
July 2003 Telelo

Chapter
11 The PostMaster
This chapter is a reference to the communication mechanism in the
Telelogic Tau tools, the PostMaster. The functionality of the Post-
Master makes it possible to integrate applications by using a well-
defined means of communication.
gic Tau 4.5 User’s Manual ,um-st1 487

Chapter 11 The PostMaster
Introduction to the PostMaster

The PostMaster is the mechanism used for communication between the
different tools in Telelogic Tau. A C program generated by the Telelog-
ic Tau tools can also take advantage of this communication mechanism.
It can communicate with any application connected to the PostMaster
that send messages according to a defined format. This makes it possi-
ble for an SDL simulator to communicate with, for instance, a user in-
terface process for the Simulator.

The PostMaster also provides the basic means for the Open Telelogic
Tau concept, see chapter 12, The Telelogic Tau Public Interface.

The PostMaster provides the following functionality:

• Starting an application and connecting to it
• Letting an application connect itself
• Letting an application send messages to a given recipient
• Making a “broadcast” of a message.

The PostMaster is a message passing service based on a selective broad-
casting mechanism. It will distribute a copy of each message it receives
to the tools subscribing to that type of message. By this, the PostMaster
provides an integration mechanism between tools without the hard cou-
pling between them that follows from conventional two part communi-
cation mechanisms.

Figure 163 illustrates some of the PostMaster concepts. The PostMaster
maintains a list of which messages each tool subscribes to. Each tool has
a PostMaster part for sending and receiving messages. In the figure, tool
F broadcasts a message, i.e. the message is sent to the PostMaster. The

Caution!

The PostMaster was originally designed and implemented for inte-
grating tools in the SDL suite environment. Currently it integrates
tools in the Telelogic Tau environment. Our experience is that the
PostMaster is also suitable for integrating external tools and appli-
cations with the Telelogic Tau applications; one application area is
for instance quick prototyping.

However, Telelogic does not support using the PostMaster as a com-
munication mechanism between real-time applications, in a run-
time environment.
488 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction to the PostMaster
subscription lists of tool A and C (but not the lists of B and F) contains
the message type. Accordingly the PostMaster broadcasts the message
to tool A and C.

The PostMaster configuration is a file that informs the PostMaster about
what tools and messages exist in the current context, i.e. it contains the
message subscription lists. To include new tools or add new messages,
the configuration must be edited.

For detailed information on the configuration, see “The PostMaster
Configuration” on page 490.

Figure 163: Example of a PostMaster broadcast

Tool C
Tool BTool F

Tool A

broadcast

C

subscription lists
client,

PostMasterclient,
appl.
part

PostMaster
part

F
B A
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 489

Chapter 11 The PostMaster
PostMaster Reference
This section describes the external interface to the PostMaster, includ-
ing messages to send and their format, contents of the configuration,
and functions to call.

PostMaster Messages
The PostMaster configuration defines a large number of messages that
can be utilized in a Telelogic Tau system. A broad range of these mes-
sages are public, that is, they can be used externally. A description of
these are found in chapter 12, The Telelogic Tau Public Interface.

All messages contain information about the identity of the sender, the
time it was sent, the message type, and the size of an optional data part.

The optional data part can be seen as parameters to the message and is
not interpreted by the PostMaster.

The PostMaster Configuration
The PostMaster can be configured either statically at start up or dynam-
ically during runtime. When a dynamic configuration is performed, the
services Add Tool or Add Tool Subscription is used. The PostMaster is
configured statically using the PostMaster configuration file(s)

The PostMaster configuration file(s) informs the PostMaster about what
tools and messages exist in the current context. These files are often re-
ferred to as simply the configuration.

At start-up the PostMaster reads an environment variable POSTPATH
which is a list of directories separated by colons (on UNIX) or semico-
lons (in Windows). In these directories, the PostMaster searches for con-
figuration files.

Note:

In order to promote a high throughput, it is strongly recommended
that the PostMaster messages are consumed as soon as they are
available.

Note:

It is the responsibility of the tools using the PostMaster to define the
format of the data part and to interpret it correctly.
490 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
Such files should be named post.cfd and are read by the PostMaster
whenever it is invoked, for instance when the SDL suite or the TTCN
suite is started.

It is not possible to use C preprocessor statements or symbols in the con-
figuration file.

