
July 2003 Telelo

Chapter
66 The Cmicro SDL to C

Compiler
The Cmicro SDL to C Compiler translates your SDL system into a
C program that you can compile together with the Cmicro Library
and the SDL Target Tester target library. The Cmicro Library and
the SDL Target Tester target library is not available as a pre-linked
library but is delivered as source to enable scaling of the kernel. The
scaling is dependent upon the SDL system characteristics. This
chapter is a reference manual for the Cmicro SDL to C Compiler.

• In chapter 67, The Cmicro Library, you will find information
about how to customize your own libraries for specific purpose,
such as application generation for target computers. The chap-
ter also describes the structure of the generated C code and the
internal data structures in the generated C code. The Cmicro
Library is only of use when compiled with the code which is gen-
erated by the Cmicro SDL to C Compiler.

• In chapter 68, The SDL Target Tester, you will find a reference
to the features, which enables testing in a host-target environ-
ment. The SDL Target Tester is applicable for the Cmicro SDL
to C Compiler and the Cmicro Library only.
gic Tau 4.5 User’s Manual ,um-st1 3299

Chapter 66 The Cmicro SDL to C Compiler
Application Area for the Cmicro SDL to C
Compiler

The application area for the Cmicro SDL to C Compiler is:

• Generation of applications, including embedded system applica-
tions with real time characteristics (Configuration: Cmicro Library
and generated C code running on target).

• Generation of target debug applications, including embedded sys-
tem applications with real time characteristics (Configuration: Cmi-
cro Library, generated C code and SDL Target Tester running on
target).

In this part of the chapter, the general behavior of the Cmicro SDL to C
Compiler, as seen from the users point of view, is discussed.

Highly Optimized Code for Target

The generated code in combination with the Cmicro Library is highly
optimized, which is unavoidable for microcontrollers and real-time ap-
plications. Some optimizations have been possible only by introducing
restrictions in the use of SDL. Other optimizations have been possible
by generating more compact code. For the restrictions in the use of SDL
please see “SDL Restrictions” on page 3358. Details regarding the out-
put of the Cmicro code generation can be found in “Output of Code
Generation” on page 3326.

Target Debug

With the generated code it is possible to debug the application on the
target using the Cmicro Library and the SDL Target Tester library. The
parts of the Cmicro code generation which are used for the SDL Target
Tester are also highly optimized. Please see chapter 68, The SDL Target
Tester.
3300 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Overview of the Cmicro SDL to C Compiler
Overview of the Cmicro SDL to C Compiler
The SDL Analyzer, which can be invoked from the Organizer, contains
an SDL parser, an SDL semantic checker, and – among other code gen-
erators – the Cmicro SDL to C Compiler.

Many options can be chosen from the user which affect the analysis of
the SDL system. Furthermore, a lot of error checks are performed auto-
matically before code generation starts. This makes it possible to im-
prove written SDL specifications before any run-time testing must be
done.

The options that the user may choose for analysis and the error checks
that are performed by the analyzer are described in chapter 55, The SDL
Analyzer.

At some places the Cmicro SDL to C Compiler can be used in exactly
the same way as the Cadvanced/Cbasic SDL to C Compiler can be used.
At some other places the use of this C Code Generator, or what this C
Code Generator produce, is different.

The Cmicro SDL to C Compiler generally can process the same input
as the Cadvanced/Cbasic SDL to C Compiler can. The differences are
explained within this chapter.

The differences in the output of the both code generators are described
within the subsection “Output of Code Generation” on page 3326.

The overall differences of the both code generators are described in the
section “Differences between Cmicro and Cadvanced” on page 3364 in
chapter 67, The Cmicro Library.

The following subsections describe how the Cmicro SDL to C Compiler
might be used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3301

Chapter 66 The Cmicro SDL to C Compiler
Generated Files
The C files, which are generated by the Cmicro SDL to C Compiler, can
only be used in connection with the Cmicro Library and the SDL Target
Tester. It is not possible to validate and simulate the SDL system with
the C code generated by Cmicro as this code is only suitable for target
applications. To simulate and validate the SDL system within the SDL
suite, the user has to choose the Cbasic SDL to C Compiler. In order to
view the process of generating C applications see the Organizer’s Make
dialog in chapter 2, The Organizer.

The SDL Analyzer, which contains the Cmicro SDL to C Compiler can
also be started as a stand-alone tool. For more information about this
possibility please see chapter 55, The SDL Analyzer.

There are several steps that must be carried out before the generated C
files can be compiled and linked together with the Cmicro Library. The
user should follow the procedures that are documented in the section
“Targeting using the Cmicro Package” on page 3389 in chapter 67, The
Cmicro Library.

In the following subsections the different files that are generated are ex-
plained.

Generated Configuration File
The first file that is generated from the Cmicro SDL to C Compiler is
called sdl_cfg.h. It is used to scale the Cmicro Kernel depending on
what characteristics the SDL system has. This is called automatic scal-
ing and automatic dimensioning facility.

The file contains a header, process ID declarations, and then a #define
or a /*NOT define ... */ for each of the flags that the Cmicro SDL
to C Compiler can generate automatically.

Example 540: The Header of an sdl_cfg.h –––––––––––––––––––––––
/* Program generated by SDL suite.Cmicro <version> <date> */

#ifndef XSCT_CMICRO
#define XSCT_CMICRO
#endif

/* "sdl_cfg.h" file generated for system <systemname> */

#define XMK_CFG_TIME <GenerationTime>

––
3302 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generated Files
The XMK_CFG_TIME macro is used internally when compiling and ex-
ecuting with the SDL Target Tester takes place. With this macro, a
rough consistency check for the generated files is done. The
<GenerationTime> of the different files that are generated is compared
in the Library and by the SDL Target Tester. If there is an inconsistency,
compilation errors will occur.

The rest of the file sdl_cfg.h is about the automatic scaling and auto-
matic dimensioning of the SDL system. It may look for example like:

Example 541: The Tail of an sdl_cfg.h ––––––––––––––––––––––––––

#define MAX_SDL_PROCESS_TYPES <N>
#define XMK_USED_ONLY_X_1
#define MAX_SDL_TIMER_TYPES <X>
#define MAX_SDL_TIMER_INSTS <Z>
#define XMK_HIGHEST_SIGNAL_NR 4
/* NOT #define XMK_USED_TIMER */
/* NOT #define XMK_USED_DYNAMIC_CREATE */
/* NOT #define XMK_USED_DYNAMIC_STOP */
/* NOT #define XMK_USED_SAVE */
#define XMK_USED_SIGNAL_WITH_PARAMS
/* NOT #define XMK_USED_TIMER_WITH_PARAMS */
/* NOT #define XMK_USED_SENDER */
/* NOT #define XMK_USED_OFFSPRING */
/* NOT #define XMK_USED_PARENT */
/* NOT #define XMK_USED_SELF */
/* NOT #define XMK_USED_PWOS */
/* NOT #define XMK_USED_INITFUNC */

––

For a first rough understanding of the meaning of the different flags:
The SDL system from above contains <N> process types (using SDL’88
terminology), all the processes are declared in the form (0,1) or
(1,1). There are <X> timers declared (in this case, <X> must be 0, be-
cause XMK_USED_TIMER is undefined, and the system uses an amount
of <Z> signals. The system does not use any create or stop
(XMK_USED_DYNAMIC_CREATE and XMK_USED_DYNAMIC_STOP are un-
defined). In this way all the other flags have special meaning.

For explanations about the different flags the user should refer to “Au-
tomatic Scaling Included in Cmicro” on page 3426 in chapter 67, The
Cmicro Library.

Generated C File
Assumed, that the user selected “No separation” in the Organizer’s
Make Dialog, and no partitioning is used, then the Cmicro SDL to C
Compiler will generate one C file per SDL system. This file contains all
the characteristics of the SDL system including all the declarations that
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3303

Chapter 66 The Cmicro SDL to C Compiler
the SDL system itself needs. For an explanation of this file see “Output
of Code Generation” on page 3326.

Generated Environment Header File
There is one file generated from the Cmicro SDL to C Compiler that
contains all the definitions and declarations that are necessary to imple-
ment the environment functions xInEnv and xOutEnv.

The file is generated only if the option Environment header file in the
Targeting Experts is switched on.

The file is called <systemname>.ifc and it contains a header, the type
definitions used on system level (newtypes, syntypes, synonyms), the
signal IDs and the structure type definitions for the parameters of the
signals.

Example 542: The Header of an <systemname>.ifc file–––––––––––––

#ifndef X_IFC_z_env01
#define X_IFC_z_env01
#define XMK_IFC_TIME <GenerationTime>

––

The XMK_IFC_TIME macro is used internally when compiling and ex-
ecuting with the SDL Target Tester takes place. With this macro, a
rough consistency check for the generated files is done. The
<GenerationTime> of the different files that are generated is compared
in the Library and by the SDL Target Tester. If there is an inconsistency,
compilation errors will occur.

More explanation about the environment header file is given in chapter
67, The Cmicro Library.

Caution!

As there are defines generated that contain no prefixes, there might
be compiler warnings like Illegal redefinition of macro.
Such redefinitions should never be ignored because fatal errors dur-
ing run-time may occur. The user should introduce a prefix for sig-
nals or sorts with different meaning on SDL level, in order to map
these names to unambiguous identifiers in C.
3304 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generated Files
Sorts

Followed by the header the section about sorts follows. The sorts are
generated according to the documentation in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler.

