
July 2003 Telelo

Chapter
75 Object Design
This chapter gives you the rules for how to transform object models
to SDL design models. Mappings for active and passive objects and
associations are described and exemplified. How to define the be-
havior of an object is also discussed as well as a section on how to
test the design.

The chapter requires that you are at least reasonably familiar with
SDL.
gic Tau 4.5 User’s Manual ,um-st1 3771

Chapter 75 Object Design
Object Design Overview
The object design is the activity that completes the definition of the sys-
tem. It carries on where the system design finished and fills in the details
about object behavior and system structure. The object design is a cre-
ative activity that refines the object definitions and system structure tak-
ing at least three aspects into account:

• The system structure: where in the system is an object localized

• The reuse structure: is the object a subject for reuse internally within
the system or externally

• The precise definition of internal object structure, the behavior and
data aspects

There is a close relation between the system design and the object de-
sign, in the sense that both activities are dealing with the structure of the
system. The difference between the activities is mainly a difference in
the point of view. The system design takes a top-down look at the sys-
tem to identify subsystems and overall structures. The object design on
the other hand focuses on the objects and uses them as a starting point
for the refinement and structuring.

Figure 655: Overview of the object design activity

Object
Design

SDL Design

Design
Module

Structure

Design Use
Case Mod-

el

Architec-
ture Defini-

tion

System
Object
Model
3772 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Object Design Overview
In practice one of the major tasks of the object design is to define the
behavior of the objects. Essentially the object design can be viewed as
three sequential tasks that must be performed.

1. Map all the classes in the relevant part of the analysis object model
to suitable SDL concepts.

– Active classes are mapped to processes or process types and
passive classes are mapped to data types. This mapping is de-
scribed in “Mapping Object Models to SDL Design Models” on
page 3774.

– The localization of the process (type) or data type in terms of the
SDL package/system structure should be done according to the
design module structure and architecture definition from the
system design.

2. Choose a set of essential use cases and define the behavior of the
SDL processes and data types that implements these use cases. Con-
centrate on the normal behaviors and leave the exceptions for a later
step. The design of SDL processes is further discussed in “Describ-
ing Object Behavior” on page 3803.

– Note that this also includes a testing activity that verifies that the
SDL design implements the requirements from the use cases.
This is further described in “Design Testing” on page 3810.

3. Elaborate the design by introducing more use cases and refine the
SDL design to handle also these cases. Take care of exceptional sit-
uations like error handling etc.

– This elaboration is an iterative process where the design is in-
crementally developed until all requirements are implemented.

– Each iteration also includes a testing step where both newly im-
plemented and old functionality is checked.

– The elaboration can include both refining existing processes/
data types and introducing new process/types.

In a project where the design is split on several development teams the
iterations in the design will often have to be synchronized. This is fur-
ther discussed in chapter 77, SOMT Projects.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3773

Chapter 75 Object Design
Mapping Object Models to SDL Design
Models

In SOMT object design, an important step is the transformation of (parts
of) the analysis object model to an SDL system. This section describes
this transformation.

There are several aspects important in the transformation:

• How to map objects to SDL, taking into consideration e.g. whether
the object is active or passive

• How to represent associations in SDL

• How to preserve the inheritance/aggregation relations in SDL

The mapping to ASN.1 will also be discussed briefly.

Mapping an Active Object
Consider an object in the analysis model that has been found to be an
active object. How should this be mapped into the design model? The
default choice is to map this object as an SDL process type. The at-
tributes of the object will then be mapped to variables and the operations
will correspond either to remote procedures defined in the type or sig-
nals handled by the process type. As an example consider the Display-
Interface object in the Access control system. This object is responsible
for interfacing a display that is capable of showing a line of text to a us-
er. In the analysis object model this object may look like Figure 656. It
has one attribute, Text, and one operation, Display.

When mapped to an SDL diagram as a process type the result will be a
process type reference, as shown in Figure 657.

Figure 656: The DisplayInterface object

DisplayInterface

Text

Display
3774 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Now consider the case where the Display operation was defined to be
an asynchronous operation which is the default. If we now take a look
at the DisplayInterface process type definition we can see that it has a
variable called Text and a gate with the signal Display. This process
type definition is shown in Figure 658.

If, on the other hand, the Display operation was defined to be synchro-
nous (by giving the keyword sync after the operation name), then the
definition of the DisplayInterface process type would now also be dif-
ferent. It would contain a definition of the Display remote procedure in-
stead of a gate with a signal. See Figure 659.

Figure 657: The DisplayInterface process type

Figure 658: The DisplayInterface process type definition

DisplayInterface

Process Type DisplayInterface 1(1)

DCL
 Text;

Display
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3775

Chapter 75 Object Design
When mapping an object like the DisplayInterface, the design issue of
reuse shows up as a question of where to define the SDL object. If the
DisplayInterface class is considered to be a general class that is to be re-
used in different projects or by different development teams, the most
natural choice is to put the process type in a package that includes this
type definition and other related types that are to be reused in different
contexts. The design choice of what packages to use in a project was one
of the issues of system design.

If the DisplayInterface only is intended to be used in this project but it
is used in several of the blocks representing subsystems then there is
also a possibility to put the process type on the system level. This would
allow the type to be used in the entire system but it would not be conve-
nient to use it in other projects.

If the DisplayInterface is only to be used within the local block it can be
defined anywhere in the scope in question, even if it probably is a good
idea to keep all process type references on one page in the block dia-
gram.

Finally, if the DisplayInterface object is only to be used in one particular
place in the system, it is possible to define it as a process directly where
it will be used instead of as a process type. This would be done the same
way that it was mapped to a process type except that a process would be
generated instead of a process type. Sometimes this strategy is a good
idea since it slightly reduces the complexity of the system, however it is
only possible if the object is only used in one place in the system.

Figure 659: The DisplayInterface process type when mapped
to a process type with RPCs

Process Type DisplayInterface 1(1)

DCL
 Text;

EXPORTED
Display
3776 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Mapping Active Objects with Inheritance
Inheritance among active objects is common in object models and is
mapped directly to inheritance between the corresponding process
types. For example, when mapping the EnglishDisplay object from
Figure 660 to a process type, the result is as shown in Figure 661.

Mapping Aggregations of Active Objects
A fairly common structure is an aggregation with one assembly class
that contains a number of other object classes, the part classes1. This is
common for example when using container classes as abstract interfac-
es to a certain functionality. One example is given in a description of the
software in one part of the access control system: the part that controls
the access to one particular door in the building.

