Chapter

1

July 2003

Object Oriented Design
Using SDL

Thismethodology chapter will takeyou into theworld of object ori-
ented SDL, asintroduced in the 1992 ver sion of thelanguage. It will
follow one case (a ssimple Access Contr ol system) from the specifica-
tiontothefinal SDL design. A simple OO analysis(accordingtothe
SOMT method) isperformed, followed by an object oriented design
using SDL.

The object oriented SDL concepts areintroduced step by step by
developing different versions of the Access Control system. The
first version will make use of the OO concepts block types and pro-
cesstypesonly. Thefinal version will use more advanced OO con-
cepts, such asinheritance (specialization), virtual typesand typeli-
braries (package diagrams).

Notethat this chapter doesnot deal with all parts of the SOMT
method described inthe SOM T M ethodology Guidelinesstartingin
chapter 69 in the User’sManual; it mainly focuses on the usage of
object oriented SDL in the design activities of SOMT.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 1

Chapter 1 Object Oriented Design Using SDL

Requirements on the Access Control
System

This section should only be viewed as a background for the design of
the system and not as a description of acomplete requirements analysis
phase.

Description of the System to be Built

Thisapplication ischosen becauseit isagood example of an embedded
system, with features that make it very suitable to be specified using
SDL and the object oriented extensions (introduced in the 1992 version
of the language).

The Access Control system isa system to control the access to a build-
ing. To enter the building, a user must have aregistered card and a per-
sonal code (four digits). The device used for entering the card and per-
sonal code consists of a card reader, a keypad and a display.

The main characteristics of the system are:

* Moderate real-time demands

* Mostly signal oriented

» Simple data representation

« Simpleinterface to the environment (hardware)
e A non-distributed system

* Adding new features to the system can be achieved in an easy way
by adding new program logic, while the interface to the environ-
ment remains the same

» The system can be simulated in the host environment by using a
graphical user interface (see Figure 1).

2 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Requirements on the Access Control System

July 2003

3DT AccessControl Tutorial

|: £l Daar 1
: ; . g
On UNIX: & EZZ: 2
| oG :
¢ : Hain Card Door 4
gmiwl User Card 1
m@m User Card 2

¥ AccessControl Ul 31 n

‘I ‘ 1:

F]

I =N 2:.

In Windows: _4|_5|_5| cc-.,d2| .
F]

7] 8] 8] cams |
A R T

Figure 1. Graphical interface to the Access Control system

Textual Requirements

This description serves as an initial set of requirements. These require-
mentsare normally collected and refined to astandardized form to make
the requirements analysis easier to deal with and each requirement eas-
ier to refer to. Only theinitia set of requirementswill be shown for this
simple example.

Wewill alsofocusonly onthefunctional requirementsand leave out the
non-functional requirements (like performance, reliability, availability,
etc.).

Basic Requirements
The hardware devices consists of the following components:

e An 8751 microcontroller

* 64 kilobytes of program memory (RAM or ROM)

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 3

Chapter 1 Object Oriented Design Using SDL

» 64 kilobytes of data memory (RAM)
e A card reader for credit cards

The card reader readstrack 2. Datais stored as 40 five-bit words ac-

cording to the most common standard.

* A keypad

The keys are organized according to normal telephone standard.
Valid keysarethe digits 0-9. In the basic version, the function keys

“*" and “#" are not recognized.

» A display unit

Thedisplay unit can display 2 lines each consisting of 16 characters.

* 4LEDs

Four light emitting diodes will indicate the status of the controlled

doors. Off = closed, on = open.

The system should be able to fulfill the following tasks for a user:

» Reading the code on the back of a standard credit card.

» Reading apersona code, consisting of 4 digits, typed from the key-

pad.

« Validate that the card and the personal code are registered.

» If the system is configured to control more than one door, give the
user the possibility to choose which door to open after the card and

code have been validated.

The system should be ableto fulfill the following tasks for asystem ad-

ministrator/supervisor:

* Registration of auser card and apersonal code. Only one codeisal-

lowed for each user card.

» Registration of the supervisor card at system startup time. Only one

supervisor card is allowed for each system.

General requirements:

» Thesystem must be designed in such away that it iseasy, at system
generation time, to configure the system to handle from oneto four

doors.

4 Telelogic Tau 4.5 SDL Suite Methodology Guidelines

July 2003

Requirements on the Access Control System

Additional Requirements
The system should be able to fulfill the following tasks for a user:

» Displaying time.

» Displaying which category (see below) of cardisvalidinthecurrent
situation.

The system should be able to fulfill the following tasks for a system ad-
ministrator/supervisor:

» Stopping the opening of one door (only the supervisor can open the
door after this).

» Stopping the opening of all doors (only the supervisor can open a
door after this).

« Removing the blocking of one or al the doors.
» Allowing free access through one or several doors.

» Specifying different categories of cards permitting different access
possibilities during a 24-hour period

» Displaying thetime.
e Setting of the current time.
» Blocking a user card.

» Remove the blocking of auser card.

Use Cases

Themaost interesting functional requirements are described by anumber
of use cases. These use cases describe the interaction between the sys-
tem and its environment and formalizes (to some extent) the functional
requirements.