Signal IDs and Parameter Structures

Next, the definitions for signals follows, which consists of:

• A C comment with a comment explaining if the signal is IN or OUT
as seen from SDL

• An optional declaration of a C structure type definition (if the signal
carries parameters)

• The definition of the signal ID

For easy interpretation: For an SDL signal without parameters, going
from the environment to SDL, like:

signal SIn;

the following is generated into the .ifc file:

/* SIn IN */
#define SIn <X>

For an SDL signal with parameters, going from SDL to the environ-
ment, like

signal SOut (integer, mystruct, boolean);

the following is generated into the .ifc file:

/* SOut OUT */
typedef struct {
 SIGNAL_VARS
 SDL_Integer Param1;
 mystruct Param2;
 /* mystruct declared in the section */
 /* declaring sorts */
 SDL_Boolean Param3;
} yPDef_<UniquePrefix>_SOut;

typedef yPDef_<UniquePrefix>_SOut *yPDP_<UniquePrefix>_SOut;
#define yPDP_SOut yPDP_<UniquePrefix>_SOut
#define yPDef_SOut yPDef_<UniquePrefix>_SOut
#define SOut <X>

At least the signal ID (here: SOut) and the name of the structure (here:
yPDef_SOut) must be used in the xOutEnv C function in this case.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3305

Chapter 66 The Cmicro SDL to C Compiler
The code generation of structure types and signal IDs is (except the C
comment about IN or OUT) independent from the direction the signal
goes.

Process IDs

At last the process ID declarations are generated as #define values in
C, like:

#define XPTID_<auto-prefix>_MyProcess 0

where the first process in the system is the value of 0 assigned, the sec-
ond process gets the value 1, and so on. Due to the implementation of
SDL’92 object orientation in the Cmicro SDL to C Compiler, there is
also an automatic prefix generated. Using this prefix in the user’s envi-
ronment functions, it is possible to distinguish between several process-
es with the same name. Please refer to “Generation of Identifiers” on
page 3354 for more information.

Generated Make File
The Cmicro SDL to C Compiler generates a file that contains produc-
tion rules for the C program. This file can be used together with “make”
facility only. The file is called <systemname>.m.

Additionally there is an ASCII file called <systemname>_gen.m
which gives a list of all the generated files. This files is used by the Tar-
geting Expert to generate a makefile. Please see “Generated Makefile”
on page 2922 in chapter 60, The Targeting Expert.

Generated Symbol File
The generated symbol file is used to store symbolic information about
the SDL system. The file has meaning for the host part of the SDL Tar-
get Tester only and is called <systemname>.sym. It is used for SDL
Target Tester purposes only and is described within “The Host Symbol
Table” on page 3637 in chapter 68, The SDL Target Tester.

Generated Kernel Group File
The generated kernel group file contains information about process
names. This file is especially used in integrations, when OO is used and
processes are instantiated. Using the information from this file, it is pos-
3306 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generated Files
sible to distinguish between several process instantiations with the same
name.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3307

Chapter 66 The Cmicro SDL to C Compiler
Implementation
In this section the implementation details are discussed. These details
are meaningful for understanding how a generated Cmicro application
does work.

Time
For host simulation, with the predefined integration settings, a time unit
represents one second. In target applications, time is to be implemented
by the user (see subsection “Defining the SDL System Time Functions
in mk_stim.c” on page 3435 in chapter 67, The Cmicro Library).

Real Time

If real time is used, then there will be a connection between the clock in
the executing program and the wall clock. For applications the user
must provide the connection with the wall clock, normally the hardware
timer.

Scheduling
The Cmicro Kernel does not use a process ready queue. It processes the
signals in the order of their appearance. To do this, there is a signal
queue which stores the signals sent to any process (either internally or
externally). There are different ways to influence the scheduling when
using the Cmicro SDL to C Compiler:

• assigning priorities to processes

• assigning priorities to signals

• any combination of process and signal priorities

Note:

The C standard function time used as the real time clock returns the
time in seconds. The implementation of the clock can be changed by
re-implementing the function xmk_NOW in mk_stim.c.
3308 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
Assigning Priorities to Processes – Preemptive Scheduling

It is possible to assign priorities to process types (using SDL’88 termi-
nology). The processes’ priorities are assigned when designing the SDL
system. They are assigned using the #PRIO directive.

There are some things to be kept in mind when using process priorities:

• Priorities have to begin with zero.

• Priorities have to be consecutive.

• All instances of a type have the same priority (SDL’88 terminolo-
gy).

• Priority decreases with increasing numbers (zero is the highest pri-
ority level).

• The default priority is to be in the range of zero to the lowest priority
number.

The Cmicro Kernel handles process priorities by collecting all signals
sent to processes of the same priority in a separate queue. Thus, there is
a queue for each priority level.

While the SDL system is running the kernel checks for signals in the
queues with decreasing priority. This check takes place whenever an
SDL output appears or a process performs an SDL nextstate operation.
Because of the kernel checking for signals whenever an output takes
place, it is possible to have preemptive scheduling.

Assume, there are two process types lowprio and highprio. Let process
type lowprio have the priority one and process type highprio have the
priority zero.

If an instance of process type lowprio performs an output to process
type highprio, there appears a signal in a queue of a higher priority level
(zero is the highest priority level available, process lowprio has priority
one) which leads to the kernel immediately working on the signal sent
to the process highprio. The transition of process lowprio will not end
until process highprio has finished its transition invoked by the signal.

This way of scheduling is implemented using recursion.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3309

Chapter 66 The Cmicro SDL to C Compiler
There is basically no restriction on the number of priority levels, but the
target and compiler used will of course limit the depth of recursion.

As a general recommendation process priorities should not be assigned
one per process type, but the process types should be grouped according
to their purposes and these groups should then be assigned a priority
level.

Assigning Priorities to Signals

The signals in the queue(s) are normally ordered according to their ap-
pearance (FIFO-strategy). By assigning priorities to signals this order-
ing is user definable. The directive #PRIO is used to assign a priority to
signals.

Priority increases with decreasing numbers, but there is no restriction to
use consecutive numbering.

Whenever a signal is sent, it is inserted into the signal queue(s) accord-
ing to its priority.

Assume, there is a process performing two signal outputs, first_sig and
second_sig. Using the standard FIFO-strategy signal first_sig would be
worked on before signal second_sig. But with signal priorities and sig-
nal first_sig assigned priority fifty and signal second_sig assigned pri-
ority twenty, signal second_sig would be in front of signal first_sig in
the queue and thus would be worked on before signal first_sig.

For more details please refer to “Assigning Priorities – Directive
#PRIO” on page 3323.

Combinations of Signal/Process Priority

Every combination of signal and process priorities may be used. In this
way it is possible to adapt the scheduling to the users’ needs.

Note:

Process priorities are available only when using a compiler which
can handle recursion.
3310 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
Synonyms

External Synonyms

External synonyms can be used to parameterize an SDL system and
thereby also a generated program. The values that should be used for the
external synonyms must be included as macro definitions into the gen-
erated code, for instance by including another header file.

Using a Macro Definition

To use a macro definition in C to specify the value of an external syn-
onym, the user should perform the following steps:

1. Write the actual macro definitions on a file.

Example 543: Macro Definition –––––––––––––––––––––––––––––

#define synonym1 value1
#define synonym2 value2

–––

The synonym names are the SDL names (without any prefixes).

2. Introduce the following #CODE directive at the system level among
the SDL definitions of synonyms, sorts, and signals, for example,
but before any use of the synonyms.

Example 544: #CODE Directive–––––––––––––––––––––––––––––

/*#CODE
#TYPE
#include “filename”
*/

–––

If this structure is used, the value of an external synonym can be
changed merely by changing the corresponding macro definition and re-
compiling the system.

Note:

Without process priorities a transition once started will have to be
finished before the next transition can be dealt with. This is valid re-
gardless of the time it will need to finish a transition.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3311

Chapter 66 The Cmicro SDL to C Compiler
Procedure Calls and Operator Calls
In SDL-92, value returning procedures and operator calls are intro-
duced. This means, that an SDL procedure can be called within an ex-
pression. As the Cmicro SDL to C Compiler cannot handle procedures
with states, it is not necessary to map such calls to a different scheme.

Example 545: Procedure Call––––––––––––––––––––––––––––––––––

TASK i := (call p(1)) + (call Q(i,k));

is translated to something like:

i = p(1) + Q(i,k);

––

Operators which are defined using operator diagrams, are as in the mod-
els in the SDL recommendation, treated exactly as value returning pro-
cedures.

Generation of PAD function
The code generation for the PAD function is different compared with
Cadvanced, in the way that code that is common in process types is cop-
ied into the PAD function for instantiated processes. This is implement-
ed in contrast to Cadvanced, where for each process type definition
there is a C function generated once, that is called by the instantiated
PAD function, for common code. This makes a difference when system
partitioning and/or file separation is used.

Any
‘Any’ should not be used in applications using the Cmicro SDL to C
Compiler, as it leads to an error message.

Calculation of Receiver in Outputs
The Cmicro SDL to C Compiler is a code generator using the semantics
of SDL-92 with some restrictions. The behavior for output is according
to the rules described in the following:

Note:

The value returning procedure calls are transformed to C functions
which return values.
3312 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
• For an output without TO and without VIA in SDL, the Cmicro SDL
to C Compiler calculates the receiver of the signal during code gen-
eration. If there is more than one possible receiving process type,
then an error message will be printed out.

• For an output without TO and without VIA in SDL, it is also possi-
ble to have one process type, but more than one receiving instance
of the signal. The response is that any of the living possible receiv-
ers may be selected during execution time. If no receiver is found,
the C function ErrorHandler will be called.