Figure 660: Object model with inheritance

Figure 661: Process type with inheritance

1. Terminology (assembly and parts classes) after [20] the “Object Model Notation
Basic Concepts”

Display

English_

Display

German_

Display

French_

Display

Italian_

Display

INHERITS Display;

Process Type EnglishDisplay 1(1)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3777

Chapter 75 Object Design
The most common mapping for this type of structure is to map the as-
sembly class to a block or a block type, depending on the strategy for
reuse that has been decided upon for the object.

One special, but fairly common, case is when the assembly object class
contains attributes. In this case there are two possibilities: either the ag-
gregation is considered as a “subsystem”, in which case the attributes
should be implemented by one of the parts classes, or the object should
in addition to the mapping to a block (type) also be mapped to a process
within the block that acts as a data server. This mapping follows the
same principles as was discussed in section “Mapping an Active Ob-
ject” on page 3774.

Another possibility is that the assembly object class contains opera-
tions. This implies that these operations should be included in the inter-
face of the block/block type. In the same way as when pasting as process
types there is a design choice involved here. Are the operations intended
to be synchronous remote procedures or are they asynchronous signals?
In this case it is also important to define where the operations are to be
implemented. Also in this case there are two choices: either the opera-
tions are implemented in one of the parts classes or a process is intro-
duced in the block that handles the operations the same way a data serv-
er process handles the attributes.

As an example consider the analysis model in Figure 662. The block
type DoorModule has both an attribute and an operation. A design
counterpart for this is shown in Figure 663 and Figure 664. The process
DoorModuleCtrl is the server process that handles the data and opera-
tions defined in the DoorModule analysis object.

Figure 662: An example of an aggregation of active objects

DoorModule

DoorName

CheckStatus

Lock_

Interface

Display_

Interface

KeyBoard_

Interface

DoorModule_

Ctrl

DoorName

CheckStatus
3778 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
The choice where to implement the operations and the attributes of the
aggregate class is depending on the intended meaning with the aggrega-
tion. In SOMT the recommended practise is to use aggregation in object
model that describes the architecture of a system as a “subsystem” or
“parts vs. whole” relation, meaning the aggregate class is completely
determined by its parts classes. In this case the operators and attributes
of the aggregate class should be implemented by the parts classes.

Note that this is an example where the attributes and operations of the
aggregate class DoorModule have been implemented by one of the part
classes, the DoorModuleCtrl class.

If the object that is mapped to a block type is a subtype of another object
in the object model, then the resulting block type will be defined as a

Figure 663: A block type reference for the DoorModule object

Figure 664: A block type with a data/operations server process

DoorModule

Block Type DoorModule 1(1)

DoorModuleCtrl

LockInterface DI:
DisplayInterface

KeyboardInterface
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3779

Chapter 75 Object Design
subtype that inherits a block type that corresponds to the supertype in
the object model.

Mapping State Charts to SDL Process Graphs
The principle of reusing as much information as possible of the infor-
mation gained during the analysis activities when working in the design
activities implies that an effort should be made to translate state chart
descriptions into SDL process graphs. For a thorough description of the
mapping rules please refer to: “Converting State Charts to SDL” on
page 1658 in chapter 40, Using Diagram Editors, in the User’s Manual.

State charts may be converted into SDL. Converting state charts without
any hierarchical states is very straight forward, but converting a state
chart containing hierarchical states requires flattening since the concept
of hierarchical states does not exist in SDL.

The state chart LocalStation Figure 665 contain a hierarchical state with
sub states and need to be flattened when converted to SDL.

The behavior of the SDL process LocalStation Figure 666 is the behav-
ior defined in the state chart LocalStation. The process is flattened and
gives a straight forward view of the behavior. To increase traceability

Figure 665: The State Chart Local Station
3780 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
between the state chart and the SDL process the converter functionality
provides comments on states and transitions which are related to any hi-
erarchical state.

Mapping a Passive Object
A passive object is an object that does not have any thread of control or
spontaneous behavior of its own. A passive object is often used to en-
capsulate a certain amount of information that is needed in the system.
In the context of distributed systems it is often useful to classify the pas-
sive data descriptions into two broad classes depending on the way the
data is used: external data and internal data

• The external data is focused on describing the data units that will be
transported across the system when that application executes. In an
application where the different components execute in different

Figure 666: The SDL process LocalStation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3781

Chapter 75 Object Design
memory spaces, and maybe even on different hardware, there is a
need to consider transportation format and maybe even coding/de-
coding of the data. Often the description of external data is focused
on the information contents of the data units and not very much on
the operations that can be performed on the data units. Typical ex-
ample applications where external data is very common includes
protocols in telecom applications. A common property of this kind
of data is that they are usually structured in trees, in an object model
often in aggregation hierarchies, and not in graph structures.

• The internal data is characterized by the fact that it is used to de-
scribe information that the application needs to do its work. Typi-
cally the data is localized to one concurrent execution unit. The in-
ternal data units are thus used to store rather than to transport data.
Some typical examples are data bases and complex data structures
in conventional program units. A local data unit is typically not cop-
ied from one component to the other. Instead operators are used to
access the data unit.

As will be seen in the next sections the mapping of passive objects to
SDL data types is slightly biased towards the external data view of pas-
sive objects, the mapping to ASN.1 data types is very biased to external
data view, and the mapping to C data types is slightly biased towards
the internal data view of passive objects.

Mapping Objects to SDL Structs

In general, the SDL construct that can be used as the design representa-
tion for a class is an SDL STRUCT. This is exemplified in Figure 667
below.

In this mapping all attributes of the class are mapped to fields of the
STRUCT.

Figure 667: Mapping a passive object to a STRUCT type

PersonInfo

Name

Age

NEWTYPE PersonInfo STRUCT
 Name;
 Age;

ENDNEWTYPE;
3782 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Attribute Data Types

The attributes of a class may have data types associated with them. In
general there are three ways to handle these data types:

• Defining the data type in the analysis model.

• Giving an abstract definition in the analysis model and making a fi-
nal decision in the design model.

• Consider it to be a design issue and give no definition of the data
type in the analysis model.

As usual the choice is a matter of personal taste but should be directed
by the general idea that the analysis model must be complete enough to
be understandable by itself, but as small as possible to facilitate over-
view and ease of use.

The default mapping in SOMT is a simple literal mapping of whatever
exists in the analysis model to the design model in SDL. See Figure 668.

A special case which might be of interest in the analysis is when more
complex data types like lists or sets are used. SOMT treats this type of
data in the same way as elementary types are treated.