The outside entities that communicate with the system are usually
called the actors of the use cases. Actors are often

e human users
» other systems
¢ hardware

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 5

Chapter 1 Object Oriented Design Using SDL

There are two different actors of the Access Control system that arerel-
evant (the hardware is not taken into account in this simple example):
user and supervisor.

* Theuser functions are the services available for all users, such as
reading the card code, reading the four digit personal code, etc.

» The supervisor functions are only available for suitable privileged

personnel (e.g. asupervisor) and perform services such asregistra-
tion of anew card and code.

The use cases could be described either textually or by MSCsor by a
combination of the two notations. An example of a use case with the
user actor isthe Open Door use case (described by the M SC OpenDoor
in Figure 2). The use case ends with the fulfillment of the goal of the
use case: the opening of the door.

MSC OpenDoor
: b
!.________J Actor System
Display
[‘Insert card']
Card
Display
[‘Input code‘]
KeyStroke
"
KeyStroke
)
KeyStroke
.
KeyStroke
[+]
Open
[1]

Figure 2: Requirements use case OpenDoor

6 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Requirements on the Access Control System

Use cases that describe requirements usually show only the interaction
between the actors and the system. When the use cases arerefined in | at-
er activities, they can also express the inner behavior of the system.

Object Model

The requirements object model is asimple object model that relatesthe
known domain entities of an access control system and its environment.

The environment of the system could be anything that is related to the

system aslong asit isrelevant for under standing the problem, typically
the actors of the use cases that describe the wanted behavior of the sys-
tem. The objective of the model isto give asimple picture of the prob-
lem without going into details.

4Works in
Office Employee
4qHas
[\ EAﬁ
Entrance | Communicates CentralControl | Communicates DataBase SuperVisor User
with > with >
| H
LocalPanel Code 4Has Card [
[\ |
Door CardReader Display KeyPad

July 2003

Figure 3: Requirements object model

When elaborating the requirements object model into an analysis object
model, concern about the system properties rather than the real world
properties will affect the model. In the requirements activity, it is not
known what acertain classwill resultinor if it should bemodeled at all.
When analyzing the requirements and the system to be built, classes can
be mapped to software entities, hardware entities or not mapped at all.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 7

Chapter 1 Object Oriented Design Using SDL

System Analysis of the Access Control
System

The system analysis is based on the results after analyzing the require-
ments and the problem domain on a high level. The modelsin the sys-
tem analysis focuses more on the internal structure of the system to be
built, without taking design decisions (or at least as few as possible).

Analysis Object Model: Basic Version

The inheritance concept is not used in the basic version because the in-
formation that needs to be modeled has a very simple structure. What
can be seen in Figure 4 isthe aggregation and the association relations
between the classes and the attributes and operations for the individual
classes.

Compared to the requirements object model, the following changes
have been made:

» The actors are removed from the object model to simplify the read-
ing.

» Classes have been structured in away that makes the mapping to an
SDL design easier. Especially the aggregation hierarchy isdesigned
with thisin mind; the structure will basically be kept when making
an SDL design.

» Classes from the requirements object model that are redundant
(only introduced to increase the understanding of the problem) are
removed.

« A difference between active and passive objects has been taken into
account. The active objects have behavior while the passive objects
only have data structure and data manipulation. The classesin the
aggregation hierarchy are all active, while the classesin the infor-
mation structure are passive.

» Attributes and operations have been added to the classes.

» Theanalysis object model is structured into three parts, each part
showing a different view of the relationship between the classes:
containment, communication and information.

8 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

System Analysis of the Access Control System

Aggregation hierarchy AccessControl
| -
LocalPanel RegisteredCard Door
CardList:CardDBType DoorTimeout
Status
VaidateCard
VaidateCode MyNo
RegisterCardAndCode OpenDoor
CloseDoor
Controller CardReader Display KeyPad
KeyTimeout
DisplayTimeout Card Display KeyStroke
ReadCard
ReadCode

Communication structure

RegisteredCard Controller Door
VaidateCard ReadCard OpenDoor
VaidateCode ReadCode CloseDoor
RegisterCardAndCode

Information structure

CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

{ s
CardType
CardData
Code

Figure 4: The analysis object model of the Access Control system (basic version)

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 9

Chapter 1 Object Oriented Design Using SDL

10

The Analysis Use Case Model

The following M SC describes the use case for opening a door and isa
part of the complete analysis use case model. The level of granularity
can either be very detailed (each involved leaf object is represented by
an M SC instance) or general (each subsystem of the aggregation hierar-
chy is described by an instance). This choice between readability and
expressivenessisdependent of the application areaand design customs.
In this case, the subsystem representation was chosen (see Figure 2).

MSC OpenDoor

Actor

‘ User | | Lp:LocalPanel ‘ ‘Rc:ReglsteredCard| | Dr:Door

Display

[‘Insert card']
Card

[‘User card 1‘]
ValidateCard

[‘User card 1'1
OK

Display

[‘Input code‘]
KeyStroke

0
KeyStroke

Y
KeyStroke

2
KeyStroke

(]

VaidateCode

(11,234
[I

OpenDoor

[
I [N [

Figure 5: Analysis use case OpenDoor

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

System Analysis of the Access Control System

July 2003

Note that the MSC instances are, in fact, instances, i.e. they represent
objects. To indicate this, the naming of theinstancesinclude both an ob-
ject name and the correspondent class name.

