Chapter

66 The Cmicro SDLto C
Compiler

The Cmicro SDL to C Compiler trandlatesyour SDL system intoa
C program that you can compiletogether with the Cmicro Library
andtheSDL Target Tester target library. TheCmicroLibrary and
theSDL Target Tester target library isnot availableasa pre-linked
library but isdeliver ed assour ceto enable scaling of thekernel. The
scaling is dependent upon the SDL system characteristics. This

chapter isareference manual for the Cmicro SDL to C Compiler.

* Inchapter 67, The Cmicro Library, you will find information
about how to customize your own librariesfor specific purpose,
such as application generation for target computers. The chap-
ter also describesthe structure of the generated C code and the
internal data structuresin the generated C code. The Cmicro
Library isonly of usewhen compiled with the codewhich isgen-
erated by the Cmicro SDL to C Compiler.

* Inchapter 68, The SDL Target Tester, you will find a reference
to the features, which enablestesting in a host-target environ-
ment. The SDL Target Tester isapplicablefor the Cmicro SDL
to C Compiler and the Cmicro Library only.

July 2003 Telelogic Tau 4.5 User’ sManual 3299

Chapter 66 The Cmicro SDL to C Compiler

Application Area for the Cmicro SDL to C
Compiler
The application areafor the Cmicro SDL to C Compiler is:

» Generation of applications, including embedded system applica-
tions with real time characteristics (Configuration: Cmicro Library
and generated C code running on target).

* Generation of target debug applications, including embedded sys-
tem applications with real time characteristics (Configuration: Cmi-
cro Library, generated C code and SDL Target Tester running on
target).

In this part of the chapter, the general behavior of the Cmicro SDL to C
Compiler, as seen from the users point of view, is discussed.

Highly Optimized Code for Target

The generated code in combination with the Cmicro Library is highly
optimized, which is unavoidable for microcontrollers and real-time ap-
plications. Some optimizations have been possible only by introducing
restrictions in the use of SDL. Other optimizations have been possible
by generating more compact code. For therestrictionsin the use of SDL
please see“ SDL Resdtrictions’ on page 3358. Details regarding the out-
put of the Cmicro code generation can be found in “Output of Code
Generation” on page 3326.

Target Debug

With the generated code it is possible to debug the application on the
target using the Cmicro Library and the SDL Target Tester library. The
parts of the Cmicro code generation which are used for the SDL Target
Tester area so highly optimized. Please see chapter 68, The SDL Target
Tester.

3300 Teldlogic Tau 4.5 User's Manual July 2003

Overview of the Cmicro SDL to C Compiler

Overview of the Cmicro SDL to C Compiler

July 2003

The SDL Analyzer, which can be invoked from the Organizer, contains
an SDL parser, an SDL semantic checker, and —among other code gen-
erators — the Cmicro SDL to C Compiler.

Many options can be chosen from the user which affect the anaysis of
the SDL system. Furthermore, alot of error checks are performed auto-
matically before code generation starts. This makes it possible to im-
prove written SDL specifications before any run-time testing must be
done.

The options that the user may choose for analysis and the error checks
that are performed by the analyzer are described in chapter 55, The SDL

Analyzer.

At some places the Cmicro SDL to C Compiler can be used in exactly
the sameway asthe Cadvanced/Chasic SDL to C Compiler can be used.
At some other places the use of this C Code Generator, or what thisC
Code Generator produce, is different.

The Cmicro SDL to C Compiler generally can process the same input
as the Cadvanced/Chasic SDL to C Compiler can. The differences are
explained within this chapter.

The differences in the output of the both code generators are described
within the subsection “Output of Code Generation” on page 3326.

The overal differences of the both code generators are described in the
section “ Differences between Cmicro and Cadvanced” on page 3364 in
chapter 67, The Cmicro Library.

Thefollowing subsections describe how the Cmicro SDL to C Compiler
might be used.

Telelogic Tau 4.5 User's Manual 3301

Chapter 66 The Cmicro SDL to C Compiler

Generated Files

3302

The Cfiles, which are generated by the Cmicro SDL to C Compiler, can
only beused in connection with the Cmicro Library and the SDL Target
Tester. It isnot possible to validate and simulate the SDL system with
the C code generated by Cmicro as this codeis only suitable for target
applications. To simulate and validate the SDL system within the SDL
suite, the user has to choose the Cbasic SDL to C Compiler. In order to
view the process of generating C applications see the Organizer's Make
dialog in chapter 2, The Organizer.

The SDL Analyzer, which containsthe Cmicro SDL to C Compiler can
also be started as a stand-al one tool. For more information about this
possibility please see chapter 55, The SDL Analyzer.

There are several steps that must be carried out before the generated C
files can be compiled and linked together with the Cmicro Library. The
user should follow the procedures that are documented in the section

“Targeting using the Cmicro Package’ on page 3389 in chapter 67, The

Cmicro Library.

In the following subsections the different files that are generated are ex-
plained.

Generated Configuration File

Thefirst filethat is generated from the Cmicro SDL to C Compiler is
called sd1_cfg.h. It isused to scale the Cmicro Kernel depending on
what characteristicsthe SDL system has. Thisis called automatic scal-
ing and automatic dimensioning facility.

Thefile containsaheader, process|D declarations, and then a #define
ora /*NOT define ... */ foreach of theflagsthat the Cmicro SDL
to C Compiler can generate automatically.

Example 540: The Header of an sdl_cfg.h

/* Program generated by SDL suite.Cmicro <version> <date> */
#ifndef XSCT_ CMICRO

#define XSCT_ CMICRO

#endif

/* "sdl cfg.h" file generated for system <systemname> */

#define XMK_CFG_TIME <GenerationTime>

Telelogic Tau 4.5 User's Manual July 2003

Gener ated Files

July 2003

The xMK_cFe_TIME macroisused internaly when compiling and ex-
ecuting with the SDL Target Tester takes place. With thismacro, a
rough consistency check for the generated filesis done. The
<GenerationTimes> Of thedifferent filesthat are generated iscompared
intheLibrary and by the SDL Target Tester. If thereisaninconsistency,
compilation errors will occur.

Therest of thefilesdl cfg.h isabout the automatic scaling and auto-
matic dimensioning of the SDL system. It may look for example like:

Example 541: The Tail of an sdl_cfg.h

#define MAX SDI, PROCESS TYPES <N>

#define XMK_USED ONLY_ X_ 1

#define MAX_ SDL_TIMER_TYPES <X>

#define MAX SDI,_ TIMER INSTS <Z>

#define XMK HIGHEST SIGNAL_NR 4

/* NOT #define XMK USED TIMER */

/* NOT #define XMK_USED_DYNAMIC CREATE */
/* NOT #define XMK USED DYNAMIC STOP */
/* NOT #define XMK USED SAVE */

#define XMK USED_SIGNAL_WITH_ PARAMS

/* NOT #define XMK USED TIMER WITH PARAMS */
/* NOT #define XMK_USED_SENDER */

/* NOT #define XMK USED OFFSPRING */

/* NOT #define XMK_USED_PARENT */

/* NOT #define XMK_USED_SELF */

/* NOT #define XMK USED PWOS */

/* NOT #define XMK_USED_INITFUNC */

For afirst rough understanding of the meaning of the different flags:
The SDL system from above contains <n> processtypes (using SDL’88
terminology), al the processes are declared in theform (o, 1) or
(1,1). Thereare <x> timersdeclared (in this case, <x> must be 0, be-
cause XMK_USED_TIMER isundefined, and the system uses an amount
of <z> signals. The system does not use any create or stop

(XMK_USED DYNAMIC CREATE and XMK USED DYNAMIC STOP areun-
defined). In thisway all the other flags have special meaning.

For explanations about the different flags the user should refer to* Au-
tomatic Scaling Included in Cmicro” on page 3426 in chapter 67, The

Cmicro Library.

Generated C File

Assumed, that the user selected “ No separation” in the Organizer's
Make Dialog, and no partitioning is used, then the Cmicro SDL to C
Compiler will generate one C file per SDL system. Thisfile containsall
the characteristics of the SDL system including all the declarations that

Telelogic Tau 4.5 User's Manual 3303

Chapter 66 The Cmicro SDL to C Compiler

the SDL system itself needs. For an explanation of thisfile see “ Output
of Code Generation” on page 3326.

Generated Environment Header File

Thereis onefile generated from the Cmicro SDL to C Compiler that
contains all the definitions and declarations that are necessary to imple-
ment the environment functions xInknv and xoutEnv.

Thefileis generated only if the option Environment header filein the
Targeting Experts is switched on.

Thefileiscalled <systemnames . ifc and it contains a header, the type
definitions used on system level (newtypes, syntypes, synonyms), the
signal IDs and the structure type definitions for the parameters of the
signals.

Example 542: The Header of an <systemname>.ifc file

#ifndef X_IFC_z_envO0l
#define X_IFC_z_env0l
#define XMK_IFC_TIME <GenerationTime>

The xvMk_1Fc_TIME macro isused internally when compiling and ex-
ecuting with the SDL Target Tester takes place. With this macro, a
rough consistency check for the generated filesis done. The
<GenerationTime> Of thedifferent filesthat are generated iscompared
intheLibrary and by the SDL Target Tester. If thereisaninconsistency,
compilation errors will occur.

Caution!

Asthere are defines generated that contain no prefixes, there might
be compiler warningslike 11legal redefinition of macro.
Such redefinitions should never be ignored because fatal errors dur-
ing run-time may occur. The user should introduce a prefix for sig-
nals or sorts with different meaning on SDL level, in order to map
these names to unambiguous identifiersin C.

M ore explanation about the environment header file is given in chapter
67, The Cmicro Library.

3304 Teldlogic Tau 4.5 User's Manual July 2003

Gener ated Files

Sorts

Followed by the header the section about sorts follows. The sorts are
generated according to the documentation in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler.

Signal IDs and Parameter Structures
Next, the definitions for signals follows, which consists of:

e A Ccomment with acomment explaining if thesignal is 1xor ouT
as seen from SDL

» Anoptiona declaration of aC structuretype definition (if the signal
carries parameters)

» Thedefinition of the signal 1D

For easy interpretation: For an SDL signal without parameters, going
from the environment to SDL, like:

signal SIn;

thefollowing is generated into the .ifc file
/* SIn IN */
#define SIn <X>

For an SDL signal with parameters, going from SDL to the environ-
ment, like

signal SOut (integer, mystruct, boolean) ;
thefollowing is generated into the .ifc file:

/* Sout OUT */

typedef struct {
SIGNAL_VARS
SDL_Integer Paraml;

mystruct Param2;
/* mystruct declared in the section */
/* declaring sorts */

SDL_Boolean Param3;
} yPDef <UniquePrefix> SOut;

typedef yPDef <UniquePrefix> SOut *yPDP <UniquePrefix> SOut;

#define yPDP_SOut yPDP_<UniquePrefix>_ SOut
#define yPDef SOut yPDef <UniquePrefix> SOut
#define SOut <X>

At least thesignal ID (here: sout) and the name of the structure (here:
yPDef sout) must be used in the xoutEnv C function in this case.

July 2003 Telelogic Tau 4.5 User's Manual 3305

Chapter 66 The Cmicro SDL to C Compiler

3306

The code generation of structure types and signal IDs is (except the C
comment about 1N or ouT) independent from the direction the signal
goes.

