
July 2003 Telelo

Chapter
70 SOMT Concepts and

Notations
This chapter describes the major concepts and notations used in the
SOMT method. The notations treated includes object models, state
charts, SDL diagrams and Message Sequence Charts (MSCs). Note
that the descriptions in this section only briefly describes the differ-
ent notations. For a more thorough treatment, please consult a text-
book on the specific notation.
gic Tau 4.5 User’s Manual ,um-st1 3665

Chapter 70 SOMT Concepts and Notations
Activities, Models and Modules
As seen in the previous chapter, the SOMT method describes object ori-
ented analysis and design as a number of activities that produce one or
more models. A model is here used in an abstract fashion to denote a
collection of diagrams, text documents or whatever is needed in the par-
ticular model. The concept of a model is used to be able to discuss the
results of an activity without going into detail of how the actual dia-
grams/documents are organized.

A module, on the other hand, is the concept used in SOMT to define
how the diagrams/documents are organized. The major purpose of the
modules is that they form units that should be fairly self-contained and
that can be developed by themselves, maybe by different teams. A mod-
ule is a container of e.g. diagrams and textual documents that has no se-
mantics by itself but that forms a scope unit for names (if this is not giv-
en by the notation used). For example, if the Analysis Object Model is
described in two modules that both contain a class called “Person”, then
these definitions do not refer to the same class. There will be two differ-
ent “Person” classes, one in each module.

In practice it is beneficial to have a simple mapping between models and
modules, either a one-to-one or, if a model is too large, a one-to many
mapping where a model is decomposed into several modules.

The actual documentation produced according to SOMT is thus a col-
lection of modules containing diagrams/documents that together form
this particular projects representation of the SOMT models.

Implinks and the Paste As Concept
The SOMT method introduces a number of different models that are
used to describe different aspects of the system. In particular there are
three levels formed by:

• The requirements that describe the problem and external require-
ments on a system

• The system analysis describing the concepts used in the system

• The system and object design that defines the structure and behavior
of the system
3666 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implinks and the Paste As Concept
One very common relation between objects in different models is that
one object can be seen as an implementation of an object in another
model. For example, an object in the object model created in the system
analysis phase may be reintroduced in the design model as a process
type or an ADT (abstract data type). Another example may be an object
that was identified in the requirements analysis as something visible on
the system boundary, and that later is reintroduced in the analysis object
model and finally ends up as a signal in the SDL design. To represent
this type of relations among objects the concept of implementation links
(implinks) is used. An implink is a directed relation between two ob-
jects, usually (but not necessarily) in different models. Conceptually we
get a picture as in Figure 606.

If used carefully, the implinks give a possibility to trace requirements
all the way down into code. There are several situations where the im-
plinks are very useful:

• What if analysis. What are the consequences if a particular require-
ment is changed?

• Consistency checking. Are all concepts in e.g. the system analysis
model implemented?

Figure 606: Implinks between objects in different models

Require-
ments

System
analysis

System and

Implementation

analysis

Object Design
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3667

Chapter 70 SOMT Concepts and Notations
• Understanding design by following the links backwards from im-
plementation to requirements. What is the purpose of a particular
design object? What happens if we change it?

It is important to see that the act of creating an implink is a creative de-
sign action that encapsulates a design decision. The Paste As mecha-
nism is a special concept used in SOMT to support the task of creating
implinks. The idea is that an object in one model can be copied and then
pasted as a new object in another model, see Figure 607. This action
serves both to create the new object and to document the design step us-
ing an implink.