Mapping Operations

When a class is mapped to a data type in SDL there exists several ways
to map the operations of the class. Operations could be mapped to:

• Operators described by (textual) operator definitions
• Operators described by operator diagrams
• Operators described using C code
• Procedures described in SDL
• External procedures

Figure 668: A data type mapping example

PersonInfo

Name

Date: AbstractDate

Age: integer

NEWTYPE PersonInfo STRUCT
 Name;
 Date AbstractDate;

ENDNEWTYPE;
Age integer;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3783

Chapter 75 Object Design
The default mapping used by SOMT is to map operations to SDL oper-
ators with operator diagrams.

Operators Described by Operator Definitions

Operators described by operator definitions is the simplest choice. Con-
sider the PersonInfo class as defined in Figure 669.

This object has two operations: IncreaseAge and Retired which are in-
tended to increase the age of the person with one, and to check if the per-
son has reached the age where he/she has retired from his job.

Figure 670 shows how a mapping of operations to operator definitions
can be done.

Figure 669: A class with operations

Figure 670: Data type with operator diagrams implementing the class operations

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

NEWTYPE PersonInfo STRUCT
 Name charstring;
 Age integer;
 OPERATORS
 IncreaseAge: PersonInfo -> PersonInfo;
 Retired: PersonInfo -> boolean;
 OPERATOR IncreaseAge;

ENDNEWTYPE;

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

 FPAR pra 1 PersonInfo;
 RETURNS PersonInfo;
 ENDOPERATOR IncreaseAge;
 OPERATOR Retired;
 FPAR par1 PersonInfo;
 RETURNS boolean;
 ENDOPERATOR Retired;
3784 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Operators Described by Operator Diagrams

Operators described by operator diagrams is another alternative.

If a mapping to SDL is done using operators with operator diagrams, the
SDL will look like in Figure 671.

SDL Operators in General

Some things worth noting about SDL operators are:

• An SDL operator can only be used within an expression, e.g. “var:=
oper(1) + 1”.

• All operators must return a result.
• Operators can not have IN/OUT parameters. All parameters are IN

parameters.

A consequence of this is that an operator cannot both modify an object
and return a result. The operators can thus be divided into two classes:

• Modifiers, that modify the object
• Extractors, that extract information from the object but does not

modify it

The modifiers are defined as:

ModOp: ObjType, P1type, P2type -> ObjType;

and used as

MyObj := ModOp(MyObj, p1, p2)

An extractor would be defined as:

ExtrOp: ObjType, P1type, P2type -> ResultType;

and used as

Result := ExtrOp(MyObj, p1, p2)

Figure 671: Data type with operator diagrams implementing the class operations

NEWTYPE PersonInfo STRUCT
 Name charstring;
 Age integer;
OPERATORS
 IncreaseAge: PersonInfo -> PersonInfo;
 Retired: PersonInfo -> boolean;
OPERATOR IncreaseAge REFERENCED;
OPERATOR Retired REFERENCED;
ENDNEWTYPE;

IncreaseAge

Retired

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

operator

operator
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3785

Chapter 75 Object Design
However, SOMT allows a way to overcome the third aspect above. If a
C implementation is used as discussed below, the restriction that oper-
ators cannot modify the parameters is somewhat relaxed, since the data
type itself can be defined using a pointer and then whatever is pointed
at can of course be modified by the operator.

Operators Described Using C Code

The second mapping possibility for object model operations is to map
them to SDL operators with C implementation. See Figure 672.

Procedures Described in SDL

The third way to implement operations of a class is to use SDL proce-
dures. In this case the definition of the PersonInfo class would be like
in Figure 673.

Figure 672: Data type with C implemented operators

NEWTYPE PersonInfo STRUCT
 Name charstring;
 Age integer;
OPERATORS
 IncreaseAge: PersonInfo -> PersonInfo;
 Retired: PersonInfo -> boolean;

/*#ADT(BP)
#HEADING
#(PersonInfo) #(IncreaseAge)(p #(PersonInfo));
#(boolean) #(Retired)(p #(PersonInfo));

#BODY
#(PersonInfo) #(IncreaseAge)(p #(PersonInfo))
{
}

#(boolean) #(Retired)(p #(PersonInfo))
{
}
*/

ENDNEWTYPE;

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean
3786 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Some differences when procedures are used compared to when opera-
tors are used:

• Procedures can use both IN parameters, IN/OUT parameters and a
return value.

• There is no syntactic relationship between the procedure and the
data type definition.

• Procedures can be used in two different ways:

– using special procedure call symbols (like in Figure 674).

– in expressions with a syntax as the following example:
ret:= CALL retired(p1)

External Procedures

The fourth way is to implement the operations as normal C functions.
These functions correspond in SDL to external procedures. For exam-
ple, to implement the IncreaseAge operation, one could have the fol-
lowing C function (the PersonInfo data type would have to be specified
as a C type):

void IncreaseAge (PersonInfo *p)
{
 (p->age)++;
}

Figure 673: Data type with procedure implementation of operations

Figure 674: Procedure call symbol

NEWTYPE PersonInfo STRUCT
 Name charstring;
 Age integer;
ENDNEWTYPE;

 IncreaseAge

Retired

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

IncreaseAge
(person1)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3787

Chapter 75 Object Design
External procedures can be declared in text symbols, and they are called
as if they were normal SDL procedures, as shown in Figure 675. “Map-
ping Passive Objects to C” on page 3795 gives more details about map-
ping operations to C.

Mapping Aggregations

A common situation is that the information used by a system has to be
structured into some kind of tree structure. In the analysis this will ap-
pear as an aggregation hierarchy of passive objects. An example is
shown in Figure 676.

If the PersonInfo object is mapped to a struct the aggregation would be
visible in the design model as fields in the struct the same way attributes
would be mapped. The mapping of the PersonInfo object from
Figure 676 into an SDL diagram is shown in Figure 677.

Figure 675: External procedures in SDL

Figure 676: An aggregation of passive objects

IncreaseAge
(person1)

PROCEDURE IncreaseAge;
FPAR IN/OUT PersonInfo;
EXTERNAL;

PersonInfo

CardInfo

Id

CodeInfo

Digits
3788 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
A common special case is when there is a multiplicity associated with
the aggregation as in where one person can have more than one card.

