
July 2003 Telelogic Tau 4.5

Chapter
1 Object Oriented Design

Using SDL
This methodology chapter will take you into the world of object ori-
ented SDL, as introduced in the 1992 version of the language. It will
follow one case (a simple Access Control system) from the specifica-
tion to the final SDL design. A simple OO analysis (according to the
SOMT method) is performed, followed by an object oriented design
using SDL.

The object oriented SDL concepts are introduced step by step by
developing different versions of the Access Control system. The
first version will make use of the OO concepts block types and pro-
cess types only. The final version will use more advanced OO con-
cepts, such as inheritance (specialization), virtual types and type li-
braries (package diagrams).

Note that this chapter does not deal with all parts of the SOMT
method described in the SOMT Methodology Guidelines starting in
chapter 69 in the User’s Manual; it mainly focuses on the usage of
object oriented SDL in the design activities of SOMT.
 SDL Suite Methodology Guidelines mg-s0 1

Chapter 1 Object Oriented Design Using SDL
Requirements on the Access Control
System

This section should only be viewed as a background for the design of
the system and not as a description of a complete requirements analysis
phase.

Description of the System to be Built
This application is chosen because it is a good example of an embedded
system, with features that make it very suitable to be specified using
SDL and the object oriented extensions (introduced in the 1992 version
of the language).

The Access Control system is a system to control the access to a build-
ing. To enter the building, a user must have a registered card and a per-
sonal code (four digits). The device used for entering the card and per-
sonal code consists of a card reader, a keypad and a display.

The main characteristics of the system are:

• Moderate real-time demands

• Mostly signal oriented

• Simple data representation

• Simple interface to the environment (hardware)

• A non-distributed system

• Adding new features to the system can be achieved in an easy way
by adding new program logic, while the interface to the environ-
ment remains the same

• The system can be simulated in the host environment by using a
graphical user interface (see Figure 1).
2 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Requirements on the Access Control System
Textual Requirements
This description serves as an initial set of requirements. These require-
ments are normally collected and refined to a standardized form to make
the requirements analysis easier to deal with and each requirement eas-
ier to refer to. Only the initial set of requirements will be shown for this
simple example.

We will also focus only on the functional requirements and leave out the
non-functional requirements (like performance, reliability, availability,
etc.).

Basic Requirements

The hardware devices consists of the following components:

• An 8751 microcontroller

• 64 kilobytes of program memory (RAM or ROM)

Figure 1: Graphical interface to the Access Control system

On UNIX:

In Windows:
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 3

Chapter 1 Object Oriented Design Using SDL
• 64 kilobytes of data memory (RAM)

• A card reader for credit cards
The card reader reads track 2. Data is stored as 40 five-bit words ac-
cording to the most common standard.

• A keypad
The keys are organized according to normal telephone standard.
Valid keys are the digits 0-9. In the basic version, the function keys
“*” and “#” are not recognized.

• A display unit
The display unit can display 2 lines each consisting of 16 characters.

• 4 LEDs
Four light emitting diodes will indicate the status of the controlled
doors. Off = closed, on = open.

The system should be able to fulfill the following tasks for a user:

• Reading the code on the back of a standard credit card.

• Reading a personal code, consisting of 4 digits, typed from the key-
pad.

• Validate that the card and the personal code are registered.

• If the system is configured to control more than one door, give the
user the possibility to choose which door to open after the card and
code have been validated.

The system should be able to fulfill the following tasks for a system ad-
ministrator/supervisor:

• Registration of a user card and a personal code. Only one code is al-
lowed for each user card.

• Registration of the supervisor card at system startup time. Only one
supervisor card is allowed for each system.

General requirements:

• The system must be designed in such a way that it is easy, at system
generation time, to configure the system to handle from one to four
doors.
4 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Requirements on the Access Control System
Additional Requirements

The system should be able to fulfill the following tasks for a user:

• Displaying time.

• Displaying which category (see below) of card is valid in the current
situation.

The system should be able to fulfill the following tasks for a system ad-
ministrator/supervisor:

• Stopping the opening of one door (only the supervisor can open the
door after this).

• Stopping the opening of all doors (only the supervisor can open a
door after this).

• Removing the blocking of one or all the doors.

• Allowing free access through one or several doors.

• Specifying different categories of cards permitting different access
possibilities during a 24-hour period

• Displaying the time.

• Setting of the current time.

• Blocking a user card.

• Remove the blocking of a user card.

Use Cases
The most interesting functional requirements are described by a number
of use cases. These use cases describe the interaction between the sys-
tem and its environment and formalizes (to some extent) the functional
requirements.

The outside entities that communicate with the system are usually
called the actors of the use cases. Actors are often

• human users
• other systems
• hardware
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 5

Chapter 1 Object Oriented Design Using SDL
There are two different actors of the Access Control system that are rel-
evant (the hardware is not taken into account in this simple example):
user and supervisor.

• The user functions are the services available for all users, such as
reading the card code, reading the four digit personal code, etc.

• The supervisor functions are only available for suitable privileged
personnel (e.g. a supervisor) and perform services such as registra-
tion of a new card and code.

