
July 2003 Telelogic Tau 4.5

Chapter
3 Using SDL Extensions
This chapter describes some of the extensions to SDL that are avail-
able in the SDL suite, and that are not documented outside Telelog-
ic.

The extensions covered here are the Own and ORef generators, and
the algorithmic extensions to SDL. There are other Telelogic-specif-
ic extensions to SDL supported in the SDL suite, mainly concerning
data types, generators and operators. These extensions are covered
in chapter 2, Data Types.
 SDL Suite Methodology Guidelines mg-s0 127

Chapter 3 Using SDL Extensions
Own and ORef Generators

Introduction
A major problem to obtain fast applications generated from SDL is the
data model, that requires copying of data in a number of places. In an
interchange of a signal between two processes, the signal parameters are
first copied from the sending process to the signal and then again copied
from the signal to the receiver. If the two processes have access to com-
mon memory, it would be possible only to pass a reference to the data
via the signal, and in that way there would be no need to perform the
two copy actions.

The generator Ref can be used for this purpose (see “The Ref Genera-
tor” on page 112 in chapter 2, Data Types), but there is a number of im-
portant problems when using the Ref generator:

• The user has to deallocate memory when it is no longer used. If the
user forgets this in any circumstance, memory will be lost.

• It is easy to, intentionally or unintentionally, access the same mem-
ory from several process instances. This is very bad practice in real-
time programming (without protection for simultaneous access to
the memory) and might cause unwanted behavior. These kinds of
errors are usually very difficult to find.

Basic Properties of the Own Generator
The purpose of the Own generator is to solve the situation described
above, i.e. it should be possible to limit the number of copy operations
that are needed, at the same time as the user should not need to worry
about memory deallocation, and simultaneous access to the memory
from several processes should not be possible.

The basic property of the Own generator that makes this possible is that
only one Own pointer at a time can refer to the same memory. This vari-
able (of Own type) is referred to as the owner of the memory. Owner-
ship is passed to another variable by assignment.
128 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Own and ORef Generators
Example 37: Own variables –––––––––––––––––––––––––––––––––––

newtype Data struct
 a, b integer;
endnewtype;

newtype Own_Data Own(Data)
endnewtype;

dcl
 v1 Own_Data,
 v2 Own_Data;

task v1 := v2;

This assignment is interpreted as follows:

• If v1 refers to some memory this memory is deallocated.
• v1 is assigned the value of v2, i.e. refers to the same memory as v2.
• v2 is set to Null.

––

By this scheme the basic properties of the Own generator is preserved,
i.e. all memory no longer accessible is deallocated and there is only one
reference to the data.

To handle more complex cases, the order in which these operations are
performed is a bit more complicated. With the same types and variables
as in the example above and the procedure P, taking three Own_Data
parameters:

task v1 := P(v2, v1, v2);

we get the following execution:

Evaluation of the right-hand side is performed from left to right, i.e.
starts with the first actual parameter of P. The first formal parameter
of P is assigned the value of v2 and takes the ownership of this
memory. The variable v2 is assigned the value Null. The same thing
happens for the second formal parameter and the variable v1. The
third formal parameter of P get the value Null as v2 is Null at this
point.

Now the procedure P is called and its return value is obtained. Be-
fore assigning this value to the variable on the left hand side, i.e. to
v1, the memory currently referred to by v1 is deallocated. In this
case v1 is Null at this point as the second formal parameter of P al-
ready have taken the ownership of this memory. Last the variable v1
is assigned the value returned by P.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 129

Chapter 3 Using SDL Extensions
Ownership is, as can be seen in the example above, passed not only in
assignments, but in every case where the reference is assigned to some
other place. This happens for example in assignments, input, output, set,
reset, procedure call, and create. The only places where ownership is
not passed is:

• when the explicit copy function is used, for example
 task v1 := copy(v2);

• in import, export, and view operations, which are interpreted as con-
taining implicit copy operations.

• in calls to the standard functions ‘=’ and “/=”.

Note that copy(v2) is a “deep” copy, i.e. any Own pointers in the cop-
ied data structure are also copied. Otherwise we would end up with sev-
eral references to the same memory.