• For an output with the VIA clause, the behavior of the Cmicro SDL
to C Compiler is in principle the same as for an output without TO
It computes the possible receivers in an output with the VIA clause
and if there are several possible receivers, an error message is pro-
duced. The only difference between output with VIA and output
without TO is that VIA can restrict the amount of possible process-
es.

• If output with TO is used in the above cases, no ambiguity can oc-
cur. The addressing of the process is then performed by a run-time
variable.

• The possibility of specifying the name of a process when using
OUTPUT TO is implemented. This is an SDL-92 feature. The Cmi-
cro SDL to C Compiler behaves in the same way as when using im-
plicit addressing (output without to).

• The broadcast feature of SDL-92 (VIA ALL) is not implemented,
because it is not a real broadcast and not very useful for Cmicro Ap-
plications.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3313

Chapter 66 The Cmicro SDL to C Compiler
Abstract Data Types
In this section the specialities and exceptions about abstract data types
for Cmicro are discussed only. A complete documentation about the ab-
stract data types is given in chapter 57, The Cadvanced/Cbasic SDL to
C Compiler.

General C Definitions
All the macros and external definitions for functions can be found in the
file sctpred.h except for the PId sort which is handled in the file
ml_typ.h.

The C functions for the handling of predefined sorts are defined in the
file sctpred.c.

On UNIX these files can be found in $sdtdir/cmicro/kernel.

In Windows these files can be found in the Telelogic Tau installation un-
der %SDTDIR%\cmicro\kernel.

Exceptions for SDL Predefined Types
A general exception existing for all the predefined types is that the user
must configure which predefined types are to be compiled into the tar-
get C program. This is necessary to hold the target C program as small
as possible. The configuration is to be performed with the help of the
Targeting Expert, please view “Configure and Scale the Target Library”
on page 2872 in chapter 60, The Targeting Expert.

External Synonyms

External synonyms are to be defined by the user in the following way.

For a synonym like

synonym xternal integer = EXTERNAL;

Caution!

Problems will occur during compilation when the configuration is
not according to what the SDL system needs. The user should refer
to the explanations about manual scaling in chapter 67, The Cmicro
Library.
3314 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Cmicro expects to see xternal as a #define value that is to be de-
fined by the user. This can be done for example in the following way:

synonym xternal integer = EXTERNAL;
/*#CODE
#TYPE
#ifdef XSCT_CMICRO
#define xternal 7
#endif
*/

This also means, that if xternal is not defined from the user, it will
lead to compilation errors.

Charstring

Charstrings can be used either in the usual way as they are when using
Cadvanced, or they can be used in a restricted way. The decision is up
to the user and is a question of configuration. The user should be aware
that some of the predefined sorts from ASN.1 are based on the imple-
mentation of SDL charstrings. This is discussed in subsection “Support
of SDL Constructs” on page 3417 in chapter 67, The Cmicro Library.

Time/Duration

The predefined data types Time and Duration are implemented in a
more or less restrictive way. It is possible to specify a real value for
Time and Duration on SDL level, like 23.45. The Cmicro Library uses
only the integer part in front of the dot, 23 in this example. The mapping
of SDL time units to time units in a target application is – in any case –
up to the user.

UnionC

The #UNIONC directive is not recommended when using the Cmicro
SDL to C Compiler because there is no support for checking the validity
of the component selection. Both the #UNION directive and the
CHOICE concept are a better alternative.

Predefined Generators Array, String, Powerset, Bag, Ref

These generators are implemented in Cmicro, but the user should be
aware that the use of any of them requires that dynamic memory alloca-
tion is used in the target system. Generally, Cmicro tries to prevent the
use of dynamic memory allocation whenever possible. The reasons for
this are explained in chapter 67, The Cmicro Library.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3315

Chapter 66 The Cmicro SDL to C Compiler
ctypes.sdl

This package can be used together with Cmicro with the following re-
striction.

There are two operators that are excluded when Cmicro C code is com-
piled. The operators are "CStar2CString" and "CharStar".

The reason for this is that with Cmicro it is possible to define an array
of char in C instead of the predefined solution of Cadvanced (to use dy-
namic memory allocation). This is discussed in subsection “Support of
SDL Constructs” on page 3417 in chapter 67, The Cmicro Library.

byte.pr

This ADT can be used together with Cmicro in the same way as de-
scribed for Cadvanced.

file.pr

This ADT is not useful for typical Cmicro applications (embedded sys-
tems usually do not provide a hard disk in Cmicro applications) and for
that reason never has been tested. The ADT may however work with
Cmicro.

idnode.pr

This ADT cannot be used together with Cmicro because it refers to
Cadvanced code.

list1/list2.pr

This ADT cannot be used together with Cmicro because it refers to
Cadvanced code.

long_int.pr

This ADT can be used together with Cmicro.

pidlist.pr

This ADT cannot be used together with Cmicro, generally.

Instead of pidlist.pr, the user may include the cm_pidlist.pr
file. The use of this ADT is however restricted, because Cmicro imple-
ments a different scheduling algorithm. This means, that systems that
3316 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
are successfully simulated first, may contain problems when a Cmicro
target application is build and executed.

It is therefore recommended not to use neither pidlist.pr nor
cm_pidlist.pr, in order to achieve the best possible SDL conformity.

random.pr

This ADT cannot be used together with Cmicro because it refers to
Cadvanced code.

unsigned.pr

This ADT can be used together with Cmicro.

unsigned_long.pr

This ADT can be used together with Cmicro.

Default Values

Default values are in principle generated in the same way as with the
Cadvanced SDL to C Compiler. It is however possible to configure the
default value setting, which is explained in chapter 67, The Cmicro Li-
brary. The right configuration is essential to prevent illegal behavior.

Exceptions for Implementations of Operators

Read and Write Functions

The Cmicro SDL to C Compiler does not provide read and write func-
tions. The reason is, that the Cmicro SDL to C Compiler mainly is used
to build target applications, and not simulations. This is also a conse-
quence of optimizing the target program. If the user uses the Q (ques-
tion) operator, the Cmicro SDL to C Compiler ignores this.

Error Situations in Operators

In the C function used to implement operators (and literals), it is possi-
ble to define error situations and handle them as ordinary SDL run-time
errors. The C library function ErrorHandler, with the following pro-
totype

extern void ErrorHandler(xmk_OPT_INT errnum)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3317

Chapter 66 The Cmicro SDL to C Compiler
can be used for this purpose. xmk_OPT_INT is defined in ml_typ.h,
normally as an ordinary C int. errnum may be one of the free values
of error numbers. Please inspect ml_err.h in order to get a list of re-
served values.

Example 546: Error Handler in Operator–––––––––––––––––––––––––

 if (strlen(C) <= 1) {
#ifdef XMK_USE_ERR_CHECK
 ErrorHandler (ERR_N_InvalidStringLength);
#endif
 return SDL_NUL;
 } else
 return C[1];

This is a simplified version of the test in the function for the operator
First in the sort Charstring. Here the error situation is when we try to ac-
cess the first character in a charstring of length 0. In this case the C func-
tion ErrorHandler is called and a default value is returned (NULL).
By including the call to ErrorHandler between #ifdef
XMK_USE_ERR_CHECK - #endif the function is only called to report
the error, if error checks are turned on. The one parameter to the C func-
tion ErrorHandler should identify the error. The number must be giv-
en by the user.

––

Another possibility to route error messages to the host system is to use
the C function xmk_PrintString of the SDL Target Tester, defined as:

extern void xmk_PrintString(char *)

Example 547: Error Handler in Operator–––––––––––––––––––––––––

 if (strlen(C) <= 1) {
#ifdef XMK_ADD_MICRO_TESTER
 xmk_PrintString (“ERR:Invalid Stringlength”);
#endif
 return SDL_NUL;
 } else
 return C[1];

––

Access to Predefined Sorts based on Charstring

As already mentioned in earlier subsections, the user should be aware
that some of the ASN.1 predefined sorts are based on the implementa-
tion of SDL charstrings. The user should also refer to subsection “Sup-
3318 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Exceptions for Directives
port of SDL Constructs” on page 3417 in chapter 67, The Cmicro Li-
brary.

To avoid problems one should be aware that Charstring is implemented
as char * in C and take the consequences thereof. There are a number of
help functions (that implement the operators for the Charstring sort)
supplied in the run-time library that might be helpful when handling
Charstrings.

It is usually necessary to allocate dynamic memory when an operator re-
turning a charstring value is implemented. There are two help functions
that should be used in connection with allocation and de-allocation of
dynamic memory. These are documented in “Dynamic Memory Allo-
cation” on page 3450 in chapter 67, The Cmicro Library.

Exceptions for Directives

Selecting File Structure for Generated Code –
Directive #SEPARATE
The purpose of the separate generation feature is to specify the file
structure of the generated program. Both the division of the system into
a number of files and the actual file names can be specified. There are
two ways this information can be given.

• Normally this information is set up in the Organizer, using the com-
mand in chapter 2, The Organizer. Here file names for the generated
files can also be specified. In the Make dialog in the Organizer (see
“Generated Files” on page 3302) it is possible to select full separate
generation, user-defined separate generation, or no separate gener-
ation.

• For an SDL/PR file that is generated by running the SDL Analyzer
as a stand-alone tool, the same information can be entered by

Caution!

Do not use Charstring in SDL if you want to get a correct trace out-
put with the SDL Target Tester, or if you want to use the Cmicro Re-
corder. In the last case, the use of charstring may lead to a fatal error
when an SDL session is replayed.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3319

Chapter 66 The Cmicro SDL to C Compiler
#SEPARATE directives directly introduced in the SDL program.
Full separate file generation, user-defined separate file generation,
or no separate file generation can be set up in the command interface
of a stand-alone Analyzer, see “Set-Modularity” on page 2421 in
chapter 55, The SDL Analyzer.