It should also be noticed that all MSC messages do not map strictly to
class operations. In some cases, the operation is synchronous, that is de-
mands a return message. This return message is also described in the
MSC use casein Figure 2 (e.g. the operation ValidateCard is described
by the messages ValidateCard and OK).

Analysis Object Model: Enhanced Version

Thefollowing exampleishow an analysis of the additional requirement
of timehandling can be performed. The addition of aclock function will
mainly add a new operation to the class Display (display of current
time). A new class Clock must also beintroduced. The properties of this
class handle the clock and update the current time. Figure 6 describes
the enhanced analysis object model for the Access Control system.

When adding behavior, the other models must of course also be extend-
ed, including the internal textual requirements and the use case models
of the requirements and system analysis.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 11

Chapter 1 Object Oriented Design Using SDL

Aggregation hierarchy AccessControl
‘ *
Display LocalPanel RegisteredCard Door
CardList:CardDBType DoorTimeout
Status
Display VaidateCard
VaidateCode MyNo
RegisterCardAndCode OpenDoor
CloseDoor
DisplayWithTime Clock Controller CardReader KeyPad
CurrentTime KeyTimeout
DisplayTime T ution DisplayTimeout Card KeyStroke
SetTime ReadCard
ReadCode

Communication structure

Clock
SetTime
RegisteredCard Controller Door
VaidateCard ReadCard OpenDoor
VaidateCode ReadCode CloseDoor
RegisterCardAndCode
Information structure
CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

*

CardType
CardData
Code

Figure 6: The analysis object model of the Access Control system
(extended version with time handling)

12 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

Object Oriented Design of the Access
Control System

July 2003

System Design

The system design activity aims at producing a design architecture and
to refine the use casesinto use casesthat could give abetter help during
the detailed design. Another purpose for refining the use casesisto
make them suitable for verifying the design by means of the SDL Vali-
dator functionality Verify MSC.

Since the goal of this methodology handbook isto describe the object
oriented features of SDL during the design, the description of a com-
plete system design has been left out.

Object Design
We will now introduce the new SDL concepts step by step.

* Inthefirst version of the Access Control system we will only use
the new type concept for blocks and processes.

* InVersion 2wewill make use of the new procedure concepts, such
as remote procedures, value returning procedures and global proce-
dures. We will aso introduce the package concept, the specializa-
tion concept and the virtual concept.

Version 1: Block Types and Process Types

According to the analysis object model, the top class of the aggregation
hierarchy has been mapped to an SDL system. The leaf nodes of the ag-
gregation hierarchy have been mapped to processes and the classes be-
tween thetop and the leave nodes have been SDL blocks. Notethat even
if there are no classes between the top class and aleave classin an ag-
gregation chain, an SDL process still has to be contained in an SDL
block.

Six processes (CardReader, Controller, Display, Door, KeyPad and
RegisteredCard) have been identified from the analysis object model
and three blocks (Local Panel, Doors and RegisteredCard) have been
created in order to preserve the structure described by the aggregation
hierarchy of the analysis object model (see Figure 7).

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 13

Chapter 1 Object Oriented Design Using SDL

14

L3

System AccessControlOOA InteractionPage(4)
TTTTTTTRN
] LA .
o nCardReadeﬂ ﬂ Display ﬂ Door
KeyPad Controller Registered_|
Card
LocalPanel Doors RegisteredCard
OpenDoor,] [Open,]
DoorNo Close
A B
Dr(NOOFDOORS)
LpDr|Doors DrEnv
[Boorld,
isplay
LpEgvin| A D
=0 Lp:
KeyStroke, LocalPanel
[Card .| C B
Iprc
Ok,NOK,
LPENVO(t |Redsiered, A
NotRegistered
Rc:
[Display] RegisteredCard
[Validatecard,]
ValidateCode,
StopValidate,
RegisterCardAndCode

Figure 7: System diagram AccessControl OOA

Block Types and Process Types

A type definition can be placed anywherein asystem. For thisexample,
the choice was to place them on the system level so that they will have
maximum visibility. Normally, they would have been placed in separate
packages to support parallel editing and analysis of the separate sub-
systems (block types).

To placeatypeat ahigh level (in asystem or package) meansthat they
can be instantiated anywhere where they are visible, and also be used
for specialization anywhere in the system.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

Block Type LocalPanel

Even if the types are placed on the same level, the structure is kept by
instantiating the types according to the analysis object model. This

means that the instantiation of the process types CardReader, Display,
KeyPad and Controller is made inside the block type Local Panel (see

Figure 8).
Block Type LocalPanel 1(1) S'é'g’\i‘sct)ekr',
______ Registered,
H > Not_
! ‘I Ok,NOk Registered
_________ Register,
Registered, X
O] Open Not_
DESP,* [Dgor,_] Registered CIRc . B
DoorNo DoorNo, ValidateCard, ValidateCard,
D CIDr PR ValidateCode, ValidateCode,
* o8 nevatasy | ||Ronr
_ egisterCar
Doorld,] B,‘;‘,’,ﬁfy] Cl: C [ReadCode] AndCode AngCOde .
Display Controller
A E
[Readcard]
CrCl CIDI KpCl
[Display]
B A A
Cr: DI: Kp:
CardReader Display KeyPad
A B B
[card] [Keystroke]
EnvCr DIEnv EnvKkp
[Display]
A
Card, C |[Display] A
Key.
[SlroReJ

Figure 8: The block type Local Panel

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 15

Chapter 1 Object Oriented Design Using SDL

Block Type RegisteredCard

The block type RegisteredCard will only contain an instance of the pro-
cess type RegisteredCard. It is perfectly legal in SDL to use the same
name for a block type and a process type because they are of different
entity classes (see Figure 9).

