Chapter

/5

July 2003

Object Design

Thischapter givesyou therulesfor how totransform object models
to SDL design models. M appingsfor active and passive objectsand
associations are described and exemplified. How to define the be-
havior of an object isalso discussed aswell as a section on how to
test thedesign.

Thechapter requiresthat you areat least reasonably familiar with
SDL.

Telelogic Tau 4.5 User’ sManual 3771

Chapter 75 Object Design

Object Design Overview

3772

The object design isthe activity that completes the definition of the sys-
tem. It carrieson wherethe system design finished and fillsin thedetails
about object behavior and system structure. The object designisacre-
ative activity that refinesthe object definitions and system structure tak-
ing at least three aspects into account:

* The system structure: where in the system is an object localized

» Thereusestructure: isthe object asubject for reuseinternally within
the system or externally

» Theprecise definition of internal object structure, the behavior and
data aspects

Design
Module
Structure

Architec-

ture Defini-
tion \ _
— ggegl ——» | SDL Design
esignUse
Case Mod- /

e

System
Object
Model

Figure 655: Overview of the object design activity

There is a close relation between the system design and the object de-
sign, in the sensethat both activities are dealing with the structure of the
system. The difference between the activitiesis mainly a differencein
the point of view. The system design takes a top-down look at the sys-
tem to identify subsystems and overall structures. The object design on
the other hand focuses on the objects and uses them as a starting point
for the refinement and structuring.

Telelogic Tau 4.5 User's Manual July 2003

Object Design Overview

In practice one of the mgjor tasks of the object design isto define the
behavior of the objects. Essentially the object design can be viewed as
three sequential tasks that must be performed.

1. Mapal theclassesin therelevant part of the analysis object model
to suitable SDL concepts.

— Active classes are mapped to processes or process types and
passive classes are mapped to data types. This mapping is de-
scribed in “Mapping Object Modelsto SDL Design Models’ on

page 3774.

— Thelocalization of the process (type) or datatypein termsof the
SDL package/system structure should be done according to the
design modul e structure and architecture definition from the
system design.

2. Choose a set of essential use cases and define the behavior of the
SDL processes and data types that implements these use cases. Con-
centrate on the normal behaviors and leave the exceptionsfor alater
step. The design of SDL processes is further discussed in “ Describ-
ing Object Behavior” on page 3803.

— Notethat thisalso includes atesting activity that verifiesthat the
SDL design implements the requirements from the use cases.
Thisisfurther described in “Design Testing” on page 3810.

3. Elaborate the design by introducing more use cases and refine the
SDL design to handle also these cases. Take care of exceptiona sit-
uations like error handling etc.

— Thiselaboration is an iterative process where the design isin-
crementally developed until al requirements are implemented.

— Eachiteration also includes a testing step where both newly im-
plemented and old functionality is checked.

— Theelaboration can include both refining existing processes/
datatypes and introducing new process/types.

In aproject where the design is split on several devel opment teams the
iterations in the design will often have to be synchronized. Thisisfur-
ther discussed in chapter 77, SOMT Projects.

July 2003 Telelogic Tau 4.5 User's Manual 3773

Chapter 75 Object Design

Mapping Object Models to SDL Design
Models

In SOMT object design, animportant step isthetransformation of (parts
of) the analysis object model to an SDL system. This section describes
this transformation.

There are several aspects important in the transformation:

* How to map objectsto SDL, taking into consideration e.g. whether
the object is active or passive

» How to represent associationsin SDL
» How to preserve the inheritance/aggregation relationsin SDL
The mapping to ASN.1 will also be discussed briefly.

Mapping an Active Object

Consider an object in the analysis model that has been found to be an
active object. How should this be mapped into the design model? The
default choice isto map this object as an SDL process type. The at-
tributes of the object will then be mapped to variablesand the operations
will correspond either to remote procedures defined in the type or sig-
nals handled by the process type. As an example consider the Display-
Interface object in the Access control system. Thisaobject isresponsible
for interfacing adisplay that is capable of showing aline of text to aus-
er. In the analysis object model this object may look like Figure 656. It
has one attribute, Text, and one operation, Display.

Displaylnterface

Text

Display

Figure 656: The Displaylnterface object

When mapped to an SDL diagram as a process type the result will be a
process type reference, as shown in Figure 657.

3774 Teldlogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

DisplayInterface

Figure 657: The Displaylnterface process type

Now consider the case where the Display operation was defined to be
an asynchronous operation which is the default. If we now take alook
at the Displaylnterface process type definition we can see that it hasa
variable called Text and a gate with the signal Display. This process
type definition is shown in Figure 658.

Process Type Displayinterface 1(1)

DCL
Text;

[Display]

Figure 658: The Displaylnterface process type definition

If, on the other hand, the Display operation was defined to be synchro-
nous (by giving the keyword sync after the operation name), then the
definition of the Displaylnterface process type would now also be dif-
ferent. It would contain adefinition of the Display remote procedurein-
stead of a gate with asignal. See Figure 659.

July 2003 Telelogic Tau 4.5 User's Manual 3775

Chapter 75 Object Design

3776

Process Type Displayinterface 1(1)

EXPORTED
Display

Figure 659: The Displaylnterface process type when mapped
to a process type with RPCs

When mapping an object like the DisplayInterface, the design issue of
reuse shows up as a question of where to define the SDL object. If the
DisplayInterface classis considered to be ageneral classthat isto bere-
used in different projects or by different development teams, the most
natural choice isto put the process type in a package that includes this
type definition and other related types that are to be reused in different
contexts. The design choice of what packagesto usein aproject wasone
of the issues of system design.

If the Displaylnterface only isintended to be used in this project but it
isused in severa of the blocks representing subsystems then thereis
also apossibility to put the processtype on the system level. Thiswould
alow the typeto be used in the entire system but it would not be conve-
nient to use it in other projects.

If the DisplayInterfaceis only to be used within thelocal block it can be
defined anywhere in the scopein question, even if it probably isagood
ideato keep al process type references on one page in the block dia-
gram.

Finaly, if the Displaylnterface object isonly to be used in oneparticular
placeinthe system, it ispossibleto defineit as aprocess directly where
it will be used instead of asaprocesstype. Thiswould be done the same
way that it was mapped to a processtype except that a process would be
generated instead of a process type. Sometimes this strategy is a good
ideasinceit slightly reduces the complexity of the system, however itis
only possibleif the object is only used in one place in the system.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

Mapping Active Objects with Inheritance

Inheritance among active objects is common in object modelsand is
mapped directly to inheritance between the corresponding process
types. For example, when mapping the EnglishDisplay object from
Figure 660 to a process type, the result is as shown in Figure 661.

Display

ltalian_
Display

English_
Display

German_
Display

French_
Display

Figure 660: Object model with inheritance

f———

R

Process Type EnglishDisplay

1(1)

Figure 661: Processtype with inheritance

Mapping Aggregations of Active Objects

A fairly common structure is an aggregation with one assembly class
that contains a number of other object classes, the part classes’. Thisis

common for example when using container classes as abstract interfac-
esto acertain functionality. One exampleisgivenin adescription of the

software in one part of the access control system: the part that controls

the access to one particular door in the building.

