Chapter

6

July 2003

Tutorial: Applying SDL-
92 to the DemonGame

Thistutorial will teach you how to take advantage of the obj ect-ori-
ented extensionsthat have been added to SDL, also known as SDL -
92. The example that has been selected for thispurposeisthewell
known DemonGame, which you should have already practiced on,
in the previoustutorials presented in chapter 3, Tutorial: The Edi-
tors and the Analyzer and chapter 4, Tutorial: The SDL Simulator.

In order to learn how to take advantage of the object oriented ex-

tensionsin SDL, read through thisentire chapter. Asyou read, you
should perform the exerciseson your computer system asthey are
described.

Telelogic Tau 4.5 SDL Suite Getting Started 227

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Purpose of This Tutorial

The purpose of thistutorial isto make you familiar with the essential
object-oriented SDL functionality in the SDL suite tools. Thistutorial
is designed as a guided tour through the SDL suite, where a number of
hands-on exercises should be performed on your computer as you read
this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not atutorial on SDL.

The exampleis DemonGame, which was used in the earlier tutorialsin
this volume. It is assumed that you have performed the exercisesin
chapter 3, Tutorial: The Editors and the Analyzer aswell as chapter 4
Tutorial: The SDL Smulator before starting with this tutorial.

Note: Platform differences

Thistutorial, and the others that are possible to run on both the
UNIX and Windows platform, are described in away common to
both platforms. In case there are differences between the platforms,
thisisindicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shotswill only be shown for one of the platforms,
provided they contain the sameinformation for both platforms. This
meansthat the layout and appear ance of screen shots may differ
dlightly from what you see when running the SDL suitein your en-
vironment. Only if a screen shot differ in an important aspect be-
tween the platforms will two separate screen shots be shown.

228 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Applying SDL-92 to the DemonGame

Applying SDL-92 to the DemonGame

Inthe previoustutorials, you have practiced using some of the basic lan-
guage elementsin SDL; all of these elements were aready defined in
the non-object-oriented version of SDL, known as SDL-88.

To introduce SDL-92 to you, we have prepared a number of exercises
in which you will add features to the DemonGame. Y ou will do this by
redefining and adding properties to the process Game in an object-ori-
ented fashion.

We will introduce the following SDL-92 language constructs:

e Processtypes
— Inheriting process types and adding properties
— Virtual and redefined process types
— Virtual and redefined transitions

» Packages
— Using packages
— Reusing packages
» Block types

— Inheriting block types and adding properties.

Note:

In this chapter, the term SDL-92 denotes the object-oriented SDL
that was introduced in the 1992 version of the language. These ob-
ject-oriented features remain unchanged in SDL-96.

Some Preparatory Work

July 2003

Instead of continue working on the original DemonGame system, we
suggest you to continue from aversion that is better designed for intro-
ducing SDL-92. The changes that have been made are the following:

» All signals from the environment (Newgame, Endgame, Probe,
Result) are now directed to the administrating process Main, that
will send them further to the Game process, if thereis such a pro-
cess.

» TheBump signa is also sent to the process Main, which in turn
transfersit to the Game process. This eliminates the annoying be-
havior when asignal is sent to a nonexisting receiver.

Teldlogic Tau 4.5 SDL Suite Getting Started 229

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

« Signal routes and signal lists have been updated to reflect the new
routing of signals.

e Theinterna signa GameOver isrealy not necessary and is there-
fore replaced by the signal EndGame.

From the user’s point of view, the system will show the same function-
ality as before, but is more robust.

The new versions of the block GameBlock and the process Main are de-
picted below, in Figure 154 and Figure 155.

To use the new version:

1. Makeanew empty directory sdi192 of your own (under
~/demongame on UNIX, and under
C:\Telelogic\SDL_TTCN Suite4.5\work in Windows).

2. Copy dl filesin the directory
Stelelogic/sdt/examples/demongame/sdl92/process type
(on UNIX), or
C:\Telelogic\SDL TTCN Suite4.5\sdt\examples\demongam
e\sdl92\process_type (in Windows), to this new directory.

Note: Installation directory

On UNIX, the Telelogic Tau installation directory is pointed out
by the environment variable $telelogic. If thisvariableis not
set in your UNIX environment, you should ask your system manag-
er or the person responsible for the Telelogic Tau environment at
your site for instructions on how to set this variable correctly.

In Windows, the Telelogic Tau installation directory isassumed

tobe c:\Telelogic\SDL TTCN suite4.5 throughout thistu-

torial. If you cannot find this directory on your PC, you should ask

your system manager or the person responsiblefor the Telelogic Tau
environment at your sitefor the correct path to theinstallation direc-
tory.

3. Start the SDL suite and open the system file demongame.sdt in
this new directory with the Organizer. (You will find copies of the
diagrams building up the complete system).

Y ou should recogni ze the system DemonGame, with the modifications
as described above.

230 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Some Preparatory Work

Nearly all versionsof thediagrams shown in thefollowing exercisesare
available in the directory you created above. Y ou can either draw a di-
agram to learn how to use SDL-92 in the SDL Editor, or copy (or con-
nect to) the pre-made version of the diagram if you do not wish to do

this.
Block GameBlock 1(1)
TR
1 L)
i i
R1
C1l .
{Newgame,l Main(1,1) C3
Endgame,
Probe,
Result
R5
[EndGame,l
Probe,
Result,
Bump
R2

.

Cc2

[Win,Lose,Score] Game(0,1)

Figure 154: The block GameBlock, redesigned
The exact layout of your diagrams may differ slightly from the above.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 231

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

232

Process Main 1(1)
i N DCL i
! ! GameP Pid;
(Game_Off) (Game_On >
| [
| I I 1
Newgame< Bump < Probe < Result < Endgame
Game Bum Probe Result EndGame
TO GameP TO GameP TO GameP TO GameP
%%?perﬁ]; (Game_On) (Game_On) (Game_On) Gar#ue"P:

Figure 155: The process Main, redesigned

Telelogic Tau 4.5 SDL Suite Getting Started

The exact layout of your diagrams may differ slightly from the above.

