
July 2003 Telelo

Chapter
67 The Cmicro Library
The Cmicro Library consists of a configurable SDL kernel together
with all the necessary SDL data handling functions. The collection
of C functions and C modules make up the so called SDL machine.

The Cmicro Library is used in combination with the C code gener-
ated by the Cmicro SDL to C Compiler. For information on the
generator see chapter 66, The Cmicro SDL to C Compiler.

The scaling facilities in Cmicro mean that it is useful for both micro
controller and real-time applications. The Targeting Expert will
help to scale and configure the generated code and the library.
Please view chapter 60, The Targeting Expert.

The SDL Target Tester offers the ability to target tests and debug
Cmicro code. Please see chapter 68, The SDL Target Tester.
gic Tau 4.5 User’s Manual ,um-st1 3361

Chapter 67 The Cmicro Library
Introduction
The Cmicro Library is required for handling the SDL objects that have
been generated from SDL into C with the Cmicro SDL to C Compiler.
This means that the C code which was generated with the Cmicro SDL
to C Compiler cannot be used without the Cmicro Library. It also means
that the C code generated with Cadvanced cannot be used together with
the Cmicro Library and vice versa.

The Cmicro Library is a collection of C functions and C modules which
consists of:

• The non preemptive Cmicro Kernel
• The preemptive Cmicro Kernel
• All functions which are necessary to handle SDL data
• Utility functions

Furthermore the Cmicro Library can be instrumented with SDL Target
Tester functionality.

Before the Cmicro Library can be used, some adaptations and configu-
rations must be made. The Targeting Expert is a tool which helps in con-
figuring the application, node, component and the SDL Target Tester.

In this chapter, the C source code of the Cmicro Library and the gener-
ated C code of an application are described. Although a separate chapter
is dedicated to the SDL Target Tester (see chapter 68, The SDL Target
Tester), a few features are outlined here. The following topics are dis-
cussed:

1. The section “Differences between Cmicro and Cadvanced” on page
3364 helps in taking care of compatibility between different C code
generators. There are things which must be observed in SDL dia-
grams.

2. The section “The SDL Scheduler Concepts” on page 3368 gives in-
formation about how the SDL scheduler works. This is also of inter-
est for creating SDL specifications with the most highest conformi-
ty because the different SDL schedulers work differently.

Note:

The Cmicro preemptive kernel is only available if the according li-
cense is available.
3362 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
3. The section “Targeting using the Cmicro Package” on page 3389
presents all the steps that must be carried out for doing targeting
with Cmicro.

4. The section “Compilation Flags” on page 3394 presents a complete
list of all the flags that the Targeting Expert recognizes. The differ-
ent flags are explained in detail.

5. The section “Adaptation to Compilers” on page 3430 must usually
be read before the C code generated by the Cmicro SDL to C Com-
piler and Cmicro Library can be compiled to form an executable.
This section outlines the steps that must be carried out for introduc-
ing a C compiler which is not in the available list. The Targeting Ex-
pert offers an easy to use feature to add a new compiler. Please view
“Compiler Definition for Compilation” on page 2836 in chapter 60,
The Targeting Expert.

6. The section “Bare Integration” on page 3437 gives detailed infor-
mation on how to adapt the generated SDL system to the environ-
ment. Communication with handwritten C code, as well as commu-
nication between SDL and the operating system or a naked machine,
is described here.

7. The section “File Structure” on page 3472 explains the functionality
of the different C files delivered with Cmicro.

8. The section “Functions of the Basic Cmicro Kernel” on page 3477
contains a list of C functions that are usually included in a target ex-
ecutable plus a short description.

9. The section “Functions of the Expanded Cmicro Kernel” on page
3499 contains a list of C functions that are usually not included in a
target executable. The functions listed in this section can usually be
left out because they have meaning for special forms of integration
in target systems only. The functions include a short description.

10. The section “Technical Details for Memory Estimations” on page
3505 presents some information to the user which enables him to
roughly estimate the consumption of memory in the target system.
A self defined benchmark test is included, too.

Pay extra attention to the subsection “Automatic Scaling Included in
Cmicro” on page 3426, which contains important information on the
differences to the Cadvanced Library.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3363

Chapter 67 The Cmicro Library
If examples of generated code are given, they are always shown in
ANSI style. In addition, only the important parts of the code are shown
to increase readability in the examples.

Differences between Cmicro and
Cadvanced

General
This description deals with the differences between the generated C
code of the Cadvanced SDL to C Compiler and the Cmicro SDL to C
Compiler and the run-time libraries. There are differences because the
main application area for the code generators differ.

Some of the differences discussed in the following are of interest for
SDL users, while others are not.

SDL Restrictions
The Cmicro SDL to C Compiler has more SDL restrictions than the
Cadvanced SDL to C Compiler. The additional restrictions are de-
scribed in the subsection “SDL Restrictions” on page 3358 in chapter
66, The Cmicro SDL to C Compiler.

Furthermore, there are restrictions within the Cmicro Library that may
affect the user’s SDL system design. These restrictions are listed in the
following. More technical information can be found in the section
“Generation of Identifiers” on page 3354 in chapter 66, The Cmicro
SDL to C Compiler.

• The run time model in Cmicro is such that there are global variables
used in the generated C code and the Cmicro Library. The code gen-
eration uses “Auto initialization in C” quite extensively because the
C compiler then can produce code that is more efficient than if ini-
tialization would take place within a generated C function (like
yInit).

• The run-time model of the preemptive kernel requires function re-
cursion from the C compiler.
3364 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Differences between Cmicro and Cadvanced
Scheduling
First, it must be emphasized that both schedulers conform fully with
SDL, although the schedulers introduce a different behavior.

Cadvanced uses a process ready queue together with signal queues in
order to schedule processes. Cmicro does not use a process ready queue
but all scheduling is derived from one physical queue. This physical
queue represents all SDL process input ports. Logically, or seen from
SDL, each SDL process has its own input port.

Another difference is the preemptive scheduler of Cmicro, if it is used.

Thus, different execution of processes will occur.

It is also a question of SDL design whether the differences between
Cadvanced and Cmicro can be externally recognized.

If no SDL process assumes a particular real-time behavior from its com-
municating partner process then the behavior – as seen from a black box
view – is always the required one.

Generation of Files
The Cmicro SDL to C Compiler generates some more files. This is of
interest when implementing build scripts, makefiles and so on.

It is important that after each change in the SDL system the Cmicro Li-
brary is re-compiled. The reason for this is the automatic scaling facili-
ty. Please view “Automatic Scaling Included in Cmicro” on page 3426.

Environment Handling Functions
The main differences arise when considering the environment handling
functions. However, this only has consequences if the SDL environ-
ment is the same in both cases (if Cadvanced is used for simulation only
and Cmicro for targeting, then the environment functions are to be im-
plemented twice in any case).

Instead of including scttypes.h as in Cadvanced, for Cmicro the fol-
lowing include statements are to be introduced in the header of the en-
vironment module:

 #include "ml_typ.h"
 #include "<systemname>.ifc"
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3365

Chapter 67 The Cmicro Library
In general (for Cmicro as well as Cadvanced) four C functions are used
to represent the SDL environment, namely

• xInitEnv,
• xInEnv,
• xOutEnv,
• xCloseEnv.

The functions have the same general meaning for Cadvanced and Cmi-
cro, but there are a few differences so that it is necessary to implement
the environment twice.

For Cmicro, each of the above C functions is compiled only if it is re-
quired (selected by XMK_USE_xInitEnv, XMK_USE_xInEnv...)

Differences occur in the declaration of the C functions xInEnv() and
xOutEnv().

The xInEnv() function of Cmicro carries no parameters.

The xOutEnv() function of Cmicro carries a few parameters which rep-
resent the signal which is to be output to the environment, including the
signal parameters. It is recommended that the definition of the C func-
tion xOutEnv() should be written twice, once for Cadvanced and once
for Cmicro.

The environment functions can also be generated with the help of the
Targeting Expert.

Another difference is that signals and processes are identified in differ-
ent ways. Cmicro does not use identifications like xIdNode. Instead, it
uses fixed C defines to identify signals and processes. This is beneficial
in reducing the amount of memory but has the consequence that each
access to any signal and any process is to be implemented differently.
Process type IDs are generated into the file sdl_cfg.h, signal IDs and
type definitions are generated into the <systemname>.ifc file. The
chapter about the Cmicro SDL to C Compiler gives more details on how
identifiers are generated and can be used.

Including C Code in SDL by User
C code may be included in SDL by the user in the following cases:

• In order to connect SDL to the environment in a way other than via
the C functions xInEnv() / xOutEnv()
3366 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Differences between Cmicro and Cadvanced
• To use C constructs, which do not exist in SDL

• To use existing C code (e.g. C library functions)

• To implement the body of ADTs

• In an SDL task.

If any C code or C identifiers are used, then users must use the right
identifiers and functions.

Generated C Code
Of course, the generated C code is different when comparing Cmicro
with Cadvanced. It would take too much room to list all the details in
this subsection. In any case these differences are of interest for certain
technical reasons only and not for pure SDL users.

To compare the different code generator outputs, the user should refer
to the subsection “Output of Code Generation” on page 3326 in chapter
66, The Cmicro SDL to C Compiler.

General Recommendations Regarding
Compatibility
In order to reach full compatibility between Cadvanced and Cmicro, the
following general recommendations should be followed:

• In general, C code should not be used in SDL diagrams.

• If there is no option other than to use C code, the C code should be
written as compatible as possible, i.e. the C code should be written
without using any C code generator or compiler specific commands.
Also the C code should be placed at dedicated locations, and should
not be distributed over the SDL diagrams.

• If it is not possible to reach full compatibility, then the C code must
be written twice. A switch, which is used when invoking the C com-
piler, selects C code either for Cadvanced or for Cmicro. The macro
XSCT_CMICRO will help to distinguish automatically.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3367

Chapter 67 The Cmicro Library
The SDL Scheduler Concepts
In this section, the concepts of the Cmicro SDL scheduler are outlined,
with particular emphasis on basic SDL, the handling of the queue,
scheduling, signals, timers, states etc. To obtain information about data
in SDL, especially ADTs, please consult chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler. Here both predefined and user de-
fined ADTs are outlined.

Signals, Timers and Start-Up Signals

Data Structure for Signals and Timers

Each signal that is either an ordinary SDL signal, a timer or the start-up
signal used for the dynamic process creation, is represented by three
structures:

• A C structure defining the entries in the queue

• A C structure defining the header of each signal

• A generated C structure representing the parameters of the signal

The first and the second is defined in ml_typ.h, the third is defined in
the generated code as yPDef_SignalName. Some structure components
are conditionally compiled, which is used to scale the system. Please
view the following C structure:

typedef struct
{
 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xPID rec; /* Receiver process */
 #endif

 xmk_T_SIGNAL signal; /* Signalcode */

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO prio; /* Priority */
 #endif

 #ifdef XMK_USE_SIGNAL_TIME_STAMP
 xmk_T_TIME time_stamp;/* Timestamp */
 #endif

 #ifdef XMK_USE_SENDER_PID_IN_SIGNAL
 xPID send /* Sender process */
 #endif
3368 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH mess_length;
 union
 {
 void *ParPtr;
 #if (XMK_MSG_BORDER_LEN > 0)
 unsigned char ParCopy[XMK_MSG_BORDER_LEN];
 #endif
 } ParUnion;
 #endif

} xmk_T_MESSAGE;

• signal:

represents a C constant which uniquely identifies the signal or timer
across the complete system.

• rec and send:

represents the PID values of the receiver and sender of the signal.
See the subsection “Processes and Process IDs (PID)” on page 3354
in chapter 66, The Cmicro SDL to C Compiler for details. These are
conditionally compiled.

• prio:
is used to store the priority of the signal. This is specified by using
the directive #PRIO in the SDL diagram. It is compiled only, if sig-
nals with priority are stipulated by the user.

• timestamp:

is used to store a timestamp, which is set when the SDL signal is put
into the queue (output time). This component is also conditionally
compiled.

• mess_length:

represents the amount of parameter bytes in the signal.

Three different cases are to be considered concerning signals with pa-
rameters:

• If the signal has no parameters, then mess_length is set to 0 and
ParPtr is a NULL pointer.

• If the signal parameters are larger than
XMK_MSG_BORDER_LEN (*) bytes, then mess_length is set to
the number of bytes and ParPtr is undefined.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3369

Chapter 67 The Cmicro Library
• If more than XMK_MSG_BORDER_LEN (*) bytes of parameters
are to be transferred, then mess_length defines the amount of bytes
used for the parameters and ParPtr points to a dynamically allocat-
ed area.

The second structure, which encapsulates the above one, is used to ad-
ministrate the signals in the queue, as required by the FIFO handling
and SDL save construct:

typedef struct _T_E_SIGNAL
{
 xmk_T_MESSAGE Signal;
 struct _T_E_SIGNAL *next;

#ifdef XMK_USED_SAVE
 xmk_T_STATE SaveState;
#endif /* XMK_USED_SAVE */
} T_E_SIGNAL ;

• next:

is a pointer which refers to the next entry of the queue. This is used
by the Cmicro Kernel to get the next signal after the current one has
been worked on.

• SaveState:

contains either a dummy state value XEMPTYSTATEID or the
state in which the process saved the signal. This is necessary to com-
pare when the signal is to be consumed after state changes in the re-
ceiver process. It is used only if save is used anywhere in the SDL
system.

As already mentioned, the above structure is used for ordinary SDL sig-
nals, timers and the start-up signal for the dynamic process creation.

No differentiation is made between signals and timers, except that sig-
nals and timers have a different identification (signal in the
xmk_T_SIGNAL structure).

Note:

This margin of XMK_MSG_BORDER_LEN bytes can of course be
modified by the user to prevent dynamic memory allocation for any
signal in the queue, or in contrast, to always use dynamic memory
allocation. See the file ml_mcf.h to modify this.
3370 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
When a process is to be created, a start-up signal is sent. The start-up
signal is tagged by a special priority value and a special id.

Dynamic Memory Allocation

Dynamic memory allocation is in principle not necessary with Cmicro.
There are SDL systems which can live without any dynamic memory al-
location and there are SDL systems that require dynamic memory allo-
cation from the user’s point of view. The users should in general try to
prevent any dynamic memory allocation due to the problems this intro-
duces. Soon or later memory leaks will occur.

Cmicro offers its own dynamic memory allocator. Please view “Dy-
namic Memory Allocation” on page 3450 for getting more information
on this.

In the following subsections, the exceptions for when Cmicro uses dy-
namic memory allocation are listed.

Signals and Signal Parameters

In order to cope with efficiency, dynamic memory allocation should not
be done, whenever possible. Cmicro offers two principles of memory
allocation for signal instances, namely:

1. Signal instances are allocated from a static memory pool only.

The static memory is allocated during compilation. The pool’s size
is predefined with the XMK_MAX_SIGNALS macro. To enable this
configuration, the macro XMK_USE_STATIC_QUEUE_ONLY is to be
set. This principle has the disadvantage that if there is no free mem-
ory in the static memory pool, a fatal error occurs. The user is how-
ever given the possibility to react on this error situation because the
ErrorHandler C function is called.

2. As another principle, it is possible to first take memory from the
static memory pool. If no more memory is available in that pool,
further signal instances are created from the dynamic memory pool.

Caution!

This configuration is not available when the preemptive scheduling
mechanism is used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3371

Chapter 67 The Cmicro Library
To enable the configuration, the macro
XMK_USE_STATIC_AND_DYNAMIC_QUEUE must be set. The static
memory pool’s size is still predefined with the XMK_MAX_SIGNALS
macro.

When signal instances are allocated from the static memory pool, the al-
location procedure is the most efficient.

When the second principle is used, the execution speed will of course
dramatically slow down because dynamic memory allocation happens.
This change in the behavior of the Cmicro Kernel may cause problems
in a real-time environment and the user should keep this in mind.

The static memory pool above is implemented as a predefined array in
C. The array is dimensioned with the XMK_MAX_SIGNALS macro.

Dynamic memory is requested with the xAlloc C function and re-
leased again with the xFree C function. The body of both these C func-
tions must in any case be filled out appropriately by the user in all cases.

Signal parameters are to be allocated dynamically, if the amount of pa-
rameter bytes exceeds a predefined constant. If the amount of signal pa-
rameters is below or equal this predefined constant, the parameter bytes
are put into the signal’s header.

The default value for this predefined constant
XMK_MSG_BORDER_LEN is 4 bytes. Dynamic memory allocation
only occurs if a signal carries more than XMK_MSG_BORDER_LEN bytes,
where the latter is defined as 4.

If the user defines XMK_MSG_BORDER_LEN as 0, then for each signal,
which has parameters, the C function xAlloc() is called.

If the user defines XMK_MSG_BORDER_LEN to 127, then

• for signals which have 127 parameter bytes or less, the parameters
are copied into the xmk_T_SIGNAL structure.

• for signals which have more than 127 parameter bytes, the parame-
ters are copied into an allocated area (using the C function
xAlloc()).

Due to this mechanism, the allocation of signal parameters is also very
fast. Releasing the memory is performed automatically by calling the
xFree C function.
3372 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
Predefined Sorts

Some of the predefined sorts require dynamic memory allocation. The
sorts are

• charstring

• any ASN.1 sort that is based on charstring

• predefined Generators like Array (without a specified upper limit),
String, Powerset, Bag, Ref

SDL Target Tester

If the SDL Target Tester is used, there are some more allocations from
the dynamic memory pool. The SDL Target Tester allocates one block
of dynamic memory in the start phase. This block is never de-allocated
again. The size of the block depends on the amount of process types in
the system. Another dynamic memory allocation takes place when a bi-
nary frame is to be sent to the host machine. The blocks that are allocat-
ed here are de-allocated again after the frame is put into the physical
transmitter buffer.

Overview for Output and Input of Signals

Output and input of signals is performed according to the rules of SDL.
To get detailed information about the implementation of output and in-
put, please consult the subsection “Output and Input of Signals” on page
3384.

Signal instances are sent using the C function xmk_Send() or
xmk_SendSimple(). The function takes a signal and puts it into the in-
put port of the receiving process instance.

Figure 580: Queueing - sending side

yPAD_ProcessName

Process A Process BSDL Queue

SDL Kernel

{

}

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3373

Chapter 67 The Cmicro Library
There is no process ready queue. Physically, the queues of the different
processes of the system are represented by just one queue. There are dif-
ferent principals to create signal instances which the user can choose be-
tween. The principals are explained within the subsection “Signals and
Signal Parameters” on page 3371.

From an abstract point of view, it does not matter, if there is one physi-
cal queue for all the signal instances in the system, or if there is one
physical queue for all the signal instances sent to one process instance.
The fact that Cmicro uses one physical queue for all signals in the sys-
tem only, has no effect on SDL users and conforms to the semantic rules
of SDL. The scheduling simply depends on the ordering of signals in the
queue. In the case of a preemptive Cmicro Kernel scaled this way, there
is one linked list of signals per priority level all using the array men-
tioned above. See the subsection “Scheduling” on page 3377 for details.

When working on a signal, the Cmicro Kernel decides between four dif-
ferent constellations:

• The receiving process instance is active. In its current state the sig-
nal is to be saved. The Cmicro Kernel tags the signal as “saved” and
works on the next signal.

• The receiving process instance is active and there is a transition to
be executed receiving the current signal. The Cmicro Kernel fires
the transition.

• The receiving process instance is active but there is no transition to
be executed for that signal in the current process state. The signal is
in accordance with SDL rules implicitly consumed by the process.

Figure 581: Queueing - receiving side

Process A Process BSDL Queue

SDL Kernel

yPAD_ProcessName
{

}

3374 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
• The receiving process instance is not active, i.e. either not yet creat-
ed or already stopped. The signal will be discarded and the C func-
tion ErrorHandler(), discussed within the subsection “User De-
fined Actions for System Errors – the ErrorHandler” on page 3455,
will be called.

In any case, except when being saved, the signal will be removed from
the queue and returned to the list of free signals.

After performing the nextstate operation, the input port is scanned in ac-
cordance with the rules of SDL to find the next signal which would
cause an implicit or explicit transition.

There is no specific input function. This functionality is contained in the
Cmicro Kernel.

Timers and Operations on Timers

With the delivered timer model, all timer management entities fully
conform to SDL. This means that more memory is required to imple-
ment this timer.

For each timer, there is a C structure defined in ml_typ.h.

typedef struct _TIMER
{
 struct _TIMER *next ;

 xmk_T_SIGNAL Signal ;
 xmk_T_TIME time ;
 xPID OwnerProcessPID ;

} TIMER ;

xmk_T_TIME is defined as a long value.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3375

Chapter 67 The Cmicro Library
The component

• next is used to refer to the next entry;
• signal is the timer identification;
• time is used to store the absolute time when the timer should expire;
• OwnerProcessPID is used to refer to the process PID for which the

timer was set.

As can be seen above, timers are implemented as a forward linked list.

• An array of timers is allocated during compile time

• The size of the array is calculated by the Cmicro SDL to C Compiler
as the required maximum. It is defined by the macro
MAX_SDL_TIMER_INSTS. This is also valid for multiple process
instances, so that there is always enough memory to handle all timer
instances which are possible. (If the user wishes to reduce the occu-
pied RAM memory for timers, he must evaluate the maximum
amount of timer instances required during run-time and modify the
above define by hand).

• The timer which expires first is always put to the front of the linked
list (increasing performance).

• The time value is stored as absolute time from the start of the SDL
system.

Figure 582: Handling of timers (timer model 1)

Timer 1

next

Signal

time = 4711

OwnerProcessPID

Timer 2

next = NULL

Signal

time = 4890

OwnerProcessPID

Timer 3

next

Signal

time = 4714

OwnerProcessPID

empty
3376 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
Processes

Data Structure for Processes

Each process is represented by structures and tables containing SDL in-
formation, for example, tables containing transition definitions and a
structure representing the variables of the process. The typedef for vari-
ables is generated in the generated code and named
yVDef_ProcessName. For each process instance, there is one array el-
ement defined statically during compile time.

The structures and tables for processes are described in detail in the sub-
section “Tables for Processes” on page 3328 in chapter 66, The Cmicro
SDL to C Compiler.

Scheduling

The Cmicro Kernel supports in principle the following scheduling pol-
icies:

• Non Preemptive Scheduling:
Transitions in SDL cannot be interrupted.

• Preemptive Scheduling with Process Priorities:
Transitions in SDL can be interrupted by any external or internal
output. This could be a signal coming from the environment, i.e. an
interface driver.

• In addition, signal priorities can be used to specify the ordering of
signals in the signal queue. Signal priorities are discussed in each of
the subsections mentioned above.

General Scheduling Rules

• All of the above policies basically operate on the SDL queue. Phys-
ically, the Cmicro Kernel uses one array for all process queues in the
system. From the SDL point of view, the implementation conforms
to SDL because each SDL process virtually has its own queue in the
implementation.

• signal priorities can be used in all cases.

• process priorities are given priority treatment.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3377

Chapter 67 The Cmicro Library
• If no signal priorities are assigned, then the ordering of signals de-
pends on their arrival (FIFO strategy).

• In order to increase the performance, there is no process ready
queue implemented. The scheduling of processes is fully derived
from the SDL queue.

Further explanation of the scheduling is in the next subsection.

Non Preemptive Scheduling

The Cmicro Kernel takes the first signal from the queue and if the signal
is not to be saved the appropriate SDL transition is executed until a
nextstate operation is encountered. Outputs in SDL transitions as well
as SDL create operations are represented by signals, where create sig-
nals are given priority treatment no matter whether signal priorities are
used or not. This guarantees that there will not be any problems when a
signal is sent to a process just before the process has been dynamically
created.

The ordering of signals in the queue can be affected by using signal pri-
orities (#PRIO directive for signals).

Whenever an output takes place, the Cmicro Kernel inserts the signal
into the queue according to its priority. High priority signals are inserted
at the queue’s head, low priority signals at the queue’s end. Create sig-
nals are still given priority treatment.

Note:

The priority of a create signal in the standard delivery is set to one.