1. Terminology (assembly and parts classes) after [20] the“ Object Model Notation

Basic Concepts’

Telelogic Tau 4.5 User’s Manual

3777

Chapter 75 Object Design

3778

DoorModule
DoorName
CheckStatus
Cock_ Display_ KeyBoard_ DoorModule_
Interface Interface Interface Ctrl
DoorName
CheckStatus

Figure 662: An example of an aggregation of active objects

The most common mapping for this type of structure isto map the as-
sembly classto ablock or ablock type, depending on the strategy for
reuse that has been decided upon for the object.

One special, but fairly common, case iswhen the assembly object class
contains attributes. In this case there are two possibilities: either the ag-
gregation is considered as a “ subsystem”, in which case the attributes
should be implemented by one of the parts classes, or the object should
in addition to the mapping to ablock (type) also be mapped to aprocess
within the block that acts as a data server. This mapping follows the
same principles as was discussed in section “Mapping an Active Ob-
ject” on page 3774.

Another possibility is that the assembly object class contains opera-
tions. Thisimpliesthat these operations should beincluded in the inter-
face of the block/block type. In the sameway aswhen pasting as process
typesthereisadesign choiceinvolved here. Arethe operationsintended
to be synchronous remote procedures or are they asynchronous signals?
In this caseit is also important to define where the operations are to be
implemented. Also in this case there are two choices: either the opera-
tions are implemented in one of the parts classes or a processisintro-
duced in the block that handles the operations the same way a data serv-
er process handles the attributes.

As an example consider the analysis model in Figure 662. The block
type DoorM odule has both an attribute and an operation. A design
counterpart for thisisshown in Figure 663 and Figure 664. The process
DoorModuleCtrl is the server process that handles the data and opera-
tions defined in the DoorM odule analysis object.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

The choice where to implement the operations and the attributes of the
aggregate classis depending on the intended meaning with the aggrega-
tion. In SOMT the recommended practiseisto use aggregation in object
model that describes the architecture of a system as a “subsystem” or
“parts vs. whole” relation, meaning the aggregate class is completely
determined by its parts classes. In this case the operators and attributes
of the aggregate class should be implemented by the parts classes.

Note that thisis an example where the attributes and operations of the
aggregate class DoorM odule have been implemented by one of the part
classes, the DoorModuleCtrl class.

DoorModule

Figure 663: A block type reference for the DoorModule object

Block Type DoorModule 1(1)

DoorModuleCtrl

LockInterface Keyboardinterface

DI:
DisplayInterface

Figure 664: A block type with a data/operations server process

If the object that is mapped to ablock typeisasubtype of another object
in the object model, then the resulting block type will be defined as a

July 2003 Telelogic Tau 4.5 User's Manual 3779

Chapter 75 Object Design

subtype that inherits a block type that corresponds to the supertype in
the object model.

Mapping State Charts to SDL Process Graphs

The principle of reusing as much information as possible of the infor-
mation gained during the analysis activitieswhen working in the design
activitiesimplies that an effort should be made to translate state chart
descriptionsinto SDL process graphs. For athorough description of the
mapping rules please refer to: “ Converting Sate Chartsto SDL” on
page 1658 in chapter 40, Using Diagram Editors, in the User’sManual.

State charts may be convertedinto SDL. Converting state chartswithout
any hierarchical statesis very straight forward, but converting a state
chart containing hierarchical statesrequiresflattening sincethe concept
of hierarchical states does not existin SDL.

Thestate chart Local Station Figure 665 contain ahierarchical statewith
sub states and need to be flattened when converted to SDL.

LocalStation

CardEntry/outputEnterCode

WaitCode

WanKey1 WaitKey3
Reset

WanKey2 &W aitkeyd

Key/outputCardAndCode

Ok/outputUnlock
Opened/outputLock
W

aitOpened

Figure 665: The Sate Chart Local Sation

The behavior of the SDL process L ocal Station Figure 666 is the behav-
ior defined in the state chart L ocal Station. The processiis flattened and
gives astraight forward view of the behavior. To increase traceability

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

between the state chart and the SDL processthe converter functionality
provides comments on states and transitions which are related to any hi-
erarchical state.

Process Local_Station

,,,,,,,,,,,,

(Idle) (Waﬁ\tl{ayl }——iSubstate of WaitCode (WaitKeyZ }f—ESubstate of WaitCode

‘C ardEnte

[L L
EnterCode (WaleeyZ) (1de) WaitKey3 Idle

(WaitKays}--i Substate of WaltCode. (WaitKEy:i } Substate. of WaltCode

= T

Reser <-----| i From state WairCede

Key

Key

[Reset rﬁﬁiFrum state WaitCode

[Reset ””riFrum state WaitCode

Key

Key

WaitF eyd Ide

‘NOk ‘Ok ‘Opanad

(IL) [[

[Reset <—----| i From state WairCede

Unlock Lock

Figure 666: The SDL process Local Station

Mapping a Passive Object

A passive object isan object that does not have any thread of control or
spontaneous behavior of its own. A passive object is often used to en-
capsulate a certain amount of information that is needed in the system.
In the context of distributed systemsit is often useful to classify the pas-
sive data descriptionsinto two broad classes depending on the way the
datais used: external data and internal data

» Theexternal dataisfocused on describing the dataunitsthat will be
transported across the system when that application executes. In an
application where the different components execute in different

July 2003 Telelogic Tau 4.5 User’ s Manual 3781

Chapter 75 Object Design

3782

memory spaces, and maybe even on different hardware, thereisa
need to consider transportation format and maybe even coding/de-
coding of the data. Often the description of external dataisfocused
on the information contents of the data units and not very much on
the operations that can be performed on the data units. Typical ex-
ample applications where external datais very common includes
protocols in telecom applications. A common property of thiskind
of dataisthat they are usually structuredin trees, in an object model
often in aggregation hierarchies, and not in graph structures.

» Theinternal datais characterized by the fact that it is used to de-
scribe information that the application needs to do itswork. Typi-
cally the datais localized to one concurrent execution unit. Thein-
ternal data units are thus used to store rather than to transport data.
Some typical examples are data bases and complex data structures
in conventional program units. A local dataunit istypically not cop-
ied from one component to the other. Instead operators are used to
access the data unit.

Aswill be seen in the next sections the mapping of passive objectsto
SDL datatypesis dlightly biased towards the external data view of pas-
sive objects, the mapping to ASN.1 data typesisvery biased to external
data view, and the mapping to C data typesis dightly biased towards
the internal data view of passive objects.

Mapping Objects to SDL Structs

In general, the SDL construct that can be used as the design representa-
tion for aclassisan SDL STRUCT. Thisis exemplified in Figure 667
below.

Personinio
N NEWTYPE Personinfo STRUCT
ame Name;
— Age;
Age ENDNEWTYPE;

Figure 667: Mapping a passive object to a STRUCT type

In this mapping all attributes of the class are mapped to fields of the
STRUCT.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

Attribute Data Types

The attributes of a class may have data types associated with them. In
general there are three ways to handle these data types:

» Defining the data type in the analysis model.

