analysis use
case. Also consider which additional messages you need to add. All
message exchangesinside the system that we did not consider in the
requirements use cases have to be added at this point. Also, make
references to exceptions at the points where these can occur.

6. Replacethefour rReadpigit signalswith an M SC reference symbol
referring to the M SC ReadCode. ReadCode is a behavior pattern
which you will create later, see “Behavior Pattern Use Cases” on

page 3883.
7. Savethe diagram.

8. Inthe Organizer, create an endpoint out of the newly created MSC
diagram. (Thisis done in the same way as in the editors.)

9. Open the Link Manager and connect this endpoint to the
Enter Office With Card And Code MSC from the require-
ments use case model. Name thelink Implementation Link.

July 2003 Telelogic Tau 4.5 User's Manual 3881

Chapter 78 SOMT Tutorial

3882

The created MSC should look like in Figure 728.

MSC Enter_Office_With_Card_And_Code_SysA

| Employee | | EntranceUnit | | CentralControl |
ReadCard
ValidateCard
[exc No_Connection j
ValidateCardReply
[exc Invalid_Card j
Display
L‘Emer Code’ J
[ReadCode]
ValidateCode
ValidateCodeReply
[exc Wrong_Code j
Display
L'Please enter’
[exc Door_Not_Opened]
DoorTimer(10)
Open
Close
Display
[‘Emer card’ :l

Figure 728: A system analysis MSC use case

Telelogic Tau 4.5 User's Manual

July 2003

Performing the System Analysis

July 2003

Therest of the requirements use cases and their respective exceptions
arerefined in asimilar way. Thiswill not be donein this tutorial be-
cause that would take too much time.

Behavior Pattern Use Cases

A behavior pattern is a detailed use case that may be used to examine
special communication patternsin detail. A behavior pattern is part of
an ordinary use case and most often several use cases share a behavior
pattern. A use case may include none or several behavior patterns.

Behavior patterns let refined requirements use cases be presented in a
higher abstraction level, making these less complex and easier to under-
stand. By focusing use cases on special parts of the systemitiseasier to
understand and maintain the requirements on the involved objects.

Creating a Behavior Pattern

Therefined use case that you just created was created on subsystem lev-
el. With the help of behavior patterns we can describe what really hap-
pensat acertain point in the use case, i.e. which objectsthat interact and
the messages that they exchange. In our case, where we will create abe-
havior pattern for the task of reading a code, we have to replace the
MSC instance Entrancetnit with the M SC instances
KeypadInterface and EntranceCtrl.

1. Create anew Organizer module inthe system aAnalysis
Documents Chapter. Name it BehaviorPatterns.

2. Inthe MSC Editor, create the behavior pattern Readcode, see
Figure 729.

3. Savethediagram using the name Behavior Pattern ReadCode.

4. Inthe Organizer, associate the behavior pattern M SC with the use
case MSC which it really isapart of. That is, associate it with
Enter Office With Card And Code SysA.

Telelogic Tau 4.5 User's Manual 3883

Chapter 78 SOMT Tutorial

MSC Behovior _Pottern_ReodCode

| Employes | | IKEHT?S_ | ¢ntrarrectr1

(=xc Keystroke_TimeOut 1
A

ReadDigit

=xc Keystroke_TimeOut

P
S

ReadDigit

=xc Keystroke_TimeOut

P
S

ReadbDigit

[=xc Keystroke_TimeOut J

ReadbDigit

ReceiwveCods

Figure 729: A behavior pattern example

The System Analysis DocumentsCh@ﬁefshoukjn@N|OOk”kein
Figure 730.

3884 Telelogic Tau 4.5 User' s Manual July 2003

Performing the System Analysis

System anolysis Documents

analysisUseCoseModel
." Enter_Office With_Card_and_Code_SysA

{7 Behavior _Pattern_ReadCode

anolysisobjectModel
| InformationDiagram
] LogicalArchitecture
BehoviorPatterns
[/7] Behavior Pattern ReadCode
Figure 730: The System Analysis Documents chapter

Requirements Traceability

One important aspect in this activity isthe relation between the models
created here and the models created in the requirements analysis activ-
ity. We want to be able to check:

* That al requirements have been implemented
* Which system analysis object that implements a certain requirement

* Which requirement that isimplemented by a certain object in the
analysis object model

The means to check the issues above is through consistency checks.
There are two types of consistency checks:

» Entity matches
* Link checks

We will start with alink check and then we will perform an entity
match.

July 2003 Telelogic Tau 4.5 User’ s Manual 3885

Chapter 78 SOMT Tutorial

3886

Link Check

The first thing to check is that all entities described in the logical struc-
ture in the requirements object model are either represented in the anal-
ysis object model or not really needed by the application.

1

Open the Link Manager. A link check can be performed in both en-
tity and endpoint view, so it does not matter which view you have
in the window.

Choose Consistency Check in the Tools menu to perform alink
check.

The Consistency Check dialog pops up asking you to select the doc-
uments representing the from group. Select the
LogicalStructure Object model and press Continue.

Y et another Consistency Check dialog appears, how asking you to
select the documents representing the to group. Select the
AnalysisObjectModel module (thiswill also highlight the docu-
mentsin the module) and press Check.

The Link Manager will show the result of the link check. Y ou can

see that al entities from the requirements, except the system opera-
tor, employee, database, management system and office, are repre-
sented in the analysis object model. These are concepts on the out-
side of the system and, thus, not really needed by the application.

To follow links from one model to another we use the Traverse com-
mand. To see how this works follow the steps below:

6.

Gotothe Logicalarchitecture diagramin the OM Editor and
select the class centralcontrol.

In the Link submenu in the Tools menu, choose Traverse.

The OM Editor will openthe L.ogicalstructure diagram and the
CentralControl classwill be selected. Go yet another step back-
wards by choosing Traverse in this diagram.

The Traverse Link dialog pops up asking you to select alink to
traverse. The classis the one we just came from so you should
choose the text fragment and press Traverse Link.

10. The Text Editor opens and the endpoint centralcontrol isselect-

ed.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Analysis

July 2003

In the same way we traversed from system analysis to requirements
here, you can aso traverse from the requirements to system analysis.
Try this!

Entity Match

Now it istime for another consistency check. Thistime you should
check that theinstancesinthe M SC diagram correspond to classesinthe
object model or to actors that interact with the system.

1.

Seeto it that you have entity view in the Link Manager window. If
not, press the Show endpoint or entities button in the tool bar.

Choose Consistency Check in the Tools menu. Set the entity match
radio button in the Consistency Check dialog and press Continue.

As a document representing the from group, select the MSC
Enter Office With Card And Code_SysA.

As documents representing the to group, select the
AnalysisObjectModel module and the aActorsList.

The result shows that all MSC instances really are described in the
analysis object model or in the list of actors.

Telelogic Tau 4.5 User's Manual 3887

Chapter 78 SOMT Tutorial

3888

Summary

After having completed an entire system analysis, the system

Analysis Document chapter would look like in Figure 731.

System Anolysis Documents

% Behovior _Pottern_ReadCode
Exc_Door_MNot_Opened_Sush
Exc_Invalid_card_sSysa
Exc_Keystroke_Timelut_Sysh
Exc_Mo_Conmection_Sysa

Exc wrong Code_Sysa

Exc_Invalid_cCard_Sysa

= Exc_MNo_Connec tior_SysA

—-| 9| Exit Office Sysa
Exc_Door_Mot_Opened_Sys4

—1‘;‘ Change Security Level SysA

E | anolysisobjectmodel
——] InformationDiagram
L~ LogicalArchitecture

BehaviorPatterns

Behavior Pattern ReadCode
MSC_Exceptions_Sysha
Exe_No_Conneection_SysA
Exc Invalid Card Sysa

Exc Door Not Opened SysA

Exe Keystroke TimeOut SysA
Exe Wrong Code SysA

Figure 731: The entire system analysis document structure

Telelogic Tau 4.5 User’s Manual

E | anolysisusecoseModel
= Enter Office With Card And Code SysA

July 2003

Performing the System Design

Performing the System Design

July 2003

Textual requirements model ftext)

Requirements Fequirements
Requiremerits object model | uze cmze modeal
FAnalysiz (clazs diagram) Grexnthds T

g
2
Analysis b Analysis 2
object model + use case model :g
System (class diagram) (textMSC) m
Anahysis g

Dezign

q System System design 1 wse case madel
Diezign ' : (MASCTTCHY

. Object design
g';l:i;‘n model, SO0
Implementation| Code, hardware, et

Figure 732: Overview of the SOMT process

What You Will Learn

» To create adesign module structure

» To definethe static interfaces in packages

» To make an architecture definition of the system
» Tomake formalized testable use cases

* To usethe Paste As mechanism when transferring from the system
analysis activity to the system design activity

Telelogic Tau 4.5 User’ s Manual 3889

Chapter 78 SOMT Tutorial

3890

Introduction to the Exercise

Thisisan exercise on system design. In this activity we no longer make
use of object models; from now on SDL will be used. Y ou will learn
how to map concepts from the analysis object model from the previous
activity into an SDL model. M apping object-oriented conceptsto SDL
conceptsforcesyou to make several design decisions. Support for these
design decisionsis provided through the Paste As mechanism. This ex-
ercise will teach you to make use of this support.