Consistency Checking
The SOMT method uses a number of models and notations and the
checking of various aspects of the models is an important part of a de-
velopment project. This checking can be formulated as a question of
identifying “entities” or “concepts” in different models (or in one mod-
el), to identify some rules of how these entities should relate to each oth-
er, and finally to check that the models are consistent with respect to
these rules. This type of checking is in this document called consistency
checking. Three different types of consistency checking can be identi-
fied:

• Checking the internal consistency within one model, e.g. checking
that an SDL system is correct with respect to the syntactical rules for
SDL

Figure 607: Using Paste As to capture a design step from
the system analysis model to SDL

Analysis model
(object model)

Design model
(SDL)

Paste AsDoorControl

DoorControl
3668 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Consistency Checking
• Checking that two models are consistent with respect to each other
and some consistency requirement, e.g. checking that all classes in
an object model are described in the data dictionary

• Checking traceability aspects, i.e. checking that the entities in two
models are correctly linked (using implinks) to each other. For ex-
ample, checking that all objects in an analysis model are implement-
ed in the design model

In some sense the checking of traceability aspects is a special case of the
checking of the consistency between two models, but it is an important
special case and it is given a special treatment in SOMT.

One general observation that can be made is that the identification of
concepts/entities is very much depending on the particular notation
used. Each separate notation will have to be treated separately following
the particular rules that apply to this language. For formal languages
like SDL, the concepts and procedures how to find the entities are well
defined, while for other languages the rules are different, and for plain,
informal text the entity identification will have to be explicitly done by
the user. In SOMT there is a special possibility to “mark” words or
phrases in text documents. The intention is that this marking means
“this concept is important” or “this is a concept that I would like to for
consistency checks”.

In the rest of this volume, each activity of the SOMT method together
with its associated models will be described in different chapters. Each
of these chapters will also include a discussion on consistency rules that
are relevant for this particular model.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3669

Chapter 70 SOMT Concepts and Notations
Object Model Notation
The object model notation from Object Modeling Technique (OMT)
and Unified Modeling Language (UML) is a commonly accepted
graphical notation used for drawing diagrams that describe objects and
the relations between them. The notation that is used in examples in this
volume is shown in Figure 608 through Figure 613. For more details
about other, more advanced OMT object model concepts, please consult
[20], and for details about the UML notation see [36] and [37].

Class
The most important concept in an object model is the class definition.
A class is a description of a group of similar objects that share the prop-
erties defined by the class. The object model notation for a class is ex-
emplified in Figure 608, where the second class definition also shows
how to define attributes and operations.

In some cases it is necessary to reference classes from an external mod-
ule. The notation used for this purpose is ExternalModule::Class.

Classes may inherit attributes and operations from other classes. The
object model notation for this is shown in Figure 609.

Figure 608: A collapsed class symbol and a class symbol
with attributes and operations

Class1

attrib1
attrib2:atype

op1
op2 (arg1: type1): resulttype

Class1
3670 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Object Model Notation
Relations and Multiplicity
Classes may be physically or logically related to each other. This is
shown in the object model by means of associations as shown in
Figure 610. An association may have a name and/or the endpoints of the
association may be labeled by the role of this endpoint.

Aggregation is special kind of association that has its own notation as
shown in Figure 611.

Figure 609: Inheritance between classes

Figure 610: Associations between classes

SuperClass

SubClass1 SubClass2

Class1

Class2 Class3

AssociationName

Class3sRole

Class1sRole
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3671

Chapter 70 SOMT Concepts and Notations
The endpoints of associations and aggregations may have a multiplicity
as shown in Figure 612.

Module
In practise the complete requirements object model is often too big to
fit into one diagram. To solve this problem it is possible to use multiple
object model diagrams that can be organized into a module, which sim-
ply is a list of diagrams. It is important to notice that a class may be
present in more than one diagram and still only represent one logical
class.

Figure 611: Aggregation

Figure 612: Multiplicity of associations and aggregations

Assembly

Part1 Part2

1..* *

Class

Class

Class

Class

Class

1..*

1..3,7,20..*

Exactly one

Zero or more

Zero or one

One or more

Several intervals

*

0,1
3672 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Object Model Notation
Objects
Besides class definitions, object models may of course also contain ob-
jects and their relations. The relation that exists between objects are
links, which corresponds to the associations for classes. The object
symbol has one field containing the name of the object together with a
reference to the class, and an attribute field where constant or default
values can be assigned to the object attributes. See Figure 613.