» Giving an abstract definition in the analysis model and making afi-
nal decision in the design model.

» Consider it to be a design issue and give no definition of the data
typein the analysis model.

Asusual the choice is a matter of personal taste but should be directed
by the general ideathat the analysis model must be compl ete enough to
be understandable by itself, but as small as possible to facilitate over-
view and ease of use.

The default mapping in SOMT isasimple literal mapping of whatever
existsintheanaysismodel to the design model in SDL. See Figure 668.

Personinio
N N’\I?WTYPE Personinfo STRUCT
ame ame;
—_—
A Date AbstractDate;
Date: AbstractDate Age integer;
Age: integer ENDNEWTYPE;

Figure 668: A data type mapping example

A special case which might be of interest in the analysisis when more
complex datatypes like lists or sets are used. SOMT treats this type of
datain the same way as elementary types are treated.

Mapping Operations

When aclassis mapped to adatatypein SDL there exists several ways
to map the operations of the class. Operations could be mapped to:

Operators described by (textual) operator definitions
Operators described by operator diagrams
Operators described using C code

Procedures described in SDL

External procedures

Telelogic Tau 4.5 User's Manual 3783

Chapter 75 Object Design

The default mapping used by SOMT isto map operationsto SDL oper-
ators with operator diagrams.

Operators Described by Operator Definitions

Operators described by operator definitionsis the simplest choice. Con-
sider the Personinfo class as defined in Figure 669.

Personinfo

Name : charstring
Age: integer

IncreaseAge

Retired: boolean
Figure 669: A class with operations

This object has two operations: IncreaseAge and Retired which are in-
tended to increase the age of the person with one, and to check if the per-
son has reached the age where he/she has retired from his job.

Figure 670 shows how a mapping of operations to operator definitions
can be done.

NEWTYPE Personinfo STRUCT B
Name charstring;
Personinfo Age integer;

- OPERATORS
Name : charstrlng IncreaseAge: Personinfo -> Personinfo;
— Retired: Personinfo -> boolean;
Age: integer OPERATOR IncreaseAge;
FPAR pra 1 Personinfo;
IncreaseAge RETURNS Personinfo;
i ENDOPERATOR IncreaseAge;

Retired: boolean OPERATOR Retired;

FPAR parl Personinfo;

RETURNS boolean;

ENDOPERATOR Retired;

ENDNEWTYPE;

Figure 670: Data type with operator diagrams implementing the class operations

3784 Teldlogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

Operators Described by Operator Diagrams
Operators described by operator diagrams is another alternative.

If amapping to SDL isdone using operatorswith operator diagrams, the
SDL will look likein Figure 671.

NEWTYPE Personinfo STRUCT operator
Name charstring;
Personinfo Age integer; IncreaseAge
: OPERATORS
Name : charstring IncreaseAge: Personinfo -> Personinfo;
— Retired: Personinfo -> boolean;
Age: integer OPERATOR IncreaseAge REFERENCED
OPERATOR Retired REFERENCED;
IncreaseAge ENDNEWTYPE; operator
. Retired
Retired: boolean

Figure 671: Data type with operator diagrams implementing the class operations

July 2003

SDL Operators in General
Some things worth noting about SDL operators are:

* AnSDL operator can only be used within an expression, e.g. “var:=
oper(1)+1".

» All operators must return aresult.

* Operators can not have IN/OUT parameters. All parametersare IN
parameters.

A consequence of thisisthat an operator cannot both modify an object
and return aresult. The operators can thus be divided into two classes:

* Maodifiers, that modify the object
« Extractors, that extract information from the object but does not
modify it

The modifiers are defined as:

ModOp: ObjType, Pltype, P2type -> ObjType;
and used as

MyObj := ModOp(MyObj, pl, p2)
An extractor would be defined as:

ExtrOp: ObjType, Pltype, P2type -> ResultType;
and used as

Result := ExtrOp(MyObj, pl, p2)

Telelogic Tau 4.5 User's Manual 3785

Chapter 75 Object Design

However, SOMT alows away to overcomethe third aspect above. If a
C implementation is used as discussed below, the restriction that oper-
ators cannot modify the parametersis somewhat relaxed, since the data
type itself can be defined using a pointer and then whatever is pointed

at can of course be modified by the operator.

Operators Described Using C Code

The second mapping possibility for object model operationsisto map
them to SDL operators with C implementation. See Figure 672.

NEWTYPE Personinfo STRUCT N
Name charstring;
Age integer;
OPERATORS
IncreaseAge: Personinfo -> Personinfo;
Retired: Personinfo -> boolean;

Retired: boolean

[*#ADT(BP)
Personinfo #HEADING
. . #EPersonInfo) #(IncreaseAge)(p #(Personinfo));
Name : charstring #(boolean) #(Retired)(p #(Personinfo));
Age: integer #BODY
#(Personinfo) #(IncreaseAge)(p #(Personlinfo
IncreaseAge {() #(ge)(p #()

}
?(boolean) #(Retired)(p #(Personinfo))

}
*|

ENDNEWTYPE;

Figure 672: Data type with C implemented operators

Procedures Described in SDL

The third way to implement operations of aclassisto use SDL proce-
dures. In this case the definition of the Personinfo class would be like

in Figure 673.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

Personinfo IncreaseAgeg
. NEWTYPE Personinfo STRUCI
Name : charstring Name charstring;
. — Alge integer;
Age: integer ENDNEWTYPE;
IncreaseAge Retired
Retired: boolean

Figure 673: Data type with procedure implementation of operations

Some differences when procedures are used compared to when opera-
tors are used:

Procedures can use both IN parameters, IN/OUT parameters and a
return value.

There is no syntactic relationship between the procedure and the
data type definition.

Procedures can be used in two different ways:
— using special procedure call symbols (like in Figure 674).
I

IncreaseAge
(personl

I
Figure 674: Procedure call symbol

— inexpressions with a syntax as the following example:
ret:= CALL retired(pl)

External Procedures

The fourth way isto implement the operations as normal C functions.
These functions correspond in SDL to external procedures. For exam-

ple,

to implement the 1ncreaseage operation, one could have the fol-

lowing C function (the Personinfo data type would have to be specified
asaC type):

July 2003

void IncreaseAge (PersonInfo *p)

(p->age) ++;

Telelogic Tau 4.5 User's Manual 3787

Chapter 75 Object Design

3788

External procedures can be declared intext symbols, and they are called
asif they were normal SDL procedures, as shown in Figure 675. “Map-
ping Passive Objectsto C” on page 3795 gives more details about map-

ping operationsto C.

PROCEDURE IncreaseAge;
FPAR IN/OUT Personlnfo;
EXTERNAL;

IncreaseAge
(personl

Figure 675: External proceduresin SDL

Mapping Aggregations

A common situation is that the information used by a system hasto be
structured into some kind of tree structure. In the analysis this will ap-
pear as an aggregation hierarchy of passive objects. An exampleis

shown in Figure 676.