Process IDs

At last the process ID declarations are generated as #define valuesin
C, like:

#define XPTID <auto-prefix> MyProcess 0

where the first processin the system is the value of 0 assigned, the sec-
ond process gets the value 1, and so on. Due to the implementation of
SDL'92 object orientation in the Cmicro SDL to C Compiler, thereis
also an automatic prefix generated. Using this prefix in the user’s envi-
ronment functions, it is possible to distinguish between several process-
es with the same name. Please refer to “ Generation of Identifiers’ on
page 3354 for more information.

Generated Make File

The Cmicro SDL to C Compiler generates afile that contains produc-
tion rulesfor the C program. Thisfile can be used together with “make’
facility only. Thefileiscaled <systemnames.m.

Additionally thereisan ASCII filecaled <systemname> gen.m
which givesalist of al the generated files. Thisfilesisused by the Tar-
geting Expert to generate a makefile. Please see “ Generated M akefile”
on page 2922 in chapter 60, The Targeting Expert.

Generated Symbol File

The generated symbol file is used to store symbolic information about
the SDL system. Thefile has meaning for the host part of the SDL Tar-
get Tester only and iscalled <systemnames. sym. It isused for SDL
Target Tester purposes only and is described within “ The Host Symbol
Table” on page 3637 in chapter 68, The SDL Target Tester.

Generated Kernel Group File

The generated kernel group file contains information about process
names. Thisfileisespecially used in integrations, when OO isused and
processes areinstantiated. Using theinformation from thisfile, it is pos-

Telelogic Tau 4.5 User's Manual July 2003

Gener ated Files

sibleto distinguish between several processinstantiationswith the same
name.

July 2003 Telelogic Tau 4.5 User's Manual 3307

Chapter 66 The Cmicro SDL to C Compiler

Implementation

3308

In this section the implementation details are discussed. These details
are meaningful for understanding how a generated Cmicro application
does work.

Time
For host simulation, with the predefined integration settings, atime unit
represents one second. In target applications, timeisto beimplemented

by the user (see subsection “Defining the SDL System Time Functions
in mk_stim.c” on page 3435 in chapter 67, The Cmicro Library).

Real Time

If real timeisused, then there will be aconnection between the clock in
the executing program and the wall clock. For applications the user
must providethe connection with thewall clock, normally the hardware
timer.

Note:

The C standard function t ime used asthereal time clock returnsthe
timein seconds. Theimplementation of the clock can be changed by
re-implementing the function xmk_Now in mk_stim.c.

Scheduling

The Cmicro Kernel does not use a process ready queue. It processesthe
signalsin the order of their appearance. To do this, there is asignal
gueue which stores the signals sent to any process (either internally or
externally). There are different ways to influence the scheduling when
using the Cmicro SDL to C Compiler:

e assigning prioritiesto processes
e assigning prioritiesto signals

» any combination of process and signal priorities

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

Assigning Priorities to Processes — Preemptive Scheduling
It ispossible to assign priorities to process types (using SDL’88 termi-
nology). Theprocesses' priorities are assigned when designing the SDL
system. They are assigned using the #PRIO directive.

There are some things to be kept in mind when using process priorities:
» Priorities have to begin with zero.
» Priorities have to be consecutive.

» All instances of atype have the same priority (SDL’88 terminolo-
ay)-

» Priority decreases with increasing numbers (zero is the highest pri-
ority level).

» Thedefault priority isto bein therange of zero to thelowest priority
number.

The Cmicro Kernel handles process priorities by collecting all signals
sent to processes of the same priority in a separate queue. Thus, thereis
aqueue for each priority level.

Whilethe SDL system isrunning the kernel checks for signalsin the
gueues with decreasing priority. This check takes place whenever an
SDL output appears or a process performs an SDL nextstate operation.
Because of the kernel checking for signals whenever an output takes
place, it is possible to have preemptive scheduling.

Assume, there are two process types lowprio and highprio. Let process
type lowprio have the priority one and process type highprio have the
priority zero.

If an instance of process type lowprio performs an output to process

type highprio, there appearsasignal in aqueue of ahigher priority level
(zeroisthe highest priority level available, processlowprio has priority
one) which leads to the kernel immediately working on the signal sent
to the process highprio. The transition of process lowprio will not end
until process highprio has finished its transition invoked by the signal.

Thisway of scheduling isimplemented using recursion.

Telelogic Tau 4.5 User's Manual 3309

Chapter 66 The Cmicro SDL to C Compiler

3310

Note:

Process priorities are available only when using a compiler which
can handle recursion.

Thereisbasically no restriction on the number of priority levels, but the
target and compiler used will of course limit the depth of recursion.

Asageneral recommendation process priorities should not be assigned
one per processtype, but the processtypes should be grouped according
to their purposes and these groups should then be assigned a priority
level.

Assigning Priorities to Signals

The signalsin the queue(s) are normally ordered according to their ap-
pearance (FIFO-strategy). By assigning priorities to signals this order-
ing isuser definable. The directive #PRIO isused to assign a priority to
signals.

Priority increases with decreasing numbers, but thereisno restriction to
use consecutive numbering.

Whenever asignal is sent, it isinserted into the signal queue(s) accord-
ing to its priority.

Assume, there is a process performing two signal outputs, first_sig and
second_sig. Using the standard FIFO-strategy signal first_sig would be
worked on before signal second_sig. But with signal priorities and sig-
nal first_sig assigned priority fifty and signal second_sig assigned pri-
ority twenty, signal second_sig would be in front of signal first_sigin
the queue and thus would be worked on before signal first_sig.

For more details please refer to “Assigning Priorities — Directive
#PRIQO” on page 3323.

Combinations of Signal/Process Priority

Every combination of signal and process priorities may be used. In this
way it is possible to adapt the scheduling to the users' needs.

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

Note:

Without process priorities a transition once started will have to be
finished before the next transition can be dealt with. Thisisvalid re-
gardless of the time it will need to finish atransition.

Synonyms

External Synonyms

External synonyms can be used to parameterize an SDL system and
thereby also agenerated program. The valuesthat should be used for the
external synonyms must be included as macro definitions into the gen-
erated code, for instance by including another header file.

Using a Macro Definition

To use amacro definition in C to specify the value of an external syn-
onym, the user should perform the following steps:

1. Write the actual macro definitions on afile.

Example 543: Macro Definition

#define synonyml valuel
#define synonym2 value2

The synonym names are the SDL names (without any prefixes).

2. Introduce the following #copk directive at the system level among
the SDL definitions of synonyms, sorts, and signals, for example,
but before any use of the synonyms.

Example 544: #CODE Directive

/ *#CODE
#TYPE
#include “filename”

*/

If this structure is used, the value of an external synonym can be
changed merely by changing the corresponding macro definition and re-
compiling the system.

Telelogic Tau 4.5 User's Manual 3311

Chapter 66 The Cmicro SDL to C Compiler

3312

Procedure Calls and Operator Calls

In SDL-92, value returning procedures and operator calls are intro-
duced. This means, that an SDL procedure can be called within an ex-
pression. Asthe Cmicro SDL to C Compiler cannot handle procedures
with states, it is not necessary to map such calls to a different scheme.

Example 545: Procedure Call

TASK 1 := (call p(1l)) + (call Q(i,k));

istranslated to something like:

i=p(@1) +Q(1,k);

Note:

The value returning procedure calls are transformed to C functions
which return values.

Operatorswhich are defined using operator diagrams, are asin the mod-
elsin the SDL recommendation, treated exactly as value returning pro-
cedures.

Generation of PAD function

The code generation for the PAD function is different compared with
Cadvanced, in the way that code that is common in processtypesis cop-
ied into the PAD function for instantiated processes. Thisisimplement-
ed in contrast to Cadvanced, where for each process type definition
there isa C function generated once, that is called by the instantiated
PAD function, for common code. This makes a difference when system
partitioning and/or file separation is used.

Any

‘Any’ should not be used in applications using the Cmicro SDL to C
Compiler, asit leads to an error message.

Calculation of Receiver in Outputs

The Cmicro SDL to C Compiler isacode generator using the semantics
of SDL-92 with some restrictions. The behavior for output is according
to the rules described in the following:

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

For an output without TO and without VIA in SDL, the Cmicro SDL
to C Compiler calculates the receiver of the signal during code gen-
eration. If there is more than one possible receiving process type,
then an error message will be printed out.

For an output without TO and without VIA in SDL, it isaso possi-
ble to have one process type, but more than one receiving instance
of the signal. The response is that any of the living possible receiv-
ers may be selected during execution time. If no receiver isfound,
the C function ErrorHandler will be called.

For an output with the VIA clause, the behavior of the Cmicro SDL
to C Compiler isin principle the same as for an output without TO
It computes the possible receiversin an output with the VIA clause
and if there are several possible receivers, an error message is pro-
duced. The only difference between output with VIA and output
without TO isthat VIA can restrict the amount of possible process-
€s.

If output with TO is used in the above cases, no ambiguity can oc-
cur. The addressing of the processis then performed by arun-time
variable.

The possibility of specifying the name of a process when using
OUTPUT TO isimplemented. Thisisan SDL-92 feature. The Cmi-
cro SDL to C Compiler behavesin the same way as when using im-
plicit addressing (output without to).

The broadcast feature of SDL-92 (VIA ALL) is not implemented,
becauseitisnot areal broadcast and not very useful for Cmicro Ap-
plications.

Telelogic Tau 4.5 User's Manual 3313

Chapter 66 The Cmicro SDL to C Compiler

Abstract Data Types

3314

In this section the specialities and exceptions about abstract data types
for Cmicro are discussed only. A complete documentation about the ab-
stract data typesis given in chapter 57, The Cadvanced/Cbasic SDL to

C Compiler.

General C Definitions

All themacrosand external definitionsfor functions can befound inthe
file sctpred.h except for the Pld sort which is handled in thefile
ml_typ.h.

The C functions for the handling of predefined sorts are defined in the
file sctpred.c.

On UNIX thesefilescan be found in $sdtdir/cmicro/kernel.

In Windows thesefilescan befound inthe Telelogic Tau installation un-
der $SDTDIR%\cmicro\kernel.

Exceptions for SDL Predefined Types

A general exception existing for al the predefined typesisthat the user
must configure which predefined types are to be compiled into the tar-
get C program. Thisis necessary to hold the target C program as small
as possible. The configuration isto be performed with the help of the
Targeting Expert, pleaseview “ Configureand Scalethe Target Library”
on page 2872 in chapter 60, The Targeting Expert.

Caution!

Problems will occur during compilation when the configuration is
not according to what the SDL system needs. The user should refer
to the explanations about manual scaling in chapter 67, The Cmicro

Library.

External Synonyms
External synonyms are to be defined by the user in the following way.

For asynonym like

synonym xternal integer = EXTERNAL;

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Cmicro expectsto see xternal asa #define valuethat isto be de-
fined by the user. This can be done for example in the following way:

synonym xternal integer = EXTERNAL;

/ *#CODE

#TYPE

#ifdef XSCT_CMICRO

#define xternal 7

#endif

*/
This also means, that if xternal isnot defined from the user, it will
lead to compilation errors.