Figure 613: Objects related by links

c:ctrl

d1:door d2:door

DoorToCtrl DoorToCtrl

nr=1 nr=2

nrof doors=2
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3673

Chapter 70 SOMT Concepts and Notations
State Chart Notation
The notation presented in this section is a subset of the notation for state
charts presented by David Harel [35] which is used in the Unified Mod-
eling Language (UML) [36] as well as in the Object Modeling Tech-
nique (OMT) [20].

A state chart model is suitable to use together with class and object
models. The descriptions of the behavior of a class in a class diagram is
collected into a state chart which describes the dynamic view of the
model by means of states and transitions. The notation to use is present-
ed below.

Notation

State

To describe state charts a state symbol is needed. The state symbol is
divided into three compartments, State Name, State Variable and Inter-
nal Activity, which are all optional. The top compartment contains the
optional name of the state. State symbols with the same name within the
same context are considered to be the same. It is not necessary to name
states and if several anonymous states exists; each anonymous state
symbol is considered to be an individual state. Figure 614 shows a col-
lapsed state and a state with state variables and events.

A state symbol may contain a State Variable compartment. This com-
partment highlights attributes of the class which are used or in some
way affected by the behavior described in the state chart.

Figure 614: A collapsed state symbol and a state symbol
with state variables and events

State1

State1

attrib1
attrib2:atype

entry / action1
exit / action2
do / action3
event1 / action1
3674 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 State Chart Notation
The third compartment is the Internal Activity compartment which de-
scribes the activities of the current state, activities that are done upon
entering the state, activities taking place while in the state and activities
executed when exiting the state. Each activity is described in the format:

event-name argument-list ‘/’ action expression

Each event name may appear only once within a state symbol. The
event names “entry”, “exit” and “do” are reserved and they describe the
following actions:

‘entry’ ‘/’ action expression
An atomic action performed upon entering the state

‘exit’ ‘/’ action expression
An atomic action performed upon exiting the state

‘do’ ‘/’ action expression
An action performed during the state

Transition

The second necessary symbol for drawing state charts is the transition.
The transition symbol is an arrow which connects two symbols of either
type of state, start and termination, see Figure 615.

The syntax for the transition symbol follows the format:

event-signature ‘[‘ guard-condition’]‘ ‘/’ action-expression ‘^’
send-clause

The event-signature consists of the parts:

event-name ‘(‘ parameter ‘,’ ... ‘)’

Figure 615: The transition from state1 to state2 is triggered by the event
my_event and the condition that attr1 is less than attr2

state1

state2

my_event(param1) [attr1 < attr2] / my_action^object1.notify)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3675

Chapter 70 SOMT Concepts and Notations
The guard-condition is a Boolean expression formed by the parameters
of the triggering event together with possible attributes and links of the
object described by the state chart.

The action-expression describes the action that is executed during the
transition. The action may be described by procedures, affected at-
tributes and links.

The send-clause has the format:

destination-expression ‘.’ Destination-event-name ‘(‘ argument ‘.’
...’)’

The destination-expression identifies the receiving object or a set of re-
ceiving objects.

The Destination-event-name is the name of an event that may be re-
ceived by the receiving object(s).

Start and Termination Symbol

The start symbol denotes the starting point of a state machine described
by a state chart and the termination symbol denotes the point of termi-
nation of a state machine. Figure 616 shows a simple state machine, de-
scribing the behavior of a door, including a start symbol and a termina-
tion symbol.

Figure 616: A simple state chart with a start symbol and a termination symbol

Unlocked

Locked

DoorOpen

Unlock Lock

CloseOpen

shutdown
3676 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 State Chart Notation
Substates

States may be refined into nested diagrams of sub-states, or hierarchical
states. The state represents a simplification of more complex behavior
expressed in the nested diagram.

State Charts in SOMT

State Charts and SDL

Both State Charts and SDL process graphs are two notations used to ex-
press state machines. The two notations have both their advantages.
State Charts are good for expressing high level functionality typically
used in early activities like analysis. SDL is good for expressing de-
tailed functionality as in design activities. SDL is also a formal notation,
with well defined semantics, from which it is possible to generate code.