July 2003

Creating a Process Type from a Process

Creating a Process Type from a Process

What You Will Learn

To change a process diagram to a process type

» Torefer to and instantiate a process type

« Tointerconnect the process type with a block and other processes
(types), using gates

» Todefinetransitions as virtual

Changing into a Process Type

To facilitate the introduction of new features, we will start by general-
izing the process Game, by changing it to a process type, that you later
onwill bein a position to specialize or redefine.

1. Open the process Game and change the diagram type from process
to process type, simply by selecting the diagram heading symbol
and editing the text in it to say “Process Type Game”.

%5 SDL Editor - Process Typ
File Edit Wiew Pages Diag

el e a1 = =] e

| Process Type Gamel

Figure 156: Changing the diagram type

2. Fromthe SDL Editor’s File menu, save the diagram Process Type
Game on anew file, e.g. new game. spt using the Save As com-
mand. Edit the file name in the file selection dialog and click OK.
(Theexisting *.spt filesare copies of the complete system that
comes with the examplesin the SDL suite.)

3. Raise the Organizer window.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 233

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

= =S
File Edit View Generate Tools ﬂelpl

System file rw ‘homefcsix-jeh/demongame/demangame.sdt

Source directory mw /home/cs/x—jeh/demongame/
- Chapter Diagram Structure

[] Systern Demongarme
[] Block GameBlock old_gameblock.shk
{_) Process Main old_main.spr
() Process Game [unconnhected]

old_demongame.ssy

222

Process Type Game rw game.spt
Block DemanElock ny demonblock.shk
{_) Process Demaon ny demaon.spr

Kk

= |

1| Process Type Game: No reference in parent diagram

Figure 157: Invalid reference as shown in the Organizer

Y ou may notice that the reference symbol has been changed to
Process Type Game, and marked as having no reference in the par-
ent diagram. Also, the old process Game is marked as unconnected.
Do not bother about that for the moment —it will be replaced by an
instantiation symbol, which will be explained later.

4. Open the diagram block GameBlock. Change it so that the process
reference Game is changed to an instantiation of the process type
Game. The syntax is: “Game(0,1):Game” (Y ou are allowed to add
newlines to have the text fit into the symbol.)

— Beforeyou have started text editing, the text cursor is not flash-
ing. Pressing <beletes> atthisstage deletesthewhole selected
symbol. Once text editing has started, the text cursor isflashing
and pressing <bDelete> only deletes a character.

5. Assoon as you deselect the symbol, one text rectangle appears for
each connection point to the signal routes. Name the connections
points for instance G2 and G5:

234 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Creating a Process Type from a Process

Game(D,1):Game

Figure 158: Naming the connection points

6. Alsoadd aprocesstypereference symbol with the name Game. The
block diagram should now look like this:

Block GameBlock 1(1)

R1
c1 - Main(1,1) c3
ewgame,
Endgame,
Probe,
{Result l
R5
[EndGame,}
Probe,
Result,
Bump
R2
Cc2 G2

[Win,Lose,Score:l Game(0,1):Game

Game

Figure 159: The resulting block

7. Savethe block diagram on anew file, e.0. new gameblock.sbk
(use Save As as before).

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 235

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Inserting Gates and Virtual Transitions

Y ou will now finish the process type Game. Y ou are recommended to
do this by following the editing instructions described below. If you
prefer, you can instead connect to the finished version of the diagram
(see “Connecting to the Finished Diagram” on page 238), but you
should in any case read through the text below.

Editing the Process Type Diagram

1. Go back to the process type Game in the SDL Editor. The connec-
tion to the signal routes must be defined using gate symbols, named
in accordance to the connection points you just defined.

2. Gate symbols are to be connected to the frame symbol. If you want
to connect gatesto the left or top of the frame, you must first select
the frame and drag it down and/or right.

©5 SDL Editor - Process Game/1 - C:ATelelog|

File Edit Yiew Page: Diagrams Window Tc

Select the 2ol 2els B nlE| =

frame and
drag.

»
|

Process Type Game

T T [oce
| ' Count Integer;

Figure 160: Adjusting the frame symbol

236 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Creating a Process Type from a Process

3. For each of the gates G2 and G5, add a gate symbol and fill in the
name and the signal list.

— Thegate symbol isthe one who lookslike an arrow. Remember
that the Status Bar displaysthetype of asymbol when you point
to or select it in the symbol menu.

— Todirect agateto theframe, you must add agate, then Redirect
it. (Gates can also be made bidirectional.)

— You may use the New Window command to bring both the
Process Type Game and the Block GameBlock into view at the
same time, then Copy and Paste the text between the diagrams.

— You may also take advantage of the Sgnal Dictionary window,
and Insert the signals from the block GameBlock (Up).

4. Also make the start transition aswell as theinput of the signals
Probe and Bump virtual by adding the text “VIRTUAL” beforethe
name of the signal.

— By doing this, you will later on be able to change the properties
of the game in a smooth way.

The changes to the resulting diagram should now look something like
this:

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 237

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Process Type Game 1(1)
G2 TR (I:Z)octll_nt Integer;
1 va
——! i
Win, | | 77T/
B
Score
G5

Count:=0 Result

2\

EndGame<
4
Probe,
Froaa
ndGame, i

VIRTUAL VIRTUAL
Probe Bump

L
(Winning)
| F——m

Count:= VIRTUAL VIRTUAL
Count-1 Bump Probe

N N I
) (Losing) win |

Count:=
Count+1

T
'
S~———

Lose

A4

NN

}

Figure 161: Theresulting process type Game

Connecting to the Finished Diagram

The finished Game process type diagram is also available as thefile
game . spt. If you instead of drawing the diagram wish to use thisfile,
do asfollows:

1. Inthe SDL Editor, close the Game process type diagram.

2. Inthe Organizer, select the diagram Process Type Game, and then
select Connect from the Edit menu.

238 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Creating a Process Type from a Process

3. Select the option To an existing file. Change the filename to
game . spt, Of select thisfile by using the folder button.