Personinfo

¢

[CardInfo

[Codelnfo

Id

Digits

Figure 676: An aggregation of passive objects

If the Personlnfo object is mapped to a struct the aggregation would be
visiblein the design model asfieldsin the struct the sameway attributes

would be mapped. The mapping of the Personinfo object from

Figure 676 into an SDL diagram is shown in Figure 677.

Telelogic Tau 4.5 User's Manual

July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

NEWTYPE Personinfo STRUCT
CardInfo Cardinfo;
Codelnfo Codelnfo;
ENDNEWTYPE;

Personinfo
—
Cardinfo [Codelnfo
Id Digits

Figure 677: The SDL mapping of a passive object with aggregation

A common specia caseiswhen thereis amultiplicity associated with
the aggregation as in where one person can have more than one card.

Personinio

S

*

[CardInto

Id

Figure 678: An aggregation with associated multiplicity

In general the multiplicity implies that thereis alist or set of elements
associated with the aggregation. There are several mappings to SDL
possible, for example based on:

» Standard SDL generators like:

— Array

— Sring

— Other datatypes as described in chapter 2, Data Types

» A user-defined C implementation of lists

Telelogic Tau 4.5 User's Manual 3789

Chapter 75 Object Design

The default mapping in SOMT isamapping to atype called “xxxList”,
where “xxx” isthe name of the class. In Figure 679 the mapping of the
Personinfo typeisillustrated.

——» | CardInfo CardInfoList;

Personinfo newtype Personinfo struct
endnewtype;

>

*
[Cardinfo

Id

Figure 679: An SDL mapping an aggregation with multiplicity other than one

The “xxxList” type will then have to be designed separately. One sim-
pleway isto usean SDL string asin Figure 680 for the CardinfoList
type.

string(CardInfo, EmptyCardinfoL)
endnewtype;

newtype CardInfoList B‘

Figure 680: An SDL implementation of a list using the string generator

Another special caseisgiven by recursive data structures that are used
to describe tree structures. In Figure 681 asimplerecursivetreeisillus-
trated. In general thistype of tree can of course also include amultiplic-
ity other than one.

free

01 newtype TreePointer :

Ref(Tree)
endnewtype;

newtype Tree struct
— next TreePointer;

leaf Leaf;
| endnewtype;

newtype Leaf struct
Leat id

Id endnewtype;

Figure 681: A recursive object model

3790 Teldlogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

Due to the lack of pointersin SDL, thistype of structure can normally
not be defined in standard SDL-92. However, SDL tools may offer tool-
specific pointer generators that can be used to represent the above tree.
Figure 681 shows how the recursive data structure can be represented
with help of the ref pointer generator of the SDL suite.

Inheritance

Inheritance in an object model is used to model “is-a’ relationships. In
practise the inheritance shows how attributes, operations and associa
tions are inherited from a superclass to the subclasses. An exampleis
shown in Figure 682 which models the fact that both the users and op-

erators are persons.
Person
Name
Age
User Operator

Figure 682: Inheritance relations

When mapping classesthat inherit other classesto SDL datatypesthere
are three mechanisms that can be used:

* Flattening

» Delegation

» The SDL inheritance concept

Flattening means essentially that all operators, attributes and associa-
tions are copied from the superclass to the subclasses. In the example
abovethisstrategy would imply that the SDL representation of the User
class might look like in Figure 683.

newtype User struct
Name charstring;
Age integer;
endnewtype;

Figure 683: Representing inheritance using flattening

July 2003 Telelogic Tau 4.5 User's Manual 3791

Chapter 75 Object Design

3792

Using delegation to represent inheritanceis essentialy to replacethein-
heritance hierarchy with aggregation hierarchies. When using this strat-
egy the SDL representation of the classesin Figure 682 will be asillus-
trated in Figure 684.

Name charstring; person Person; person Person;
Age integer; endnewtype; endnewtype;

newtype Person struct, newtype User strucqﬁ newtype Operator struct ﬁ
endnewtype;

Figure 684: Using delegation to represent inheritance

When using the datatypes defined asin Figure 684, note that the syntax
for accessing the attributes will of course show the delegation strategy
used. For example, in order to access the name attribute of a User acon-
struction like “uservar!person!name’” will have to be used.

SDL includes an inheritance concept for inheritance between data
types. Unfortunately the inheritance between data types is an inherit-
ance of operators only which limits the usefulness of the SDL inherit-
ance. For more information about inheritance between SDL data types
see “Inherits’ on page 70 in chapter 2, Data Types.

Multiple inheritance implies that attributes, operations and association
areinherited from more than one superclassasillustrated in Figure 685,
that models the fact that a user is both a person and a card holder.

Person Cardholder

N

User

Figure 685: Multiple inheritance example

When mapping classes with multiple inheritance to SDL both the flat-
tening and delegation strategy works fine (except for name clashes
when using the flattening strategy) but the SDL inheritance does not in-
clude multiple inheritance so it can not be used. In Figure 686 the dele-
gation strategy is used to map the User class from the previous example
to SDL.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

cardholder CardHolder;
endnewtype;

newtype User struct
person Person;

Figure 686: Mapping multiple inheritance using delegation

Delegation is the default mapping of inheritance used in SOMT.

July 2003 Telelogic Tau 4.5 User's Manual 3793

Chapter 75 Object Design

Mapping Passive Objects to Signals

A special kind of passive objectsin the analysis object model arethe ob-
jectsthat are used only for communication, either between the system
and its environment or between modules within the system. For exam-
ple, when defining the use casesit is useful to show the relations among
the events using an object model. It is especialy useful if there arein-
heritance relations among the events as shown in Figure 687. The cor-
responding SDL signal definitions are shown in Figure 688.

Card

No
[Commercial_ SpecialCard
CreditCard
Company ExtendedId

Figure 687: Object model describing communication events

Thereis often a choice of whether to map a passive object used for com-
munication to a struct datatype or to asignal. Thisis one of the design
decisions that has to be taken during the object design.

signal Card(No);
signal CommercialCard inherits Card adding (Company);
signal SpecialCard inherits Card adding (ExtendedId);

Figure 688: SDL signal definitions corresponding to the object model in
Figure 687

3794 Teldlogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

Mapping Passive Objects to C

Passive objects can a so be mapped to C datatypes and functions. In C,
classes correspond to types, attributes of aclassto fieldsin struct types,
and operations to functions.

typedef struct {
Personinfo char *name;

int age; } Personinfo;

Name : charstring
Age: integer ™ void IncreaseAge (Personinfo *);
IncreaseAge

int Retired (Personinfo *);

Retired: boolean

Figure 689 Mapping a passive object to C

Figure 689 shows a possible mapping of class Personinfo to C. Note
that in the mapping of the operations, a parameter is present to identify
the Personinfo object.

To represent aggregations in C, the same mechanisms as described in
“Mapping Aggregations’ on page 3788 can be used. When mapping in-
heritance to C, the flattening and del egation mechanisms described in
“Inheritance’ on page 3791 can be used.

When mapping associations to C, pointers are very powerful.