State Charts in Requirements Analysis

State charts might be used to express high level functionality of a sys-
tem by focusing on the behavior of the system rather than the behavior
of the system’s parts. It might also be useful to express the behavior of
complex actors that are interacting with the system.

Figure 617: A state chart with states and substates.

state2

state1

substate2

substate1

event3

event1

event2

event4
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3677

Chapter 70 SOMT Concepts and Notations
State Charts in System Analysis

In the context of system analysis, state charts are useful to express the
behavior of the system parts and how these parts interact dynamically.
The architecture of the system is described in a class diagram named
Logical Architecture. Using state charts in addition to the class diagram
makes it possible to describe the dynamic properties and the behavior
of the system or parts of the system. The behavior descriptions should
be included in a set of documents called the Object Behavior Diagram
which together with the Logical Architecture is part if the Analysis Ob-
ject Model.

State Charts in System and Object Design

During the activities of System and Object Design, SDL process dia-
gram is the preferred notation for describing the behavior of the system.
The product of the Object Design activity should be a complete descrip-
tion of the system which enables code generation. State Charts, due to
their weak semantics, may be useful to express a less detailed overview
of rather complex behavior expressed in SDL.
3678 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Message Sequence Charts
Message Sequence Charts
A message sequence chart (MSC) is a high-level description of the mes-
sage interaction between system components and their environment. A
major advantage of the MSC language is its clear and unambiguous
graphical layout which immediately gives an intuitive understanding of
the described system behavior. The syntax and semantics of MSCs are
standardized by ITU-T, as recommendation Z.120 [25].

There are various application areas for MSCs and within the system de-
velopment process MSCs play a role in nearly all stages, complement-
ing SDL on many respects. MSCs can e.g. be used:

• To define the requirements of a system

• For object oriented analysis and design (object interaction)

• As an overview specification of process communication

• For simulation and consistency check of SDL specifications

• As a basis for automatic generation of SDL skeleton specifications

• As a basis for specification of TTCN test cases

• For documentation

Plain MSC
The most fundamental language constructs of MSCs are instances (e.g.,
entities of SDL systems, blocks, processes and services) and messages
describing the communication events, see Figure 618.

Another basic language construct is the condition symbol which is
drawn as a hexagon. A condition describes either a global system state
referring to all instances contained in the MSC, or a state referring to a
subset of instances (a non-global condition). The minimum subset is a
single instance.

An MSC can reference another MSC using an MSC reference symbol.
(Such a symbol can also reference a High-level MSC, explained later.)
This symbol is drawn as a rectangle with rounded corners and has the
name of the associated MSC stated inside it. MSC references can for ex-
ample be used to have one MSC describing an initialization sequence
and then reference this MSC from a number of other MSCs.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3679

Chapter 70 SOMT Concepts and Notations
The reference symbol may not only refer to an MSC but can also con-
tain MSC reference expressions that reference more than one MSC.
This construct gives us a very compact MSC representation and it also
provides an excellent means for reusability of certain MSCs.

The textual MSC expressions are constructed from the operators alt,
par, loop, opt and exc:

• An MSC reference with the keyword alt denotes alternative execu-
tions of MSC sections. Only one of the alternatives is applicable in
an instantiation of the actual sequence.

• The par operation defines parallel executions for MSC sections. All
events within the parallel MSC sections will be executed (free
merge) with the only restriction that the event order within each sec-
tion must be preserved.

• An MSC reference with a loop construct is used for iterations and
can have several forms. The most general construct, loop<n,m>,
where n and m are natural numbers, denotes iteration at least n and
most m times. The operands may be replaced by the keyword inf,
like in loop<n,inf>. This means that the loop will be executed at
least n times. If the second operand is omitted, like in loop<n>, this
will be interpreted as loop<n,n>. If both operands are omitted the
interpretation will be loop<1,inf>.

• The opt operation is an operator with one operand only. It is inter-
preted in the same way as an alt operation where the second operand
is an empty MSC.