4. Click Connect and check the new file connection in the Organizer.

The Organizer Structure
1. Saveeverything. The resulting Organizer list should now resemble:

—— Chapter Diagram Structure

[] System DemonGame rw old demongame
| | Block GameBlock rw new_gameblock.
Process Instance Game (0,1) : Game
() ProcessMain rw old_main.spr
(O Process Type Game rw new_game.spt
[] Block DemonBlock rw demonblock.sbk
() Process Demon rw demon.spr

Figure 162: Resulting Organizer view

Note the presence of an instantiation symbol, looking like anormal
symbol, but with the generic “X:Y” (meaning instance:type) nota-
tionin it. Theinstantiation symbol denotesthat the typeis actually
instantiated somewhere in the diagram.

Instantiation symbols in the Organizer cannot be used for navigat-
ing into the system hierarchy with adouble click, since they do not
refer to diagrams. (Y ou can use them from within the SDL Editor
with the support from the Type Viewer tool, which you will practice
on later in thistutorial).

2. Terminate by analyzing the system. Correct any syntactic or seman-
tic errors that are reported.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 239

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Redefining the Properties of a Process

Type

240

What You Will Learn

» Tohave aprocesstype inherit properties from another process type
» Toredefine transitionsin a process type

The Process Type JackpotGame

So far, you have redesigned the original functionality of the system
DemonGame, using aslightly different design. Next step will beto add
afeature that allows you to win the “jackpot”, with a probability of
10%. The jackpot is arbitrarily set to increase the score by 10. A simple
implementation of this could be to create a pseudo random number gen-
erator that returns a sequence of numbersfrom 0 to 9, and to check the
random number upon the reception of the signal Probe.

It should also be possible to specify what kind of game to start at run-
time, meaning that we need an additional input signal from the environ-
ment, NewJackpotGame, that will start the JackpotGame; that new sig-
nal requires additions to the process Main and the system diagram.

The JackpotGame is implemented as a process type that inherits the
properties of the process type Game, and adds the random number fea-
ture by redefining thetransitionsthat handle the signal Bump. The pseu-
do random generator is activated upon each reception of the signal
Bump. See below.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Redefining the Properties of a Process Type

Process Type JackpotGame 1(1)

1 n
INHERITS Game';}
1

DCL
““““““““ Pseudo_Random INTEGER;

‘IEHHHI')

‘IHHHHEI'

REDEFINED

REDEFINED

TRUE Pdeudo_Randonh:=
Psi (Pspudo_Random)+7)
MOD 10
Count := Count := -
Count+1 Count+10 < Winning)

REDEFIN
Bump

i

Pgeudo_Randonm:=
(Ps¢udo Rari%om+4)

Losing

l§

Figure 163: The process type JackpotGame

» Create the diagram above and save it on anew file
(new jackpotgame.spt for instance). Then close the diagramin
the SDL Editor (Close Diagram from the File menu).

— Thisdiagramisalso available asthefile jackpotgame.spt, if
you wish to make a copy (or useit asis) instead of drawing the
diagram.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 241

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

242

Changes to the Block GameBlock

To makethe processtype JackpotGame avail able from the parent block,
you simply add a process reference symbol and a process instantiation
symbol, as you did before with the process type Game. Y ou also add a
signal NewJackpotGame to the signal list to the process Main.

Block GameBlock 1(1)

Cc1 R RBump
N Main(1,1) C3
ewgame,
NewJackpotGame, [Bump]
Endgame,

Probe,

Result R5 JR5

Probe, Probe,

Result,] [Result,]

EndGame, EndGame,

Bump Bump

G2 G5 G5
[Win, Lose, Score] Game(0,1):Gam gggtggtggmg(o’n:

G2

Wm Lose, Score JR2

m o
c2

Figure 164: The block GameBlock

» Update the existing diagram GameBlock according to above and
saveit onfile.

— Thisversion of the diagram is also available as thefile
gameblock2.sbk. TO useit instead of drawing the diagram,
close the GameBlock diagram in the SDL Editor, and connect
the GameBlock diagram in the Organizer to the new file. (Use
Connect in the Edit menu and the option To an existing file.)

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Redefining the Properties of a Process Type

Changes to Process Main and System
DemonGame
The process Main and the system DemonGame need to be extended

with the declaration of the signal NewJackpotGame and the code to re-
ceive the signa and create an instance of the game JackpotGame:

Code added
to process
Main to han-
dle the new
signal...

NewJackpdtGame

JackpotGame

GameP:=
Offspring

NewJackpotGame,
Probe,

Newgame,
Result,Endgame

Signal

Newgame, NewJackpotGame,
Probe,

Result,Endgame,

Bump,
Win,Lose,Score(INTEGER);

...declaration of new
signal and addition to
signal liston C1 in
DemonGame

Figure 165: The extensions to process Main and system DemonGame

1. UpdatethediagramsMain and DemonGame according to thefigure
above and savethem on file. Y ou may want to save the diagrams on
new files, €.0. new_demongame. ssy and new_main.spr.

— Thisversion of the Main diagram is also available asthefile
main2.spr, if youwish useit instead of editing the diagram. In
the Organizer, connect the diagram to the new file (from the Edit

menu).

— The DemonGame diagram hasto be edited manually — do
not re-connect it to an existing file.