The use cases could be described either textually or by MSCs or by a
combination of the two notations. An example of a use case with the
user actor is the Open Door use case (described by the MSC OpenDoor
in Figure 2). The use case ends with the fulfillment of the goal of the
use case: the opening of the door.

Figure 2: Requirements use case OpenDoor

MSC OpenDoor

Actor

User

System

AccessControl

Display

’Insert card’

Card

Display

’Input code’

KeyStroke

’1’

KeyStroke

’2’

KeyStroke

’3’

KeyStroke

’4’

Open

1

6 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Requirements on the Access Control System
Use cases that describe requirements usually show only the interaction
between the actors and the system. When the use cases are refined in lat-
er activities, they can also express the inner behavior of the system.

Object Model
The requirements object model is a simple object model that relates the
known domain entities of an access control system and its environment.
The environment of the system could be anything that is related to the
system as long as it is relevant for understanding the problem, typically
the actors of the use cases that describe the wanted behavior of the sys-
tem. The objective of the model is to give a simple picture of the prob-
lem without going into details.

When elaborating the requirements object model into an analysis object
model, concern about the system properties rather than the real world
properties will affect the model. In the requirements activity, it is not
known what a certain class will result in or if it should be modeled at all.
When analyzing the requirements and the system to be built, classes can
be mapped to software entities, hardware entities or not mapped at all.

Figure 3: Requirements object model

CardReader

LocalPanel

Display KeyPad

CentralControl

Door

Entrance

CardCode

Employee

SuperVisor User

Office

DataBase

HasHasHasHasHasHasHasHasHasHasHasHasHas

HasHasHasHasHasHasHasHasHasHasHasHasHas

Works inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks in

Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with

Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 7

Chapter 1 Object Oriented Design Using SDL
System Analysis of the Access Control
System

The system analysis is based on the results after analyzing the require-
ments and the problem domain on a high level. The models in the sys-
tem analysis focuses more on the internal structure of the system to be
built, without taking design decisions (or at least as few as possible).

Analysis Object Model: Basic Version
The inheritance concept is not used in the basic version because the in-
formation that needs to be modeled has a very simple structure. What
can be seen in Figure 4 is the aggregation and the association relations
between the classes and the attributes and operations for the individual
classes.

Compared to the requirements object model, the following changes
have been made:

• The actors are removed from the object model to simplify the read-
ing.

• Classes have been structured in a way that makes the mapping to an
SDL design easier. Especially the aggregation hierarchy is designed
with this in mind; the structure will basically be kept when making
an SDL design.

• Classes from the requirements object model that are redundant
(only introduced to increase the understanding of the problem) are
removed.

• A difference between active and passive objects has been taken into
account. The active objects have behavior while the passive objects
only have data structure and data manipulation. The classes in the
aggregation hierarchy are all active, while the classes in the infor-
mation structure are passive.

• Attributes and operations have been added to the classes.

• The analysis object model is structured into three parts, each part
showing a different view of the relationship between the classes:
containment, communication and information.
8 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 System Analysis of the Access Control System
Figure 4: The analysis object model of the Access Control system (basic version)

CardReader

Card

LocalPanel

Display

Display

KeyPad

KeyStroke

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

Door

DoorTimeout
Status
MyNo

OpenDoor
CloseDoor

AccessControl

Controller

KeyTimeout
DisplayTimeout

ReadCard
ReadCode

Controller

ReadCard
ReadCode

Door

OpenDoor
CloseDoor

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

CardType

CardData
Code

*

Aggregation hierarchy

Information structure

Communication structure

CardList:CardDBType

1..*

1..*
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 9

Chapter 1 Object Oriented Design Using SDL
The Analysis Use Case Model
The following MSC describes the use case for opening a door and is a
part of the complete analysis use case model. The level of granularity
can either be very detailed (each involved leaf object is represented by
an MSC instance) or general (each subsystem of the aggregation hierar-
chy is described by an instance). This choice between readability and
expressiveness is dependent of the application area and design customs.
In this case, the subsystem representation was chosen (see Figure 2).

Figure 5: Analysis use case OpenDoor

MSC OpenDoor

Actor

User Lp:LocalPanel Rc:RegisteredCard Dr:Door

Display

’Insert card’

Card

’User card 1’

ValidateCard

’User card 1’

OK

Display

’Input code’

KeyStroke

’1’

KeyStroke

’2’

KeyStroke

’3’

KeyStroke

’4’

VaidateCode

(.’1’,’2’,’3’,’4’.)

OK

OpenDoor

Open

1

10 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 System Analysis of the Access Control System
Note that the MSC instances are, in fact, instances, i.e. they represent
objects. To indicate this, the naming of the instances include both an ob-
ject name and the correspondent class name.

It should also be noticed that all MSC messages do not map strictly to
class operations. In some cases, the operation is synchronous, that is de-
mands a return message. This return message is also described in the
MSC use case in Figure 2 (e.g. the operation ValidateCard is described
by the messages ValidateCard and OK).

Analysis Object Model: Enhanced Version
The following example is how an analysis of the additional requirement
of time handling can be performed. The addition of a clock function will
mainly add a new operation to the class Display (display of current
time). A new class Clock must also be introduced. The properties of this
class handle the clock and update the current time. Figure 6 describes
the enhanced analysis object model for the Access Control system.