In general the multiplicity implies that there is a list or set of elements
associated with the aggregation. There are several mappings to SDL
possible, for example based on:

• Standard SDL generators like:

– Array

– String

– Other data types as described in chapter 2, Data Types

• A user-defined C implementation of lists

Figure 677: The SDL mapping of a passive object with aggregation

Figure 678: An aggregation with associated multiplicity

NEWTYPE PersonInfo STRUCT
 CardInfo CardInfo;
 CodeInfo CodeInfo;
ENDNEWTYPE;

PersonInfo

CardInfo

Id

CodeInfo

Digits

PersonInfo

CardInfo

Id

*

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3789

Chapter 75 Object Design
The default mapping in SOMT is a mapping to a type called “xxxList”,
where “xxx” is the name of the class. In Figure 679 the mapping of the
PersonInfo type is illustrated.

The “xxxList” type will then have to be designed separately. One sim-
ple way is to use an SDL string as in Figure 680 for the CardInfoList
type.

Another special case is given by recursive data structures that are used
to describe tree structures. In Figure 681 a simple recursive tree is illus-
trated. In general this type of tree can of course also include a multiplic-
ity other than one.

Figure 679: An SDL mapping an aggregation with multiplicity other than one

Figure 680: An SDL implementation of a list using the string generator

Figure 681: A recursive object model

newtype PersonInfo struct
 CardInfo CardInfoList;
endnewtype;

PersonInfo

CardInfo

Id

*

newtype CardInfoList
 string(CardInfo, EmptyCardInfoL)
endnewtype;

Tree

Leaf

Id

0,1 newtype TreePointer
 Ref(Tree)
endnewtype;

newtype Tree struct
 next TreePointer;
 leaf Leaf;
endnewtype;

newtype Leaf struct
 Id
endnewtype;
3790 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Due to the lack of pointers in SDL, this type of structure can normally
not be defined in standard SDL-92. However, SDL tools may offer tool-
specific pointer generators that can be used to represent the above tree.
Figure 681 shows how the recursive data structure can be represented
with help of the Ref pointer generator of the SDL suite.

Inheritance

Inheritance in an object model is used to model “is-a” relationships. In
practise the inheritance shows how attributes, operations and associa-
tions are inherited from a superclass to the subclasses. An example is
shown in Figure 682 which models the fact that both the users and op-
erators are persons.

When mapping classes that inherit other classes to SDL data types there
are three mechanisms that can be used:

• Flattening
• Delegation
• The SDL inheritance concept

Flattening means essentially that all operators, attributes and associa-
tions are copied from the superclass to the subclasses. In the example
above this strategy would imply that the SDL representation of the User
class might look like in Figure 683.

Figure 682: Inheritance relations

Figure 683: Representing inheritance using flattening

Person

Name

Age

User Operator

newtype User struct
 Name charstring;
 Age integer;
endnewtype;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3791

Chapter 75 Object Design
Using delegation to represent inheritance is essentially to replace the in-
heritance hierarchy with aggregation hierarchies. When using this strat-
egy the SDL representation of the classes in Figure 682 will be as illus-
trated in Figure 684.

When using the data types defined as in Figure 684, note that the syntax
for accessing the attributes will of course show the delegation strategy
used. For example, in order to access the name attribute of a User a con-
struction like “uservar!person!name”” will have to be used.

SDL includes an inheritance concept for inheritance between data
types. Unfortunately the inheritance between data types is an inherit-
ance of operators only which limits the usefulness of the SDL inherit-
ance. For more information about inheritance between SDL data types
see “Inherits” on page 70 in chapter 2, Data Types.

Multiple inheritance implies that attributes, operations and association
are inherited from more than one superclass as illustrated in Figure 685,
that models the fact that a user is both a person and a card holder.

When mapping classes with multiple inheritance to SDL both the flat-
tening and delegation strategy works fine (except for name clashes
when using the flattening strategy) but the SDL inheritance does not in-
clude multiple inheritance so it can not be used. In Figure 686 the dele-
gation strategy is used to map the User class from the previous example
to SDL.

Figure 684: Using delegation to represent inheritance

Figure 685: Multiple inheritance example

newtype Person struct
 Name charstring;
 Age integer;
endnewtype;

newtype User struct
 person Person;
endnewtype;

newtype Operator struct
 person Person;
endnewtype;

Person Cardholder

User
3792 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Delegation is the default mapping of inheritance used in SOMT.

Figure 686: Mapping multiple inheritance using delegation

newtype User struct
 person Person;
 cardholder CardHolder;
endnewtype;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3793

Chapter 75 Object Design
Mapping Passive Objects to Signals
A special kind of passive objects in the analysis object model are the ob-
jects that are used only for communication, either between the system
and its environment or between modules within the system. For exam-
ple, when defining the use cases it is useful to show the relations among
the events using an object model. It is especially useful if there are in-
heritance relations among the events as shown in Figure 687. The cor-
responding SDL signal definitions are shown in Figure 688.

There is often a choice of whether to map a passive object used for com-
munication to a struct data type or to a signal. This is one of the design
decisions that has to be taken during the object design.

Figure 687: Object model describing communication events

Figure 688: SDL signal definitions corresponding to the object model in
Figure 687

Card

No

Commercial_

CreditCard

Company

SpecialCard

ExtendedId

signal Card(No);
signal CommercialCard inherits Card adding (Company);
signal SpecialCard inherits Card adding (ExtendedId);
3794 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Mapping Passive Objects to C
Passive objects can also be mapped to C data types and functions. In C,
classes correspond to types, attributes of a class to fields in struct types,
and operations to functions.

Figure 689 shows a possible mapping of class PersonInfo to C. Note
that in the mapping of the operations, a parameter is present to identify
the PersonInfo object.

To represent aggregations in C, the same mechanisms as described in
“Mapping Aggregations” on page 3788 can be used. When mapping in-
heritance to C, the flattening and delegation mechanisms described in
“Inheritance” on page 3791 can be used.

When mapping associations to C, pointers are very powerful.
Figure 690 shows an example of a one-to many association that is
mapped to a linked list in C. Note how the role name has been used in
the mapping.

The SDL suite has facilities to instantiate classes that have been mapped
to C, and access their attributes and operations from SDL. This is de-
scribed more detailed in chapter 2, Data Types.

Figure 689 Mapping a passive object to C

Figure 690 Mapping an association to C

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

typedef struct {
 char *name;
 int age; } PersonInfo;

void IncreaseAge (PersonInfo *);

int Retired (PersonInfo *);

Person Companyemployee
employer*

typedef struct PersonList {
 struct PersonList *next;
 Person *employee;
 } PersonList;

typedef struct {
 PersonList *employeeList
 } Company;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3795

Chapter 75 Object Design
Figure 691 shows an SDL fragment that uses the C types for PersonInfo
of Figure 689. The CString2CStar operator converts an SDL Char-
string to C’s char *. Operations are called by means of SDL proce-
dure calls. Note also the address operator ‘&’ in the call to
IncreaseAge.