2. Inthe Organizer, make sure that the process type diagram Jackpot-
Gameis connected to the file new jackpotgame.spt that you
created earlier. (If not, use Connect in the Edit menu and the option
To an existing file))

The resulting Organizer list should now look like this:

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 243

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

244

—— Chapter Diagram Structure

System DemonGame rw new_demongame.ssy

[] Block GameBlock rw new_gameblock.sbk

Process Instance Game (0,1) : Game
Process | nstance JackpotGame (0,1) : JackpotGame

Process Main rw new_main.spr
Process Type Game rw new_game.spt
Process Type JackpotGame rw new_jackpotgame.spt
Block DemonBlock rw demonblock.sbk
% Process Demon rw demon.spr

Figure 166: JackpotGame added to Organizer list

Simulating the JackpotGame

To understand the resulting system, you may want to spend afew min-
utes simulating it.

1

First analyze the system and generate a simulator, as you learned
from the tutorial on the simulator. Then open the generated simula-
tor in the Simulator Ul.

We suggest that you check the following features:

It should be possible to start one instance of Game or of
JackpotGame at run-time using the NewGame/NewJackpot-
Game signals, but not to have two games running at the same
time. (Use the command output-via to send the signals New-
JackpotGame, Newgame and EndGame viaC1, in order to start
and stop the game).

Even if we do not have any game started, the signal Bump no
longer causes any dynamic error, sincethereisalwaysareceiver
(Main).

Turnthegraphical M SC traceon, to visualize how the signalling
isdone. Also turnthegraphical SDL trace on. Verify that the ex-
ecution takes place in the graphs for both the process types
Game and JackpotGame, even if you have started a Jackpot-
Game! (Y ou may haveto execute at symbol level to catch this.)

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Redefining the Properties of a Process Type

3. Play thegamein aredistic way.

— First, create a button in the Simulator Ul with the name Probe,
that sends the signals Probe and then Result, then resumes the
execution with the command Go. Each time you click this but-
ton, the Scoreisreturned. (The button definition should contain
output-to Probe Main; output-to Result Main; go)

|

Label: | probe

Definition: | output-to probe main; out

OK | Cancell

Figure 167: Defining the button Probe

— Then, set thetracefor the systemto 1, meaning that only signals
to/from the environment are traced. If required, turn al graphi-
cal traces off, in order to speed up the execution:
set-gr-trace 0; stop-msc-log

— Send the signal NewJackpotGame and run the simulator:

output-to NewJackpotGame Main; go

— Click repeatedly the Probe button and watch the trace. Y ou
should win 10 points every now and then.

4. Stop the execution with the Break button.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 245

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Adding Properties to a Process Type

What You Will Learn
» Toinherit aprocesstype and add properties
» To use dashed gates.

The Process Type DoubleGame

Even with a“jackpot” feature, winning “alot” with the DemonGame
takes some time... Suppose now that you would like to add a function
that doubles the “stake” of the game, whenever you want, so that you
have the possibility to win more.

A way to do thisisto:

1. Create a process type DoubleGame, that inherits the properties of
the process type Game, with the following additions:

— Declaration of avariable Stake of type integer.
— Initiaization of Staketo 1, by redefining the start transition.

— Reception of asigna DoubleStake that doubles the value of
Stake.

— Redefinition of the transitions Winning and Losing to add/de-
duct the current Stake from the score Count.

2. Theresulting graph is depicted below. Create it in the same way as
you have learned from the previous exercises, and saveit on thefile
new_doublegame.spt. Then close the diagram in the SDL Editor
(Close Diagram from the File menu).

— Thisdiagramis aso available asthefile double.spt, if you
wish to make a copy (or useit asis) instead of drawing the dia-
gram.

246 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Adding Propertiesto a Process Type

Note:

The diagram contains a dashed gate symbol G5, where the signal
DoubleStakeisconveyed. Y ou use dashed gatesto refer to gatesthat
are already defined in the supertype (the typethat you inherit from),
to distinguish from situations where you have to add a new gate.

To dash agate:
e Make surethe gate is selected.

¢ Select the Dash command from the Edit menu of the SDL Editor
(this command toggles between Dash/Undash).

Process Type DoubleGame 1(2)

1
[DoubIeStake i i DCL
_____________ Stake INTEGER;

(*) (Losing) GDEFINE) (Winning)
REDEFIN Count =0, REDEFIN
DoubleSta< Probe { Stake:=1 Probe {

| I N

btake:=Stake*? [Lose > < Losing)

N I

Count:= Count
° Count-Stake Count+Stake

(D

Figure 168: The process type DoubleGame

3. Add aprocess type reference symbol DoubleGame, and a process
instantiation symbol with the text “DoubleGame (0,1):Double-
Game” to the block diagram GameBlock; see below.

— Thisversion of the diagram is also available as thefile
gameblock3.sbk. To useit instead of drawing the diagram,
close the GameBlock diagram in the SDL Editor, and connect
the GameBlock diagram in the Organizer to the new file.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 247

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

4. Also add the signals NewDoubleGame and DoubleStake to the sig-
nal list on the signal route R1, and DoubleStake to the signal list to
the process DoubleGame; see below.

Block GameBlock 1(1)

c1 R1 RBump
Main(1,1) C3

Newgame,

NewJackpotGame, [Bump]

NewDoubleGame,

Endgame,

Probe,

Result, R5 JR5 DR5 forope.

DoubleStake Probe, Probe, Eﬁgél;'me
Result, Result, B ’
EndGame, EndGame, DLCJ)rL?t?IéStake
Bump Bump

G5 G5 G5
JackpotGame(0,1):

G2

in, : DoubleGame(0,1):
win, Game(0,1):Gam JackpotGame DoﬂbleGame()
Score
G2 G2

Wm Lose, Score JR2 [Win, Lose, Score] DR2

m JackpotGame DoubleGame

c2 Cc2

Figure 169: The resulting block GameBlock

5. Add the new signals NewDoubleGame and DoubleStake at the sys-
tem level (in the DemonGame diagram), both in the signal declara-
tion, and in the signal list on the channel C1.

— You have to make these changes your self.