• An MSC reference where the text starts with exc followed by the
name of an MSC indicates that the MSC can be aborted at the posi-
tion of the MSC reference symbol and instead continued with the
referenced MSC. If the exception does not occur the events follow-
ing the exc expression are executed. The exc operator can thus be
viewed as an alternative where the second operand is the entire rest
of the MSC. MSC references with exceptions are frequently used to
indicate exceptional cases when using MSCs to formalize use cases.
3680 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Message Sequence Charts
By means of inline operator expressions composition of event struc-
tures may be defined inside an MSC. Graphically, the inline expression
is described by a rectangle with dashed horizontal lines as separators.
The operator keyword alt, loop, opt, par or exc, placed in the upper left
corner, are used with the same meaning as when used together with the
MSC reference symbol.

Whether to use inline operator expressions or MSC reference symbols
with an operator is a matter of taste. The same things can be expressed
with both notations. Using inline expression several scenarios can be
expressed in one single diagram, i.e. we just have one single file to han-
dle. If we use MSC reference symbols to express e.g. exceptions and al-
ternatives there is a need for us to handle several files. On the other

Figure 618: Example of a plain MSC

MSC OpenDoor

User Door System

Idle

Init

Card

exc InvalidCard

Display

’Enter code’

Code

exc WrongCode

Open

Instance

Condition

MSC reference

Message

Message with
parameter

MSC reference
with exception
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3681

Chapter 70 SOMT Concepts and Notations
hand, the diagram becomes less cluttered if we refer to other MSCs in-
stead of trying to express all possible scenarios in it.

For information about more plain MSC concepts, like e.g. timers, please
consult the MSC standard Z.120.

Figure 619: A plain MSC with inline operator expression

MSC Connection_Setup

Initiator Responder

alt

1

1

1

Disconnected

ConnectRequest

WaitForResponse

Confirmed

Connected

Rejected

Disconnected
3682 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Message Sequence Charts
HMSC
A high-level MSC (HMSC) provides a means to graphically define how
a set of MSCs can be combined. Contrary to plain MSCs, instances and
messages are not shown within an HMSC, but it focus completely on
the composition aspects. You can get a picture of how an HMSC works
in practice by comparing it with a road map. HMSCs, like normal road
maps, may easily become quite complex if they are not structured in any
way. Fortunately, HMSCs can be hierarchically structured, i.e. it is pos-
sible to refine HMSCs by other HMSCs. The power of the MSC lan-
guage is considerably improved with the new concepts introduced with
HMSCs. It is e.g. much easier to specify a main scenario together with
all accompanying exceptions.

An HMSC is a directed graph where each node is either (see
Figure 620):

• A start symbol which denotes the start of an HMSC (there is exactly
one start symbol in each HMSC).

• A stop symbol which denotes the end of an HMSC.

• An MSC reference used to point out another (H)MSC diagram
which defines the meaning of the reference. The reference construct
in HMSC can thus be seen as a placeholder for an MSC diagram or
another HMSC diagram. Like a reference symbol in a plain MSC,
an MSC reference symbol in an HMSC can contain references to
several (H)MSCs through using MSC reference expressions and the
operators alt, par, loop, opt and exc.

• A condition symbol is used to set restrictions on how adjacent ref-
erenced MSCs can be constructed. An HMSC condition immediate-
ly preceding an MSC reference has to agree with the (global) initial
condition of the referenced MSC according to name identification.
All conditions on HMSC level are considered to be global, they re-
fer to all instances contained in the MSC. They can be used to guard
the composition of MSCs described by HMSCs.

• A connection point which denotes that two crossing lines are actu-
ally connected. This symbol has no semantic meaning but is intro-
duced only to simplify the layout of the HMSC.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3683

Chapter 70 SOMT Concepts and Notations
Flow lines connect the nodes in the HMSC and they indicate the se-
quencing that is possible among the nodes in the HMSC. If there is more
than one outgoing flow line from a node this indicates an alternative.

Figure 620: Example of an HMSC

HMSC_Connection_Setup 1(1)

 Disconnected

Connection_Request

 Wait_For_Response

Connection_Confirm Connection_Rejected

 Connected

 Start symbol

Condition

MSC
reference

Connection
point

Stop
symbol
3684 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL
SDL
SDL (Specification and Description Language) is mainly used for spec-
ifying behavior of real-time systems. This section provides a small
overview of the language. For further reading, we recommend [26], [27]
and [28] as useful textbooks about SDL. The SDL language is standard-
ized by ITU-T, as recommendation Z.100 [23].