Useful sources for information in the system design activity are the
analysis object model and the analysis use case model. Thefirst pro-
vides information about the static structure and is useful when structur-
ing the system into units. The latter provides information about the dy-
namic structure and is useful for the definition of theinterfaces between
the units.

Major tasks to perform in the system design are:
» Define the design module structure.
» Definethe static interfaces.

* Createan SDL system structure as a starting point for the formaliza-
tion of the architecture.

» Define the dynamic aspects of the interfaces by a continued use of
use Cases.

Producing a complete system design structure in the tutorial takes too
much time. Thus, you will only perform parts of every step necessary to
produce a system design structure.

Preparing the Exercise

1. Openthe systemfile somttutorial/SysD/accesscontrol.sdt
(on UNIX), Or somttutorial\sysd\accesscontrol.sdt (in
Windows).

2. Check that the Source directory isset to somttutorial/SysD/
(on UNIX), or somttutoriallsysd\ (in Windows).

What you now seein the Organizer window is acomplete requirements
anaysis and system analysis structure.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

July 2003

Design Module Structure

An important part of the system design isto divide the system into units
considering division of work, distribution of functionality and physical
distribution.

The purpose of the design modul e structure isto show the actual source
code modules the application will be built from. The most important as-
pect of the module structure isthat it forms the basis for dividing the
work load on different development teams.

In our Access Control system example we have two different sub-
systems, EntranceUnit and Central Control. It might be the case that
these subsystems areimplemented by two different teams. Therefore, it
seems natural to introduce two different modules, each module being
described by the concept of a package. The contents of the packages
will not be defined until the architecture definition, thetask hereisonly
to identify the modules needed.

The notation that will be used in thistutorial to describe the design mod-
ule structure is the object model instance diagram where the instances
represent the different modules.

Creating a Design Module Structure

1. Add anew object model diagram to the Organizer in the module
DesignModuleStructure and name the document
DesignModuleStructure.

2. Inthe OM Editor, create afirst object instance symbol representing
the whole SDL system. Name it using the name
SDL_System Access_ Control.

3. Decide which modules, i.e. packages, the SDL system isto make
useof. Inthisexampleit might be suitable to introduce two different
modul es, onefor each subsystem. Therefore, create two more object
instances and name them centralcontrolPackage and
EntranceUnitPackage respectively.

4, Draw associations from the SDL system module to the two new
modul es. The associations describe that the SDL system uses these
two packages.

5. Create yet another module which will consist of all common types
and signals. Thispackageisused by the other two packagesand thus

Telelogic Tau 4.5 User's Manual 3891

Chapter 78 SOMT Tutorial

3892

aso by the SDL system itself. Name the module
UtilityTypesPackage and draw the associations. Y our diagram
should now look like in Figure 733.

6. Create endpoints out of the three packages. (Endpoints are not cre-
ated automatically for object instance symbols.)

7. Savethediagram giving it the name

designmodulestructure. som.

DesignhoduleStructure
CentralControl_
Package
Uses bk Lises
SDL_System_ UtilityTypes_
Access_Control Package
Uses W EntranceUnit_ Uses b
Package

Figure 733: The Design Module Sructure

Creating the Architecture Definition

When using SDL to design a system, the architecture is defined by
block diagrams which define how the system is decomposed into
blocks. The block diagrams are more or lessaformalization of the anal-
ysis object model.

Thefirst thing we will do when defining the architectureisto definethe
contents of the packages introduced in the design modul e structure, see
“Defining the Packages’ on page 3893. The UtilityTypesPackage
will contain data type declarations that are common to the subsystems
of the system. Signals'remote procedures that make up the interface be-
tween the subsystems will also be defined in the
UtilityTypesPackage. The other two packages,
CentralControlPackage and EntranceUnit Package, will contain
block types and the signals/remote procedures that make up the inter-
face to the particular block. If you have many signalsit is often useful
to structure these into signal lists.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

The basic mechanism used in SOMT when going from anaysis to de-
signisthe Paste As mechanism. Thisisused here when defining the sig-
nal interfaces, the blocks and block types, and, to some extent, the data
type declarations.

The second task to do when creating the architecture definition isto de-
fine the system by means of SDL block diagrams, see “ Creating the
SDL System Diagram” on page 3898.

Defining the Packages

Mapping Object Models to SDL Block Types

Y ou should now define the two block types, centralcontrol and
EntranceUnit in their respective package using the Paste As mecha-
nism.

1. Addthree new SDL packagestothe architecturebefinition
modul e in the Organizer and name them according to the modules
in the design module structure.

2. OpentheLogicalArchitecture diagraminthe
AnalysisObjectModel module.

3. Select theclass centralcontrol and copy it.

4. Gotothe SDL Editor and the centralcControlPackage diagram
and choose Paste As. The Paste As dialog is opened.

5. Pastetheclass centralcontrol asa Block Type (use the option
menu) and create an implementation link from the copied object to
the pasted object at the sametime. Thelink isautomatically created
by defaullt.

6. Copy and pastethe class Entranceunit asablock typein the
EntranceUnitPackage inasimilar way.

Mapping Object Models to SDL Interface Definitions
Now it istimeto design theinterfaces of the newly pasted blocks. Inter-
face definitionsin SDL are defined using signals and/or remote proce-

durecalls. Consequently, thisiswhat is produced when mapping aclass
to an SDL interface.

July 2003 Telelogic Tau 4.5 User's Manual 3893

Chapter 78 SOMT Tutorial

3894

Note that the signal s that congtitute the interface between our sub-
systemsshould be described inthe ut i1ityTypesPackage. Therest of
thesignals, i.e. signalsthat are not exchanged between the subsystems
should be described now. Signals from the environment to the sub-
system and signals inside the subsystem are such signals.

1. Onceagain, gototheLogicalarchitecture diagramintheanal-
ysisObjectModel and copy the class EntranceUnit.

2. Gotothe SDL Editor and the Ent ranceUnitPackage diagram and
pastethe classasa Text symbol with SDL interface. Seeto it that an
implementation link is created at the same time.

If you look at the signal definition you see that the
ChangeSecurityLevel signa ispresent. Thisisasignal ex-
changed between our two subsystems and, thus, should not be de-
clared here.

3. Deletethe changesecurityLevel signal.

4. Add the signal parameters. The signals Readcard and ReadDigit
are the only ones that need parameters. See Figure 734.

5. Savethediagram, giving it the name entranceunitpackage. sun.

Package EnrancelnitPackage

e SIGHAL Cloze, Open, FressExit, ReadCard{Card), ReadDigit{Integer),
c4 SIGIHALLIET SLEntranceWnit = Close, Open, FressExit, ReadCard, ReadDizi

Entrancelnit

Figure 734: The EntranceUnitPackage

6. Go back tothe Logicalarchitecture diagram and copy the class
CentralControl.

7. Pasteit asatext symbol with SDL interfacein the

CentralControlPackage.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

8. If youlook at the signal definition you realize that the
ValidateCard, ValidateCode and RegisterEntrance Signals
are signalsexchanged between our subsystems and, thus, should not
be defined here. Therefore, delete these signals from the signal def-
inition.

9. Add asignal parameter of the type integer to the
ChangeSystemSecurity Sighal, see Figure 735.

10. Save the diagram, giving it the name

centralcontrolpackage.sun.

Package CentralControlPackage

poemmmTTTT ™ P TEHAL ChangeSysterns ecte ity Ioteges),
i "': SIGITALLIST SLCentralControl = ChangeSysternSecieity;
[4

CentralControl

Figure 735: The Central ControlPackage

It isnow timeto define the last package, the uti1ityTypesPackage.
It will define the common data types needed in the subsystems as well
as the interface between the subsystems. To define the package you
should use the same procedure as above.

1. Copytheclasscentralcontrol fromtheLogicalArchitecture
diagram.

2. Pasteit asatext symbol with SDL interface in the
UtilityTypesPackage diagram.

3. Deletethesignal changesystemSecurity asthishasalready been
defined in the centralcontrolPackage (becauseit isasignal
from the environment).

4. Addsignal parameters to the three remaining signals.

July 2003 Telelogic Tau 4.5 User's Manual 3895

Chapter 78 SOMT Tutorial

3896

5. Continue with copying the class EntranceUnit and pasteit asa
text symbol with SDL interfacein the utilityTypesPackage.

6. Remove al signalsthat have already been defined, i.e., al but the
ChangeSecurityLevel signal.

Notethat the Validate commands (validatecard and validateCode)
have to be implemented with signals and not remote procedure calls.
Thisisdueto the fact that we must be able to keep track of how long it
takes before we get the answer of avalidation (to find out if thereisa
connection failure or not). Asaconsequence of this, thereply signalsto
the Validate commands have to be defined here.

7. Addthetwo signasvalidateCardreply and
ValidateCodeReply to the latest pasted signal definition.

8. Add signal parametersto the three signalsin the definition.

Mapping Object Models to SDL NewTypes

Now it istime to declare the common data types. In our Access Control
system example the concepts of card and code are data types common
to all parts of the system.

The datatype card is best declared asa SYNTY PE. Y ou will have to
do thisdeclaration manually asthereisno support in the Paste As mech-
anism for pasting something asa SYNTY PE. In declaring the datatype
Code, however, the Paste As mechanism can be used.