The Cmicro SDL to C Compiler can generate a separate file for:

• System (always separate)

• Block

• Process

• Procedure

Example 548: #SEPARATE Directive –––––––––––––––––––––––––––

system S; /*#SEPARATE ’filename’ */
block B; /*#SEPARATE */
process type P1 inherits PType; /*#SEPARATE */
process P2 (1,); /*#SEPARATE */
procedure Q; /*#SEPARATE */

––

In the example above the two versions of separate directive, with or
without file name, are shown. As can be seen a file name should be en-
closed between quotes. The Cmicro SDL to C Compiler will append ap-
propriate extensions to this name when it generates code.

If no file name is given in the directive, the name of the system, block,
process, or procedure will be used to obtain a file name. In such a case
the file name becomes the name of the unit with the appropriate exten-
sion (.c .h) depending on contents. The file name is stripped of char-
acters that are not letters, digits or underscores.

The possibility to set up full, user-defined, or no separation in the Orga-
nizer’s Make dialog and in the user-interface of a stand-alone Analyzer
(see “Generated Files” on page 3302), can be used in a simple manner

Note:

Instantiations cannot be separated. If #SEPARATE directives are
used, they should be placed directly after the first semicolon in the
system, block, process, or procedure heading; see the following ex-
ample.
3320 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Exceptions for Directives
to select certain default separation schemes. This setting will be inter-
preted in the following way:

• No separation.
The whole system will be generated into one file.

• User defined separation.
The system, each package, and each unit that the user has specified
as separate will become a separate file.

• Full separation.
The system, each package, each block, block type, and process, and
process type will become a separate file. Note that even in this case
a procedure is separate only if the user has specified it as separate.

Independently if No, User defined, or Full separation has been selected,
the Cmicro SDL to C Compiler will use the file name specified in the
Edit Separation dialog or the #SEPARATE directive, for a file that is to
be generated.

An Example of the Usage of the Separate Feature

In the following example a system structure and the #SEPARATE di-
rectives are given. The same information can easily be set up in the Or-
ganizer as well. This example is then used to show the generated file
structure depending on selected generation options.

Example 549: #SEPARATE Directive –––––––––––––––––––––––––––

system S; /*#SEPARATE ’Sfile’ */
 block B1; /*#SEPARATE */
 process P11; /*#SEPARATE ’P11file’ */
 process P12;
 block B2;
 process P21;
 process P22; /*#SEPARATE */

––

Applying Full Separate Generation

If Full separate generation is selected then the following files will be
generated:

Sfile.c Sfile.h

B1.c B1.h
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3321

Chapter 66 The Cmicro SDL to C Compiler
The .c files contain the C code for the corresponding SDL unit and the
.h files contain the module interfaces.

Applying Separate Generation

If User defined separate generation is selected then the following files
will be generated:

The user defined separate generation option thus makes it possible for a
user to completely decide the file structure for the generated code. The
comments on files and extensions given above are, of course, also valid
in this case.

Applying No Separate Generation

If the separation option No is selected, only the following file will be
generated:

The comments on files and extensions earlier are valid even here.

Guidelines

Generally a system should be divided into manageable pieces of code
That is, for a large system, full separate generation should be used,
while for a small system, no separate generation ought to be used. The
possibility to regenerate and re-compile only parts of a system usually

P11file.c

P12.c

B2.c B2.h

P21.c

P22.c

Sfile.c Sfile.h Contains code for units S, B2, P21

B1.c B1.h Contains code for units B1, P12

P11file.c Contains code for unit P11

P22.c Contains code for unit P22

Sfile.c Contains code for all units
3322 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Exceptions for Directives
compensate for the overhead in generating and compiling several files
for a large system.

Assigning Priorities – Directive #PRIO

#PRIO for Processes

Priorities can be assigned to processes using the directive #PRIO. The
process priorities will affect the scheduling of processes, see “Schedul-
ing” on page 3377. A priority is a positive integer, where low value
means high priority. #PRIO directives should be placed directly after
the process heading in the definition of the current process.

Example 550: #PRIO Directive–––––––––––––––––––––––––––––––– .

Process P1; /*#PRIO 0 */
Process P2(1,1); /*#PRIO 1 */

Process P3 : P3Type; /*#PRIO 0 */
Process P4(1,1) : P4Type; /*#PRIO 1 */

––

Processes that do not contain any priority directive will have a user de-
fined default priority with the name xDefaultPrioProcess.

There are some things to be kept in mind when using process priorities:

• Priorities have to begin with zero.

• Priorities have to be consecutive (0,1,2,3,4,5).

• All instances of a type have the same priority.

• Priority decreases with increasing numbers (zero is the highest pri-
ority level).

• The default priority is to be in the range of zero to the highest prior-
ity number, that is 0 or 1 in the example above.

Note:

A file name has to be specified, using the Organizer Edit Separation
command or the #SEPARATE directive, if two units in the system
have the same name in SDL and should both be generated on sepa-
rate files. Otherwise the same file name will be used for both units.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3323

Chapter 66 The Cmicro SDL to C Compiler
#PRIO for Signals

Priorities can be assigned to signals using the directive #PRIO. The sig-
nal priorities will also effect the scheduling of processes, see “Schedul-
ing” on page 3377.

Signal priorities can be specified, either:

• in the declaration of the signal

• in SDL output

It is impossible to specify #PRIO in a SDL input. Cmicro will ignore
any occurrence of #PRIO in SDL input.

Signal priorities do affect the SDL output and the SDL create actions
only.

The following rules are to be considered here:

• Signal priorities have to be in the range from 0 to 255.

• Signal priorities do not have to be consecutive, as process priorities
have to be.

• If not specified otherwise (in SDL output) all instances of a signal
have the same priority.

• Signal priority decreases with increasing numbers (zero is the high-
est priority level).

• The signal default priority is to be specified by the user
(xDefaultPrioSignal), and must in the range of 0 to 255. As a
recommendation, this value should be set to 100, so that both high-
er, as well as lower priorities can be declared with #PRIO.

• Signal priorities come after process priorities.

• If no #PRIO is specified for a signal, neither in its declaration, nor
in any output, Cmicro uses xDefaultPrioSignal for each occur-
rence of that signal in an output.

• If #PRIO is specified only in the declaration of a signal, Cmicro uses
this specified priority in each occurrence of that signal in an output.

• If #PRIO is specified in a specific output of a signal, but not in its
declaration, then the specified #PRIO value is taken from the out-
3324 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Exceptions for Directives
put. If the signal is output without #PRIO, in that case
xDefaultPrioSignal will be used.

• For dynamic process creation, an internal create signal is used. This
signal carries the priority defined by XMK_CREATE_PRIO. As a gen-
eral recommendation, this priority should be higher than any other
signal priority.

The following example will give more explanations (note, that the val-
ues PA, PB are of sort pid):

Example 551: #PRIO Directive–––––––––––––––––––––––––––––––– .

Signal
S1, /*#PRIO 11 */
S2, /*#PRIO 22 */
S3,
S4; /*#PRIO 44 */

....
output S1 to PA
output S1 to PB; /*#PRIO 55*/
....
output S3 to PC;
output S3 to PD; /*#PRIO 66*/

––

Assuming the following C definition:

#define xDefaultPrioSignal 100

the following priorities will then be generated:

output S1 to PA--->use of prio 11
output S1 to PB--->use of prio 55
....
output S3 to PC--->use of prio 100
output S3 to PD--->use of prio 66

Modifying Outputs – Directive #EXTSIG, #ALT,
#TRANSFER
There is no difference for the #EXTSIG, #ALT and #TRANSFER di-
rectives for Cmicro compared with Cadvanced, except that the use of it
will sometime lead to a better performance. This is because if #EXTSIG
for example is used in the case of an output to the environment, the user
can prevent the Cmicro Kernel to be called (and the xOutEnv function
to be executed).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3325

Chapter 66 The Cmicro SDL to C Compiler
Output of Code Generation
This section gives an overview of the code generated by the Cmicro
SDL to C Compiler. This is useful, to make it possible to interpret the
generated code. To know how the code is generated makes it quite easy
to understand the program which is necessary and useful when testing
and debugging erroneous executable programs.

Not all the intricate details of the generated code are described here. The
depth of description is sufficient to give the reader a reasonable under-
standing of the code generation algorithms. Explanations will illustrate
what the code looks like, but not why.

The generated code contains several places where prefixes are generat-
ed, which consists of a prefix and unique numbering. The following pre-
fix is generated for all objects: “z<nnn>_”, where nnn is an incremental
number.

Allowance for conditional compilation occurs in several places
throughout the generated code. The generated C code is conditionally
compiled, for example, for dynamic process creation (create symbol). A
differentiation is made between conditional compilations generated by

Figure 577: Structure of the generated C code

system example 1

block 0

block 1

block 2

process 11

process 01

process 22process 21

sdl_cfg.h
contains defines

for automatic
scaling

.c
one or more
units are generated

.h
one or more
units are generated

.ifc
if wanted, a file
containing signal-
definitions for the
environment is
generated
3326 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
the Cmicro SDL to C Compiler (called automatic scaling, prefix
XMK_USED_) and conditional compilations which are dependent on
header files, which are to be modified by the user (called manual scal-
ing, prefix XMK_USE_).

Each compilation unit is compiled either in one a.c file or into two
files, a.c and a.h.

Only the differences are shown, when comparing the output of SDL to
C Compiler with the Cmicro SDL to C Compiler. The overall differenc-
es of the both code generators are described in the section “Differences
between Cmicro and Cadvanced” on page 3364 in chapter 67, The Cmi-
cro Library.