Definition of Own Generator
The Own generator is defined in SDL according to the following:

GENERATOR Own (TYPE Itemsort)
 LITERALS
 Null;
 OPERATORS
 "*>" : Own, ItemSort -> Own;
 "*>" : Own -> ItemSort;
 make! : ItemSort -> Own;
 DEFAULT Null;
ENDGENERATOR Own;

Basically the Own generator is a way to introduce pointers to allocated
memory. The Null value is as usual interpreted as “a reference to noth-
ing”. The operators “*>” are the Extract! and Modify! operators, i.e. the
way to reference or modify the memory referred to by the pointer. Using
the type and variables in the previous example the following statements
are correct:

task v1*>!a := 1;
task i := v2*>!b;
 /* integer assignment, i is integer variable */
task d := v2*>;
 /* struct level assignment, d is of type Data */

The “*>” operator have the same properties as the ‘*’ in C, i.e. “v1*>”
has the same meaning as “*v1” in C. To make the syntax a bit easier
130 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Own and ORef Generators
there is a possibility to let the SDL Analyzer implicitly insert the “*>”
in the expressions where it is needed. The example above would then
become:

task v1!a := 1;
task i := v2!b;
 /* integer assignment, i is integer variable */
task d := v2;
 /* struct level assignment, d is of type Data */

which is a bit easier to read. More details about the implicit type con-
versions can be found in “Implicit Type Conversions” on page 134.

Before it is possible to start working with components in the data refer-
enced by the Own pointer, the Own pointer must be initialized with a
complete value (default is Null as can be seen in the definition). The
Make! operator is a suitable way to initialize a variable. As usual the
concrete syntax for Make! is “(. x .)”, where x should be replaced by a
value of the ItemSort for the current Own pointer.

Example of intializations using the data definitions in the examples
above:

dcl v1 Own_Data := (. (. 1, 2 .) .);
task v1 := (. (. 5, 5 .) .);

The inner “(. .)” is for the constructing the struct value and the outer
“(. .)” is for the Own make! function. It is, however, possible to avoid
the double parentheses as there is an implicit type conversion from a
type T to Own(T), by implicitly inserting “(. .)” around a value of type
T. So the examples above could (and probably should) be written as

dcl v1 Own_Data := (. 1, 2 .);
task v1 := (. 5, 5 .);

Again, please see “Implicit Type Conversions” on page 134. The other
operations available for own pointers, apart from “*>” and make!, are
assignment, test for equality, and copy. The assign operator has already
been described above. Test for equality (‘=’ and “/=”) does NOT test for
pointer equality as two Own pointers cannot be equal. Instead equality
is “deep” equality, i.e. the values referred to by the Own pointers are
compared.

An implicit copy operator has been inserted for every type. It takes a
value and returns a copy of that value. For all types that are not Own
pointers or contain Own pointers, this operator is meaningless as it just
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 131

Chapter 3 Using SDL Extensions
returns the same value. For Own pointers or for structured values con-
taining Own pointers, the copy function, however, copies the values ref-
erenced by the Own pointers.

The ORef Generator
The ORef generator is intended to be used together with the Own gen-
erator to provide a way to temporary refer to owned data during some
algorithm, without affecting the ownership of the memory. If, for exam-
ple, Own pointers is used to create a linked list and we would like to
write a procedure that calculates the length of the list, then we need a
temporary pointer going through the list. If that pointer was a Own
pointer the list would be destroyed while we traverse the list, as there
may be only one Own pointer referring to the same memory.

Example 38: Own and ORef –––––––––––––––––––––––––––––––––––

newtype ListElem struct
 Data MyType;
 Next ListOwn;
endnewtype;

newtype ListOwn Own(ListElem)
endnewtype;
newtype ListRef ORef(ListElem)
endnewtype;

procedure ListLength; fpar Head ListRef;
returns integer;
dcl
 Temp ListRef,
 Len Integer;
start;
 task Len := 0, Temp := Head;
 again :
 decision Temp /= null;
 (true) :
 task Len := Len+1, Temp := Temp!Next;
 join again;
 (false) :
 enddecision;
 return Len;
endprocedure;

dcl
 MyList ListOwn,
 L integer;

task L := call ListLength(MyList);

––
132 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Own and ORef Generators
Note the use of the ListRef type both in the formal parameter Head and
in the local variable Temp. If Head would be of ListOwn type, the vari-
able MyList would be null after the call of ListLength, which is not what
we intended. If ListOwn was used as type for the variable Temp, as the
statement Temp := Temp!Next would unlink the complete list.