This, as well as all the default signal priorities, is user-definable in
the file ml_mcf.h (generated by the Targeting Expert). In this way
it is possible to define signals with a higher priority then the create
signal. The user should remember not to do so!
3378 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
A signal (this is either an ordinary SDL signal, a timer signal or the in-
ternal start-up signal in the event of SDL create) with the highest prior-

Figure 583: Non preemptive scheduling

Figure 584: Scheduling for Create

Sig1

State 1

State x

Sig1

Sig2

-

Type0 - Prio 1 Type1-Prio 0

Sig2

-

Type x - Prio1 Type y - Prio0

P2
Q
create -Sig
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3379

Chapter 67 The Cmicro Library
ity is always put in front of the SDL queue, a signal with the lowest pri-
ority is always put at the end of the SDL queue.

For applications, which do not have time critical requirements, the non
preemptive scheduling policy is the correct one to implement. The Cmi-
cro Kernel memory requirements are also reduced when the non-pre-
emptive scheduling policy is implemented. For example, for an inter-
face with a very high transmission rate, the preemptive scheduling pol-
icy is better suited in order to increase the reaction time on external
signals coming from the environment.

On starting the SDL system, processes are statically created according
to their order of priority.

Figure 585: Signal priorities

Process P1

Set (Now+0,T)

Sig to self

S1

S1

Sig T

Prio (Sig) >= Prio (T)

Process P1

Set (Now+0,T)

Sig to self

S1

S1

Sig T

Prio (Sig) < Prio (T)
3380 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
Preemptive Scheduling with Process Priorities

SDL assumes the start transitions of all statically created processes are
already finished at system start-up (a transition takes no time according
to SDL semantics). To simulate this, the Cmicro Kernel starts all stati-
cally created processes in the order of their priority before working on
any signal. Preemption is disabled during the start-up phase of the sys-
tem. There are two C functions namely xmk_DisablePreemption and
xmk_EnablePreemption which can be used to prevent the Cmicro
Kernel from performing a context switch. In this way it is possible to
affect the scheduling from within the SDL system (using the #CODE di-
rective).

The preemptive scheduling policy is absolutely necessary if an applica-
tion consists of a mixture of processes, of which some have to react very
quickly to external events, while others require enough time for pro-

Note:

The Cmicro preemptive kernel is only available if the according li-
cense is available.

Figure 586: Preemptive scheduling

Sig1

State 1

State x

Sig1

Sig2

Type0 - Prio 1 Type1 - Prio 0
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3381

Chapter 67 The Cmicro Library
cessing. The Cmicro Kernel does all things necessary to schedule such
a mixture of processes.

Users only have to specify a high priority for processes which have to
react after a short time. This can be done with the #PRIO directive for
processes. If no #PRIO directive is specified, then a process is given the
default value, which is specified by the user in the file ml_mcf.h
(please view the subsection “Compilation Flags” on page 3394).

The highest priority is represented by the value zero. The numbering
has to be consecutive with the priority decreasing with increasing num-
bers. Processes with the same priority are on the same priority level. The
default process priority must be in the range of zero to the lowest prior-
ity value used in the system. Assume the following priority levels:

 In the figure above there are signals queued for processes on four dif-
ferent priority levels. These would be worked on in this order:

According to their priorities the signals on priority level zero are con-
sumed first, afterwards those of level one, two and last three. This is rel-
evant only, if no signals are sent during the transitions executed because
of the signals.

Rules

• At system start, SDL processes are statically created in accordance
with their defined priority. During their start transitions it is possible
for processes to send signals or create other processes but no pre-
emption will take place until the start-up phase is completed, i.e. all

Figure 587: Priority levels

Sig01 Sig03Sig02

Sig11 Sig12

Sig21

Sig31 Sig33Sig32

Prio-Level 0

Prio-Level 1

Prio-Level 2

Prio-Level 3
3382 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
static processes have completed the transition from start state to first
state.

• Processes running on a priority level never interrupt other processes
running on the same priority level, thus two instances of the same
type never run at one time.

• A higher priority level is entered, if a signal results in a process with
a higher priority running.

• A lower priority level is entered, if all signals on the currently active
priority level are consumed so that still no process is running on this
priority level.

• Global variables are used to store some information concerning pro-
cesses. The Cmicro Kernel is responsible for the storing and reload-
ing of these, if a preemptive kernel is implemented.

Restrictions

In order to produce portable C code, this version of the Cmicro Kernel
uses recursive C function calls. A few C compilers available on the mar-
ket do not support recursion. If such a C compiler is required, the user
cannot use preemptive scheduling with process priorities.

Create and Stop Operations

No dynamic memory allocation occurs if an SDL create operation is
performed. No freeing of memory occurs if an SDL stop operation is
performed.

Data of a process instance is represented by the following typedef
structs:

• A typedef struct representing PID values (parent and offspring)
stored for an instance

• A typedef struct representing SDL states of an instance

• A typedef struct representing SDL data of an instance

Note:

If C variables are to be used in the SDL application, i.e. (x, N) dec-
larations are used where N > 1 these variables are only available
once and not once per process instance.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3383

Chapter 67 The Cmicro Library
The reason for using such a structure is to make it possible for the Cmi-
cro Kernel to operate on the PID structure and the table with SDL states,
so that no code needs to be generated in the application to update such
variables.

An array of N elements for each of these typedef structs is generated,
where N is the maximum number of process instances. The maximum
number is to be specified in the process declaration header in the SDL
diagram.

After performing a stop action, old PID values might exist in variables
of other processes. The synchronization between processes to prevent
situations where signals are sent to dead processes is left to the discre-
tion of the user. If a process sends a signal to a non existent process,
where nonexistent means either “never created” or “is dead”, the
ErrorHandler is called and the signal is discarded (SDL conform).

When the Cmicro Kernel stops a process, the input queue assigned to
the process stopped will be removed. No interpretation error occurs for
the signals which existed in the queue before the process was stopped.

Output and Input of Signals

The actions to perform an output in the generated code are as follows:

• A struct variable is initialized with the type of the signal parameters,
not using memory allocation.

• The struct variable is then filled, parameter per parameter in gener-
ated code.

• One of the xmk_Send* functions is called with a pointer to the loca-
tion of the struct variable. There are several xmk_Send* functions in
order to use the most effective one in SDL output.

Within the xmk_Send*- functions there are a few checks performed. For
example, if the receiver is a NULL-PID, then the ErrorHandler is called.

Note:

It is also possible for the user to implement dynamic memory allo-
cation for process instance data. Some C defines are to be redefined
in this case.
3384 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
Next, the environment C function xOutEnv is called. This function is
to be filled out by the user. The function decides if the signal should be
sent to the environment. The information necessary can be extracted
from the signal ID, the priority or the receiver of the signal. If xOutEnv
has “consumed” the signal, xmk_Send* returns immediately.
xOutEnv has to copy the parameters of the signal to the receiver of the
signal in the environment because after returning, the parameters will
no longer exist.

If the signal is not environment bound, then the signal is sent to an in-
ternal SDL system process and xmk_Send* inserts the signal into the
queue. This is done according to the priority of the signal (see subsec-
tion “Assigning Priorities – Directive #PRIO” on page 3323 in chapter
66, The Cmicro SDL to C Compiler.

If the signal carries no parameters, or if the signal parameters are repre-
sented by less than or equal to XMK_MSG_BORDER_LEN bytes, no dynam-
ic memory allocation occurs and possible parameters are transferred di-
rectly by copying them into the signal header.

If more than XMK_MSG_BORDER_LEN bytes parameters are to be trans-
ferred dynamic memory allocation occurs. A pointer in the signal head-
er then points to this allocated memory area. Freeing is done after con-
sumption of the signal at the receiver process after executing the next-
state operation or after the signal was consumed by the environment.

In order to implement this strategy, each signal carries a field “data
length” in its header, to detect if a pointer is transferred or a copy of the
parameters.

At the receiver’s side, when the input operation is to be performed, it is
checked if the signal is to be saved or discarded. In the case of save, the
next signal contained in the queue is checked and worked on. If on the
other hand the signal is to be discarded, in the case of an “implicit tran-
sition”, i.e. no definition is present to handle that signal in the current

Note:

There are several possibilities to send signals to the environment by
not using xOutEnv. The user should have a look at the #EXTSIG,
#ALT and #TRANSFER directives which can be used in SDL Output.
The one most similar to SDL, however, is the one which simply uses
the C function xOutEnv.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3385

Chapter 67 The Cmicro Library
state, the signal is then deleted from the input port of the process and,
using the SDL Target Tester, the user is notified.

Otherwise, the signal leads to the execution of the transition. After per-
forming the nextstate operation, the signal is deleted from the input port
of the process and scheduling continues according to the rules of the
scheduler again.

In the case of a so scaled preemptive Cmicro Kernel, the signal remains
active in the input port until the nextstate operation is executed, al-
though other processes can interrupt the running one (preemption).

Nextstate Operation

The nextstate operation is implemented by a return (return value) state-
ment in the generated code. Several return values are possible to control
the action to be taken by the Cmicro Kernel. The PAD function repre-
senting the SDL process can return any of the following (PAD means
“Process Activity Description”).

The return-value either expresses

• An ordinary SDL state change, the value is a C constant represent-
ing the SDL state as a simple integer (generated as #define),

• no SDL state change, indicated by the value SDL_DASH_STATE,

• SDL process stop operation, indicated by the value SDL_STOP.

After recognizing the action to be taken, the Cmicro Kernel either writes
the process state variable or stops the SDL process.

The signal which was just being worked on is deleted from the input
port. This includes the freeing of the memory area allocated for the sig-
nal, if memory was previously allocated.

Decision and Task Operations

No action is to be performed by the Cmicro Kernel for decisions and
tasks, except those to trace these actions for the SDL Target Tester.

For SDL decisions and SDL tasks, C assignments and C function calls
are implemented. Function calls are used in the case of an ADT or
where simple C data operations (i.e. =, >, >=, ==) cannot represent the
SDL operation wanted.
3386 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Scheduler Concepts
Procedures
There are some special topics regarding procedures in SDL. The most
important are:

• The location of data and how to access data
• Scope and visibility rules
• Procedures with states
• Recursivity
• Who can call a procedure

Note that procedures with states and remote procedure calls are not
supported within the Cmicro Package.

It is possible to use global procedures (SDL’92) which makes it possible
to specify a procedure once, by allowing several processes to call it.

Recursion is allowed, but should be introduced only if an algorithm can-
not be designed alternatively. In most cases, algorithms and recursivity
are subjects for an ADT.

Procedures returning values are also implemented. The return value in
SDL is mapped to a return value in C. Procedures not returning values
are mapped to C functions returning void.

The remaining part is the location of procedure data and the access to
procedure data. Here another restriction exists, namely that it is not pos-
sible to access data of the father procedure of a procedure without de-
claring this explicitly.

Data, which belongs to a process is always located as a global array in
C (for x, N process declarations, where N is >1). Data which belongs to
a procedure is always allocated on a C stack for the called procedure.

Procedure Calls

An SDL procedure call is implemented as a direct function call in C.
Each formal parameter is passed as a C parameter to the function. Ac-

Note:

Function calls, however, are not necessarily generated, i.e. if the
user defines C macros/defines instead of C functions for an ADT.
Please consult the subsection “Abstract Data Types” on page 3314
in chapter 66, The Cmicro SDL to C Compiler.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3387

Chapter 67 The Cmicro Library
cess to global data of the calling process is possible only if the proce-
dure is not a global procedure. The C code generated for a local proce-
dure uses global C variables of the surrounding process.

Data which is declared locally within a procedure is also allocated on
the C stack.

No dynamic memory allocation is performed as procedures with states
are not handled.

The following example shows the mapping for procedures returning
values.

Example 573: Procedure Call––––––––––––––––––––––––––––––––––

TASK i := (call p(1)) + (call Q(i,k));

is translated to something like:

i = p(1) + Q(i,k);

––

An SDL procedure can be called more than once. No conflicts occur if
using a preemptive Cmicro Kernel.

Procedure Body

For each SDL procedure, there is one C function generated. The Proce-
dure body can contain the same SDL actions as the process body. The
same code generation is performed with the exception of a few state-
ments declaring temporary variables.

Within global procedures, no objects of the calling process can be used
without declaring them via formal parameters. Another restriction is
that each output in a global procedure must be specified with to PID.

Blocks, Channels and Signal Routes
No C code is generated for blocks, channels and signal routes, except
the C comment, which tells the user the location of processes and pro-
cedures.

Note:

The value returning procedure calls are transformed to C functions
returning values.
3388 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Targeting using the Cmicro Package
Targeting using the Cmicro Package

Directory Structure
At first it is necessary to know the directory structure the Cmicro Pack-
age is stored in.

On UNIX, the Cmicro Package is contained in $sdtdir/cmicro.

In Windows, the Cmicro Package is contained in %SDTDIR%\cmicro.

cmicro
 +-- include
 +-- kernel
 +-- mcod
 +-- template
 +-- commlink
 +-- tester

Furthermore all files, which are used when targeting Cmicro, are defi-
nitely stored in this directory tree. Otherwise the files are generated by
the Cmicro SDL to C Compiler or by the Targeting Expert.

Prerequisites
Before starting the targeting with Cmicro it is necessary to have an SDL
system designed and already tested with the help of the Simulator.

This means targeting begins when the first testing phase is finished.

All steps of targeting will be discussed in the following sub-sections.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3389

Chapter 67 The Cmicro Library
Different Steps in the Work Flow
All the different operation steps listed here will completely supported
by the Targeting Expert (see chapter 60, The Targeting Expert).

1. To start the Targeting Expert, select the entry Targeting Expert in
the Organizer’s Generate menu.

2. Select pre-defined integration settings or <user defined> for a new
integration. See “Pre-defined Integration Settings” on page 2902 in
chapter 60, The Targeting Expert.

– select the Code Generator Cmicro (if not automatically done)

– select the compiler (if not automatically done)

The Cmicro SDL to C Compiler will automatically be invoked and
generates the following files (assumed that separation is not select-
ed):

3. Specify the compiler, linker and make settings (if not automatically
done).

Please view “Configure Compiler, Linker and Make” on page 2856
in chapter 60, The Targeting Expert.

4. Configure and scale the generated C code and the Cmicro Library.

– For information about the compilation flags and their interde-
pendencies please view “Compilation Flags” on page 3394.

– For more details how to use the Targeting Expert please view
“Configure and Scale the Target Library” on page 2872 in chap-
ter 60, The Targeting Expert.

5. Copy template files.

sdl_cfg.h the automatic configuration

<systemname>.c the SDL system

<systemname>.ifc the environment header file

<systemname>_gen.m the sub-makefile (Targeting Expert)

<systemname>.xrf the X-References (not used)

<systemname>.sym the symbol file (SDL Target Tester)
3390 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Targeting using the Cmicro Package
Several files of the Cmicro Package are delivered as template files.
This is done because lots of things can only be done by the user as
they must fit to the user’s SDL system. The template files give easy
to use C functions including help to adapt them to the user’s needs.

All the files mk_stim.c, mk_user.c and mk_cpu.c should be
copied into the project’s directory tree (generated by the Targeting
Expert). All these files are stored in the template directory.

If the SDL Target Tester should also be used it is necessary to copy
the files mg_dl.c and the files describing the preferred communica-
tions link (e.g. the file 8051_v24.[ch] if an 8051 micro controller
and a V.24 interface should be used) into the project directory, too.
The file mg_dl.c is stored in the template directory and the com-
munications link files are stored in template/commlink if con-
tained in the Cmicro Package delivery. Please view the sub-section
“The Communications Link’s Target Site” on page 3618 to get in-
formation about how to create an own communication link.

Please view also “Source Files” on page 2861 in chapter 60, The
Targeting Expert to get information on how to add more files to the
list of files to be compiled. The Targeting Expert will automatically
add these files to the makefile.

6. Full make the complete system.

It is probably necessary to do an environment connection first (see
“Connecting the SDL Environment” on page 3391).

7. Download and execute the executable.

The following sections in the Targeting Expert’s manual (chapter
60, The Targeting Expert) should be checked to find out how these
steps can be eased:

– “Download Application” on page 2880

– “Test Application” on page 2880 (which is probably the target
executable itself)

Connecting the SDL Environment
From the Cmicro Package’s point of view the SDL environment is rep-
resented in template C functions. A short overview of this C functions
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3391

Chapter 67 The Cmicro Library
is given here. For further information please view “Bare Integration” on
page 3437.

• xInitEnv():
This function is given as a template in the file env.c. It needs to be
filled any time it is necessary to initialize specific hardware compo-
nents on the target.

• xCloseEnv():
xCloseEnv() is given as a template in env.c, too. It is only neces-
sary to fill this function if the SDL system can perform a system
stop.

• xInEnv():
xInEnv() is basically generated by the Targeting Expert into the
file env.c. This means that all the signals coming from the environ-
ment are already inserted into the C code of this function.

• xOutEnv():
For all the signals to the environment the Targeting Expert gener-
ates the C function xOutEnv() into the file env.c. All the signals
to the environment are included into the C code.

• User Defined Actions for System Errors – the ErrorHandler:
The Cmicro Package supports the handling of detected errors by
calling the C function ErrorHandler() in the module mk_user.c.
The user needs to redirect the error messages to his target hardware.
I.e. display the errors on the hardware.

The compilation and linkage of the environment functions can be pre-
vented by using the flags given in “Compilation Flags” on page 3394.

Note:

All the modifications of env.c should only be done between the
comments /* BEGIN User Code */ and /* END User Code */.
All the other modifications will be lost when re-generating the
env.c file.

Note:

All the modifications of env.c should only be done between the
comments /* BEGIN User Code */ and /* END User Code */.
All the other modifications will be lost when re-generating the
env.c file.
3392 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Targeting using the Cmicro Package
Different Forms of Target Integration
Different forms of target integration, that is, integrating generated C
code, are distinguished:

• Bare Integration: There is no operating system available on the tar-
get machine. The main() function of Cmicro can be used.

• Light Integration: An operating system is used and the complete
SDL system executes in one operating system task. The SDL task
communicates with the environment by using the communication
resources of the operating system.

• System partitioning: An operating system is used, the SDL system
may execute in different CPUs, or the processes of the SDL system
execute in different OS tasks.

• Tight Integration: An operating system is used, the SDL system ex-
ecutes in one CPU, and the processes of the SDL system execute in
different tasks.

Bare and Light integration represent the most easiest form of integra-
tion.

Bare integration is described in “Bare Integration” on page 3437.

Light integration is described in “Light Integration” on page 3466.

Tight integration can be performed with Cmicro, but the complexity
makes it difficult to describe the integration in this section. It is a gener-
ic solution available, which guides thought the integration.

Please contact Telelogic local sales office/Professional Services for fur-
ther information.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3393

Chapter 67 The Cmicro Library
Compilation Flags
Compilation flags are used to decide the properties of the Cmicro Li-
brary and the generated C code. Both in the Cmicro Library and in the
generated code #ifdef’s are used to include or exclude parts of the
code.

The switches used can be grouped:

1. Flags defining the compiler

2. Flags defining the properties of a compiler

3. Flags defining the properties of the Cmicro Library

4. Flags defining the implementation of a property

The first two groups are discussed in “Adaptation to Compilers” on
page 3430.

The remaining two groups are discussed under “Manual Scaling” on
page 3394 and “Automatic Scaling Included in Cmicro” on page 3426.

Flag naming conventions:

– XMK_ADD_: include optional parts

– XMK_USED_: automatically include parts of the Cmicro SDL to
C Compiler. Note: Do not switch off by hand.

– XMK_USE_: manual scalings

– XMK_MAX_: manual scalings

Use the default settings of these flags in order to reduce potential prob-
lems.

Manual Scaling
Users are able to scale some features of the Cmicro Library and the
Cmicro Kernel in order to optimize the generated code. All the flags dis-
cussed in this section are used throughout the complete SDL system,
therefore it is not possible to define flags for processes separately.

Note:

The whole SDL system must always be generated.
3394 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
The manual scalings have to be done in the file ml_mcf.h. They are di-
vided into the following groups:

1. Cmicro Kernel/Library
– Kernel
– Signals
– Timers
– Error checks

2. Support of SDL Constructs
– Predefined sorts
– Size of variables
– Use of memory

3. SDL Environment

4. SDL Coder

5. SDL Target Tester
– Initialization
– Trace
– Record and Play

6. Communication Link and Compiler

In the following subsections, the way to configure the Cmicro Package
by hand and all the available flags are described.

The user is asked to use the Targeting Expert to configure the Cmicro
Package. A description of how to use the targeting Expert can be found
in “Targeting Work Flow” on page 2852 in chapter 60, The Targeting
Expert.

To configure the Cmicro Package by hand, the user has to modify the
file ml_mcf.h.

To use a Cmicro Package feature just define it in ml_mcf.h like

#define FLAG_NAME_AS_DESCRIBED_BELOW

Sometimes a flag just carries a value. In this case the user has to modify
the value in ml_mcf.h

#define FLAG_CARRYING_VALUE VALUE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3395

Chapter 67 The Cmicro Library
Cmicro Kernel/Library

Kernel

General

• XMK_USE_KERNEL_INIT

When this flag is defined, the Cmicro Kernel memsets all variables
of the SDL processes to 0 before the process is created. This is use-
ful to spare some ROM memory but has the disadvantage of a long-
er process creation phase. The ROM used by the yDef_SDL_* func-
tions can be spared in this case where the initialization with 0 is ap-
propriate.

• XMK_USE_SDL_SYSTEM_STOP

Normally, it is unnecessary to have an SDL system stop in micro
controller applications. An SDL system stop occurs if no living pro-
cess in the SDL system exists and all queues are empty. This occurs
if all process instances have executed an SDL stop and no create
process action is open (create signal in any queue).
Defining XMK_USE_SDL_SYSTEM_STOP means that the C function
main returns correctly with exit(...). To avoid this overhead in the
Cmicro Kernel, the user should not define the above flag.

• XMK_SYSTEM_INFO

If this flag is set, some functions available to get information about
the SDL system during runtime. See “Functions to get System In-
formation” on page 3500

Initial setting set

Default setting unset

Initial setting unset
3396 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• XMK_USE_NO_AUTO_SCALING

When this flag is defined, automatic scaling of SDL features is pre-
vented. An example of flag usage is implementing a change to the
SDL system which does not require re-compilation of the Cmicro
Library. Note that if the number of processes, signals or timers is
changed, the Cmicro Library must be re-compiled. The definitions
contained in sdl_cfg.h are overwritten in ml_typ.h.

• XMK_USE_KERNEL_WDTRIGGER

If this flag is defined, the Cmicro Kernel calls the C function
WatchdogTrigger before executing a transition. This function is
present as a template in the Cmicro Library source files.

Kernel Limits

• XMK_USE_HUGE_TRANSITIONTABLES

Per default the Cmicro Package can handle up to 252 different tran-
sitions per process. If the SDL system exceeds this size, it is neces-
sary to set this flag. See “Transition Table” on page 3332 for further
information.

• XMK_USE_MORE_THAN_250_SIGNALS

Per default the Cmicro Package is designed to handle up to 250 user
defined signals. When using larger SDL systems it is necessary to
define this flag. This results in larger RAM and ROM occupation
and should only be done if necessary (see xmk_T_SIGNAL).

Initial setting unset

Initial setting unset

Initial setting unset

Initial setting unset
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3397

Chapter 67 The Cmicro Library
• XMK_USE_MORE_THAN_256_INSTANCES

Per default the Cmicro Package handle up to 256 instances per pro-
cess type. If the system uses more than 256 instances per type it is
necessary to set this flag.

• XMK_USE_PAR_GREATER_THAN_250

Per default the Cmicro Package is able to handle signal parameters
up to a length of 250 octets. If greater signal parameters are used (at
least once) this flag needs to be set. Please view

xmk_T_MESS_LENGTH in ml_typ.h for further information.

Signal Structure

• XMK_USE_SENDER_PID_IN_SIGNAL

When this flag is defined a sender pid is included in each signal in-
stance. It is possible to omit the sender pid if the system contains no
to SENDER or to PARENT addressing.