An SDL system consists of the following components:

• Structure
– Hierarchical decomposition with system, block, and process as

the main building blocks
– Type hierarchies: inheritance, generalization and specialization

are supported for hierarchical building blocks
• Communication

– Asynchronous signals with optional signal parameters
– Remote procedure calls for synchronous communication

• Behavior
– Processes

• Data
– Abstract data types that can be inherited, generalized and spe-

cialized
– ASN.1 data types according to Z.105 [24]. See “ASN.1” on

page 3696
• Modularization

– Components like block/process types, data types, and signals
can be placed into packages that can be imported into a system,
enabling separate development.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3685

Chapter 70 SOMT Concepts and Notations
Structure
Figure 621 shows the hierarchical levels in SDL: system, block, pro-
cess, procedure and service.

A system must contain at least one block and a block must contain at
least one process. Services can exist within a process, being executed
one at a time, controlled by the received signals. Thus the incoming sig-
nal sets of services in one process must be disjoint. Using procedures is
a way to structure the information within processes and services. Pro-
cesses, services and procedures are described by a flow chart-alike no-
tation, see “Behavior” on page 3687.

Figure 621: The hierarchical decomposition of an SDL specification

System AccessPrototype

Block AccessPr1

Procedure

DummyService

Process AccessDummy

FromEnv ToEnv

card,
keystroke

open,
close,
display

ToEnvFromEnv

card,
keystroke

open,
close,
display

card,
keystroke

open,
close,
display

FrEnv
ToEnv

ReadKeys

SDL Overview
3686 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL
The static structure of a system is defined in terms of blocks. Blocks
communicate by means of channels.

The dynamic structure of an SDL system consists of a set of processes
that run in parallel. A process is a finite state machine extended with da-
ta. Processes are independent of each other and communicate with dis-
crete signals by means of signal routes.

Communication
Since SDL does not allow any use of global data, all information that
has to be exchanged must be sent along with signals between processes,
or between processes and environment. Signals are sent asynchronous-
ly, i.e. the sending process continues executing without waiting for an
acknowledgment from the receiving process.

Signals travel through channels between blocks, and from one process
to another via signal routes. See Figure 621.

Synchronous communication is possible via a shorthand, remote proce-
dure call. This shorthand is transformed to signal sending with an extra
signal for the acknowledgment. Remote procedures are often used when
a process wants to offer services to other processes.

Behavior
The dynamic behavior in an SDL system is described in the processes.
Processes in SDL can be created at system start or created and terminat-
ed dynamically at run time. More than one instance of a process can ex-
ist. Each instance has a unique process identifier (PId). This makes it
possible to send signals to individual instances of a process. The con-
cept of processes and process instances that work autonomously and
concurrently makes SDL appropriate for distributed applications.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3687

Chapter 70 SOMT Concepts and Notations
A process must have one start symbol. Since a process is a state ma-
chine, a transition between two states is made only after a signal has
been received. If there are no incoming signals the process is inactive in
a state. In SDL a transition takes no time. To be able to model time, and
to set time restrictions, there is a timer concept. Each process has its
own set of timers that can be set to expire on different durations.

Figure 622: Behavior described by an SDL process

start

state

signal
input

;
FPAR
CtrlProc PId,
DoorAddr DoorNoType;

process DoorController 1 (1)

TIMER
 DoorTimer:=DOORTIMEOUT;

WaitOpenDoor Wait_
DoorTimer

WaitOpenDoor
OpenDoor
(DoorAddr) DoorTimer

 Open
(DoorAddr)

Close
(DoorAddr)

DoorOpened
TO CtrlProc WaitOpenDoor

SET
(DoorTimer)

Wait_
DoorTimer

symbol

signal
output

declarations

timeout

timer set
3688 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL
Data
The set of predefined sorts in SDL makes it possible to work with data
in SDL in a traditional way:

• Integer
• Real
• Natural
• Boolean
• Character
• Duration
• Time
• Charstring
• PId

More complex data sorts can be created by using arrays, strings and
structs.