1. Declarethe card concept asa SYNTYPE in the
UtilityTypespackage, SEe Figure 736.

2. Openthe InformationDiagram intheAnalysisobjectModel
and copy the class code.

3. Gotothe SDL Editor and the utilityTypesPackage and choose
Paste As. The Paste As dialog is opened.

4. Pastethe class code asa NEWTYPE with graphical operator or as
NEWTYPE with textual operator (it does not matter which one you
choose as the class Code has no operator) and see to it that anim-
plementation link is created at the same time. Thiswill only give
you the structure, you haveto fill in al relevant information your-
self.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

July 2003

5.

Asitisatypewearedeclaring, changethe name code to codeType.
Define the codeType concept to be an array consisting of four inte-
gers (you will haveto deletetheword STRUCT). The index type of
the array should beinteger and you will haveto define thistypetoo,

see Figure 736.

Declarea SYNONYM NbrofEntrances that will be used to alter
the number of entrances we are to control in our system. For now,
you can set the value of the variableto 1, see Figure 736.

Before you save and close the diagram you should create an implemen-
tation link between the class card from the InformationDiagram to the
definition of card inthisdiagram. Y ou have earlier used the Link Man-
ager to manually create links. We will now show how to use the entity
dictionary for this.

Theentity dictionary isavailablein all editorsand listsal entitiesinthe
system, i.e. all modules, diagrams, and endpoints. The main usage of the
entity dictionary isto reuse names of entities, but it can also be used to
create links.

1.

IntheutilityTypesPackage diagram, select the text symbol con-
taining the card definition.

From the Window menu, choose Entity Dictionary. The Entity Dic-
tionary window is opened. Y ou will recognize the structure and
icons of chapters, modules and diagrams from the Organizer win-
dow. In addition, all endpoints arelisted beneath the corresponding
diagram.

Scroll the Entity Dictionary window until you find the classcardin
the InformationDiagramintheAnalysisObjectModel module.
Select the icon representing the class card. (Make sure not to dou-
ble-click an icon, since that will copy the name of the icon into the
current diagram!)

In the Entity dictionary, press the Create Link quick button.

The Create Link dialog pops up. (Thisis the same dialog as when
you created links in the Link Manager.) Set the from radio button,
namethelink Implementation Link and press Create.

Close the Entity dictionary by using the Close quick button.

Save thediagram, giving it the nameutilitytypespackage. sun.

Telelogic Tau 4.5 User's Manual 3897

Chapter 78 SOMT Tutorial

3898

Package Uity TypesPackage

8.

-

T * CentralControl interface definition */

"1 PIGNAL ¥alidateCard{Card), FalidateCode{Card Code Typey, RegisterEntrance{Pid);
1 FIGMALLIST SLCentral Control = WalidateCaxd, ¥WalidateCode, RegisterEntrance;

" | EnteanceUnit interface definition *f

FIGHAL ChangeSecuityLevel{Ineger), ¥alidateCardRep Ly Booleany,

WalidateCodeR epli{Boolearn);

FIGMALLIST SLEnteanceUnit = ChangeS ectwityLevel , ValidateCaedReply, WalidateCodeReply;

L= —
brwtvee Rk
Caitntcget NbeOfEntrances Integer=1;
ENDEYNTYFE;

-
* Code definition */

MEWTYPE CodeType

ArrayCodelndex Type, Integer)

ENDHEWTYPE CodeType:

EYNTYPE CodelndexType=Integer
COMNSTANTE 1:4
ENDEYHNTYFE CodelndexType;

Figure 736: The UtilityTypespackage

In the Organizer, create endpoints out of the three packages.

Creating the SDL System Diagram

Now you should define the system structure, something which isto be
done by means of SDL blocksin a system diagram.

1

Add an SDL system diagram to the aArchitecturebDefinition
module in the Organizer and name it AccessControl.

CopytheclasscentralControl intheLogicalArchitecture di-
agram and paste it as a Block in the system diagram. See to it that
an implementation link is created at the same time.

Also, copy and paste the class Ent ranceunit as ablock.

Change the name of the block instances, from centralcontrol to
theCentralControl and from EntranceUnit to
theEntranceUnit. AlsO, definewhichblock typetheblocksarean
instance of, see Figure 737.

There will often be more than one entrance in a building and there-
fore you should define the block theEntranceunit asablockin-
stance set. (Use the variable NbrofEnt rances defined in the
UtilityTypesPackage.)

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

July 2003

Thetwo blockstheCentralcontrol and theEntranceUnit Must
be able to communicate with each other aswell aswith the environ-
ment. The next step isto create all necessary channelsin the system
diagram.

Draw the channels through which the blocks communicate and
name them and the gates with suitable names. Also, draw the chan-
nels to/from the environment. State which signals that run on a cer-
tain channel. To identify the signals consult the
AnalysisObjectModel made in the system analysis.

. At this point we see the need to introduce a new signal, the

EnvDisplay Signal which goesfrom the Entrancetunit to the en-
vironment (i.e, to the display hardware). This signal contains infor-
mation that isto beread by personsin the system environment. The
parameter of thissignal is charstring. Defineit in the
EntranceUnitPackage.

Reference the packages the SDL system makes use of in aUSE
clause in the top of the diagram. Y our system diagram should now
look likein Figure 737.

. Savethediagram, giving it the name accesscontrol.ssy.

Telelogic Tau 4.5 User's Manual 3899

Chapter 78 SOMT Tutorial

3900

USE Central ControlFackagpy
U2E EntranceUnitPackage;
WSE Utiligy TypesFackage,

System AccessControl 1(1})
[i
A
[4
Gl ek
ManSysTolc theCentralControl: CeToBu
[ChangeSystemSecu::iqf] CentralControl
G2

WalidateCodeReply,
ChangeSeceitrLevel

WalidateCardReply,
ValidateCard,
ValidateCode,

EegizterEntrance

G3
G2
EuTolc theEntrance Unit
{MbrOfEntrances):
EnfranceUnit
EnvToEu EUToEnv
Gl
ReadCard, 34
EeadDigit, [Envnisplay]
PressExit,
Open,

Claze

Figure 737: The Access Control system diagram

Refining the EntranceUnit — Mapping Aggregations

Considering the aggregation structure in the LogicalArchitecture
diagram, the block Entranceunit may be divided into several sub-
blocks.

When mapping an aggregation structure from the analysis object model
to an SDL diagram, the most common choice is to map the assembly
classto a block type. Classes which are part of the assembly class will
be mapped to process types, or, if the part class itself is an assembly
class, to block types.

The block type corresponding to an assembly class will thus contain
processes or blocks.

Telelogic Tau 4.5 User’s Manual July 2003

Performing the System Design

July 2003

Assembly Paste As

TN

Assembly

Partl Part2

Figure 738: Mapping aggregation to a block type

The process types and block types should be placed in a suitable pack-
age to enable reuse. The instances of the types should then be placed in
the appropriate system or block diagram to form the system.

Mapping Classes to Block Types and Signal Interfaces

1.

Select the class DoorUnit inthe Logicalarchitecture diagram.
Copy it and paste it as ablock typein the Ent ranceUnitPackage.

Cadll the Paste As command again. Thistime, choose to paste the
class as atext symbol with SDL interfacein the
EntranceUnitPackage.

Theresulting signal definition contains two signals that already
have been defined in the package, namely open and close. There-
fore, delete these signals in the newly pasted signal definition.

Mapping Classes to Blocks

Now it istimeto place ablock instance of the boorunit block typein
the Entrancetunit block type.

1.

Double-click on the Entranceunit block typein the
EntranceUnitPackage diagram. The Edit dialog pops up, press
OK. The Add Page dialog pops up. Create a block interaction page.

For the third time, choose Paste As and paste the class boorunit as
ablock in the Entranceunit block diagram. The block will be
named DoorUnit.

Telelogic Tau 4.5 User's Manual 3901

Chapter 78 SOMT Tutorial

3902

3.

Change the block name so it is marked as an instance of the block
type according to the SDL syntax. Change the name to

theDoorUnit:DoorUnit.

Introducing new Block Types

Since SDL does not allow processes and blocks at the same level you
have to create two more block types to be placed in the
EntranceUnitPackage. These block typeswill be used as containers
to the remaining classes that will be mapped to processes and process
types. Givethefirst block typethe name EntranceInterface. Wein-
troduce this block as a generic term for all those classes that represent
an interface to the system, i.e. the cardreader, the keypad, the display
and the exitbutton. The second block type to be placed in the

EntranceUnitPackage iSEntranceCtrl.

1

CopytheclasspisplayInterface intheLogicalArchitecture
diagram.

Pasteit as a block type and as atext symbol with SDL interfacein
the Ent ranceUnitPackage.

Rename the block type and give it the name EntranceInterface.

Add asignal parameter called MessageType tothepisplay signal
definition. By using thistype for messagesthe Entrancectr1 does
not have to handle strings. This solution makes the system indepen-
dent of the language used, see “ Performing an Iteration” on page
3928 for an example on how this works.

Definethe NEWTY PE MessageType, see Figure 739.

Also, paste the classpisplayInterface asablock in the
EntranceUnit block diagram. Rename the block and giveit the
Name theEntranceInterface:EntranceInterface.