Figure 690 shows an example of a one-to many association that is
mapped to alinked list in C. Note how the role name has been used in
the mapping.

typedef struct PersonList {
struct PersonList * next;

Person | employee Company | Ferson *employee;
* employer } PersonList;

typedef struct {
PersonL.ist *employeel ist

} Company;

Figure 690 Mapping an association to C

The SDL suitehasfacilitiestoinstantiate classesthat have been mapped
to C, and access their attributes and operations from SDL. Thisis de-
scribed more detailed in chapter 2, Data Types.

July 2003 Telelogic Tau 4.5 User's Manual 3795

Chapter 75 Object Design

3796

Note:

Try to avoid pointersto datain other SDL processes! Datainconsis-
tency will occur if the same data can be read/written by more than
one SDL process at the sametime. This can be achieved by avoiding
pointersin parameters of signals and remote procedures.

Figure 691 showsan SDL fragment that usesthe C typesfor Personinfo
of Figure 689. The cstring2cstar operator converts an SDL Char-
string to C'schar *. Operations are called by means of SDL proce-
dure calls. Note al so the address operator ‘&' in the call to

IncreaseAge.
ersoniname :§
) DCL
C?B%T]%ngr%a person Personinfo;

ersonlage
P = 64g

IncreaseAge
(&person

Figure 691 Using C type Personinfo in SDL

The choice between the SDL struct representation of classes and the C
code representation isto some extent amatter of taste. Thereisatrade-
off between simplicity and expressiveness. The SDL struct definitionis
very simpleand all SDL based tools can completely analyze and manip-
ulate this type of data. When using a C implementation, you take over
some of the responsibilities from the tools. This means more work for
you, but also a possibility to define in detail what you want.

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

Mapping Passive Objects to ASN.1 Data Types

An analysis object can al'so be mapped to an ASN.1 datatype. The
ASN.1 SEQUENCE construct corresponds best to a passive object with
attributes. The most basic exampleisillustrated in Figure 692 below.

Personinfo
Personinfo ::= SEQUENCE {
Name name,
i » date AbstractDate,
Date: AbstractDate age INTEGER }
Age: integer

Figure 692: Passive object mapped to ASN.1

The ASN.1 SEQUENCE can be compared with the SDL STRUCT, so
most of chapter “Mapping a Passive Object” on page 3781 on mapping
classesto STRUCTsisalso valid for ASN.1. The few differences are
treated here.

The largest differenceisthat ASN.1 has no possibility to specify oper-
ators. Therefore the operations of a passive object should be inserted in
some dummy SDL type, while the attributes are mapped to a different
ASN.1 type, asillustrated below.

Personinfo ::= SEQUENCE {

Personinfo name |A5String,
age INTEGER }

Name : charstring

Age: integer —_—
IncreaseAge newtype PersoninfoOperators
operators
Retired: boolean IncreaseAge: -> ;
Retired: -> Boolean;
endnewtype;

Figure 693: Passive object with operators mapped to ASN.1

The second difference isthat ASN.1 has no concepts for inheritance.
Therefore only flattening and del egation can be used to represent inher-
itance. ASN.1 has a special construct, COMPONENTS OF, that is use-
ful to represent flattening. An example of thisisgiven in Figure 694 be-
low.

Telelogic Tau 4.5 User's Manual 3797

Chapter 75 Object Design

3798

Person
Name Personlnfo ::= SEQUENCE {
name ,
Age age }
\ e
User ::= SEQUENCE {
User COMPONENTS OF Person,
userld }
Userld

Figure 694: The use of COMPONENTS OF to represent inheritance

The SDL suite only allows use of ASN.1 in separate ASN.1 modules,
that have to be included into SDL with the IMPORTS construct.

Mapping Associations

Associations are in object models used to represent relationships be-
tween objects of different classes. The instances of associations are
called links. An exampleisgivenin Figure 695. In this example the as-
sociation is arelationship between Cards and Codes that describes that
acard must have exactly onevalid code. In the object model thisisrep-
resented by an association called Valid between the classes Card and
Code.

Card vaid 41 [Code

Figure 695: An example of an object model with associations

In the mapping to SDL, the information about the associationiskept in
one or both of theinvolved classes, in the examplein Card, in Code, or
in both.

There are several aspects of associations that are important to consider
when mapping an association to SDL:

» Whether involved objects are active or passive
» The structure of the associations: graph vs. tree
» Intrusive vs. non-intrusive representation

e Thetraversal direction, one-way vs. two-way

» Themultiplicity of the association

» Role names vs. association names

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

» Association attributes/association class

Therest of this section will discusstheseissues and how they influence
the mapping to SDL.

In general, associations form agraph structure among the objectswhere
each object may have associations to a number of the other objects.
Mapping associations to SDL impliesin most cases that some kind of
object references or pointers must be used.

In general, associations between active objects indicates that there is a
possibility for the objectsto communicate. In SDL this meansthat there
must exist acommunication path (signal routes and channels) between
the corresponding SDL concepts (usually processes). In addition, an as-
sociation between two active objects may al so need to berepresented by
aPld variable in one (or both) of the processes.

There are however cases when Plds should not be used: asPId isacon-
cept that only existsinthe SDL world, associationswith objects outside
the SDL system cannot be represented with Plds. Instead, datatypes de-
fined in protocols define how to refer to external objects. For example
in the TCP/IP protocol, TCP services are addressed by a host address
(for example 3.1.29.1) and alocal port number. In an SDL implementa-
tion of aTCP serviceit would beimpossibleto refer to aservice outside
the SDL system by means of aPId; the host number and the port number
must be used instead.

Since strict SDL does not include a pointer concept, associations with
passive objects must be represented by other datatypes. Alternatively a
C representation can be used when mapping the objectsto SDL asdis-
cussed in “Mapping Objectsto SDL Structs’ on page 3782.

Thereisone specia case where there is no need for special datatypes.
Thisisthe case when the associations form apuretree structure and fur-
thermore all associations are one-way one-to-one associations with a
traversal direction from the root to the leaves. In this case a strategy
based on mapping classesto SDL structs can be used, i.e. areferenceto
an object isin SDL represented by the object itself.

Sometimes an association isimplicitly represented in the class defini-
tions themselves, which is called an intrusive representation. In this
casetheassociation does not have arepresentation of itsowninthe SDL
model. For example, if the classes are represented by SDL structs then
the association can be represented by afield in one (or both) of the

Telelogic Tau 4.5 User's Manual 3799

Chapter 75 Object Design

3800

structs. Asan examplethe Valid association from Figure 695 is mapped
in Figure 696 to afield in the struct that represents the Card.

newtype Card struct
Valid Code;
endnewtype;

Figure 696: Mapping an association to a field in a struct

A non-intrusive representation of the association, on the other hand,
does not rely on fields in structs that represent classes or any similar
strategy. Instead the association isexplicitly represented in SDL. A con-
venient way to accomplish thisis to use the SDL array generator as ex-
emplified in Figure 697.

newtype Valid array(Card, Code) endnewtype,h‘

Figure 697: A non-intrusive mapping of an association using an SDL array

The design choice to make when choosing a mapping to SDL depends
ontheway it will be traversed in the application: isthe traversal of the
association awaysin one direction or isit traversed in both directions.
Thisisusually not relevant in the analysismodel but influencesthe SDL
representation. For example if the Valid association in Figure 695 isa
one-way association only traversed from the Card to the Code then the
SDL representation in Figure 696 is all that is needed. If, on the other
hand, the association is also traversed from the Code to the Card then
the Code representation will aso have to contain an element corre-
sponding to the association (note that this requires a C implementation
due to the lack of pointersin SDL) or aternatively a non-intrusive rep-
resentation can be used.