Header of Generated C File
Code generation on the .c file for the current unit is started by generat-
ing the following header:

Example 552: The Head of a Generated C File––––––––––––––––––––

/* Program generated by the SDL suite.Cmicro,
version x.y */
#define XSCT_CMICRO

#define C_MICRO_x_y
#define XMK_C_TIME <GenerationTime>
#include "ml_typ.h"

––

The XSCT_CMICRO macro can be used by the user to distinguish be-
tween the different Code generators, for example within ADT bodies.

The C_MICRO_x_y macro can be used by the user to distinguish be-
tween different versions of the Cmicro SDL to C Compiler. This is usu-
ally not but might become necessary if the output of the Cmicro SDL to
C Compiler is different.

The XMK_C_TIME macro is used internally when compiling and linking
and executing with the SDL Target Tester takes place. With this macro,
a rough consistency check for the generated files is done. The

Note:

Generally speaking, the ordering of the following subsections corre-
sponds to the ordering in which the code is generated.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3327

Chapter 66 The Cmicro SDL to C Compiler
<GenerationTime> of the different files that are generated is compared
in the Library and by the SDL Target Tester. If there is an inconsistency,
compilation errors will occur.

The #include "ml_typ.h" is used to include all necessary declara-
tions that the generated C code may use, including automatic scaling
from sdl_cfg.h and predefined sorts.

SECTION Types and Forward References
As a difference to SDL to C compiler, this section contains the defini-
tions for the process IDs and the forward declarations used in the gen-
erated C code.

Process IDs are generated as #define values in C, like:

#define XPTID_<UniquePrefix>_MyProcess 0

where the first process in the system is the value of 0 assigned, the sec-
ond process gets the value 1, and so on. Please refer to “Generation of
Identifiers” on page 3354 for more information.

The following forward references are generated:

extern XCONST XPDTBL yPDTBL_<UniquePrefix>_MyProcess;

Following this, the usual declarations are generated as described in
chapter 57, The Cadvanced/Cbasic SDL to C Compiler.

No synonym variables are generated when using Cmicro.

Symbol Tables
Symbol tables are only generated for the SDL Target Tester, and not
into the generated C code. The symbol tables generated for the SDL
Target Tester are described within chapter 68, The SDL Target Tester.

Tables for Processes
Tables are used to represent the behavior of SDL objects, like processes
and timers. It is not absolutely necessary to understand how these tables
are generated and how the Cmicro Kernel works with them. The follow-
ing subsections are only for those readers interested in the nature of the
table structure.
3328 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Root Process Table

The root process table contains, for each of the defined SDL process
types, a reference (i.e. a pointer) to the Process Description Table. The
Cmicro Kernel is the main user of the root process table. Via this table,
it can access all SDL process types and all SDL process instance data.
The location of the generated root process table is directly before the
yPAD-functions in the generated C file. The type definitions used in
this table are located in the ml_typ.h module.

Example 553: Code of Root Process Table ––––––––––––––––––––––

C-Type definition (ml_typ.h):

extern xPDTBL yPDTBL [];/* for the Cmicro Kernel */
#define X_END_ROOT_TABLE/* Table-End Marker of yPDTBL*/

C constants (sdl_cfg.h):

#define MAX_SDL_PROCESS_TYPES <N>

/* <Process-type-id´s> Process Types are numbered */
/* from 0 to N-1(see chapter “Generating PID”) */
#define XPTID_Process1Name 0
#define XPTID_Process2Name 1
#define XPTID_ProcessnName N-1

Figure 578: Root process table

yPDTBL_ProcessName1

yPDTBL_ProcessName2

yPDTBL_ProcessNameN

X_END_ROOT_TABLE

yPDTBL [MAX_SDL_PROCESS_TYPES+1]

yPDTBL_ProcessName1

generated C unit

yPDTBL_ProcessNameN

generated C unit

yPDTBL_ProcessName2

generated C unit
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3329

Chapter 66 The Cmicro SDL to C Compiler
C code generation for the whole system:

XPDTBL yPDTBL [MAX_SDL_PROCESS_TYPES+1] =
{
 yPDTBL_ Process1Name,
 yPDTBL_ Process2Name,

 yPDTBL_ ProcessnName,
 X_END_ROOT_TABLE
}

––

Symbol Trace Table

In order to reduce the use of dynamic memory allocation, there is a table
generated in the code which is used by the SDL Target Tester to store
and retrieve test options, like switches, which define the trace.

The table is conditionally compiled and only included if the SDL Target
Tester is contained in the target- executable.

The symbol trace table looks like:

Example 554: Code for Symbol Trace Table –––––––––––––––––––––

/***
** Symbol trace table
***/
#ifdef XMK_ADD_TEST_OPTIONS
XSYMTRACETBL *xSYMTRACETBL[MAX_SDL_PROCESS_TYPES+1] =
{
 (XSYMTRACETBL_ENTRY *) NULL, /* for first Processtype */
 (XSYMTRACETBL_ENTRY *) NULL, /* for second Processtype */

 (XSYMTRACETBL_ENTRY *) NULL, /* for last Processtype */
 X_END_SYMTRACE_TABLE /* table end marker */
};
#endif

––

More information can be obtained by reading chapter 68, The SDL Tar-
get Tester.

Optimized Decision Trace information

An option to reduce the trace information for SDL decisions by showing
only the first ten characters of the decision expression during trace. Set-
ting the environment variable CMICRO_SHORT_DECISION_TRACE to
any value prior to the Cmicro code generation is started, will have the
effect on the generated C code that all xTraceDecision<parameter>
statements will contain a parameter that is the first ten characters of the
3330 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
decision expression instead of the complete expression. This will re-
duce the trace information for systems that contain a lot of decisions.

Instance-Data-Struct

The struct is generated in the header-section of the generated C file.

Example 555: Code Generation of type definition for each SDL process

typedef struct {
 PROCESS_VARS
 TypeName1 FPAR_var1;
 TypeName2 FPAR_var1;
 TypeName3 DCL_var1;
 TypeName4 DCL_var2;
 TypeName4 yExp_DCL_var2;
 TypeName5 FPAR_var1;
} yVDef_ProcessName;

––

Instances of a given type are represented as a C array. The code gener-
ation of variables for each SDL process looks like:

Example 556 –––

#define X_MAX_INST_ProcessName upperlimitofprocessinstances1

static yVDef_ ProcessName

yINSTD_ProcessName[X_MAX_INST_ProcessName];

––

A reference to this array is generated in the Process Description Table
which is discussed in the subsection “Process Description Table” on
page 3335.

Process State Table

This table is generated for each process in the header-section of the gen-
erated C file. It contains information about the state of each process in-
stance. The table contains ordinary SDL state values as well as the val-
ues XSTARTUP and XDORMANT. XSTARTUP is generated for each instance
which is to be statically created (in (x, N) declarations, where x is > 0),
XDORMANT is the value which is used to tag a process instance as sleep-
ing. In the case of creation this instance can be reused.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3331

Chapter 66 The Cmicro SDL to C Compiler
Example 557: Code for Process State Table –––––––––––––––––––––

C typedef for the process state table (located in ml_typ.h):

typedef u_char xSTATE; /* see defines below */
#define XSTARTUP 0xff /* valid only if xSTATE is */
 /* u_char else 0xffff */
#define XDORMANT 0xfe /* valid only if xSTATE is */
 /* u_char, else 0xfffe */

C code generation for each process:

static xSTATE yPSTATETBL_znn_ProcessName
[X_MAX_INST_znn_ProcessName] =

{
 <creation-tag> /* Instance 0 */
 <creation-tag> /* Instance 1 */

 <creation-tag> /* Instance M-1 */
};

where <creation-tag> is either XSTARTUP or XDORMANT.

––

Example 558: –––

Code for a process type with 4 instances, 2 of which are to be created at
SDL system start:

static xSTATE yPSTATETBL_znn_ProcessName [4] =
{
 XSTARTUP, /* Create at SDL-system-start */
 XSTARTUP, /* Create at SDL-system-start */
 XDORMANT, /* Create later */
 XDORMANT /* Create later */
};

––

A reference to this table is created in the Process Description Table,
which is discussed in the subsection “Process Description Table” on
page 3335.

Transition Table

This is generated in the header-section of the generated C file. It con-
tains all transitions of a process, including asterisk states, asterisk inputs
and asterisk save.

The C typedef for the transition table (located in ml_typ.h) is as fol-
lows:
3332 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Example 559: Code for Transition Table ––––––––––––––––––––––––

typedef struct {
 xINPUT SignalID; /* Input, Asterisk-Input. */
 /* Input is Timer */

 /* and/or ordinary Signal */
 xSYMBOLNR SymbolNr; /* Symbolnumber to be used */
 /* in yPAD-function */
} xTR_TABLE_ENTRY;

C code generation:

static XCONST xTR_TABLE_ENTRY yTRTBL_znn_ProcessName
[XMAX_TRANS_znn_ProcessName]=

{
 /* state_0-table */
 input_1, SymbolNr,
 input_2, SymbolNr,
 XASTERISK,XSAVEID /* asterisk save */

 input_N, SymbolNr,

 /* state_1-table */

 /* state_j-table */
 input_1, SymbolNr,
 input_2, SymbolNr,

 input_N, trans_jN,
 XASTERISK,XSAVEID /* asterisk save */
};

The SymbolNr shown above is used to select the right transition in the
switch generated in the yPAD function.