Using the Entity Dictionary, create implementation links between
the CardReaderInterface, Keypadl nterface and ExitButtonl nterface
classesin the Logicalarchitecture diagram and the
EntranceInterface block type and block.

Note that you do not have to paste these three classes as SDL inter-
faces astheir operations have already been defined as signalsin the
EntranceUnitPackage.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

July 2003

8. Now, copy and pastetheclassEntrancectrl asablock typeand as
atext symbol with SDL interfacein the EntranceUnitPackage.

9. Deletethe signal changesecurityLevel asthisaready has been
defined inthe utilityTypesPackage.

10. Add signal parameters where they are needed i.e. to the signals

ReceiveCard and ReceiveCode.

11. Also, pastethe classas ablock in the block type Ent rancetunit di-
agram. Give the block the name
theEntranceCtrl:EntranceCtrl.

The EntranceUnitPackage Will look likein Figure 739.

Package EntranceUnitPackage

T I q%IGNﬁL Close, Opery FressExit, ReadCard{Cardy, ReadDigitiIntegery,
! "’: SIGNALLIST SLEntranweUnit = Close, Oper, PressExit, ReadCard, ReadDigi
[2

IGHAL Lock, Unlack;

IGINALLIST SLDoorUnit = Lock, Unlock;

EnfranceUnir Entrancelnterfacy
IGIAL Dizsplay{MeszageTypeh:
= = IGHMALLIET SLDisplayInterface = Display;
DoorUnit EntranceCtrl
TRIGHAL RecereCard{Card), EecetweClose,

RecetveCode{Codetype), ReceiveOper, RecefweFressExit
PIGIALLIST SLEntranceCtyl = RecemveCard, RecetweClose,
EWT ¢ FE MessageType ReceiveCode, RecetveOper, RecetveFressExit;
LITERALS

EntCrd,
EntCde,
CdeTiOuet,
ConnFail,
Doz Cpry,
DaotLocked,
IoewCard,
ArengCde;
ENDHEWTYPE MessageType;

FIGHAL ErvDisplay(Chaestring): H

Figure 739: The EntranceUnitPackage

The block type Entranceunit diagram should now contain three
blocks: theDoorUnit, theEntranceInterface and
theEntranceCtrl.

Telelogic Tau 4.5 User’ s Manual 3903

Chapter 78 SOMT Tutorial

Block Type EntranceUnit

[

-5

[4
theDoorUnit: theEntranceCrrl:
DoorUnit Entrancelrl

theEntrance nterface:
Entrancelnterface

Figure 740: The block Type EntranceUnit

Defining the Communication Structure

Now you should define the communication structures within the block
type Entrancetnit. Define the channels needed for the three blocks
theEntranceCtrl, theEntranceInterface and theDoorUnit tO
communicate.

To define the channelsin the block type Entranceunit, follow the
steps described below.

1. Identify necessary channels.

2. ldentify the signals that should be carried by the channels. Y ou get
alot of information from the analysisobjectModel here.

3. Name the channels and the gates.

4. The complete block diagram for Entranceunit should look some-
thing likein Figure 741.

3904 Teldlogic Tau 4.5 User's Manual July 2003

Performing the System Design

WalidateCode,

G2
RegizterEntrance

WalidateCard,
a3

WalidateCardReply,

WalidateCodeReply,

ChangeSecueityLevel
=

G1

Block Type EntranceUnit
IS EunitTolC

ValidateCode,

WalidateCazrd,
RegistexEntrance

13

CCToEunit

WalidateCardReply,
ValidateCodeReply,
ChangeSecurityLewvel

-

[*38
theEntrance
EntranceCrl

1 o1

il
rl:

EuToDlu

nm o

EecefweCode,

ReceiweCard,
EecetwePressExit

EQToEI

EITgEC

[Dispy

Ladk,
Volock

2 G1

EnvToEunit |G1 ©

ReadCard,
ReadDigit,|
FressExit,
Oper,
Cloze

Entrancelnterface
FPressExit [€X

theEntrancelnterfacq:

DuToEu bl G

theDoor Unit:

Enw T oDnunit

RecefeOper, DoorlUnit

[Recemclose]

ReadCard,
ReadDigit,

]
Cloze

EIToEnwv

[EcweDizpliyr

o4 .,

EmDigly |

Gl

July 2003

Figure 741: The complete structure of the block Type EntranceUnit

When you have completed the architecture definition, the system
Design Documents chapter should look likein Figure 742.

Telelogic

Tau 4.5 User’s Manual

3905

Chapter 78 SOMT Tutorial

System Design Documents

DesignModulestructure
| DesignModuleStructure

Ehr‘chitec‘tureDeFinition
CentralControlPackage
CentralControl
' T EntranceUnitPackage
EntranceUnit
theboorUnit : DoorUnit
theEntrancecCtrl : Entraoncectrl
theEntroncelnterfoce : Entroncelnterfaoce
DoorUnit

—=
—@ Ertroncectrl
—=]

Entrancelnterfoce
% Utility TypesPackage
|| AccessControl
theCentralCaontraol @ CentralControl
theEntranceunit (...} : EntronceUnit

DesignUsecaseModel

Figure 742: The System Design Documents chapter

Creating the Design Use Case Model

In system design we continue with the use of use cases, thistime to de-
fine the dynamic interfaces between the blocks in the system.

In our example, the block theEntranceUnit in the system diagram issplit
into the three blocks, theEntranceCtrl, theEntrancel nterface and the-
DoorUnit. The use cases will consist of the block instances theCentral-
Control, theEntranceCtrl, theEntrancel nterface and theDoorUnit as
well as an instance representing the environment.

The use cases must be formalized to asufficient degree of detail, alevel
that is consistent with thelevel of detail found in the static interface def-
inition. Also, the level of detail must be precise enough to make the de-
sign use cases act as detailed test specifications.

3906 Telelogic Tau 4.5 User' s Manual July 2003

Performing the System Design

July 2003

Formalizing Use Cases

A number of things haveto be donewhen formalizing and refining anal-
ysis use cases to design use cases.

Check that each MSC instance head has a corresponding block in
the architecture definition. The use cases define the dynamic inter-
face between the blocksin the system and thus all blocks haveto be
represented.

The M SC instances corresponding to actors in the system environ-
ment should have env_ stated in their instance head before the ac-
tual name, e.g. env_Employee.

The M SC instances must have names corresponding to block in-
stances asit isthe instances that communicate. That is, the name of
those instances that have been defined as block typesin the SDL
package structure must be changed to the corresponding block in-
stance name. E.g. the MSC instance centralcontrol cannolong-
er have this name; the name has to be changed to
theCentralControl according to the architecture definition.

The messages often have to be replaced with a sequence of message
exchanges.

The M SC messages have to be complemented with parameters ac-
cording to the definition of signals and remote proceduresin the ar-
chitecture definition. It should not be the name of the parameter that
should be added but a value that the parameter can take. Alterna-
tively the parameters can be skipped entirely.

Creating a Formalized Use Case

Now you should begin to formalize and refine one of the use casesfrom
the system analysis.

1. Add anew MSC diagram to the besignUsecaseModel modulein

the Organizer.

In the Add New dialog, set the toggle button Copy existing file. As
the file to be copied, select the MSC

Enter Office With Card And Code Sysa from the system
analysis activity. Thisfile can be found in the
somttutorial/sysanalysis directory.

Telelogic Tau 4.5 User's Manual 3907

Chapter 78 SOMT Tutorial

3908

3. Inthe MSC Editor, rename the instance head Employee to
env_Employee and change/add the other instance head names.
They should conform to the names used on the block instancesin
the SDL system diagram and theblocksintheEntranceunit block
diagram in the architecture definition.

4. For each message, decideif it hasto be exchanged with a sequence
of messages. If so, add these new messages to the M SC.

5. Add parameters to the messages. Look at the definition of the sig-
nalsin the architecture definition and add parameters to those mes-
sages that are defined to have parameters. E.g. the message
ReadcCard should have aparameter consisting of the card. Note that
it is not the parameter name card that isto be used here but an ex-
ample of avalue that the parameter can take, e.g. 123.

6. Rename the use case and save it under its new name,
Enter Office With Card And Code SysD (use SaveAs).

The exceptions and behavior patterns to this use case must also be for-
malized.

The other design use cases are created in a similar way. All design use
cases should also be connected with implementation links to the corre-
sponding analysis use case and exception. Thisisdonein order to make
it possibleto check that all use cases from the requirementsanalysisand
system analysis have been refined to design use cases.

Consistency Checks

Now thetimehas cometo performing consistency checks onthe models
created in system design.

Entity Match
Thefirst thing to check isthat the actual modules (SDL packages) used
in the design are consistent with the design module structure.

1. IntheLink Manager, choose Consistency Check in the Tools menu
and set the entity match radio button. Note that you haveto bein en-
tity mode to be able to perform an entity match.

2. LetthepackagesinthearchitectureDefinition formthefrom
group and the besignModulestructure module theto group.

Telelogic Tau 4.5 User's Manual July 2003

Performing the System Design

The result shows that all packagesin the Architecturebefinition
really are described in the besignModulestructure. The consistency
view (i.e. theresulting Link Manager window) also shows the contents
of the packages. As you can see there are no matching entities to the
block references, block types, etc. in the DesignModuleStructure.
There should not be any, so just ignore this.