The multiplicity of the association defines how many instances of one
class can be associated with an instance of the other class. A one-to
many association requires alist or set representation. Thisisessentialy
the same as an aggregation with a multiplicity greater than one, which
isdescribed in “Mapping Aggregations’ on page 3788.

Role names are an alternative that can be used instead of or in combina-
tion with association names. A roleisone end of an association, and the
role name uniquely identifies the object from the perspective of the ob-

Telelogic Tau 4.5 User's Manual July 2003

Mapping Object Modelsto SDL Design M odels

July 2003

ject at the other end. An exampleisgivenin Figure 698 where the asso-
ciation isidentified using role names instead of an association name.

Person employee employer Company
*

Figure 698: An association that uses role names instead of an association name

In many cases the role names are more convenient and less confusing
than an association name. In amapping to SDL it is preferred to use the
role name as e.g. the name of afield in a struct rather than the associa-
tion name. As an example consider Figure 699 where the Person object
from Figure 698 is mapped to a struct in SDL and therole nameis used
asthe field name.

newtype person struct
employer Company;
endnewtype;

Figure 699: SDL mapping of a an association using therole
name instead of the association name

An association may have an associated class asillustrated in
Figure 700.

Person works-for Company
* |

|
Employment
Salary

Report

Figure 700: An example of an association class

Theimplication of thisisthat there are some attribute values and/or op-
erations associated with each link of thisassociation classthat exists be-
tween the two objects. When mapping this construct to SDL there are
two strategies: anintrusive representation and an explicit representation
of the association class. If an intrusive strategy is used thereis no ex-
plicit representation of the association so the attributes/operations must

Telelogic Tau 4.5 User's Manual 3801

Chapter 75 Object Design

3802

instead be associated to one of the objectsinvolved in therelation. This
strategy ispossibleonly if at |east one of the end pointsinvolved hasthe
multiplicity “1”. In the example in Figure 700 it would be possible to
incorporate the association class into the Person object since thereis
only one company for each person in this model. A structured way to
represent thisin SDL isillustrated in Figure 701.

newtype Employment struct
newtype Person struct ﬁ Salary;

employment Employment; operators
endnewtype; Report;
endnewtype;

Figure 701: The association class from Figure 700 mapped into
the Person object with an intrusive strategy

The second alternative is essentially to view the association class asa
regular class and map it to SDL using any of the strategies that can be
used to map regular classesto SDL. Thisisnecessary for many-to-many
associations.

The default mapping of associations between passive objectsin SOMT
isto usetheintrusive strategy where classes are mapped to SDL structs
and thus associations are mapped to fields in these structs. The name of
thefield in the struct is the corresponding role name if arole name ex-
ists, otherwise it is the association name. If there is no name specified
for one of the roles and furthermore no name for the association, then
no field is generated in the corresponding struct, and the association is
considered to be a one-way association.

Summary of Mappings from Object Models to
SDL

There are anumber of possible SDL target conceptsthat an analysis ob-
ject can be mapped to. The choice of target depends mainly on proper-
ties of the object:

» Active objects are mapped to processes or process types

« Aggregations of active objects are mapped to blocks or block types

» Passive objects are mapped to struct datatypes (or to signalsif they
are used for communication only)

Telelogic Tau 4.5 User's Manual July 2003

Describing Object Behavior

» Associations between passive objects are mapped to fieldsin struct
datatypes, or to new data types that explicitly represent the associ-
ation

» Associations between active objects are mapped to communication
paths (and possibly to variables within processes)

Describing Object Behavior

July 2003

Once the type of SDL target concept has been chosen, the behavior of
the object can be defined. Processes and process types are defined by
creating the process graphs and ADTs are preferably defined by giving
operator diagrams for the operators.

In practise, the major task of the object design activity is the definition
of the behavior of SDL processessincethey arethe SDL representation
of active objects that tend to have a more complex behavior than the
passive objects. SDL process graphs provide a graphical notation for
extended finite state machines, i.e. finite state machines with variables.
In Figure 702 an example of asmall process graph that illustrates some
of the constructs possiblein an SDL processis shown. More details
about SDL and SDL process graphs are provided in section “SDL" on

page 3685.

Telelogic Tau 4.5 User's Manual 3803

Chapter 75 Object Design

Variable
declaration

3804

Start

Process MSAP_Manager%—%ﬂﬂ” state
N
S) idle - State
: T symbol

(idle) MDATre@)

Input

via Intern

del ﬁ 4
d MSDUType; e) IDAT(d) (idle) Output

/

Decision
Figure 702: An SDL process graph
The possible inputs to the process design task areillustrated in

Figure 703. The possible inputs directly from the system analysis/de-
sign are:

* MSC use cases from the design use case model or analysis use case
model

» Possibly astate machine, described by a state chart, giving an over-
view of the behavior if thiswas defined in the system analysis

The inputs resulting from the mapping of object modelsto SDL are:

» Thesigna and/or remote procedure call interface of the process

» Some process variables defined by the attributes of the object model
class

Based on these inputs the goa of the process design isto create a pro-
cess diagram that defines the behavior of the process.

Telelogic Tau 4.5 User's Manual July 2003

Describing Object Behavior

July 2003

Use
Cases

[Signal/RPC
Interface

or PrOCess
ocess ,
Desgn | ™Piagram

ariables

State

NY/

Machine

Figure 703: Inputs and output of the process design task

A useful way to structure the tasks that are needed to create acomplete
process are;

1. Createafirst version of the processthat definesthe control structure
in terms of states and transitions. There are two subtasksthat in
practise are performed more or lessin parald:

— Defining the control structure
— Defining data aspects.

2. Elaborate the process by e.g. considering secondary use cases and
exceptional cases.

The First Version — Defining the Control
Structure

The control structure of an SDL process is defined by the states and the
transitions of the process. Ideally the states of a process represent what
the environment might expect of the process. Different states represent
different stable phases in the life-time of a process and depending on
what state aprocessisin it will respond differently to requests and in-
puts from the environment.

One straight-forward way to find the states of a processisto analyzethe
use cases. Since the use cases show an externa view of the processes

Telelogic Tau 4.5 User's Manual 3805

Chapter 75 Object Design

3806

they reflect the expectations the environment can have on the behavior
of the process. Both directly in terms of sequences of inputsand outputs
the process has to conform to but also indirectly in terms of states since
each input of a process must be preceded by a state.

So, the task of designing the control structure of the process starts with
selecting a set of typical and essential use cases. If the use casesarein
MSC format and on an appropriate abstraction level that includes the
processto be defined, the use cases can be analyzed directly. If not they
should be rewritten to clearly show the responsibilities of the processin
guestion.

