
July 2003 Telelo

Chapter
64 The Performance Library
This chapter presents an overview of a method for performance 
simulation projects using the Performance Library. The Perfor-
mance Library is available as an optional product. 

The method is in no way complete or described in all details. The 
intention is not to describe the method itself in depth, but rather to 
present an application area for the SDL suite. For more details 
about performance simulations in general, please refer to the liter-
ature in that field.
gic Tau 4.5 User’s Manual ,um-st1 3189



Chapter 64 The Performance Library 
A Performance Simulation Project
To develop a performance simulation and use it to obtain estimates 
about a particular system involves a number of steps. The SDL suite 
may be helpful in many, but not all, of these steps. 

The major activities in a performance simulation project are:

1. Collect information about the behavior of the system to be simulat-
ed and define the purpose of the simulation, that is, what estimates 
should be the result of the project?

2. Create a performance model for the system. This is often expressed 
as a queuing network. As the behavior of a system is usually too 
complex to be simulated in all details, simplifications have to be 
made. 

This modeling phase is the most critical phase in the complete 
project. A good performance model leads to relevant results, while 
a bad model leads to nonsense. The key question is what simplifica-
tions and abstractions you may make and still obtain relevant results 
from simulations of the model.

3. Describe the performance model in detail in SDL and simulate it, 
using the library Simulation, until the SDL model behaves satisfac-
torily.

4. Execute the generated simulation a number of times to collect sta-
tistical data from the model. 

You will normally need 10,000 to 50,000 samples (of for example 
a queue length or a waiting time) to obtain any significance in the 
data. This means that program executions will be fairly long. There 
are two ways to execute the performance simulation: 

– Use the library Simulation and start by performing the monitor 
commands “Set-Trace 0" and “Go”, or

– Use the library PerformanceSimulation. It is specially designed 
to execute performance simulations and does not include the 
monitor system. It will execute the performance simulation in 
the order 10 to 15 times faster than executing it using the library 
Simulation.
3190 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 The Performance Model
5. During the execution of the performance simulation, the best way to 
handle data measured in the system is to write the data on file. You 
may then analyze the data files using packages or programs for sta-
tistical analysis to obtain, for example, mean value, variance and 
confidence intervals for these estimates. (The SDL suite does not 
provide means for statistical analysis.)

6. To validate these estimates it is common practice to compare the 
simulation results with results from mathematical methods applied 
on the system (simplified versions of the system). Queuing theory 
and the theory for queuing networks are the most relevant mathe-
matical methods for such activities.

Some of these steps will discussed in more detail in the following sub-
sections. For other aspects please see literature about performance sim-
ulations.

The Performance Model
Let us first state that a description of the functional behavior of a system 
and a performance model of the same system are (usually) not the same, 
even if both models can be expressed in SDL. The two models describe 
two different aspects of the same system. This is why there is a model-
ing phase in the development of the performance simulation.

Queuing Models
Most performance models can be viewed as queuing models or queuing 
networks, where a queuing network is an interconnected system of 
queuing models. A typical model for a queue would look like:

The model contains jobs that need some service from the server. The 
jobs may have to wait in a queue for the service. The basic properties of 
this model are:

Figure 554: A queue model

Incom-
ing jobs

Served 
jobs

Queue Server
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3191



Chapter 64 The Performance Library 
• The service time for a job. This can be modeled as a property of the 
job or of the server, depending on the system to be simulated.

• The queue discipline, that is, the order in which jobs are inserted 
into the queue and removed from the queue to get service. Typical 
disciplines are, to mention a few:

– FCFS (First Come - First Served)
– Priority order according to the priority of the jobs
– Priority order with pre-emption.

• The inter-arrival time for jobs, or more generally: when new jobs 
are entered into the queue. The creation of new jobs is usually mod-
eled in job-generators described as separate objects.

The queue model is a general model that may be used as an abstraction 
in many situations, for example to model programs (jobs) that are to be 
executed by the CPU in a computer (server). The queue is then the 
scheduled list of jobs that are in a “ready to execute” state. The queuing 
discipline is usually complex, involving for example priorities, pre-
emption and cyclic execution of jobs.