Link Check

By doing alink check we will first check that all objectsin theanalysis
object model are mapped to the architecture definition.

1. Once more, choose Consistency Check in the Tools menu and per-
form alink check. It doesnot matter which view you haveinthelink
Manager window, alink check can be performed in either view.

2. LettheanalysisobjectModel form thefrom group and the
ArchitectureDefinition module form theto group.

Theresult showsthat most of the objects from the analysi s object model
are described as block types and block references in the architecture
definition. Many of the objects have also been mapped to an interface
definition. The fact that some classes have no corresponding mapping
indicates that these classes probably should reside as processesinside
some of the mapped blocks. This holds e.g. for the
DoorSensorInterface and the DoorLockInterface aswell asfor
the securityLevel classes.

At this point you can also select any block or block typein the architec-
ture definition and choose Traverse link. The corresponding classin the
analysis object model will then be selected. By choosing Traverse link
againyou can follow alink all theway back to the textual requirements.
Itisalso possibleto follow alink inthe other direction, i.e. from the tex-
tual requirements via the object models, to the design. Try this!

July 2003 Telelogic Tau 4.5 User's Manual 3909

Chapter 78 SOMT Tutorial

Summary

After having completed an entire system design the corresponding doc-
ument structure in the Organizer would look like in Figure 743.

System Cesign Documents

DesignModuleStructure

] DesignModuleStructure

E

E

3910

@ﬂﬁmﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂ

architecturebefinition
CentralcontrolPockage
CentraolControl

—?E?] EntranceunitPackoge

Entrancelnit

=l

thebCoordnit : DoorUnit

theEntronceCtrl : Entroncectrl
theEntrancelnter face : Entroncelnterface
—{::] Entrancelnter face

—{::] Doordnit
—{::] Entroncectrl

—qff] UtilityTupesPackoge
[] Accesscontrol

theCentralControl : CentraolControl
theErntrancelnit (...)] : Entraoncelnit

oy
D

DesignUsecCaseModel

Enter_office_With_Card_SusD
Enter_office_With_Cord_Ho_Connection_SysD
Enter_Office_With_Cord_Invalid_Cord_SysD

Enter_Of fice_With_Cord_Door_Hot_opened_SysD
Enter_office_With_Card_ind_code_SuysD
Enter_oOffice_With_Caord_aAnd_Code_No_Connection_SysD
Enter_0Office_With_Cord_and_Code_Involid_Card_SysD
Enter_Office_With_Cord_and_Code_TimeOutl_SysD
Enter_oOffice_With_Cord_and_Code_TimeOutZ_SysD
Enter_oOffice_With_Caord_and_code_Timelut3_SysD
Enter_oOffice_With_Cord_and_cCode_Timeoutd_SysD
Enter_Office_With_Cord_and_Code_Wromg_Code_SysD
Enter_oOffice_With_Cord_and_cCode_Door_Mot_Opened_SysD
Exit_0Office_SysD

Exit_oOffice_Door_Mot_oOpened_SysD
Chonge_Security_Level_ SysD

Figure 743: The entire System Design Documents structure

Telelogic Tau 4.5 User’s Manual July 2003

Performing the Object Design

Performing the Object Design

Textual requirements model ftext)

Requirements Fequirements
Requiremerits object model | uze cmze modeal
FAnalysiz (clazs diagram) - Grexnthds T
g
2
Pnalysis " Poahyzis =
object model i uze cmze modal :g
System (class diagram) B textMdSC n
Anahysis g
System design : use clzj:ss;grl?mdel
System model, 0L i
Design Q1 MECTTCN)

: Object design
Object
q Design model, 501

Implementation| Code, hardware, et

Figure 744: Overview of the SOMT process

What You Will Learn

» Totransfer theanalysis object model into aconsistent object design
model in SDL

» To usethe Paste As functionality to assist the task
e Toperform design level testing

July 2003 Telelogic Tau 4.5 User’ s Manual 3911

Chapter 78 SOMT Tutorial

3912

Introduction to the Exercise

Inthisexerciseyou will perform the object design activity. Thisactivity
is, likethe system design activity, focused on SDL. However, whilethe
system design is focused on how to structure the architecture and how
to decompose the system into blocks, the object design isfocused on de-
composing the blocks into processes and defining the behavior of the
single processes.

The object design activity may be divided into three separate tasks:

1. Map the classes and associations in the analysis object model to
suitable SDL concepts.

2. Choose a set of essential use cases and define the behavior of the
SDL processes and data types that implement these use cases.

3. Elaborate the design by introducing more use cases and refine the
SDL design to handle also these use cases.

Preparing the Exercise

Theinput to this activity should be a complete requirements analysis,
system analysis and system design structure.

1. Openthesystemfile somttutorial/ObjD/accesscontrol.sdt
(on UNIX), Or somttutorial\objd\accesscontrol.sdt (in
Windows).

2. Check that the Source directory isset to somttutorial/0ObjD/
(on UNIX), Or somttutoriall\objd\ (in Windows).

Mapping Active Objects to SDL

An object with its own behavior is called active object. The oppositeis
an object which acts as an information container - a passive object. Ac-
tive objects are, most often, mapped to SDL process types. Active ob-
jectsmay also sometimes, aswasthe casein the system design activity,
be mapped to block types.

The default choice in the Paste As mechanism isto paste a class copied
from an object model diagram as a process typein an SDL diagram.

The attributes of the copied object will be pasted as variables. The op-
erations will be pasted either as signals or as remote procedures of the

Telelogic Tau 4.5 User's Manual July 2003

Performing the Object Design

July 2003

process type. This depends on whether the operations are synchronous
or asynchronous.

Analysis model Design model
(object model) (SDL)

DoorControl | —{ PasieAs |
DoorControl
e

Figure 745: Mapping a class to a process type

~

Ve

Mapping to Process Types

Now it istime to map the classesin the analysis object model that
should be mapped to SDL process types. In this example you should
map the processes which will reside within the block type

Entrancel nterface.

The classes which should reside as processes in the block
EntrancelInterface &€ the cardreaderInterface, the
KeypadInterface, theDisplayInterface andthe
ExitButtonInterface.

1. Copy and paste each class from the 1.ogicalarchitecture dia
gram as aProcess Typein the EntranceUnitPackage.

2. Openthe block type EntranceInterface diagraminthe SDL Ed-
itor by double-clicking on the corresponding block type symbol in
theEntranceUnitPackage. PressOK intheEdit dialog. Inthe Add
Page dialog choose to create a process interaction page.

3. Copy each class once again and paste it as a Process in the block
type EntranceInterface diagram.

When pasting e.g. theclasskeypadInterface asaprocess, the process
will get the same name asthe class. This name should be changed since
the syntax for process instances requires both an instance name and the
name of the corresponding process type. The number of statically and
dynamically created instances must also be stated.

Telelogic Tau 4.5 User's Manual 3913

Chapter 78 SOMT Tutorial

3914

4. Name the process theKeypadInterface. The process
theKeyPadInterface should have one statically created instance
and it should not be possible to create any instances dynamically.
The following text should thus be written in the process name area:
theKeyPadInterface(1l,1) :KeyPadInterface.

(If the Remove Reference Symbol dialog appears, just click OK.)
5. Change the other three process names too, according to the above.

Now the block type EntranceInterface should contain four process-
€s named: theCardreaderInterface, theKeyPadInterface,
theExitButtonInterface and theDisplayInterface.

Block Type Enrancelnterface

theCardreaderInterfacel1, 13
CardreaderInterface

theK eypadlnterface(1,1h:
Keypadlnterface

theEzitButtonInterface(1,1):
ExitButtonInterface

theDisplayInterface(l,1):
DisplayInterface

Figure 746: The block type Entrancel nterface

Telelogic Tau 4.5 User's Manual July 2003

Performing the Object Design

Defining the Communication Structure

Y ou have aready specified the channels to and from the block
theEntranceInterface (thiswasdonein the block type
EntranceUnit). Now you have to connect the processes within this
block with the outside.

Creating a communication structure between processes and the border
of the block is made in the same way as creating communication struc-
tures between blocks, with one difference. The terminology specifies
signal routes instead of channels as the name for the communication
structures at this level. However, thereis no practica difference be-
tween signal routes and channels.

Now, edit the block type Ent ranceInterface diagram:

1. Connect each process with the border of the block with asignal
route in each direction.

2. Givethe gate of theinput signal to each process the name Entry and
the other gate the name Exit.

3. Specify thesignalsthat aretransported on each signal route. Consult
the system analysis object model and the specification of the block
theEntranceUnit to find all signals you should specify.