Analyze each use casein terms of states and transitions for the process.
Incrementally build up the process graph by adding states and transi-
tions. Start in the beginning of the use case and figure out what state the
process must be in. Manually walk through the use case, checking the
process defined so far and incrementally adding states and transitionsto
the process graph. Check for each transition in the use case (i.e. input
followed by one or more outputs by the process in question) that the
transition existsin the process graph. If it does not exist, add it. Take a
look inthe use caseto seeif there is an external need for a state change
in the process: has the expectations on the process changed after this
transition in the use case? If no: go back to the same state again. If yes:
isthere an aready defined state that may fit these expectations? If there
isone, useit. If thereis no such state, create anew one and giveit a
name that describes the expectations. Continue until all use cases has
been analyzed.

When adding transitions do not forget to check with the mapping from
the object model if it isaregular transition with input and outputs or a
remote procedure that isto be added. Also check if state lists (and “*”
states) can be used as the starting state of the transition.

During the design of the process also consider what part of the control
to put in the process graph states and what to put in variable values. In
general it is recommended to define the control flow using the process
graph states, but there are cases when it is better to put parts of the con-
trol in data valuesinstead of as explicit process states. One example is
loop variables that count the number of occurrences of something and
is used to exit the loop after a certain number.

One problem that might occur during the use case analysisis that two
of the use cases seemto bevery difficult to combinein the same process

Telelogic Tau 4.5 User's Manual July 2003

Describing Object Behavior

July 2003

since they require different states of the process. Thisis an indication
that some restructuring is needed and that maybe the process should be
divided into different processes or into a set of services.

When finished with the analysis of the selected use cases the result
should be a skeleton process graph that contains states and transitions
with mainly inputs, outputs, remote procedures, timer actions and afew
tasks and decisions that deal with control variables. Make sure that the
state/transition structure makes sense. The states should represent exter-
nal expectations on the behavior and their names should reflect it. This
isan important issue, in particular for the possibilities to maintain the
process.

The next step is now to consider the data aspects of the transitions.

The First Version — Data Aspects

Often there will be three kinds of variablesin an SDL process: tempo-
rary variables used to handle the parameters of signals, control variables
likeloop counters as discussed above, and “real” variablesthat storein-
formation about some entity that will be accessed |ater during the exe-
cution. Most of the “real” variables should have been identified during
the analysis are given by the mapping from the object model to SDL.
The task now isto define how the “real” variables are affected by the
transitions. Add temporary variables handling the parameters of the sig-
nals when needed and tasks with expressions that define the needed
computations. If complex computationsare needed it isgood practiseto
hide them in procedures or operators. Thetransitions should preferably
stay fairly simple.

Thefirst version of the processis considered to be finished whenitis
possibleto verify that the process fulfills the selected use cases, e.g. by
running asimulator or verifying M SC use cases (compare with “Design
Testing” on page 3810). Both the control and the data aspects should be
dealt with.

Now it istimeto start with the elaboration of the process.

Elaboration of the Process

The purpose of thefirst version of the process wasto define the control
structure of the process and make sure that thisis able to cope with the
requirements from the most typical and important use cases. The pur-

Telelogic Tau 4.5 User's Manual 3807

Chapter 75 Object Design

3808

pose of the elaboration isto complete and refine this structure to make
the process definition reliable and facilitate the maintenance. There are
several aspectsto cover in this elaboration:

» Secondary use case and exceptional casesin primary use cases
» Simplification e.g. using state lists and procedures

» Robustness and completeness of the process

» Restructuring for inheritance and reuse

Themajor topic for the elaboration task isto consider the secondary use
casethat was not treated in thefirst version and al so the exceptional cas-
esof thea ready treated use cases. Thisisdone essentialy the same way
as when creating the first version as described in “The First Version —

Defining the Control Structure” on page 3805. The use casesarewalked
through by hand and the process graph is checked and possibly extend-
ed to cope with the new cases.

To enable the understanding of the process and thus also to makeit pos-
sibleto maintainit, it isimportant that the definition is as simple as pos-
sible. Thisisatopicthat isdealt with in the elaboration task. Procedures
can be used to simplify process definitions considerably by defining a
particular piece of code in one place and using it in several. Procedures
can also be used on ahigher level to indicate different phasesin the life-
time of the process. Using statelistsand “*” statesit isalso possibleto
simplify the definition of aprocess by defining transitions that are com-
mon to many statesin one place.

The robustness and completeness of the process must also be handled in
the elaboration. The strategy is essentially to make sure that the appro-
priate action istaken by the process, not only for the expected cases but
also for unexpected cases. So, for each state in the process and each in-
put signal/ remote procedure call possible; check that the action taken

makes sense. Also check the treatment of unexpected parameter values.

Another topic to be treated in the elaboration is to consider how to fa-
cilitate reuse of the created process. Is it possible to create a more gen-
eral process type by factoring out some parts of the definition and de-
fining a more general process type that can be specialized in other situ-
ations?

The elaboration isin practise an iterative process where all the aspects
above are treated more or lessin parallel. When the elaboration isfin-

Telelogic Tau 4.5 User's Manual July 2003

Describing Object Behavior

ished, the process definition is completed and is ready for integration
test. The module test should preferably already have been done at this
stage.

Operator Diagrams

When defining the behavior of passive datatypes defined in SDL the

preferred way to define the operator is using operator diagrams. An op-
erator diagram is essentialy aflow graph with a start symbol, symbols
defining the actions performed by the operation and one or more return
symbols. The symbols may for example be tasks with assignments or

decisions. An exampleisgivenin Figure 704 that showsthe operator di-
agram for an operator BirthDay that increases the age of a person by 1.

Operator BirthDay 1(1)

frmmmmm e C) ~<4———— start symbol
) L

PAR p person; E |
1
1

o
m
—
c
Y
Z
n

°
@
=
7]
o
=

plage := plage +1 ~——__| Assignmentin
task symbol

p

\\ Return symbol

Figure 704: An operator diagram

July 2003 Telelogic Tau 4.5 User's Manual 3809

Chapter 75 Object Design

Design Testing

3810

One of the major benefits with a design notation like SDL that has a
well-defined and complete semantics, is the possibility to test the appli-
cation already in the design activity. Thisisfeasible since the complete-
ness of an SDL desigh makes it possible to simulate the design taking
distribution and concurrence into account.

It isimportant to emphasis that the output of the object design activity
isnot only an SDL design but it is atested SDL design that has been
shown to fulfil its requirements. Thisimplies that the design testing is
an important task in the object design activity.

Testing Strategy

A traditional devel opment/test strategy can be described by a“V” asin
Figure 705. The design is performed top down, starting with a system
design where the magjor components and their interfaces are defined,
followed by a module design and an implementation phase where the
applicationisimplemented. Theimplementation of each moduleisthen
tested separately in amodule test and finally the entire system is tested.
The system test can also sometimes be divided into two parts, one fo-
cusing on theintegration of thedifferent modules and the other focusing
on testing the functionality of the complete system.