It is possible to have local configurations which extends the standard
PostMaster configuration set up by the Telelogic Tau tools, by simply
defining the POSTPATH variable with a directory holding the extended
configuration.

File Contents and Syntax

The configuration is a list of tool identities. Each tool identity is bound
to an executable, a subscription list of messages and optionally a limit
of instances of that tool. Each tool in the file is described in the follow-
ing way:

Tool <tool number>:<executable>:<instance limit>
<message number>;
<message number>;
...

Description

• <tool number>

is an integer defined by SET_ symbols in the file sdt.h, and by
IET_ symbols in the file itex.h. The number 27000
(SET_SDLENV) is used for tools acting as an SDL environment.

Caution!

The file post.cfd residing in $telelogic/sdt/bin and
$telelogic/itex/bin (on UNIX), or in the Telelogic Tau installa-
tion directory (in Windows), defines the existing tools in the envi-
ronment and must not be edited; otherwise unpredictable behavior
may occur.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 491

Chapter 11 The PostMaster
• <executable>

is the name of the executable file associated with the tool. It is used
by the PostMaster after receiving an SESTART message when a tool
is to be started.

A file path may prefix the filename of the executable in order to ex-
plicitly tell where to find the tool. In this case the complete file de-
scription (path + filename) should be surrounded by a pair of quotes
(i.e. “/home/sdt/demo/demotool” (on UNIX) or
“c:\sdt\demo\demotool” (in Windows)).

• <instance limit>

is the maximum number of concurrent running instances of the tool.
It may be wildcarded with a ‘*’ to a default value
(SPMAXNOOFINSTANCES).

• <message number>

is an integer defined by the symbols starting with SE in sdt.h. It
is normally specified as <tool number> + <nr>. Symbols which
are used in the TTCN suite have the prefix IE and are defined in
itex.h.

Adding Tools and Messages

To include new tools or add new messages, the configuration file must
be edited. However, the tools and subscription lists existing in the orig-
inal configuration must not be changed.

To include a new tool, follow the steps below. Note that it is not re-
quired to include a new tool in the configuration if it only serves as an
SDL/TTCN environment that does not need to be started from other
tools by using the Start service.

1. Select a tool number not conflicting with the ones already existing
in the configuration, preferably a number greater than 100,000. The
number chosen must be equally divisible by 1,000.

2. Make a new tool description in the configuration, using the syntax
described above.

3. Define a new SET_ (IET_) symbol in the file sdt.h (itex.h) so
that the tool number can be easily accessed in the code.
492 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
Example 24 ––

#define SET_MYTOOL 110000
––

To add a new message, follow these steps:

1. Decide upon a tool that the new message “belongs to” or “is defined
by,” which should not be one of the pre-defined tools in the original
configuration.

2. Define a new SE (IE) symbol in the file sdt.h (itex.h) as the
tool symbol plus an ordinal number, not conflicting with any other
message symbol.

Example 25 ––

#define SEMYMESSAGE SP_MESSAGE(SET_MYTOOL+1)

––

3. Use the numeric value of the message symbol when adding the new
message to a subscription list in the configuration.

Example 26 ––

110000+1;

––

Environment Variables
The PostMaster recognizes a number of environment variables setting
the context in which the PostMaster is to operate. They are read when
the PostMaster starts.

PostMaster Environment Variables

The following environment variables are recognized by the PostMaster:

• POSTPORT

UNIX only: Should be set to a valid TCP port number. Causes the
PostMaster to try to listen to this port number for possible connec-
tions. Makes it possible to connect applications running on other
hosts than the PostMaster is running on. Is used in combination with
the client side environment variables POSTHOST and POSTPORT.

• POSTPATH
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 493

Chapter 11 The PostMaster
A list of directories separated by colons (on UNIX) or semicolons (in
Windows), where to search for configuration files named
post.cfd.

• POSTDEBUG

If set, the PostMaster will log active tools and sent messages as an
MSC log. The environment variable takes two optional parameters.
The first tells the filename to put the log on. If the parameter is set
to ’-e’ the log is put on stdout. The second parameter tells the log
level. Normally only public messages are logged. But if set to a val-
ue > 2 all messages will be logged.