The choice between the SDL struct representation of classes and the C
code representation is to some extent a matter of taste. There is a trade-
off between simplicity and expressiveness. The SDL struct definition is
very simple and all SDL based tools can completely analyze and manip-
ulate this type of data. When using a C implementation, you take over
some of the responsibilities from the tools. This means more work for
you, but also a possibility to define in detail what you want.

Note:

Try to avoid pointers to data in other SDL processes! Data inconsis-
tency will occur if the same data can be read/written by more than
one SDL process at the same time. This can be achieved by avoiding
pointers in parameters of signals and remote procedures.

Figure 691 Using C type PersonInfo in SDL

DCL
person PersonInfo;

IncreaseAge
(&person)

person!age
:= 64

person!name :=
CString2CStar

(’Johnson’)
3796 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
Mapping Passive Objects to ASN.1 Data Types
An analysis object can also be mapped to an ASN.1 data type. The
ASN.1 SEQUENCE construct corresponds best to a passive object with
attributes. The most basic example is illustrated in Figure 692 below.

The ASN.1 SEQUENCE can be compared with the SDL STRUCT, so
most of chapter “Mapping a Passive Object” on page 3781 on mapping
classes to STRUCTs is also valid for ASN.1. The few differences are
treated here.

The largest difference is that ASN.1 has no possibility to specify oper-
ators. Therefore the operations of a passive object should be inserted in
some dummy SDL type, while the attributes are mapped to a different
ASN.1 type, as illustrated below.

The second difference is that ASN.1 has no concepts for inheritance.
Therefore only flattening and delegation can be used to represent inher-
itance. ASN.1 has a special construct, COMPONENTS OF, that is use-
ful to represent flattening. An example of this is given in Figure 694 be-
low.

Figure 692: Passive object mapped to ASN.1

Figure 693: Passive object with operators mapped to ASN.1

PersonInfo

Name

Date: AbstractDate

Age: integer

 date AbstractDate,
age INTEGER }

 name,
PersonInfo ::= SEQUENCE {

PersonInfo

Name : charstring

Age: integer

IncreaseAge

Retired: boolean

PersonInfo ::= SEQUENCE {
name IA5String,
age INTEGER }

newtype PersonInfoOperators
operators

IncreaseAge: -> ;
Retired: -> Boolean;

endnewtype;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3797

Chapter 75 Object Design
The SDL suite only allows use of ASN.1 in separate ASN.1 modules,
that have to be included into SDL with the IMPORTS construct.

Mapping Associations
Associations are in object models used to represent relationships be-
tween objects of different classes. The instances of associations are
called links. An example is given in Figure 695. In this example the as-
sociation is a relationship between Cards and Codes that describes that
a card must have exactly one valid code. In the object model this is rep-
resented by an association called Valid between the classes Card and
Code.

In the mapping to SDL, the information about the association is kept in
one or both of the involved classes, in the example in Card, in Code, or
in both.

There are several aspects of associations that are important to consider
when mapping an association to SDL:

• Whether involved objects are active or passive
• The structure of the associations: graph vs. tree
• Intrusive vs. non-intrusive representation
• The traversal direction, one-way vs. two-way
• The multiplicity of the association
• Role names vs. association names

Figure 694: The use of COMPONENTS OF to represent inheritance

Figure 695: An example of an object model with associations

Person

Name

Age

User

PersonInfo ::= SEQUENCE {
name ,
age }

User ::= SEQUENCE {
COMPONENTS OF Person,
userId }

UserId

Card CodeValid 1
3798 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
• Association attributes/association class

The rest of this section will discuss these issues and how they influence
the mapping to SDL.

In general, associations form a graph structure among the objects where
each object may have associations to a number of the other objects.
Mapping associations to SDL implies in most cases that some kind of
object references or pointers must be used.

In general, associations between active objects indicates that there is a
possibility for the objects to communicate. In SDL this means that there
must exist a communication path (signal routes and channels) between
the corresponding SDL concepts (usually processes). In addition, an as-
sociation between two active objects may also need to be represented by
a PId variable in one (or both) of the processes.

There are however cases when PIds should not be used: as PId is a con-
cept that only exists in the SDL world, associations with objects outside
the SDL system cannot be represented with PIds. Instead, data types de-
fined in protocols define how to refer to external objects. For example
in the TCP/IP protocol, TCP services are addressed by a host address
(for example 3.1.29.1) and a local port number. In an SDL implementa-
tion of a TCP service it would be impossible to refer to a service outside
the SDL system by means of a PId; the host number and the port number
must be used instead.

Since strict SDL does not include a pointer concept, associations with
passive objects must be represented by other data types. Alternatively a
C representation can be used when mapping the objects to SDL as dis-
cussed in “Mapping Objects to SDL Structs” on page 3782.

There is one special case where there is no need for special data types.
This is the case when the associations form a pure tree structure and fur-
thermore all associations are one-way one-to-one associations with a
traversal direction from the root to the leaves. In this case a strategy
based on mapping classes to SDL structs can be used, i.e. a reference to
an object is in SDL represented by the object itself.

Sometimes an association is implicitly represented in the class defini-
tions themselves, which is called an intrusive representation. In this
case the association does not have a representation of its own in the SDL
model. For example, if the classes are represented by SDL structs then
the association can be represented by a field in one (or both) of the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3799

Chapter 75 Object Design
structs. As an example the Valid association from Figure 695 is mapped
in Figure 696 to a field in the struct that represents the Card.

A non-intrusive representation of the association, on the other hand,
does not rely on fields in structs that represent classes or any similar
strategy. Instead the association is explicitly represented in SDL. A con-
venient way to accomplish this is to use the SDL array generator as ex-
emplified in Figure 697.

The design choice to make when choosing a mapping to SDL depends
on the way it will be traversed in the application: is the traversal of the
association always in one direction or is it traversed in both directions.
This is usually not relevant in the analysis model but influences the SDL
representation. For example if the Valid association in Figure 695 is a
one-way association only traversed from the Card to the Code then the
SDL representation in Figure 696 is all that is needed. If, on the other
hand, the association is also traversed from the Code to the Card then
the Code representation will also have to contain an element corre-
sponding to the association (note that this requires a C implementation
due to the lack of pointers in SDL) or alternatively a non-intrusive rep-
resentation can be used.