• XMK_USE_RECEIVER_PID_IN_SIGNAL

When this flag is defined a receiver pid is included in each signal
instance. It is possible to omit the receiver pid if the user writes a C
function xRouteSignal() which is given as a template in
mk_user.c. Each signal type is then mapped to a unique receiver.
It is recommended to define this flag in small systems where unique
receivers exist for each signal type. It is important to note that in the
case of dynamically created processes an internal create signal is
used. If there are any (x, N) where N > 1, declarations in the system,
the create signal cannot contain the receiver pid. The receiver pid is
necessary for correct creation of processes. Never leave it out when
using dynamic process creation.

Initial setting unset

Initial setting unset

Initial setting set
3398 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• XMK_MSG_BORDER_LEN

The value of this macro gives the length of signal parameters carried
inside the signal. Note: If the parameter length exceeds this value a
memory allocation is performed and the signal parameters are cop-
ied into this buffer. The pointer to the allocated buffer is carried in-
side the signal’s structure (see ml_typ.h for the typedef
xmk_T_SIGNAL).

Signal Handling

• XMK_USE_xmk_SendSimple

This flag enables the output C function xmk_SendSimple() defined
in the Cmicro Kernel. If the SDL system contains several signals
without parameters and priorities, it is useful to set this flag in order
to select the more optimal output C function, xmk_SendSimple(),
in the Cmicro Kernel.

• XMK_USE_SAFE_ADDRESSING

Setting this flag includes a special entry in the signal queue which
ensures the handling of sender and offspring in the start transition.

Signal Queue

• XMK_USE_STATIC_QUEUE_ONLY

Create signals only from the static memory. The static memory is
predefined with XMK_MAX_SIGNALS.

Initial setting set

Initial value 4

Initial setting set

Reset XMK_USE_SIGNAL_PRIORITIES

Initial setting unset

Initial setting set
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3399

Chapter 67 The Cmicro Library
• XMK_USE_STATIC_AND_DYNAMIC_QUEUE

Create signals from the static memory which is predefined with
XMK_MAX_SIGNALS. If more signals have to be inserted mem-
ory is allocated from the dynamic memory pool.

• XMK_MAX_SIGNALS

In the Cmicro Package, the SDL queue is physically implemented
as one queue for all processes. The define discussed in this section
represents the maximum amount of signals in the static signal in-
stance memory pool (see “Dynamic Memory Allocation” on page
3450 for more information). It may be difficult to evaluate the max-
imum entries required during run-time because this totally depends
on how the SDL system is specified, and target hardware perfor-
mance. It is for example, impossible to state how much time hard-
ware requires to process an SDL signal.
By examining the SDL system it can be determined which processes
have a long transition time and which processes send or receive
more than one signal. Estimate by trying out worst case situations.
A first estimation is also possible by calculating:
maximum amount of process instances * 3
For a more exact estimation the user should use the profiler con-
tained in the SDL Target Tester to obtain the necessary information
on how many entries are used during run time.
Another method of helping to determine the maximum amount of
signals required by the system is to use the exception handling
mechanism offered by the ErrorHandler, i.e. when the queue is
full and another signal is to be inserted then the ErrorHandler
function is called.

Reset XMK_USE_STATIC_AND_DYNAMIC_QUEUE

Initial setting unset

Reset XMK_USE_STATIC_QUEUE_ONLY

Initial value 20
3400 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
Light Integration

• XLI_LIGHT_INTEGRATION

If this flag is set, some functionality is included to make a light in-
tegration easier.

• XMK_USE_INTERNAL_QUEUE_HANDLING

This flag make additional functions for queues the handling avail-
able which are needed for light integrations.

• XLI_INCLUDE

The value of this is the name of the header file which is included in
ml_typ.h when XLI_LIGHT_INTEGRATION is set. This file con-
tains the definitions of the light integration macros. See “Define the
macros which are needed in the task function.” on page 3468

Note:

Using dynamic memory allocation does not prevent the user from
estimating the required memory for the queue. Sooner or later prob-
lems arise (e.g. memory fragmentation) if dynamic memory man-
agement is used frequently. For this reason the Cmicro Package
avoids where possible the use of dynamic memory management.

Initial setting unset

Automatic set XMK_USE_INTERNAL_QUEUE_HANDLING
XLI_LIGHT_INTEGRATION

Initial setting unset

Reset XLI_LIGHT_INTEGRATION

Initial setting “li_os_def.h”
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3401

Chapter 67 The Cmicro Library
Tight Integration

The complexity of a tight integration is very high. But there is a generic
solution available, which guides you through the integration.

Please contact Telelogic local sales office/Professional Services for fur-
ther information about this solution.

• XTI_USE_INTERNAL_OUTPUT

For more information about this contact local Professional Services

• XTI_USE_LOCK_IN_CREATE

For more information about this contact local Professional Services

Error Handler

• XMK_USE_MAX_ERR_CHECK

When this flag is defined, additional error checks are included in the
generated code of the Cmicro Library. For further details, see the
appropriate section on “errors and warnings”. For example the Cmi-
cro Kernel calls the ErrorHandler if a signal is sent to an undefined
process (i.e. undefined pid value).

• XMK_USE_MIN_ERR_CHECK

In comparison to XMK_USE_MAX_ERR_CHECK this flag only includes
a basic set of error checks.

Initial setting unset

Initial setting unset

Initial setting set

Reset XMK_USE_MIN_ERR_CHECK
XMK_USE_NO_ERR_CHECK

Initial setting unset

Reset XMK_USE_MAX_ERR_CHECK
XMK_USE_NO_ERR_CHECK
3402 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• XMK_USE_NO_ERR_CHECK

When this flag is defined, all error checks are excluded. It is recom-
mended not to use this flag until the post testing phase of the imple-
mentation, where it can be reasonably assumed that no errors re-
main. For further details see the appropriate section on “errors and
warnings”.

• XMK_USE_MON

If the target executable runs on an environment with monitor func-
tions, the module ml_mon.c can be included to have access to func-
tions like xxmonhexasc() etc.

• XMK_ADD_PRINTF

When this flag is defined some additional printf C function calls
are compiled giving users more information about the internal work
of the system. The printf function can be switched on separately
for Cmicro Kernel, SDL Target Tester and SDL application. At a
lower level, it can be switched on separately for each C module.
Look at the defines in ml_typ.h, which are all named as
XMK_ADD_PRINTF_*.
This flag must be undefined when compiling for the target, except
in the case where there is a stdio implemented on the target. For
correct compilation, the user must also set XMK_ADD_STDIO. If
the user wishes to implement user specific printf functionality
then this flag need not be set.

Reactions on Warnings

• XMK_WARN_ACTION_HANG_UP

Initial setting unset

Reset by XMK_USE_MAX_ERR_CHECK
XMK_USE_MIN_ERR_CHECK

Initial setting unset

Initial setting unset

Automatic set XMK_ADD_STDIO
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3403

Chapter 67 The Cmicro Library
If this flag is defined, the default behavior, if a warning is detected
during SDL execution, is defined as “program hang up”.

The user might choose this reaction when there is no output device
(like printf) available in the SDL program environment.

The user should notice that a warning can lead to an illegal system
behavior. As an example, this might come true for an implicit signal
consumption. The system then hangs but the user might perhaps not
be able to see the reason why this occurs. As a result, it is recom-
mended to trace for warnings also.

• XMK_WARN_ACTION_PRINTF

By defining this flag, the user chooses that in the case of a warning,
a printf function call with an appropriate error text should occur.
Please see XMK_WARN_ACTION_HANGUP also.

• XMK_WARN_ACTION_USER

By defining this flag, the user chooses that in the case of a warning,
a user defined function should be called. The user’s function name
must then be specified with XMK_WARN_USER_FUNCTION. Please see
XMK_WARN_ACTION_HANGUP also.

• XMK_WARN_USER_FUNCTION

Initial setting set

Reset XMK_WARN_ACTION_PRINTF
XMK_WARN_ACTION_USER

Initial setting unset

Reset XMK_WARN_ACTION_HANG_UP
XMK_WARN_ACTION_USER

Initial setting unset

Reset XMK_WARN_ACTION_HANG_UP
XMK_WARN_ACTION_PRINTF
3404 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
If the flag XMK_WARN_ACTION_USER is defined, then the user must
define the name of a C function with this macro. Please see
XMK_WARN_ACTION_HANGUP also.

Reaction on Errors

• XMK_ERR_ACTION_HANG_UP

If this flag is defined, the default behavior, if a fatal system error is
detected during SDL execution, is defined as “program hang up”.

The user might choose this reaction when there is no output device
(like printf) available in the SDL program environment.

The user should notice that if a fatal system error is ignored, this
usually leads to an illegal system behavior. As an example, this
might come true for any use of null pointer values, for which there
is an error check. It is strongly recommended to trace for system er-
rors and warnings.

• XMK_ERR_ACTION_PRINTF

By defining this flag, the user chooses that in the case of a system
error, a printf function call with an appropriate error text should
occur. Please see XMK_ERR_ACTION_HANGUP also.

• XMK_ERR_ACTION_USER

By defining this flag, the user chooses that in the case of an system
error, a user defined function should be called. The user’s function
name must then be specified with XMK_ERR_USER_FUNCTION.
Please see XMK_ERR_ACTION_HANGUP also.

Initial setting user_function()

Initial setting set

Reset XMK_ERR_ACTION_PRINTF
XMK_ERR_ACTION_USER

Initial setting unset

Reset XMK_ERR_ACTION_HANG_UP
XMK_ERR_ACTION_USER
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3405

Chapter 67 The Cmicro Library
• XMK_ERR_USER_FUNCTION

If the flag XMK_ERR_ACTION_USER is defined, then the user must
define the name of a C function with this macro. Please see
XMK_ERR_ACTION_HANGUP also.

Timer Scaling

If there are timers used within the SDL system, the timers have to be
scaled.

• XMK_USE_TIMER_SCALE

The timer units can be scaled within the Cmicro Kernel. This means
that the factor given with XMK_USE_TIMER_SCALE_FACTOR is
used.

• XMK_USE_TIMER_SCALE_FACTOR

The factor modifies the expiration of timers. Is a value of 1 given
here, it means that the expiration time is un-modified. A value of
100 increase the expiration time with a factor of 100 with other
words the timer needs 100 times longer.

• XMK_TIMERPRIO

An expired timer is handled like a signal inside the Cmicro Kernel
and inserted into the signal queue. In this way there has to be a pri-
ority level if signal priorities are used. The XMK_TIMERPRIO
gives the priority for all expired timers. This default value can lay
between 0 and 250.

Initial setting unset

Reset XMK_ERR_ACTION_HANG_UP
XMK_ERR_ACTION_PRINTF

Initial setting user_function()

Initial setting unset

Initial value 100
3406 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
Timer queue

• XMK_USE_GENERATED_AMOUNT_TIMER

The code generator evaluates the amount of timers that are declared
in the system. The result of this evaluation is then, after code gener-
ation, defined with XMK_MAX_TIMER_INST in the file sdl_cfg.h.
Timer instances are, usually, implemented as a C array with Cmi-
cro. If the XMK_USE_GENERATED_AMOUNT_TIMER flag is set, then
the timer array is dimensioned with the evaluated amount
(XMK_MAX_TIMER_INST).

When timers with parameters are in the system, the automatically
generated value XMK_MAX_TIMER_INST can be used to pre-define
one timer instance of a timer declaration. If there are then more tim-
ers to be instantiated, dynamic memory allocation must take place.
This cannot be evaluated by the code generator.

As a result, if there are timers with parameters in the system, the
user should think about how many timer instances there could be
during execution and should decide upon the maximum amount by
himself. In this way, memory consumption and performance can be
balanced.

• XMK_MAX_TIMER_USER

This macro is used for internal purposes. The meaning of it is the
opposite of XMK_USE_GENERATED_AMOUNT_TIMER.

The flag is set when XMK_USE_GENERATED_AMOUNT_TIMER is not
set. The flag XMK_MAX_TIMER_USER is unset if
XMK_USE_GENERATED_AMOUNT_TIMER is set.

• XMK_MAX_TIMER_USER_VALUE

If XMK_MAX_TIMER_USER is set, the value
XMK_MAX_TIMER_USER_VALUE becomes meaningful. With this val-

Initial value 100

Initial value set

Initial value unset
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3407

Chapter 67 The Cmicro Library
ue, the user may specify how many timer instances should be pre-
defined during compilation time. The predefined timer instances of-
fer the advantage that no dynamic memory allocation is to be done
for them. If the predefined amount of timer instances is exceeded,
then dynamic memory allocation will occur. As a result, it is up to
the user how he balances static and dynamic memory for timer in-
stances by changing this value.

Execution Time

• XMK_USE_CHECK_TRANS_TIME

When this flag is defined the time duration for each executed tran-
sition is checked against a predefined duration. If the executed du-
ration is longer than the predefined duration set by the
XMK_TRANS_TIME flag, the ErrorHandler() is called. The flag is
only available when using a non preemptive Cmicro Kernel. No ad-
ditional hardware is necessary as the evaluation is based on the SDL
time value NOW which is provided by the same hardware source as
for the system clock.

• XMK_TRANS_TIME

This macro specifies the time duration that a transition execution
time is compared with. The value must be in the target system time
units, e.g. if the target’s system step is 0,002 sec, the value 100 spec-
ifies a duration of 0.2 sec.

Signal Priorities

In the standard configuration of the Cmicro Kernel no signal priorities
are used. So each signal sent is inserted at the end of the signal queue.

• XMK_USE_SIGNAL_PRIORITIES

Initial value 20

Initial setting unset

Automatic set XMK_TRANS_TIME

Initial value 20

Depend on XMK_USE_CHECK_TRANS_TIME
3408 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
When this flag is defined, the header of each signal which is sent via
the SDL queue has an additional entry, namely “priority”. This is
used to modify the ordering of signals in the queue.
This flag should be used in combination with using the #PRIO di-
rective. It works for all the different scheduling methods.
If signal priorities are enabled, signal handling xmk_SendSimple
has to be switched of.

• xDefaultPrioSignal

If a signal has not got a priority assignment within the SDL system,
it is handled with the default value xDefaultPrioSignal. A value
between 0 (highest priority!) and 250 should be entered.

• XMK_CREATE_PRIO

Create signals can not be assigned a signal priority within the SDL
system. As these signals are also handled over the signal queue, a
default priority is necessary when signal priorities are selected (i.e.
XMK_USE_SIGNAL_PRIORITIES is defined). A value between 0
(highest priority!) and 250 should be entered.

Preemption

Normally, the Cmicro Kernel is configured so that the simple schedul-
ing policy is used, i.e. transitions of SDL processes are non interrupt-
ible.

Initial setting unset

Automatic set xDefaultPrioSignal
XMK_CREATE_PRIO

Reset XMK_USE_xmk_SendSimple

Initial value 100

Depend on XMK_USE_SIGNAL_PRIORITIES

Initial value 1

Depend on XMK_USE_SIGNAL_PRIORITIES
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3409

Chapter 67 The Cmicro Library
• XMK_USE_PREEMPTIVE

Usually the Cmicro Kernel is configured to “non preemptive”. This
means, that each transition must execute to its end, before the next
transition can be processed.
This means, that the nextstate symbol of a process is executed, be-
fore the next SDL input can be handled. On the other hand, “pre-
emptive scheduling” is useful, if an SDL process must directly exe-
cute when an external event from an interrupt source is detected and
sent to the SDL system. In this case, an executing transition is pos-
sibly suspended, and another transition can be executed.
The kernel makes decisions based on the defined priority of pro-
cesses when to schedule to another process. If the receiver of a sig-
nal which has been received from the environment (or a process in-
side the SDL system) has a higher priority than the currently execut-
ing process, the new signal is treated immediately.

• MAX_PRIO_LEVELS

This defines the amount of process priority levels in the SDL sys-
tem. It is of relevance only, if preemption is selected and must be
equal to the lowest process priority plus 1. The lowest priority has
the highest value.

Note:

The Cmicro preemptive kernel is only available if an according li-
cense is available.

Initial setting unset

Automatic set MAX_PRIO_LEVELS
xDefaultPrioProcess
XMK_USE_RECEIVER_PID_IN_SIGNAL

Reset XMK_USE_CHECK_TRANS_TIME

Initial value 1

Depend on XMK_USE_PREEMPTIVE
3410 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• xDefaultPrioProcess

If there is an SDL process with no process priority assigned to it,
this process will be handled with the xDefaultPrioProcess. It is
mandatory that the xDefaultPrioProcess is in the range of 0 to
(MAX_PRIO_LEVELS -1).

SDL Target Tester

Initialization

• XMK_ADD_MICRO_TESTER

This is the main flag to enable or disable the SDL Target Tester. Use
this flag if the addition of the SDL Target Tester features is wanted.
The following features are selected by this flag:

– Trace into a file.
– Trace into a buffer on target side.
– Trace via a serial interface.
– the Cmicro Recorder

Caution!

A run-time error occurs if this definition is wrong. If the error
checks are enabled, a check is made by the Cmicro Kernel and the
C function ErrorHandler() is called if the check fails.

Initial value 0

Depend on XMK_USE_PREEMPTIVE

Initial setting unset

Automatic set XMK_USE_MAX_ERR_CHECK
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3411

Chapter 67 The Cmicro Library
• XMK_WAIT_ON_HOST

During the start up of the target executable (see
xmk_MicroTesterInit() in the module mk_main.c), the target
can wait for the host’s run-time configuration. If this is not needed,
the XMK_WAIT_ON_HOST flag has to be undefined.

• XMK_ADD_PROFILE

This flag is to be defined if the profiler is to be used. With the pro-
filer, it is possible:

– to trace the SDL queue concerning it’s traffic load,
– to trace the number of timers which exist in parallel

(not included in this version of the Cmicro Package).
– to trace the execution time process transitions

The profiler can be used independently from the SDL Target Tester
functions. By using a debugger the following values may be in-
spected:

int xmk_max_q_cnt,

representing queue-dimensioning, and

int xmk_act_q_cnt,

representing the maximum traffic load of the queue at any time dur-
ing the execution.

Reset when unset XMK_ADD_MICRO_COMMAND,
XMK_USE_DEBUGGING,
XMK_ADD_PROFILE,
XMK_ADD_MICRO_ENVIRONMENT,
XMK_WAIT_ON_HOST,
XMK_ADD_SDLE_TRACE,
XMK_ADD_SIGNAL_FILTER,
XMK_USE_COMMLINK,
XMK_ADD_MICRO_TRACER,
XMK_ADD_TEST_OPTIONS,
XMK_USE_SIGNAL_TIME_STAMP,
XMK_ADD_MICRO_RECORDER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER
3412 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• XMK_USE_DEBUGGING

If the debugging functions should be included to the target execut-
able, this flag needs to be defined.

• XMK_ADD_MICRO_COMMAND

This flag adds the command interface of the SDL Target Tester
(please view chapter 68, The SDL Target Tester).

• XMK_ADD_MICRO_ENVIRONMENT

To allow the signal exchange with the external environment con-
nected to the SDL Target Tester, this flag needs to be defined.

The external environment can be a GUI application or a cmdtool for
example.

Trace

Trace Scaling

• XMK_ADD_MICRO_TRACER

This flag enables the trace of the SDL execution and trace of system
events to any device.

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3413

Chapter 67 The Cmicro Library
• XMK_ADD_SDLE_TRACE

This flag enables the trace of SDL symbols in the SDL Editor.

• XMK_USE_COMMLINK

If this flag is defined the trace via the specified communications link
is enabled. The trace is handled with the SDL Target Tester’s data
link layer. See the module mg_dl.c for further information.

• XMK_USE_AUTO_MCOD

Is this flag defined, the host get a further message for the message
coder. Depending on this flag the Targeting Expert insert the entry
‘USE_AUTO_MCOD yes’ into the sdtmt.opt file. The entrys
LENGTH_, ENDIAN_, and ALIGN_ are ignored. For more infor-
mation view chapter 68, The SDL Target Tester.

• XMK_ADD_SIGNAL_FILTER

This flag conditionally compiles the signal filtering mechanism of
the SDL Target Tester (please view chapter 68, The SDL Target
Tester). With the signal filter, it is possible to specify that some sig-
nals should be traced while others are not.

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Reset when unset XMK_USE_SIGNAL_TIME_STAMP

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting set

Initial setting unset
3414 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
• XMK_ADD_TEST_OPTIONS

By defining this flag the symbol trace of the target can be config-
ured. See function main() in module mk_user.c.

• XMK_USE_SIGNAL_TIME_STAMP

Defining this flag means that in the header of each signal which is
sent via the SDL queue, there is an additional entry “time-stamp”.
When using the standard Cmicro Library, the Cmicro Kernel sets
the time-stamp to NOW, if an SDL signal is inserted into the queue.

This time-stamp is especially used by the Cmicro Recorder
(XMK_ADD_MICRO_RECORDER) in order to enable the replay
of an SDL session in simulated real-time.

In other cases, the user is free to modify the type of time-stamp im-
plementation.

• XMK_MAX_PRINT_STRING

The user can add his own trace messages to the standard trace of the
SDL Target Tester. This message will be handled like a string. The
maximum size of these strings are defined with
XMK_MAX_PRINT_STRING.

Buffers

• XMK_MAX_RECEIVE_ENTRIES

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Initial setting unset

Depend on XMK_ADD_MICRO_TESTER

Reset when unset XMK_ADD_REALTIME_PLAY

Initial value 40
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3415

Chapter 67 The Cmicro Library
If the ring buffer is used this flag gives the amount of entries for the
receiver buffer.

• XMK_MAX_RECEIVE_ONE_ENTRY

This flag gives the size of one entry of the receiver buffer. The mes-
sage received here are SDL Target Tester commands or the Cmicro
Recorder’s play data. I.e. as a rule over the thumb a value of 12 +
maximum signal parameter size must be given here.

• XMK_MAX_SEND_ENTRIES

When the Cmicro Tracer is used the target executable writes the
trace data into a ring buffer (view ml_buf.c). The recommended
amount of entries given here depends of the used communications
link. I.e. if using a slow communications link like V.24 this amount
should be increased.

• XMK_MAX_SEND_ONE_ENTRY

When the Cmicro Tracer is used the target executable writes the
trace data into a ring buffer (view ml_buf.c). The size of one entry
depends on the SDL system. As a rule over the thumb a value of 12
+ maximum signal parameter size must be given here.

Recorder and Play

• XMK_ADD_MICRO_RECORDER

Initial value 20

Initial value 100

Initial value 20

Initial value 100

Note:

The SDL Target Tester’s Record and Play functions are only avail-
able if a Cmicro Recorder license is available.
3416 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
This flag adds the functions of the record mode of the Cmicro Re-
corder (please view chapter 68, The SDL Target Tester).

• XMK_ADD_REALTIME_PLAY

When defining this flag, the replay of a recorded session can be per-
formed in simulated real-time.

Support of SDL Constructs

Predefined Sorts

Character Strings

• XRESTUSEOFCHARSTRING

This flag must be seen in combination with XNOUSEOFCHAR-
STRING, which forbids the use of SDL charstrings. If this flag is
set, SDL charstrings are only supported in a restricted way. I.e. con-
stant character buffers are used in this implementation.

As a third possible way XRESTUSEOFCHARSTRING and
XNOUSEOFCHARSTRING should both be undefined to enable a
full support of SDL charstrings.

Initial setting unset

Depend on XMK_ADD_MICRO_TRACER

Reset when unset XMK_ADD_REALTIME_PLAY

Initial setting unset

Automatic set XMK_USE_SIGNAL_TIME_STAMP

Depend on XMK_ADD_MICRO_RECORDER

Initial setting set

Reset by XNOUSEOFCHARSTRING
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3417

Chapter 67 The Cmicro Library
• XNOUSEOFCHARSTRING

The use of SDL charstrings is not possible. This can be selected for
systems witch do not use SDL charstrings.

• XMK_MAX_SDL_CHARSTRING

This macro gives the maximum length of charstring if XNOU-
SEOFCHARSTRING is defined.