If no parameters are submitted, the log will be stored on the file
post.mpr

See also “Start MSC Log” on page 594

• STARTTIMEOUT

When the PostMaster executes its start service it assumes that the
started client will connect, via SPInit, within a certain amount of
time. This timeout (in seconds) sets the limit when the PostMaster
considers the start having failed. Default is 60 seconds.

If the Telelogic Tau tools environment is running on slow computer
or on a network which is heavily loaded, start-up of a Telelogic Tau
tool might fail due to this timeout. In such case, this environment
variable should be increased to an appropriate value.

PostMaster Application Library Environment Variables

The following environment variables are recognized by the PostMaster
application library. These environment variables are read in the SPInit
function.

• POSTHOST

UNIX only: Should be set to a hostname, on which a PostMaster
runs. This PostMaster should be started with the environment vari-
able POSTPORT set.

• POSTPORT

UNIX only: Should be set to a valid TCP port which is allocated to a
PostMaster. Corresponds to POSTPORT set for the PostMaster.
494 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
• POSTPID

This environment variable is only of interest if multiple PostMasters
are simultaneously active. If it is desired to make a connection to
one particular PostMaster, this environment variable should be set
to the process id corresponding to that PostMaster.

If only one PostMaster is active, the application library automatical-
ly finds the PostMaster.

If more than one PostMaster is running and this environment vari-
able is not set, a connection is made to the PostMaster instance hav-
ing the highest process id value.

Functional Interface
Communication with the PostMaster is based on a small set of funda-
mental functions:

Every function returns a value denoting success or failure of the associ-
ated operation.

SPInit initialization

SPExit termination

SPBroadcast output message, broadcast

SPSendToTool output message, sent to a certain tool

SPSendToPid output message, sent to a certain PId

SPRead input message

SPFree frees memory allocated by SPRead or
SPFindActivePostMasters

SPConvert translate a symbolic message to an id

SPErrorString Error string conversion

SPRegisterPMCallback Message notification (Windows only)

SPQuoteString Quoting strings

SPUnquoteString Unquoting strings

SPFindActivePostMasters find all PostMasters
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 495

Chapter 11 The PostMaster
Calling Conventions

The PostMaster functions should be called in the following ways from
the external tool:

• The first thing to do is to initiate the connection with the PostMaster
itself by calling SPInit. This is preferably done early in the main
program. This initiation is private to the client and the PostMaster.

• When having successfully called SPInit, the tool should listen to
the PostMaster message port and read the incoming messages by
SPRead. The tool should then act upon the messages it subscribes
on.

• If so desired, the tool should send messages by calling
SPSendToTool, SPSendToPid or SPBroadcast.

• When the tool decides to terminate, it should broadcast the standard
message SESTOPNOTIFY by calling SPBroadcast. Then it should
disconnect from the PostMaster by calling SPExit.

• Every call to a PostMaster function should check the return value
and act properly if an error is detected.

Variables

The following variables are defined.

extern INT16 sperrno;

extern INT16 spPortNO; (on UNIX)
extern int spPortNO; (in Windows)

sperrno contains an error code when a call to a PostMaster function
failed. The error codes are defined in sdt.h and should be self-explan-
atory.

On UNIX, spPortNO contains a descriptor to the port where incoming
messages from the PostMaster are found. In Windows, spPortNO con-
tains a process identifier associated with the current process. The state
of the variable prior to the call of SPInit is undefined.

These variables are found in the file post.h.
496 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
Error Codes

When a function returns SPERROR which indicates an error or an not ex-
pected result of the function. In this case sperrno is set to one of the
following values.

Caution!

Windows only: When linking with the PostMaster’s dynamically
linked libraries (post.lib and post.dll), the environment vari-
able USING_DLL must be defined before including post.h. Exam-
ple:

#define USING_DLL
#include “post.h”
#undef USING_DLL

Error Code Explanation

SPNOSESSION The function SPInit has not been called
successfully

SPALREADYCONNECTED When calling SPInit more than once
without disconnecting

SPNOPOSTMASTER No PostMaster could be found when trying
to connect

SPNOCHANNEL The contact with the PostMaster is lost.

SPNOMESSAGE No message available when trying to read
by polling or after a timeout.

SPTIMEDOUT The connection to the PostMaster timed
out.