Charstring

Charstrings can be used either in the usua way asthey are when using
Cadvanced, or they can be used in arestricted way. The decision is up
to the user and is aquestion of configuration. The user should be aware
that some of the predefined sorts from ASN.1 are based on the imple-
mentation of SDL charstrings. Thisis discussed in subsection “ Support
of SDL Constructs’ on page 3417 in chapter 67, The Cmicro Library.

Time/Duration

The predefined data types Time and Duration are implemented in a
more or less restrictive way. It is possible to specify areal value for
Time and Duration on SDL level, like 23.45. The Cmicro Library uses
only theinteger partin front of thedot, 23 in thisexample. The mapping
of SDL time unitsto time unitsin atarget application is—in any case—
up to the user.

UnionC

The #UNIONC directive is not recommended when using the Cmicro
SDL to C Compiler becausethereisno support for checking the validity
of the component selection. Both the #UNION directive and the
CHOICE concept are a better alternative.

Predefined Generators Array, String, Powerset, Bag, Ref

These generators are implemented in Cmicro, but the user should be
aware that the use of any of them requires that dynamic memory alloca-
tionisused in the target system. Generally, Cmicro triesto prevent the
use of dynamic memory allocation whenever possible. The reasons for
this are explained in chapter 67, The Cmicro Library.

Telelogic Tau 4.5 User's Manual 3315

Chapter 66 The Cmicro SDL to C Compiler

3316

ctypes.sdl

This package can be used together with Cmicro with the following re-
striction.

There are two operators that are excluded when Cmicro C code is com-
piled. The operatorsare"cstar2cstring” and "charstar”.

The reason for thisis that with Cmicro it is possible to define an array

of charin C instead of the predefined solution of Cadvanced (to use dy-
namic memory allocation). Thisis discussed in subsection “ Support of

SDL Constructs’ on page 3417 in chapter 67, The Cmicro Library.

byte.pr

ThisADT can be used together with Cmicro in the same way as de-
scribed for Cadvanced.

file.pr

ThisADT is not useful for typical Cmicro applications (embedded sys-
tems usually do not provide ahard disk in Cmicro applications) and for
that reason never has been tested. The ADT may however work with
Cmicro.

idnode.pr

ThisADT cannot be used together with Cmicro because it refersto
Cadvanced code.

listl/list2.pr

ThisADT cannot be used together with Cmicro because it refersto
Cadvanced code.

long_int.pr
ThisADT can be used together with Cmicro.

pidlist.pr
ThisADT cannot be used together with Cmicro, generally.

Instead of pidlist.pr, theuser may includethe cm pidlist.pr
file. The use of this ADT is however restricted, because Cmicro imple-
ments a different scheduling agorithm. This means, that systems that

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

are successfully simulated first, may contain problems when a Cmicro
target application is build and executed.

It istherefore recommended not to use neither pidlist.pr nor
cm pidlist.pr, inorder to achieve the best possible SDL conformity.

random.pr

This ADT cannot be used together with Cmicro because it refersto
Cadvanced code.

unsigned.pr
This ADT can be used together with Cmicro.

unsigned_long.pr
ThisADT can be used together with Cmicro.

Default Values

Default values are in principle generated in the same way as with the
Cadvanced SDL to C Compiler. It is however possible to configure the
default value setting, which is explained in chapter 67, The Cmicro Li-
brary. Theright configuration is essential to prevent illegal behavior.

Exceptions for Implementations of Operators

Read and Write Functions

The Cmicro SDL to C Compiler does not provide read and write func-
tions. Thereason s, that the Cmicro SDL to C Compiler mainly is used
to build target applications, and not simulations. Thisis also a conse-
guence of optimizing the target program. If the user uses the Q (ques-
tion) operator, the Cmicro SDL to C Compiler ignores this.

Error Situations in Operators

In the C function used to implement operators (and literals), it is possi-
bleto define error situations and handlethem as ordinary SDL run-time
errors. The C library function ExrrorHandler, with the following pro-
totype

extern void ErrorHandler (xmk OPT INT errnum)

Telelogic Tau 4.5 User's Manual 3317

Chapter 66 The Cmicro SDL to C Compiler

3318

can be used for this purpose. xmk_opT 1INT isdefinedin m1_typ.h,
normally asan ordinary C int. errnum may be one of the free values
of error numbers. Please inspect m1_err.h inorder to get alist of re-
served values.

Example 546: Error Handler in Operator

if (strlen(C) <= 1) {
#ifdef XMK USE ERR_CHECK
ErrorHandler (ERR_N_InvalidStringLength) ;
#endif
return SDL NUL;
} else
return C[1];

Thisisasimplified version of the test in the function for the operator
First in the sort Charstring. Here the error situation iswhen wetry to ac-
cessthefirst character in acharstring of length O. In this case the C func-
tion ErrorHandler iscaled and adefault valueis returned (NULL).
By including the call to Errortandler between #ifdef
XMK_USE_ERR CHECK - #endif thefunctionisonly called to report
the error, if error checks are turned on. The one parameter to the C func-
tion ErrorHandler shouldidentify the error. The number must be giv-
en by the user.

Another possibility to route error messages to the host system isto use
the C function xmk_pPrintsString of the SDL Target Tester, defined as:

extern void xmk PrintString(char *)

Example 547: Error Handler in Operator

if (strlen(C) <= 1) {
#ifdef XMK ADD MICRO TESTER
xmk_PrintString (“ERR:Invalid Stringlength”);
#endif
return SDL NUL;
} else
return C[1];

Access to Predefined Sorts based on Charstring

As already mentioned in earlier subsections, the user should be aware
that some of the ASN.1 predefined sorts are based on the implementa-
tion of SDL charstrings. The user should also refer to subsection “ Sup-

Telelogic Tau 4.5 User's Manual July 2003

Exceptionsfor Directives

port of SDL Constructs’ on page 3417 in chapter 67, The Cmicro Li-
brary.

To avoid problems one should be aware that Charstring isimplemented
aschar * in C and take the consequences thereof. There are anumber of
help functions (that implement the operators for the Charstring sort)
supplied in the run-time library that might be helpful when handling
Charstrings.

It isusually necessary to allocate dynamic memory when an operator re-
turning acharstring value isimplemented. There aretwo help functions
that should be used in connection with allocation and de-allocation of
dynamic memory. These are documented in “Dynamic Memory Allo-
cation” on page 3450 in chapter 67, The Cmicro Library.

Caution!

Do not use Charstring in SDL if you want to get a correct trace out-
put with the SDL Target Tester, or if you want to usethe Cmicro Re-
corder. Inthelast case, the use of charstring may lead to afatal error
when an SDL session is replayed.

Exceptions for Directives

July 2003

Selecting File Structure for Generated Code —
Directive #SEPARATE

The purpose of the separate generation feature isto specify thefile
structure of the generated program. Both the division of the systeminto
anumber of files and the actual file names can be specified. There are
two ways this information can be given.

* Normally thisinformation is set up in the Organizer, using the com-
mand in chapter 2, The Organizer. Herefile namesfor the generated
files can also be specified. In the Make diaog in the Organizer (see
“Generated Files” on page 3302) it ispossibleto select full separate
generation, user-defined separate generation, or no separate gener-
ation.

* For an SDL/PR file that is generated by running the SDL Anayzer
as a stand-alone tool, the same information can be entered by

Telelogic Tau 4.5 User's Manual 3319

Chapter 66 The Cmicro SDL to C Compiler

3320

#SEPARATE directives directly introduced in the SDL program.
Full separate file generation, user-defined separate file generation,
or no separatefilegeneration can be set up inthe command interface
of astand-alone Analyzer, see " Set-Modularity” on page 2421 in
chapter 55, The SDL Analyzer.

The Cmicro SDL to C Compiler can generate a separate file for:
» System (always separate)

* Block

e Process

e Procedure
Note:

Instantiations cannot be separated. If #SEPARATE directives are
used, they should be placed directly after the first semicolon in the
system, block, process, or procedure heading; see the following ex-
ample.

Example 548: #SEPARATE Directive

system S; /*#SEPARATE 'filename’ */

block B; /*#SEPARATE */

process type Pl inherits PType; /*#SEPARATE */
process P2 (1,); /*#SEPARATE */

procedure Q; /*#SEPARATE */

In the example above the two versions of separate directive, with or
without file name, are shown. As can be seen afile name should be en-
closed between quotes. The Cmicro SDL to C Compiler will append ap-
propriate extensions to this name when it generates code.

If nofile nameis given in the directive, the name of the system, block,
process, or procedure will be used to obtain afile name. In such a case
the file name becomes the name of the unit with the appropriate exten-
sion (.c .h) depending on contents. The file name is stripped of char-

actersthat are not letters, digits or underscores.

The possibility to set up full, user-defined, or no separation in the Orga-
nizer's Make dialog and in the user-interface of a stand-alone Analyzer
(see “Generated Files” on page 3302), can be used in a simple manner

Telelogic Tau 4.5 User's Manual July 2003

Exceptionsfor Directives

July 2003

to select certain default separation schemes. This setting will be inter-
preted in the following way:

* No separation.
The whole system will be generated into onefile.

» User defined separation.
The system, each package, and each unit that the user has specified
as separate will become a separate file.

* Full separation.
The system, each package, each block, block type, and process, and
process type will become a separate file. Note that even in this case
aprocedure is separate only if the user has specified it as separate.

Independently if No, User defined, or Full separation has been selected,
the Cmicro SDL to C Compiler will use the file name specified in the

Edit Separation dialog or the#SEPARATE directive, for afilethat isto
be generated.

An Example of the Usage of the Separate Feature

In the following example a system structure and the #SEPARATE di-
rectives are given. The same information can easily be set up in the Or-
ganizer aswell. This exampleisthen used to show the generated file
structure depending on selected generation options.

Example 549: #SEPARATE Directive

system S; /*#SEPARATE ’'Sfile’ */
block Bl; /*#SEPARATE */
process P11; /*#SEPARATE 'Pllfile’ */
process P12;
block B2;
process P21;
process P22; /*#SEPARATE */

Applying Full Separate Generation

If Full separate generation is selected then the following files will be
generated:

Sfile.c Sfile.h
Bl.c Bl.h
Telelogic Tau 4.5 User's Manual 3321

Chapter 66 The Cmicro SDL to C Compiler

Plifile.c

Pl2.c

B2.c B2.h

P21.c

P22.c

The . cfilescontain the C codefor the corresponding SDL unit and the
.h files contain the module interfaces.

Applying Separate Generation

If User defined separate generation is selected then the following files
will be generated:

sfile.c Sfile.h Contains code for units S, B2, P21
Bl.c Bl.h Contains code for units B1, P12
plifile.c Contains code for unit P11

pP22.c Contains code for unit P22

The user defined separate generation option thus makesit possible for a
user to completely decide the file structure for the generated code. The
commentson files and extensions given above are, of course, also valid
in this case.

Applying No Separate Generation

If the separation option No is selected, only the following file will be
generated:

Sfile.c Contains code for all units

The comments on files and extensions earlier are valid even here.

Guidelines

Generally a system should be divided into manageabl e pieces of code
That is, for alarge system, full separate generation should be used,
whilefor asmall system, no separate generation ought to be used. The
possibility to regenerate and re-compile only parts of a system usually

3322 Teldlogic Tau 4.5 User's Manual July 2003

Exceptionsfor Directives

July 2003

compensate for the overhead in generating and compiling severd files
for alarge system.