The multiplicity of the association defines how many instances of one
class can be associated with an instance of the other class. A one-to
many association requires a list or set representation. This is essentially
the same as an aggregation with a multiplicity greater than one, which
is described in “Mapping Aggregations” on page 3788.

Role names are an alternative that can be used instead of or in combina-
tion with association names. A role is one end of an association, and the
role name uniquely identifies the object from the perspective of the ob-

Figure 696: Mapping an association to a field in a struct

Figure 697: A non-intrusive mapping of an association using an SDL array

newtype Card struct
 Valid Code;
endnewtype;

newtype Valid array(Card, Code) endnewtype;
3800 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Mapping Object Models to SDL Design Models
ject at the other end. An example is given in Figure 698 where the asso-
ciation is identified using role names instead of an association name.

In many cases the role names are more convenient and less confusing
than an association name. In a mapping to SDL it is preferred to use the
role name as e.g. the name of a field in a struct rather than the associa-
tion name. As an example consider Figure 699 where the Person object
from Figure 698 is mapped to a struct in SDL and the role name is used
as the field name.

An association may have an associated class as illustrated in
Figure 700.

The implication of this is that there are some attribute values and/or op-
erations associated with each link of this association class that exists be-
tween the two objects. When mapping this construct to SDL there are
two strategies: an intrusive representation and an explicit representation
of the association class. If an intrusive strategy is used there is no ex-
plicit representation of the association so the attributes/operations must

Figure 698: An association that uses role names instead of an association name

Figure 699: SDL mapping of a an association using the role
name instead of the association name

Figure 700: An example of an association class

Person Companyemployee employer

*

newtype person struct
 employer Company;
endnewtype;

Person Companyworks-for

Employment

Salary

Report

*

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3801

Chapter 75 Object Design
instead be associated to one of the objects involved in the relation. This
strategy is possible only if at least one of the end points involved has the
multiplicity “1”. In the example in Figure 700 it would be possible to
incorporate the association class into the Person object since there is
only one company for each person in this model. A structured way to
represent this in SDL is illustrated in Figure 701.

The second alternative is essentially to view the association class as a
regular class and map it to SDL using any of the strategies that can be
used to map regular classes to SDL. This is necessary for many-to-many
associations.

The default mapping of associations between passive objects in SOMT
is to use the intrusive strategy where classes are mapped to SDL structs
and thus associations are mapped to fields in these structs. The name of
the field in the struct is the corresponding role name if a role name ex-
ists, otherwise it is the association name. If there is no name specified
for one of the roles and furthermore no name for the association, then
no field is generated in the corresponding struct, and the association is
considered to be a one-way association.

Summary of Mappings from Object Models to
SDL
There are a number of possible SDL target concepts that an analysis ob-
ject can be mapped to. The choice of target depends mainly on proper-
ties of the object:

• Active objects are mapped to processes or process types
• Aggregations of active objects are mapped to blocks or block types
• Passive objects are mapped to struct data types (or to signals if they

are used for communication only)

Figure 701: The association class from Figure 700 mapped into
the Person object with an intrusive strategy

newtype Employment struct
 Salary;
operators
 Report;
endnewtype;

newtype Person struct
 employment Employment;
endnewtype;
3802 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Describing Object Behavior
• Associations between passive objects are mapped to fields in struct
data types, or to new data types that explicitly represent the associ-
ation

• Associations between active objects are mapped to communication
paths (and possibly to variables within processes)

Describing Object Behavior
Once the type of SDL target concept has been chosen, the behavior of
the object can be defined. Processes and process types are defined by
creating the process graphs and ADTs are preferably defined by giving
operator diagrams for the operators.

In practise, the major task of the object design activity is the definition
of the behavior of SDL processes since they are the SDL representation
of active objects that tend to have a more complex behavior than the
passive objects. SDL process graphs provide a graphical notation for
extended finite state machines, i.e. finite state machines with variables.
In Figure 702 an example of a small process graph that illustrates some
of the constructs possible in an SDL process is shown. More details
about SDL and SDL process graphs are provided in section “SDL” on
page 3685.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3803

Chapter 75 Object Design
The possible inputs to the process design task are illustrated in
Figure 703. The possible inputs directly from the system analysis/de-
sign are:

• MSC use cases from the design use case model or analysis use case
model

• Possibly a state machine, described by a state chart, giving an over-
view of the behavior if this was defined in the system analysis

The inputs resulting from the mapping of object models to SDL are:

• The signal and/or remote procedure call interface of the process

• Some process variables defined by the attributes of the object model
class

Based on these inputs the goal of the process design is to create a pro-
cess diagram that defines the behavior of the process.

Figure 702: An SDL process graph

Process MSAP_Manager1 1(1)

 dcl
 d MSDUType;

 idle

 idle

 IDAT(d)

 MDATind(d)

 idle

 MDATreq(d)

any

 IDAT(d)
 via Internal

 idle

 idle

State
symbol

Input

Output

Decision

Start
state

Variable
declaration
3804 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Describing Object Behavior
A useful way to structure the tasks that are needed to create a complete
process are:

1. Create a first version of the process that defines the control structure
in terms of states and transitions. There are two subtasks that in
practise are performed more or less in parallel:

– Defining the control structure

– Defining data aspects.

2. Elaborate the process by e.g. considering secondary use cases and
exceptional cases.

The First Version – Defining the Control
Structure
The control structure of an SDL process is defined by the states and the
transitions of the process. Ideally the states of a process represent what
the environment might expect of the process. Different states represent
different stable phases in the life-time of a process and depending on
what state a process is in it will respond differently to requests and in-
puts from the environment.

One straight-forward way to find the states of a process is to analyze the
use cases. Since the use cases show an external view of the processes

Figure 703: Inputs and output of the process design task

State

Machine

Use

Cases

Signal/RPC

Interface

Variables

Process
Design

Process

Diagram
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3805

Chapter 75 Object Design
they reflect the expectations the environment can have on the behavior
of the process. Both directly in terms of sequences of inputs and outputs
the process has to conform to but also indirectly in terms of states since
each input of a process must be preceded by a state.

So, the task of designing the control structure of the process starts with
selecting a set of typical and essential use cases. If the use cases are in
MSC format and on an appropriate abstraction level that includes the
process to be defined, the use cases can be analyzed directly. If not they
should be rewritten to clearly show the responsibilities of the process in
question.