SPNOSUCHPID Sending to a PId with a non positive value
(<=0)

SPNOMEMORY Cannot allocate anymore dynamic memo-
ry (rare)

SPTOOLNOTFOUND When sending to a tool, this tool is not
found in PostMaster configuration list
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 497

Chapter 11 The PostMaster
Functional Description

The available PostMaster functions are described on the following pag-
es. The descriptions use the following format.

First, the function declaration is shown, including data types of param-
eters, followed by a short explanation of what the function does.

After that, in- and out parameters are described, together with possible
return values and error codes.

SPINVALIDMESSAGE Sending a message with a NULL parame-
ter but specifying the length greater than 0.

SPBADMESSAGE A not supported message was to be sent.

SPMANYPOSTMASTERS Many PostMasters running. Could not de-
cide which one to connect to. (Windows
only)

SPOLDPOSTMASTER Old PostMaster running. (Windows only)

Error Code Explanation
498 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPInit
int SPInit(int toolType,
 char * argv0,
 *SPMList list);

SPInit initiates a session and establishes a connection with the Post-
Master. See “Multiple PostMaster Instances” on page 518 for informa-
tion on how to connect to a specific instance of the PostMaster.

Inparameters

• toolType

The tool number identifies the tool and should be a value available
in the PostMasters subscription list. For tools acting as an
SDL/TTCN environment, it should be set to SET_SDLENV. See
“Run-Time Considerations” on page 515 for more information.

• argv0

The name of the executable (specified with its path). Normally
argv[0] as passed to the program could be used.

• list

Defines a list of predefined messages allowed to send. It also pro-
vides a set of mappings between textual strings and integer values
for tools and messages. Normally the list provided in sdt.h
(itex.h) is used. This list is later used by the function SPConvert,
which translates between a textual string and the corresponding
identifier.

Returns

• >0

On UNIX, the PId of the calling process. Normally this PId corre-
sponds to an UNIX PId. But if the PostMaster is started with the en-
vironment variable POSTPORT set, the PostMaster decides what
PId value each client should get. In this case the numbering scheme
gives the first started client 1, the next 2 and so on.

In Windows, an identifier (“PId”) which is used internally by the
PostMaster in order to uniquely identify the calling process.

This value could be used when sending messages and in compari-
sons with PIds contained in received messages.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 499

Chapter 11 The PostMaster
• SPERROR

SPInit failed, sperrno is set.

Errors
SPNOPOSTMASTER
SPTIMEDOUT
SPALREADYCONNECTED
SPNOMEMORY
SPMANYPOSTMASTERS
SPOLDPOSTMASTER

SPExit
int SPExit(void);

SPExit exits a session and disconnects the connection with the Post-
Master. Subsequent calls to PostMaster functions will return the error
code SPNOSESSION until a new SPInit is performed.

Returns

• SPOK

Status OK.

• SPERROR

SPExit failed, sperrno is set.

Errors
SPNOCHANNEL
SPNOSESSION
500 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPSendToTool
int SPSendToTool(int tool,
 int event,
 void * data,
 int size);

SPSendToTool sends a message to the process of kind tool.

Inparameters

• tool

Type of tool identifying the tool to send the message to. If such a
tool is not running a service reply is sent by the PostMaster.

• event

Type of message

• data

Handle to an information block

• size

Size of data.

Returns

• SPOK

Status OK.

• SPERROR

SPSendToTool failed, sperrno is set.

Errors
SPNOCHANNEL
SPNOSESSION
SPNOMEMORY
SPBADMESSAGE
SPINVALIDMESSAGE
SPTOOLNOTFOUND
SPBADMESSAGE
SPNOSUCHPID
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 501

Chapter 11 The PostMaster
SPSendToPid
int SPSendToPid(int pid,
 int event,
 void * data,
 int size);

SPSendToPid sends a message to the process which has process id
toPid.

Inparameters

• pid

PId of the message’s receiver. If the specified PId does not exist, an
SEOPFAILED message or a service reply is sent by the PostMaster.

• event

Type of message.

• data

Handle to an information block.

• size

Size of data.

Returns

• SPOK

Status OK.

• SPERROR

SPSendToPid failed, sperrno is set.

Errors
SPNOCHANNEL
SPNOSESSION
SPNOMEMORY
SPBADMESSAGE
SPINVALIDMESSAGE
SPTOOLNOTFOUND
SPNOSUCHPID
502 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPBroadcast
int SPBroadcast(int event,
 void * data,
 int size);

SPBroadcast sends a message to all processes that subscribes on the
message type.