Another quite different example would be a port, where ships (jobs) are 
coming for loading or unloading (the service). To perform loading or 
unloading the ship needs a crane (the server).

The systems that we want to simulate are usually not simple enough to 
be modeled by just one queue. However, models using interconnected 
queues-servers, connected in such a way that jobs leaving one server are 
inserted into the queue of another, have the power to describe many in-
teresting real systems. An example of a simple queuing network model 
is given in Figure 555.

Figure 555. Simple queuing network

Job
generator

10%

90%
3192 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Implementation of the Model
Each node in the network consists of one or several servers. The net-
work also contains places where jobs are entered into the system and 
places where jobs are leaving the system.

Measurements
In a queue model or a queuing network model it is of interest to estimate 
for example:

• For jobs: total time in system, total waiting time
• For servers: load
• For queues: average and maximum queue length.

Such estimates can be obtained in two ways, using mathematical theo-
ries like queuing theory, or by measurements in simulations. With the 
mathematical theories, rather complicated models can be analyzed, usu-
ally more complicated than a nonspecialist thinks is possible. You 
should investigate this possibility before taking the decision to imple-
ment a simulation program.

Implementation of the Model

Mapping of Queue Models to SDL
A queuing network model may easily be described in SDL. Appropriate 
mapping rules are, for example:

• A server is implemented as a process and the queue as a variable in 
the server process.

• Jobs are described as data objects, that is, as passive entities that can 
be inserted into queues.

• Job generators are implemented as processes.

• Signals, with jobs as parameters, are used to send the jobs from job 
generators to servers and from servers to other servers.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3193



Chapter 64 The Performance Library 
Abstract Data Types for Queues and Random 
Numbers
In the implementation of the model there will be extensive use of queues 
and jobs and of queue manipulations, for example inserting a job into a 
queue. The chapter 63, The ADT Library provides an abstract data type 
specially designed for this purpose. See “Abstract Data Types for List 
Processing” on page 3165.

The ADT library also contains an abstract data type that can be used to 
generate random numbers. This data type can, for example, be used to 
draw job lengths and inter-arrival times according to a given distribu-
tion. See “Abstract Data Type for Random Numbers” on page 3156.

Random numbers are, in most situations in a performance simulation, 
used to model time intervals (for example service time required for a 
job) or to model a number of something (the number of jobs to be gen-
erated by a job generator at a certain time). The abstract data type for 
random numbers therefore contains the possibility to generate random 
numbers according to distributions returning non-negative values, for 
example:

• Negative exponential distribution
• Erlang distribution
• Hyperexponential distribution
• Uniform distribution
• Poisson distribution.

Implementation of Job Generators and Servers
To give a better understanding of job generators and servers, two pro-
cess graphs are presented in Figure 556 and Figure 557, showing simple 
but typical processes.

A job generator sets a timer, and when the timer time expires, it gener-
ates a new job, sends it into the queuing system and sets the timer again. 
The time value in the set statements is usually Now + some random time 
interval. Note that the data types Queue and ObjectInstance are de-
fined in the abstract data types for queue handling that are included in 
the ADT library (see “Abstract Data Types for List Processing” on page 
3165 in chapter 63, The ADT Library).
3194 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Implementation of the Model
Figure 556: A job generator

Process JobGenerator 1(1)

TIMER T;
DCL 
Job ObjectInstance;

Wait

SET
(NOW +..., T) T

Wait Job :=...

NewJob(Job)

SET
(NOW +..., T)

Wait
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3195



Chapter 64 The Performance Library 
The most important observation concerning the server process, is that 
the act of giving service is modeled by letting the server process wait in 
the state Busy. It is thus only the time needed for the service that is mod-
eled. Otherwise the process is rather straight forward. The variable Job 
is used to refer to the job that is currently given service and the variable 
Q is used to store other jobs waiting for service. The queuing discipline 
will be implemented in the details in the tasks “Next to be served in Q”, 
“Insert Job in Q” and “Remove Job from Q”.