When adding behavior, the other models must of course also be extend-
ed, including the internal textual requirements and the use case models
of the requirements and system analysis.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 11

Chapter 1 Object Oriented Design Using SDL
Figure 6: The analysis object model of the Access Control system
(extended version with time handling)

CardReader

Card

LocalPanel

DisplayWithTime

DisplayTime

KeyPad

KeyStroke

RegisteredCard

CardList:CardDBType

VaidateCard
VaidateCode
RegisterCardAndCode

Door

DoorTimeout
Status
MyNo

OpenDoor
CloseDoor

AccessControl

Controller

KeyTimeout
DisplayTimeout

ReadCard
ReadCode

Display

Display

Clock

CurrentTime
TimeResolution

SetTime

*

Aggregation hierarchy

Information structure

Communication structure

Controller

ReadCard
ReadCode

Door

OpenDoor
CloseDoor

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

Clock

SetTime

CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

CardType

CardData
Code

*

12 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Object Oriented Design of the Access
Control System

System Design
The system design activity aims at producing a design architecture and
to refine the use cases into use cases that could give a better help during
the detailed design. Another purpose for refining the use cases is to
make them suitable for verifying the design by means of the SDL Vali-
dator functionality Verify MSC.

Since the goal of this methodology handbook is to describe the object
oriented features of SDL during the design, the description of a com-
plete system design has been left out.

Object Design
We will now introduce the new SDL concepts step by step.

• In the first version of the Access Control system we will only use
the new type concept for blocks and processes.

• In Version 2 we will make use of the new procedure concepts, such
as remote procedures, value returning procedures and global proce-
dures. We will also introduce the package concept, the specializa-
tion concept and the virtual concept.

Version 1: Block Types and Process Types
According to the analysis object model, the top class of the aggregation
hierarchy has been mapped to an SDL system. The leaf nodes of the ag-
gregation hierarchy have been mapped to processes and the classes be-
tween the top and the leave nodes have been SDL blocks. Note that even
if there are no classes between the top class and a leave class in an ag-
gregation chain, an SDL process still has to be contained in an SDL
block.

Six processes (CardReader, Controller, Display, Door, KeyPad and
RegisteredCard) have been identified from the analysis object model
and three blocks (LocalPanel, Doors and RegisteredCard) have been
created in order to preserve the structure described by the aggregation
hierarchy of the analysis object model (see Figure 7).
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 13

Chapter 1 Object Oriented Design Using SDL
Block Types and Process Types

A type definition can be placed anywhere in a system. For this example,
the choice was to place them on the system level so that they will have
maximum visibility. Normally, they would have been placed in separate
packages to support parallel editing and analysis of the separate sub-
systems (block types).

To place a type at a high level (in a system or package) means that they
can be instantiated anywhere where they are visible, and also be used
for specialization anywhere in the system.

Figure 7: System diagram AccessControlOOA

System AccessControlOOA InteractionPage(4)

CardReader Display Door

Registered_
Card

KeyPad Controller

LocalPanel Doors RegisteredCard

Dr(NOOFDOORS):
Doors

Lp:
LocalPanel

Rc:
RegisteredCard

A B

DrEnv

Open,
Close

LpDr

OpenDoor,
DoorNo

DoorId,
Display

DLpEnvIn

KeyStroke,
Card

A

B
lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

C

LpEnvOut

Display

A

14 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Block Type LocalPanel

Even if the types are placed on the same level, the structure is kept by
instantiating the types according to the analysis object model. This
means that the instantiation of the process types CardReader, Display,
KeyPad and Controller is made inside the block type LocalPanel (see
Figure 8).

Figure 8: The block type LocalPanel

Block Type LocalPanel 1(1)

Cl:
Controller

Cr:
CardReader

Dl:
Display

Kp:
KeyPad

B
ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode

Ok,NOk,
Register,
Registered,
Not_
Registered

ClRc

Ok,NOk,
Register,
Registered,
Not_
Registered

BD

Open_
Door,
DoorNo

DoorId,
Display

 ClDr

DoorId,
Display

D
C

A E

ClDl

Display

CrCl

ReadCard

B A

KpCl

ReadCode

A

A B

DlEnv

Display

B

EnvCr

Card

A
A

Card,
Key_
Stroke

C Display

EnvKp

KeyStroke

A

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode

Open_
Door,
DoorNo
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 15

Chapter 1 Object Oriented Design Using SDL
Block Type RegisteredCard

The block type RegisteredCard will only contain an instance of the pro-
cess type RegisteredCard. It is perfectly legal in SDL to use the same
name for a block type and a process type because they are of different
entity classes (see Figure 9).

The Classes CardDBType and CardType

As previously mentioned there are classes that will mainly contain data
and data manipulation operations. The classes CardDBType and Card-
Type are of this type and they are implemented in the design as abstract
data types. The data type CardDbType has a number of operators de-
fined to validate a card and a code, and to register a new card and a new
code. These operators are implemented in-line, as “C” functions (see
Figure 10).