Note:

A filename hasto be specified, using the Organizer Edit Separation
command or the #SEPARATE directive, if two unitsin the system
have the same name in SDL and should both be generated on sepa-
rate files. Otherwise the same file name will be used for both units.

Assigning Priorities — Directive #PRIO

#PRIO for Processes

Priorities can be assigned to processes using the directive #PRIO. The
process priorities will affect the scheduling of processes, see “ Schedul -
ing” on page 3377. A priority is a positive integer, where low value
means high priority. #PRIO directives should be placed directly after
the process heading in the definition of the current process.

Example 550: #PRIO Directive

Process Pl; /*#PRIO 0 */
Process P2(1,1); /*#PRIO 1 */

Process P3 : P3Type; /*#PRIO 0 */
Process P4(1,1) : P4Type; /*#PRIO 1 */

Processes that do not contain any priority directive will have auser de-
fined default priority with the name xbefaultPrioProcess.

There are some things to be kept in mind when using process priorities:
» Priorities have to begin with zero.

» Priorities have to be consecutive (0,1,2,3,4,5).

» All instances of atype have the same priority.

» Priority decreases with increasing numbers (zero is the highest pri-
ority level).

» Thedefault priority isto bein the range of zero to the highest prior-
ity number, that is 0 or 1 in the example above.

Telelogic Tau 4.5 User's Manual 3323

Chapter 66 The Cmicro SDL to C Compiler

3324

#PRIO for Signals

Priorities can be assigned to signals using the directive #PR10. The sig-
nal prioritieswill aso effect the scheduling of processes, see “ Schedul -
ing”_on page 3377.

Signal priorities can be specified, either:
» inthe declaration of the signal
e in SDL output

It isimpossible to specify #PRIO in a SDL input. Cmicro will ignore
any occurrence of #PRIO in SDL input.

Signal priorities do affect the SDL output and the SDL create actions
only.

The following rules are to be considered here;
» Signal priorities have to be in the range from 0 to 255.

» Signal prioritiesdo not have to be consecutive, as process priorities
have to be.

« If not specified otherwise (in SDL output) all instances of asignal
have the same priority.

« Signal priority decreases with increasing numbers (zero is the high-
est priority level).

» Thesignal default priority isto be specified by the user
(xDefaultpPrioSignal), and must in the range of 0 to 255. Asa
recommendation, this value should be set to 100, so that both high-
er, aswell aslower priorities can be declared with #PRIO.

» Signal priorities come after process priorities.

* If no#PRIO is specified for asignal, neither in its declaration, nor
in any output, Cmicro uses xbefaultPrioSignal for each occur-
rence of that signal in an output.

* If#PRIOisspecified only inthedeclaration of asignal, Cmicro uses
this specified priority in each occurrence of that signal in an output.

« If #PRIO is specified in a specific output of asignal, but not in its
declaration, then the specified #PRIO value is taken from the out-

Telelogic Tau 4.5 User's Manual July 2003

Exceptionsfor Directives

July 2003

put. If the signal is output without #PRIO, in that case
xDefaultPrioSignal Will be used

» For dynamic processcreation, an internal createsignal isused. This
signal carriesthe priority defined by xvk CREATE PRIO. ASagen-
eral recommendation, this priority should be higher than any other
signal priority.

The following example will give more explanations (note, that the val-
ues PA, PB are of sort pid):

Example 551: #PRIO Directive

Signal

S1, /*#PRIO 11 */
S2, /*#PRIO 22 */
s3,

S4; /*#PRIO 44 */

output S1 to PA
output S1 to PB; /*#PRIO 55%*/

output S3 to PC;
output S3 to PD; /*#PRIO 66%*/

Assuming the following C definition:

#define xDefaultPrioSignal 100
the following prioritieswill then be generated:

output S1 to PA--->use of prio 11
output S1 to PB--->use of prio 55

output S3 to PC--->use of prio 100
output S3 to PD--->use of prio 66

Modifying Outputs — Directive #EXTSIG, #ALT,
#TRANSFER

Thereisno difference for the #EXTSIG, #ALT and #TRANSFER di-
rectivesfor Cmicro compared with Cadvanced, except that the use of it
will sometimelead to abetter performance. Thisisbecauseif #EXTSIG
for exampleisused in the case of an output to the environment, the user
can prevent the Cmicro Kernel to be called (and the xoutEnv function
to be executed).

Telelogic Tau 4.5 User's Manual 3325

Chapter 66 The Cmicro SDL to C Compiler

Output of Code Generation

3326

This section gives an overview of the code generated by the Cmicro
SDL to C Compiler. Thisis useful, to make it possible to interpret the
generated code. To know how the code is generated makesit quite easy
to understand the program which is necessary and useful when testing
and debugging erroneous executable programs.

system example 1
block 0
block 1

block 2 process 01

¥ v ‘ v . ¥

sdl_cfg.h < T ifc

cont.ai ns defines one or more one or more icfo\r,wvtgunrgiegga}sifgr? -
scaling units are generated | | |units are generated | S2a@MNd ANAY
for automatic

environment is
generated

Figure 577: Sructure of the generated C code

Not all theintricate detail s of the generated code are described here. The
depth of description is sufficient to give the reader a reasonable under-
standing of the code generation algorithms. Explanationswill illustrate
what the code looks like, but not why.

The generated code contains several places where prefixes are generat-
ed, which consists of aprefix and unique numbering. The following pre-
fix isgenerated for all objects: “ z<nnn>_", wherennnisanincremental
number.

Allowance for conditional compilation occursin severa places
throughout the generated code. The generated C code is conditionally
compiled, for example, for dynamic process creation (create symbol). A
differentiation is made between conditional compilations generated by

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

the Cmicro SDL to C Compiler (called automatic scaling, prefix
xMK_USED) and conditional compilations which are dependent on
header files, which are to be modified by the user (called manual scal-
ing, prefix xMk_USE).

Note:

Generally speaking, the ordering of the following subsections corre-
sponds to the ordering in which the code is generated.

Each compilation unit is compiled either in one a.. ¢ file or into two
files,a.c and a.h.

Only the differences are shown, when comparing the output of SDL to
C Compiler with the Cmicro SDL to C Compiler. The overall differenc-
es of the both code generators are described in the section “ Differences
between Cmicro and Cadvanced” on page 3364 in chapter 67, The Cmi-

cro Library.

Header of Generated C File

Code generation on the . ¢ file for the current unit is started by generat-
ing the following header:

Example 552: The Head of a Generated C File

/* Program generated by the SDL suite.Cmicro,
version x.y */
#define XSCT_CMICRO

#define C MICRO_x y
#define XMK C TIME <GenerationTime>
#include "ml typ.h"

The xscT cmIcro macro can be used by the user to distinguish be-
tween the different Code generators, for example within ADT bodies.

The ¢ MICcrRO x y macro can be used by the user to distinguish be-
tween different versions of the Cmicro SDL to C Compiler. Thisisusu-
ally not but might become necessary if the output of the Cmicro SDL to
C Compiler is different.

The xMx_c_TiME macroisusedinternally when compiling and linking
and executing with the SDL Target Tester takes place. With thismacro,
arough consistency check for the generated filesis done. The

Telelogic Tau 4.5 User's Manual 3327

Chapter 66 The Cmicro SDL to C Compiler

3328

<GenerationTimes> Of thedifferent filesthat are generated iscompared
intheLibrary and by the SDL Target Tester. If thereisaninconsistency,
compilation errors will occur.

The #include "ml typ.h" isused toinclude all necessary declara-
tions that the generated C code may use, including automatic scaling
from sdl_cfg.h and predefined sorts.

SECTION Types and Forward References

Asadifferenceto SDL to C compiler, this section contains the defini-
tions for the process | Ds and the forward declarations used in the gen-
erated C code.

Process IDs are generated as #define valuesin C, like:

#define XPTID <UniquePrefix> MyProcess 0
where the first processin the system is the value of 0 assigned, the sec-
ond process gets the value 1, and so on. Please refer to “ Generation of
Identifiers” on page 3354 for more information.

The following forward references are generated:

extern XCONST XPDTBL yPDTBL_<UniquePrefix> MyProcess;
Following this, the usua declarations are generated as described in
chapter 57, The Cadvanced/Cbasic SDL to C Compiler.

No synonym variables are generated when using Cmicro.

Symbol Tables

Symbol tables are only generated for the SDL Target Tester, and not
into the generated C code. The symbol tables generated for the SDL
Target Tester are described within chapter 68, The SDL Target Tester.

Tables for Processes

Tablesare used to represent the behavior of SDL objects, like processes
and timers. It isnot absolutely necessary to understand how thesetables
are generated and how the Cmicro Kernel works with them. Thefollow-
ing subsections are only for those readers interested in the nature of the
table structure.

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

Root Process Table

The root process table contains, for each of the defined SDL process
types, areference (i.e. apointer) to the Process Description Table. The
Cmicro Kernel isthe main user of the root processtable. Viathistable,
it can access al SDL process types and all SDL process instance data.
The location of the generated root process table is directly before the
yPAD-functions in the generated C file. The type definitions used in
thistable arelocated intheml _typ.h module.

yPDTBL [MAX_SDL_PROCESS_TYPES+1]

yPDTBL_ProcessNamel 1 generated C unit:
. (yPDTBL_ProcessNamel) :

yPDTBL_ProcessName2

yPDTBL_ProcessNameN A

generated C unit :
yPDTBL_ProcessName2 ‘

X_END_ROOT_TABLE

generated C unit:
. (yPDTBL_ProcessNameN) ‘

Figure 578: Root processtable

Example 553: Code of Root Process Table
C-Type definition (m1_typ.h):

extern xPDTBL yPDTBL [];/* for the Cmicro Kernel */
#define X_END ROOT_TABLE/* Table-End Marker of yPDTBL*/

C constants (sdl_cfg.h):
#define MAX_ SDL_PROCESS_TYPES <N>

/* <Process-type-id“s> Process Types are numbered */
/* from 0 to N-1(see chapter “Generating PID”) */
#define XPTID_ ProcesslName 0

#define XPTID_ Process2Name 1

#define XPTID_ ProcessnName N-1

July 2003 Telelogic Tau 4.5 User's Manual 3329

Chapter 66 The Cmicro SDL to C Compiler

3330

C code generation for the whole system:

XPDTBL yPDTBL [MAX_SDL_PROCESS_TYPES+1] =

yPDTBL_ ProcesslName,
yPDTBL_ Process2Name,
yPDTBL_ ProcessnName,
X_END ROOT TABLE

Symbol Trace Table

In order to reduce the use of dynamic memory allocation, thereisatable
generated in the code which is used by the SDL Target Tester to store
and retrieve test options, like switches, which define the trace.

Thetableisconditionally compiled and only included if the SDL Target
Tester is contained in the target- executable.

The symbol trace table looks like:

Example 554: Code for Symbol Trace Table

JREKK KKKk Kk ok k ok k kR ok kkkk ok khkh ok kh Kk kkhkhkhkkhhhhhkhkkhkkhkhkkhkkk**

** Symbol trace table
***/
#ifdef XMK ADD TEST OPTIONS

XSYMTRACETBL *xSYMTRACETBL [MAX_SDL_PROCESS_TYPES+1] =

(XSYMTRACETBL_ENTRY *) NULL, /* for first Processtype */
(XSYMTRACETBL_ENTRY *) NULL, /* for second Processtype */

(XSYMTRACETBL_ENTRY *) NULL, /* for last Processtype */
X_END_SYMTRACE_TABLE /* table end marker */

Bendif

More information can be obtained by reading chapter 68, The SDL Tar-
get Tester.