Another example of a typical application of ORef, is to introduce back-
ward pointer in a linked list, to make it doubly linked. If the forward
pointers are Own pointers then the backward pointers cannot be Own
pointers as then we would have two Own pointers on the same object.

The ORef generator is defined as:

GENERATOR ORef (TYPE Itemsort)
 LITERALS
 Null;
 OPERATORS
 "*>" : ORef, ItemSort -> ORef;
 "*>" : ORef -> ItemSort;
 "&" : ItemSort -> ORef;
 "=" : ORef, ItemSort -> Boolean;
 "=" : ItemSort, ORef -> Boolean;
 "/=" : ORef, ItemSort -> Boolean;
 "/=" : ItemSort, ORef -> Boolean;
 DEFAULT Null;
ENDGENERATOR;

Where “*>” is used for dereferencing and ‘&’ is an address operator.

Run-Time Errors
There are four situations, concerning Own and ORef, that can lead to a
run-time error. These situations are:

• Dereferencing of a null pointer.

• An ORef pointer that refers to an object that has been deallocated.

• An ORef pointer that refers to an object that is owned by another
process.

• A cycle of Own pointers is created, as this memory can never be
deallocated.

These problems are all found during simulation and validation, except
that if an ORef pointer refers to a data area that is first deallocated and
then allocated again, the ORef pointer is no longer invalid.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 133

Chapter 3 Using SDL Extensions
Examples of run-time error situations assuming the data types in the
previous section.

dcl
 L1, L2 ListOwn,
 R1, R2 ListRef,
 I Integer;

task
 L1 := null,
 R1 := null,
 L1!Data := 1,
 /* ERROR: Dereferencing of Null pointer */
 I := R1!Data;
 /* ERROR: Dereferencing of Null pointer */

task
 L1 := (. 1, null .),
 R1 := L1,
 L1 := null,
 I := R1!Data;
 /* ERROR: Reference to deallocated memory */

task
 L1 := (. 1, null .),
 R1 := L1;
output S(L1) to sender;
task
 I := R1!Data;
 /* ERROR: Reference to memory not owned by
 this process */

task
 L1 := (. 1, null .),
 L1!Next := (. 2, null .),
 L1!Next!Next := L1;
 /* ERROR: Loop of own pointers created */

Implicit Type Conversions
Note:

Implicit type conversions are by default off in the SDL Analyzer. It
can be turned on in the Analyze dialog in the Organizer. Implicit
type conversions will, however, influence the time needed for se-
mantic analysis. The more complex an expression is, the more effect
on time the implicit type conversions will have, as the number of
possibilities increases (often exponentially) with the length of the
expression.
134 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Own and ORef Generators
The purpose of the implicit type conversions is to simplify the use of the
Own generator. The code that operate on data structures should be the
same if you use a data structure T or if you use a own pointer to T,
own(T). The only thing that a user has to think about is if ownership
should be passed or if a copy should be made, when passing data to
somewhere else.

The implicit conversions never change the type of, for example, an as-
signment. If there is an assignment:

task R1 := L1;

no implicit type conversions are applied on R1, as that would change the
type of the assignment. Type conversions might be applied on L1 in the
right hand side, to obtain the correct type. In an assignment:

task Q(a) := ...;

the implicit type conversions might also be applied to the index expres-
sion, i.e. to a.

In a test for equality and in similar situations, e.g. in:

L1 = R1

implicit type conversions are first applied to the left expression, i.e. to
L1. If that yields a correct interpretation, that one is selected. Otherwise
implicit type conversions are tried on the right expression, i.e. to R1.