Figure 9: The block type RegisteredCard

Block Type RegisteredCard 1(1)

Rc:
RegisteredCard

A

Ok,NOk,
Register,
Registered,
Not_

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_

ClRc
A

AndCode

Registered

Ok,NOk,
Register,
Registered,
Not_
Registered

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode
16 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
An instance of the type CardDbType is declared in the process type
RegisteredCard. The operations ValidateCard, ValidateCode and
RegisterCardAndCode for the class RegisteredCard are now imple-
mented as operators for the data type CardDbType (see Figure 11).

Figure 10: The data types CardType and CardDbType

 NEWTYPE CardType
 STRUCT
 CardData Charstring;
 Code CodeArray;
 ENDNEWTYPE CardType;
 NEWTYPE CardDbType
 array(Index,CardType)
 ADDING
 LITERALS
 NewDb;
 OPERATORS
 ValidateCard:Charstring,CardDbType->ValCardResType;
 ValidateCode:CardType,CardDbType->ValCodeResType;
 ListFull:CardDbType->Boolean;
 RegisterCardAndCode:CardType,CardDbType->CardDbType;
 /*#ADT(B)
 #BODY
 #ifndef XNOPROTO
 extern #(CardDbType) #(NewDb) (void)
 #else
 extern #(CardDbType) #(NewDb) ()
 #endif
 {
 return(yMake_#(CardDbType)(yMake_#(CardType)(“V\0”,
 yMake_#(CodeArray)(‘0’))));
 }

 */
 ENDNEWTYPE;
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 17

Chapter 1 Object Oriented Design Using SDL
Block Type Doors and Process Type Door

A requirement for the Access Control system is that it should be able to
control up to four doors. In our object oriented SDL design, this can be
accomplished by creating a block set of the block type Doors. The Syn-
onym NOOFDOORS is by default 1 but can be assigned any value be-
tween 1 and 4. Block type Doors consists of an instance of the process
type Door. To follow the OO analysis, the process type Door will con-
trol how long a door should be opened (attribute DoorTimeOut) and
also the opening and closing of a door (operations OpenDoor and
CloseDoor).

Figure 11: Call of operators inside the Process RegisteredCard

Process Type RegisteredCard ValidateCard(3)

DCL
CardData Charstring,
CodeData CodeArray,
CardList CardDbType:=NewDb,
TmpCard CardType,
ValCardResult ValCardResType,
ValCodeResult ValCodeResType;

idle

ValidateCard(CardData)

ValCardResult:=ValidateCard(CardData,CardList)

ValCardResult

Ok NOk

CardOk CardNOk
18 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Version 2: Procedures, Specialization and
Packages
A general rule when designing an SDL process is to keep the transitions
as short as possible. Using procedures is often the solution.

The Use of Procedures in Version 1

In the first version procedures are frequently used and we shall now take
a look at two of them, namely RegisterCard and ReadCode. Both are de-
clared and called by the Controller process.

Procedure RegisterCard

This procedure is called when a new card should be registered (user
cards or the supervisor’s credit card). The function of this procedure is
as follows:

• First it calls the procedure ReadCode to read the four user digits in
the user’s code.

• In the case of a successful return from the ReadCode
(ReadCodeResult=Successful), send a request for the registration of
a new card (signal RegisterCardAndCode) to the process
RegisteredCard.

• Wait for the result of the Registration (return signals Registered or
NotRegistered) and return (see Figure 12).
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 19

Chapter 1 Object Oriented Design Using SDL
Procedure ReadCode

This is a procedure to read four digits from the keypad. The digits read
will be stored in an array named CodeData. If four digits are successful-
ly received, the ReadCodeResult is assigned “Successful”, and a return
to the calling process or procedure will take place.

Figure 12: Procedure RegisterCard

;FPAR
 IN/OUT CodeData CodeArray,
 IN/OUT ReadCodeResult ReadCodeResultType,
 CardData Charstring;

Procedure RegisterCard 1(1)

ReadCode

ReadCodeResult)

ReadCodeResult

RegisterCard

CodeData)

WaitRegistered

NotRegistered

Display(
’Not Registered’)

Registered

Display(
’Registered’)

StopValidate

FlashMessage

SuccessFul
TimedOut

AndCode(CardData,

(’Timeout’)

VIA E VIA E

(CodeData,
20 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
This procedure is called both by the procedure RegisterCard and by the
process Controller in the sequence of validating card and code (see
Figure 13).

Figure 13: Procedure ReadCode

;FPAR
IN/OUT CodeData CodeArray,
IN/OUT ReadCodeResult ReadCodeResultType;

Procedure ReadCode 1(1)

DCL
KeyIndex

set(now+

KeyTimer)

WaitKeyPressed

KeyTimer

KeyIndex:=1

ReadCode_

ReadCode(Key)

CodeData(KeyIndex):=

KeyIndex:=KeyIndex+1

KeyIndex>

Reset

KeyIndex:=1,
ReadCode
SuccessFul

set(now+

KeyTimer)

-

true

false

Integer:=1;

KEYTIMEOUT, (KeyTimer)

Result:=

Key,

KEYTIMEOUT,

Result:=
TimedOut KEYMAX
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 21

Chapter 1 Object Oriented Design Using SDL
Remote Procedures and Value Returning Procedures

The idea in version 2 is to move the procedure RegisterCard from the
process Controller to the process RegisterCard. There are two reasons
for doing this:

1. This is the most natural place for it, because this procedure is called
whenever a card is to be registered.

2. No signals have to be exchanged between process Controller and
process RegisterCard to announce when to start and stop the regis-
tration procedure.