Optimized Decision Trace information

An optionto reducethetraceinformation for SDL decisionsby showing
only thefirst ten characters of the decision expression during trace. Set-
ting the environment variable CMICRO_SHORT_DECISION_TRACE to
any value prior to the Cmicro code generation is started, will have the
effect on the generated C code that all xTraceDecision<parameter>
statements will contain a parameter that isthe first ten characters of the

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

decision expression instead of the complete expression. Thiswill re-
duce the trace information for systemsthat contain alot of decisions.

Instance-Data-Struct
The struct is generated in the header-section of the generated C file.

Example 555: Code Generation of type definition for each SDL process

typedef struct {
PROCESS_VARS
TypeNamel FPAR varl;
TypeName2 FPAR varl;
TypeName3 DCL_varl;
TypeName4 DCL var2;
TypeName4 yExp DCL var2;
TypeName5 FPAR varl;

} yVDef_ ProcessName;

Instances of a given type are represented as a C array. The code gener-
ation of variables for each SDL process|ooks like:

Example 556
#define X_MAX INST_ProcessName upperlimitofprocessinstancesl
static yVDef ProcessName

yYINSTD ProcessName [X MAX INST ProcessName];

A referenceto thisarray is generated in the Process Description Table
which is discussed in the subsection “ Process Description Table” on

page 3335.

Process State Table

Thistableis generated for each processin the header-section of the gen-
erated C file. It contains information about the state of each processin-
stance. Thetable contains ordinary SDL state values as well asthe val-
UESXSTARTUP and XDORMANT . XSTARTUP isgenerated for eachinstance
whichisto be statically created (in (X, N) declarations, where x is> 0),
XDORMANT iS the value which is used to tag a process instance as sleep-
ing. In the case of creation thisinstance can be reused.

Telelogic Tau 4.5 User's Manual 3331

Chapter 66 The Cmicro SDL to C Compiler

3332

Example 557: Code for Process State Table
C typedef for the process state table (located in m1_typ.h):

typedef u_char xSTATE; /* see defines below */

#define XSTARTUP Oxff /* valid only if xSTATE is */
/* u_char else Oxffff */

#define XDORMANT Oxfe /* valid only if xSTATE is */
/* u_char, else Oxfffe */

C code generation for each process:

static xXSTATE yPSTATETBL_znn ProcessName
[X_MAX INST znn ProcessName] =

<creation-tag> /* Instance 0 */
<creation-tag> /* Instance 1 */

<creation-tag> /* Instance M-1 */

i

where <creation-tags IS €ither XSTARTUP Or XDORMANT.

Example 558:

Codefor aprocesstypewith 4 instances, 2 of which areto be created at
SDL system start:

static xXSTATE yPSTATETBL_znn ProcessName [4] =

XSTARTUP, /* Create at SDL-system-start */
XSTARTUP, /* Create at SDL-system-start */
XDORMANT, /* Create later */
XDORMANT /* Create later */

}i

A referenceto thistable is created in the Process Description Table,
which is discussed in the subsection “Process Description Table” on

page 3335.

Transition Table

Thisis generated in the header-section of the generated C file. It con-
tainsall transitions of aprocess, including asterisk states, asterisk inputs
and asterisk save.

The C typedef for thetransition table (located inm1_typ.h) isasfol-
lows:

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

Exam

ple 559: Code for Transition Table

typedef struct {

}

xINPUT SignalID; /* Input, Asterisk-Input. */
/* Input is Timer */

/* and/or ordinary Signal */
XSYMBOLNR SymbolNr; /* Symbolnumber to be used */

/* in yPAD-function */
XTR_TABLE_ENTRY;

C code generation:

static XCONST xTR_TABLE_ENTRY YTRTBL_znn_ProcessName

{

i

[XMAX TRANS znn ProcessName] =

/* state 0-table */

input 1, SymbolNr,

input_2, SymbolNr,

XASTERISK,XSAVEID /* asterisk save */

input N, SymbolNr,

/* state_l-table */

/* state j-table */
input_1, SymbolNr,
input_2, SymbolNr,

input_N, trans_jN,
XASTERISK,XSAVEID /* asterisk save */

The symbo1Nr shown aboveis used to select the right transition in the
switch generated in the yPAD function.

Where the C define

xASTERISK isan ID defining all possible SDL Inputs (asterisk Inputs),

xsaveID isasimple ID defined inm1_typ.h which can be compared
by the SDL Kernel to detect signal-save.

And where:
#define XASTERISK -1
#define XSAVEID xSave

A referenceto thistableis created in the Process Description Table.

Telelogic Tau 4.5 User's Manual 3333

Chapter 66 The Cmicro SDL to C Compiler

3334

State Index Table
Thisis generated in the header section of the generated C file.

Example 560: Code for State Index Table
C typedef (m1_typ.h):

typedef u_char xSTATE_ INDEX;

C code generation (header of generated C file):

static xCONST xSITBL xXxSTATE_INDEX znn ProcessName
[<count_transitions_of_ ProcessName] =

0, /* i.e.a process with 3 states, but no asterisk states */
/* state_0 has 2 transitions */

2, /* state 1 has 5 transitions */

7, /* state_2 has 3 transitions */

10 /* table-end-index XI TABLE END */

Thefirst value in the above table indicates the beginning of the first
state in the Transition Table. If asterisk state definitions are not found
in the process, thisvalueisO.

A reference to thistable is created in the Process Description Table.

PID Table

These tables are used to store the values parent and offspring for each
process. Thereason an extratableis used to store thisinformation isto
simplify initialization. The Cmicro Kernel updates the valuesin the ta-
ble according to the SDL rules.

Example 561: Code for PID Table

C-type definition (m1_typ.h):

#ifdef XMK USE_PID_ADDRESSING
typedef struct

#ifdef XMK USE SDL_PARENT

xPID Parent;
#endif
#ifdef XMK USE_SDL_OFFSPRING
xPID Offspring;
#endif

} xPIDTable;
#endif

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

C code generation for each process.

[Eom e Process-PID-Values------------- */
#ifdef XMK USE_PID ADDRESSING

static xPIDTable yPID TBL_z00 P1[X MAX INST z00 P1];
#endif

A referenceto thistableis created in the Process Description Table,
which is discussed in the subsection " Process Description Table” on

page 3335.

Process Description Table

For each SDL process, an automatically initialized C structureis gener-
ated called process description table. Thistableis used in the Root Pro-
cess Table to enable the Cmicro Kernel to access process type informa-
tion aswell as process instance data.

Inspect the following diagram to see which information is contained in
the process description table:

July 2003 Telelogic Tau 4.5 User's Manual 3335

Chapter 66 The Cmicro SDL to C Compiler

<Process Description Table>

xPIDTable]

XINSTD

XINSTDLEN

MaxInstances

[xmk_T_TIMESLICE]

[xmk_T_PRIOLEVEL]

xmk_T_TRANS_ADDRESS

XTRTBL

xSITBL

| XSTATE

<Process State Table>

u_char (XSTARTUP)
u_char (XDORMANT)

! <Transition Table>

<State Index Table>

u_char -

u_char

XI_TABLE_END

<input_*>

<SAV/|symbol>

! | <input_1>

<symbol_1>

 [<input_2>

<symbol_2>

| | <input_3>

<symbol_3>

\ | <input_x>

<symbol_x>

> | <input_*>

<SAV|symbol>

<input_1>

<symbol_1>

| | <input_2>

<symbol_2>

<input_3>

<symbol_3>

<input_x>

<symbol_x>

;><PID Table>

[xPId] (offspring)
[xPId] (parent)

———® <Instance-Data-

" Struct>

TypeNamel

TypeName2

TypeName3

.| TypeName4

TypeName5

TypeName6

TypeNamel

TypeName2

' | TypeName3

TypeName4

.| TypeName5

' | TypeName6

+ [TypeNamel

i+ | TypeName2

TypeName3

+ [TypeNames

.+ | TypeName5

. | TypeName6

Figure 579: Process description table

Allocated to each SDL processtypeisone table
yPDTBL_ProcessName.

The type definitions of thistable are located inthem1 _typ.h module.

Telelogic Tau 4.5 User's Manual

July 2003

Output of Code Gener ation

July 2003

Example 562: Code for Process Description Table
C typedef for the process description table (m1_typ.h):

typedef struct {
#ifdef XMK USE PID ADDRESSING
xPIDTable *pPIDTable; /* Table with */
/* Parent/OffspringValues */

#endif
xINSTD *pInstanceData ; /* Pointer to Instancedata*/
/* Vector */
xINSTDLEN DataLength ; /* Length of Instancedata */
/* for 1 Instance */
/* (used by SDL-BS) */
unsigned char MaxInstances ; /* Max.Number of Instances*/

#ifdef XMK USE_TIMESLICE
/* Time-Slices can be individually specified by the user*/
/* The value stored in TimeSlice is measured in ticks */
/* The Cmicro Kernel has to be scaled to handle */
/* timeslicing */
xmk T TIMESLICE TimeSlice;

#endif

#ifdef XMK_USE_PREEMPTIVE
/* Process-Priority can be specified with #PRIO on the */
/* SDL-Level. It is available only, if the Cmicro */
/* Kernel is scaled to handle preemption. */
xmk T PRIOLEVEL PrioLevel;/*Priority of this processtype*/
#endif

xmk T TRANS ADDRESS yPAD Function ; /* Address of the */

/* yPADFunction */
xXTRTBL TransitionTable ; /* Pointer to transition table */
xSITBL *StateIndexTable ; /* Pointer to state index table */
xSTATE *ProcessStateTable;/* Pointer to process state table

*

} XPDTBL;

C code generation for each process:

#define X_MAX INST ProcessName 1
xPDTBL yPDTBL_ ProcessName =

yPID_TBL_znn_<process:N>,

(xINSTD*) yINSTD znn ProcessName,

X _MAX INST_znn_ ProcessName,
(xmk_T_TRANS_ADDRESS) yPAD_znn_ProcessName,
YTRTBL_znn_ ProcessName;
xSTATE_INDEX_ znn ProcessName,
yPSTATETBL_znn ProcessName;

For each generated process description table, anew entry in the Root
Process Table is generated.

Telelogic Tau 4.5 User's Manual 3337

Chapter 66 The Cmicro SDL to C Compiler

3338

Actions by Processes and Procedures

GR References

No code is generated to eval uate the graphical references during run-
time of the SDL system. A large amount of memory isrequired to store
and handle such information which normally provestoo large for any
real target system.

Alternatively, C comments are generated which make it possibleto ver-
ify and debug the generated code as illustrated in the following exam-
ple. The PR <position> indicates in which line number of the SDL/PR
file the symbol can be found.