Assume a type T and a two generator instantiations Own_T = Own(T)
and ORef_T = ORef(T). Assume also the variables:

dcl
 t1 T,
 v1 Own_T,
 r1 ORef_T;

Then the following implicit type conversions are possible:

1. Own_T -> T, by v1 -> v1*>
2. T -> Own_T, by t1 -> (. t1 .)
3. Own_T -> ORef_T, by v1 -> demote(v1)
4. ORef_T -> Own_T, by r1 -> (. r1*> .)
5. T -> ORef_T, by t1 -> &t1
6. ORef_T -> T, by r1 -> r1*>
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 135

Chapter 3 Using SDL Extensions
Type conversions 1 and 6 make it possible to exclude “*>” in compo-
nent selections. Instead of writing

a*>!b*>(10)*>!c

it is possible to write

a!b(10)!c

This possibility also exists for ordinary Ref pointers.

Type conversion 2 makes it possible to assign an Own pointer a new
value of the Own pointer component type. If A is a Own pointer to a
struct containing two integers, then it is possible to write:

 A := (. 1, 2 .);

which means the same as

 A := (. (. 1, 2 .) .);

where the inner “(. .)” is the make! function for the struct and the outer
“(. .)” is the make! function for the Own pointer.

This possibility also exists for ordinary Ref pointers.

Type conversion 3 makes it possible to assign an ORef pointer to an
Own pointer. This is already used in the examples above, but is not di-
rectly possible, as an ORef and an Own pointer are two distinct types.
The demote operator converts a Own pointer to the corresponding
ORef pointer. (Corresponding means the first ORef with the same com-
ponent type in the same scope unit as the Own pointer type is defined).

Type conversion 4 makes it possible to construct a new Own value,
starting from a ORef value. The conversion is performed in two steps,
first going from ORef_T to T by applying conversion 6, and then from
T to Own_T by applying conversion 2.

Type conversion 5 makes it possible to let a ORef_T pointer refer to a
DCL variable by writing:

 task r1 := t1;

which means the same thing as

 task r1 := &t1;

where ‘&’ is the address operator (as in C).
136 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
Algorithms in SDL
A former problem in SDL is the lack of support for writing algorithms.
For pure calculations, not involving communication, the graphical form
for SDL tends to become ordinary flow charts, which is usually not a
good way to describe advanced algorithms. Such, often large, parts of
an SDL diagram also hide other, from the SDL point-of-view, more im-
portant parts of the diagram, namely the state machine and the commu-
nication aspects.

The algorithmic extensions described here addresses these problems by
introducing the possibility to write algorithms in textual form within a
Task symbol, and also to define procedures and operators in textual
form in text symbols. There are two major advantages with this ap-
proach, compared to ordinary SDL:

• The algorithms are written in a compact form, similar to ordinary
programming languages, and will therefore not hide other important
aspects of an SDL diagram.

• The language used within the algorithms contains more powerful al-
gorithmic constructs than ordinary SDL, like if-then-else, and loop
statements.

In addition, the algorithmic extensions make it possible to now define
procedures and operators in textual form in text symbols in SDL/GR.

These algorithmic extensions to SDL have been approved by ITU Study
Group 10 to be incorporated into the official Master List of Changes that
will affect the next ITU recommendation for SDL. There are a few mi-
nor differences in the support for SDL algorithms in the SDL suite com-
pared with the ITU definition – these are noted in the descriptions be-
low.

The constructs that are part of the extensions are:

• Compound Statement
• Local Variables
• If Statements
• Decision Statements
• Loop Statements
• Label Statements
• Jump Statements
• Empty Statements
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 137

Chapter 3 Using SDL Extensions
Compound Statement
The basic concept in the algorithmic extensions is the compound state-
ment. A compound statement starts with a ‘{’, which is followed by a
sequence of variable declarations and a sequence of statements, and it
then ends with a ‘}’.

A compound statement may be used in three places:

• as the contents of a TASK,
• as the body of a procedure or operator definition in a text symbol,
• as a statement within an enclosing compound statement.

Note also that the enclosing “{ }” should not be included in a Task sym-
bol in the SDL Editor. These braces will be added when the SDL system
is converted to SDL/PR for analysis.