Analyze each use case in terms of states and transitions for the process.
Incrementally build up the process graph by adding states and transi-
tions. Start in the beginning of the use case and figure out what state the
process must be in. Manually walk through the use case, checking the
process defined so far and incrementally adding states and transitions to
the process graph. Check for each transition in the use case (i.e. input
followed by one or more outputs by the process in question) that the
transition exists in the process graph. If it does not exist, add it. Take a
look in the use case to see if there is an external need for a state change
in the process: has the expectations on the process changed after this
transition in the use case? If no: go back to the same state again. If yes:
is there an already defined state that may fit these expectations? If there
is one, use it. If there is no such state, create a new one and give it a
name that describes the expectations. Continue until all use cases has
been analyzed.

When adding transitions do not forget to check with the mapping from
the object model if it is a regular transition with input and outputs or a
remote procedure that is to be added. Also check if state lists (and “*”
states) can be used as the starting state of the transition.

During the design of the process also consider what part of the control
to put in the process graph states and what to put in variable values. In
general it is recommended to define the control flow using the process
graph states, but there are cases when it is better to put parts of the con-
trol in data values instead of as explicit process states. One example is
loop variables that count the number of occurrences of something and
is used to exit the loop after a certain number.

One problem that might occur during the use case analysis is that two
of the use cases seem to be very difficult to combine in the same process
3806 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Describing Object Behavior
since they require different states of the process. This is an indication
that some restructuring is needed and that maybe the process should be
divided into different processes or into a set of services.

When finished with the analysis of the selected use cases the result
should be a skeleton process graph that contains states and transitions
with mainly inputs, outputs, remote procedures, timer actions and a few
tasks and decisions that deal with control variables. Make sure that the
state/transition structure makes sense. The states should represent exter-
nal expectations on the behavior and their names should reflect it. This
is an important issue, in particular for the possibilities to maintain the
process.

The next step is now to consider the data aspects of the transitions.

The First Version – Data Aspects
Often there will be three kinds of variables in an SDL process: tempo-
rary variables used to handle the parameters of signals, control variables
like loop counters as discussed above, and “real” variables that store in-
formation about some entity that will be accessed later during the exe-
cution. Most of the “real” variables should have been identified during
the analysis are given by the mapping from the object model to SDL.
The task now is to define how the “real” variables are affected by the
transitions. Add temporary variables handling the parameters of the sig-
nals when needed and tasks with expressions that define the needed
computations. If complex computations are needed it is good practise to
hide them in procedures or operators. The transitions should preferably
stay fairly simple.

The first version of the process is considered to be finished when it is
possible to verify that the process fulfills the selected use cases, e.g. by
running a simulator or verifying MSC use cases (compare with “Design
Testing” on page 3810). Both the control and the data aspects should be
dealt with.

Now it is time to start with the elaboration of the process.

Elaboration of the Process
The purpose of the first version of the process was to define the control
structure of the process and make sure that this is able to cope with the
requirements from the most typical and important use cases. The pur-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3807

Chapter 75 Object Design
pose of the elaboration is to complete and refine this structure to make
the process definition reliable and facilitate the maintenance. There are
several aspects to cover in this elaboration:

• Secondary use case and exceptional cases in primary use cases

• Simplification e.g. using state lists and procedures

• Robustness and completeness of the process

• Restructuring for inheritance and reuse

The major topic for the elaboration task is to consider the secondary use
case that was not treated in the first version and also the exceptional cas-
es of the already treated use cases. This is done essentially the same way
as when creating the first version as described in “The First Version –
Defining the Control Structure” on page 3805. The use cases are walked
through by hand and the process graph is checked and possibly extend-
ed to cope with the new cases.

To enable the understanding of the process and thus also to make it pos-
sible to maintain it, it is important that the definition is as simple as pos-
sible. This is a topic that is dealt with in the elaboration task. Procedures
can be used to simplify process definitions considerably by defining a
particular piece of code in one place and using it in several. Procedures
can also be used on a higher level to indicate different phases in the life-
time of the process. Using state lists and “*” states it is also possible to
simplify the definition of a process by defining transitions that are com-
mon to many states in one place.

The robustness and completeness of the process must also be handled in
the elaboration. The strategy is essentially to make sure that the appro-
priate action is taken by the process, not only for the expected cases but
also for unexpected cases. So, for each state in the process and each in-
put signal/ remote procedure call possible; check that the action taken
makes sense. Also check the treatment of unexpected parameter values.

Another topic to be treated in the elaboration is to consider how to fa-
cilitate reuse of the created process. Is it possible to create a more gen-
eral process type by factoring out some parts of the definition and de-
fining a more general process type that can be specialized in other situ-
ations?

The elaboration is in practise an iterative process where all the aspects
above are treated more or less in parallel. When the elaboration is fin-
3808 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Describing Object Behavior
ished, the process definition is completed and is ready for integration
test. The module test should preferably already have been done at this
stage.

Operator Diagrams
When defining the behavior of passive data types defined in SDL the
preferred way to define the operator is using operator diagrams. An op-
erator diagram is essentially a flow graph with a start symbol, symbols
defining the actions performed by the operation and one or more return
symbols. The symbols may for example be tasks with assignments or
decisions. An example is given in Figure 704 that shows the operator di-
agram for an operator BirthDay that increases the age of a person by 1.

Figure 704: An operator diagram

;
FPAR p person;
RETURNS person;

Operator BirthDay 1 (1)

p

p!age := p!age + 1

start symbol

Assignment in
task symbol

Return symbol
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3809

Chapter 75 Object Design
Design Testing
One of the major benefits with a design notation like SDL that has a
well-defined and complete semantics, is the possibility to test the appli-
cation already in the design activity. This is feasible since the complete-
ness of an SDL design makes it possible to simulate the design taking
distribution and concurrence into account.

It is important to emphasis that the output of the object design activity
is not only an SDL design but it is a tested SDL design that has been
shown to fulfil its requirements. This implies that the design testing is
an important task in the object design activity.

Testing Strategy
A traditional development/test strategy can be described by a “V” as in
Figure 705. The design is performed top down, starting with a system
design where the major components and their interfaces are defined,
followed by a module design and an implementation phase where the
application is implemented. The implementation of each module is then
tested separately in a module test and finally the entire system is tested.
The system test can also sometimes be divided into two parts, one fo-
cusing on the integration of the different modules and the other focusing
on testing the functionality of the complete system.