Inparameters

• event

Type of message.

• data

Handle to an information block.

• size

Size of data.

Returns

• SPOK

Status OK.

• SPERROR

SPBroadcast failed, sperrno is set.

Errors
SPNOCHANNEL
SPNOSESSION
SPNOMEMORY
SPBADMESSAGE
SPINVALIDMESSAGE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 503

Chapter 11 The PostMaster
SPRead
int SPRead(int timeOut,
 int * pid,
 int * message,
 void ** data,
 int * len);

SPRead reads a message from the queue of unread messages that the
PostMaster has sent. When the message is read, it is also consumed, i.e.
removed from the queue. The function allocates the necessary amount
of memory needed for the data component in the message. The appli-
cation using this function is responsible for freeing the allocated mem-
ory with SPFree when it is no longer needed.

Inparameters

• timeOut

Maximum amount of time (in milliseconds) that the function waits
for a message. If a message has not arrived when timeOut expires,
the function returns with return value SPERROR and sperrno is
set to SPNOMESSAGE. If a message arrives, the function reads the
message and returns immediately. If the desired behavior is to wait
until a message arrives, which could mean forever, timeOut
should be set to SPWAITFOREVER.

Outparameters

• pid

PId of the tool sending the message.

• message

Message identifier.

• data

Pointer to data associated with the received message. SPFree
should be used to free memory.

Length of allocated data. If ASCII data is received, it is not assured
that data is terminated by a ASCII NUL (‘\0’). The application
should test if data[len-1] is ‘\0’.

Returns

• SPOK
504 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
Status OK.

• SPERROR

SPRead failed, sperrno is set.

Errors
SPNOCHANNEL
SPNOMESSAGE
SPNOSESSION
SPNOMEMORY

SPFree
void SPFree (void * ptr)

SPFree should be used to free the memory allocated by SPRead. This is
necessary when different compilers with different memory manage-
ment are used.

Inparameters

• ptr

A pointer to the memory block to be freed.

Returns

N/A.

SPErrorString
char * SPErrorString(int code);

Converts an error code into a textual string description of a tool or a
message from the corresponding integer value.

Inparameters

• code

Error code. Typically set by sperrno.

Returns

An descriptive error string corresponding to the error code.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 505

Chapter 11 The PostMaster
SPConvert
int SPConvert(char * str);

Converts a textual description of a tool or a message to the correspond-
ing integer value as provided by the parameter list in SPInit.

Inparameters

• str

Textual description of the tool or message. The list provided in
SPInit is used when searching for a mapping.

Returns

An integer value for the tool or message. If no mapping is found,
SPERROR is returned.

SPRegisterPMCallback
typedef void (* SP_PM_MessageCallback) (void);
void SPRegisterPMCallback (SP_PM_MessageCallback
cb);

Windows only: Registers a callback function that gets called every time
a new PostMaster message arrives. Registering this callback enables
(32-bit) Windows applications to function correctly. Console applica-
tions need not use this function.

Inparameters

• cb

The function to be called when a new PostMaster message is
present. If cb is NULL the current callback is removed; otherwise the
callback is replaced.

Returns

N/A.
506 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPQuoteString
int SPQuoteString(char *stringToQuote,
 char *buffer,
 int bufferLength,
 int append)

SPQuoteString quotes a string. The following operations are per-
formed:

• A quote is added to the beginning and end of the string.

• All quotes and backslashes in the string are escaped, i.e. a backslash
character is added before them.

The quoted string can later be unquoted with a call to SPUnquoteString.

Inparameters

• stringToQuote

Pointer to a null-terminated string. This is the string that should be
quoted.

• bufferLength

The size of the buffer (see the outparameter buffer below).

• append

If the value of append is non-zero, buffer is supposed to already
contain a null-terminated string. The result of the quoting operation
will be appended to this string at the end.

If several quoted strings are concatenated, they can be extracted and
unquoted one at a time with calls to the SPUnquoteString function.

Outparameters

• buffer

Pointer to a buffer where the resulting, quoted string will be re-
turned. The buffer must be large enough to contain all the charac-
ters of the quoted string plus a trailing null character. The maximum
buffer size needed can be quoted with the following formula:

maximum buffer size = unquoted string size * 2 + 3
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 507

Chapter 11 The PostMaster
This includes space for escaping every character in the string, plus
three bytes for quotes and null character. A larger buffer might of
course be needed when appending (see append above).