The procedure ReadCode must also be moved, because there will be a
deadlock situation when the RegisterCard procedure calls the
ReadCode procedure.

The ReadCode procedure can be placed in the KeyPad process and
FlashMessage (another procedure also called by the RegisterCard) can
be placed in the Display process.

Remote Procedures in SDL

Normally a procedure can only be called from the declaring process (or
procedure) but by declaring it as EXPORTED it can be called from any
process or procedure in the system. The remote procedure concept is
modeled with an exchange of signals.

The Save Concept

The service process (the process with the EXPORTED procedure) can
only handle a remote procedure call when it is in a state. If it is essential
that a process is not interrupted with a remote procedure call in certain
states, it is possible to use the SAVE symbol to save the call and handle
it in a later state. This will mean that you cannot be sure that a remote
procedure call will be handled directly. The model for the calling pro-
cess is also that a new implicit state is introduced for each remote pro-

Note:

When a process calls a remote procedure, it enters a new implicit
state where it will wait for an (implicit) return signal indicating that
the procedure call has been executed. Any new signals, including
calls to remote procedures, will be saved. This can easily lead to
deadlock situations!
22 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
cedure call. The process will remain in this state until the remote proce-
dure call is handled and executed.

How to Declare an Exported Procedure

1. Declare it as EXPORTED in the procedure heading.

2. Make an import procedure specification in each process/procedure
that wants to call the remote procedure.

3. Introduce the name and signature (FPAR) of exported and imported
procedures by making a remote procedure definition. This could be
done in the system diagram, in a block diagram or inside a package.
This declaration determines the visibility of the remote procedure
by placing it in a certain scope.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 23

Chapter 1 Object Oriented Design Using SDL
Figure 14: Declaration of a remote procedure

System AccessControlOOA InteractionPage(4)

Lp:
LocalPanel

Dr(NOOFDOORS):
Doors

Rc:
RegisteredCard

Doors

Controller

RegisteredCardLocalPanel

CardReader Display

KeyPad
Registered_
Card DoorLock

Door

LpEnvIn

KeyStroke,
Card

A

LpEnvOut

Display

C

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D

A
DrEnv

Open,
Close

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

B

A

REMOTE PROCEDURE
RegisterCard;
;FPAR
IN/OUT CodeArray,
IN/OUT
ReadCodeResultType
,
IN Charstring;
REMOTE PROCEDURE
ReadCode;

........

.........

Process Type RegisteredCard ValidateCard(3)

DCL
CardData Charstring,
CodeData CodeArray,
CardList CardDbType:=NewDb,
TmpCard CardType,
ValCardResult ValCardResType,
ValCodeResult ValCodeResType,
StopValidateFlag,
RegisterCardAndCodeFlag Boolean;

IMPORTED PROCEDURE FlashMessage;
;FPAR Charstring;
IMPORTED PROCEDURE ReadCode;
;FPAR
IN/OUT CodeArray;
Returns ReadCodeResultType;

RegisterCard

idle

ValidateCard(CardData)

ValCardResult:=ValidateCard(CardData,CardList)

ValCardResult

NOk

Idle

Ok

TmpCard!CardData:=CardData

WaitValCode

A

Ok,NOk,
Register,
Display

ValidateCard,
ValidateCode,
StopValidate

CardNOkCardOk

...
IMPORTED
PROCEDURE
ReadCode;
;FPAR
IN/OUT

Exported Procedure ReadCode 1(1)

;FPAR
IN/OUT CodeData CodeArray;
returns ReadCodeResult ReadCodeResultType;

DCL
KeyIndex Integer:=1;

set(now+KEYTIMEOUT,
KeyTimer)

WaitKeyPressed

KeyTimer

KeyIndex:=1

ReadCodeResult:=TimedOut

ReadCode(Key)

CodeData(KeyIndex):=Key,
KeyIndex:=KeyIndex+1

KeyIndex>KEYMAX

Reset(KeyTimer)

KeyIndex:=1,
ReadCodeResult:=SuccessFul

set(now+KEYTIMEOUT,
KeyTimer)

-

true

false

Exported Procedure ReadCode

;FPAR
 IN/OUT
CodeData
24 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Value Returning Procedures in SDL

Any procedure can be called as a value returning procedure provided
the last parameter is of IN/OUT type. The recommended way is to de-
clare it as value returning if it is intended to be used as such. A call to a
value returning procedure can be used directly in an expression, e.g. in
an assignment (see Figure 15).

In version 2 we have declared the procedure ReadCode as a value re-
turning procedure, and it will return a ReadCodeResultType value. We
want to return this result from the procedure RegisterCard also, so we
save it in a variable. (See Figure 15.)