Where the C define

XASTERISK is an ID defining all possible SDL Inputs (asterisk Inputs),

XSAVEID is a simple ID defined in ml_typ.h which can be compared
by the SDL Kernel to detect signal-save.

And where:

#define XASTERISK -1
#define XSAVEID xSave

––

A reference to this table is created in the Process Description Table.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3333

Chapter 66 The Cmicro SDL to C Compiler
State Index Table

This is generated in the header section of the generated C file.

Example 560: Code for State Index Table––––––––––––––––––––––––

C typedef (ml_typ.h):

typedef u_char xSTATE_INDEX;

C code generation (header of generated C file):

static xCONST xSITBL xSTATE_INDEX_znn_ProcessName
[<count_transitions_of_ProcessName] =

{
 0, /* i.e.a process with 3 states, but no asterisk states */
 /* state_0 has 2 transitions */
 2, /* state_1 has 5 transitions */
 7, /* state_2 has 3 transitions */
 10 /* table-end-index XI_TABLE_END */
};

––

The first value in the above table indicates the beginning of the first
state in the Transition Table. If asterisk state definitions are not found
in the process, this value is 0.

A reference to this table is created in the Process Description Table.

PID Table

These tables are used to store the values parent and offspring for each
process. The reason an extra table is used to store this information is to
simplify initialization. The Cmicro Kernel updates the values in the ta-
ble according to the SDL rules.

Example 561: Code for PID Table ––––––––––––––––––––––––––––––

C-type definition (ml_typ.h):

#ifdef XMK_USE_PID_ADDRESSING
 typedef struct
 {
 #ifdef XMK_USE_SDL_PARENT
 xPID Parent;
 #endif

 #ifdef XMK_USE_SDL_OFFSPRING
 xPID Offspring;
 #endif

 } xPIDTable;
#endif
3334 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
C code generation for each process:

/*-----------Process-PID-Values-------------*/
#ifdef XMK_USE_PID_ADDRESSING
 static xPIDTable yPID_TBL_z00_P1[X_MAX_INST_z00_P1];
#endif

––

A reference to this table is created in the Process Description Table,
which is discussed in the subsection “Process Description Table” on
page 3335.

Process Description Table

For each SDL process, an automatically initialized C structure is gener-
ated called process description table. This table is used in the Root Pro-
cess Table to enable the Cmicro Kernel to access process type informa-
tion as well as process instance data.

Inspect the following diagram to see which information is contained in
the process description table:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3335

Chapter 66 The Cmicro SDL to C Compiler
Allocated to each SDL process type is one table
yPDTBL_ProcessName.

The type definitions of this table are located in the ml_typ.h module.

Figure 579: Process description table

<Instance-Data-
Struct>

TypeName1

TypeName2

TypeName3

TypeName4

TypeName5

TypeName6

TypeName1

TypeName2

TypeName3

TypeName4

TypeName5

TypeName6

TypeName1

TypeName2

TypeName3

TypeName4

TypeName5

TypeName6

<Process Description Table>

 xPIDTable]

xINSTD

xINSTDLEN

MaxInstances

[xmk_T_TIMESLICE]

[xmk_T_PRIOLEVEL]

xmk_T_TRANS_ADDRESS

xTRTBL

xSITBL

xSTATE

<PID Table>

[xPId] (offspring)

[xPId] (parent)

<Process State Table>

u_char (XSTARTUP)

u_char (XDORMANT)

...........

u_char

<State Index Table>

u_char

u_char

...........

u_char

XI_TABLE_END

<Transition Table>

<input_*> <SAV|symbol>

<input_1> <symbol_1>

<input_2> <symbol_2>

<input_3> <symbol_3>

<input_x> <symbol_x>

<input_*> <SAV|symbol>

<input_1> <symbol_1>

<input_2> <symbol_2>

<input_3> <symbol_3>

<input_x> <symbol_x>
3336 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Example 562: Code for Process Description Table––––––––––––––––

C typedef for the process description table (ml_typ.h):

typedef struct {
 #ifdef XMK_USE_PID_ADDRESSING
 xPIDTable *pPIDTable; /* Table with */
 /* Parent/OffspringValues */
 #endif

 xINSTD *pInstanceData ; /* Pointer to Instancedata*/
 /* Vector */
 xINSTDLEN DataLength ; /* Length of Instancedata */
 /* for 1 Instance */
 /* (used by SDL-BS) */
 unsigned char MaxInstances ; /* Max.Number of Instances*/

 #ifdef XMK_USE_TIMESLICE
 /* Time-Slices can be individually specified by the user*/
 /* The value stored in TimeSlice is measured in ticks */
 /* The Cmicro Kernel has to be scaled to handle */
 /* timeslicing */
 xmk_T_TIMESLICE TimeSlice;
 #endif

 #ifdef XMK_USE_PREEMPTIVE
 /* Process-Priority can be specified with #PRIO on the */
 /* SDL-Level. It is available only, if the Cmicro */
 /* Kernel is scaled to handle preemption. */
 xmk_T_PRIOLEVEL PrioLevel;/*Priority of this processtype*/
 #endif

 xmk_T_TRANS_ADDRESS yPAD_Function ; /* Address of the */
 /* yPADFunction */
 xTRTBL TransitionTable ; /* Pointer to transition table */
 xSITBL *StateIndexTable ; /* Pointer to state index table */
 xSTATE *ProcessStateTable;/* Pointer to process state table
*/
} XPDTBL;

C code generation for each process:

#define X_MAX_INST_ProcessName 1

xPDTBL yPDTBL_ProcessName =
{
 yPID_TBL_znn_<process:N>,
 (xINSTD*) yINSTD_znn_ProcessName,
 X_MAX_INST_znn_ProcessName,
 (xmk_T_TRANS_ADDRESS) yPAD_znn_ProcessName,
 yTRTBL_znn_ProcessName;
 xSTATE_INDEX_znn_ProcessName,
 yPSTATETBL_znn_ProcessName;
};

––

For each generated process description table, a new entry in the Root
Process Table is generated.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3337

Chapter 66 The Cmicro SDL to C Compiler
Actions by Processes and Procedures

GR References

No code is generated to evaluate the graphical references during run-
time of the SDL system. A large amount of memory is required to store
and handle such information which normally proves too large for any
real target system.

Alternatively, C comments are generated which make it possible to ver-
ify and debug the generated code as illustrated in the following exam-
ple. The PR <position> indicates in which line number of the SDL/PR
file the symbol can be found.

For processes :
/***
** PROCESS <process-name>
** <<SYSTEM <system-name>/BLOCK <block-name>>
** #SDTREF(<reference>)
***/

For signals :
/***
** SIGNAL S1
** <<SYSTEM <system-name>/BLOCK <block-name>>
** #SDTREF(<reference>)
***/

For yPAD-function
/*++
** Function for process <process-name>
** #SDTREF(<reference>)
++*/

For output :
/*-----
** OUTPUT <signal-name>
** #SDTREF(<reference>)
------*/

For nextstate :
/*-----
** NEXTSTATE <state-name>
** #SDTREF(<reference>)
------*/

Structure of Process and Procedure Functions

The basic structure of the generated C code for process and procedure
definitions remains the same as for the SDL to C compiler although
some modifications are evident.

The code generation for the PAD function is different compared with
Cadvanced, in the way that code that is common in process types is cop-
ied into the PAD function for instantiated processes.
3338 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Procedures follow the same code generation as processes, with some
small exceptions in macro naming conventions for variable declara-
tions.

Each SDL process is represented in C by a C function called
yPAD_ProcessName.

Example 563: yPAD_ProcessName –––––––––––––––––––––––––––––

/* Function for process ProcessName */
#ifndef XNOPROTO
extern YPAD_RESULT_TYPE yPAD_ProcessName (YPAD_ANSI_PARAM)
#else
extern YPAD_RESULT_TYPE yPAD_ProcessName (YPAD_KR_PARAM)
 YPAD_KR_DEF
#endif
{
 local variable section
 State-input-selection
 {
 start-transition including nextstate
 transition-1 including nextstate
 transition-2 including nextstate

 transition-n including nextstate
 }
 pad-end-section
}

/* Function for procedure ProcedureName */
#ifndef XNOPROTO
extern YPRD_RESULT_TYPE yPAD_ProcedureName (YPRD_ANSI_PARAM)
#else
extern YPRD_RESULT_TYPE yPAD_ProcedureName (YPRD_KR_PARAM)
 YPRD_KR_DEF
#endif
{
 local variable section
 section representing procedure body
}

––

Local Variables Section

The following defines are generated in the local variables section for
processes.

Example 564 –––

YPAD_YSVARP /* used for signal variable pointers
*/
YPAD_YVARP(yVDef_z00_P1)/* used for process variables */
YPAD_TEMP_VARS /* used for temporary variables */
YPRSNAME_VAR("P1") /* can be used for printf */
BEGIN_PAD /* used for some preparations */
 /* to handle signals, or Integration*/
 /* of any Realtime operating system */
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3339

Chapter 66 The Cmicro SDL to C Compiler
After expansion by the C preprocessor:

yVDef_z00_ProcessName *yVarP
 =(yVDef_z00_ProcessName *)pRunData;
unsigned char *yOutputSignal;
unsigned char *ySVarP;

(void) printf(("PROCESS:%s\n", "ProcessName"));

if((P_MESSAGE != ((void *) 0))
 && (P_MESSAGE->mess_length > 4))
{
 ySVarP = (unsigned char *) P_MESSAGE->mess_ud.pt_ud;
}
else
{
 ySVarP = (unsigned char *) P_MESSAGE->mess_ud.ud;
}

The following defines are generated in the local variables section for
procedures:

YPRD_YVARP(yVDef_znnn_ProcedureName)
/* used for procedure variables */

YPRD_TEMP_VARS
/* used for temporary variables */

YPRDNAME_VAR("ProcedureName")
/* can be used for printf */

––

State – Input Selection

The selection of the appropriate SDL transition which is to be executed
in the current state with the current signal in the input port goes in prin-
ciple over the transition table, described in previous chapters. With this
table, the Cmicro Kernel can evaluate a symbol number, which is local
to a process, a unique numbering of the different possible transitions.
This numbering algorithm begins at 0 (which corresponds to the start
symbol) and continues until all symbols for this particular process type
have been numbered.