Predefined Sorts

• XNO_LONG_MACROS

The setting of this flag prevents the use of predefined generators
(please view “sctpredg.h, sctpred.h and sctpred.c” on page 3473).
This can be done to reduce the target’s memory size. But must be
done for some specific compilers as these are not able to handle long
macro definitions. Please view the appropriate compiler section in
ml_typ.h (“Adaptation to Compilers” on page 3430)

• XNOUSEOFREAL

This flag allows using real values in SDL if it is undefined.

Caution!

The Cmicro Recorder is not able to handle SDL charstrings within
signal parameters.

Initial setting set

Reset by XRESTUSEOFCHARSTRING

Initial value 50

Initial setting set

Initial setting set
3418 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
ASN.1 Sorts

• XNOUSEOFASN1

If this flag is undefined it is allowed to use ASN.1 data types. It is
recommended not to use ASN.1 data types if possible, because the
functions that are necessary to handle these types occupy much
memory.

• XNOUSEOFOCTETBITSTRING

If this flag is undefined it is allowed the use of ASN.1 data type oc-
tetbitstring. It is recommended not to use ASN.1 data types if pos-
sible, because the functions that are necessary to handle these types
occupy much memory.

• XNOUSEOFOBJECTIDENTIFIER

If this flag is undefined it is allowed the use of ASN.1 data type ob-
jectidentifier. It is recommended not to use ASN.1 data types if pos-
sible, because the functions that are necessary to handle these types
occupy much memory.

Note:

Every multiplication of an integer value with an integer value is
mapped to a multiplication of a real value with a real value. This is
done because an overflow cannot be detected when using integer
values.

Initial setting set

Depend on XNOUSEOFCHARSTRING

Initial setting set

Depend on XNOUSEOFASN1

Initial setting set

Depend on XNOUSEOFASN1
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3419

Chapter 67 The Cmicro Library
Error Checks

• XEREALDIV

If this flag is defined, then a C function is used to perform division
of real values, otherwise a C macro is used. The flag should be set
for allowing better error checks, but may be unset for optimizing the
target program code, as the checks occupy a lot of memory.

• XEINTDIV

If this flag is defined, then a C function is used to perform division
of integer and octet values, otherwise a C macro is used. The flag
should be set for allowing better error checks, but may be unset for
optimizing the target program code, as the checks occupy a lot of
memory.

• XEINDEX

If this flag is defined, then additional error checks are introduced
that check the index of array at each position an array element is ac-
cessed. The flag should be set for allowing better error checks, but
may be unset for optimizing the target program code, as the checks
occupy a lot of memory.

• XEFIXOF

If this flag is defined, then additional error checks are introduced
that check the conversion from real to integer. The flag should be set
for allowing better error checks, but may be unset for optimizing the
target program code, as the checks occupy a lot of memory.

• XECSOP

Initial setting set

Initial setting set

Initial setting set

Initial setting set
3420 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
Setting this flag includes an error check for predefined ADT opera-
tors, as the checks occupy a lot of memory.

• XERANGE
XTESTF

These flags define that an SDL syntype is to be checked against its
defined range. If the flags are not set, the code to perform this check
is left out. The flag should be set for allowing better error checks,
but may be unset for optimizing the target program code, as the
checks occupy a lot of memory.

Size of Variables

• X_COMPACT_BOOL

This flag defines that an SDL boolean is translated to unsigned char,
when it is set. Otherwise each SDL boolean is translated to integer.
Usually this flag should be left set, as it is in the default setting. An
exception might become true when a C compiler can handle integer
values more efficient than char values.

• X_SHORT_REAL

When this flag is defined, then each SDL real value is translated to
a float in C. If it is not defined, Cmicro assumes SDL real values are
C double values. The user must take care that at no place in the SDL
system there is a real value used that exceeds the maximum range of
the appropriate C type.

Note:

This flag should be used for testing purposes but uses lots of code
size within the target.

Initial setting set

Initial setting set

Initial setting set

Initial setting set
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3421

Chapter 67 The Cmicro Library
• X_LONG_INT

By defining this switch, the SDL predefined sorts, integer and nat-
ural are translated to long, otherwise these are translated to integer.
The user must take care that at no place in the SDL system there is
a real value used that exceeds the maximum range of the appropriate
C type.

Use of Memory

Memory Management

• XMK_USE_SDL_MEM

If this flag is defined, then the Cmicro Kernel can use the dynamic
memory management functions contained in the ml_mem module
(xmk_Malloc(), xmk_Calloc() and xmk_Free()). This is neces-
sary if the compiler in use has no malloc/free or if the user wishes
to modify the standard behavior of these functions, i.e. using a best
fit, instead of first fit searching algorithm. The user should refer to
“Dynamic Memory Allocation Functions – Cmicro” on page 3451
also.

• XMK_USE_MIN_BLKSIZE

By setting this define it is possible to organize the dynamic memory
allocation in a similar way as arrays in C. If all the allocated blocks
in the memory occupy the same space then no fragmentation prob-
lems occur.

• XMK_USE_memshrink

If this flag is defined, then the xmk_Memshrink() function of the
ml_mem module can be used. This function delivers the opportunity

Initial setting unset

Initial setting unset

Reset when unset XMK_USE_memshrink

Initial setting unset
3422 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
to free the unused space of a memory block that was requested pre-
viously with xmk_Malloc() or xmk_Calloc().

• XMK_USE_memset

If this flag is defined, then the memset() function of the ml_mem
module is compiled.

• XMK_USE_memcpy

If this flag is defined, then the memcpy() function of the ml_mem
module is compiled.

• XMK_CPU_WORD_SIZE

For allocating memory the pointer to the end of the allocated mem-
ory must be dividable by XMK_CPU_WORD_SIZE. This value is
set to 8 as default, but should be decreased to 4, 2 or even 1 if the
CPU’s layout allows it.

• XMK_MEM_MIN_BLKSIZE

The requested block size is rounded to a value of
XMK_MEM_MIN_BLKSIZE, if the
XMK_MEM_MIN_BLKSIZE is greater than the requested block
size.

Initial setting unset

Depend on XMK_USE_SDL_MEM

Initial setting unset

Initial setting unset

Initial value 8

Depend on XMK_USE_SDL_MEM

Initial value 64

Depend on XMK_USE_MIN_BLKSIZE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3423

Chapter 67 The Cmicro Library
• XMK_MAX_MALLOC_SIZE

If the Cmicro memory functions (xmk_Malloc(), xmk_Calloc()
and xmk_Free()) are used, the buffer that is used for dynamic
memory allocation is to be initialized with xmk_MemInit(). The
size of the buffer can be given here.

String Functions

• XMK_USE_strcpy

If this flag is defined, then the strcpy() function of the ml_mem
module is compiled.

• XMK_USE_strncpy

If this flag is defined, then the strncpy() function of the ml_mem
module is compiled.

• XMK_USE_strcmp

If this flag is defined, then the strcmp() function of the ml_mem
module is compiled.

• XMK_USE_strlen

If this flag is defined, then the strlen() function of the ml_mem
module is compiled.

Initial value 1024

Depend on XMK_USE_SDL_MEM

Initial setting unset

Initial setting unset

Initial setting unset

Initial setting unset
3424 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
SDL environment

• XMK_USE_xInitEnv

This flag enables the C function xInitEnv() which is generated as a
template in file env.c by the Targeting Expert.

• XMK_USE_xInEnv

This flag enables the C function xInEnv() which is generated as a
template in file env.c by the Targeting Expert.

• XMK_USE_xOutEnv

This flag enables the C function xOutEnv() which is generated as a
template in file env.c by the Targeting Expert.

• XMK_USE_xCloseEnv

This flag enables the C function which is generated as a template in
file env.c by the Targeting Expert.

• XMK_USE_SEND_ENV_FUNCTION

This flag make it possible to use an alternative function to send sig-
nals to the environment. This is needed if the used compiler does not
support re-entrant functions. The disadvantage of this implementa-
tion exists in the missing error checks. See “Alternative Function
for sending to the Environment” on page 3502

Initial setting set

Initial setting set

Initial setting set

Initial setting set

Initial setting unset
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3425

Chapter 67 The Cmicro Library
• XMK_ADD_STDIO

The Cmicro Package is mainly intended for target implementation.
However on some occasions the user may wish to use OS features.
Normally this flag is undefined when compiling for the target sys-
tem but may be defined if stdio is available and required on the tar-
get system.
Defining XMK_ADD_STDIO without setting XMK_ADD_PRINTF allows
the user to exclude the default printfs of the Cmicro Library and
instead implement user defined printfs.

Automatic Scaling Included in Cmicro
The flags described in this section are automatically generated into the
file sdl_cfg.h by the Cmicro SDL to C Compiler. The purpose is to
exclude parts of the C code in order to reduce the generated code. Fea-
tures or functions which are not required in the SDL description pro-
duce no (or only a small) overhead in the generated code.

If the user does not wish to employ automatic scaling facilities, for ex-
ample if test and debugging proves too difficult, then simply define the
flags XMK_USE_NO_AUTO_SCALING.

All the flags discussed in this section are used on the whole SDL system
i.e. it is not possible to define flags for processes separately.

The Targeting Expert will use these flags, too, to optimize and ease the
manual scaling.

• XMK_USED_ONLY_X_1

If this flag is generated as defined, then there is no process defined
in the system, where N is > 1 in the process declaration (x, N). This
allows memory to be saved as the overhead for process addressing
in the system is reduced. The need for numbering of process in-
stances is also eliminated.

• XMK_USED_DYNAMIC_CREATE

Initial setting unset

Reset when unset XMK_ADD_PRINTF
3426 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
If this flag is generated as defined, the SDL system uses the dynam-
ically created process feature of SDL. (It only requires one create-
symbol in the SDL system to enable this flag to be set). This of
course constitutes a bigger Cmicro Kernel.

• XMK_USED_DYNAMIC_STOP

If this flag is generated as defined, the SDL system uses the dynamic
process stop feature of SDL. (It only requires one stop-symbol in the
SDL system to enable this flag to be set). This of course constitutes
a bigger Cmicro Kernel.

• XMK_USED_SAVE

If this flag is generated as defined, the SDL system uses the save
feature of SDL. Using save means that there has to be additional
overhead in each signal stored in the SDL queue (each signal is
tagged as save or not save).
The save construct, although a useful construct for manipulation of
the SDL FIFO queue mechanism, unfortunately imposes a large
code overhead. The user should avoid the utilization of this con-
struct where possible.

• XMK_USED_TIMER

If there is a minimum of one timer declaration in the system, then
this flag is generated as defined. If no timer declarations exist in the
SDL system, the timer handling functions are excluded.

• XMK_HIGHEST_SIGNAL_NR

This define gives the amount of signals and timers used in the SDL
system in sum. It is used to scale internal buffers of the Cmicro
Package.

• XMK_USED_SIGNAL_WITH_PARAMS

If no signals with parameters are defined in the SDL system, then
this flag is generated as defined which reduces the overall code size.

Note:

It is possible to implement a user defined timer model by un-defin-
ing these flags and defining some other macros.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3427

Chapter 67 The Cmicro Library
• XMK_USED_TIMER_WITH_PARAMS

This define is generated if there is at least on timer with parameter
used in the system. If this is the case, additional functionality for this
construct is added when the kernel is compiled. The timer opera-
tions will result in producing more overhead, both symbol by sym-
bol and overhead in the kernel compared with the case if there are
no timers with parameters defined.

• XMK_USED_SENDER, XMK_USED_PARENT,
XMK_USED_OFFSPRING, XMK_USED_SELF

The above flags are generated as defined if the user uses the appro-
priate addressing construct within SDL, that is sender, parent, off-
spring or self.
If “to” in output actions is not used, none of the above flags is gen-
erated as defined.
The define XMK_USE_PID_ADDRESSING depends on the above flags.

• XMK_USED_PWOS

If procedures without states are contained in the SDL system, this
flag is defined. Procedures with states are not supported by the Cmi-
cro Package.

Automatic Dimensioning in Cmicro
Some resources of the Cmicro Library are automatically dimensioned.
These are described in the following subsections.

• MAX_SDL_PROCESS_TYPES

The Cmicro SDL to C Compiler counts the amount of process types
in the system and generates this define. This is used to dimension
some tables used in the generated code, the Cmicro Kernel and the
SDL Target Tester.

• MAX_SDL_TIMER_TYPES

Note:

It is not recommended in each case (because it is not SDL conform),
but is possible to send parameters via global parameters by using C
code in SDL.
3428 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Flags
The Cmicro SDL to C Compiler counts the amount of timer types in
the system and generates this define. This is used to dimension some
tables used in the generated code, the Cmicro Kernel and the SDL
Target Tester.

• MAX_SDL_TIMER_INSTS

The Cmicro SDL to C Compiler counts the amount of instances of
timers in the system and generates this define. This is used to dimen-
sion some tables used in the generated code, the Cmicro Kernel and
the SDL Target Tester.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3429

Chapter 67 The Cmicro Library
Adaptation to Compilers
In this section the steps are explained that must be carried out in order
to deal with a new C compiler which is not yet in the list of available
compilers.

The following parts may be modified manually:

• In mk_stim.c, there are template functions as templates which have
to be modified to adapt another hardware/compiler to the SDL sys-
tem time (Now).

• In mk_cpu.c, there are templates for functions which represent
hardware access. Those are required if the preemptive Cmicro Ker-
nel is used.

The following parts can be added by using the Targeting Expert:

• A compiler specific header file user_cc.h which will automatical-
ly be included in ml_typ.h. Please view “Compiler Definition for
Compilation” on page 2836 in chapter 60, The Targeting Expert.

• An entry in the Targeting Expert’s configuration files. Please view
“Compiler Definition for Compilation” on page 2836 in chapter 60,
The Targeting Expert.

List of Available C Compilers in ml_typ.h
C compilers are to be selected by the user by choosing from an available
list with the help of the Targeting Expert.

The Targeting Expert will generate a C define into the ml_mcf.h file.
When compiling Cmicro sources, the right C compiler section in
ml_typ.h is selected by using a #ifdef <compilername> construct.

 The following <compilername> defines are currently defined in
ml_typ.h:
3430 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
Compilation
switch Meaning

GCC The GNU C++ compiler for workstations

GNU80166 The GNU UNIX C compiler for Siemens 80C166
microcontrollers

TCC80166 The BSO/Tasking DOS C compiler for Siemens
80C166 microcontrollers

TCC80C196 The BSO/Tasking DOS C compiler for INTEL
80196 microcontrollers

IARC51 The Archimedes/IAR UNIX C compiler for IN-
TEL 8051 microcontrollers

IARC6301 The Archimedes/IAR DOS C compiler for Hita-
chi 6301 microcontrollers

KEIL_C51 The Franklin/Keil DOS C compiler for INTEL
8051 microcontrollers

KEIL_C166 The Franklin/Keil DOS C compiler for Siemens
80166 microcontrollers

TMS320
MSP58C80

The Texas Instruments DOS C compiler for TMS
320C2x/C5x microcontrollers

IARC7700 The Archimedes/IAR DOS C compiler for Melps
7700 microcontrollers

HYPERSTONE Hyperstone 5.07 C compiler with HyRTK real-
time kernel

MCC68K The MicroTech DOS C compiler for Motorola
68k microprocessors

MICROSOFT_C The Microsoft C++ compiler

BORLAND_C The Borland C++ compiler

ARM_THUMB The Thumb compiler for ARM microcontrollers

ICC_HC12 The ICC12 5.0 Compiler for HC12 microcontrol-
lers
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3431

Chapter 67 The Cmicro Library
If none of these compiler flags is defined during compilation the file
user_cc.h (generated by the Targeting Expert) will be included in
ml_typ.h.

The remaining part of the code of the Cmicro Library should be com-
pilable without performing any modifications. If there are problems
with adapting a new compiler or hardware please contact Cmicro tech-
nical support.

The user may however decide to define his own C compiler. This is ex-
plained in the following subsection.

Introducing a new C Compiler

Adding a new C Compiler to the Project

The first alternative to add a new user defined C compiler, is to add that
compiler to a user’s project. This can be achieved with the Targeting
Expert.

• Give the C compiler a name for using it within Cmicro. The name
should as a recommendation be in the notation of C macros, that is,
it should be 8 to approximately 16 characters long in uppercase let-
ters.

• Below the Targeting Expert’s Edit menu there is a choice called
“Add a new C Compiler” by which the new C compiler can be de-
fined.

• It is also possible to remove the user defined C compiler later on by
using this menu.

These changes are not stored within the Telelogic Tau installation, but
within the user’s project directory (which is the target directory that was
chosen when the Targeting Expert was started).

Do the C Compiler Adaptations

• Create a new file with the name user_cc.h. If a C compiler is se-
lected, which is not in the list of available C compilers in the Cmicro
product, the user_cc.h is included automatically. This can easily
be done by using the Targeting Expert’s Edit menu “Edit compiler
section”.
3432 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
• Take care that the right path names are specified when the C com-
piler is invoked. There usually should be something like a “-I.” op-
tion which must point to the path in which user_cc.h is stored.

Description of user_cc.h

The things that are to be defined by the user are:

• Is the compiler able to handle function prototypes, as defined in
ANSI-C?

• Is the controller faster in accessing character values or integer val-
ues?

• Does the compiler support variables stored in registers?

>register< is the compiler specific command to store variables in
registers.

• Default setting:
#define xptrint unsigned long

This setting should work for the very most compilers In a few cases
it is necessary to define xptrint as unsigned int.

• Default setting:
#define xint32 long

This setting should work for the very most compilers. In a few cases
it is necessary to define xint32 as int.

Yes #undef XNOPROTO
#define XPP(x) x
#define PROTO(x) x

No #define XNOPROTO
#define XPP(x)
#define PROTO(x)

char #define xmk_OPT_INT char

integer #define xmk_OPT_INT integer

Yes #undef X_REGISTER
#define X_REGISTER >register<

No /* Nothing to do for X_REGISTER */
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3433

Chapter 67 The Cmicro Library
• Is the compiler able to handle the C keyword const in the correct way?

In general, the compilers which are able to produce ROM-able code,
can handle the keyword const. Compilers may generate false ob-
ject code, if using const.

• Is it a UNIX system for which code is to be compiled for?

• Is it an MS Windows system for which code is to be compiled for?

• Critical paths must be enabled and disabled:

#undef XMK_END_CRITICAL_PATH
#define XMK_END_CRITICAL_PATH \
 if (xmk_InterruptsDisabled) \
 {\
 xmk_InterruptsDisabled--;\
 if (!xmk_InterruptsDisabled) \
 { ENABLE; }}

#undef XMK_BEGIN_CRITICAL_PATH
#define XMK_BEGIN_CRITICAL_PATH \
 DISABLE;\
 xmk_InterruptsDisabled++;

ENABLE and DISABLE are the compiler specific command to al-
low/prevent interrupts and must be filled.

• A #include of <stdio.h>, if supported by the compiler (not all the
target compilers do). Write:

#ifdef XMK_ADD_STDIO
 #include <stdio.h>
#endif

• Which include header files must be added?

Yes #define XCONST const

No #undef XCONST

Yes #define XMK_UNIX

No

Yes #define XMK_WINDOWS

No
3434 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
For example, for the IARC51:

#define “io51.h”

is used. For the GNU80166:

#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <c166.h>

is used.

• The include header files containing the prototypes for dynamic
memory allocation and string and memory functions must be add-
ed. This subsection should look like this for allowing the user to se-
lect either the memory functions from the C compiler or from Cmi-
cro:

#ifdef XMK_USE_SDL_MEM
 #include “ml_mem.h”
#else
 #include “string.h”
#endif /* XMK_USE_SDL_MEM */

It must be checked if malloc(), free(), calloc() etc. are re-
ally prototyped in string.h, on other compilers it might be
stdlib.h. Cmicro always calls xAlloc() and xFree() which are
given as examples in the mk_cpu.c file below the template direc-
tory. For more information on dynamic memory allocation please
view the subsection “Dynamic Memory Allocation” on page 3450.

Defining the SDL System Time Functions in
mk_stim.c
The following functions exist in the module mk_stim.c:

• void xmk_InitSystime(void)

Initialize the hardware registers to support the system time

• void xmk_DeinitSystime(void)

Give up to use the system time. This normally cannot happen, but in
some applications, where the SDL system is stopped and restarted
again during run-time, it may prove useful.

• void xmk_SetTime(xmk_T_TIME)

This function sets the system-time to the given value. Called by
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3435

Chapter 67 The Cmicro Library
Cmicro Kernel in the case when an overrun in the time value is de-
tected.

• xmk_T_TIME xmk_NOW(void)

This is the most important C function to handle SDL system-time.
This function returns the absolute time, which is by default defined
as a long value (xmk_T_TIME).

Usually, the above functions are conditionally compiled. To make the
functions available in the target system, at least one timer in SDL must
be declared. The functions are not included if there is no timer declared
but duration, time or now is used in SDL. This will lead to compilation
errors.

To make timers in SDL operable, absolute time must be implemented.
This can be reached by using a hardware free running counter or by us-
ing a timer interrupt service routine, which clocks a global variable con-
taining the absolute time.
3436 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
Bare Integration
This section deals with functions that must be adapted by the user in or-
der to connect the SDL system to the environment i.e. connection to tar-
get hardware, and the environment.

Implementation of Main Function
The user may decide to implement his own main() function body
when it comes to target application in a bare integration. A default
main() function is included in the template file mk_user.c.

The implementation of a first main function looks like this:

Example 574 –––
main ()
{
 xmk_InitQueue();
 xmk_InitSDL ();
 xmk_RunSDL ();
}

––

Of course this example does nothing in order to start the SDL Target
Tester. The only possible way to get a very simple trace output is to de-
fine:

#define XMK_ADD_PRINTF

in ml_mcf.h with the help of the Targeting Expert. This will include
calls to the C function xmk_printf() at several places in the generated
C code and the Cmicro Library. The xmk_printf() function is avail-
able as an example in the file mk_cpu.c.

The user can use the main() functions delivered with the Cmicro Ker-
nel to have full access to all Cmicro features. This delivered main()
function is a template and can be modified to add or remove functional-
ity.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3437

Chapter 67 The Cmicro Library
Integrating Hardware Drivers, Functions and
Interrupts
There is no extra handling for hardware drivers, hardware functions and
interrupt service routines. It is necessary to implement an interface in
the user’s application. Hardware drivers, hardware functions and inter-
rupt service routines are seen from the SDL system as the environment.
The user has to implement the interface between the SDL system and
the environment as it is described in the following subsections.

Critical Paths in the Cmicro Library

As with every real time application the Cmicro Library has to deal with
critical paths.

These are well defined in the source code using two macros namely
XMK_BEGIN_CRITICAL_PATH and XMK_END_CRITICAL_PATH (see file
ml_typ.h/compilersections).

The macros are expanded to compiler specific calls which disable/en-
ables interrupts. The calls are counted using an internal variable, thus
after having called XMK_BEGIN_CRITICAL_PATH n times
XMK_END_CRITICAL_PATH has also to be called n times, to enable the
interrupts again.

Figure 588: Critical paths

Time

Application Cmicro Kernel Interrupt

Disabling Interrupts

Enabling Interrupts

Critical path
3438 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
In the Cmicro Library these macros are used to disable/enable interrupts
only. The application should take care not to handle interrupts without
using these macros or at least evaluating the internal counter.

Initializing the Environment / Interface to the
Environment

xInitEnv()

There is one C function called xInitEnv() available as a template in
the generated file env.c. The user should fill this module out appropri-
ately, thus implementing connection to the environment (drivers, inter-
rupt service routines and so on).

Receiving Signals from the Environment
There are two possibilities to send signals into the SDL system. In all
cases, the user has to specify an SDL input symbol in the process which
has to consume the signal. The possibilities are:

1. Polling external events.
This is done by the C function xInEnv(), which is called by the
Cmicro Kernel after each transition.

2. Directly sending signals into the SDL system.
For example directly in an interrupt service routine. This is possible
by using the XMK_SEND_ENV() function. This function directly op-
erates on the SDL queue.

Caution!

