
July 2003 Telelo

Chapter
76 SOMT Implementation
This chapter describes the different ways to implement an SDL de-
sign and the tasks that have to be done in connection with this. The
focus is on automatic implementation relying on automatic code
generation and using C as the target language.
gic Tau 4.5 User’s Manual ,um-st1 3815

Chapter 76 SOMT Implementation
Implementation
The implementation activity results in a tested and running application
in the target environment.

The activities during implementation are highly dependent upon the ap-
plication and target and there are several possible ways to implement an
SDL design. It can be manually implemented in software or hardware
or a more automatic implementation can be used relying on automatic
code generation. The discussion in this section is mainly intended to
give an overview of different aspects on the latter approach using C as
the target language. There are several tasks to be done in the implemen-
tation activity:

• Partitioning the SDL system into different software (and/or hard-
ware) run-time modules.

• Implementing the adaptation code that is needed for this specific
SDL system to operate in its environment.

• Selecting and implementing a general integration strategy for the
target hardware and run-time environment.

• The generation of C code and the customizing of it for different ap-
plication areas.

• Testing to ensure that the application works in the target environ-
ment.

Figure 707: Overview of the implementation activity

Object
design model

(SDL)
Implementation

Application

Test reportsTest
model

(TTCN/MSC)
3816 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Partitioning an SDL System
Partitioning an SDL System
The purpose of the partitioning task is to partition the SDL system into
separate parts that will form stand-alone executables by themselves, ei-
ther to run as separate programs on one computer or distributed on sev-
eral computers in a network.

There are two different possible strategies for how to do the partitioning
in practise:

• Use directives to the C code generator to define what parts of the
system that will form separate run-time executables.

• Create different SDL systems for the different partitions and gener-
ate code for them separately.

Adaptation
An application generated from an SDL description can be viewed as
having three parts:

• The SDL system

• The physical environment of the system

• The environment functions, where the SDL system is connected
with the environment

When adapting the application, the environment functions may have to
be specified depending on the integration mechanism used. The envi-
ronment functions are the place where the two worlds, the SDL system
and the physical environment, meet. Signals sent from the SDL system

Figure 708: Example of activities during the implementation

Partitioning Generation
of C code

Integration

Adaptation Testing
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3817

Chapter 76 SOMT Implementation
to the environment can be specified to perform any event in the physical
environment, and events in the environment are specified to cause sig-
nals to be sent into the SDL system.

In a distributed system an application might consist of several commu-
nicating SDL systems. Each SDL system will become one executable
program. The environment functions that has to be written for each SDL
system are:

• xInitEnv – handles the initialization of the environment and will
be called during the start-up of the application (before the SDL sys-
tem is initialized).

• xCloseEnv – is called when the SDL system terminates.

• xOutEnv – will be called each time a signal is sent out of the SDL
system.

• xInEnv – This function is repeatedly called during the execution of
the system. During this call, the environment could be scanned for
events which should result in a signal sending into the SDL system.

• xGlobalNodeNumber – returns a number that is unique for each
communicating SDL system that constitutes an application.

Figure 709: The structure of an application

Interface containing:

Read and write on files,
ports, sockets etc.

Communication over
network

Handling of interrupts

 Physical
Environment

SDL signal
interface

 SDL
System

Environment
Functions
3818 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Integration
Integration
The purpose of the integration task is to select (and implement if no pre-
defined integration exists) a generic integration mechanism that makes
it possible to execute a generated application in a target hardware/soft-
ware environment. There are three different strategies available for this
integration:

• Making an integration using the SDL run-time system, where the
SDL application directly runs on a micro processor without any ad-
ditional operating system support.

• Making a light integration to an operating system, where an SDL
system (together with a run-time system) is treated as one task in the
operating system.

• Making a tight integration to a real-time operating system, where
each SDL process instance (or set of instances of a specific type) re-
sults in a task in the operating system.

Both the integration using the SDL run-time system and the light inte-
gration use a supplied run-time system to execute the SDL system that
takes care of the SDL semantics including scheduling of processes etc.

A tight OS integration consists of a set of files that define how the SDL
semantics is mapped to the operating system in question. The main cat-
egories are:

• Macro definitions that define the macros in the generated code

• Functions that handle constructs that cannot be used directly in the
operating system (i.e. saving of signals)

• Functions that are dependent on the specific operating system (i.e.
allocate/free memory)

• Definitions and handling of SDL predefined data types

• Identifiers for signals, timers and remote procedure calls

• Post processing utilities to enumerate signal and process types

An existing integration for an operating system is highly reusable and
several predefined integrations are available.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3819

Chapter 76 SOMT Implementation
C Code Generation
Although the C code generation is a highly automated activity, there are
several ways of customizing the generated code. Some examples are:

• Generating separate C files for different SDL structural entities

• Assigning priorities to processes to enable scheduling (which is un-
defined in SDL)

• Making a user-defined implementation for the handling of certain
signals

• Making a user-defined main-loop (run-time system) in the generat-
ed application

Separation of the C files is recommended for large systems, since a mi-
nor, local change in for example a block diagram only requires a regen-
eration and recompilation of the code for that unit. The object files (the
compiled versions of the C files) for the other unchanged units can then
be used in the link operation to form a new executable program. Thus,
the turn-around time from a change in the design to an executable appli-
cation is minimized.

When doing a customization of the code, it is important that this is done
in a way that keeps maintenance of the design easy.

Testing
The purpose of the testing task in the implementation activity is to ver-
ify that the application works in its target environment. The input is the
test cases specified in the system design and the output is a test report
and a tested application. The details of the testing task is very much de-
pending on the target environment and the possibilities to run tests
against the application in this environment. Essentially the tasks in-
volved in the testing are:

• Creating a test environment that can communicate with the applica-
tion and where the tests can be executed

• Transforming the test cases to a format that can be used in the test
environment

• Run the tests

• Analyze the results of the tests
3820 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Summary
Summary
The final SOMT activity, the implementation, completes the develop-
ment activities by creating an application that runs on the target envi-
ronment. From the SDL object design, C code is created, the code is
adapted to handle the environment of the SDL system and then integrat-
ed to the hardware by means of generic interfaces to real-time operating
systems. Finally, the application is tested in its target environment.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3821

Chapter 76 SOMT Implementation
3822 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	76 SOMT Implementation
	Implementation
	Partitioning an SDL System
	Adaptation
	Integration
	C Code Generation
	Testing
	Summary