The appropriate transition is selected by the following switch:

switch (XSYMBOLNUMBER) {
{
 case 0:. start-transition
 nextstate;

 case 1: transition-1
 nextstate;
}

After pre-compiling it:
3340 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
switch (_xSymbolNumber_)
{

}

Start Transition

The start transition is included into the body of the generated yPAD
function and has the same layout as transitions, with the following ex-
ceptions:

Assignment of initialization values to all local variables in the processes
and procedures (if any) is executed. All DCL variables are filled with
their default-values.

The start transition is selected by the special case-value zero in the
switch-statement of the yPAD function.

Transitions

The transitions are translated in the order they are found and are only
translated to the sequence of actions they consist of. The translation of
actions are discussed in the subsection “Translation of Actions” on page
3342 following a few lines below.

PAD-End-Section

Each yPAD function is finished with:

END_PAD (yPAD_ProcessName);

The main reason for this is to make it possible to integrate other real-
time operating systems.

Note:

FPARS in dynamic process creation are not contained in this version
of the Cmicro Package.

Note:

Some compilers produce a warning if there is no return at the end of
the yPAD function. Other compilers produce a warning “unreach-
able code”, if there is a return at the end of the yPAD function. For
this reason, a function returning macro END_PAD exists which can be
expanded in accordance with the particular compiler used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3341

Chapter 66 The Cmicro SDL to C Compiler
Translation of Actions

Translation of Output

SDL output statements are translated to the following basic structure:

• allocate the data area for the parameters of the signal to be output
• assign signal parameters
• send the signal, parameters will be copied
• release the data area for the parameters of the signal.

There are a lot of different output macros generated. The main reason
for this is that for each output situation an optimized code is to be gen-
erated.

One differentiation is made for signals without parameters and signals
with parameters. For a signal without parameters, suffix _NPAR is used
for the macro generated and for a signal with parameters, suffix _PAR is
used. The relevant output macro can then be expanded to a simpler out-
put C function called xmk_SendSimple, if no signal priority is used.

Another differentiation is made for signals which are sent to the sys-
tem’s environment or which are sent internally in the SDL system. The
suffix _ENV is appended to the macros which are shown here, if the sig-
nal should go to the system environment.

The different directives which can be used within the SDL suite to mod-
ify outputs are discussed in subsection “Modifying Outputs – Directive
#EXTSIG, #ALT, #TRANSFER” on page 3325.

The other different output situations which are handled, will be de-
scribed in the next subsections.

Output without TO and without VIA

If the user specifies output SignalName without TO and VIA in SDL,
the Cmicro SDL to C Compiler calculates the receiver of the signal. It
is also possible to have more than one receiver for the signal. During ex-
ecution time, any possible receiver that are alive may be selected other-
wise if no receiver can be found, the C function ErrorHandler will be
called. The following code is generated:

ALLOC_SIGNAL_ppp(SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are some...
3342 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
SDL_OUTP_ppp(Priority,
 SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 TO_PROCESS(ProcessNamewithoutPrefix,
 ProcessNamewithPrefix),
 SignalParameterTypeStructureName,
 “SignalNamewithoutPrefix”)

After expansion, the user will find a C function call to the
xmk_SendSimple function or the xmk_Send function.

Priority is generated as xDefaultPrioSignal if no priority is specified
for the signal with #PRIO.

TO_PROCESS is expanded to a function call if there is at minimum one
(x, N) declaration in the system, where N is > 1. This function returns
one of the possible receivers of the signal.

TO_PROCESS selects an active instance of the given process type It does
not check for different types as receivers.

TO_PROCESS is expanded so that the pid is passed directly to one of the
C functions xmk_Send*, if there are only (x,1) declarations in the sys-
tem.

If the environment is the receiver of the signal, then the following code
is generated:

ALLOC_SIGNAL_ppp(SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are any...

SDL_OUTP_ppp_ENV(Priority,
 SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 ENV,
 SignalParameterTypeStructureName,
 “SignalNamewithoutPrefix”)

After expansion, the user will find that ENV is passed to one of the C
functions xmk_SendSimple or xmk_Send. ENV is a special value used

Note:

The ppp above stands for either PAR or NPAR for a Signal with or
without parameters.

Note:

The ppp above stands for either PAR or NPAR for a Signal with or
without parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3343

Chapter 66 The Cmicro SDL to C Compiler
inside the Cmicro Kernel to detect which signals are to be passed to the
C function xOutEnv.

Output with TO clause

If the user specifies the output SignalName to pid in SDL, the Cmicro
SDL to C Compiler generates the following code:

ALLOC_SIGNAL_ppp(SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 SignalParameterTypeStructureName)

ordinary assignment of Signal Parameters, if there are some...

SDL_OUTP_ppp(Priority,
 SignalNamewithoutPrefix,
 SignalNamewithPrefix,
 pid-variable,
 SignalParameterTypeStructureName,
 “SignalNamewithoutPrefix”)

Expansion reveals a C function call to the xmk_SendSimple function
or the xmk_Send function.

Priority is generated as xDefaultPrioSignal, if no priority is speci-
fied for the signal with #PRIO.

Possible generated values for pid variable are SDL_SENDER,
SDL_PARENT, SDL_OFFSPRING and SDL_SELF or an SDL pid variable.
These values are passed to the xmk_Send* functions. The name of a pro-
cess as specified in SDL may also be given.

Output with VIA clause

The Cmicro SDL to C Compiler computes the possible receivers in an
output with the VIA clause. If there are several possible receivers, an
error message is produced.

If there is exactly one receiver, the same code is generated as for SDL
output without to.

Note:

The ppp above either stands for PAR or NPAR for a Signal with or
without parameters.
3344 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
List of Generated Output Macros

• ALLOC_SIGNAL_NPAR
Allocating memory for signal without parameters

• ALLOC_SIGNAL_PAR

same for signals with parameters

• TO_PROCESS

Macro used to evaluate a receiver process instance, if necessary in
the case of (x, N) declarations, where N > 1.

• SDL_OUTP_NPAR

Output internally in the SDL system for signal without parameters

• SDL_OUTP_PAR

same for signal with parameters

• SDL_OUTP_NPAR_ENV
Output to the system environment for signal without parameters

• SDL_OUTP_PAR_ENV

same for signal with parameters

• SDL_ALTOUTP_NPAR

#ALT for an output internally in the SDL system for signal without
parameters

• SDL_ALTOUTP_PAR

same for signal with parameters

• SDL_ALTOUTP_NPAR_ENV

#ALT for an output to the system environment for signal without
parameters

• SDL_ALTOUTP_PAR_ENV

same for signal with parameters

• EXT_SignalName

if #EXTSIG is used in output

• TRANSFER_SIGNAL

#TRANSFER is used in output

Translation of Create

The create action in SDL is translated to the following C code:

ALLOC_STARTUP_ppp(ProcessNamewithoutPrefix,
 ProcessNamewithPrefix,
 “ProcessNamewithoutPrefix, 0);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3345

Chapter 66 The Cmicro SDL to C Compiler
....assignment of start-up values (cannot be used in this version of
the Cmicro Package)

SDL_CREATE(ProcessNamewithoutPrefix,
 ProcessNamewithPrefix,
 “ProcessNamewithoutPrefix, 0,
 VariableofCreatedProcess,
 PriorityofCreatedProcess,
 yPAD-functionNameofCreatedProcess);

PriorityofCreatedProcess is generated as
xDefaultPrioProcess, if no priority is specified with #PRIO.

Translation of Set

The translation of set is restricted in a few areas in order to produce ef-
ficient code for a micro controller. For example, the SDL duration ex-
pressed by a real value in the context of timers is not implemented. The
reason for this is that controllers do not have floating point operations
or floating point operations are not used in order to increase the perfor-
mance. For timers, such a high resolution is not necessary in most ap-
plications. The Cmicro Package uses a long value in its standard imple-
mentation to represent absolute time.

In order to make the examples below more readable, it is assumed that
at least one timer with parameter is used in the system (macro
XMK_USED_TIMER_WITH_PARAMS is defined in the generated file
sdl_cfg.h). If the macro is not defined, then the handling for timers
with parameters is not included.

Example 565 –––

If the following is specified in SDL/PR:

Timer TimerName;
......

Set (now + durationvalue, TimerName) ;

or
Set (now + 22222, TimerName) ;

then the following code is generated:
SDL_SET_DUR \
(xPlus_SDL_Time(SDL_NOW,SDL_DURATION_LIT(22222.0,22222,0)),
 SDL_DURATION_LIT(22222.0, 22222, 0),
 TimerName,
 TimerNamewithPrefix,
 yTim_timer2,
 "TimerNamewithoutPrefix")

––
3346 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Example 566 –––

If the following is specified in SDL/PR:

Timer TimerName := TimerGroundValue ;---> see Note: on page 3348!

then the following code is generated:

SDL_SET_TICKS
(xPlus_SDL_Time(SDL_NOW, TICKS(SDL_INTEGER_LIT(22222))),
 TICKS(SDL_INTEGER_LIT(22222)),
 TimerName,
 TimerNamewithPrefix,
 yTim_timer2,
 "TimerNamewithoutPrefix")

The code after expansion then contains a function call to

 xmk_TimerSet (TIMEEXPR,TimerNamewithPrefix,0).