Figure 15: Use of value returning procedures

;FPAR
 IN/OUT CodeData CodeArray,
 IN/OUT ReadCodeResult ReadCodeResultType,
 IN CardData Charstring;

EXPORTED Procedure RegisterCard 1(1)

ReadCodeResult:=

ReadCodeResult

StopValidateFlag:= RegisterCardAnd_
CodeFlag:=true

TimedOut SuccessFul

Call
 ReadCode(CodeData)

 true
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 25

Chapter 1 Object Oriented Design Using SDL
Global Procedures in SDL

A procedure can also be defined globally in SDL. The conceptual model
is that a local copy of the procedure is created in each process where it
is called.

A Global Procedure for Sending a Signal

It is mostly the process Controller that displays messages. But the pro-
cedure RegisterCard (in process RegisteredCard) and the process Door
also send messages.

The process Controller acts as an intermediate conveyer of the signal
Display to the process Display in version 1. It is tempting to declare a
global procedure that can send any message on the signal Display, and
to call this procedure from process Display, process Door and the pro-
cedure RegisterCard. Unfortunately, this will not work. The reason is
the above mentioned model with the creation of an implicit local model
of the procedure. Calling the procedure from, for example, the process
Door will in fact result in sending the signal from the calling process.
Besides obscuring the signal sending, nothing will be gained by this; the
signal must still be declared on the outgoing channel, etc. An alternative
is of course to declare the procedure as an EXPORTED procedure and
call it as a Remote procedure, but the remote procedure concept should
be used with moderation and definitely not in this case, with the sole
purpose of hiding signal sending.

When to Use the Different Kinds of Procedures

Local Procedures

• To keep the transitions short in order to highlight the signal interac-
tions.

• To describe local routines.

Remote and Value Returning Procedures

• To make a local routine globally accessible.

• Use value returning procedures to simplify expressions.

• Use remote procedure calls instead of signals to access and manip-
ulate data.
26 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Global Procedures

• An alternative to macros.

• An alternative to a remote procedure if there is no natural “owner”
of the procedure.

Specialization: Adding/Redefining Properties
One of the major benefits of using an object oriented language is the
possibility to, in a very simple and intuitive way, create new objects by
adding new properties to existing objects, or to redefine properties of
existing objects. This is what is commonly referred to as specialization.

In SDL, specialization of types can be accomplished in two ways:

• A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process type1, add new
processes to a block type, etc.

• A subtype may redefine virtual types and virtual transitions defined
in the supertype. One may, for example, redefine the contents of a
transition in a process type, redefine the contents/structure of a
block type, etc.

Behavior (i.e. transitions) can be added to a process type using the add-
ing mechanism. For example, the process type TimeDisplay (Figure 16)
is a subtype of Display with the addition of a new transition. The key-
word INHERITS defines the new type DisplayTime as a subtype of Dis-
play, stating that all definitions inside the process type Display is inher-
ited by DisplayTime.

The gates A and B are dashed in order to indicate that they refer to the
gate definitions in the process type Display, with the addition of the sig-
nal DisplayTime.

1. SDL differs from most other object oriented languages in the sense that SDL of-
fers possibilities to specialize behavior specifications. In most other languages
this is accomplished by redefining virtual methods in subclasses; in SDL this is
easily accomplished by adding new transitions to a process type.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 27

Chapter 1 Object Oriented Design Using SDL
In some cases it may be necessary not only to add properties, but also to
redefine properties of a supertype. In Figure 16, the process type Door
has to be redefined in order to send the signals OpenDoor and Close-
Door respectively to the new process DoorOpener. Therefore, the cor-
responding transitions of Door have to be defined as virtual transitions,
as depicted in Figure 17.

Figure 16: The process type TimeDisplay

inherits Display;

Process Type DisplayTime 1(1)

DCL
CurrentTime Time;

-

DisplayTime
(CurrentTime)
via B

DisplayTime
(CurrentTime)

Idle

B

DisplayTime

A

DisplayTime
28 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Then, in the definition of the new block type SpecialDoor, the corre-
sponding transitions of the process type Door are redefined as shown in
Figure 18.

Figure 17: The process type Door with virtual transitions

Process Type Door 1(2)

DCL
MyNo Integer;

Idle

Close(MyNo)

virtual
CloseDoor

WaitClose

Open(MyNo)

virtual
OpenDoor

Idle WaitClose

B

Open,
Close

A

OpenDoor,
CloseDoor,
DoorNo
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 29

Chapter 1 Object Oriented Design Using SDL
In addition to virtual transitions, it is also possible to specify start
transitions, saves, continuous signals, spontaneous transitions, priority
inputs, remote procedure inputs and remote procedure saves as virtual.
All of the above concepts have in common that they define how a tran-
sition should be initiated or if it should be initiated (Save). Furthermore,
a virtual save can be redefined into an input transition or vice versa.

Figure 18: The redefined process type Door

Redefined Process Type Door 1(1)

Idle

CloseDoor
to DoorOpener

Close(MyNo)

redefined
CloseDoor

WaitClose

OpenDoor
to DoorOpener

Open(MyNo)

redefined
OpenDoor

Idle WaitClose

C

OpenDoor,
CloseDoor
30 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Example: Adding a Clock to the Access Control System

The Access Control system described in the previous sections can be
extended to contain a clock which holds the current time. The time is
displayed on the display in the format “HH:MM”, and the time can be
set from the panel by first entering a “#” followed by the time in the for-
mat “HHMM”.