When it comes to implementing the interrupt handling routines it is
of the greatest importance to know about the Cmicro Library’s han-
dling of critical paths. Unpredictable results may result from a care-
less implementation!
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3439

Chapter 67 The Cmicro Library
xInEnv()
Parameters:

In/Out: -no-
Return: -no-

In the case when no interrupt service routine is available to handle an
external event, the Cmicro Kernel can poll external events. The user
must use the C function xInEnv() in the file env.c generated by the
Targeting Expert.

For example, a hardware register can then be checked in order to estab-
lish if its value has changed since the last call.

If an external signal is detected, then one of the xmk_Send*() functions
is to be called thus enabling the signal to be put into the SDL queue.

Example 575: xInEnv() –––––––––––––––––––––––––––––––––––––

Assume, a hardware register where the value 0 is the start-value and
where any other value means: data received. Two signals, namely
REGISTER_TO_HIGH, and REGISTER_TO_LOW are to be defined in the
SDL system, with a process receiving these. Then the user supplied C
code should look like this (the <p> below stands for the automatically
generated prefix, see the file sdl_cfg.h):

Caution!

For each signal sent into the system, the user must ensure that the
addressed receiver process instance exists. Each pid value is
checked for consistency by the Cmicro Kernel. In the case of an in-
consistency the ErrorHandler() is called with an error message.

Note:

There is a file called <systemname>.ifc, which is generated by
the Cmicro SDL to C Compiler. It is necessary to include this file
together with ml_typ.h before defining xInEnv(). This is neces-
sary to have access to all the objects that are generated by the Cmi-
cro SDL to C Compiler. The user should also make sure that this file
is generated, because the analyzer’s make menu contains an option
for this.
3440 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
void xInEnv (void)
{
 XMK_SEND_TMP_VARS
 static state = 0;
 /* state, to detect changes in the */
 /* hardwareregister */

 /* BEGIN User Code */
 if ((state==0) && (hw_register != 0))
 /* END User Code */
 {
 XMK_SEND_ENV (REGISTER_TO_HIGH,
 xDefaultPrioSignal,
 0,
 NULL,
 /* BEGIN User Code */
 GLOBALPID(XPTID_<p>_ReceiverName,0));
 state = 1;
 /* END User Code */
 return;
 }

 /* BEGIN User Code */
 if ((state==1) && (hw_register == 0))
 /* END User Code */
 {
 XMK_SEND_ENV (REGISTER_TO_LOW,
 xDefaultPrioSignal,
 0,
 NULL,
/* BEGIN User Code */
 GLOBALPID(XPTID_<p>_ReceiverName,0));
 state = 0;
/* END User Code */
 return;
 }

 return;
} /* END OF SAMPLE */

––

Caution!

The function xInEnv() contained in the file env.c is generated by
the Targeting Expert. To make sure that changes done by the user
will not be lost when generating again it is allowed to modify this
file only between the comments /* BEGIN User Code */ and
/* END User Code */.

Furthermore it is not allowed to remove these comments or to add
similar at other places which could especially happen when copy
and paste is used during editing.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3441

Chapter 67 The Cmicro Library
XMK_SEND_ENV()
Parameters:

In/Out: xPID Env_ID

 xmk_T_SIGNAL sig

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO prio
 #endif

 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH data_len,
 void xmk_RAM_ptr p_data
 #endif

 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xPID Receiver
 #endif

Return: -no-

It is possible to send signals directly into the SDL system by calling the
C function XMK_SEND_ENV(), no matter whether preemption is used or
not. No conflict occurs, if an interrupt service routine uses a
XMK_SEND_ENV() function parallel to the C function xInEnv().

This function is to be called when a signal is to be sent into the SDL sys-
tem, e.g. within the users xOutEnv function. It must be called with one
more parameter than the xmk_Send function, which is the first param-
eter Env_ID. This parameter must be set to ENV by the user.

The macro internally uses some variables which are to be declared be-
fore the macro can be used. For example in the xOutEnv function the
XMK_SEND_TMP_VARS macro must be introduced for declaring these
variables.

The function is implemented as a macro in C.

Use the template in the previous subsection to see details how to use the
XMK_SEND_ENV() functions.
3442 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
Sending Signals to the Environment
There are several possibilities to send signals to the environment:

1. Using simple SDL output.
The Cmicro Kernel is involved in the output operation.

2. Using the #EXTSIG directive in the SDL output.
The user can define his own output operation, like writing to a reg-
ister in a single in-line-assembler command.

3. Using the #ALT directive in the SDL output.
A variant of alternative 2.

Alternative 1 is the most SDL like alternative because it does not use
non SDL constructs, like directives. This alternative should be selected,
where possible because it makes the diagrams more SDL like and MSCs
more readable.

Alternative 2 and 3 are probably the alternatives with higher perfor-
mance.

Alternative 1 is described below. Alternative 2 and 3 are already well
described in chapter 66, The Cmicro SDL to C Compiler.

xOutEnv()
Parameters:

In/Out:
 xmk_T_SIGNAL xmk_TmpSignalID

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO xmk_TmpPrio
 #endif

 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH xmk_TmpDataLength,
 void xmk_RAM_ptr xmk_TmpDataPtr
 #endif

 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xPID xmk_TmpReceiverPID
 #endif

Return: xmk_OPT_INT

The function xOutEnv() exists as a template in the generated module
env.c.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3443

Chapter 67 The Cmicro Library
Each time an SDL output occurs, the generated C code calls the C func-
tion xmk_Send or xmk_SendSimple. After performing some checks,
and if the signal is to be sent to the environment, the C function
xOutEnv() is called with all the parameters necessary to represent the
signal. The parameters are explained in the following.

With the parameter xmk_TmpSignalID, the signal ID is to be specified.

With the xmk_TmpPrio parameter, the signal’s priority is to be speci-
fied (if conditionally compiled). If the XMK_USE_SIGNAL_PRIORITIES
is not defined, the signal priorities which are specified with #PRIO in
the diagrams is just ignored. The use of signal priorities is not recom-
mended because this violates SDL. A few bytes can be spared if signal
priority is not used. See also XMK_USE_SIGNAL_PRIORITIES.

With the parameter xmk_TmpDataLength, the number of bytes of sig-
nal parameters is to be specified. The number of bytes is evaluated by
using a sizeof (C struct) construct. If the signal carries no param-
eters, this value is set to 0.

With the xmk_TmpDataPtr parameter, a pointer to the memory area
containing the parameter bytes of the signal is given. The memory area
is not treated as dynamically allocated within this function. Because the
function copies the parameter bytes, the caller may use any temporary
memory (for example memory allocated from the C stack by declaring
a C variable). This parameter should be set to NULL if no parameter
bytes are to be transferred (if conditionally compiled).

The parameters xmk_TmpDataLength and xmk_TmpDataPtr are com-
piled conditionally. The XMK_USED_SIGNAL_WITH_PARAMS is automat-
ically generated into the sdl_cfg.h file, from the Cmicro SDL to C
Compiler. For tiny systems, if there are no SDL signals with parameters
specified, this is undefined. It will reduce the amount of information
which is to be transferred for each signal, with a few bytes. See also
XMK_USED_SIGNAL_WITH_PARAMS.

With the last parameter xmk_TmpReceiverPID, the PID of the receiv-
ing process is to be specified (if conditionally compiled). The parame-
ters xmk_TmpDataLength and xmk_TmpDataPtr are compiled condi-
tionally, see also XMK_USE_RECEIVER_PID_IN_SIGNAL.

If XMK_USE_RECEIVER_PID_IN_SIGNAL is not defined, the user must
implement the C function xRouteSignal which is responsible to de-
rive the receiver from the signal ID in that case. Using xRouteSignal
3444 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
is recommended only if the last few bytes must be spared for transfer-
ring of signals.

Evaluate the Signals’s Sender

The sender of the signal can be retrieved by the global variable xRun-
PID of type xPID. Users should remember, that in a system with only
(x,1) process declarations, this pid represents the process type of the
sender. In a system in which multiple process instances of the same pro-
cess type appear, this pid represents the process type plus the process in-
stance of the sender. Probably it is required to make decisions depend-
ing on the sender of the signal. The user can evaluate the process type
of the sender by using the C expression EPIDTYPE(xRunPID), i.e.:

Example 576: Evaluating the Process Type––––––––––––––––––––––

unsigned char ptype;
ptype = EPIDTYPE(xRunPID);

––

Remember also, if it is required to signal to a specific pid in the envi-
ronment, this requires dynamic signalling where a process in the envi-
ronment establishes communication to a process in the system or the
other way around.

Checking the Signal’s Receiver

Under normal circumstances it is not necessary to check the receiver in
xOutEnv() as the Cmicro Kernel calls xOutEnv() only, if the environ-
ment is recognized as the signal’s receiver.

Note:

There is a file called <systemname>.ifc, which is generated by
the Cmicro SDL to C Compiler. It is necessary to include this file
together with ml_typ.h before defining xOutEnv(). This is nec-
essary to have access to all the objects that are generated by the Cmi-
cro SDL to C Compiler. The user should also make sure that this file
is generated, because the analyzer’s make menu contains an option
for this.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3445

Chapter 67 The Cmicro Library
Signal Parameters

If the signal to be sent to the environment contains parameters, it is nec-
essary to copy these parameters to the data area of the environment as
the signal and its parameters are deleted after signal consumption.

For each signal carrying parameters, there is a typedef struct generated
into the <systemname>.ifc file. Please view Example 577.

Return Values of xOutEnv()

The user must ensure that signals which are to be sent to the environ-
ment are consumed by the environment. In xOutEnv() this is done by
returning the values XMK_TRUE or XMK_FALSE.

– XMK_TRUE

The signal has been consumed by the environment.
– XMK_FALSE

The signal is NOT consumed by the environment.

An Easy Example

Assume, for example, a process which has to send a signal with param-
eters to the environment. The code the user has to write into the
xOutEnv()-function, looks as follows:

Caution!

 The users have to ensure that signals to the environment are con-
sumed in the environment by returning XMK_TRUE in xOutEnv().
3446 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
Example 577: xOutEnv() ––––––––––––––––––––––––––––––––––––

xmk_OPT_INT xOutEnv (xmk_T_SIGNAL xmk_TmpSignalID,
 xmk_T_PRIO xmk_TmpPrio,
 xmk_T_MESS_LENGTH xmk_TmpDataLength,
 void * xmk_TmpDataPtr,
 xPID xmk_TmpReceiverPID)

{
 xmk_OPT_INT xmk_TmpResult = XMK_FALSE;

 switch (xmk_TmpSignalID)
 {
 case SDL_Signal1 :
 {
 /* BEGIN User Code */
 int temp;
 temp = (yPDef_z4_SDL_Signal1*)xmk_TmpDataPtr->Param1
 UserFunction(temp);
 /* END User Code */
 xmk_TmpResult = XMK_TRUE; /* signal is */
 /* consumed */
 }
 break ;

 case SDL_Signal2 :
 {
 /* BEGIN User Code */
 char g;
 int k;
 g = (yPDef_z5_SDL_Signal2*)xmk_TmpDataPtr->Param1;
 k = (yPDef_z5_SDL_Signal2*)xmk_TmpDataPtr->Param2;
 UserFunction2(g, k);
 /* END User Code */
 xmk_TmpResult = XMK_TRUE; /* signal is */
 /* consumed */
 }
 break ;

 default :
 xmk_TmpResult = XMK_FALSE;/* signal is NOT */
 /* consumed */
 /* and to be handled */
 /* by the Cmicro Kernel */
 break ;
 }
 return(xmk_TmpResult);
}

––

Caution!

The function xInEnv() contained in the file env.c is generated by
the Targeting Expert. To secure that changes done by the user will
not be lost when generating again it is allowed only to modify this
file between the comments /* BEGIN User Code */ and /* END
User Code */.
Furthermore it is not allowed to remove these comments or to add
similar ones at other places.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3447

Chapter 67 The Cmicro Library
Inter-Processor-Communication

Closing the Environment / the Interface to the
Environment

xCloseEnv()
Parameters:

In/Out: -no-
Return: -no-

There is one C function called xCloseEnv() available as a template in
the generated C module env.c.

The user should fill this function out appropriately thus realizing dis-
connection from the environment (drivers, interrupt service routines
and so on). Disconnection can make sense if a re-initialization or a soft-
ware reset is to be implemented.

The SDL_Halt function is mapped to xCloseEnv() in Cmicro.

SDL System Time Implementation
Included in the Cmicro Kernel, there are some template functions for
the implementation of SDL system time. All these functions are con-
tained in the module mk_stim. The functions xmk_NOW() or
xmk_SetTime() must be implemented newly if a new method for ac-
cessing the hardware system time is to be implemented. In many cases,
the standard C library function time() is available, which is used in
most of the C compiler adaptations that are already been made.

It is necessary though to implement a function which makes the variable
SystemTime topical. This will be an interrupt service routine in most
cases.

Please view “Defining the SDL System Time Functions in mk_stim.c”
on page 3435.

Note:

If inter-processor-communication is to be performed, the user has to
define a unique protocol between the communicating processors. In
small applications with a restricted range, it might be enough to
copy C structures, but usually this causes problems when it comes
to redesigning the hardware.
3448 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
Getting the Receiver of a Signal – Using
xRouteSignal
Parameters:

In/Out: xmk_T_SIGNAL sig
Return: xPID

The user can remove the receiver’s xPID from the signal structure by reset-
ting the flag “XMK_USE_RECEIVER_PID_IN_SIGNAL” on page 3398.
In this case, the function xRouteSignal() has to be filled as the Cmicro
Kernel needs to know which process likes to receive the current signal.

Example 578: Function xRouteSignal() –––––––––––––––––––––––
/*
** the <p> below stands for the automatically generated prefix
*/

xPID xRouteSignal (xmk_T_SIGNAL sig)
{
 /*
 ** Please insert appropriate code here to map
 ** Signal ID’s to Process - Type - ID’s
 ** (XPTID_ProcessName in generated code).
 ** Keep in mind that this function might be
 ** called from within a critical path.
 ** Include <systemname>.ifc to get signal names
 ** and process’ XPTID
 */
 switch (sig)
 {
 /*
 ** S D L T i m e r s ...
 */
 case SDL_Timer1: return (XPTID_<p>_ProcessName_A)
 break;
 case SDL_Timer2: return (XPTID_<p>_ProcessName_B)
 break;
 case SDL_Timer3: return (XPTID_<p>_ProcessName_A)
 break;
 case SDL_TimerN: return (XPTID_<p>_ProcessName_C)
 break;

 /*
 ** O r d i n a r y S D L S i g n a l s ...
 */
 case SDL_Signal1: return (XPTID_<p>_ProcessName_B)
 break;
 case SDL_Signal2: return (XPTID_<p>_ProcessName_A)
 break;
 case SDL_Signal3: return (XPTID_<p>_ProcessName_A)
 break;

 case SDL_SignalN : return (XPTID_<p>_ProcessName_C)
 break;

 default: ErrorHandler (ERR_N_NO_RCV);
 return (xNULLPID)
 break;
 }
}

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3449

Chapter 67 The Cmicro Library
Dynamic Memory Allocation

General

Dynamic memory allocation in real life always introduces problems,
which are:

• The memory occupation cannot be evaluated by the user, so that it
is impossible to configure the dynamic memory. If all objects are al-
located statically and if the memory occupation exceeds the avail-
able memory, this results in errors during compilation/linking, or at
least a memory map file can be viewed.

• If dynamic memory allocation is used, then, after the program has
executed for a time, usually memory leaks are the result. Memory
leaks are fatal because there might be enough memory, but it is even
impossible to allocate one more block.

• If there is no more free dynamic memory available, then it is up to
the user to decide how to continue in the program. In any case, the
program should be terminated, started again or any similar reaction
is to be programmed.

Normally, Cmicro tries to prevent any use of dynamic memory alloca-
tion, but there are the following exceptions, in which this is impossible:

• When a signal with too many parameters is to be sent to another pro-
cess. See “Signals, Timers and Start-Up Signals” on page 3368.

• When an SDL sort is used requiring dynamic memory management,
like the charstring sort.

• If the SDL Target Tester is used, because there is dynamic memory
allocation in the start-up phase and for each transmit buffer.

There are at least two possibilities to implement dynamic memory allo-
cation namely:

• The dynamic memory management from the C Compiler or operat-
ing system can be used.

• The dynamic memory management from Cmicro can be used.

When it comes to targeting, the user decides upon the dynamic memory
allocation manager. In the following, the both possibilities are ex-
plained.
3450 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
Dynamic Memory Allocation Functions – Compiler or
Operating System

If the C compiler, that the user is using in the target environment, pro-
vides dynamic memory allocation functions, it is possible to use these
functions. A few steps must be carried out to include the dynamic mem-
ory allocation functions of the C compiler or operating system, which
are:

• The user must introduce his own C compiler section, please refer to
the subsection “Introducing a new C Compiler” on page 3432.

• In the new C compiler section, the correct header files must be in-
troduced with #include. The user should refer to the manuals of
the C compiler or operating system.

• The SDL Target Tester, Cmicro Library and Cmicro Kernel always
allocate dynamic memory by using the functions in the file
mk_cpu.c.

• The file mk_cpu.c below the Cmicro template directory must be
copied into the user’s project directory. Any modifications should
be performed on the private copy of mk_cpu.c.

• The mk_cpu.c file contains two C functions called xAlloc() and
xFree(). Within these functions, the user should call the appropri-
ate dynamic memory allocation functions of the C compiler or op-
erating system.

Dynamic Memory Allocation Functions – Cmicro

Below the Cmicro kernel directory there is a C module ml_mem.c that
implements a dynamic memory allocator. The C module ml_mem.c can
be used for managing memory dynamically for SDL systems, but it is
not forbidden to use this module within handwritten C code also.

The module cannot be used if partitioning is to be used. In that case
compilation errors will occur. Please refer to “Dynamic Memory Allo-
cation” on page 3450 for an explanation which parts in SDL are to be
dynamically allocated. The module provides C functions for initializa-
tion, allocation, de-allocation, and getting some information about the
current memory status.

There is only one memory pool. The memory pool is to be declared by
the user and initialized with the C function xmk_MemInit before the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3451

Chapter 67 The Cmicro Library
memory pool can be used. Allocations may be performed by calling
xmk_Malloc() or xmk_Calloc(). An allocated block is de-allocated
again by calling xmk_Free(). So far, the principle behavior is the same
as the usual malloc(), calloc() and free() functions from com-
pilers. But the memory pool can probably be cleaned with a Cmicro spe-
cific function. There are additional functions which can be used to query
the amount of free or occupied space.

Before the memory management functions of Cmicro can be used, a few
adaptations are to be made which are explained in the following.

Adaptations That Are to Be Made

Some adaptations are to be made by the user, which are necessary to in-
clude the right functions, scale buffers and memory management and
take care for general adjusting like alignment of the CPU.

• For general use of the Cmicro memory management functions the
user should set the flag XMK_USE_SDL_MEM in ml_mcf.h with the
help of the Targeting Expert. This will make the basic memory al-
location functions available. The ml_mem.c module must of course
be compiled an linked together with the application.

• Adjust the alignment that the CPU is using. There is a macro defi-
nition in ml_mem.c called CPU_WORD_SIZE. The right setting of
this macro is basically important for making the dynamic memory
allocation functions do work. With this flag, it is possible to define
the word size of the target CPU. The value is predefined in
ml_mem.c but it could be the case that the predefined value is inap-
propriate for the target system. If the CPU_WORD_SIZE value must be
redefined, this could be done in ml_mcf.h in the user's section. The
predefined value for UNIX compilers is 8, the predefined value for
ARM_THUMB C compiler 4, otherwise a default value of 1 (no align-
ment) is used.

• Here is a recommendation: The user should use an alignment of 4
(32 Bit) if it is not sure what type of alignment the C compiler / CPU
produces. This will work for most cases, but of course probably not
if the CPU is 64 Bit CPU. For small systems, this might not be ap-
propriate, because there is an extra overhead of 3 bytes per allocated
block. For a CPU like 8051 and derivatives a CPU_WORD_SIZE of
1 is appropriate.
3452 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
• It is possible to introduce a minimum block size per each allocated
block. This decreases the risk of getting memory leaks after a while
because blocks of the same size can be put together again. If the
mechanism of a minimum block size is to be used, then the define
XMK_USE_MIN_BLKSIZE is to be used. With the define
XMK_MEM_MIN_BLKSIZE the user may define the minimum block
size per each allocated block. If the XMK_MEM_MIN_BLKSIZE is not
defined from the user, a minimum block size of 64 is predefined.

• The ml_mem.c module contains profiler that keeps track on how
many blocks are allocated, how much memory is free and further-
more. The user must define XMK_ADD_PROFILE in order to get the
complete functionality. If the SDL Target Tester is used, the flag is
automatically predefined.

xmk_CleanPool()
Parameters:

In/Out: -no-
Return: size_t

This C function returns the amount of occupied memory. It is available
only if XMK_USE_SDL_MEM and XMK_SYSTEM_INFO are set.

xmk_GetOccupiedMem()
Parameters:

In/Out: -no-
Return: size_t

This C function returns the net amount of occupied memory. It is avail-
able only if XMK_USE_SDL_MEM and XMK_SYSTEM_INFO are set.

xmk_GetFreeMem()
Parameters:

In/Out: -no-
Return: size_t

Returns the amount of free memory in sum, which means that the over-
head from each block is included. It is available only if
XMK_USE_SDL_MEM and XMK_SYSTEM_INFO are set.

xmk_EvaluateExp2Size()
Parameters:

In/Out: size_t
Return: size_t
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3453

Chapter 67 The Cmicro Library
This function is either used from Cmicro’s dynamic memory allocation
functions xmk_Malloc() and xmk_Calloc() or it may be used direct-
ly from the user.

It is available only if XMK_USE_MIN_BLKSIZE is set.

The function is declared as:

size_t xmk_EvaluateExp2Size (size_t GivenLength)

The function evaluates from the given length a length value, which is in
any case a 2 exp N value. This is used to reduce the risk of memory leaks
that occur in dynamic memory management systems. It may be used for
the memory functions of this module but also for the memory functions
of an operating system or C compiler. If the minimum block size is in
any case greater than the greatest block that is requested in the target
system, then there is no risk for memory leaks. The return result is either
the minimum specified with XMK_MEM_MIN_BLKSIZE, but might be also
one of the following values:

64,128,256,512,1024,2048,4096,8192,16384,32768,65536

The ?Memory Command

The SDL Target Tester offers a command that allows the user to inspect
the status of the dynamic memory. Unfortunately this command can be
used only, if the dynamic memory management from Cmicro is used
(by setting the XMK_USE_SDL_MEM flag in the Targeting Expert).

The command allows the user to check the following:

• Is the dynamic memory correctly initialized after system start-up?
• How is the dynamic memory pool configured?
• At any time during SDL target system execution:

– what was the greatest block that was allocated?
– how many blocks are currently in the pool?
– what is the maximum amount of blocks that have ever been in

the pool?
– physical address of the memory pool (the address of the
– first block of structure xmk_T_MBLOCK (see ml_mem.c)

The command presents the following output to the user:

M-STATE:Memory pool size incl.overhead =4096
M-STATE:Current memory fill =136
M-STATE:Current amount of blocks in pool =2
M-STATE:Peak hold: Amount of blocks =29
M-STATE:Peak hold: Largest block =2048
M-STATE:Overhead per block (in bytes) =20
3454 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
M-STATE:Minimum block size =0
M-STATE:Memory pool address (hex) =28478
M-STATE:(Probably there are memory leaks)

The command is available only if XMK_USE_SDL_MEM and
XMK_ADD_PROFILE are set.

User Defined Actions for System Errors – the
ErrorHandler
Parameters:

In/Out: int ErrorNo
Return: void

Errors, warnings and information can be generated and detected in
many places and situations during the lifetime of an SDL system. By
fully utilizing the Analyzer, several dynamic error sources can be elim-
inated at the design stage of development.

Some errors or warnings go undetected by the Analyzer, for example re-
source errors or real time errors such as memory, performance, or illog-
ical use of SDL.

These errors and warnings are detectable by the Cmicro Kernel and the
SDL Target Tester. For a complete list of errors, warnings and informa-
tion, please view the following subsection “List of Dynamic Errors and
Warnings” on page 3457.