248 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Adding Propertiesto a Process Type

July 2003

6. Extend the process Main with the code to receive the signal
DoubleStake, and the code to receive the signal NewDoubleGame
and create an instance of the game DoubleGame; see below.

— Thisversion of the Main diagram is also available asthefile
main3.spr, if youwish useitinstead of editing the diagram. In
the Organizer, connect the diagram to thisfile.

Code added NewDoubléGame DoubleStake
to process
Main to han-

DoubleStaks
dle the new DoubleGame TO GameP
signals. |

GameP:=
Offspring

Figure 170: New code in process Main

7. 1f needed in the Organizer, connect the process type diagram Dou-
bleGametothefile new doublegame.spt thatyou created earlier.

Simulating the DoubleGame

Y ou may simulate the DoubleGame in asimilar way as the
JackpotGame (the DoubleGame is started with the signal
NewDoubleGame).

1. Toplay thegamein arealistic way, aso add a button Doubleto the
Simulator Ul, with the text “Double” and the command
Output-to DoubleStake Main; go

2. Try for instance the following tactic: whenever your scoreis nega
tive, double the stake.

Teldlogic Tau 4.5 SDL Suite Getting Started 249

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Combining the Properties of Two Process

Types

250

What You Will Learn

» Towork with the Type Viewer (the “class browser” in the SDL
suite)

» Toinherit process types in more than one level

So far, you have created a basic version of the game (the supertype pro-

cess type Game), and extended it as two subtypes (the process types

JackpotGame and DoubleGame). To assist you in understanding the in-

heritance and instantiation of types, the SDL suiteis provided with a

“class browser”, the Type Viewer.

Working with the Type Viewer

1. Openthe Type Viewer with the command Type Viewer from the Or-
ganizer’s Tools > SDL menu.

The Type Viewer is started and displays two windows: the main
window, where all types are listed, and the Type Trees, where the
inheritance and instantiation of the typesis visualized.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Combining the Properties of Two Process Types

B B

—

~ | File View Tools Help |
i v |5 0]) 5191 2

ﬂlg‘ Inheritance tree

Proces @

Proces Process Type

Proces Fame

O
U

() Proce: .

(& Proce:

@ Proce: Process Instance Process Type Process Type
1 Game(D,1) JackpotGame DoubleGame

v

Process Instance Process Instance
JackpotGame(0,1) DoubleGame(D,1) !

= - -

Figure 171: The two windows of the Type Viewer

a

The main window displays alist of all types and instances that exist in
your current system. When selecting an object in the main window, the
Type Treeswindow is updated to show theinheritancetreefor that type.

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 251

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

252

Inheritance tree

-

Process Type
Game
|
O O
ProcessInstance Process Type Process Type

Game(0,1) JackpotGame DoubleGame

Process Instance Process Instance
JackpotGame(0,1) DoubleGame(0,1)

Figure 172: Theinheritance tree for the process type Game

Figure 172 shows an inheritance tree for the process types Game,
JackpotGame and DoubleGame. We have one level of inheritance, as
depicted above. Y ou can also note that the Type Viewer keeps track
about the types that have been instantiated somewherein the SDL sys-
tem.

— Youmay go to the source SDL graphs and find the declarations
and instantiations of thetypes by double clicking the symbolsin
the Type Viewer.

How to Work-Around the Lack for Multiple
Inheritance

Say that you would like to design anew game where both the “ jackpot”
and the “double” features are supported. As SDL-92 does not support
multipleinheritance, we cannot simply create a SuperGamethat inherits
JackpotGame and DoubleGame. Instead, we will have to inherit from,
i.e. reuse, the JackpotGame or the DoubleGame, and then redefine/add
some of the properties. (Theideaisto rewrite aslittle code as possible€).

Which one should we reuse asis? The code for the DoubleGame seems
to be still valid for the SuperGame. So, let usinherit that process type,
and redefine some of the propertiesin accordance to the JackpotGame.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Combining the Properties of Two Process Types

July 2003

To create the SuperGame:

1.

Open the process type JackpotGamein the SDL Editor, and Save As
on anew file, €.0. new_supergame. spt

— This diagram isaso availableasthefile supergame. spt, if
you wish to make a copy (or useit asis) instead of drawing the
diagram. In that case, continue with step 6. below.

Rename the diagram to process type SuperGame.

Change the inheritance from “INHERITS Game” to “INHERITS
DoubleGame’.

Update the contents of the graph, in order to:

— Changethe branch Winning/Probe so that you add Stake instead
of 1 to Count when winning, and reward you with 10 times the
value of Stake when winning the jackpot.

— Redefine the transition Losing/Probe so that you deduct Stake
instead of 1 from Count.

REDEFINED
Prob

ggggF'N{ (Losing)

TRUE Pseudo_Randonp:=
Pse 5=0 (Pspudo_Randon(+7, s%DbEFlN
MOD 10

— Count :=
Count := -
Count+ Winning Lose
Count+Stake (16°Stake) () >

Win REDEFIN Count:=
Bump Count-Stake

(Ps¢udo_Random+4)
MOD 10

Figure 173: The changes to the process type Super Game

Pdeudo_Randonh:= (

Teldlogic Tau 4.5 SDL Suite Getting Started 253

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

254

5.

If the Process Type JackpotGame has become unconnected in the
Organizer, re-connect it to the file used earlier
(new_j ackpotgame. spt).

Also add a process type reference symbol with the name
SuperGame in the diagram GameBIlock. In the Organizer, then con-
nect the newly added process type diagram SuperGame to the file
new_supergame.spt that you created earlier.