After an analysis of the problem, e.g. using OOA as described earlier, it
is decided that the clock functionality is easiest realized by adding a
clock to the local panel. Each minute the clock sends the current time to
the controller, which displays the time on the display. Furthermore, the
controller is extended to cope with the setting of the time from the key
pad.

In order to apply the SDL concepts of specialization to this problem, the
original access control specification has to be slightly modified. Since
an access control system containing a clock can be regarded as a spe-
cialization of the original access control specification, it must be possi-
ble to inherit the properties of the original access control system when
defining the new system. Therefore, it is necessary that the original Ac-
cess Control system is defined as a system type (named
BaseAccessControl), as depicted in Figure 19.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 31

Chapter 1 Object Oriented Design Using SDL
Since the specialization of BaseAccessControl requires changes to the
block type LocalPanel, it is defined as virtual. For the same reason, the
process types used in the block type LocalPanel (i.e. CardReader,
Display, KeyPad and Controller) are all defined as virtual. Finally, for
reasons of clarity, the definitions of process types that previously where

Figure 19: The system type BaseAccessControl

System Type BaseAccessControl 4(4)

Lp:
LocalPanel

Dr(NOOFDOORS):
Doors

Rc:
RegisteredCard

Virtual
LocalPanel

Doors RegisteredCard

LpEnvIn

KeyStroke,
Card

A

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D

A

DrEnv

Open,
Close

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

B

AlpEnvOut

Display

C

32 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
made on the system level are now made in the block types where they
are used.

Now, a definition of the access control system containing a clock
(named TimeAccessControl) can be based on the system type
BaseAccessControl, as depicted in Figure 20.

The system type TimeAccessControl inherits BaseAccessControl with
the addition of a new signal DisplayTime, which is sent from the block
Lp (of type LocalPanel) to the environment. Furthermore, the block
type LocalPanel is redefined in TimeAccessControl; as depicted in
Figure 21.

Figure 20: The system type TimeAccessControl

inherits BaseAccessControl;

System Type TimeAccessControl 1(1)

Signal
DisplayTime(Charstring);

Redefined
LocalPanel

Lp

LpEnvOut2

DisplayTime

D

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 33

Chapter 1 Object Oriented Design Using SDL
LocalPanel is redefined to contain a process Clock which sends the sig-
nal DisplayTime to Cl (of type Controller) and receives the signal
SetTime from Cl. Furthermore, Cl is extended to send the signal
DisplayTime to Dl (of type Display), which in turn sends it on to the en-
vironment via gate C.

The redefinition of Display is straightforward. As depicted in Figure 22,
a new transition for the signal DisplayTime is added.

Figure 21: The redefined block type LocalPanel

REDEFINED Block Type LocalPanel 1(1)

SIGNAL
 SetTime(Charstring);

Redefined
Controller

Redefined
Display

Cl

DlClock(1,1)

C
DisplayTime

ClDl2

DisplayTime

DlEnv2

DisplayTime

ClClock

DisplayTime

SetTime

F

E

A

B

34 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
The redefinition of Controller (Figure 23 on page 36) involves two is-
sues: the addition of functionality to treat the signal DisplayTime, and
the addition of functionality to read a new time from the KeyPad and
correspondingly set the clock.

Figure 22: The redefined process type Display

REDEFINED Process Type Display
1(1)

DCL
 CurrTime Charstring; Idle

DisplayTime
(CurrTime)

CurrTime:=

DisplayTime
(CurrTime)
via B

-

A

B

DisplayTime

DisplayTime

CurrTime//’ ’//Message
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 35

Chapter 1 Object Oriented Design Using SDL
To cope with the signal DisplayTime, a transition is added to every state
that, upon receipt of DisplayTime, sends it on to the process Dl (via gate
E). Furthermore, a transition for the signal ReadCode is also added to
state Idle in order to realize the setting of the clock. If the key pressed
on the key pad is “#” then the new time is read (in the procedure
ReadTime). If the new time was read successfully, then the signal
SetTime is sent to the process Clock.

Finally, the process Clock is defined as depicted in Figure 24.

Figure 23: The redefined process type Controller

REDEFINED Process Type Controller 1(1)

DCL
 CurrTime, NewTime Charstring,
 ReadTimeResult ReadCodeResultType; ReadTime

*

DisplayTime
(CurrTime)

DisplayTime
(CurrTime)
via E

-

Idle

ReadCode
(Key)

Key =
’#’

Idle
ReadTime
(NewTime,

ReadTimeResult)

ReadTime_
Result

FlashMessage
(’Timeout’)

Idle

SetTime
(NewTime)