The size of the buffer is given in bufferLength. If the quoted
string does not fit in the buffer, the function will fail and return zero
(further explained in the next section).

Returns

• 1

The call was successful.

• 0

The function call failed. The buffer was not large enough to contain
the quoted representation of the string. The contents of the buffer
are undefined.
508 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPUnquoteString
int SPUnquoteString(char *quotedString,
 int inputLength,
 char *buffer,
 int bufferLength,
 int position)

SPUnquoteString unquotes a string previously quoted with SP-
QuoteString, ignoring leading white-space characters. The following
operations are performed:

• Any white-space characters in the beginning of the string are ig-
nored. If the string is empty or contains only white-space characters,
the function call fails and returns zero (see “Returns” on page 510).

• If the first character after white-spaces is a quote, the function as-
sumes that this quote starts a string quoted with SPQuoteString. In
this quoted string, backslashes escape the following character. The
string is ended with a non-escaped quote.

The returned string will have the escaping backslashes and the lead-
ing and closing quotes removed.

• If the first character after white-spaces is not a quote, the function
will simply extract and return a substring up to but not including the
next white-space character. If no further white-space characters are
found, the rest of the string is returned. Backslashes and quotes have
no special meaning when unquoting strings in this way.

Several concatenated quoted strings can be extracted with subsequent
calls to this function by using the value returned in the position out
parameter, see below.

Inparameters

• quotedString

Pointer to a string containing the string previously quoted with SP-
QuoteString. The string should either be null-terminated or input-
Length below should have a meaningful value.

• inputLength

The maximum number of characters of quotedString that will be
scanned. If quotedString is known to be null-terminated, a very
large number should be supplied here.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 509

Chapter 11 The PostMaster
• bufferLength

The size of the buffer (see the outparameter buffer below).

Outparameters

• buffer

A pointer to a buffer where the unquoted string will be returned. The
buffer must be large enough to contain the resulting, unquoted
string, including null character. A buffer one character larger than
inputLength will always suffice. If the buffer is too small, the
function call will fail and return zero (see “Returns” on page 510).
The size of the buffer is given in bufferLength.

buffer can also be null, in which case no unquoting will be per-
formed. The value of position can still be interesting, though.

• position

If this pointer is non-null it should point to an integer that will be
filled in with the index of the character in the input string immedi-
ately following the extracted substring. This will be the character
following a closing quote or a whitespace character or the terminat-
ing null character.

Returns

• 1

The function call was successful.

• 0

The function call failed. The supplied string might not be a valid
quoted string according to the rules given above. The buffer might
not be large enough to contain the result. The contents of the buffer
and position are undefined.
510 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
SPFindActivePostMasters
int SPFindActivePostMaster (int *bufferPid,
 char** bufferText,
 int maxBufferlength);

Finds all PostMasters available for the application on the computer. In-
formation retrieved is process id and a description in plain text.

Inparameters

• maxBufferlength

The size of the arrays bufferPid and bufferText.

Outparamters

• bufferPid

Pointer to an array where all process ids will be stored.

• bufferText

Pointer to an array of strings telling when the PostMaster was start-
ed. SPFindActivePostMaster will allocate memory for all
strings and the application must call SPFree in order to free the
memory.

Returns

Number of PostMasters found.

Java Interface
The file postmaster.java contains a java class that encapsulates the
postmaster interface for java programmers. The class contains a few
fundamental methods.

Init initialization

SendToTool output message, sent to a certain tool

SendToPid output message, sent to a certain Pid

Broadcast output message, broadcast

Read read a message

Exit termination
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 511

Chapter 11 The PostMaster
Init
int Init(int toolType);

SPInit initiates a session and establishes a connection with the Post-
Master. See “Multiple PostMaster Instances” on page 518 for informa-
tion on how to connect to a specific instance of the PostMaster.

Inparameters

• toolType

The tool number identifies the tool and should be a value available
in the PostMasters subscription list.

Returns

See functional description for the C interface

SendToTool
int SendToTool(int toolType, int message,

 String data);

SPSendToTool sends a message to the process of kind tool.

Inparameters

• toolType

Type of tool identifying the tool to send the message to. If such a
tool is not running a service reply is sent by the PostMaster.