4. Connect thesigna routeswith the channel s by specifying the appro-
priate gate for each signal route.

July 2003 Telelogic Tau 4.5 User's Manual 3915

Chapter 78 SOMT Tutorial

3916

Block Type Entrancelnterface
T T
A
I 3
Gl
ReadCard,
FeadDigit
PressExwit)
Display Tolr '/éntry
61 [Readcm:l theCardreaderinterface1,1):
- CardreaderInterface
e =t | B
ReceiwCaxd:I
Tokp ™
Gl /éntry
[Rea‘ﬂ"'g"‘] theKeypadinterface1,1):
ek Keypadinterface
a2 LU
ReceiwCode:l
-
a1 ToEb ntry
[FsssExit] | theExitButtonnterface(1,1):
ExitButtonInterface
FrEb Exit
G2 =
TReceinressExit:l
ToD "Enw
Gl [Display] theDisplaylnterfacel,1):
B DisplayInterface
@3 - Exit
EnvDisplay]
G2
EnwDisplay.
RecetvePrassExit,
RecetwveCofle,
ReceieCald
G3 [Envnisplay]

Figure 747: The complete structure of the block type Entrancel nterface

Telelogic Tau 4.5 User’s Manual

July 2003

Performing the Object Design

July 2003

Defining the Object Behavior

Theactivity of describing object behavior isapure SDL design activity.
Thissection isintended to describe how to structure this activity. It will
not focus on specific SDL details.

The most important source of information in this activity are the use
cases which specify the signal calls and responses to and from the
blocks and processes in the system.

The design of the processesis best made iteratively:

» Select asubset of use cases which describe the most common inter-
action sequences. Create a basic version of the processesthat corre-
spond to these use cases.

» Second, you should introduce a couple of more use cases. Edit the
behavior of the processes making them correspond to the extended
subset of use cases.

« Continue with introducing more use cases. Edit the processes to
cover these, until the behavior of the objects correspond to the com-
plete set of use cases.

Using M SCsto describe the use cases makesit fairly simpleto identify
the states and transitions of the processes. A transition in a process
graph is an input signal, often followed by one or more output signals
from the actual processin a use case.

If the situation occurs that two use cases are difficult to combine, you
should consider to split the process in question into two separate pro-
cesses, one process for each use case.

An exampleisthe block type EntranceInterface which have aquite
complex structure of input and output signals. However, by dividing the
block typeinto four separate processes, each one of these processes be-
comesfairly simple.

Telelogic Tau 4.5 User's Manual 3917

Chapter 78 SOMT Tutorial

3918

Defining the Basic Behavior of a Process

1. Takealook at the processtype keypadInterface. You will see
that the process has asignal set of only two signals: theinput signal

ReadDigit and the output signal ReceiveCode.

2. If you study the MSC diagram
Enter Office With Card And Code SysD and the behavior
pattern ReadCode you seethat four Readnigit signalsgeneratethe
output signal ReceiveCode.

e _Equoloee] thdEniranelnterthee
Key StrokeTimer{3)
Fiead Digit
(]
é -
Key StrokeTimer{3)
=2
Fiear Digit
(]
é -
Key StrokeTimer{3)
E3
Fiead Digit
[]
-
Key StrokeTimer{3)
=2
Fieard Digit
(]
é -
Fieceive Code
[e1.0,1.03]

Figure 748: The signal sequence of the process theKeyPadl nterface

Telelogic Tau 4.5 User's Manual

July 2003

Performing the Object Design

July 2003

Creating the behavior of the process out of thisinformationisa
quite easy task. Adding the timer, which provides thetime-out func-
tionality, will makethefirst version of the behavior specification of
the process compl ete.

3. Inthe EntranceunitPackage, double-click on the
KeypadInterface process type symbol.

4. Inthe process type diagram, define the basic behavior of the pro-
cess.

Process Type Keypadinterface

TFaitForDigit

ReadDigit KeySteoke_
Tirner
REZET ; .
EoeyStakeTime FaitForDigit
False
Tt
SET N
EteyStaokeTirmer [EecerveCode

CoOC

Figure 749: Basic behavior of the Keypadlnterface process type

Defining the Data of a Process

The processeswill of course a so need some data containers, entity vari-
ablesand control variables. The control variables, such asloop counters
and flags, are identified during the object design. Entity variables are
most often identified during the system analysis and they may be
mapped to the process diagrams from the analysis diagrams.

If we take alook at the process thekeyPadInterface again we will
noticethat we need to introduce acounter to control the number of times
adigit will beread beforethe signal rReceivecode will besent. Wewill

Telelogic Tau 4.5 User's Manual 3919

Chapter 78 SOMT Tutorial

3920

also need an index to place the read digit in the correct position of the
Code array.

1

Place atext symbol in the diagram and declare a codeIndexType
named i inthe process.

The parameter of thereadnigit signal isof typeinteger. Declarea
variable named pigit of typeinteger.

The parameter of the Receivecode signal is of type codeType.
Therefore, declare avariable code of thistype.

Change the name of the gate Gkeypadinterface tO Entry.

Also, add anexit gateandthesignal ReceivecCode goingout of the
process type.

Declare atimer keystrokeTimer With duration 3.
Refine the behavior of the process.

Save the diagram.

Telelogic Tau 4.5 User's Manual July 2003

Performing the Object Design

July 2003

[HeadDigit]

Entry

Exit

Process Type keypadinterface

‘WaitFor Digit

DCL

Diigit Integer,
CodelndexType,

Code CodeType;

Feacd Digit Key Stroke
[Digit) Tirner
RESET it
(KeyStrokeTimen) -

Codediy= Digit,

i=i+1

‘Wait For Digit

[@

Fal
True =
SET Fieceive Code
(FewStrakeTimeny [{Code)

)

TIMER
ey StrokeTimer:=3;

Figure 750: The complete process type Keypadinterface

Therest of the processes in the system are created in asimilar way.
However, thiswill not be donein thistutorial.

Telelogic Tau 4.5 User’s Manual

3921

Chapter 78 SOMT Tutorial

3922

Design Testing

SDL makesit possibleto test the system aready during the design. It is
possible to simulate an SDL system taking both concurrency and distri-
bution into account. It is also possible to verify requirements specified
in MSCs using the Validator.

The MSC diagrams may, with no or little effort, be used directly asin-
put to the Validator. This makes the requirements verification simple
and efficient.

Preparing the Design Testing

To be able to test your design you must have a complete system.

1. Open the system file
somttutorial/objdesign/accesscontrol.sdt (on UNIX), or
somttutorial\objdesign\accesscontrol.sdt (in Windows).
What you seein the Organizer now is a complete system structure.

All four documentation chapters representing activities from the
SOMT method are compl ete.

2. Check that the Source directory is set to
somttutorial/objdesign/ (on UNIX), or
somttutorial\objdesign\ (in Windows).

Simulating the System

Simulating the system gives information about how different parts re-
spond to certain inputs and how different parts of the system interacts
with other parts. Simulating is often done during the object design to
test different parts of the system.

The compl ete system should also be tested using the simul ator to verify
that the whole system works as it is intended to.

Try to simulate the system AccessControl. Follow the steps below to
make a simulator version of the system AccessControl.

1. Select the system AccessControl in the Organizer.

2. Choose the Make option in the Generate menu.

3. Inthe Make dialog, choose the code generator to be Chasic.
4

Choose the standard kernel to be Smulation.

Telelogic Tau 4.5 User's Manual July 2003

Performing the Object Design

July 2003

5. Press Full Make. The system will be automatically analyzed. If
there are any warnings you can ignore them. These warnings show
up because we have not used al our declared signal lists. Asthey
are just warnings, not errors, you can ignore them.

6. When the make processisfinished, start the Simulator by choosing
Simulator Ul in the SDL submenu in the Tools menu.

7. Inthe SDL Simulator Ul window, open thefile
accesscontroll smb.sct (on UNIX), or
accesscontroll smb.exe (in Windows). Now you can simulate
the system, as you have learned in previous tutorials.

Validating the System

When the design of the system is finished you want to verify that the
system meets the requirements. Thisis quite easily donein the SDL
suite by using the SDL Validator.

M SCs from the system design are used as input to the VValidator.

The reguirements use case model is the essentia part of the require-
ments and is often the specification of the system which the customer
and the contractor agree upon. Thus, by verifying the system with the
M SCs from the system design you are verifying that the system meets
the customers requirements.

By making it possible to verify the customers requirements already in
the object design and not in a specia system design test phase, asin an
ordinary design process, you save alot of effort and time.

Now you should validate some of the M SCs from the system design ac-
tivity.

1. Select the system AccessControl in the Organizer.

2. Choose the Make option in the Generate menu.

3. Inthe Make dialog, choose the code generator to be Chasic.
4. Choose the standard kernel to be Validation.
5

. When the Make processisfinished, start the Validator Ul and open
thefileaccesscontroll vlb.val (on UNIX), or
accesscontroll vlb.exe (in Windows). Now the systemis
ready to be validated.

Telelogic Tau 4.5 User's Manual 3923

Chapter 78 SOMT Tutorial

3924

6. Pressthe Verify MSC button and choose the system design M SC di-
agram enter office with card sysd.msc Which you can find
in the directory somttutorial/sysdesign.

7. If the verification succeeds, you will get the message “** MSC
<Diagram name> verified **”,

It is perhaps too much work to verify all the MSC diagrams of the sys-
tem design activity during thistutorial and you may quit when you feel
that you have understood the principle of how to verify an SDL system.

If all diagrams can be verified against the system, then it is verified that
the system al so meets the requirements specified in the beginning of this
tutorial.

Consistency Checks

There are mainly two consistency checks that should be performed in
the object design activity:

» Check that al objectsfrom the analysis object model have been im-
plemented in the design.

» Check that the design model correctly implementsthe requirements
from the design use cases.

The second consistency check is done through design level testing, see
“Design Testing” on page 3922. Thefirst onewill be performed through
alink check, see below.