Example 39 ––

Contents in Task symbol in SDL/GR:

a := b+1;
if (a>7) b := b+1;

Corresponding code in SDL/PR:

task {
 a := b+1;
 if (a>7) b := b+1;
};

Example 40 ––

A procedure in a text symbol in SDL/GR, or in SDL/PR:

procedure p fpar i integer returns integer
{
 if (i>0)
 i := i+1;
 else
 i := i-1;
 return i;
}

––

Note:
According to the ITU language definition the body of a procedure or
operator is allowed to be a statement. In the SDL suite, however, a
compound statement is required. This means that if the body con-
sists of only one statement, the enclosing “{ }” are required anyhow.
138 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
Local Variables
Within a compound statement it is allowed to define a number of local
variables. These variables will be created when the compound state-
ment is entered and will be destroyed when the compound statement is
left. The semantics of a compound statement is very much like a proce-
dure without parameters, which is defined and called at the place of the
compound statement.

A variable declaration within a compound statement looks that same as
ordinary variable declarations, except that “exported” and “revealed”
are not allowed. Example:

dcl
 a, b integer := 0,
 c boolean;

Statements
A statement within a compound statement my be of any of the following
types:

• compound statement
• output statement
• create statement
• set statement
• reset statement
• export statement
• return statement (only in procedures and operators)
• procedure call statement
• assignment statement
• if statement
• decision statement
• loop statement
• label statement
• jump statement
• empty statement

Note that each statement (and each variable declaration statement) ends
with a ‘;’. The following statement types use the same syntax as in or-
dinary SDL/PR:

output, create, set, reset, export, return, call, assignment
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 139

Chapter 3 Using SDL Extensions
Example 41: Ordinary SDL/PR statements –––––––––––––––––––––––

output s1(7) to sender;
output s2(true, v1) via sr1;
create p2(11);
set(now+5, t);
reset(t);
export(v1);
return a+3;
call prd1(a, 10);
a := a+1;

––

If Statements

The structure of an if statement is:

if (<Boolean expr>)
 <Statement>
else
 <Statement>

where the else part is optional. The Boolean expression is first calculat-
ed. If it has the value true, the first statement is executed, otherwise the
else statement, if present, is executed.

Example 42 ––

if (a>0)
 a := a+1;

if (a=0) {
 a := 100;
 b := b+1;
} else {
 a := a+1;
 b := 0;
}

If there are several possible if statements for an else path (the “dangling
else” problem), the innermost if is always selected.

Note:
According to the ITU language definition the keyword call in a
procedure call is optional. In the SDL suite it is, however, required.
140 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
Example 43 ––

if (a>0)
 if (b>0)
 a := a+1;
 else
 a := a-1;

means:

if (a>0) {
 if (b>0)
 a := a+1;
 else
 a := a-1;
}

––

Decision Statements

A decision statement has much in common with the ordinary decisions
found in SDL, i.e. it is a multi-branch statement. The major differences
between decision statements and ordinary statements is that all paths in
a decision statement ends at the enddecision.

Example 44 ––

decision (a) {
(1:10) : {call p(a); a := a-5;}
(<=0) : a := a+5;
else : a := a-5;
}

––

The decision question and the decision answers follows the same syntax
and semantics as in ordinary decisions. Following an answer there
should be a statement, which might be a compound statement.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 141

Chapter 3 Using SDL Extensions
Loop Statements

A loop statement is used to repeat the execution of a statement (or usu-
ally a compound statement), a number of times. The loop is controlled
by a loop variable, which either can be locally defined in the loop or de-
fined somewhere outside of the loop.

The loop control part contains three fields:

• the loop variable indicator with a start value,
• the loop test expression,
• the new loop variable value.

Example 45 ––

for (a := 1, a<10, a+1)
 sum := sum+a;

should be interpreted as (in C-like syntax):

a = 1;
while (a<10) {
 sum = sum+a;
 a = a+1;
}

––

Note the difference between SDL and C when it comes to the variable
update. In C this is a statement, in SDL it is an expression to be assigned
to the variable mentioned in the loop variable indicator.