Block Type RegisteredCard 1(1)

N

| LR

I |

I |
ValidateCard,
ValidateCode, ValidateCard,
StopValidate, ValidateCode,
RegisterCard_| StopValidate,
AndCode RegisterCard_|

AndCode
A CIRc

Rc:
A RegisteredCard

Ok,NOK,

Reaser. || [Qsnon

ﬁgglstered, Registered,
Not

Registered Registered

Figure 9: The block type RegisteredCard

The Classes CardDBType and CardType

As previously mentioned there are classes that will mainly contain data
and data manipulation operations. The classes CardDBType and Card-
Type are of thistype and they are implemented in the design as abstract
datatypes. The datatype CardDbType has a number of operators de-
fined to validate a card and a code, and to register anew card and anew
code. These operators are implemented in-line, as“C” functions (see

Figure 10).

16 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

NEWTYPE CardType

STRUCT
CardData Charstring;
Code CodeArray;

ENDNEWTYPE CardType;

NEWTYPE CardDbType
array (Index, CardType)

ADDING

LITERALS

NewDDb ;

OPERATORS

ValidateCard:Charstring, CardDbType->ValCardResType;
ValidateCode:CardType, CardDbType->ValCodeResType;
ListFull:CardDbType->Boolean;
RegisterCardAndCode:CardType, CardDbType->CardDbType;
/*#ADT (B)

#BODY

#ifndef XNOPROTO

extern # (CardDbType) # (NewDb) (void)

#else

extern # (CardDbType) # (NewDb) ()

#endif

return(yMake_#(CardDbType)(yMake_#(CardType)(“V\O",
yMake #(CodeArray) ('0'))));

ENDNEWTYPE;

Figure 10: The data types CardType and CardDbType

An instance of the type CardDbType is declared in the process type
RegisteredCard. The operations ValidateCard, ValidateCode and
RegisterCardAndCode for the class RegisteredCard are now imple-
mented as operators for the data type CardDbType (see Figure 11).

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

17

Chapter 1 Object Oriented Design Using SDL

18

Process Type RegisteredCard ValidateCard(3)

DC

Card Data Charstring,

CodeData CodeArray,

CardList CardDbType NewDb,
TmpCard Card‘\l’/y

ValCardResult aICardResType
ValCodeResult ValCodeResType;

ValidateCard(CardData)

ValCardResult:=)alidateCard(CdrdData,CardList)

alCardResu

CardOk \/ CardNOk

Ok NOk

Figure 11: Call of operatorsinside the Process RegisteredCard

Block Type Doors and Process Type Door

A requirement for the Access Control systemisthat it should be ableto
control up to four doors. In our object oriented SDL design, this can be
accomplished by creating a block set of the block type Doors. The Syn-
onym NOOFDOORS is by default 1 but can be assigned any value be-
tween 1 and 4. Block type Doors consists of an instance of the process
type Door. To follow the OO analysis, the process type Door will con-
trol how long a door should be opened (attribute DoorTimeOut) and
also the opening and closing of a door (operations OpenDoor and
CloseDoor).

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

Version 2: Procedures, Specialization and
Packages

A general rulewhen designing an SDL processisto keep thetransitions
as short as possible. Using procedures is often the solution.

The Use of Procedures in Version 1

Inthefirst version procedures arefrequently used and we shall now take
alook at two of them, namely RegisterCard and ReadCode. Both are de-
clared and called by the Controller process.

Procedure RegisterCard
This procedure is called when a new card should be registered (user

cards or the supervisor’s credit card). The function of this procedure is
asfollows:

» Firstit calsthe procedure ReadCode to read the four user digitsin
the user’s code.

* Inthe case of asuccessful return from the ReadCode
(ReadCodeResult=Successful), send arequest for the regi stration of
anew card (signal RegisterCardAndCode) to the process
RegisteredCard.

* Wait for the result of the Registration (return signals Registered or
NotRegistered) and return (see Figure 12).