For processes :
/***

** PROCESS <process-name>
*% <<SYSTEM <system-name>/BLOCK <block-names>>
% #SDTREF (<references>)

Fohkkkkkkk ok kkkkkkkkkkkkkhkkkhkkkhkkkhkkkkkkhkkkhkkkhkkkkkkkkx /

For signals :
/***

** SIGNAL S1
*% <<SYSTEM <system-name>/BLOCK <block-names>>

% #SDTREF (<references>)
***/

For yPAD-function
e
** Function for process <process-name>

** #SDTREF (<reference>)

B e e e i e e o o e o o o V4

For output :

** QUTPUT <signal-name>
** #SDTREF (<reference>)
______ */

For nextstate :

** NEXTSTATE <state-name>
** #SDTREF (<references)

Structure of Process and Procedure Functions

The basic structure of the generated C code for process and procedure
definitions remains the same as for the SDL to C compiler although
some modifications are evident.

The code generation for the PAD function is different compared with
Cadvanced, inthe way that code that is common in processtypesis cop-
ied into the PAD function for instantiated processes.

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

Procedures follow the same code generation as processes, with some
small exceptions in macro naming conventions for variable declara-

tions.

Each SDL processis represented in C by a C function called

yPAD ProcessName.

Example 563: yPAD ProcessName

/* Function for process ProcessName */

#ifndef XNOPROTO

extern YPAD RESULT TYPE yPAD ProcessName (YPAD ANSI PARAM)

#else

extern YPAD RESULT_TYPE yPAD ProcessName (YPAD_KR_PARAM)

YPAD KR DEF
#endif

local variable section
State-input-selection

start-transition including nextstate
transition-1 including nextstate
transition-2 including nextstate

transition-n including nextstate

pad-end-section

}

/* Function for procedure ProcedureName */

#ifndef XNOPROTO

extern YPRD RESULT TYPE yPAD ProcedureName (YPRD ANSI PARAM)

#else

extern YPRD RESULT TYPE yPAD ProcedureName (YPRD KR PARAM)

YPRD_KR_DEF
#endif

local variable section

section representing procedure body

Local Variables Section

The following defines are generated in the loca variables section for

processes.
Example 564
YPAD_YSVARP /*
*/
YPAD YVARP (yVDef z00 P1)/*
YPAD_TEMP_VARS /*
YPRSNAME VAR ("P1") /*
BEGIN PAD /*
_ he
/*

used for signal variable pointers

used for process variables */

used for temporary variables */

can be used for printf */

used for some preparations */

to handle signals, or Integration¥*/
of any Realtime operating system */

July 2003 Telelogic Tau 4.5 User's Manual 3339

Chapter 66 The Cmicro SDL to C Compiler

After expansion by the C preprocessor:

yVDef_ z00_ProcessName *yVarP
=(yVDef z00_ ProcessName *)pRunData;
unsigned char *yOutputSignal;
unsigned char *ySVarp;
(void) printf (("PROCESS:%s\n", "ProcessName")) ;

if ((P_MESSAGE != ((void *) 0))
&& (P_MESSAGE->mess_length > 4))

ySVarP = (unsigned char *) P _MESSAGE->mess_ud.pt ud;
else

ySVarP = (unsigned char *) P_MESSAGE->mess_ud.ud;

The following defines are generated in the local variables section for
procedures:

YPRD YVARP (yVDef znnn ProcedureName)
/* used for procedure variables */

YPRD TEMP_VARS
/* used for temporary variables */

YPRDNAME_VAR ("ProcedureName")
/* can be used for printf */

State — Input Selection

The selection of the appropriate SDL transition which isto be executed
in the current state with the current signal in the input port goesin prin-
ciple over thetransition table, described in previous chapters. With this
table, the Cmicro Kernel can evaluate a symbol number, whichislocal
to a process, a unique numbering of the different possible transitions.
This numbering algorithm begins at O (which corresponds to the start
symbol) and continues until all symbols for this particular processtype
have been numbered.

The appropriate transition is selected by the following switch:

switch (XSYMBOLNUMBER) {

case 0:. start-transition
nextstate;

case 1l: transition-1
nextstate;

}

After pre-compiling it:

3340 Teldlogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

switch (_xSymbolNumber_)

Start Transition

The start transition isincluded into the body of the generated yPAD
function and has the same layout as transitions, with the following ex-
ceptions:

Assignment of initialization valuesto all local variablesin the processes
and procedures (if any) is executed. All DCL variables are filled with
their default-values.

The start transition is selected by the special case-value zero in the
switch-statement of the yPAD function.

Note:

FPARSindynamic process creation are not contained in thisversion
of the Cmicro Package.

Transitions

The transitions are translated in the order they are found and are only
translated to the sequence of actions they consist of. The trandation of
actionsarediscussed in the subsection “ Tranglation of Actions’ on page
3342 following afew lines below.

PAD-End-Section
Each yPAD function is finished with:

END_ PAD (yPAD ProcessName) ;

The main reason for thisis to make it possible to integrate other real-
time operating systems.

Note:

Some compilers produce awarning if thereis no return at the end of
the yPAD function. Other compilers produce a warning “unreach-
able code’, if thereisareturn at the end of the yPAD function. For
thisreason, afunction returning macro ENp_ paD existswhich can be
expanded in accordance with the particular compiler used.

Telelogic Tau 4.5 User's Manual 3341

Chapter 66 The Cmicro SDL to C Compiler

3342

Translation of Actions

Translation of Output
SDL output statements are translated to the following basic structure:

allocate the data area for the parameters of the signal to be output
assign signal parameters

send the signal, parameters will be copied

release the data area for the parameters of the signal.

There are alot of different output macros generated. The main reason
for thisisthat for each output situation an optimized codeisto be gen-
erated.

One differentiation is made for signals without parameters and signals
with parameters. For asignal without parameters, suffix _~Npar isused
for the macro generated and for asignal with parameters, suffix paris
used. Therelevant output macro can then be expanded to a simpler out-
put C function called xmk_sendsimple, if no signal priority is used.

Another differentiation is made for signals which are sent to the sys-
tem’s environment or which are sent internally in the SDL system. The
suffix _ENv isappended to the macros which are shown here, if the sig-
nal should go to the system environment.

The different directiveswhich can be used within the SDL suite to mod-
ify outputs are discussed in subsection “Modifying Outputs— Directive
H#EXTSIG, #ALT, #TRANSFER” on page 3325.

The other different output situations which are handled, will be de-
scribed in the next subsections.

Output without TO and without VIA

If the user specifies output SignalName without TO and VIA in SDL,
the Cmicro SDL to C Compiler calculates the receiver of the signal. It
isalso possibleto have morethan onereceiver for the signal. During ex-
ecution time, any possible receiver that are alive may be selected other-
wiseif no receiver can be found, the C function Errortandler will be
called. The following code is generated:
ALLOC_SIGNAL ppp (SignalNamewithoutPrefix,

SignalNamewithPrefix,
SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are some...

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

SDL_OUTP_ppp (Priority,
SignalNamewithoutPrefix,
SignalNamewithPrefix,
TO_PROCESS (ProcessNamewithoutPrefix,
ProcessNamewithPrefix),
SignalParameterTypeStructureName,
“SignalNamewithoutPrefix”)

Note:

The ppp above stands for either par or npar for a Signal with or
without parameters.

After expansion, the user will find a C function call to the
xmk_SendSimple function or the xmk send function.

Priority isgenerated asxDefaultPrioSignal if nopriority isspecified
for the signal with #pr10.

TO_PROCESS is expanded to afunction cal if thereisat minimum one
(X, N) declaration in the system, where N is > 1. This function returns
one of the possible receivers of the signal.

TO PROCESS Selectsan active instance of the given processtype It does
not check for different types as receivers.

TO_PROCESS isexpanded so that the pid is passed directly to one of the
C functions xmk_send*, if there are only (x,1) declarationsin the sys-
tem.

If the environment isthe receiver of the signal, then the following code
is generated:
ALLOC_SIGNAL_ ppp (SignalNamewithoutPrefix,

SignalNamewithPrefix,
SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are any...

SDL_OUTP_ppp_ENV (Priority,
SignalNamewithoutPrefix,
SignalNamewithPrefix,

ENV,
SignalParameterTypeStructureName,
“SignalNamewithoutPrefix”)

Note:

The ppp above stands for either par or npar for a Signal with or
without parameters.

After expansion, the user will find that env is passed to one of the C
functions xmk_SendSimple OF xmk Send. ENV iSaspecia value used

Telelogic Tau 4.5 User's Manual 3343

Chapter 66 The Cmicro SDL to C Compiler

3344

inside the Cmicro Kernel to detect which signals are to be passed to the
C function xoutEnv.

Output with TO clause

If the user specifies the output SignalNameto pid in SDL, the Cmicro
SDL to C Compiler generates the following code:
ALLOC_SIGNAL ppp (SignalNamewithoutPrefix,

SignalNamewithPrefix,
SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are some...
SDL_OUTP_ppp (Priority,
SignalNamewithoutPrefix,
SignalNamewithPrefix,
pid-variable,

SignalParameterTypeStructureName,
“SignalNamewithoutPrefix”)

Note:

The ppp above either stands for par or NpaRr for a Signal with or
without parameters.

Expansion reveals a C function call to the xmk sendsimple function
or the xmk_send function.

Priority is generated as xpDefaultpPriosignal, if o priority is speci-
fied for the signal with #PRIO.

Possible generated values for pid variable are sp1._SENDER,
SDL_PARENT, SDL_OFFSPRING and spL_SEeLF or an SDL pid variable.
These values are passed to the xmk _send* functions. The name of apro-
cess as specified in SDL may also be given.

Output with VIA clause

The Cmicro SDL to C Compiler computes the possible receiversin an
output with the VI A clause. If there are several possible receivers, an
error message is produced.

If there is exactly one receiver, the same code is generated as for SDL
output without to.

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

List of Generated Output Macros

ALLOC_SIGNAL_ NPAR
Allocating memory for signal without parameters

ALLOC_SIGNAL_PAR
same for signals with parameters

TO_PROCESS
Macro used to evaluate areceiver process instance, if necessary in
the case of (X, N) declarations, where N > 1.

SDL_OUTP_NPAR
Output internally in the SDL system for signal without parameters

SDL_OUTP_PAR
same for signal with parameters

SDL_OUTP_NPAR ENV
Output to the system environment for signal without parameters

SDL_OUTP_PAR_ENV
same for signal with parameters

SDL_ALTOUTP_NPAR
#ALT for an output internally in the SDL system for signal without
parameters

SDL_ALTOUTP_PAR
same for signal with parameters

SDL_ALTOUTP_ NPAR ENV
#ALT for an output to the system environment for signal without
parameters

SDL_ALTOUTP_ PAR ENV
same for signal with parameters

EXT_SignalName
if #EXTSIG is used in output

TRANSFER SIGNAL
#TRANSFER is used in output

Translation of Create
The create action in SDL istrandated to the following C code:

ALLOC_STARTUP_ppp (ProcessNamewithoutPrefix,
ProcessNamewithPrefix,
“ProcessNamewithoutPrefix, 0);

Telelogic Tau 4.5 User's Manual 3345

Chapter 66 The Cmicro SDL to C Compiler

....assignment of start-up values (cannot be used in this version of
the Cmicro Package)
SDL_CREATE (ProcessNamewithoutPrefix,
ProcessNamewithPrefix,
“ProcessNamewithoutPrefix, O,
VariableofCreatedProcess,

PriorityofCreatedProcess,
yPAD-functionNameofCreatedProcess) ;

PriorityofCreatedProcess iSgenerated as
xDefaultPrioProcess, if No priority is specified with #PRIO.