Figure 557: A server with a queue

Process ServerQueue 1(1)

TIMER
 Service_Complete;
DCL
 Job ObjectInstance;
 Q Queue;

Busy

Idle NewJob
(Job) Service_Complete

NewJob
(Job)

’Insert Job
into Q’

Empty
(Q)

SET(NOW+...,
Service_Complete) Busy Idle

’Job :=
Next to be 
served in Q’

Busy ’Remove Job
from Q’

SET(NOW+...,
Service_Complete)

Busy

TRUE

FALSE
3196 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Implementation of the Model
I/O and Performance Simulations
A performance simulation uses I/O mainly for two things:

1. Writing measurements on file 

2. Prompting for parameters to the simulation. 

A specially designed abstract data type for the purpose of simplifying 
I/O is included in the ADT library (see “Abstract Data Type for File 
Manipulations and I/O” on page 3143 in chapter 63, The ADT Library). 
With this data type it is possible to open files and to perform read and 
write operations in SDL. 

It is, of course, interesting to parameterize a performance simulation on, 
for example, seed values for random generators, mean values for inter-
arrival times and service times. 

These values should be read at simulation start-up time. In SDL the con-
cept of external synonyms can be used for such a purpose. As synonyms 
can only be defined in processes, not in instances, it is difficult to handle 
cases when the process instances should have different values for a cer-
tain simulation parameter. In such cases the abstract data type for I/O 
operations can be useful.

The second category of I/O mentioned above is printing of measure-
ment data. There are basically two different types of measurements that 
have to be handled in a performance simulation. 

1. Data concerning jobs such as waiting times. 
It is usually best to store this type of data in the job itself, until the 
job leaves the system, when the appropriate values are printed on a 
file.

2. Queue lengths and other related data. 
Such data is easiest to handle by introducing measurement process-
es that with regular time intervals print the queue lengths on file. 

The best way to obtain the queue lengths is, in most situations, to let the 
measurement process view (or import) the appropriate queue variables. 
Otherwise a signal interface must be implemented only for measure-
ment purposes.

The reason for printing all measurement data on file is that it is difficult 
to compute the relevant statistical entities at simulation time. If only the 
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3197



Chapter 64 The Performance Library 
mean values are of interest, these are simple to compute, but if variances 
and confidence intervals are to be computed it is better to let a profes-
sional statistical tool perform the job. 

Note that data series produced from a simulation contains dependent da-
ta. If, for example, a job has been subject to a long waiting time, then 
the probability is high that the next job will also have a long waiting 
time.

Exit from a Simulation
The appropriate way to terminate the execution of a performance simu-
lation is to call the function SDL_Halt(). It is best performed by intro-
ducing the call in a #CODE directive in a task symbol (see “Including 
C Code in Task – Directive #CODE” on page 2656 in chapter 57, The 
Cadvanced/Cbasic SDL to C Compiler). SDL_Halt is a function in the 
run-time library with the following prototype:

void SDL_Halt (void);

Execution with the Library Performance 
Simulation
As mentioned earlier, you may use the library PerformanceSimulation 
to speed up the execution of a performance simulation. This library has 
the same properties as the library Simulation, except that it does not 
contain the monitor system, which may increase the execution speed by 
a factor of 10 to 15.

Use the library Simulation to debug and verify the simulation model. 
Then select the library PerformanceSimulation in the make dialog in the 
Organizer (see “Make” on page 119 in chapter 2, The Organizer) and 
press the button Make. The thereby generated performance simulation 
may be executed from the OS as an ordinary program.
3198 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003


	64 The Performance Library
	A Performance Simulation Project
	The Performance Model
	Queuing Models
	Measurements

	Implementation of the Model
	Mapping of Queue Models to SDL
	Abstract Data Types for Queues and Random Numbers
	Implementation of Job Generators and Servers
	I/O and Performance Simulations
	Exit from a Simulation
	Execution with the Library Performance Simulation