• message

Type of message

• data

Data to send

Returns

See functional description for the C interface

SendToPid
int SendToPid(int pId, int message, String data);

SPSendToPid sends a message to the process which has process id
toPid.
512 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 PostMaster Reference
Inparameters

• pid

PId of the message’s receiver. If the specified PId does not exist, an
SEOPFAILED message or a service reply is sent by the PostMaster.

• message

Type of message

• data

Data to send

Returns

See functional description for the C interface

Broadcast
int Broadcast(int message, String data);

SPBroadcast sends a message to all processes that subscribes on the
message type.

Inparameters

• message

Type of message

• data

Data to send

Returns

See functional description for the C interface

Read
int Read(int timeOut);

SPRead reads a message from the queue of unread messages that the
PostMaster has sent. When the message is read, it is also consumed, i.e.
removed from the queue. The data read by the last Read is copied to the
Sender, Message and Data members of the class postmaster.

Inparameters

• timeOut
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 513

Chapter 11 The PostMaster
Maximum amount of time (in milliseconds) that the function waits
for a message. If a message has not arrived when timeOut expires,
the function returns with return value SPERROR and sperrno is
set to SPNOMESSAGE. If a message arrives, the function reads the
message and returns immediately. If the desired behavior is to wait
until a message arrives, which could mean forever, timeOut
should be set to SPWAITFOREVER.

Returns

See functional description for the C interface

Exit

int Exit();

SPExit exits a session and disconnects the connection with the Post-
Master. Subsequent calls to PostMaster functions will return the error
code SPNOSESSION until a new SPInit is performed.

Returns

See functional description for the C interface
514 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Run-Time Considerations
Run-Time Considerations

Starting Up the PostMaster (in Windows)
When Telelogic Tau is started in Windows, an instance of the PostMas-
ter is automatically started. No additional commands are needed for the
PostMaster. There might however be situations when it is necessary to
start the PostMaster stand-alone. This is described in the following sec-
tions. The examples only handle how the SDL suite is started from the
“DOS” command prompt, but in many cases a shortcut with the analo-
gous parameters can be created.

Start-Up
There are several possible ways to start the PostMaster itself and the
tools that wish to communicate via the PostMaster. In principle, there
are two main alternatives:

• Starting the tools when the PostMaster is running
• Starting them without having the PostMaster running.

We will exemplify the start-up methods by using the DemonGame sim-
ulator and a User Interface to the DemonGame simulator.

Starting When the PostMaster Is Present

When the SDL suite is started from the “DOS” or UNIX prompt, an in-
stance of the PostMaster is automatically started. No additional com-
mands are needed for the PostMaster in this case.

The DemonGame simulator is preferably started from the SDL suite,
thus giving access to all simulation features. It can also be started direct-
ly from the “DOS” or UNIX prompt.

Note:

The PostMaster must be started first, but the communicating tools
may be started in any order. An SDL simulator must also execute the
commands Start-SDL-Env and Go before communication with an-
other tool can start.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 515

Chapter 11 The PostMaster
Starting from the “DOS” Prompt

Use the following command from the “DOS” prompt:

DemonGame.exe -post

Starting from the UNIX Prompt

Use the following command from the UNIX prompt:

DemonGame.sct -post

(Without the parameter, the simulator runs stand-alone, which is not de-
sired in this case.) Starting the simulator this way restricts the possibil-
ities of the simulation since there is no connection to the SDL suite
tools. For instance, graphical trace is disabled.

The UI is preferably started directly from the UNIX prompt. It can also
be started from the DemonGame simulator with the command Start-
ITEX-Com, but this requires that the executable is named sdtenv.
This is the name specified in the configuration for tool number 27000.

Starting Without the PostMaster

The SDL suite must be started directly from the “DOS” or UNIX
prompt with the command:

$telelogic/bin/sdtpm <arg> & (on UNIX)

<Installation Directory>\sdt <arg> (in Windows)

(using one of the start-up arguments, see below).

The DemonGame simulator must also be started directly from the
“DOS” or UNIX prompt, as described above.

Note:

In Windows, the simulator is a Windows GUI application and not a
Console application. It is therefore not possible to run the simulator
stand-alone, i.e. without -post.