Idle

D

SetTime

Display_
Time

E

False True

TimedOut SuccessFul

Display_
Time
36 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
The variable CurrentTime of type Time, holds the current time in min-
utes. Every minute (duration 60), a timer expires which causes the vari-
able CurrentTime to be incremented by 1, and the signal DisplayTime
to be sent to process Cl. Receipt of the signal SetTime causes the vari-
able CurrentTime to be updated with the new value. Since the time out-
side process Clock (i.e. the parameter of the signals DisplayTime and
SetTime) is represented as a charstring, there is a need for functions
converting Time to Charstring and vice versa. These functions can be
defined in the following way:

Figure 24: The process Clock

Process Clock 2(2)

CurrentTime
:= 0

SET(NOW+Interval,T)

Idle

T

CurrentTime :=
CurrentTime +

Interval

DisplayTime
(TimeToString

SET(NOW+Interval,T)

-

SetTime
(TimeString)

Reset current
time

CurrentTime :=
StringToTime
(TimeString)

DisplayTime (TimeToString
(CurrentTime))

(CurrentTime))
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 37

Chapter 1 Object Oriented Design Using SDL
NEWTYPE TimeOperators
 LITERALS Dummy;
 OPERATORS
 TimeToString : Time -> Charstring;
 /* Converts time to Charstring. The result
 is on the form ’HH:MM’ */
 /*#OP (B) */

 StringToTime : Charstring -> Time;
 /* Converts Charstring to Time. Assumes that
 the Charstring is on the form ’HHMM’. */
 /*#OP (B) */
/*#ADT (B)
#BODY

SDL_Charstring #(TimeToString)(T)
SDL_Time T;
{
 SDL_Charstring result:=NULL;
 int Hours, Minutes;
 char tmp1[4], tmp2[4];

 Hours = (T.s/60/60)%24;
 Minutes = (T.s/60)%60;
 tmp1[0]=’V’;
 tmp2[0]=’V’;
 sprintf(&(tmp1[1]),”%2ld”,Hours);
 sprintf(&(tmp2[1]), “%2ld”,Minutes);
 xAss_SDL_Charstring(&result,tmp1,XASS);
xAss_SDL_Charstring(&result,xConcat_SDL_Charstring(r
esult,xMkString_SDL_Charstring(‘:’)));
xAss_SDL_Charstring(&result,xConcat_SDL_Charstring(r
esult,tmp2));
 result[0]=’V’;
 if(Hours<10)
 result[1]=’0’;
 if(Minutes<10)
 result[4]=’0’;
 return result;
}

SDL_Time #(StringToTime)(C)
SDL_Charstring C;
{
 SDL_Time T;
 SDL_Charstring tmpstr;
 tmpstr=xSubString_SDL_Charstring(C,1,2);
 T.s = atoi(++tmpstr)*60*60;
 tmpstr=xSubString_SDL_Charstring(C,3,2);
 T.s = T.s + atoi(++tmpstr)*60;
 return T;
}
*/
ENDNEWTYPE;
38 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Object Oriented Design of the Access Control System
Packages
The concept of packages enables a mechanism to handle a collection of
different types. The different type definitions that are possible to define
in a package are:

• Diagram types (system type, block type, process type, service type
and procedure)

• Abstract data types and synonyms

• Signals and signal lists

The definitions in a package are included into the system (or into anoth-
er package) by a USE clause.

The SDL Analyzer supports semantic analysis for packages. This
means that large systems can be divided into several packages to enable
a more easy handling of large projects.

An important thing to remember is that it must be possible to analyze a
type where it is defined. This means that if a process type is placed in a
package, the data types and signals that the process type uses must also
be visible in the package. In Figure 25, the use of packages are exem-
plified.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 39

Chapter 1 Object Oriented Design Using SDL
Figure 25: The use of packages in the Access Control system

Package SystemTypes 2(2)

LocalPanel Doors RegisteredCard

USE SystemTypes;

System AccessControl 1(1)

Dr(NOOFDOORS):
Doors

Lp:
LocalPanel

Rc:
RegisteredCard

A

B

DrEnv

Open,
Close

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D
LpEnvIn

KeyStroke,
Card

A

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

C

lpEnvOut

Display

A

SYNTYPE CodeIndex=Integer
 CONSTANTS 1:KEYMAX
ENDSYNTYPE;

SYNTYPE ValidChar=Character
 CONSTANTS ’0’:’9’,’#’
ENDSYNTYPE;

SIGNAL
KeyStroke(Character),
Card(Charstring),
DoorNo(Integer),
DoorId,
OpenDoor,
CloseDoor,
Open(Integer),
40 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

	1 Object Oriented Design Using SDL
	Requirements on the Access Control System
	Description of the System to be Built
	Textual Requirements
	Basic Requirements
	Additional Requirements

	Use Cases
	Object Model

	System Analysis of the Access Control System
	Analysis Object Model: Basic Version
	The Analysis Use Case Model
	Analysis Object Model: Enhanced Version

	Object Oriented Design of the Access Control System
	System Design
	Object Design
	Version 1: Block Types and Process Types
	Block Types and Process Types

	Version 2: Procedures, Specialization and Packages
	The Use of Procedures in Version 1
	Remote Procedures and Value Returning Procedures
	Global Procedures in SDL
	When to Use the Different Kinds of Procedures

	Specialization: Adding/Redefining Properties
	Example: Adding a Clock to the Access Control System

	Packages