In the loop variable indicator, either a new variable can be defined or a
previously defined variable can be used. Example:

for (a := 1, ...
for (dcl a integer := 1, ...

Other possibilities in loop statements:

• One or more of the loop control part fields can be empty. If, howev-
er the loop variable indicator (first field) is empty, then the loop
variable update field (third field) must also be empty. Example:

for (a := 1, , a+1) ..
for (, ,) ...

• A loop may contain several loop control parts. Example:

for (a := 1, a<10, a+1; b := 1, b<5, b+1)
 sum := sum+a+b;
142 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
This should be interpreted as (in C like syntax):

a = 1;
b = 1;
while ((a<10) and (b<5)) {
 sum = sum+a;
 a = a+1;
 b = b+1;
}

• Break statements can be used to break out of a loop. See “Label
Statements” on page 143 and “Jump Statements” on page 144.

• A loop statement may end with a “then” statement, which is execut-
ed if the loop is terminated because of the loop test expression be-
comes false. The “then” statement is not executed if the loop is ter-
minated due to a break statement. Example:

ok := false;
for (a:=1, a<10, a+1) {
 sum := sum+arr(a);
 if (sum > limit) break;
}
then
 ok := true;

Label Statements

A label statement is just a label followed by a statement. These labels
are only of interest if the statement following the label is a loop state-
ment. The label name can be used in break statements (see below) to
break out of a loop statement. Example:

L:
for (i:=0, i<10, i+1)
 sum := sum+a(i);

Note:

There are no “join” or “goto” statements allowed in the algorithmic
extensions to SDL.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 143

Chapter 3 Using SDL Extensions
Jump Statements

Jump statements, i.e. break and continue, are used to change the ex-
ecution flow within a loop.

A continue statement, which only may occur within a loop, is defined
as: “skip the remaining part of the loop body and continue with updating
the loop variable to its next value.”

Example 46 ––

for (a:=1, a<10, a+1) {
 if (sum > limit) continue;
 sum := sum+arr(a);
}

should be interpreted as (in C like syntax):

a = 1;
while (a<10) {
 if (sum > limit) goto cont;
 sum = sum + arr[a];
cont :
 a = a+1;
}

––

A break statement can be used to stop the execution of the loop and di-
rectly goto the statement after the loop.

Example 47 ––

ok := false;
for (a:=1, a<10, a+1) {
 sum := sum+arr(a);
 if (sum > limit) break;
}
then
 ok := true;

should be interpreted as (in C like syntax):

ok = false;
a = 1;
while (a<10) {
 sum = sum + arr[a];
 if (sum > limit) goto brk;
 a = a+1;
}
ok = true;
brk:

––
144 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
A break statement breaks out of the innermost loop statement. By using
labeled loop statements breaks out of outer loops can be achieved.

Example 48 ––

L: for (x:=1, x<10, x+1) {
 a := 0;
 for (y:=1, y<10, y+1) {
 a := a+y;
 if (call test(x,y)) break L;
 }
 }

The break statement in the inner loop breaks out from both loops as it
mentions the label for the outer loop.

––

Empty Statements

It is allowed to have an empty statement, represented by just writing
nothing. This is sometimes useful, for example as loop statement:

for (i:=1, Arr(i)/=0 and i<Limit, i+1) ;
 /* This loop sets i to the index of the first zero
 element in the Array Arr. */
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 145

Chapter 3 Using SDL Extensions
Grammar for the Algorithmic Extensions
Meta grammar:

‘dcl’, ‘)’, ‘;’ are examples of terminal symbols.

<Stmt>, <Name> are examples of non-terminal symbols.

::= means defined as.

$ means used for empty.

* means 0 or more occurencies.

+ means 1 or more occurencies.

| means or.