Note:

On UNIX: If activating the PostMaster this way, the environment
variable POSTPATH must be set to include the directory where the
executables resides, typically $sdtbin.
516 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Run-Time Considerations
The UI can be started in the same way as when the PostMaster is run-
ning (see above). It can also be started indirectly when starting the Post-
Master by using the “DOS” or UNIX command:

$telelogic/bin/sdtpm -clients 27000 & (on UNIX)

<Installation Directory>\sdt -clients 27000 (in
Windows)

This requires that the executable is named sdtenv, the name specified
in the configuration for tool number 27000.

Start-Up Arguments
The PostMaster recognizes the following arguments at start-up. Nor-
mally they are not needed, but could be used for special purposes

• -clients <toolid> Used if the PostMaster should invoke a cer-
tain tool at start-up. <toolid> is set to the logical tool number of a
tool to start as defined in post.cfd.

• -noclients Used if only the PostMaster is to be invoked without
starting any clients. In this case the PostMaster enters an idle state
where it waits for a client to connect

All other arguments are passed to the tool started.

SDT-2 Connections (UNIX only)
Applications or tools linked with an SDT 2.X PostMaster application li-
brary will not be compatible with SDT 3.X PostMaster. Trying to con-
nect such an old application to an SDT 3.X PostMaster will result in an
error message:

Postmaster cannot connect SDT2 tool:<tool> with pid:
<pid>

on standard output, if externally started, or as a service reply, if started
via the start service, and the connection is aborted.

Note:

A tool communicating through the PostMaster can also be started
from another tool by using the SESTART message. This requires that
the tool to be started is specified in the configuration.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 517

Chapter 11 The PostMaster
Version 3.4 PostMaster (Windows only)
If an old PostMaster (version 3.4 or older) is used the SPInit function
will fail. The error code is SPOLDPOSTMASTER.

Applications or tools linked with an SDT 3.4 PostMaster application li-
brary will not be compatible with the SDT 3.6 PostMaster. Trying to
connect such an old application to an SDT 3.6 PostMaster with the
SPInit function will fail. The error code is SPNOPOSTMASTER.

Multiple PostMaster Instances
It is possible to have multiple instances of the PostMaster running, for
instance when more than one Telelogic Tau tool has been started. In this
case it should be made sure that the communicating tools are connected
to the correct instance of the PostMaster.

On UNIX, the function SPInit by default looks for the PostMaster in-
stance with the highest process id (PId) number and connects to it.

On Windows, the function SPInit by default fails if more than one
PostMaster is found.

To connect to another PostMaster instance, you can set the environment
variable POSTPID to the PId number of the desired PostMaster. If this
variable is set, SPInit connects to the PostMaster instance with that
PId number.

Configuration and Tool Search
The PostMaster configuration is read whenever a PostMaster instance
is invoked. The environment variable POSTPATH defines a list of direc-
tories where the PostMaster looks for a configuration file named
post.cfd.

The user can extend the normal configuration by defining the POSTPATH
variable to a directory containing an extended configuration. When a
Telelogic Tau tool is started normally, the directories containing the bi-
naries are put as the first directories in the POSTPATH variable.

The same search order is applied when the start service is used. The
supplied tool number is matched against the name of an executable in
the configuration, which is then searched for as above.
518 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	11 The PostMaster
	Introduction to the PostMaster
	PostMaster Reference
	PostMaster Messages
	The PostMaster Configuration
	File Contents and Syntax
	Adding Tools and Messages

	Environment Variables
	PostMaster Environment Variables
	PostMaster Application Library Environment Variables

	Functional Interface
	Calling Conventions
	Variables
	Error Codes
	Functional Description
	SPInit
	SPExit
	SPSendToTool
	SPSendToPid
	SPBroadcast
	SPRead
	SPFree
	SPErrorString
	SPConvert
	SPRegisterPMCallback
	SPQuoteString
	SPUnquoteString
	SPFindActivePostMasters

	Java Interface
	Init
	SendToTool
	SendToPid
	Broadcast
	Read
	Exit

	Run-Time Considerations
	Starting Up the PostMaster (in Windows)
	Start-Up
	Starting When the PostMaster Is Present
	Starting Without the PostMaster

	Start-Up Arguments
	SDT-2 Connections (UNIX only)
	Version 3.4 PostMaster (Windows only)
	Multiple PostMaster Instances
	Configuration and Tool Search