As a general rule, for each error and warning there should be an appropri-
ate reaction in the function ErrorHandler() in the mk_user module.

The ErrorHandler() is, as a default implementation, implemented
like this:

In the case of a warning message, either:

• The actions defined via the flag XMK_WARN_ACTION_HANG_UP are
carried out (see “Reactions on Warnings” on page 3403).

• The actions defined via the flag XMK_WARN_ACTION_PRINTF are
carried out.

• The actions defined via the flag XMK_WARN_ACTION_USER and
XMK_WARN_USER_FUNCTION are carried out.

In the case of an error message, either:

• The actions defined via the flag XMK_ERR_ACTION_HANG_UP are
carried out (see “Reaction on Errors” on page 3405)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3455

Chapter 67 The Cmicro Library
• The actions defined via the flag XMK_ERR_ACTION_PRINTF are car-
ried out.

• The actions defined via the flag XMK_ERR_ACTION_USER and
XMK_ERR_USER_FUNCTION are carried out.

For more explanations on these flags, please view “Reactions on Warn-
ings” on page 3403 and “Reaction on Errors” on page 3405. If printf
is used, the C module ml_mon.c below the cmicro/kernel directory
must be compiled also.

Errors are numbered easily by an integer value. If the user’s target al-
lows the use of printf, then use the C function xmk_err_text con-
tained in the ml_err module. It is easier to specify error handling in this
module rather than directly modifying the ErrorHandler function.

Example 579: Default implementation of ErrorHandler() –––

void ErrorHandler (int ErrorNo)
{
 ...
 ...
 ...

 ErrorClass = xmk_GetErrorClass (xmk_TmpErrorNumber);
 #ifdef XMK_WARN_ACTION_HANGUP
 if (ErrorClass==XMK_WARNING_CLASS)
 while (1);
 #endif /* ... XMK_WARN_ACTION_HANGUP */

 #ifdef XMK_ERR_ACTION_HANGUP
 if (ErrorClass==XMK_FATAL_CLASS)
 while (1);
 #endif /* ... XMK_ERR_ACTION_HANGUP */

 #ifdef XMK_WARN_ACTION_PRINTF
 if (ErrorClass==XMK_WARNING_CLASS)
 xmk_MonError (stderr, xmk_TmpErrorNumber);
 #endif /* ... XMK_WARN_ACTION_HANGUP */

 #ifdef XMK_ERR_ACTION_PRINTF
 if (ErrorClass==XMK_FATAL_CLASS)
 xmk_MonError (stderr, xmk_TmpErrorNumber);
 #endif /* ... XMK_ERR_ACTION_HANGUP */

 #ifdef XMK_WARN_ACTION_USER
 if (ErrorClass==XMK_WARNING_CLASS)
 XMK_WARN_USER_FUNCTION(xmk_TmpErrorNumber);
 #endif /* ... XMK_WARN_ACTION_USER */

 #ifdef XMK_ERR_ACTION_USER
 if (ErrorClass==XMK_FATAL_CLASS)
 XMK_ERR_USER_FUNCTION(xmk_TmpErrorNumber);
 #endif /* ... XMK_ERR_ACTION_USER */

 ...
 ...
 ...
3456 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
} /* END OF SAMPLE */

––

Example 580: ErrorHandler() –––––––––––––––––––––––––––––––

void ErrorHandler (int ErrorNo)
{
 /* The user could implement the 3 functions
 ** fatalerror, warning, and information
 */
 switch (ErrNo)
 {
 case ERR_N_UNKNOWN
 fatalerror(ErrNo);
 break;

 case

 break;

 default: warning(ERR_N_UNKNOWN); break;
 }
} /* END OF SAMPLE */

––

List of Dynamic Errors and Warnings

Cmicro Kernel Errors

• ERR_N_CREATE_NO_MEM

This error can happen in the case of using dynamic process creation.
When a parent process tries to create another process, the Cmicro
Kernel tries to allocate an entry in the queue for the insertion of an
internal create signal.

The error occurs when full queue capacity has been reached.

Help: Change the size of the signal queue by modifying the macro
XMK_MAX_SIGNALS in ml_mcf.h.

• ERR_N_CREATE_INSTANCE

This error happens if there is no dormant instance of a process type
which can be (re)used. The Cmicro Package uses fixed upper pro-
cess instance limits (x, N), where N is to be specified as an integer
value. In the C code, all the data of one process instance is represent-
ed by one element of an array of the size N.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3457

Chapter 67 The Cmicro Library
The error occurs if all instances (i.e. all array elements), of this pro-
cess type are currently active and the parent tries to create another
instance of that type.

• ERR_N_SDL_DISCARD

A signal was sent to a process not existing (either not yet created or
already stopped). The signal is therefore discarded.

• ERR_N_DIVIDE_BY_ZERO

A division by zero has been detected in the generated SDL code,
which is an SDL user error. Possibly, it is helpful to produce an ex-
ecution trace to localize the error. Normally, it is possible to find
such problems within the simulation.

• ERR_N_NO_FREE_SIGNAL

It is impossible to allocate one more signal instance from the static
memory pool. Depending on how the user has defined the signal
handling (XMK_USE_STATIC_QUEUE_ONLY and
XMK_USE_STATIC_AND_DYNAMIC_QUEUE), this must be treated ei-
ther as a warning or as a fatal error.

It has to be treated as a fatal error, when the macro
XMK_USE_STATIC_QUEUE_ONLY is set.

It can be treated as a minor warning, when the macro
XMK_USE_STATIC_AND_DYNAMIC_QUEUE is set.

The output operation fails, if it is impossible to allocate one more
signal.

Help: Change the size of the signal queue by modifying the macro
XMK_MAX_SIGNALS in ml_mcf.h or change the size of pre-
defined dynamic memory pool (the memory pool, that is used when
the xAlloc C function is called).

• ERR_N_PARAMETER_MEM_ALLOC

The output operation fails as a signal with parameters is to be sent
but not enough free memory is available for allocation of the signal
parameters.

If the signal parameter’s length is greater than the value of
XMK_MSG_BORDER_LEN (see “Compilation Flags” on page
3394) the parameters are inserted in a memory area which has to be
3458 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
allocated. This allocation fails because there is no more memory
available.

Help: If using the Cmicro Library’s memory functions (flag
XMK_USE_SDL_MEM): The size of the memory for allocation
can be increased by incrementing the value
XMK_MAX_MALLOC_SIZE.

• ERR_N_SYSTEM_SIGNAL

This error can only happen, if a non specified system signal is sent.
Internally, some signals are predefined as system signals. System
signals are given priority treatment. For example, for the dynamic
process creation, there is a system signal called
XMK_CREATE_SIGNALID which is automatically defined in
ml_mcf.h according to the setting of
XMK_USE_MORE_THAN_250_SIGNALS.

To prevent this error situation happening it is strongly recommend-
ed not to send an SDL signal with equal or higher priority than that
of a system signal (please see the subsection “Scheduling” on page
3377).

• ERR_N_NO_CONT_PRIO

This error occurs when process priorities are not numbered accord-
ing to the rules of the preemptive Cmicro Kernel. The numbering
must begin from zero incremented consecutively to an upper limit.
All numbers between zero and the upper limit-1 are to be used with-
in a #PRIO directive, no number may be omitted. (See
MAX_PRIO_LEVELS and xDefaultPrioProcess in section
“Preemption” on page 3409.

• ERR_N_NO_COR_PRIO

When the preemptive Cmicro Kernel is selected, the macro
MAX_PRIO_LEVELS has to be set correct. As described in
MAX_PRIO_LEVELS in section “Preemption” on page 3409, this
macro has to contain the amount of process priority levels.

• ERR_N_xRouteSignal

The function xRouteSignal, which is to be filled by the user when
signals do not contain a receiver pid, detects an error or was not able
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3459

Chapter 67 The Cmicro Library
to handle the current signal which is to be routed. See “Bare Integra-
tion” on page 3437.

• ERR_N_NO_REC_AVAIL

If the user is using implicit addressing (output without to) and there
are several possible receivers of one type, the Cmicro Kernel tries
to assign one of them to this signal. This assignment may fail if there
is no possible receiver. If there is more than one, then the first one
found will be used in the output of the C function xmk_Send*.

• ERR_N_NO_FREE_TIMER

The error occurs when an SDL process tries to start an instance of a
timer and either the timer is unknown or there is no memory avail-
able to start a timer instance. To eliminate the first source of error
check the SDL compilation. For the second case increase the mem-
ory assigned to timers by increasing the value of
XMK_TIMERPRIO.

• ERR_N_PID_INDEX

The Cmicro Kernel uses PIds as index values. Each SDL process in
the generated system is numbered by a system-wide unique number.
There is an error detected when the index is out of range. This prob-
lem most probably lies in the environment which tries to send a sig-
nal to a non existing process.

• ERR_N_SEND_TO_NULLPID

An SDL application tries to send to a NULL - PID. This case nor-
mally cannot arise as the Analyzer performs appropriate checks in
the dynamic analyses pass. If it occurs, it is most probably that ei-
ther something is wrong with the environment signalling or possibly
with initialization of pid variables.

• ERR_N_TRANS_TIME

The maximum execution time for one SDL transition was exceeded.
This error can only happen if no preemption is used and if the ad-
ministration of the transition-execution-time is switched on. See
“XMK_USE_CHECK_TRANS_TIME” on page 3408.

• ERR_N_xOutEnv
3460 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
The C function xOutEnv() does not handle all necessary signals. It
should handle all signals which are sent to the environment. Please
view “Return Values of xOutEnv()” on page 3446.

• ERR_N_INIT_SDL_MEM

If the Cmicro Library’s memory functions are used,
(XMK_USE_SDL_MEM is defined) the memory for alloc() and
malloc() has to be initialized. This error occurs if a malloc()
takes place before the memory is initialized. See “ml_mem.c” on
page 3473

• ERR_N_SDL_DECISION_ELSE

An SDL decision without any ELSE branch leads to a fatal error.

• ERR_N_SDL_RANGE

The index of an SDL array has crossed the range of the SDL array.
The definition of the array has to be checked within SDL.

• ERR_N_NO_RCV

If the flag XMK_USE_RECEIVER_PID_IN_SIGNAL is unde-
fined the function xRouteSignal() has to be filled by the user. See
“Getting the Receiver of a Signal – Using xRouteSignal” on page
3449. This error code means that there is no receiver defined for the
current signal.

• ERR_N_SDL_IMPLICIT_CONSUMPTION

The receiver process is not expecting the current signal in his cur-
rent state, so the signal was implicitly consumed.

• ERR_N_PREDEFINED_OPERATOR_CALL

An error occurred in the call to one of the predefined operators. Un-
fortunately it is not possible to find out what the reason for this error
is without either simulating the system or using the SDL Target
Tester or any trace possibility introduced by the user. The error mes-
sage occurs if a range in the memory is crossed.

• ERR_N_INIT_QUEUE

The SDL signal queue is not correctly initialized. The error occurs
if the user has forgotten to call the C function xmk_InitQueue().
This function must be called before xmk_InitSDL() may be called.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3461

Chapter 67 The Cmicro Library
Please view the section “Implementation of Main Function” on
page 3437.

• ERR_N_MEM_PARAM

This error occurs if the user tries to call to the xmk_Malloc() C
function with a wrong parameter. It is not allowed to request a mem-
ory block of the size 0.

• ERR_N_MEM_NO_FREE

There is no free block in the memory pool of the Cmicro Memory
Management (see “Exported from ml_mem.c” on page 3494). This
error can only be detected if the Cmicro Memory Management is
used (see the flag “XMK_USE_SDL_MEM” on page 3422).

The size of the dynamic memory, i.e. the amount of blocks available
can be modified by modifying the flag
XMK_MAX_MALLOC_SIZE

• ERR_N_MEM_ILLMBLOCK

A call to the xmk_Free() function of the Cmicro Memory Manage-
ment (see the file “Exported from ml_mem.c” on page 3494) oc-
curred and the given block is an invalid block.

This error can only be detected if the Cmicro Memory Management
is used (see the flag “XMK_USE_SDL_MEM” on page 3422).

• ERR_N_NO_FREE_SIGNAL_DYN

This error is detected when a new signal is to be allocated dynami-
cally and there is no more free memory available. The Cmicro Ker-
nel starts to create signal instances by using memory allocation in
the case that the define
XMK_USE_STATIC_AND_DYNAMIC_QUEUE is defined and
there is no available signal instance in the predefined pool of static
signal instances (see XMK_MAX_SIGNALS).

• ERR_N_NO_FREE_TIMER_DYN

This error is detected when memory for a new timer instance is to
be allocated dynamically and there is no more free memory avail-
able. The error only occurs if timers with parameters are used. The
Cmicro Kernel starts to create timer instances by using memory al-
location in the case that timers with parameters are used in SDL
3462 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
(XMK_USED_TIMER_WITH_PARAMS is defined in
sdl_cfg.h) and the amount of statically predefined timer instances
(XMK_MAX_TIMER_USER defined with Targeting Expert) is
being reached.

• ERR_N_NULL_POINTER_VALUE_USED

This error occurs within the macros that are generated in order to
check null pointer access. These error checks are generated for vari-
ables of sort ref, own and oref. If the error occurs, the further behav-
ior of the SDL system is unpredictable.

• ERR_N_UNDEFINED_ERROR

This error message is implemented to serve the C switch statement
in use with a default branch. It should not occur during system exe-
cution.

SDL Target Tester Errors

• ERR_N_INDEX_SIGNAL

Under normal circumstances this error should not occur. It is an er-
ror detected by the SDL Target Tester when a signal id is out of
range. This is only used if signal trace options are modified or asked
for.

• ERR_N_ILLEGAL_CMD

An illegal command was sent to the SDL Target Tester command
interface module. This error situation arises due to careless imple-
mentation of the function interface and should not occur under nor-
mal circumstances.

• ERR_N_TESTER_MESSAGE

An illegal message was sent to the SDL Target Tester and it is not
able to decode the message. A possible error source is an inconsis-
tency in the underlaying protocol on the communications interface.

• ERR_N_LINK_SYNC

It was not possible to receive the sync byte of the data link frame of
the Cmicro Protocol.

• ERR_N_LINK_DEST_BUFFER
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3463

Chapter 67 The Cmicro Library
A message which is to be decoded is too large for the destination
buffer. Possible error sources are an inconsistency in the data defi-
nition or the length of information received is wrong.

• ERR_N_LINK_ENC_LENGTH

An attempt was made to send more than the allowed maximum
amount of bytes.

• ERR_N_LINK_ENC_MEMORY

There is not enough, or no free memory to encode a data link frame
of the Cmicro Protocol.

• ERR_N_LINK_NOT_IMPL

A feature of the data link which is not implemented has been used,
for example an attempt to send more than the maximum amount of
allowed bytes.

• ERR_N_DATA_LINK

There is an error on the data link detected.

• ERR_N_DECODE_METHOD

There is no decoding method defined for a given frame of the Cmi-
cro Protocol.

• ERR_N_RING_WRITE_LENGTH

There is a ring buffer overflow detected in the data link module.

• ERR_N_TRACE_OUTPUT

The signal parameter length is greater than the size which can be
transmitted.

• ERR_N_RECORD_OUTPUT

The signal parameter length is greater than the size which can be
transmitted.

• ERR_N_RECORD_MAX_EXCEEDED

The debit counter used for the SDL Target Tester’s record is over-
flown.
3464 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Bare Integration
• ERR_N_RECORD_STATE

The received message cannot be handled in the current recorder
state.

• ERR_N_RECORD_CANNOT_CONT

Because a fatal system error is detected the record session cannot be
continued.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3465

Chapter 67 The Cmicro Library
Light Integration
A light integration is to be performed if the SDL system including the
Cmicro Library should execute within just one operating system task.

The SDL system usually communicates with the environment by using
a mailbox or message queue or something similar, which is provided
from the operating system. Within the SDL system, the Cmicro sched-
uler is used. This means that signals that are sent internally in the SDL
system are not sent via the mailbox/message queue from the operating
system.

Model
The execution model for an SDL system in a light integration can be
sketched with the following meta code:

1.

/* In the user’s initialization task do : */
Initialize memory
Initialize time
Initialize mailbox(es) or message queue(s)
Initialize other resources
Make the SDLTask an operating system task
Wait until the SDLTask has finished initialization
Continue with creating other operating system tasks

The model for what the SDL task does in a light integration can be
sketched with something like:

2.

Initialize SDL Target Tester
Initialize Cmicro SDL queue
Initialize Cmicro Trace options (if wanted)
Initialize SDL and execute start transitions of the
process instances which are to be created statically

Forever do
{
 if there is a signal to be consumed
 {
 Get the next message from the OS queue,
 without suspending the SDL Task
 }
 else, if there are only saved signals
 {
 evaluate the remaining duration for the
3466 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Light Integration
 timer that will expire next

 if there is at least one active timer
 {
 listen on the operating system queue for the
 remaining duration, by using a blocking
 function call
 }
 else
 {
 listen forever to the operating system queue
 by using a blocking function call
 }
 If a message was received, format the message
 and send it as an SDL signal to the SDL system
 }
 If a timeout occured (remaining duration),
 then check all the timers. For each timer that
 has been expired there will be one signal
 put into the SDL queue

 process SDL signal
}

Procedure to Implement the Model
This subsection gives the user the details that he must know for the im-
plementation of the given model. He has to deal with some special mac-
ros which must be defined and used. Their names have the prefix XLI_.

The user must execute the following steps:

1. Create the module with the C main() function.

This module has to contain the C main() function, corresponding to
the first meta code in the section before. The module should include
ml_typ.h and the interface file (e.g component.ifc). In this module
the definitions of other external tasks can take place. The main function
should handle the following steps:

• initialize the memory if required

• initialize the hardware timer

• initialize OS resources (semaphore, message queues,...)

• start the necessary OS tasks, this means also to start the task which
represents the SDL state machine.

• wait until all tasks are started
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3467

Chapter 67 The Cmicro Library
2. Set XLI_LIGHT_INTEGRATION

To set this flag the Targeting Expert can be used. Choose your integra-
tion and choose “Support light integration” below Target Library and
kernel tab. When the box is chosen three things will happen.

• the compiler flag XLI_LIGHT_INTEGRATION will be set

• the compiler flag XMK_USE_INTERNAL_QUEUE_HANDLING is auto-
matically set

• The macro XLI_INCLUDE is set with the name in the edit line (de-
fault is ’li_os_def.h’)

This header file is included in ml_typ.h and must contain a definition
of XLI_SDL_TASK_FUNCTION. With the help of this macro, the main
function known from the standard Cmicro kernel will be mapped to the
OS task function. The body of this function is located in mk_user.c.

3. Define the macros which are needed in the task function.

The task function is corresponding to the second meta code of the mod-
el. The following macros can be defined in the header file:

• XLI_TEMP_TASK_VARS

If temporary variables are needed in the task function, they can be de-
clared at this place. It is inserted at the top of the task function.

• XLI_TEMP_QUEUE_VARS

If temporary variables for the communication resources are needed,
they can be defined within this macro. It is expanded at the top of the
function which queries the queue.

• XLI_OS_TASK_INIT

Any preparations in the task function can be done with this. It follows
XLI_TEMP_TASK_VARS at the start of the task function.

• XLI_CREATE_OS_QUEUE

Here the communication resources for the OS task can be created
(which ones that will be used depends on the user and the used OS). In
the further part of the document the term queue will be used instead of
communication resources.
3468 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Light Integration
• XLI_START_OS_TASK_SYNC

If a synchronization between the OS tasks is needed, this should be de-
fined with XLI_START_OS_TASK_SYNC.

• XLI_GET_NEXT_MESSAGE_FROM_OS_QUEUE

The function xmk_RunSDL() represents the continuous repeating part of
the meta model. Inside of it xmk_QueryOSQueue() is called and it is re-
sponsible for the query of the OS queue. If the SDL queue contains sig-
nals, XLI_GET_NEXT_MESSAGE_FROM_OS_QUEUE is used to read non-
blocking from the OS queue. The task function should not be suspend-
ed.

• XLI_LISTEN_ON_OS_QUEUE_WITH_TIMEOUT(TIMEOUT)

If the SDL queue is empty, but at least one timer is active,
XLI_LISTEN_ON_OS_QUEUE_WITH_TIMEOUT(TIMEOUT) is used to
read from the OS queue with a time-out. The OS queue should be que-
ried as long as the next timer expire. The duration is given with the pa-
rameter TIMEOUT.

• XLI_LISTEN_ON_OS_QUEUE_NO_TIMEOUT

If there is no signal in the SDL queue and there is no timer active
XLI_LISTEN_ON_OS_QUEUE_NO_TIMEOUT is used to query the OS
queue while the next OS message arrives. The SDL task should be sus-
pended.

• XLI_CALL_xInEnv

The content of XLI_CALL_xInEnv is executed after an OS message ar-
rives. It should pass on the content of the received OS message (a signal
with parameter) to the SDL system. Normally xInEnv is called to send
the signal to the SDL system. The user has to define a data structure
which transports the signals from the OS to the SDL system. The name
for the data structure can be assigned with XMK_xInEnv_PARTYPE. The
name for the parameter of xInEnv can be assigned with
XMK_xInEnv_PARNAME.

• XLI_END_OS_TASK_SYNC

This can be defined with something that sign up the other non-SDL
tasks about ending of the SDL task.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3469

Chapter 67 The Cmicro Library
4. Initialize the environment.

This is usually done in xInitEnv(), but probably outside SDL, de-
pending on the needs of the user.

5. Adaptions for sending signals from the SDL task to any other OS
task.

Usually, users must fill out the function xOutEnv() for sending signals
to the environment (another operating system task). It is up to the user
what kind of communication is to be used in this direction.

6. Adaptions for receiving signals from any other OS task and transla-
tion of the signal parameters.

In the SDL task, it is necessary to format the incoming parameters after
the message was read from the message queue. Afterwards the signal
can be sent to the SDL system with XMK_SEND_ENV.

7. Implement timers in SDL.

It should be possible to implement hardware timers, like it is described
in “Defining the SDL System Time Functions in mk_stim.c” on page
3435. A usual way is to increment a global variable (of type
xmk_T_TIME) by using an operating system task or similar. A time over-
run is automatically detected by the Cmicro Kernel.

Note:

All necessary resources, e.g. the receivers queue, must have been
created before they are used.

Note:

All necessary resources must have been created before they are
used.
3470 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Light Integration
8. System shutdown.

There is no default way to shutdown, but usually it is enough to imple-
ment the xCloseEnv function and call it at an appropriate place.

9. Cmicro Target Tester

The next thing that is remaining is the SDL Target Tester. The instruc-
tions which have been given for bare integration, are still valid. The eas-
iest way to use the SDL Target Tester in a light integration is to dedicate
a communication interface exclusively for the SDL Target Tester.

10. Compile and link

The added files must be registered as source files in the Targeting Ex-
pert. Please view “Source Files” on page 2861 in chapter 60, The Tar-
geting Expert to get information on how to add more files to the list of
files to be compiled. The Targeting Expert will automatically add these
files to the makefile.

11. Save the settings and press Full Make.

Note:

The Target Tester can only used for tracing.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3471

Chapter 67 The Cmicro Library
File Structure

Description of Files

The Cmicro Library Functions and Definitions

sdl_cfg.h

This file is automatically generated by the Cmicro SDL to C Compiler
into the directory which is currently active. It contains compilation flags
used for the automatic scaling of the Cmicro Library and the generated
C code. The file must not be edited by the user.

ml_typ.h

This file is the central header file in the Cmicro Package. It contains

• more #includes

• defines, which are of global interest and Cmicro Library internal de-
fines

• typedefs which are of global interest and Cmicro Library internal ty-
pedefs

• external declarations which are of global interest and Cmicro Li-
brary internal external declarations

Caution!