Y ou may check the impact of the changes above in the Type View-
er. Save everything and the select Update from the Type Viewer's
File menu (since the Type Viewer does not automatically updateits
content when you make changes to a diagram). Y our inheritance
tree should now look like this:

Inheritance tree

O

Process Type
Game
1
O O
Process Instance Process Type Process Type
Game(0,1) JackpotGame DoubleGame

ProcessInstance Process Instance Process Type
JackpotGame(0,1) DoubleGame(0,1) SuperGame

Figure 174: The process type Super Game, added

If you want to be able to play the SuperGame, you must also add a
process instantiation symbol “ SuperGame(0,1):SuperGame” in the
GameBlock, and add a signal NewSuperGame that starts the game
(inasimilar fashion asyou did in the JackpotGame and the Double-
Game). Do not forget to update the system diagram.

— These versions of the diagrams are also available as the files
gameblock. sbk and demongame. ssy, if you wish use them
instead of editing the diagrams. In the Organizer, connect the di-
agrams to the new files. A complete and final system file,
demongame sdl192.sdt, iSalso available, with connections to
the final SDL diagrams.

Telelogic Tau 4.5 SDL Suite Getting Started July 2003

Using Packages and Block Types

Using Packages and Block Types

July 2003

What You Will Learn

* To create a package diagram

» Touseapackagein asystem

» Torefer to and instantiate a block type
» Todefine aprocess type as virtual

Package — a Reusable Component

Packages are used to make type definitions available in different sys-
tems, and to make componentsreusable. Y ou will take advantage of the
package concept by developing two versions of the DemonGame, one
that has only the basic “Probe” feature, and one that also includes the
“Jackpot” and “DoubleStake” features.

Theideahereisto develop apackage“BasicFeatures’ that isused inthe
basic version and that is reusable to 100% in the advanced version.

Using packagesto their full extent in this example requires not only the
process Game to be transformed to a process type (as you have donein
the previous exercises, when creating the JackpotGame, DoubleGame
and SuperGame), but also to transform the process Main and the block
GameBlock to reusable process type and block type, respectively.

Y ou have probably noticed that the process type Main a so requires to
be extended for each feature that we add (“jackpot”, “double”, etc.), so
it would be a good idea to make areusable type of it. This has aready
been prepared for you, so your task will beto add the required “ glue’ to
build the two packages.

1. Start by copying the files gameblock.sbt and main.spt from
the directory
S$telelogic/sdt/examples/demongame/sdl92/packages (on
UNIX), or
C:\Telelogic\SDL_TTCN Suite4.5\sdt\examples\demongam
e\sdl92\packages (in Windows) to the same directory you creat-
ed earlier for this tutorial.

— All diagramsin the remaining exercises are available in the
above directory. Y ou may choose to copy them if you do not

Teldlogic Tau 4.5 SDL Suite Getting Started 255

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

want to draw all diagrams, and then connect the created diagram
symbolsin the Organizer to the corresponding files.

Creating a Package
To create a package:
1. Select the Add New command from the Organizer’s Edit menu. In

the Add New dialog, specify document type as SDL Package, and
document name as BasicFeatures.

Add New

— Mew document type
& MSC M5 A
ML [ObectModel 7]
" Orgarizer lm
&+ 5DL [Package =]
e Ted Pan =
£ Tren Fosae =]
Mew document name: IBasicFeatures

¥ Show in editor
™ Copy existing file:

[=|

Ok | Cancel | Help |

Figure 175: Adding a new package Basic Features

Asyou click OK, anew diagram structureis created in the Organiz-
er with the package diagram as root diagram. (The Organizer sup-
ports managing multiple structures in the same system file.)

Thenewly created package should contain the generic propertiesfor
the DemonGame; namely:

— Thedeclaration of the signal interface between the “basic”
DemonGame and the environment, as well as a process type
Main that supports the signa interface.

— Thedefinition of the process type Game with the basi c function-
aity.

— A block type that contains the process types.

256 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Using Packages and Block Types

2. With the SDL Editor, move the declaration of the signals from the
system diagram to the package diagram. Also add the process type
reference symbol Game and the block type reference symbol
BasicGameBlock to the package diagram. See below.

)

Package BasicFeatures 1(1)
TN
] Oy
i i
Signal
gevggame,
robe,
Game Result,Endgame,
Bump,
Win,Lose,Score(INTEGER);

BasicGameBlock

Figure 176: The package BasicFeatures
3. Savethe package diagram on afile, e.g. basicfeatures.sun

4. With the Organizer, connect the block type BasicGameBlock to the
recently copied file gameblock. sbt (the diagram isdepicted in

Figure 177).

— Notethat the processtype Main isdeclared as VIRTUAL. This
is essential since we are going to add propertiesto Main, and
need to address signals from the environment to M ain, without
changingitsnametoe.g. “ SuperMain” (compareto how you did
for the process type Game that was specialized into
JackpotGame, etc.). By defining a processtype as VIRTUAL,
we can later add propertieswithout changing its name, using the

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 257

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

keyword REDEFINED (you will practice that in afew mo-
ments, in “Redefined Process Type Main” on page 263).

Block Type BasicGameBlock 1(1)
: : ﬂ VIRTUAL Main’

Gl r1 [G1 G3 ‘ RBump G3
Eeggame Ee‘\:/jvgame, Mgm(lll): [Bum] Bum]
Probs, || Probs, G5 PIILETP
Result Result

R5
Probe,
Result,
EndGame,
Bump l

G5

Game(0,1):
Game

b

R2

[Win, Lose, Score]

G2 [Win, Lose, Score]

Figure 177: The block type BasicGameBlock

5. You should also connect the process type Main to the copied file
main.spt (Thismay already have been doneif you had Expand
Substructure turned on in the Connect dialog in the previous step.)

258 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Using Packages and Block Types

July 2003

Using a Package
To use apackage, you add a USE statement to the package reference

symbol (looking like atext symbol immediately outside the frame sym-
bal).

1. Tocreate aversion of the DemonGame that has the basic features,
add a USE statement to the system diagram. Also remember to in-
stantiate the block type BasicGameBlock (whichiscontained in the
package). See below.