Translation of Set

The trandation of set isrestricted in afew areasin order to produce ef-
ficient code for amicro controller. For example, the SDL duration ex-
pressed by areal value in the context of timersis not implemented. The
reason for thisisthat controllers do not have floating point operations
or floating point operations are not used in order to increase the perfor-
mance. For timers, such a high resolution is not necessary in most ap-
plications. The Cmicro Package usesalong valuein its standard imple-
mentation to represent absolute time.

In order to make the examples below more readable, it is assumed that
at least one timer with parameter is used in the system (macro
XMK_USED TIMER WITH_ pARAMS iSdefined inthe generated file
sdl_cfg.h). If the macro is not defined, then the handling for timers
with parametersis not included.

Example 565
If the following is specified in SDL/PR:

Timer TimerName;

Set (now + durationvalue, TimerName) ;
or

Set (now + 22222, TimerName)
then the following code is generated:

SDL_SET DUR \

(xPlus_SDL_Time (SDL_NOW, SDL_DURATION LIT(22222.0,22222,0)),
SDL_DURATION_ LIT(22222.0, 22222, 0),
TimerName,
TimerNamewithPrefix,
yTim timer2,
"TimerNamewithoutPrefix")

3346 Teldlogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

Example 566
If the following is specified in SDL/PR:
Timer TimerName := TimerGroundValue ;---> see Note: on page 3348!

then the following code is generated:

SDL_SET_TICKS
(xPlus_SDL_Time (SDL_NOW, TICKS (SDL_INTEGER LIT(22222))),
TICKS (SDL_INTEGER LIT (22222)),
TimerName,
TimerNamewithPrefix,
yTim timer2,
"TimerNamewithoutPrefix")

The code after expansion then contains a function call to

xmk_TimerSet (TIMEEXPR,TimerNamewithPrefix,0).

TIMEEXPR iStheresult of the evaluation of now plus duration value.

#define SDL_SET DUR(TIME_EXPR, DUR_EXPR, TIMER NAME,
TIMER IDNODE, TIMER VAR, TIMER NAME STRING) \
xmk_TimerSet (TIME EXPR, TIMER IDNODE, 0) ;

#define SDL_SET TICKS(TIME EXPR, DUR _EXPR, TIMER NAME,
TIMER_IDNODE, TIMER_VAR, TIMER NAME_STRING) \
xmk_TimerSet (TIME EXPR, TIMER IDNODE, 0);

Example 567
If atimer with parameter is defined in SDL/PR:

Timer TimerName (integer) ;

set (now+l, TimerName (4711));

then the following code is generated:

SDL_SET_DUR_WITH_1IPARA (xPlus_SDL_Time (SDL_NOW,
SDL_DURATION_LIT(1.0, 1, 0)),
SDL_DURATION LIT(1.0, 1, 0), TimerName,
TimerNamewithPrefix,
yPDef z262 twpl,
yTim TimerName,
"TimerName",
SDL_INTEGER LIT(4711))

The code after expansion then contains a function call to

xmk_TimerSet (TIMEEXPR,TimerNamewithPrefix,4711).

Telelogic Tau 4.5 User's Manual 3347

Chapter 66 The Cmicro SDL to C Compiler

3348

Restrictions in the Use of Timers

* Timerswith parametersarerestrictively supported in Cmicro. There
might be only one parameter of sort “integer”. Thisimplementation
has been chosen to achieve the highest efficiency.

» Duration values asreal values are not supported in this version of
the Cmicro Package, i.e. this:

set (now + 5.5, TimerName)

isnot allowed (the real part isdiscardedi.e. 5.5 (= 5).

Translation of Reset
If the user specifiesin SDL/PR:

Resgset (TimerName) ;

then the following code is generated:

SDL_RESET (TimerNamewithoutPrefix,
TimerNamewithPrefix,
yTim TimerName)

The code after expansion contains afunction call to xmk_TimerReset
(TimerNamewithPrefix).

For atimer with one integer parameter, the following macro call is gen-
erated:

SDL_RESET_WITH_ 1IPARA (TimerNamewithoutPrefix,
TimerNamewithPrefix,
TimerParStruct,
yTim TimerName,
TimerValue)

Note:

Timers with parameters are supported with the restriction that only
one integer parameter is allowed.

Translation of Call

As SDL procedures are implemented with the restrictions explained
within subsection “SDL Restrictions” on page 3358, the following ex-
planatory C code (to a procedure called ex_proc) is generated:

ex proc (....C parameters ...);
All necessary parameters are routed via the C function call stack.

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

Translation of Call to a Procedure Returning Value / Operator Diagram

Operator diagrams and procedures returning values are — considering
the call —handled in the same way please see the following explanatory
example:

Example 568: Procedure Call

TASK 1 := (call p(1)) + (call Q(i,k));

istranslated to something like:

i =p(1l) + Q(i,k);

Note:

The value of returning procedure calls are transformed to C func-
tions returning val ues.

Translation of Nextstate

The nextstate operation is generated at the end of each transition con-
tained in the yPAD function, as follows:

» If the process performs simple nextstate operation:
SDL_NEXTSTATE (Statel, z000_ Statel, "Statel")
after preprocessing:
return (z000_ Statel);

» If it performs a nextstate, which is defined as a dash state:
SDL_DASH_ NEXTSTATE
which is defined as:

return (XDASHSTATE) ;

July 2003 Telelogic Tau 4.5 User's Manual 3349

Chapter 66 The Cmicro SDL to C Compiler

3350

Translation of Stop
A stop action is translated to:

SDL_STOP

which is defined as

return (XDORMANT) ;

whichisgood code saving. The Cmicro Kernel then entersthe new state
value into the Process State Table.

Note:

Thistable contains ordinary SDL state values as well asthe values
XSTARTUP and XDORMANT . XSTARTUP isgenerated for eachinstance
whichisto be statically created (in (x, N) declarations, where x is>
0). xporMANT isthe value which is used to tag a process instance as
sleeping. In the case of creation this instance can be reused.

Translation of Return

#ifdef XFREEVARS
FREE_PROCESS VARS ()
#endif

SDL_RETURN

The macro definitions are:

#define SDL_RETURN \

if (_xxptr != (unsigned char*) NULL) \
{\

XMK_MEM_FREE ((unsigned char *)_xxptr); \
FA

return ;

where xxptr is the pointer to the procedure instance data, as given via
the C function call parameter list. Note, that the memory previously al-
located directly before the procedure call is freed at the end of the pro-
cedure, not outside of the procedure.

Translation of SDL Expressions

In this section some of the translation rules for expressions are de-
scribed. For moreinformation see Translation of Sorts” on page 2595
in chapter 57, The Cadvanced/Cbasic SDL to C Compiler wherefor ex-
ample the trandlation rules for literals and operators in the predefined
abstract data types are given.

Telelogic Tau 4.5 User's Manual July 2003

Output of Code Gener ation

July 2003

Now

SDL now istranslated to the macro spr._now which is expanded to the
C function xmk_wow. Thisfunction is exported by the module
mk_stim.c.

Self, Parent, Offspring, Sender
The definitions for self, parent, offspring, sender are:

#ifdef XMK USED SELF
#define SDL_SELF XRunPID
#endif

#ifdef XMK USED_PARENT

#define SDL_PARENT pRunPIDTable->Parent
#endif

#ifdef XMK_USED_OFFSPRING

#define SDL_OFFSPRING pRunPIDTable->0ffspring
#endif

#ifdef XMK USED_SENDER

#define SDL_SENDER P_MESSAGE->send

#endif

All the variables above are of type xp1p. All variables are maintained
by the Cmicro Kernel. xrunp1p isaglobal variable which containsthe
pid of the SDL process which is currently running. »_ MESSAGE isa
pointer to the signal instance which is currently worked on.

Timer Active
An SDL timer active expression is translated to:

SDL_ACTIVE (TimerName, TimerName,
yTim TimerName)

which is expanded to:

xmk_TimerActive (TimerName)

A conditional expression in SDL istranslated to a conditional expres-
sioninC.

Init Function

An explicit initialization function is not generated by the Cmicro SDL
to C Compiler in any case.

The structure of the SDL system is not generated into the C code. What
is seen in the generated code, is the behavior of the SDL system. Vari-

Telelogic Tau 4.5 User's Manual 3351

Chapter 66 The Cmicro SDL to C Compiler

3352

ables of processes are initialized during the start transition of a process
and no information about the structure of the SDL system is available
during run-time in the generated code.

Aninitialization function is generated only in that caseif synonymsare
used within SDL, which require an initialized C variable.

All thisresults in a more compact executable.

For example, the following use of an SDL synonym resultsin a gener-
ated initialization function:

synonym a integer := /*#CODE anyUserFunction () */

The following C code is then generated within the C function y1nit:

yAssF_SDL Integer(a, anyUserFunction (), XASS);
yInit iscaled by the Cmicro Kernel if the define

XMK_USED_ INITFUNC
isgenerated into the file sd1_cfg.h, which is done in the case above.

Initialization of Synonyms

The Cmicro SDL to C Compiler allows SDL synonyms to be imple-
mented as C macros and C variables.

Initialization isimplemented within the C function yInit whichiscon-
ditionally compiled.

Function main

The C function main isnot automatically generated by the Cmicro SDL
to C Compiler. Thisis unnecessary because the main function usually
is provided from the user or the predefined main function can be used.
Instead of an automatically generated main function, the user must
supply the function body of main, for target applications. Guidelines
can be found in the subsection “Implementation of Main Function” on
page 3437 in chapter 67, The Cmicro Library.

Telelogic Tau 4.5 User's Manual July 2003

Symbol TableFile

Symbol Table File

July 2003

The structure of an SDL system can be represented by atree diagram.
In SDL theroot of the treeis represented by the SDL system followed
by blocks, block substructures, processes and procedur&sl. Channels,
channel substructures and signal routes are also represented in the tree.
Thistreeis static, which means it cannot be modified during the run-
time of an SDL system.

The SDL to C Compiler generates code so that this static structureis
present in the generated code. Thisis good for debugging purposes.

The Cmicro SDL to C Compiler generates code so that this static struc-
tureisnot present in the generated code, in order to spare memory. To
enable debugging of the generated code, C comments are generated.
Please consult the subsection “ GR References’ on page 3338.

A symbol tableis necessary for the SDL Target Tester running on the
host or the development system.

For more information consult chapter 68, The SDL Target Tester.

1. In SDL-92 several SDL systems can exist in paralel.

Telelogic Tau 4.5 User's Manual 3353

Chapter 66 The Cmicro SDL to C Compiler

Generation of Identifiers

3354

Processes and Process IDs (PID)

In order to implement the environment functions, it is important to no-
ticethat processIDsin Cmicro are generated into the sd1l cfg.h file,
which must beincluded by the user’ senvironment C module. These|Ds
arecoded likeit isdescribed in “ Generated Configuration File” on page
3302. More explanations are given in the following.