Abstract Data Types in SDL can be used for more than representing da-
ta, e.g:

• Hide data manipulation
• Hide algorithmic parts of a specification
• Create an interface to external routines

Data manipulation is hidden in operators. For a more thorough descrip-
tion on how to use complex data structures with operators in practice,
please see [31].

Structural Typing Concepts
The object-oriented concepts of SDL give you powerful tools for struc-
turing and reuse. The concept is based on type definitions. All structural
building blocks can be typed: system type, block type, process type and
service type. An exception is the procedure that is a type in its original
form.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3689

Chapter 70 SOMT Concepts and Notations
Type definitions may be placed outside the system in packages. Pack-
ages can be seen as libraries of frequently used functions. The structural
typing concepts are shown in Figure 623. All types can inherit from oth-
er types of the same kind.

Figure 623: Package with type definitions

Package ATypes 1 (1)

system
Control

Control Server

Init

FirstControl
3690 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL
One of the major benefits of using an object oriented language is the
possibility to create new objects by adding new properties to existing
objects, or to redefine properties of existing objects. This is what is
commonly referred to as specialization.

In SDL-92, specialization of types can be accomplished in two ways:

• A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process type, add new
processes to a block type, etc.

• A subtype may redefine virtual types and virtual transitions defined
in the supertype. It is possible to redefine the contents of a transition
in a process type, to redefine the contents/structure of a block type,
etc.

Figure 624 and Figure 625 describe adding and redefining properties in
a system and in a block type while Figure 626 describes the same fea-
tures in a process type diagram.

To be able to instantiate a type regardless the context (by means of
channels), a special concept is needed: gates.

Figure 624: A system diagram with block instantiation and communication

System AControl 1 (1)
SIGNAL

 start, stop, paused,
 paus, started, stopped;

SIGNALLIST
 sigs = sig1,

HWblockCtrl: New_

Ch2
g2

Ch1

started,
stopped

start,
stop

g1
Ch3

(sigs)

signal declarations

instantiation of a block type channel

USE
ATypes;

package reference

NewControl

(sigs)
Control

sig2(integer);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3691

Chapter 70 SOMT Concepts and Notations
Since a channel always has to be connected to a signal route and the
connection mechanism lies inside the process, a gate is necessary since
it is a way to specify the connection in a transparent manner.

Figure 625: An inherited block type diagram with process
specialization, instantiation and communication

In the inherited block type Control, the process ctrl is an instance of the process type
Control.

Block Type NewControl inherits Control 1 (1)

Redefined
Control

ctrl
g2

(sigs)
sr1

g3
sr2

g4
(sigs)

specialized process type signal route

reference to a process instance defined in the inherited block type

gate

inheritance

pause

paused
g1
paused

pause
3692 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL
Graphical and Textual Notation
The SDL language supports two notations that are equivalent. Beside
the graphical representation (SDL/GR), a textual phrase representation
(SDL/PR) is standardized.

Figure 626: A specialized process type with added signals, a new
transition and a redefined transition

Redefined Process Type Control 1(2)

idle

paused

pause

idle

sig2(i)
VIA g4

REDEFINED

init

busy

g1

paused

pause

redefined start transition

DCL
 i integer:=1;

reference
to a gate
that was
defined in
the inherited
process type

SIGNALSET
pause;

procedure
call

data
definitions
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3693

Chapter 70 SOMT Concepts and Notations
TTCN
TTCN (Tree and Tabular Combined Notation) is a special purpose no-
tation to describe test suites [33]. TTCN is a language standardized by
ISO for the specification of tests for communicating systems. TTCN has
been developed within the framework of standardized conformance
testing (ISO/IEC 9646).

With TTCN a test suite is specified. This is a collection of various test
cases together with all the declarations and components it needs.

Each test case is described as an event tree. The tree is represented as an
indented list in a table. The indentation represents progression with re-
spect to time. See Example 600.