This model works in practise fairly good but it has one problem: the
complete functionality is not tested until the system tests are performed
in the end of the development/testing process. To some extent this prob-
lem can be overcome by an iterative process that includes more than one
“V” in a development project. Using techniques like SDL this can be
even more improved by introducing one more line of testing in the mod-
el as in Figure 706.

Figure 705: The “V” model of a traditional design/test strategy

System Design

Module Design

Implementation

Module Test

System Test
3810 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Testing
The extra line of testing represents the design level testing that is the fo-
cus of this section. There are two practical aspects that differentiates the
design testing from the traditional target testing:

• It is performed using a simulation of the design instead of on the real
application in its target environment:

• It is performed as part of the design activity instead of as a separate
testing activity performed after the implementation.

The second aspect is very important. Problems that otherwise would not
show up until system test time is now found and solved during design
at a much lower cost.

In the figure it may look like the testing effort has doubled in the im-
proved “V” strategy since there are now two lines of testing instead of
one. This is fortunately not the case. What has happened is that the ef-
fort of testing has switched from the target testing to the design testing,
making the total amount of testing more or less the same. There are sev-
eral reasons for this:

• The cost of testing is smaller for design testing than for target test-
ing: the design testing on SDL level is very easy to perform. Since
a large portion of the testing is performed at the SDL level this re-
duces the total testing cost.

• The target testing can focus on the integration and targeting aspects
since the logic of the design has already been tested in the design
tests. In practice the target module testing can even be skipped if au-
tomatic code generation is used when producing the implementa-
tion.

Figure 706: The improved “V” design/test strategy

System Design

Module Design

Implementation

Design Module Test

Design System Test

Target Module Test

Target System Test
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3811

Chapter 75 Object Design
Test Case Sources
There are several sources from where the test cases may come:

• From Design Use Cases
• Internally developed during design
• From external sources.

The most important input, both to module and system test, is the design
use case model from the system design. This model should capture most
of the requirements on the system and using the implinks it is also pos-
sible to trace the dependencies from the original requirements all the
way to the design use cases. Furthermore, the design use case should be
in a format that is possible to test more or less automatically against the
SDL system, like MSC or TTCN.

However, during the object design there are usually more test cases de-
veloped that tests other aspects of the design, and these form also an im-
portant part of the module testing tests.

The third source of tests is external sources. For example, in the tele-
communication area it is common to have standardized tests suited for
certain types of applications or interfaces. In other cases the customer
may have specified acceptance tests that the system must comply to be-
fore it is approved. These type of tests should of course also be part of
the design tests, in particular for system testing the external sources are
important.

It is convenient, but not necessary, if the same notation is used for the
design use cases, the tests developed during object design and the exter-
nal test suites.
3812 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Design Testing
Tools for Testing
To perform the testing there is a need for tools, and fortunately there are
several tools available that make a number of testing strategies possible:

• Manual or batch simulation of an SDL system using a standard SDL
simulator

• MSC verification and automatic testing using a state space explora-
tion tool

• Co-simulation of SDL and TTCN, using standard SDL and TTCN
simulators

Using a standard SDL simulation tool it is of course possible to manu-
ally simulate the test cases and check that the system performs as ex-
pected, but it requires quite a lot of manual work. A better way is to pro-
duce test scripts that contain the simulator commands that are needed
and then execute them automatically in a batch mode and log the results
on a log file. To check the outcome of the test either the log files are
manually inspected or checked by a post processing tool that e.g. com-
pares the new log files with old, manually inspected log files.

Another approach to testing is to use a state space exploration tool that
can automatically check if an MSC is consistent with the SDL system.
The benefit with this method is that MSCs can be directly input to the
tool and checked and furthermore there is no need for a manual inspec-
tion of the results: a verdict can be automatically generated by the tool.
The drawback is that some features like the combination of user-written
and automatically generated code can not always be handled by state
space exploration tools.

A third approach that is useful if the tests are defined using TTCN is to
use a co-simulation of an SDL system and a TTCN test suite as the
means to perform design testing. Essentially this is similar to using an
SDL simulator alone, but instead of specifying the input as simulator
commands a TTCN simulator specifies the input to the SDL simulator
and checks the outcome of the test.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3813

Chapter 75 Object Design
Test Practices
A common situation in particular when performing module tests is that
there is a need to test one part of an SDL system in isolation from the
rest of the system. In an SDL system the part may be for example a
block, a process or a data type definition. The simplest way to accom-
plish this in SDL is to use a package as a container of e.g. the block
(which in this case will have be a block type) or data type and then use
a special test system to specify the test environment.

As an example consider the DoorCtrl part of the access control system.
Assume that this part is designed as a block type “DoorCtrlT” in a pack-
age DoorCtrlPack. To perform a module test on this block the simplest
way is to create a special test system DoorCtrlTest that instantiates the
DoorCtrlT and connects all its gates to the environment.

Consistency Checks
This sections describes some consistency checks that are useful to per-
form on the models produced in the object design.

• Check that all objects from the analysis object model has been im-
plemented in the design.

• Check that the design model is complete according to the SDL rules,
e.g. that all processes have a defined behavior.

• Check that the design model correctly implements the requirements
from the design use cases using design level testing.

Summary
The object design activity should produce a complete and tested design
of the system. The precise system and internal object structure as well
as the reuse structure are defined in this activity. Relevant parts of the
object models are mapped to SDL concept and then completed in an
SDL process design activity with design use cases as the main input.
This is done iteratively by starting with a initial set of essential use cas-
es, making that part of the design complete and then testing the design
(verifying it against the use cases). The activity is finished when all use
cases have been implemented and the final design has been tested
against all the use cases.
3814 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	75 Object Design
	Object Design Overview
	Mapping Object Models to SDL Design Models
	Mapping an Active Object
	Mapping Active Objects with Inheritance
	Mapping Aggregations of Active Objects
	Mapping State Charts to SDL Process Graphs
	Mapping a Passive Object
	Mapping Objects to SDL Structs
	Attribute Data Types
	Mapping Operations
	Mapping Aggregations
	Inheritance

	Mapping Passive Objects to Signals
	Mapping Passive Objects to C
	Mapping Passive Objects to ASN.1 Data Types
	Mapping Associations
	Summary of Mappings from Object Models to SDL

	Describing Object Behavior
	The First Version – Defining the Control Structure
	The First Version – Data Aspects
	Elaboration of the Process
	Operator Diagrams

	Design Testing
	Testing Strategy
	Test Case Sources
	Tools for Testing
	Test Practices

	Consistency Checks
	Summary