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 19

Chapter 1 Object Oriented Design Using SDL

20

Procedure RegisterCard 1(1)

GFPAR — 7 T TR

| INJOUT CodeData CodeArray, o

| IN/OUT ReadCodeResult ReadCodeResultType,i

| CardData Charstring; H

i i
ReadCode
(CodeData,
ReadCodeResgult)

De@del?es t

TimedOut

SuccessFul

RegisterCar
AndCode(Cardpata,
CodeData)

StopValidate

FlashM €
('Timeout’)

WaitRegistered|

Registered NotRegisteréd
Display(Display(
'Registered’) "Not Registereg)
VIAE VIAE

Figure 12: Procedure RegisterCard

Procedure ReadCode

Thisisaprocedure to read four digits from the keypad. The digits read
will be stored in an array named CodeData. If four digits are successful-
ly received, the ReadCodeResult is assigned “ Successful”, and areturn
to the calling process or procedure will take place.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

Thisprocedureis called both by the procedure RegisterCard and by the
process Controller in the sequence of validating card and code (see
Figure 13).

Procedure ReadCode 1(1)

'INJOUT CodeData CodeArray

Y,
INIGUT ReadCaderesul ReadCodeResul DL
Keylndex Integer:=1;

set(now+
KEYTIMEOUT|
KeyTimer)
QaitKeyPress}ed
KeyTimer. ReadCodf{ey)
CodleData(KeyIndex):=
KeyIndex:=1 ey,
Keylndex:=Keylndex+1
ReadCode_] true
Result:=
TimedOut
set(now+ Reset
KEYTIMEOUT| | (KeyTimer)
KeyTimer)

KeylIndex:=1,
- ReadCodeResllt:=
SuccessFul

Figure 13: Procedure ReadCode

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 21

Chapter 1 Object Oriented Design Using SDL

22

Remote Procedures and Value Returning Procedures

Theideain version 2 isto move the procedure RegisterCard from the
process Controller to the process RegisterCard. There are two reasons
for doing this:

1. Thisisthemost natural placefor it, because thisprocedureiscalled
whenever acard is to be registered.

2. No signals have to be exchanged between process Controller and
process RegisterCard to announce when to start and stop the regis-
tration procedure.

The procedure ReadCode must also be moved, because there will be a
deadlock situation when the RegisterCard procedure calls the
ReadCode procedure.

Note:

When a process calls aremote procedure, it enters anew implicit
state whereit will wait for an (implicit) return signal indicating that
the procedure call has been executed. Any new signals, including
calls to remote procedures, will be saved. This can easily lead to
deadlock situations!

The ReadCode procedure can be placed in the KeyPad process and
FlashM essage (another procedure also called by the RegisterCard) can
be placed in the Display process.

Remote Procedures in SDL

Normally a procedure can only be called from the declaring process (or
procedure) but by declaring it as EXPORTED it can be called from any
process or procedure in the system. The remote procedure concept is
modeled with an exchange of signals.

The Save Concept

The service process (the process with the EXPORTED procedure) can
only handle aremote procedure call whenitisinastate. If it is essential
that a processis not interrupted with aremote procedure call in certain
states, it is possibleto use the SAVE symbol to save the call and handle
itin alater state. Thiswill mean that you cannot be sure that a remote

procedure call will be handled directly. The model for the calling pro-

cessis aso that anew implicit state isintroduced for each remote pro-

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

cedure call. The process will remain in this state until the remote proce-
dure call is handled and executed.

How to Declare an Exported Procedure
1. Declareit as EXPORTED in the procedure heading.

2. Makeanimport procedure specification in each process/procedure
that wants to call the remote procedure.

3. Introducethe name and signature (FPAR) of exported and imported
procedures by making aremote procedure definition. This could be
donein the system diagram, in ablock diagram or inside a package.
This declaration determines the visibility of the remote procedure
by placing it in a certain scope.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 23

Chapter 1 Object Oriented Design Using SDL

System AccessControlOOA

InteactionPage(4)

REMOTE PROCEDURE

RegisterCard;
; FPAR
IN/OUT CodeArray,
IN/OUT
........ o Py ReadCodeResultType
_— =] IN Charstring;
] | e REMOTE PROCEDURE
S ReadCode;
e
[orsia]
S——
[ge] | | (L IMPORTED
S & PROCEDURE
PN e ReadCode;
; FPAR
[gaﬂiﬂﬂ |-| Voot aecoddanca] IN/OUT

e

CodeData

IN/OUT

®

Figure 14: Declaration of a remote procedure

24 Telelogic Tau 4.5 SDL Suite Methodology Guidelines

July 2003

Object Oriented Design of the Access Control System

July 2003

Value Returning Procedures in SDL

Any procedure can be called as a vaue returning procedure provided
the last parameter is of IN/OUT type. The recommended way isto de-
clareit asvauereturning if it isintended to be used as such. A call to a
value returning procedure can be used directly in an expression, e.g. in
an assignment (see Figure 15).

EXPORTED Procedure RegisterCard 1(1)

: IN CardData Charstring;
1
1

s
| INJOUT ReadCodeResult ReadCodeResultType, i
i
1
i
1

ReadCodeResult:=
Call
ReadCode(CodeDgta)

eadCodeResu
TimedOut SuccessFul

StopValidateFlag:= RegisterCardAnd_
true CodeFlag:=true

Figure 15: Use of value returning procedures

In version 2 we have declared the procedure ReadCode as a value re-
turning procedure, and it will return a ReadCodeResultType value. We
want to return this result from the procedure RegisterCard also, so we
saveitin avariable. (See Figure 15.)