USE BasicFeature%

System BasicDemongame 1(1)

Newgame,
Probe,
Result,Endgame

C1
G1
GameBlock:
BasicGameBloc}
C2
G2 G3
\[Win,Lose,Score]
C3
[Bump]
DemonBlock

Figure 178: USE of packages

— You may want to save the system diagram on anew file, e.g.
basicdemongame.ssy

2. Inthe Organizer, Disconnect the old GameBlock from the system
structure. The resulting Organizer view should now be something
like this (the order of appearance of symbols may differ):

Teldlogic Tau 4.5 SDL Suite Getting Started 259

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

—— Chapter Diagram Structure

[Package BasicFeatures w
] Block Type BasicGameBlock rw
Process Instance Game (0,1) : Game

Process Instance Main (1,1) : Main

(& Virtual Process Type Main w

(=) Process Type Game rw
[] System BasicDemongame w

Block Instance GameBlock : BasicGameBlock

|] Block DemonBlock w

() ProcessDemon w

basicfeatures.sun
gameblock.sbt

main.spt
new_game.spt

basicdemongame.ssy

demonblock.sbk
demon.spr

Figure 179: System BasicDemonGame using package BasicFeatures

3. Terminate the exercise by analyzing the resulting system.

Note:

lected before ordering Analyze.

Reusing Packages

When developing the version of the DemonGame that has all features,
you create a package A dvancedFeaturesthat containsthe additional fea
tures and that will reuse the package BasicFeatures.

260

What You will Learn

» Toreuse apackage in another package
* Toinherit ablock type

» Toredefine aprocesstype

Telelogic Tau 4.5 SDL Suite Getting Started

Y ou may analyze the package (by selecting the package symbol in
the Organizer as input to the Analyzer before ordering the Analyze
command), in which case a partial semantic analysis will be done
on the package. (The Analyzer will not check the consistency be-
tween the package and the system that usesiit.)

A complete semantic analysis requires the system diagram to be se-

July 2003

Reusing Packages

July 2003

The Package AdvancedFeatures

1. Create the package AdvancedFeaturesin asimilar fashion asthe
package BasicFeatures (see Figure 175 on page 256).

— You should now have two package structures in the Organizer,
BasicFeatures and AdvancedFeatures.

The package AdvancedFeatures must do the following:

2. Usethe package BasicFeatures.

3. Add the declarations of the new signals.

4, Add references to the process types JackpotGame, etc.
5

. Add areferenceto ablock type AdvancedGameBlock (which inher-
itsthe block type BasicGameBlock and in turn refersto aredefined
process type Main).

6. Savethe package diagram on thefile advancedfeatures.sun

USE BasicFeature%l,

Package AdvancedFeatures 1(2)

Signal
JackpotGame DoubleStake,
NewJackpotGame,
NewDoubleGame,
NewSuperGame;

DoubleGame

AdvancedGameBloftk
SuperGame

Figure 180: The package AdvancedFeatures

Teldlogic Tau 4.5 SDL Suite Getting Started 261

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Block Type AdvancedGameBlock

The diagram contains areferenceto aREDEFINED processtype Main,
and a dashed instantiation symbol Main.

Block Type AdvancedGameBlock 1(2)
POTTTTTTTTTTTTTTTTTT N
'INHERITS BasicGameBlock;} rmmmmmmmmmmm e
o227 Man B
Gl ART ! |
U |
________ G1 G5!
“ew\gl]:g](%tham “Swggtr‘lf)thame N
ew.) , 1
NewDoubleGame] NewDoubleGame, } G5 G5 »
Endgame, Endgame, = [“---p-------- r--"
Probe, Result, Probe, Result,
DoubleStake, DoubleStake, Probe,
NewSuperGame NewSuperGame Result,
EndGame
Bump
G5
2 :
JackpotGame(0,1):
JackpotGame
DR5
G5
DoubleGame (0,1)
DoubleGame Probe: SRS
EndGame, Eg_%e“v
ump,)
JR2 G2 Dout’J)IeStake EndGame,
Bump,
DoubleStake
\If\/in,
ose,
Score DR2 G5
SuperGame (0,1):
G2 SuperGame
P —— G2
Win, [Win, Lose, Score]
Lose
Score
[Win, Lose, Score]
SR2
REDEFINEIP
Main

262

Telelogic Tau 4.5 SDL Suite Getting Started

Figure 181: Block type AdvancedGameBlock

July 2003

Reusing Packages

July 2003

Theblock type AdvancedGameBlock isalready provided onthefile
advancedgameblock . sbt. Copy that file from the directory
S$telelogic/sdt/examples/demongame/sdl192/packages (on
UNIX), or

C:\Telelogic\SDL_ TTCN Suite4.5\sdt\examples\demongam
e\sdl92\packages (in Windows), and use the Organizer to con-
nect the diagram to thefile.

Redefined Process Type Main

The REDEFINED process type Main inheritsimplicitly from the
VIRTUAL process type Main in the package BasicFeatures, and adds
the code to receive the signals that command the new features.

|

REDEFINED Process Type Main 1(2)

NewJackpotGame,

NewDoul?IeGame,
DoubleStake,

NewSuperGame

NewJackp<Gam NewDoub%ame NewSuperéme DoubleSta<

G5 ackpotGame| |DoubleGame| | SuperGame -'?8“85,%55
[DoubIeSta e | | | \L
GameP:= GameP:= GameP:=
Offspring Offspring Offspring (Game_On)

1

(Garipn) (Gare_on) (Gan:tfon)

Figure 182: The redefined process type Main

The REDEFINED process type Main is aso provided on the file
advancedmain.spt inthedirectory
S$telelogic/sdt/examples/demongame/sdl92/packages (0N
UNIX), or

C:\Telelogic\SDL_ TTCN Suite4.5\sdt\examples\demongam
e\sdl92\packages (in Windows). Copy thefile and use the Orga-
nizer to connect the diagram to thefile.