System Design System Test

Module Design Module Test

Implementation
Figure 705: The“ V' model of a traditional design/test strategy

Thismodel worksin practise fairly good but it has one problem: the
complete functionality is not tested until the system tests are performed
in the end of the devel opment/testing process. To some extent this prob-
lem can be overcomeby an iterative processthat includes more than one
“V" in adevelopment project. Using techniques like SDL this can be
even moreimproved by introducing one more line of testing in the mod-

e asin Figure 706.

Telelogic Tau 4.5 User's Manual July 2003

Design Testing

July 2003

Design System Test

Design Module Test

System Design Target System Test

Module Desi
oduleDegn Target Module Test

Implementation

Figure 706: Theimproved “ V" design/test strategy

The extraline of testing representsthe design level testing that isthe fo-
cus of this section. Therearetwo practical aspectsthat differentiatesthe
design testing from the traditional target testing:

» Itisperformed using asimulation of thedesigninstead of onthereal
application in its target environment:

» Itisperformed as part of the design activity instead of as a separate
testing activity performed after the implementation.

The second aspect isvery important. Problemsthat otherwise would not
show up until system test time is now found and solved during design
at amuch lower cost.

In the figure it may look like the testing effort has doubled in the im-
proved “V" strategy since there are now two lines of testing instead of
one. Thisisfortunately not the case. What has happened is that the ef-
fort of testing has switched from the target testing to the design testing,
making the total amount of testing more or lessthe same. There are sev-
erd reasons for this:

» Thecost of testing is smaller for design testing than for target test-
ing: the design testing on SDL level isvery easy to perform. Since
alarge portion of the testing is performed at the SDL level thisre-
ducesthe total testing cost.

» Thetarget testing can focus on the integration and targeting aspects
since the logic of the design has already been tested in the design
tests. In practice the target module testing can even be skipped if au-
tomatic code generation is used when producing the implementa-
tion.

Telelogic Tau 4.5 User's Manual 3811

Chapter 75 Object Design

3812

Test Case Sources
There are several sources from where the test cases may come:

e From Design Use Cases
e Internally developed during design
* From external sources.

The most important input, both to module and system test, isthe design
use case model from the system design. Thismodel should capture most
of the requirements on the system and using the implinksit is aso pos-
sible to trace the dependencies from the original requirements all the
way to the design use cases. Furthermore, the design use case should be
inaformat that is possibleto test more or less automatically against the
SDL system, like MSC or TTCN.

However, during the object design there are usually more test cases de-
veloped that tests other aspects of the design, and these form also an im-
portant part of the module testing tests.

The third source of testsis external sources. For example, in the tele-
communication areait is common to have standardized tests suited for
certain types of applications or interfaces. In other cases the customer
may have specified acceptance tests that the system must comply to be-
foreit is approved. These type of tests should of course also be part of
the design tests, in particular for system testing the external sources are
important.

It is convenient, but not necessary, if the same notation is used for the
design use cases, the tests developed during object design and the exter-
nal test suites.

Telelogic Tau 4.5 User's Manual July 2003

Design Testing

July 2003

Tools for Testing

To perform thetesting thereisaneed for tools, and fortunately there are
several tools avail able that make anumber of testing strategies possible:

e Manual or batch simulation of an SDL system using astandard SDL
simulator

» MSC verification and automatic testing using a state space explora-
tion tool

e Co-simulation of SDL and TTCN, using standard SDL and TTCN
simulators

Using astandard SDL simulation tool it is of course possible to manu-
aly simulate the test cases and check that the system performs as ex-
pected, but it requires quite alot of manual work. A better way isto pro-
duce test scripts that contain the simulator commands that are needed
and then execute them automatically in abatch mode and log the results
on alog file. To check the outcome of the test either the log files are
manually inspected or checked by a post processing tool that e.g. com-
pares the new log files with old, manually inspected log files.

Another approach to testing is to use a state space exploration tool that
can automatically check if an MSC is consistent with the SDL system.
The benefit with this method is that M SCs can be directly input to the
tool and checked and furthermore there is no need for a manual inspec-
tion of theresults: averdict can be automatically generated by the tool.
Thedrawback isthat somefeatureslike the combination of user-written
and automatically generated code can not always be handled by state
space exploration tools.

A third approach that is useful if thetests are defined using TTCN isto
use a co-simulation of an SDL system and a TTCN test suite as the
means to perform design testing. Essentially thisis similar to using an
SDL simulator alone, but instead of specifying the input as simulator
commands a TTCN simulator specifies the input to the SDL simulator
and checks the outcome of the test.

Telelogic Tau 4.5 User's Manual 3813

Chapter 75 Object Design

Test Practices

A common situation in particular when performing modul e tests is that
there is aneed to test one part of an SDL system in isolation from the
rest of the system. In an SDL system the part may be for example a
block, a process or a data type definition. The simplest way to accom-
plishthisin SDL isto use a package as a container of e.g. the block
(which in this case will have be ablock type) or data type and then use
aspecial test system to specify the test environment.

Asan example consider the DoorCtrl part of the access control system.
Assumethat this part isdesigned as ablock type“ DoorCtrI T” in a pack-
age DoorCtrlPack. To perform amodule test on this block the simplest
way isto create a special test system DoorCtri Test that instantiates the
DoorCtrlT and connects al its gates to the environment.

Consistency Checks

This sections describes some consistency checks that are useful to per-
form on the models produced in the object design.

e Check that all objects from the analysis object model has been im-
plemented in the design.

» Check that the design model iscompleteaccording tothe SDL rules,
e.g. that all processes have a defined behavior.

» Check that the design model correctly implementsthe requirements
from the design use cases using design level testing.

Summary

3814

The object design activity should produce a complete and tested design
of the system. The precise system and internal object structure as well
as the reuse structure are defined in this activity. Relevant parts of the
object models are mapped to SDL concept and then completed in an
SDL process design activity with design use cases as the main input.
Thisisdoneiteratively by starting with ainitial set of essential use cas-
es, making that part of the design complete and then testing the design
(verifying it against the use cases). The activity isfinished when al use
cases have been implemented and the final design has been tested
against al the use cases.

Telelogic Tau 4.5 User's Manual July 2003

	75 Object Design
	Object Design Overview
	Mapping Object Models to SDL Design Models
	Mapping an Active Object
	Mapping Active Objects with Inheritance
	Mapping Aggregations of Active Objects
	Mapping State Charts to SDL Process Graphs
	Mapping a Passive Object
	Mapping Objects to SDL Structs
	Attribute Data Types
	Mapping Operations
	Mapping Aggregations
	Inheritance

	Mapping Passive Objects to Signals
	Mapping Passive Objects to C
	Mapping Passive Objects to ASN.1 Data Types
	Mapping Associations
	Summary of Mappings from Object Models to SDL

	Describing Object Behavior
	The First Version – Defining the Control Structure
	The First Version – Data Aspects
	Elaboration of the Process
	Operator Diagrams

	Design Testing
	Testing Strategy
	Test Case Sources
	Tools for Testing
	Test Practices

	Consistency Checks
	Summary