Link Check

In our complete Access Control system there are implementation links
from the system analysis models to both the system design models and
the object design models. Thisimplies that we must check our analysis
object model against both these design models to seeif al the classes
have been implemented in the design.

» Perform alink check. Let the analysis object model form the from
group. The architecture definition and the SDL design model will
form the to groups.

Theresult showsthat all classes but the class securityLevel have cor-
responding processes, blocks, signal interfaces or proceduresin the de-
sign. The securityLevel does not have any behavior of itsown, itis

Telelogic Tau 4.5 User's Manual July 2003

Performing the Object Design

implemented through its subclasses, and, therefore, the result is just as
we want it.

We have now completed the design of the system. It is possible to pick
an endpoint in the textual requirements and follow theimplink from it,
through the object models, to SDL. It is also possible to traverse links
the other way, i.e. from design to requirements. Try this!

The use cases are al so connected to each other, from requirementsto de-
sign, as can be seenintheview of thelink filein the Link Manager win-
dow.

July 2003 Telelogic Tau 4.5 User's Manual 3925

Chapter 78 SOMT Tutorial

Summary

After having completed an entire object design the corresponding doc-
ument structure in the Organizer would look like in Figure 751.

Object Design Documents

[E] sbL_besignmodel

T utilituTupesPockoge
] EntroncelnitPockoge
Ertroncelnter foce

foigl thebisployInterfoce (1,10
fordl thekeypodInter foce (1,10

Ertroncectrl
iyl theEntronceControl (1,1)

DoorUnit

H) Entroncelnit
b<iy| theDoorUnit @ DoorUnit
beiy| theEntrancectrl
bid| theErtronceInter foce
KeupodInter foce
Ertroncectrl
Levell
Cpenboor
LevelZ
Leveld
Leveld
Cordreoder Inter face
DoorSensor Inter face
ExitButtonInterface
DoorLock Inter foce
DisplagInter foce
—{ff] CentrolControlPockoge
CentrolControl
feidl theCentrolctrl (1,1)
I CemtrolcComtrol
Secur itychange
volidoteCard
YolidoteCods
AccessControl
theCentralControl :
theEntroncelnit (...)

00

00000

00000

syl theCordreoder Inter foce (1,1
: DisplouInterfoce
Foigl theExitButtonInterface (1,1
: KeupodInter foce

il theDoorLockInterface (1,1)
coiul theDoorSensor Inter foce (1,1

1 @ Cordreoder Interfoce

1 o ExitButtonInterfoce

1 Emtroncectrl

DoorLock Inter face
1 1 DoorSensorInterfoce

Entroncectrl
Ertroncelnterfoce

1 Centrolcontrol

CentralControl
: Entranceldnit

Figure 751: The entire Object Design Documents structure

3926 Telelogic Tau 4.5 User' s Manual

July 2003

| mplementation

Implementation

Textual requirements model ftext)

Requirements Fequirements
Requiremerits object model | uze cmze modeal
FAnalysiz (clazs diagram) Grexnthds T
g
2
Pnalysis " Poahyzis =
object model i uze cmze modal :g
System (class diagram) i [extMSC) n
Anahysis)i}
o
Syt syﬁ;"? sdEsLign : use clzj:ss;grl?mdel
yEtem model, i
Design : MECTTEM)
: Object design
Object
Disign model, S0L

q Implementation| Code, hardware, etc

Figure 752: Overview of the SOMT process

Theimplementation of the system lies outside the scope of thistutorial.
For information about the implementation activity, see the SOMT
M ethodology Guidelines starting in chapter 69 in the User’s Manual.

July 2003 Telelogic Tau 4.5 User’ s Manual 3927

Chapter 78 SOMT Tutorial

Performing an Iteration

3928

What You Will Learn

e Tointroduce changes to asystem in a controlled way
» To usetheimplementation links to assist you in the activity

Introduction to the Exercise

During thelifetime of asystem new requirements and changesin exist-
ing requirements are almost always introduced. We have to be able to
handl e these requirement changes and adapt the system to the new situ-
aion in acontrolled way. We call this process iteration. An iteration
may also be planned in advance in, for example, incremental devel op-
ment.

This section will describe the scenario of an iteration caused by the in-
troduction of an additional requirement.

Preparing the Exercise

Asinput to this exercise we will use the complete Access Control sys-
tem.

1. Openthesystemfile somttutorial/Iter/accesscontrol.sdt
(on UNIX), Or somttutorial\iter\accesscontrol.sdt (in
Windows).

2. Check that the Source directory issett0 somttutorial/Iter/
(on UNIX), or somttutorialliter\ (in Windows).

3. Create anew chapter and name it Iteration Documents.

4. Add anew module called AdditionalTextualRequirements tO
the new chapter.

5. Addtheexisting fileadditionalTextualRequirements.txt t0
the new module.

Telelogic Tau 4.5 User's Manual July 2003

Performing an Iteration

July 2003

Studying the Additional Requirements

* Open the additional textual requirements document if it is not al-
ready open. The example below shows the document.

Example 612: Additional requirements

The system should be able handle the languages English, German and
French. One version of the system should handle a specific language
and the system should be easily configured to handle a new language.

As stated in the example above, the task isto redesign the system so it
can handledifferent languages. The design should be madein away that
makes it easy to configure the system to new languages.

Thewords English, German and French are marked as endpointsin the
document.

Examining the Consequences

Now it istimeto validate what consequences the new regquirement has
on the system. The new requirement identify one object that may be af-
fected, the pisplay object.

1. Study therequirementsregarding the pisplay intheoriginal textu-
a requirements document. Y ou should find that the new require-
ment does not contradict with the original requirements.

2. Traversetheimplementation link from the text fragment pisplay
in the original textual requirements. Thelogical structure diagram
in the requirements object model will pop up with the class Display
sel ected.

3. Withthe class still selected, choose Traverse Link once more and
follow thelink to thelogical architecture diagramin the analysis ob-
jectmodel. TheclasspisplayInterface, withoperationpisplay
and attribute Text will be selected. The classis a part of the class
EntranceUnit. It also has aconnection to the class
EntranceCtrl, See Figure 753.

Telelogic Tau 4.5 User's Manual 3929

Chapter 78 SOMT Tutorial

3930

4.

Entrance_

Unit

Change Security Level

Open

Close

Fieac Cardl

FieaciDigit

FressExit

Cardreader_ Keypad_ Display_ ExitButton_
Interface Interface Interface Interface
Text
Fieadd Card Fiead Digit Display FressExit
Entrance_
Ctrl

Change Security Lewvel
Reciewe Open
FiecieveClose
Recieve Card

Fiecieve Code
RecigvePressExit

Figure 753: Part of the Logical Architecture diagram

Continue to follow thelink of the classpisplayinterface, from
thelogical architecturetothepackage Ent ranceUnitPackage. The
classisconnected with theblock type Ent ranceInterface andthe
processtypepisplayInterface aswell aswith the signal inter-
face defining the signal pisplay.

Y ou can aso follow the implementation links from the class
DisplayInterfacetotheblock theEntranceInterface (within
the block type Entrancetnit) and to the process
theDisplayInterface (Within the block type
EntranceInterface).

Open the block type EntranceInterface inthe object Design
Documents Structure. Study the signal routes leading to and from
the process theDisplayInterface. You will noticetwo signas:

Telelogic Tau 4.5 User's Manual July 2003

Performing an Iteration

July 2003

Display and EnvDisplay. Examining the two signals with help of
the Signal Dictionary will give you information about the signals.
EnvDisplay hasthe parameter charstring and the signal
Display hasthe parameter MessageType.

7. Openthe processtypepisplayInterface. Study the behavior.
You will notice that it is possible to change the content of the
EnvDisplay Signal without affecting the behavior of the process
type. It a'so seems like the required changes to the system are lim-
ited to the processtype pDisplayInterface.

Introducing Changes in Documents

Now you should introduce the necessary changes to the system to get
the desired behavior. Changes should be made in a controlled way. All
documents affected of the changes should be edited, to keep the consis-
tency.

Updating the Data Dictionary

1. Openthedatadictionary. Includeinformation presented in the addi-
tional requirements to the data dictionary.

2. Savethefileaspatabictionary.txt inthe current directory.

Updating the Requirements Object Model

Aswe saw earlier, the change we have to introduce to the system is fo-
cused on the process type DisplayInterface. The new reguirement
specify that one version of the system should handle aspecific language
and the only language dependent part of the system isthe process type
DisplayInterface.

It seems natural to introduce a class for each one of the languages En-
glish, German and French in the logical structure diagram. These class-
es should be subclasses to the class pisplay, i.€. an inheritance struc-
ture is needed.

1. Add the three new classesto the logical structure diagram in there-
quirements object model. Name the classes Frenchpisplay,
EnglishDisplay and GermanDisplay r%pectively.

2. Linktheclasseswith the corresponding text in the additional textual
reguirements document.

Telelogic Tau 4.5 User's Manual 3931

Chapter 78 SOMT Tutorial

3. Savethediagram aslogicalstructure.som inthe current direc-
tory.

Display

— |
French_ English_ German_
Display Display Display

Figure 754: The class Display and its subclasses

4. Makealink from theclass pisplay to the class
DisplayInterface inthelogical architecture diagram in the anal-
ysis object model.