Teldlogic Tau 4.5 SDL Suite Getting Started 263

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

264

Creating the System AdvancedDemonGame

Creating the system is now fairly simple.
1

Add aNew SDL system in the Organizer. Say you hame the system
AdvancedDemonGame and save it as demongameadvanced. ssy

With the SDL Editor, Copy the contents of the system

BasicDemonGame and Paste them into the new system.

Have the system USE AdvancedFeatures in addition to

BasicFeatures.

Change the reference from the block type BasicGameBlock to

AdvancedGameBIlock.

Update the signal list C1 with the new signals JackpotGame, etc.
The system is now complete. Analyze it and simulateit if you find

it meaningful.

USE BasicFeatures;
USE AdvancedFeatures;

System AdvancedDemongame

Newgame,
NewJackpotGame,
NewDoubleGame,
Probe,
Result,Endgame,
DoubleStake,
NewSuperGame

G1

Cc2
G2 G3

AdvancedGameBloc|
AdvancedGameBloc|

\[Win,Lose,Score] c3

o]

DemonBlock

N

1(1)

Figure 183: The system AdvancedDemonGame

Telelogic Tau 4.5 SDL Suite Getting Started

July 2003

Conclusion

Conclusion

The SDL-92 session of thistutoria has shown how to design a (small)
SDL system so that the result becomes reusable components, which in
turn reduces the effort needed to maintain and extend the functionality.

Thetutorial alsoillustrates the need to design the system properly in or-
der to introduce the OO paradigm in a smooth way.

To verify that you have assimilated the SDL-92 tutorial, you should
now be ready to add new features on your own, without having to re-
write the whole system.

More Exercises...

July 2003

Asa“menu” of new featuresthat can beintroduced, we suggest that you
try to extend the AdvancedDemonGame with the following:

1. Memorization of “highest score ever” since system start (there
should be only one highest score, common for al types of games).

2. A*“hall of fame’ that memorizesthe name of the player that reaches
the “highest score ever”. (The name is assumed to be provided by
the environment).

3. A “gameover” function that checksif the current score isless than
an arbitrary value of, say -100, and disables the game so that the
player needsto restart it entirely.

Good luck!

Note:

A suggestion for a solution for the exercises above can be found in
the directory:
Stelelogic/sdt/examples/demongame/sdl92/exercises (On
UNIX), or

C:\Telelogic\SDL_ TTCN Suite4.5\sdt\examples\demongam

e\sdlo2\exercises (in Windows)

Teldlogic Tau 4.5 SDL Suite Getting Started 265

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Appendix: Diagrams for the DemonGame
Using Packages

—— Chapter Diagram Structure (basic)

[Package BasicFeatures rw basicfeatures.sun
(C) Process Type Game rw game.spt

[CJ] Block Type BasicGameBlock rw gameblock.sbt
Process Instance Game (0,1) : Game

Process Instance Main (1,1) : Main

(&) Virtual Process Type Main rw main.spt

[] System BasicDemongame rw basicdemongame.ssy

Block Instance GameBlock : BasicGameBlock
[] Block DemonBlock rw demonblock.sbk
() ProcessDemon rw demon.spr

— Chapter Diagram Structure (advanced)

|_-‘:_-| Package AdvancedFeatures rw advancedfeatures.sun
—© Process Type JackpotGame rw jackpotgame.spt
_@) Process Type DoubleGame rw double.spt

[CJ] Block Type AdvancedGameBlock rw advancedgameblock.sbt
Process Instance DoubleGame (0,1) : DoubleGame
'y) Process Instance JackpotGame (0,1) : JackpotGame
"™ Process Instance Main
‘%) Process Instance SuperGame (0,1) : SuperGame

(©) Redefined Process Type Main rw advancedmain.spt
_@) Process Type SuperGame rw supergame.spt
[] System AdvancedDemongame rw demongameadvanced.ss
Block I nstance AdvancedGameBlock : AdvancedGameBlock
[] Block DemonBlock rw demonblock.sbk
() ProcessDemon rw demon.spr

Figure 184: Hierarchical structure

266 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

Appendix: Diagramsfor the DemonGame Using Packages

Inheritance tree

L]

Block Type
BasicGameBlock

Block Instance Block Type
GameBlock AdvancedGameBlock

Block Instance
AdvancedGameBlock

Inheritance tree

Virtual Process Type
Main

O=

Process Instance Redefined Process Type
Main(1,1) Main

Figure 185: Inheritance tree for the block type and process type Main

(The inheritance tree for the process type Gameis displayed in
Figure 172 on page 252.)

July 2003 Teldlogic Tau 4.5 SDL Suite Getting Started 267

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

268 Teldlogic Tau 4.5 SDL Suite Getting Started July 2003

	6 Tutorial: Applying SDL- 92 to the DemonGame
	Purpose of This Tutorial
	Applying SDL-92 to the DemonGame
	Some Preparatory Work
	Creating a Process Type from a Process
	What You Will Learn
	Changing into a Process Type
	Inserting Gates and Virtual Transitions
	Editing the Process Type Diagram
	Connecting to the Finished Diagram

	The Organizer Structure

	Redefining the Properties of a Process Type
	What You Will Learn
	The Process Type JackpotGame
	Changes to the Block GameBlock
	Changes to Process Main and System DemonGame
	Simulating the JackpotGame

	Adding Properties to a Process Type
	What You Will Learn
	The Process Type DoubleGame
	Simulating the DoubleGame

	Combining the Properties of Two Process Types
	What You Will Learn
	Working with the Type Viewer
	How to Work-Around the Lack for Multiple Inheritance

	Using Packages and Block Types
	What You Will Learn
	Package – a Reusable Component
	Creating a Package
	Using a Package

	Reusing Packages
	What You will Learn
	The Package AdvancedFeatures
	Block Type AdvancedGameBlock
	Redefined Process Type Main
	Creating the System AdvancedDemonGame

	Conclusion
	More Exercises...
	Appendix: Diagrams for the DemonGame Using Packages