The file sdl_cfg.h always carries the same name, for each SDL
system generated and is stored in the currently active directory
(project or working directory). Inconsistencies arise if several sys-
tems are to be generated in the same directory. To avoid this situa-
tion, it is recommended to use different working directories for each
SDL system. Otherwise, unpredictable results at run-time could re-
sult, as some required automatic scalable features may/may not have
been compiled.
3472 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 File Structure
sctpredg.h, sctpred.h and sctpred.c

These files contain all definitions necessary to handle SDL data, for ex-
ample predefined sorts. sctpred.h is included in ml_typ.h.

ml_err.h

This header file defines all error numbers used by the Cmicro Kernel,
the Cmicro Library and the SDL Target Tester.

ml_mem.c

This file contains the dynamic memory management functions from
Cmicro. It contains among other functions the C functions
xmk_Malloc(), xmk_Calloc() and xmk_Free(). Possible reasons to
use this module are:

• Compiler does not support dynamic memory management.

• Dynamic memory management of the compiler does not meet the
requirements of the application. This may be the case, if the user
wants to use “best fit” instead of “first fit”, the first of which is nor-
mally not supported. It is possible to adapt the memory management
to ones needs.

• User wants to use other mechanisms of ml_mem.c, like profiling.
Please view “Dynamic Memory Allocation” on page 3450.

ml_mon.inc

This file is included by the ml_mon.c file. It exists only for internal pur-
poses and in order to maintain all the defined errors in the system in a
better way.

ml_mon.c

This file contains some help functions which are useful in producing
screen outputs. It contains C functions for buffer printouts, SDL PId
printouts, displaying error messages, and the display of the current scal-
ings used in the executable. The file should usually be included when
compiling the kernel.

ml_*.h

Other header files which contain extern declarations of modules of the
Cmicro Library.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3473

Chapter 67 The Cmicro Library
The Cmicro Kernel

mk_main.c

This file represents the main-interface to the SDL user. It contains func-
tions which are to be called by the SDL user to integrate the Cmicro
Kernel in his application.

• an SDL initialization function xmk_InitSDL()

• an SDL system execution function xmk_RunSDL()

For SDL Target Tester, there are some more functions to be called dur-
ing initialization. Please view chapter 68, The SDL Target Tester.

mk_user.c

This module is not in the Kernel directory, but in the Template directo-
ry. It contains function templates or examples which are to be filled out
by the user:

 main()

The C main function contains by default the full access to all Cmicro
features.

ErrorHandler()

Central error handling routine is called each time an errors occurs.

WatchdogTrigger()

Handling of a hardware watchdog.

In earlier versions of the Cmicro Package the functions xInitEnv(),
xInEnv(), xOutEnv() and xCloseEnv() were include in
mk_user.c, too. These functions will now be generated by the Target-
ing Expert and stored in the file env.c.

mk_sche.c

This file is the heart of the Cmicro Kernel. It exports those functions
which are used in the mk_main module and it uses those functions of

Note:

The SDL queue must in any case be initialized before the SDL sys-
tem is going to execute. The initialization function is called
xmk_InitQueue() and is exported from the mk_queu.c module.
3474 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 File Structure
other modules which represent the SDL model. The module serves with
all the different scheduling policies described later in the subsection
“Scheduling” on page 3365.

mk_outp.c

This file contains the SDL operation OUTPUT which is represented by
a few functions. There is a C function xmk_Send() representing the
SDL output operation. In addition, there is a C function
xmk_SendSimple() which is used when a signal contains no parame-
ters and has no explicitly defined priority. This results in a more com-
pact argument list thus reducing the generated C Code.

mk_queu.c

This module contains the data type “SDL queue” and defines all opera-
tions on the SDL queue. The queue handling covers all the aspects of
the SDL semantics as far as signals are concerned. There is one function
xmk_InitQueue() which must be called in the user’s main() function
before the SDL system is going to execute.

mk_tim1.c

This file contains the SDL operations on timers such as set, reset, active,
and some help functions used by the Cmicro Kernel. The timer model
is described within the subsection “Timers and Operations on Timers”
on page 3375. The Cmicro Kernel has to initialize all timers, test for ex-
pired timers and reset all timers of a process, when a process instance
stops.

mk_stim.c

This file contains some functions which are to be filled up by the user.
This is the reason why it is in the Template directory. The functions are
used by the Cmicro Kernel to get the system time used in SDL. The con-
tents of this file should be seen as a template. No provision for the con-
nection to hardware timers is provided in the delivered source, as the
timer used is application dependent. The user is required to fill out the
appropriate functions for the provision of SDL system time. Please view
“Defining the SDL System Time Functions in mk_stim.c” on page 3435
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3475

Chapter 67 The Cmicro Library
mk_cpu.c

This file also contains some hardware specific functions which should
be seen as templates. It is also in the Template directory.

mk_*.h

Other header files contain extern declarations of modules of the Cmicro
Library. The contents and details of the various header files only need
to be known if the user wishes to modify parts of the Cmicro Library.
3476 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
Functions of the Basic Cmicro Kernel
The list in the following section gives an overview of the functions ex-
ported by each module of the Cmicro Library in order to understand the
module structure. The functions declared as static are not considered
here.

If there is a reference to xmk_RAM_ptr, this can be replaced with a *
(star) usually. This means that for example the declaration

xmk_T_CMD_QUERY_QUEUE_CNF xmk_RAM_ptr qinfo

can be replaced with

xmk_T_CMD_QUERY_QUEUE_CNF *qinfo

which means to refer to a pointer to an object of the type
xmk_T_CMD_QUERY_QUEUE_CNF.

Exported from env.c

xInitEnv
Parameters:

In/Out: -no-
Return: -no-

This function is called by the Cmicro Kernel during initialization of the
SDL system. The user may include initialization of the environment
here.

xInEnv
Parameters:

In/Out: -no-
Return: -no-

This function is called by the Cmicro Kernel continuously to retrieve
signals polled from the environment. Use the Cmicro Kernel function
xmk_Send* to put signals into the system. The use of this function is not
absolutely necessary in the case where the Cmicro Kernel is scaled to
preemption and all external Events are put into the SDL system via an
Interrupt Service Routines.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3477

Chapter 67 The Cmicro Library
xOutEnv
Parameters:

In/Out: xmk_T_SIGNAL sig,
xmk_T_PRIO prio,
unsigned char data_len,
void *p_data,
xPID Receiver

Return: xmk_OPT_INT

This function is called by the Cmicro Kernel if an SDL signal is to be
sent to the environment.

The function must return with XMK_TRUE, if the Signal was sent to
the environment, otherwise it must return with XMK_FALSE.

xCloseEnv
Parameters:

In/Out: -no-
Return: -no-

This function is called by the Cmicro Kernel during the exit phase of the
SDL system. The user may include de-initialization of the environment
here.

Exported from mk_user.c

xSDLOpError
Parameters:

In/Out: char *xmk_String1 - SDL ADT operators name
char *xmk_String2 - The reason for failure

Return: -no-

This is a function which is to filled up by the user. The function is an
central error handling function for ADTs. It is compiled only if XEC-
SOP was defined in ml_mcf.h.

ErrorHandler
Parameters:

In/Out: int ErrorNo - the given error number
Return: -no-

Note:

The user has several possibilities to send signals to the environment.
Please refer to the subsection about the “Functions of the Expanded
Cmicro Kernel” on page 3499.
3478 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
This is a function which is to be filled out by the user. The Cmicro Ker-
nel as well as the SDL application are the main clients of this function.

The user may distinguish between the different errors and define a spe-
cific reaction.

The different errors defined in the file ml_err.h below the Cmicro Ker-
nel directory.

WatchdogTrigger
Parameters:

In/Out: -no-
Return: -no-

Description:
If selected this function is called by the Cmicro Kernel each time an
SDL transition is executed

xRouteSignal
Parameters:

In/Out: xmk_T_SIGNAL xmk_TmpSignalID - Signal ID
Return: xPID Process - PID or xNULLPID

if no receiver is defined for the given
signal.

Description:
This function is called by the Cmicro Kernel, if SDL signals have no re-
ceiver. (undef XMK_USE_RECEIVER_PID_IN_SIGNAL) This
might be useful in very small systems in order to spare some RAM
memory.The following restrictions apply:

• The SDL System must not contain anything other than the
following process declaration. (x,1)

• For each Signal in the SDL System, there is to be only one Receiver
process (no signal may be sent to more than one process type).

• no dynamic process creation is used (Create-Symbol is not used)

Caution!

Be sure, that the time-out used for the Watchdog is longer than the
longest SDL Transition (in the case of non preemptive Cmicro Ker-
nel). If the preemptive Cmicro Kernel configuration is used, then the
Watchdog Trigger should not be used because the execution time of
transitions cannot be calculated.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3479

Chapter 67 The Cmicro Library
Exported from mk_main.c

xmk_InitSDL
Parameters:

In/Out: -no-
Return: -no-

This C function is called by the user before calling the C function
xmk_RunSDL() and implements the initialization of the whole SDL sys-
tem, namely Timer, Queue, Processes.

xmk_RunSDL
Parameters:

In/Out: -no-
Return: -no-

This function operates endlessly unless XMK_USE_SDL_SYSTEM_STOP is
activated. Then the function is returned if the signal queue is empty or
no process is alive. Before processing signals, SDL time-outs are
checked and the C function xInEnv is called.

xmk_MicroTesterInit
Parameters:

In/Out: -no-
Return: -no-

This function is used to tell the target configuration to the SDL Target
Tester. First the communication interface is initialized, then the startup
message is sent to the host. After that the target waits for a “go forever”
message from the host.

Note:

Timers are represented as signals, that’s because xRouteSignal
also has to map timers to the receiver process

Hint:

Each signal and timer is represented by a system wide unique inte-
ger number.
3480 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
xmk_MicroTesterDeinit
Parameters:

In/Out: -no-
Return: -no-

This function is responsible for closing the communication interface to
the host after the system has ended.

Exported from mk_sche.c

xmk_StartProcesses
Parameters:

In/Out: -no-
Return: -no-

This function implements the start-up phase of the SDL system. All
static process-instances are created. This means executing the start-tran-
sition of all process-instances to be created. For each created process-
instance, the first state is set. If configured right, the values SDL_SELF,
SDL_PARENT and SDL_OFFSPRING are correctly initialized (only
necessary if no semantic check was performed, i.e. if the Analyzer is not
used).

xmk_ProcessSignal
Parameters:

In/Out: -no-
Return: -no-

This function processes an SDL signal and remains in an internal loop,
until a signal has been processed or until no signal remains in any input-
port in the SDL system.

xmk_CreateProcess
Parameters:

In/Out: ProcessID - ID of the process type
Return: xmk_T_INSTANCE - created Instance number ID

This function tries to create an instance of the given process-type. This
can fail, either if the create signal cannot be allocated (no more memo-
ry) or if there is no free process instance of that type. E.g. if there is no
instance in the DORMANT state.

The return value contains the process instance number ID, if one more
process instance could be allocated. The return value is set to
xNULLINST if the creation failed for some reason.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3481

Chapter 67 The Cmicro Library
The process instance number is not the same as the process ID. The pro-
cess ID is calculated from the process ID type plus the process ID in-
stance number.

The generated C code does not use the return value, because the SDL
offspring and the parent pid value are stored in the pid tables of the pro-
cess instance.

xmk_IsAnyProcessAlive
Parameters:

In/Out: -no-
Return: xmk_T_BOOL

This function checks for any active instance of a process type by search-
ing for instances not in the state XDORMANT.

The function returns with XMK_TRUE, if there is an active instance. It re-
turns with XMK_FALSE if there is no instance active within the system.

xmk_IfExist
Parameters:

In/Out: xPID - Process ID of the process to be
checked
Return: xmk_T_BOOL

This function checks if the given PID is valid or not. The return value is
XMK_TRUE if the given PID is valid. If an instance with this PID does not
exist, it returns with XMK_FALSE.

xmk_CheckNullPointerValue
Parameters:

In/Out: void*
Return: -no-

This function checks whether there is a pointer value in the SDL system
that is used but has no value. The ErrorHandler is called with the right
error message then. The error must be caught in the user’s ErrorHandler
in order to implement the right reaction on this fatal situation.

xmk_InitPreemptionVars
Parameters:

In/Out: -no-
Return: -no-

The variables used in preemption are initialized.
3482 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
xmk_DisablePreemption
Parameters:

In/Out: -no-
Return: -no-

The variable which stores the preemption status is incremented. A value
greater than zero means it is not allowed to perform a context-switch at
the moment.

xmk_EnablePreemption
Parameters:

In/Out: -no-
Return: -no-

The variable which stores the preemption status is decremented if pre-
emption was disabled. If the variable’s value is zero after it is decre-
mented, the function xmk_CheckIfSchedule() is called.

xmk_FetchHighestPrioLevel
Parameters:

In/Out: -no-
Return: xmk_T_PRIOLEVEL

This function searches for signals in the priority queue levels. This is
done with decreasing priority in order to find the highest priority level
at which signals exist. The return value is the highest priority level that
contains a signal to process.

xmk_CheckIfSchedule
Parameters:

In/Out: -no-
Return: -no-

It is checked whether a context switch is admissible. If this is the case
the current priority-level is compared with the highest priority-level
where a signal exists. Supposing the highest level is higher than the cur-
rent, a context-switch is performed using xmk_SwitchPrioLevel().
This is repeated until the current priority-level is the highest level.

xmk_SwitchPrioLevel
Parameters:

In/Out: xmk_T_PRIOLEVEL NewPrioLevel
Return: -no-

The global variables for the current priority-level are stored. After-
wards, the function xmk_ProcessSignal() is called in order to deal
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3483

Chapter 67 The Cmicro Library
with the signals on the higher priority level. After returning from this
function call the variables for the current priority-level are restored.

With the NewPrioLevel the next prio-level to deal with is specified.

xmk_KillProcess
Parameters:

In/Out: xPID Process ID
Return: xmk_T_BOOL

This function sets a process instance into the state XDORMANT, removes
all signals directed to it from the queue and resets the local instance da-
ta. The return values are XMK_TRUE if the call was successfully and
XMK_FALSE if the process was non-existent, currently running or al-
ready in the XDORMANT state.

Exported from mk_outp.c

xmk_SendSimple
Parameters:

In/Out:
 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xmk_T_SIGNAL sig
 xPID Receiver
 #else
 xmk_T_SIGNAL sig
 #endif

Return: -no-

This is a simple SDL output function which needs a maximum of only
2 Parameters. Most SDL systems consist of a lot of “normal” Signals
without any parameters and no priority. It makes sense to use this sim-
ple function whenever possible to spare program code. The signal is put
into the linked list of signals by using a default priority.

With the first parameter sig, the signal ID of the signal that is to be sent
is specified. With the (optional) second parameter, the receiver process
ID is specified. If XMK_USE_RECEIVER_PID_IN_SIGNAL is not
defined, the user must implement the C function xRouteSignal()
which is responsible to derive the receiver from the signal ID in that
case. Using xRouteSignal() is recommended only if the last few
bytes must be spared for transferring of signals.
3484 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
xmk_Send
Parameters:

In/Out:
 xmk_T_SIGNAL sig

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO prio
 #endif

 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH data_len
 void xmk_RAM_ptr p_data
 #endif

 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xPID Receiver
 #endif

Return: -no-

This is, compared to the xmk_SendSimple function, a complete SDL
output function which needs all possible signal parameters.

With the parameter sig, the signal ID is to be specified.

With the prio parameter, the signal’s priority is to be specified (if con-
ditionally compiled).

With the data_len, the number of bytes as the signal’s parameters is
to be specified. The number of bytes is evaluated by using a
sizeof (C struct) construct. If the signal carries no parameters, this
value must be set to 0 (if conditionally compiled).

With the p_data parameter, a pointer to the memory area containing the
parameter bytes of the signal is given. The memory area is not treated
as dynamically allocated within this function. Because the function cop-
ies the parameter bytes, the caller may use any temporary memory (for
example memory allocated from the C stack by declaring a C variable).
This parameter should be set to NULL if no parameter bytes are to be
transferred (if conditionally compiled).

With the last parameter Receiver, the PID of the receiving process is
to be specified (if conditionally compiled).

If the XMK_USE_SIGNAL_PRIORITIES is not defined, the signal
priorities which are specified with #PRIO in the diagrams is just ig-
nored. The use of signal priorities is not recommended because the vio-
lation of SDL. A few bytes can be spared if signal priority is not used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3485

Chapter 67 The Cmicro Library
The XMK_USED_SIGNAL_WITH_PARAMS is automatically gener-
ated into the sdl_cfg.h file, from the Cmicro SDL to C Compiler. For
tiny systems, if there are no SDL signals with parameters specified, this
is undefined. It will reduce the amount of information which is to be
transferred for each signal with a few bytes.

If XMK_USE_RECEIVER_PID_IN_SIGNAL is not defined, the user
must implement the C function xRouteSignal() which is responsible
to derive the receiver from the signal ID in that case. Using
xRouteSignal() is recommended only if the last few bytes must be
spared for transferring of signals.

XMK_SEND_ENV
Parameters:

In/Out: xPID Env_ID

 xmk_T_SIGNAL sig

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO prio
 #endif

 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH data_len,
 void xmk_RAM_ptr p_data
 #endif

 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
 xPID Receiver
 #endif

Return: -no-

This function is to be called when a signal is to be sent into the SDL sys-
tem, e.g. within the users xOutEnv() function. It must be called with
one more parameter than the xmk_Send() function, which is the first
parameter Env_ID.

The macro internally uses some variables which are to be declared be-
fore the macro can be used. For example in the xOutEnv function the
XMK_SEND_TMP_VARS macro must be introduced for declaring these
variables.

The function is implemented as a macro in C.

xmk_Determine_Receiver
Parameters:

In/Out: xmk_T_PROCESS proc_type - process type ID
3486 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
Return: xPID - process PID

This function is used in the context of SDL output in generated C code.
The function determines if any instance with the given process type-ID
is available to receive the signal. If no instance can be found, xNULLPID
is returned.

Exported from mk_queu.c

xmk_InitQueue
Parameters:

In/Out: -no-
Return: -no-

This function initializes the signal queue. It must be called before any
other Cmicro Kernel function, e.g. before xmk_InitSDL(). All rele-
vant pointers are initialized. All signal-elements are put into the free-
list. The SAVE-state of all signals is set to false.

xmk_FirstSignal
Parameters:

In/Out: -no-
Return: xmk_T_MESSAGE*

The first signal in the current queue which is the one with the highest
priority, is copied to the pointer of the currently treated signal and re-
turned to the caller.

The function returns a pointer to the first signal in the queue or NULL,
if there are no signals in the queue.

xmk_NextSignal
Parameters:

In/Out: -no-
Return: xmk_T_MESSAGE*

The signal following the current signal is copied to the current signal. If
there are no more signals, NULL is returned.

xmk_InsertSignal
Parameters:

In/Out: xmk_T_MESSAGE xmk_RAM_ptr p_Message
Return: -no-

This function puts a signal into the queue. The position depends on only
the signal priority, if specified.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3487

Chapter 67 The Cmicro Library
With the parameter p_Message a pointer to the signal which is to be
inserted is given.

xmk_RemoveCurrentSignal
Parameters:

In/Out: -no-
Return: -no-

The signal which was currently processed is removed from the queue
and inserted into the list of free signals.

xmk_RemoveSignalBySignalID
Parameters:

In/Out: xmk_T_SIGNAL SignalId
Return: -no-

This function is not used if timers with parameters are in the system
(XMK_USED_TIMER_WITH_PARAMS macro is defined).

Signals of a given signal-code sent to the current process are removed
from the queue and inserted in the list of free signals. The signal cur-
rently being processed must not be removed, as it is necessary for the
current actions. It is only removed after processing is complete.

With the parameter SignalID, the signal ID of the signals which are to
be removed for the currently active process instance is specified.

xmk_RemoveTimerWithParameter
Parameters:

In/Out: xmk_T_SIGNAL SignalId
In : SDL_Integer TimerParValue
Return: -no-

This function is only compiled if timers with parameters are in the sys-
tem (XMK_USED_TIMER_WITH_PARAMS macro is defined).

This function has the same purpose as the above
xmk_RemoveSignalBySignalID but, in addition, must look to the tim-
er’s parameter.

xmk_IsTimerInQueue
Parameters:

In/Out: xmk_T_SIGNAL TimerID
#ifdef XMK_USED_TIMER_WITH_PARAMS
In : SDL_Integer TimerParValue
#endif
Return: -no-
3488 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
This function checks if the given timer is in the signal queue. If timers
with parameters are used, the TimerParValue, which is conditionally
compiled, is checked also.

xmk_RemoveSignalsByProcessID
Parameters:

In/Out: xPID ProcessID - PID of Process
Return: XMK_TRUE - Signal removed

XMK_FALSE - no Signal removed

All signals addressed to a specific process are removed by calling this
Function.

With the parameter ProcessId, the PID of the process for which all the
signals are to be removed from the queue is specified.

xmk_AllocSignal
Parameters:

In/Out: -no-
Return: xmk_T_MESSAGE xmk_RAM_ptr

According to the principle chosen by the user (the user has to choose be-
tween XMK_USE_STATIC_QUEUE_ONLY and
XMK_USE_STATIC_AND_DYNAMIC_QUEUE), and if possible, an initial-
ized signal instance is returned. The signal instance is then either taken
from the static memory pool or from the dynamic memory pool.

Allocation from the dynamic memory pool takes place by calling the
xAlloc C function.

If XMK_USE_STATIC_QUEUE_ONLY is set, the ErrorHandler is called
with the error “ERR_N_NO_FREE_SIGNAL”. This indicates that no more
memory is available to create one more signal instance, and the user
may react appropriately in the ErrorHandler C function.

Otherwise, if XMK_USE_STATIC_AND_DYNAMIC_QUEUE is set, and if it
is impossible to allocate one more instance from the predefined static
memory pool, the ErrorHandler is called with the error
“ERR_N_NO_FREE_SIGNAL”. This indicates that dynamic memory allo-
cation is started now, and the user may react appropriately in the Er-
rorHandler C function (for example, he might want to print out a
warning message). If it is impossible to allocate one more signal from
the dynamic memory pool, the ErrorHandler is called with the error
“ERR_N_NO_FREE_SIGNAL_DYN”. The user may then also decide what
to do in the ErrorHandler C function.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3489

Chapter 67 The Cmicro Library
A pointer to the signal that was allocated is returned usually, or NULL,
if there is no space left to allocate one more signal.

xmk_FreeSignal
Parameters:

In/Out: xmk_T_MESSAGE xmk_RAM_ptr p_Message
Return: -no-

The given signal is de-allocated again.

If the signal was allocated from the static memory pool, it is returned to
that pool by initializing it and inserting it into the free list at the first po-
sition.

Otherwise, if the signal was allocated from the dynamic memory pool,
it will be returned to that pool (by calling the xFree C function).

The parameter p_Message must point to the signal that is to be initial-
ized.

xmk_TestAndSetSaveState
Parameters:

In/Out: xmk_T_STATE State
Return: xmk_T_BOOL

This function checks whether a signal’s SAVE-state is set or not. In test-
ing, the SAVE-state is set to TRUE or FALSE.

With the parameter State, the value of the process’ current state is to
be specified.

The function returns with XMK_TRUE, if the given state equals the sig-
nal's SAVE-state, but returns with XMK_FALSE if the given state differs
from the signal's save state.

xmk_QueueEmpty
Parameters:

In/Out: -no-
Return: -no-

This function tests whether there is at least one signal remaining in the
queue(s) or not.

The function returns XMK_TRUE, if there are no signals in the queue, but
returns XMK_FALSE if there is at least one signal in the queue. It does
not matter if the signal is a saved signal or not.
3490 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
When the Cmicro Kernel is configured for preemption, all the queues of
the different priority levels are checked.

Exported from mk_tim1.c

xmk_InitTimer
Parameters:

In/Out: -no-
Return: -no-

All initialization of timers is performed within this function, which is
called during SDL system start. It initializes some pointers and the free
list of timers.

xmk_TimerSet
Parameters:

In/Out: xmk_T_TIME time
 xmk_T_SIGNAL sid
#ifdef XMK_USED_TIMER_WITH_PARAMS
In : SDL_Integer TimerParValue
#endif
Return: -no-

This function activates an instance of a timer with the given “signal ID”
value and the given time. If timers with parameters are used, the
TimerParValue, which is conditionally compiled, is used also (the val-
ue is set to 0 outside this function call if it is not a timer with parameter).