Since process | Ds might become ambiguous, especialy in block type
and process type instantiations in SDL’ 92, the names of process IDs
that areto be used in the environment functions areto be given a prefix.
Using this prefix within the environment functions (xInenv), it can be
guaranteed that different process IDs (equates to “instance sets’ in
SDL’92) with the same name can be distinguished, which is necessary
in order to send signalsto the right processinstance within the SDL sys-
tem. On the other hand, prefixes are not necessary when all the process
instance setswithin the system have adifferent name. The Cmicro SDL
to C Compiler uses an algorithm to cal culate the prefixes in the most
convenient way.

For example, if a process named “ myprocess’ exists only once within
the SDL system, there will be no automatic prefix generated, e.g. the
full processID is

#define XPTID myprocess 0
If, as another example, the process “myprocess’ existstwice, for exam-
ple once within ablock called “myfirstblock” and once more within a
block called “mysecondblock”, the Cmicro SDL to C Compiler then
creates two definitions which guarantee that the processes can be distin-
guished:

#define XPTID myfirstblock myprocess 0
#define XPTID mysecondblock myprocess 1

In thisway, by adding scope hames (block names), prefixes are always
generated in away so that no naming conflictsoccur. Of course, for pro-
cessand block typeinstantiations, the name of theinstanceisbeing used
to generate this unambiguous prefix.

SDL process types (process instance setsin SDL’'92), aswell as SDL
processinstances are numbered consecutively beginning with zero. The

Telelogic Tau 4.5 User's Manual July 2003

Generation of |dentifiers

ordering of these numbersis the same as the ordering of the processes
inthe SDL/PR file.

The values 250 to 255 are reserved for internal purposes and must not
be used for process type numbering. The Targeting Expert checks this
ruleautomatically. For small systemsthisdoes not create any problems.

The Cmicro Kernel assumes the above definitions.

In the generated C code, the SDL values self, sender, parent and off-
spring, and variables of thistype arerepresented by the typedef xPID.
Theintention is to have unique numbering of processes and their in-
stances in the whole SDL system. This becomes necessary because of
the Cmicro Code no longer containing the structure of the SDL system
(system, block...). The typedef xP1D isdefined as

* unsigned char Of unsigned int
if there are only (x,1) declarations in the system no distinction be-
tween instancesisnecessary. Thisisautomatically detected. Seethe
flag xMK_USED ONLY X 1 inthe section “Automatic Scaling In-
cluded in Cmicro” on page 3426 in chapter 67, The Cmicro Library.

* unsigned int Of unsigned long
if thereisat minimum one (X, N) declaration in the system, where
N > 1, instances need to be distinguishable from each other.

There are afew macros defined to extract the process type number or
the process instance number from a variable of the type xp1p and to
build an xp1D variable from a process type number and a process in-
stance number, the users do not have to think about the internal repre-
sentation:

Example 569: Macros to extract process type or instance number —

processtype = EPIDTYPE (XxPID_variable)
processinstance = EPIDINST (xPID variable)
xPID variable = GLOBALPID (processtype, processinstance)

July 2003 Telelogic Tau 4.5 User's Manual 3355

Chapter 66 The Cmicro SDL to C Compiler

3356

Signals and Timers

SDL signalsand timersare numbered automatically by the Cmicro SDL
to C Compiler so that they have aunique number over the complete sys-
tem. Timersarerepresented by thevalues 1, 2, 3.... MT to the last timer
of the MT timersin the system. After that follow ordinary SDL signal
numbers beginning with MT+1, MT+2, MT+3... MT + MS.

When using the standard Cmicro Package, as delivered, then the values
0and 251 to 255 arereserved for internal purposes. If the upper limit of
250 signals and timers is being reached, then the signal 1D type hasto
be changed from unsigned char t0 unsigned int,thusalowing
more than 60000 signal S'timersto be handled. All these changeswill be
doneif theflag XMK_USE_MORE_THAN_250 SIGNALSIs set.

Caution!

The Cmicro SDL to C Compiler does not check for the upper limit
of 250 signals being reached for a generated SDL system. Instead
the Targeting Expert will check the amount of signalsand timersin
the SDL system and will inform the user.

Example 570:
C code generated for signals and timers:

#define znnn SignalName 1
#define znnn SignalName 2

Where znnn__isthe automatically generated prefix whichisrequired to
cope with the SDL scope rules. Remember, that processesin SDL can
have the same name as signals, states etc. Prefixing, however, ensures
unigquely named SDL objectsin the generated C Code.

Telelogic Tau 4.5 User's Manual July 2003

Generation of |dentifiers

July 2003

Example 571:
A system with 2 signals S1 and S2, and atimer TIMERL.:

#define z049_ TIMERI1 1
#define z050_S1 2
#define z051_S2 3

When it comes to connecting the environment to the SDL system, the
automatic numbering of signal IDs and timer IDs may not be required.
If the user wants to prevent the automatic numbering of signals, then it
ispossibleto#includeafile containing al thesignal and timer numbers.
The file may contain something like:

#undef SignalOrTimerName
#define SignalOrTimerName AnyValueAccordingToKernelRules

States

SDL states are consecutively numbered from 1 through to N for each
processtype. Thevaues 0, and 250 to 255 are reserved for internal pur-
poses in the Cmicro Package. This restriction incurs no foreseeabl e dif-
ficulty as processes should never have more than 50 States as a recom-
mendation.

If there are even more states per process the flag
XMK_USE HUGE TRANSITIONTABLES must be set.

The following C code generation is supplied for the header-section of
the generated C file(s).

For each SDL process:

#define znnn StatelName 1
#define znnn State2Name 2

#define znnn State3Name 3

Example 572:

For aprocess with 2 states S1 and S2:

#define z020_S1
#define z021_S2

These values are used in the state-index-table and in the generated C
functions, wherever a nextstate is referenced.

Telelogic Tau 4.5 User's Manual 3357

Chapter 66 The Cmicro SDL to C Compiler

SDL Restrictions

3358

General

The Cmicro SDL to C Compiler handles SDL concepts according to the
definition of SDL-92. In addition to the restrictions of all the SDL to C
Compilers, the following additional restrictions are introduced for the

Cmicro SDL to C Compiler:

Inheritance of procedures

Procedures with states

Remote Procedure Calls

Nested procedure call data scope

Export / Import

View / Reveal

Enabling condition / Continuous signal

Service and priority input and output

Channel substructure

Declaring an infinite number of processinstances (x,) or (,)
FPARS when creating a process

Omission of parametersin asignal input

Output viaal

Timers duration values cannot be real

Timers with more than one parameter

Timers with another parameter than sort integer

The any expression

Only thelist of ADT and packages that are explained in the subsec-
tion “Exceptionsfor SDL Predefined Types’ on page 3314 and the
subsection “ Exceptions for |mplementations of Operators’ on page
3317 are handled correctly with Cmicro.

Thefollowing restrictionsare additional regarding the packagesthat are
delivered together with the SDL suite.

sdth2sdl

Itisimpossibleto read in header files created with Cadvanced and use
them in Cmicro and the other way around. Thereasonisthat it isimpos-
sible to mix up C code between Cadvanced/Chasic and Cmicro.

Telelogic Tau 4.5 User's Manual July 2003

SDL Restrictions

July 2003

Combining Cadvanced / Cmicro C Code

Mixing C code from different C Code Generatorsis not possible as the
different code generators use their own run-time model and run-time
data structures. Trying to mix up the C code will lead to compilation er-
rors.

Light and Tight Integrations

The Light and Tight Integrations delivered with the SDL suite are only
available for Cadvanced but not applicable to Cmicro. There are light
and tight integrations for Cmicro but these are not part of the product.

Restrictions in Combination with SDL Target
Tester

Scope Rules / Qualifiers

If the SDL Target Tester isto be used, then the scoperulesof SDL are
handled in arestrictive fashion. No information is generated for the sys-
tem, block, block substructure, channel and signalroute. After applying
the Cmicro SDL to C Compiler, al the structuring information is lost.

This meansthat it isimpossible to address two different processes with
the same name in different blocks. In order to avoid problems, give all
processes, signals and timersin the system a different (unique) name.

Predefined Sorts

The predefined sort charstring and all the predefined sort that are based
on theimplementation of charstring (like predefined sortsfrom ASN.1)
cannot behandled, if the SDL Target Tester isto beused. All predefined
sortswhich are generated into pointersin C cannot be used. In order to
get a detailed description, please seein chapter 68, The SDL Target
Tester.

Analyzer Restrictions

Therestrictionsin the SDL Analyzer, which also affects the Cmicro
SDL to C Compiler, are summarized in chapter 55, The SDL Analyzer.

Telelogic Tau 4.5 User's Manual 3359

Chapter 66 The Cmicro SDL to C Compiler

3360 Telelogic Tau 4.5 User' s Manual July 2003

	66 The Cmicro SDL to C Compiler
	Application Area for the Cmicro SDL to C Compiler
	Highly Optimized Code for Target
	Target Debug

	Overview of the Cmicro SDL to C Compiler
	Generated Files
	Generated Configuration File
	Generated C File
	Generated Environment Header File
	Sorts
	Signal IDs and Parameter Structures
	Process IDs

	Generated Make File
	Generated Symbol File
	Generated Kernel Group File

	Implementation
	Time
	Real Time

	Scheduling
	Assigning Priorities to Processes – Preemptive Scheduling
	Assigning Priorities to Signals
	Combinations of Signal/Process Priority

	Synonyms
	External Synonyms

	Procedure Calls and Operator Calls
	Generation of PAD function
	Any
	Calculation of Receiver in Outputs

	Abstract Data Types
	General C Definitions
	Exceptions for SDL Predefined Types
	External Synonyms
	Charstring
	Time/Duration
	UnionC
	Predefined Generators Array, String, Powerset, Bag, Ref
	ctypes.sdl
	byte.pr
	file.pr
	idnode.pr
	list1/list2.pr
	long_int.pr
	pidlist.pr
	random.pr
	unsigned.pr
	unsigned_long.pr
	Default Values

	Exceptions for Implementations of Operators
	Read and Write Functions
	Error Situations in Operators
	Access to Predefined Sorts based on Charstring

	Exceptions for Directives
	Selecting File Structure for Generated Code – Directive #SEPARATE
	An Example of the Usage of the Separate Feature

	Assigning Priorities�–�Directive #PRIO
	#PRIO for Processes
	#PRIO for Signals

	Modifying Outputs – Directive #EXTSIG, #ALT, #TRANSFER

	Output of Code Generation
	Header of Generated C File
	SECTION Types and Forward References
	Symbol Tables
	Tables for Processes
	Root Process Table
	Symbol Trace Table
	Optimized Decision Trace information
	Instance-Data-Struct
	Process State Table
	Transition Table
	State Index Table
	PID Table
	Process Description Table

	Actions by Processes and Procedures
	GR References
	Structure of Process and Procedure Functions
	Local Variables Section
	State – Input Selection
	Start Transition
	Transitions
	PAD-End-Section
	Translation of Actions
	Translation of SDL Expressions

	Init Function
	Initialization of Synonyms

	Function main

	Symbol Table File
	Generation of Identifiers
	Processes and Process IDs (PID)
	Signals and Timers
	States

	SDL Restrictions
	General
	sdth2sdl
	Combining Cadvanced / Cmicro C Code
	Light and Tight Integrations
	Restrictions in Combination with SDL Target Tester
	Scope Rules / Qualifiers
	Predefined Sorts
	Analyzer Restrictions