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 25

Chapter 1 Object Oriented Design Using SDL

26

Global Procedures in SDL

A procedure can al so be defined globally in SDL. The conceptual model
isthat alocal copy of the procedure is created in each process where it
iscalled.

A Global Procedure for Sending a Signal

It is mostly the process Controller that displays messages. But the pro-
cedure RegisterCard (in process RegisteredCard) and the process Door
also send messages.

The process Controller acts as an intermediate conveyer of the signal
Display to the process Display in version 1. It istempting to declare a
global procedure that can send any message on the signal Display, and
to call this procedure from process Display, process Door and the pro-
cedure RegisterCard. Unfortunately, this will not work. The reason is
the above mentioned model with the creation of an implicit loca model
of the procedure. Calling the procedure from, for example, the process
Door will in fact result in sending the signal from the calling process.
Besides obscuring the signal sending, nothing will begained by this; the
signal must still be declared on the outgoing channel, etc. An alternative
is of course to declare the procedure as an EXPORTED procedure and
call it as a Remote procedure, but the remote procedure concept should
be used with moderation and definitely not in this case, with the sole
purpose of hiding signal sending.

When to Use the Different Kinds of Procedures

Local Procedures

» Tokeepthetransitions short in order to highlight the signal interac-
tions.

* Todescribeloca routines.

Remote and Value Returning Procedures
» Tomakealocd routine globally accessible.

» Usevaluereturning procedures to simplify expressions.

» Useremote procedure calls instead of signals to access and manip-
ulate data.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

Global Procedures
e An aternative to macros.

« Anadternative to aremote procedure if there is no natural “owner”
of the procedure.

Specialization: Adding/Redefining Properties

One of the major benefits of using an object oriented language is the
possibility to, in avery simple and intuitive way, create new objects by
adding new properties to existing objects, or to redefine properties of
existing objects. Thisiswhat iscommonly referred to as specialization.

In SDL, specialization of types can be accomplished in two ways:

» A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process typel, add new
processes to a block type, etc.

* A subtype may redefine virtual typesand virtual transitions defined
in the supertype. One may, for example, redefine the contents of a
transition in a process type, redefine the contents/structure of a
block type, etc.

Behavior (i.e. transitions) can be added to a process type using the add-
ing mechanism. For example, the processtype TimeDisplay (Figure 16)
is a subtype of Display with the addition of a new transition. The key-

word INHERITS definesthe new type Display Time as asubtype of Dis-
play, stating that all definitionsinside the process type Display isinher-
ited by DisplayTime.

The gates A and B are dashed in order to indicate that they refer to the
gate definitionsin the process type Display, with the addition of the sig-
nal DisplayTime.

1. SDL differsfrom most other object oriented languagesin the sense that SDL of -
fers possibilities to specialize behavior specifications. In most other languages
thisis accomplished by redefining virtual methods in subclasses; in SDL thisis
easily accomplished by adding new transitions to a process type.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 27

Chapter 1 Object Oriented Design Using SDL

28

[DisplayTime]

Cmmmmmm

[DisplayTime]

Process Type DisplayTime 1(1)

DCL
CurrentTime Time;|

(CurrentTime)
via B

Figure 16: The process type TimeDisplay

In some casesit may be necessary not only to add properties, but also to
redefine properties of a supertype. In Figure 16, the process type Door
has to be redefined in order to send the signals OpenDoor and Close-

Door respectively to the new process DoorOpener. Therefore, the cor-
responding transitions of Door have to be defined asvirtual transitions,

as depicted i

nFigure17.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

July 2003

Object Oriented Design of the Access Control System

Process Type Door 1(2)

DCL ‘
MyNo Integet
Idle WaitClose
A
virtual virtual
_ OpenDoor CloseDoor
[OpenDoor,

CloseDoor,
DoorNo |

Open(MyNo) Close(MyNo)

Open,
Close WaitClose Idle

Figure 17: The process type Door with virtual transitions

Then, in the definition of the new block type SpecialDoor, the corre-
sponding transitions of the process type Door are redefined as shownin
Figure 18.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 29

Chapter 1 Object Oriented Design Using SDL

Redefined Process Type Door 1(1)

1
| S Idle WaitClose
redefined redefined
OpenDoor CloseDoor

Open(MyNo) Close(MyNo)
c OpenDoor CloseDoor
< to DoorOpen to DoorOpen:
OpenDoor,
CloseDoor

WaitClose Idle

Figure 18: The redefined process type Door

In addition to virtual transitions, it is also possible to specify start
transitions, saves, continuous signals, spontaneous transitions, priority
inputs, remote procedure inputs and remote procedure saves as virtual.
All of the above concepts have in common that they define how atran-
sition should beinitiated or if it should beinitiated (Save). Furthermore,
avirtual save can be redefined into an input transition or vice versa.

30 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

Example: Adding a Clock to the Access Control System

The Access Control system described in the previous sections can be
extended to contain a clock which holds the current time. Thetimeis
displayed on the display in the format “HH:MM”, and the time can be
set from the panel by first entering a“#” followed by thetimein thefor-
mat “HHMM".

After an analysis of the problem, e.g. using OOA asdescribed earlier, it
is decided that the clock functionality is easiest realized by adding a
clock to the local panel. Each minute the clock sendsthe current timeto
the controller, which displays the time on the display. Furthermore, the
controller is extended to cope with the setting of the time from the key
pad.