Working principles:

• If a timer instance of this type is already running, this will be
 deactivated i.e. reset and then set.

• If no free timer is available, the ErrorHandler() is called.
• If all is satisfactory, a timer instance is created for the currently run-

ning process.

The first parameter time specifies the time at which the timer should
expire. The call to SDL now is performed in generated C code.

The second parameter sid specifies the ID of the timer that is to be
started.

If a timer instance of this type is already running, this will be deactivat-
ed. If no free timer is available, the ErrorHandler is called. After all
these checks a timer instance is created for the currently running pro-
cess.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3491

Chapter 67 The Cmicro Library
xmk_TimerReset
Parameters:

In/Out: xmk_T_SIGNAL sid
#ifdef XMK_USED_TIMER_WITH_PARAMS
In : SDL_Integer TimerParValue
#endif
Return: -no-

This function resets the timer with the given “signal ID” value, if it is
active and set by the currently running process. If an active timer in-
stance is found, then the timer is inserted into the free-list. If timers with
parameters are used, the TimerParValue, which is conditionally com-
piled, is used also (the value is set to 0 outside this function call if it is
not a timer with parameter).

The parameter sid specifies the ID of the timer which is to be reset.

xmk_TimerActive
Parameters:

In/Out: xmk_T_SIGNAL sid
#ifdef XMK_USED_TIMER_WITH_PARAMS
In : SDL_Integer TimerParValue
#endif
Return: xmk_T_BOOL

This function checks if a timer with the given ’Signal-ID’ value is active
in the current running process. If timers with parameters are used, the
TimerParValue, which is conditionally compiled, is used also (the value
is set to 0 outside this function call if it is not a timer with parameter).

The parameter sid specifies the ID of the timer which is to be checked
if it is active.

The function returns with XMK_TRUE if the timer is active in the process
that is currently running, it returns XMK_FALSE otherwise.

xmk_ChkTimer
Parameters:

In/Out: -no-
Return: -no-

The main intention of this function is to check, if any of the timers
which are in the list of active timers is expired. There is a list of active
timers in which the active timers are stored in the order of their expiry.

This means that the timer that expires first stands in front of the list.
3492 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
If a timer was recognized as expired, a timer signal is sent to the owning
process instance, the timer is removed from the list of active timers and
restored into the list of free timers.

If there is no timer that can expire, the function returns immediately.

Another task for this function is to check if the global system time is
overrun. If this case occurs, the xmk_ChkTimer() function will read-
just the global system time (by calling xmk_SetTime() from

mk_cpu.c) and will readjust all the timers in the active list.

xmk_ResetAllTimer
Parameters:

In/Out: xPID pid
Return: -no-

All active timers of the given process instance are reset. This will occur
if a process instance stops.

With the pid parameter the process instance is addressed.

Exported from mk_stim.c

xmk_InitSystime
Parameters:

In/Out: -no-
Return: -no-

This function initializes the hardware timer and is to be filled out by the
user.

xmk_DeinitSystime
Parameters:

In/Out: -no-
Return: -no-

This function de-initializes the hardware Timer and is to be filled out by
the user.

xmk_SetTime
Parameters:

In/Out: xmk_T_TIME time
Return: -no-

This function sets the system time to the given value time and is to be
filled out by the user.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3493

Chapter 67 The Cmicro Library
xmk_NOW
Parameters:

In/Out: -no-
Return: xmk_T_TIME

This function is used by

• the Cmicro Kernel to calculate if a timer has expired and this is only
the case if absolute time is used by the selected timer model.

• SDL applications to retrieve the current time

The current SDL system time is returned.

The function is to be filled out by the user.

Exported from ml_mem.c

xmk_MemInit
Parameters:

In/Out: char* _mem_begin
 char* _mem_end
Return: -no-

This function is to be called by the user, before dynamic memory man-
agement can be used. The user has to specify the beginning and the end
of the area to be used for dynamic memory management. The function
should be called before the first call to xAlloc(), e.g. as the first state-
ment in the user’s main() function.

xmk_Malloc
Parameters:

In/Out: unsigned long rsize
Return: void *

This function allocates one block of memory from the dynamic memory
pool. It uses a first fit policy.

xmk_Calloc
Parameters:

In/Out: unsigned long RequestedSize
Return: void*

This function allocates one block of memory from the dynamic memory
pool. It is the same as xmk_Malloc() but sets the allocated block to ze-
ro.
3494 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
xmk_Free
Parameters:

In/Out: void *mem
Return: void

This function is the counterpart of xmk_Malloc(). A memory block is
de-allocated again.

xmk_Memshrink
Parameters:

In/Out: void *pMemBlock
unsigned long NewSize

Return: -no-

This function is an extension of the compared with the standard of dy-
namic memory management supported by usual C compilers. It allows
the user to shrink down a memory area which was previously requested
with xmk_Malloc().

memset
Parameters:

In/Out: char *p
char val
int length-

Return: -no-

This function is a template for the memset() implementation.

memcpy
Parameters:

In/Out: char *dest
char *source
int length

Return: -no-

This function is a template for the memcpy() implementation.

Caution!

Take care when the preemption policy is utilized.

Caution!

Take care when the preemption policy is utilized.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3495

Chapter 67 The Cmicro Library
Exported from ml_mon.c

xmk_GetErrorClass
Parameters:

In/Out: xmk_T_ERR_NUM EightBitNumber
Return: int

This function returns the error class assigned to the given error number
given by the caller. The error class can be one of XMK_FATAL_CLASS or
XMK_WARNING_CLASS. This can be used to classify the predefined error
and warning messages and to react properly if such a message occurs.

xmk_MonError
Parameters:

In/Out: FILE *fp
int nr

Return: -no-

This function is used to evaluate an ASCII error text from an errornum-
ber given by the caller. The first parameter fp must contain a pointer to
a valid (i.e. file is opened) file descriptor, for example it could be stdin,
stdout, or a file which was opened with fopen. The second parameter
nr contains one of the possible error numbers defined in ml_err.h.

xmk_MonPID
Parameters:

In/Out: char *ostring
xPID pid

Return: -no-

Used for test purposes, free use.

xmk_MonHexSingle
Parameters:

In/Out: char *p_text
unsigned char *p_adress
int length

Return: -no-

Used for test purposes, free use.

xmk_MonHex
Parameters:

In/Out: char *p_text
unsigned char *p_adress
int length

Return: -no-

Used for test purposes, free use.
3496 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Basic Cmicro Kernel
xmk_MonHexAsc
Parameters:

In/Out: -no-
Return: -no-

Function for test purposes, free use.

xmk_MonConfig
Parameters:

In/Out: -no-
Return: -no-

Function for test purposes, free use.

Exported from mk_cpu.c

xmk_PutString
Parameters:

In/Out: char * Param1
Return: -no-

A template for how to print out a character string. The character string
must be terminated with “\0”.

The function must return immediately, i.e. may not be blocking on the
output device. If the user does not care about this restriction, the correct
function of other program parts cannot be guaranteed.

xmk_GetChar
Parameters:

In/Out: -no-
Return: int

This function checks if the user has pressed a key on the keyboard (un-
blocked). The function must return immediately, i.e. may not be block-
ing on the input device. If the user does not care about this restriction,
the correct function of other program parts cannot be guaranteed.

xmk_printf
Parameters:

In/Out: char* format
format string
other parameters

Return: -no-

This function is called from any place in the Cmicro Library, Cmicro
Kernel or generated C code, if the printf functionality is compiled
with at least one of the XMK_ADD_PRINTF* defines.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3497

Chapter 67 The Cmicro Library
The function must return immediately, i.e. may not be blocking on the
output device. If the user does not care about this restriction, the correct
function of other program parts cannot be guaranteed.

The function can be used for ANSI C compilers only, because optional
argument lists are used like in the printf function of the standard C li-
brary.

The return value has no meaning and is introduced just for compatibility
with printf.

xAlloc
Parameters:

In/Out: xptrint Size
Return: void *

This function is called from any place in the Cmicro Library, Cmicro
Kernel, SDL Target Tester or generated C code, if memory is to be al-
located dynamically. The user may choose between the dynamic mem-
ory allocation functions from the C compiler or operating system or the
dynamic memory allocation functions from Cmicro.

The return value points to the allocated buffer or is NULL if the opera-
tion was unsuccessful.

xFree
Parameters:

In/Out: void **
Return: -no-

This is the counterpart of xAlloc(). The function is called when a
memory block that has been allocated with xAlloc() can be de-allo-
cated again. The parameter is the address of the pointer to the allocated
buffer.

Example 581 Using the xFree function –––––––––––––––––––––––––

unsigned char *ptr;
ptr = xAlloc(100);
xFree (&ptr); /* NOTE: Not xFree(ptr); */

––
3498 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Expanded Cmicro Kernel
Functions of the Expanded Cmicro Kernel
The expanded Cmicro Kernel offers additional functionality that is usu-
ally not necessary for target applications. Extended functionality is for
example required by the SDL Target Tester, but may also be required
from the user if it comes to target integration.

It is not absolutely necessary to have knowledge of these functions but
knowledge of the functions proves useful when it comes to debugging
and testing an application.

Functions for Internal Queue Handling

Exported from mk_queu.c

xmk_SaveSignalsOnly
Parameters:

In/Out: -no-
Return: xmk_T_BOOL

This function tests whether there only are SAVE signals contained in
the queue. This can be used in integrations with operating systems.

The function returns XMK_TRUE, if there are SAVE signals only in the
queue, otherwise it returns XMK_FALSE.

Exported from mk_tim1.c

xmk_NextTimerExpiry
Parameters:

In/Out: xmk_T_TIME * RemainingTime
Return: xmk_T_BOOL

This function looks for the remaining time of the timer that expires next.
This is useful for operating system integration. If there is no active tim-
er, the function returns XMK_FALSE and the returned parameter
RemainingTime is set to 0.

If there is an active timer, the function returns with XMK_TRUE and the
returned parameter RemainingTime contains the time at which the tim-
er expires next. XMK_TRUE means there is a timer active and the remain-
ing time is returned in the parameter. XMK_FALSE means that there is no
timer active and returned parameter is set to 0.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3499

Chapter 67 The Cmicro Library
Functions to get System Information

Exported from mk_sche.c

xmk_GetProcessState
Parameters:

In/Out xPID pid
Return: xmk_T_STATE

The function evaluates the current SDL state of the SDL process pid
with the given process PID and returns it to the caller. During the SDL
system start-up, one possible return value might be XSTARTUP. This
means that a process will be started during system start-up. During nor-
mal execution and system start-up, the return value XDORMANT may be
returned. This means that an SDL process instance is either stopped or
has never been created dynamically (created).

xmk_SetProcessState
Parameters:

In/Out: xPID pid,
xmk_T_STATE state

Return: xmk_OPT_INT

The function sets the SDL-state of the process pid that is addressed
with the first parameter to the given value state within the second pa-
rameter. Note, that the value is not checked, because Cmicro does not
store any information about this in the generated transition tables.

xmk_GetProcessInstanceData
Parameters:

In/Out: xPID pid
Return: void *

The function returns the address of the process instance data of the giv-
en process-PID, or XNOTEXISTENT, if the pid is not existent.

xmk_QueryQueue
Parameters:

In/Out: xmk_T_CMD_QUERY_QUEUE_CNF * qinfo
Return: -no-

This function evaluates the current SDL-Queue-State and returns some
information to the caller:

• information about the size of the Q (maximum amount of entries)
3500 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Expanded Cmicro Kernel
• information about traffic load, measured until now. (Users can di-
rectly use this to scale the queue. This information is valuable in the
case, where the maximum traffic load is reached during execution.)

• Information about the number of entries that are currently in the
queue.

• A pointer to the physical address of the queue.

Exported from mk_tim1.c

xmk_QueryTimer
Parameters:

In/Out: xmk_T_CMD_QUERY_TIMER_CNF *tinfo
Return: -no-

This function evaluates the current state of the SDL-Timer handling and
returns it to the caller. The following information is contained in the C
structure that is returned:

• Information about the size of the timer list entries.

• Information about traffic load, measured until now. (Users can di-
rectly use this to scale the timer list. This is valuable in the case,
when the maximum traffic load is reached during execution)

• The current number of entries in the timer list.

• A pointer to the physical address of the timer list.

xmk_FirstTimer
Parameters:

In/Out: -no-
Return: xmk_T_TIMER *

The function returns a pointer to the first active timer. If there is no ac-
tive timer in the queue, NULL will be returned.

xmk_NextTimer
Parameters:

In/Out: -no-
Return: xmk_T_TIMER *

The function returns a pointer to the next active timer in the list of active
timers. If there is no or one active timer in the queue, NULL will be re-
turned.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3501

Chapter 67 The Cmicro Library
Exported from ml_mem.c

xmk_GetOccupiedMem
Parameters:

In/Out: -no-
Return: size_t

This function returns the currently occupied amount of memory from
the pool. The pool size is defined with XMK_MAX_MALLOC_SIZE.

xmk_GetFreeMem
Parameters:

In/Out: -no-
Return: size_t

This function returns the amount of available memory from the pool.
This means that it returns the difference between the size of the pool
(XMK_MAX_MALLOC_SIZE) and the currently occupied memory.

xmk_CleanPool
Parameters:

In/Out: -no-
Return: int

This function reinitialize the memory pool to free memory leaks. The
memory pool can only be cleaned if there are no allocated blocks left.

Alternative Function for sending to the
Environment

Exported from mk_outp.c

xmk_EnvSend
Parameters:

In/Out:
 xmk_T_SIGNAL sig

 #ifdef XMK_USE_SIGNAL_PRIORITIES
 xmk_T_PRIO prio
 #endif

 #ifdef XMK_USED_SIGNAL_WITH_PARAMS
 xmk_T_MESS_LENGTH data_len
 void xmk_RAM_ptr p_data
 #endif

 #ifdef XMK_USE_RECEIVER_PID_IN_SIGNAL
3502 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Functions of the Expanded Cmicro Kernel
 xPID Receiver
 #endif

Return: -no-

This function is an alternative to the standard function XMK_SEND_ENV
for putting signals into the SDL system in external C code. The function
is useful when signals are to be sent in interrupt service routines direct-
ly. The function is shorter than XMK_SEND_ENV, but performs not so
many error checks. It is especially not checked, if the receiver process
ID exist. Usually there is also no call to functions which produce trace
output because this would lead to problems in interrupt service routines.
But for some error situations like either

• no free signal available

• no more memory available

the ErrorHandler() C function, which is to be implemented by the
user, is called.

With the parameter sig, the signal ID is to be specified.

With the prio parameter, the signal's priority is to be specified (if con-
ditionally compiled).

With the data_len, the number of bytes as the signal's parameters is
to be specified. The number of bytes is evaluated by using a sizeof (C
struct) construct. If the signal carries no parameters, this value must
be set to 0 (if conditionally compiled).

With the p_data parameter, a pointer to the memory area containing the
parameter bytes of the signal is given. The memory area is not treated
as dynamically allocated within this function. Because the function cop-
ies the parameter bytes, the caller may use any temporary memory (for
example memory allocated from the C stack by declaring a C variable).
This parameter should be set to NULL if no parameter bytes are to be
transferred (if conditionally compiled).

With the last parameter Receiver, the PID of the receiving process is
to be specified (if conditionally compiled).

If XMK_USE_SIGNAL_PRIORITIES is not defined, the signal prior-
ities which are specified with #PRIO in the diagrams is just ignored.
The use of signal priorities is not recommended because the violation of
SDL. A few bytes can be spared if signal priority is not used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3503

Chapter 67 The Cmicro Library
The XMK_USED_SIGNAL_WITH_PARAMS is automatically gener-
ated into the sdl_cfg.h file, from the Cmicro SDL to C Compiler. For
tiny systems, if there are no SDL signals with parameters specified, this
is undefined. It will reduce the amount of information which is to be
transferred for each signal with a few bytes.

If XMK_USE_RECEIVER_PID_IN_SIGNAL is not defined, the user
must implement the C function xRouteSignal() which is responsible
to derive the receiver from the signal ID in that case. Using xRouteS-
ignal() is recommended only if the last few bytes must be spared for
transferring of signals.
3504 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Technical Details for Memory Estimations
Technical Details for Memory Estimations

Allocating Dynamic Memory

Introduction

This section shows when and how dynamic memory allocation is used
in the Cmicro Package. It shows,

• how dynamic memory is allocated
• how to estimate the memory requirements for an application

The Cmicro Package uses a form of dynamic memory management for
the following objects:

• processes
• signals
• timer
• some of the predefined sorts like charstring, ASN.1 sorts and gener-

ators

However, real dynamic memory management is used only in one case,
namely for SDL signals, if a signal carries parameters with more than a
few bytes.

This means that the Cmicro Kernel has its own memory management to
handle processes, signals, and timers. This is done in such a way that
each of these 3 objects are managed separately. For each of these 3 ob-
jects, a separate fixed memory area is reserved during compilation time,
i.e. the area that handles processes cannot be reused to handle timers.
This seems to be a restriction but in many micro controller applications
users have to fix an upper limit of processes, signals and timers which
can be handled in parallel during run time.

Processes

Processes are handled without dynamic memory allocation functions.
The user has to specify an upper limit of process instances in the SDL
diagram separately for each SDL process. For each process instance,
there is a variable which is statically allocated.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3505

Chapter 67 The Cmicro Library
Signals with and without Parameters

Cmicro signals are both ordinary SDL signals as well as timer signals.
Where timers are implemented without parameters and can therefore be
regarded as signals without parameters.

• No malloc/free for timers

• No malloc/free for signals without parameters

• No malloc/free for signals with parameters if less than or equal to
XMK_MSG_BORDER_LEN bytes parameters are to be transferred.

• malloc and free are used for signals with parameters if more than
XMK_MSG_BORDER_LEN bytes parameters are to be transferred.

• XMK_MSG_BORDER_LEN bytes is a macro defined in the manual con-
figuration file ml_mcf.h. It can be set to any value, i.e. zero or the
maximum number of signal parameters to be handled in the system.

Timers

For timers, no malloc and free functions are used. The Cmicro SDL to
C Compiler evaluates the amount of timers in the system and generates
a C constant, which is then used in the Cmicro Kernel to define an array
for timers.
3506 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	67 The Cmicro Library
	Introduction
	Differences between Cmicro and Cadvanced
	General
	SDL Restrictions
	Scheduling
	Generation of Files
	Environment Handling Functions
	Including C Code in SDL by User
	Generated C Code
	General Recommendations Regarding Compatibility

	The SDL Scheduler Concepts
	Signals, Timers and Start-Up Signals
	Data Structure for Signals and Timers
	Dynamic Memory Allocation
	Overview for Output and Input of Signals
	Timers and Operations on Timers

	Processes
	Data Structure for Processes
	Scheduling
	Create and Stop Operations
	Output and Input of Signals
	Nextstate Operation
	Decision and Task Operations

	Procedures
	Procedure Calls
	Procedure Body

	Blocks, Channels and Signal Routes

	Targeting using the Cmicro Package
	Directory Structure
	Prerequisites
	Different Steps in the Work Flow
	Connecting the SDL Environment
	Different Forms of Target Integration

	Compilation Flags
	Manual Scaling
	Cmicro Kernel/Library
	Kernel

	SDL Target Tester
	Initialization
	Trace
	Recorder and Play

	Support of SDL Constructs
	Predefined Sorts
	Size of Variables
	Use of Memory
	SDL environment

	Automatic Scaling Included in Cmicro
	Automatic Dimensioning in Cmicro

	Adaptation to Compilers
	List of Available C Compilers in ml_typ.h
	Introducing a new C Compiler
	Adding a new C Compiler to the Project
	Do the C Compiler Adaptations

	Defining the SDL System Time Functions in mk_stim.c

	Bare Integration
	Implementation of Main Function
	Integrating Hardware Drivers, Functions and Interrupts
	Critical Paths in the Cmicro Library

	Initializing the Environment / Interface to the Environment
	xInitEnv()

	Receiving Signals from the Environment
	xInEnv()
	XMK_SEND_ENV()

	Sending Signals to the Environment
	xOutEnv()

	Closing the Environment / the Interface to the Environment
	xCloseEnv()

	SDL System Time Implementation
	Getting the Receiver of a Signal – Using xRouteSignal
	Dynamic Memory Allocation
	General
	Dynamic Memory Allocation Functions – Compiler or Operating System
	Dynamic Memory Allocation Functions – Cmicro
	The ?Memory Command

	User Defined Actions for System Errors – the ErrorHandler
	List of Dynamic Errors and Warnings
	Cmicro Kernel Errors
	SDL Target Tester Errors

	Light Integration
	Model
	Procedure to Implement the Model

	File Structure
	Description of Files
	The Cmicro Library Functions and Definitions
	The Cmicro Kernel

	Functions of the Basic Cmicro Kernel
	Exported from env.c
	xInitEnv
	xInEnv
	xOutEnv
	xCloseEnv

	Exported from mk_user.c
	xSDLOpError
	ErrorHandler
	WatchdogTrigger
	xRouteSignal

	Exported from mk_main.c
	xmk_InitSDL
	xmk_RunSDL
	xmk_MicroTesterInit
	xmk_MicroTesterDeinit

	Exported from mk_sche.c
	xmk_StartProcesses
	xmk_ProcessSignal
	xmk_CreateProcess
	xmk_IsAnyProcessAlive
	xmk_IfExist
	xmk_CheckNullPointerValue
	xmk_InitPreemptionVars
	xmk_DisablePreemption
	xmk_EnablePreemption
	xmk_FetchHighestPrioLevel
	xmk_CheckIfSchedule
	xmk_SwitchPrioLevel
	xmk_KillProcess

	Exported from mk_outp.c
	xmk_SendSimple
	xmk_Send
	XMK_SEND_ENV
	xmk_Determine_Receiver

	Exported from mk_queu.c
	xmk_InitQueue
	xmk_FirstSignal
	xmk_NextSignal
	xmk_InsertSignal
	xmk_RemoveCurrentSignal
	xmk_RemoveSignalBySignalID
	xmk_RemoveTimerWithParameter
	xmk_IsTimerInQueue
	xmk_RemoveSignalsByProcessID
	xmk_AllocSignal
	xmk_FreeSignal
	xmk_TestAndSetSaveState
	xmk_QueueEmpty

	Exported from mk_tim1.c
	xmk_InitTimer
	xmk_TimerSet
	xmk_TimerReset
	xmk_TimerActive
	xmk_ChkTimer
	xmk_ResetAllTimer

	Exported from mk_stim.c
	xmk_InitSystime
	xmk_DeinitSystime
	xmk_SetTime
	xmk_NOW

	Exported from ml_mem.c
	xmk_MemInit
	xmk_Malloc
	xmk_Calloc
	xmk_Free
	xmk_Memshrink
	memset
	memcpy

	Exported from ml_mon.c
	xmk_GetErrorClass
	xmk_MonError
	xmk_MonPID
	xmk_MonHexSingle
	xmk_MonHex
	xmk_MonHexAsc
	xmk_MonConfig

	Exported from mk_cpu.c
	xmk_PutString
	xmk_GetChar
	xmk_printf
	xAlloc
	xFree

	Functions of the Expanded Cmicro Kernel
	Functions for Internal Queue Handling
	Exported from mk_queu.c
	xmk_SaveSignalsOnly
	Exported from mk_tim1.c
	xmk_NextTimerExpiry

	Functions to get System Information
	Exported from mk_sche.c
	xmk_GetProcessState
	xmk_SetProcessState
	xmk_GetProcessInstanceData
	xmk_QueryQueue
	Exported from mk_tim1.c
	xmk_QueryTimer
	xmk_FirstTimer
	xmk_NextTimer
	xmk_GetOccupiedMem
	xmk_GetFreeMem
	xmk_CleanPool

	Alternative Function for sending to the Environment
	Exported from mk_outp.c
	xmk_EnvSend

	Technical Details for Memory Estimations
	Allocating Dynamic Memory
	Introduction
	Processes
	Signals with and without Parameters
	Timers