Example 600: A TTCN test case ––

Behavior Description Constraint Verdict
1 DuToEnv? Display Enter_Card
2 EnvToDu! Card Card1
3 DuToEnv? Display Enter_Code
4 EnvToDu! Digit digit1
5 EnvToDu! Digit digit3
6 EnvToDu! Digit digit5
7 EnvToDu! Digit digit7
8 DuToEnv? Unlock nopar
9 EnvToDu! Open nopar
10 DuToEnv? Display Please_Enter
11 EnvToDu! Close nopar
12 DuToEnv? Lock nopar
13 DuToEnv? Display Enter_Card PASS
14 EnvToDu! Digit digit1
15 DuToEnv? Display WrongCode
16 DuToEnv? Display Enter_Card PASS

–––

Each line consists of a line number, a statement, a constraint reference
and a mandatory verdict. A statement can be:

• An event
• An action
• A qualifier

The event statements are statements that can be successful dependent on
the occurrence of a certain event, either:

• Receive (represented by a “?”)
• Otherwise
• Timeout
3694 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN
The action statements will always execute and will therefore always be
successful:

• send (represented by a “!”)
• implicit_send
• assignment_list
• timer_operation
• goto

A qualifier is simply an expression that must be true if an event should
match or an action should be performed.

In TTCN, the communication is asynchronous. The implementation un-
der test, IUT, communicates with the environment via points of control
and observation, PCOs. The interaction occurs at PCOs and are de-
scribed by protocol data units, PDUs, embedded in abstract service
primitives, ASPs.

At line 1 in s above, the ASP Display occurs at the PCO DuToEnv. The
constraint Enter_Card determines exactly which ASP value is to be re-
ceived.

The leaves in the tree are usually assigned a verdict.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3695

Chapter 70 SOMT Concepts and Notations
ASN.1
ASN.1, described in [22], stands for Abstract Syntax Notation One.
ASN.1 is a language for the specification of data types and values.
ASN.1 is very popular for the specification of data in telecommunica-
tion protocols and services, especially in higher (i.e. application orient-
ed) layers. Many telecommunication standards are based on ASN.1.
Also TTCN is based on ASN.1. An example of an ASN.1 module is
shown below.

Example 601: An example of an ASN.1 module –––––––––––––––––––

ProtocolData DEFINITIONS ::=
BEGIN
- - contains data definitions for an example
protocol

CheckSum ::= INTEGER (0..65535)

DataField ::= OCTET STRING (SIZE (0..56))

PDU ::= SEQUENCE {
sequenceNr INTEGER (0..255),
dataField DataField,
checksum CheckSum OPTIONAL }

END

––

A strong point of ASN.1 is that there are encoding rules that define how
an ASN.1 data value is encoded to bits, the most well-known being the
Basic Encoding Rules. From an ASN.1 data type definition, functions
can be automatically generated that take care of the coding and decod-
ing.

An ASN.1 definition can be imported into SDL as if it was a package.
When an ASN.1 data type is imported into SDL, automatically a set of
operators that is defined in Z.105 [24] is available for that type.

It is recommended to use ASN.1 for the specification of parameters of
signals to/from the environment of the SDL system, especially when en-
coding rules are to be applied on such signals, or when a TTCN test
suite is to be developed. In the latter case the ASN.1 definitions can be
directly reused in the TTCN test suite.
3696 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	70 SOMT Concepts and Notations
	Activities, Models and Modules
	Implinks and the Paste As Concept
	Consistency Checking
	Object Model Notation
	Class
	Relations and Multiplicity
	Module
	Objects

	State Chart Notation
	Notation
	State
	Transition
	Start and Termination Symbol
	Substates

	State Charts in SOMT
	State Charts and SDL
	State Charts in Requirements Analysis
	State Charts in System Analysis
	State Charts in System and Object Design

	Message Sequence Charts
	Plain MSC
	HMSC

	SDL
	Structure
	Communication
	Behavior
	Data
	Structural Typing Concepts
	Graphical and Textual Notation

	TTCN
	ASN.1