Updating the Analysis Object Model

In the logical architecture diagram we have to create an inheritance hi-
erarchy corresponding to the inheritance hierarchy in the logical struc-
ture,

1. Createthethree subclassesto theclasspisplayInterface. Name
the classes EnglishDisplayInterface,
GermanDisplayInterface and FrenchDisplayInterface.

2. Createimplementation linksto the corresponding classesin thelog-
ical structurediagram. (Anaternative here would have been to copy
the classes from the logical structure diagram and paste them as
classesin the logical architecture diagram. The implementation
links would then have been created automatically.)

3. Traversethelink from the classpisplayInterface tothe process
typepisplayInterface inthe EntranceUnitPackage.

3932 Teldlogic Tau 4.5 User's Manual July 2003

Performing an Iteration

Updating the SDL Design

Now it istime to make some changes to the SDL design, making it cor-
respond to the logical architecture. The inheritance hierarchy of the
DisplayInterface classes should be mapped to an inheritance hierar-
chy of process types.

1.

July 2003

Createtwo new processtypesintheEntranceUnitPackage. Name
the process types GermanDisplayInterface and
FrenchDisplayInterface. Thed ready existi ng
DisplayInterface processtypewill function asthe
EnglishDisplayInterface.

Mark these process types as endpoints and create links between
them and the corresponding classesin the logical architecture. (Al-
ternatively, use the Copy-Paste As mechanism.)

Now, edit the pisplayInterface processtypeto makeit more
general and suitable for reuse.

Double-click onthepisplayInterface processtypein the
EntranceUnitPackage.

Create avariable of type charstring for each possible message
that can be sent to the environment. Y ou will need eight such vari-
ables.

Put the text virtual in the start symbol.
Insert atask symbol just after the start symbol.

Inthetask symbol you should initialize the message variablesto the
corresponding message.

Edit each output symbol making it use the corresponding message
variable as a parameter instead of atext string. The process type
DisplayInterface Will use English language.

Telelogic Tau 4.5 User's Manual 3933

Chapter 78 SOMT Tutorial

3934

Exit

[D\splay] l Entry

Process Type Displayinterace

B ITIMER: beL
] Display Timer:=3; Msy MessageType,
- EnterCard,

Enter Cade,
DoorlsOpen,

DoorlsLocked,
IrvealicCartl,

ongCode,
EnferCardi= “Enter card, (Cocie Time Out,

Enter Code:="Enter code’, ConnestionFailure Charstring;
Doorlstpen:=*Door is open’, Delay
DoorlsLocked:="Doar is locked”,

Invalid Card:='Invalid card”,
Wirong Cotle:="Wrong code’,
CouleTime Out:="Code time out’, Disalay Ty Display
ConnectionFailure:= Tonnection failure

RESET
DisplayTiner

Figure 755: The process type Displaylnterface
9. Savethediagram in the current working directory.

EntCrd EntCole DoorOpn DoorLocked I Cared Wing Cole ColeTiout Conn Fail
i EnvDisplay [Env Display En Display Erv Display’ Envv Display ErvDisplay’ Env Display’

d Enter Cod; DoorlsOps i Door lsLogked) |(InvalidCary (WrongCox [CodeTime@at) |[{ Connectignfailure)
SET

[

After editing the DisplayInterface processtypeit istimeto create

the process types GermanDisplayInterface and the

FrenchDisplayInterface. For each process follow the steps below:

10. Open a graph page for each process type by double-clicking on the
corresponding processtype symbol inthe Ent ranceUnitPackage.

Press OK in the edit dialog.

11. In the additional heading you should enter the text:
INHERITS DisplayInterface ADDING;

12. Place astart symbol in the diagram and enter the text REDEFINED in

the symbol.

13. Connect atask symbol to the start symbol. The task isto initialize
the message variables to the appropriate messages. Do not use na-

tional characters.

14. Connect a state symbol with the task symbol and name it

Wait_ for signal.

15. Save the diagrams.

Telelogic Tau 4.5 User's Manual

July 2003

Performing an Iteration

July 2003

Now the necessary behavior is described and it is time to show how to
configure the system to make use of the new design.

Process Type GermanDisplayInterface 1(1)

REDEFINED

EnterCard:= 'Karte bitte’,
EnterCode:="Geheimnummer bitte’,
DoorlsOpen:="Tur geoeffnet’,
DoorlsLocked:="Tur geschlossen’,
InvalidCard:='Karte nicht registriert’,
WrongCode:="Falche Eingabe’,
CodeTimeOut:="Zeit abgelaufen’,
GonnectionFailure:= 'Kein Computer Kontakf'

I

Figure 756: The process type GermanDisplaylnterface

Configuring the System

The necessary design is done and we want to configure our system to
make use of the new design. Following the steps below will configure
the system to a German version.

1. Openthe block type EntranceInterface.

2. Select the process theDisplayInterface and change the text
theDisplayInterface(1l,1) :DisplayInterface tO
theDisplayInterface(1l,1) :GermanDisplayInterface

3. Now you can analyze the system. Perhaps you want to simulate the
new version of the system; if so, follow the steps described in
“Simulating the System” on page 3922.

Telelogic Tau 4.5 User's Manual 3935

Chapter 78 SOMT Tutorial

3936

Block Type Entrancelnterface

[PressExit
ExitButtonInterface
FrEb Exit
G2

ReceivePressExitJ

theExitButtonInterface(1,1):

1(1)

G1
ReadCand,
ReadDigl|t,
{Bzzs.ff‘} —
o ToCr Entry
theCardreaderInterface(1,1):
[Readcard] o Greaderinterface
G2 Frer | exit
Receivecard]
ToKp
Gl ntry
[Readigit theKe)zFadlnterface(l,l):
Keypadinterface
G2 LI =
Receivecade]
Gl ToEb Entry

ToD
Gl Entry
[Dis Ia theDisplayinterface(1,1):
P&Y]| - GermanDisplayInterface
G3 FrD_ | Exit
EnvDispIay] /
G2
-EnvD_isp _
ReceivePressExit,
ReceiveCode,
ReceiveCard G3 [EnvDispIay]

Figure 757: The block type Entrancel nterface

Now you have completed the iteration exercise.

Telelogic Tau 4.5 User's Manual

July 2003

To Conclude...

To Conclude...

Y ou have now learned the steps of the SOM T method, and we hope you
have enjoyed the tour.

Once again we would like to point out that the activities are presented
in asequential order in thistutorial just to simplify the reading. In prac-
tise, the task of developing a system using SOMT isahighly iterative
process. One activity may start before the preceding activity iscomplet-
ed and the models inside an activity are usually created in paraléd.

The SOMT method isintended to support the development process, not
to control it. In other words, it isaproposed way of working. For your
own work, you should not feel that you are locked by SOMT, but pick
the parts that suit you best.

July 2003 Telelogic Tau 4.5 User's Manual 3937

Chapter 78 SOMT Tutorial

3938 Telelogic Tau 4.5 User' s Manual July 2003

	78 SOMT Tutorial
	Introduction
	Purpose of This Tutorial
	Required Skills
	Preparations

	Preparing the Documentation Structure
	What You Will Learn
	Introduction to the Exercise
	Deleting Unwanted Chapters
	Adding New Chapters
	Adding the Organizer Modules

	Identifying the Requirements
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Studying the Textual Requirements
	Including External Textual Requirements
	Creating Textual Endpoints

	Creating the Data Dictionary
	Creating the Use Case Model
	Creating a List of Actors
	Creating a List of Use Cases
	Creating a Textual Use Case
	Creating an MSC Use Case

	Creating the Requirements Object Model
	Creating a Requirements Object Model
	Identifying the Objects
	Identifying the Relations

	Entity Match
	Creating Implinks
	Summary

	Performing the System Analysis
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Creating the Analysis Object Model
	Creating a Logical Architecture
	Adding Classes to the Logical Architecture
	Adding Relations to the Logical Architecture
	Adding Attributes to the Logical Architecture
	Adding Operations to the Logical Architecture
	Creating an Information Diagram

	Creating the Analysis Use Case Model
	Refined Requirements Use Case
	Behavior Pattern Use Cases

	Requirements Traceability
	Link Check
	Entity Match

	Summary

	Performing the System Design
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Design Module Structure
	Creating a Design Module Structure

	Creating the Architecture Definition
	Defining the Packages
	Creating the SDL System Diagram
	Refining the EntranceUnit – Mapping Aggregations

	Creating the Design Use Case Model
	Formalizing Use Cases

	Consistency Checks
	Entity Match
	Link Check

	Summary

	Performing the Object Design
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Mapping Active Objects to SDL
	Mapping to Process Types
	Defining the Communication Structure

	Defining the Object Behavior
	Defining the Basic Behavior of a Process
	Defining the Data of a Process

	Design Testing
	Preparing the Design Testing
	Simulating the System
	Validating the System

	Consistency Checks
	Link Check

	Summary

	Implementation
	Performing an Iteration
	What You Will Learn
	Introduction to the Exercise
	Preparing the Exercise
	Studying the Additional Requirements
	Examining the Consequences
	Introducing Changes in Documents
	Updating the Data Dictionary
	Updating the Requirements Object Model
	Updating the Analysis Object Model
	Updating the SDL Design
	Configuring the System

	To Conclude...