Inorder to apply the SDL concepts of specialization to thisproblem, the
original access control specification has to be slightly modified. Since
an access control system containing a clock can be regarded as a spe-
cialization of the original access control specification, it must be possi-
bleto inherit the properties of the original access control system when
defining the new system. Therefore, it is necessary that the original Ac-
cess Control system is defined as a system type (named

BaseA ccessControl), as depicted in Figure 19.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 31

Chapter 1 Object Oriented Design Using SDL

32

System Type BaseAccessControl 4(4)
TN
1 A
i i
Virtual Doors RegisteredCarg
LocalPanel
Dr(NOOFDOORS)]
LpDr | Doors DrEnv
A B Open,
[OpenDoor] Close
DoorNo
LpEnvin D

A Doorld,
KeyStroke, Lp: B Display
Card LocalPanel

C

Ok,NOK,

Register, |

Registered, prc

IpEnvOut NotRegistered A
K Rc:
[Display] RegisteredCard

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Figure 19: The system type BaseAccessControl

Since the specialization of BaseAccessControl requires changes to the
block type LocalPanel, it is defined as virtual. For the same reason, the
process types used in the block type LocalPanel (i.e. CardReader,

Display, KeyPad and Controller) are all defined as virtual. Finally, for
reasons of clarity, the definitions of processtypesthat previously where

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

made on the system level are now made in the block types where they
are used.

Now, a definition of the access control system containing a clock
(named TimeA ccessControl) can be based on the system type
BaseA ccessControl, as depicted in Figure 20.

System Type TimeAccessControl 1(1)

N

Signal] Redefined
DisplayTime(Charstring); LocalPanel

LpEnvOut2

TDispIayTimeJ

Figure 20: The system type TimeAccessControl

The system type TimeAccessControl inherits BaseA ccessControl with
the addition of anew signal DisplayTime, which is sent from the block
Lp (of type LocalPanel) to the environment. Furthermore, the block
type LocalPanel is redefined in TimeAccessControl; as depicted in

Figure 21.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 33

Chapter 1 Object Oriented Design Using SDL

34

REDEFINED Block Type LocalPanel 1(1)
T____----T\\
1 AN
H 1
1 1
SIGNAL) Redefined Redefined
SetTime(Charstring); Controller Display
ClClock 1 F |
: o
I:DisplayTime] H E H
;
CIDI2
SetTi
[. |me:| DisplayTime]
STTTTTTE T N
S
Clock(1,1) ' DI '
1 1
i B ;
DIEnv2
DisplayTime]
1
c E [DisplayTime]
1
N

Figure 21: The redefined block type Local Panel

LocalPanel is redefined to contain a process Clock which sends the sig-
nal DisplayTime to Cl (of type Controller) and receives the signal
SetTime from Cl. Furthermore, Cl is extended to send the signal
DisplayTimeto DI (of type Display), whichin turn sendsit on to the en-
vironment via gate C.

Theredefinition of Display isstraightforward. Asdepictedin Figure 22,
anew transition for the signal DisplayTime is added.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

REDEFINED Process Type Display
1(1)

[DisplayTime] pmmmmmmmmes

DCL _
CurrTime Charstring;

[DisplayTime]

PA—
B

CurrTime:=
CurTime//" "/IMe$sage

(CurrTime)
via B

Figure 22: The redefined process type Display

The redefinition of Controller (Figure 23 on page 36) involvestwo is-
sues: the addition of functionality to treat the signal DisplayTime, and
the addition of functionality to read a new time from the KeyPad and
correspondingly set the clock.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 35

Chapter 1 Object Oriented Design Using SDL

36

DCl
Displa: CurrTime, NewTime Charstring,
|:Timpe q ReadTimeResult ReadCodeResulf{Type;

D

[oerrnd

E
YRR
Displa: i ime
[Tim% q (CurrTime)
via E

@

REDEFINED Process Type Controller

FlashMm

(‘'Timeout));

1(1)

ReadTime

ReadTime
(NewTime

eadTimeRe|

ult)

TimedOut RéadTime, SuccessFul
Resul

SetTime
(NewTime)

Figure 23: The redefined process type Controller

To copewiththesignal DisplayTime, atransitionisadded to every state
that, upon receipt of DisplayTime, sendsit onto the process DI (viagate
E). Furthermore, atransition for the signal ReadCode is also added to
state Idlein order to realize the setting of the clock. If the key pressed
onthe key pad is“#" then the new timeisread (in the procedure
ReadTime). If the new time was read successfully, then the signal

SetTimeis sent to the process Clock.