Start of Grammar ––

<CompoundStmt> ::=
 ‘{’ <VarDefStmt>* <Stmt>* ‘}’

<VarDefStmt> ::=
 ‘dcl’ <Name> (‘,’ <Name>)* <Sort> (‘:=’ <Expr> | $)
 (‘,’ <Name> (‘,’ <Name>)* <Sort> (‘:=’ <Expr> | $))*
 ‘;’

<Stmt> ::=
 <CompoundStmt> |
 <Outputx> ‘;’ |
 <CreateRequest> ‘;’ |
 <Setx> ‘;’ |
 <Resetx> ‘;’ |
 <Export> ‘;’ |
 <Return> ‘;’ |
 <ProcedureCall> ‘;’ |
 <IfStmt> |
 <LabelStmt> |
 <AssignmentStatement> ‘;’ |
 <DeciStmt> |
 <LoopStmt> |
 <JumpStmt> ‘;’ |
 <EmptyStmt> ‘;’

<IfStmt> ::=
 ‘if’ ‘(’ <Expr> ‘)’ <Stmt> (‘else’ <Stmt> | $)

<DecisionStmt> ::=
 ‘decision’ ‘(’ <Expr> ‘)’ ‘{’
 (<Answer> <Stmt>)+
 (‘else’ <Stmt> | $)
 ‘}’

146 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Algorithms in SDL
<Answer> ::= same as answer in ordinary decisions

<LoopStmt> ::=
 ‘for’ ‘(’ (<LoopClause> (‘;’ <LoopClause>)* | $) ‘)’
 <Stmt>
 (‘then’ <Stmt> | $)

<LoopClause> ::=
 (<LoopVarInd> | $) ‘,’ (<Expr> | $) ‘,’ (<Expr> | $)

<LoopVarInd> ::=
 ‘dcl’ <Name> <Sort> ‘:=’ <Expr> |
 <Identifier> (‘:=’ <Expr> | $)

<LabelStmt> ::=
 <Label> <Stmt>

<JumpStmt> ::=
 <Break> (<Name> / $) |
 <Continue>

<EmptyStmt> ::=
 $

End of Grammar –––

Algorithms in Simulator/Validator
The textual trace in the SDL Simulator and the SDL Validator for the
new algorithmic extensions will be according to the table below.

Statement Textual trace Comment

Compound No trace

If IF (true)
IF (false)

Decision DECISION Value: 7 Same trace as for ordinary de-
cisions

Loop LOOP variable b := 3
LOOP test TRUE
LOOP test FALSE

For loop variable assignments
For loop tests

Jump CONTINUE
BREAK
BREAK LoopName

Empty No trace
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 147

Chapter 3 Using SDL Extensions
A compound statement without variables declarations is seen as just a
sequence of statements, while a compound statement with variable dec-
larations is seen as a procedure call of a procedure with no name, with-
out parameters. However, no trace information is produced for this im-
plicit procedure call or procedure return.

When it comes to variables, these are available in the simulator interface
just in the same way as if compound statements where true procedures.
That is, the commands Up and Down can be used to view variables in
different scopes. Note that a variable defined in a loop variable indicator
introduces a scope of its own.

There is one exception of this general treatment of variables in local
scopes and that is procedures defined as a compound statement.

In this procedure:

procedure p
 fpar in/out a integer
{
 dcl b integer;
 ...
}

the parameter a and the variable b will be in the same scope, the pro-
cedure scope. For compound statements within the outermost procedure
scope the general rules above apply.

Execution Performance in Applications

Cadvanced

All concepts in the algorithmic extensions have efficient C implemen-
tations, except variable declarations in local scopes (including in a loop
variable indicator), as such compound statements will become SDL
procedure calls.

Cmicro

All concepts in the algorithmic extensions have efficient C implemen-
tations. Compound statements containing variables are implemented
using C block statements.
148 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

	3 Using SDL Extensions
	Own and ORef Generators
	Introduction
	Basic Properties of the Own Generator
	Definition of Own Generator
	The ORef Generator
	Run-Time Errors
	Implicit Type Conversions

	Algorithms in SDL
	Compound Statement
	Local Variables
	Statements
	If Statements
	Decision Statements
	Loop Statements
	Label Statements
	Jump Statements
	Empty Statements

	Grammar for the Algorithmic Extensions
	Algorithms in Simulator/Validator
	Execution Performance in Applications
	Cadvanced
	Cmicro