Finally, the process Clock is defined as depicted in Figure 24.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

July 2003

Object Oriented Design of the Access Control System

Process Clock 2(2)
T i : :
| Ly
1 I
1 I
CurrentTime
=0
SHT(NOW-+Interyal,T)
T SetTime / __ jReset current
(TimeStrin {time
CurrentTime = CurrentTime =
CurrentTime StringToTimg
Interval (TimeString)
X X (TimeToString
DisplayTime (CurrentTime))
f " (TimeToString
‘ DisplayTime (CurrentTime))
SHT(NOW-+Interyal,T)
[

Figure 24: The process Clock

The variable CurrentTime of type Time, holds the current time in min-
utes. Every minute (duration 60), atimer expireswhich causes the vari-
able CurrentTime to be incremented by 1, and the signal DisplayTime
to be sent to process Cl. Receipt of the signal SetTime causes the vari-
able CurrentTimeto be updated with the new value. Since the time out-
side process Clock (i.e. the parameter of the signals DisplayTime and
SetTime) is represented as a charstring, thereis aneed for functions
converting Time to Charstring and vice versa. These functions can be
defined in the following way:

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 37

Chapter 1 Object Oriented Design Using SDL

NEWTYPE TimeOperators
LITERALS Dummy;
OPERATORS
TimeToString : Time -> Charstring;
/* Converts time to Charstring. The result
is on the form 'HH:MM’ */
/*#OP (B) */

StringToTime : Charstring -> Time;
/* Converts Charstring to Time. Assumes that
the Charstring is on the form ’'HHMM’. */
/*#OP (B) */
/*#ADT (B)
#BODY

SDL_Charstring # (TimeToString) (T)
SDL_Time T;

SDL_Charstring result:=NULL;
int Hours, Minutes;
char tmpl[4], tmp2I[4];

Hours = (T.s/60/60)%24;
Minutes = (T.s/60)%60;
tmpl[0]='V"';
tmp2 [0]='V"';
sprintf (& (tmpl[1]),”%21d”,Hours) ;
sprintf (& (tmp2[1]), “%21d”,Minutes);
xAss_SDL_Charstring(&result, tmpl, XASS) ;
xAss_SDL_Charstring (&result,xConcat_SDL_Charstring(r
esult,xMkString SDL_ Charstring(‘:’)));
xAss_SDL_Charstring (&result,xConcat_SDL_Charstring(r
esult, tmp2)) ;
result [0]="V"';
if (Hours<10)
result[1]="0";
if (Minutes<10)
result[4]="0";
return result;

}

SDL_Time # (StringToTime) (C)

SDL_Charstring C;

{
SDL_Time T;
SDL_Charstring tmpstr;
tmpstr=xSubString SDL Charstring(C,1,2);
T.s = atoi(++tmpstr)*60*60;
tmpstr=xSubString SDL Charstring(C, 3,2);
T.s = T.s + atoi (++tmpstr) *60;
return T;

}

*/

ENDNEWTYPE;

38 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Object Oriented Design of the Access Control System

July 2003

Packages

The concept of packages enables a mechanism to handle a collection of
different types. The different type definitionsthat are possible to define
in a package are:

» Diagram types (system type, block type, process type, service type
and procedure)

» Abstract data types and synonyms
» Signalsand signa lists

The definitionsin apackage are included into the system (or into anoth-
er package) by a USE clause.

The SDL Analyzer supports semantic analysis for packages. This
meansthat large systems can be divided into several packagesto enable
amore easy handling of large projects.

An important thing to remember is that it must be possible to analyze a
type whereit isdefined. Thismeansthat if aprocesstypeisplacedina
package, the data types and signals that the process type uses must al so
be visible in the package. In Figure 25, the use of packages are exem-
plified.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 39

Chapter 1 Object Oriented Design Using SDL

)

Package SystemTypes 2(2)

LocalPanel Doors RegisteredCard

SIGNAL SYNTYPE Codelndex=Integer
KeyStroke(Character), gl\?D’\‘SSY";\fT’\j{LSE_liKEYMAX
Card(Charstnn%), g
ng:::\éO(lnteger ! SYNTYPE ValidChar=Character
(o] en[)’oor CONSTANTS '0'9''#
CloseDoor, ENDSYNTYPE;

Open(lnteéer),

USE SystemTypes;

System AccessControl 1(1)
i & Dr(NOOFDOORS): | DrEnv
1 ' LpDr Doors B
OpenDoor | A Open,
DoorNo Close
LpEnvin
p! A D
Doorld,
KeyStroke| Lp: B Display|
Card LocalPanel
C
Ok,NOK,
IpEnvOut Register,
Reqistered,
NotRegistere: Iprc A
[Displa)Zl Rc:
ValidateCard, RegisteredCard
ValidateCode,
StopValidate
RegisterCardAndCodi

Figure 25: The use of packages in the Access Control system

40 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

	1 Object Oriented Design Using SDL
	Requirements on the Access Control System
	Description of the System to be Built
	Textual Requirements
	Basic Requirements
	Additional Requirements

	Use Cases
	Object Model

	System Analysis of the Access Control System
	Analysis Object Model: Basic Version
	The Analysis Use Case Model
	Analysis Object Model: Enhanced Version

	Object Oriented Design of the Access Control System
	System Design
	Object Design
	Version 1: Block Types and Process Types
	Block Types and Process Types

	Version 2: Procedures, Specialization and Packages
	The Use of Procedures in Version 1
	Remote Procedures and Value Returning Procedures
	Global Procedures in SDL
	When to Use the Different Kinds of Procedures

	Specialization: Adding/Redefining Properties
	Example: Adding a Clock to the Access Control System

	Packages