TIMEEXPR is the result of the evaluation of now plus duration value.

#define SDL_SET_DUR(TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_VAR, TIMER_NAME_STRING) \

xmk_TimerSet(TIME_EXPR, TIMER_IDNODE,0);

#define SDL_SET_TICKS(TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_VAR, TIMER_NAME_STRING) \

xmk_TimerSet(TIME_EXPR,TIMER_IDNODE,0);

––

Example 567 –––

If a timer with parameter is defined in SDL/PR:

Timer TimerName (integer);
...
set (now+1, TimerName (4711));

then the following code is generated:

SDL_SET_DUR_WITH_1IPARA(xPlus_SDL_Time(SDL_NOW,
 SDL_DURATION_LIT(1.0, 1, 0)),
 SDL_DURATION_LIT(1.0, 1, 0), TimerName,
 TimerNamewithPrefix,
 yPDef_z262_twp1,
 yTim_TimerName,
 "TimerName",
 SDL_INTEGER_LIT(4711))

The code after expansion then contains a function call to

 xmk_TimerSet (TIMEEXPR,TimerNamewithPrefix,4711).

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3347

Chapter 66 The Cmicro SDL to C Compiler
Restrictions in the Use of Timers

• Timers with parameters are restrictively supported in Cmicro. There
might be only one parameter of sort “integer”. This implementation
has been chosen to achieve the highest efficiency.

• Duration values as real values are not supported in this version of
the Cmicro Package, i.e. this:

set (now + 5.5, TimerName)

is not allowed (the real part is discarded i.e. 5.5 (= 5).

Translation of Reset

If the user specifies in SDL/PR:

Reset (TimerName) ;

then the following code is generated:

SDL_RESET(TimerNamewithoutPrefix,
 TimerNamewithPrefix,
 yTim_TimerName)

The code after expansion contains a function call to xmk_TimerReset
(TimerNamewithPrefix).

For a timer with one integer parameter, the following macro call is gen-
erated:

SDL_RESET_WITH_1IPARA(TimerNamewithoutPrefix,
 TimerNamewithPrefix,
 TimerParStruct,
 yTim_TimerName,
 TimerValue)

Translation of Call

As SDL procedures are implemented with the restrictions explained
within subsection “SDL Restrictions” on page 3358, the following ex-
planatory C code (to a procedure called ex_proc) is generated:

ex_proc (....C parameters ...);

All necessary parameters are routed via the C function call stack.

Note:

Timers with parameters are supported with the restriction that only
one integer parameter is allowed.
3348 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Translation of Call to a Procedure Returning Value / Operator Diagram

Operator diagrams and procedures returning values are – considering
the call – handled in the same way please see the following explanatory
example:

Example 568: Procedure Call –––––––––––––––––––––––––––––––––

TASK i := (call p(1)) + (call Q(i,k));

is translated to something like:

i = p(1) + Q(i,k);

––

Translation of Nextstate

The nextstate operation is generated at the end of each transition con-
tained in the yPAD function, as follows:

• If the process performs simple nextstate operation:

SDL_NEXTSTATE(State1, z000_State1, "State1")

after preprocessing:

return (z000_State1);

• If it performs a nextstate, which is defined as a dash state:

SDL_DASH_NEXTSTATE

which is defined as:

return (XDASHSTATE);

Note:

The value of returning procedure calls are transformed to C func-
tions returning values.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3349

Chapter 66 The Cmicro SDL to C Compiler
Translation of Stop

A stop action is translated to:

SDL_STOP

which is defined as

return (XDORMANT);

which is good code saving. The Cmicro Kernel then enters the new state
value into the Process State Table.

Translation of Return
#ifdef XFREEVARS
 FREE_PROCESS_VARS ()
#endif

SDL_RETURN

The macro definitions are:

#define SDL_RETURN \
 if (_xxptr != (unsigned char*) NULL) \
 { \
 XMK_MEM_FREE ((unsigned char *)_xxptr); \
 } \
 return ;

where xxptr is the pointer to the procedure instance data, as given via
the C function call parameter list. Note, that the memory previously al-
located directly before the procedure call is freed at the end of the pro-
cedure, not outside of the procedure.

Translation of SDL Expressions

In this section some of the translation rules for expressions are de-
scribed. For more information see “Translation of Sorts” on page 2595
in chapter 57, The Cadvanced/Cbasic SDL to C Compiler where for ex-
ample the translation rules for literals and operators in the predefined
abstract data types are given.

Note:

This table contains ordinary SDL state values as well as the values
XSTARTUP and XDORMANT. XSTARTUP is generated for each instance
which is to be statically created (in (x, N) declarations, where x is >
0). XDORMANT is the value which is used to tag a process instance as
sleeping. In the case of creation this instance can be reused.
3350 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Output of Code Generation
Now

SDL now is translated to the macro SDL_NOW which is expanded to the
C function xmk_NOW. This function is exported by the module
mk_stim.c.

Self, Parent, Offspring, Sender

The definitions for self, parent, offspring, sender are:

#ifdef XMK_USED_SELF
#define SDL_SELF xRunPID
#endif

#ifdef XMK_USED_PARENT
#define SDL_PARENT pRunPIDTable->Parent
#endif

#ifdef XMK_USED_OFFSPRING
#define SDL_OFFSPRING pRunPIDTable->Offspring
#endif

#ifdef XMK_USED_SENDER
#define SDL_SENDER P_MESSAGE->send
#endif

All the variables above are of type xPID. All variables are maintained
by the Cmicro Kernel. xRunPID is a global variable which contains the
pid of the SDL process which is currently running. P_MESSAGE is a
pointer to the signal instance which is currently worked on.

Timer Active

An SDL timer active expression is translated to:

SDL_ACTIVE(TimerName, TimerName,
 yTim_TimerName)

which is expanded to:

xmk_TimerActive(TimerName)

A conditional expression in SDL is translated to a conditional expres-
sion in C.

Init Function
An explicit initialization function is not generated by the Cmicro SDL
to C Compiler in any case.

The structure of the SDL system is not generated into the C code. What
is seen in the generated code, is the behavior of the SDL system. Vari-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3351

Chapter 66 The Cmicro SDL to C Compiler
ables of processes are initialized during the start transition of a process
and no information about the structure of the SDL system is available
during run-time in the generated code.

An initialization function is generated only in that case if synonyms are
used within SDL, which require an initialized C variable.

All this results in a more compact executable.

For example, the following use of an SDL synonym results in a gener-
ated initialization function:

synonym a integer := /*#CODE anyUserFunction () */

The following C code is then generated within the C function yInit:

yAssF_SDL_Integer(a, anyUserFunction (), XASS);

yInit is called by the Cmicro Kernel if the define

XMK_USED_INITFUNC

is generated into the file sdl_cfg.h, which is done in the case above.

Initialization of Synonyms

The Cmicro SDL to C Compiler allows SDL synonyms to be imple-
mented as C macros and C variables.

Initialization is implemented within the C function yInit which is con-
ditionally compiled.

Function main
The C function main is not automatically generated by the Cmicro SDL
to C Compiler. This is unnecessary because the main function usually
is provided from the user or the predefined main function can be used.
Instead of an automatically generated main function, the user must
supply the function body of main, for target applications. Guidelines
can be found in the subsection “Implementation of Main Function” on
page 3437 in chapter 67, The Cmicro Library.
3352 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Symbol Table File
Symbol Table File
The structure of an SDL system can be represented by a tree diagram.
In SDL the root of the tree is represented by the SDL system followed
by blocks, block substructures, processes and procedures1. Channels,
channel substructures and signal routes are also represented in the tree.
This tree is static, which means it cannot be modified during the run-
time of an SDL system.

The SDL to C Compiler generates code so that this static structure is
present in the generated code. This is good for debugging purposes.

The Cmicro SDL to C Compiler generates code so that this static struc-
ture is not present in the generated code, in order to spare memory. To
enable debugging of the generated code, C comments are generated.
Please consult the subsection “GR References” on page 3338.

A symbol table is necessary for the SDL Target Tester running on the
host or the development system.

For more information consult chapter 68, The SDL Target Tester.

1. In SDL-92 several SDL systems can exist in parallel.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3353

Chapter 66 The Cmicro SDL to C Compiler
Generation of Identifiers

Processes and Process IDs (PID)
In order to implement the environment functions, it is important to no-
tice that process IDs in Cmicro are generated into the sdl_cfg.h file,
which must be included by the user’s environment C module. These IDs
are coded like it is described in “Generated Configuration File” on page
3302. More explanations are given in the following.

Since process IDs might become ambiguous, especially in block type
and process type instantiations in SDL’92, the names of process IDs
that are to be used in the environment functions are to be given a prefix.
Using this prefix within the environment functions (xInEnv), it can be
guaranteed that different process IDs (equates to “instance sets” in
SDL’92) with the same name can be distinguished, which is necessary
in order to send signals to the right process instance within the SDL sys-
tem. On the other hand, prefixes are not necessary when all the process
instance sets within the system have a different name. The Cmicro SDL
to C Compiler uses an algorithm to calculate the prefixes in the most
convenient way.

For example, if a process named “myprocess” exists only once within
the SDL system, there will be no automatic prefix generated, e.g. the
full process ID is

#define XPTID_myprocess 0

If, as another example, the process “myprocess” exists twice, for exam-
ple once within a block called “myfirstblock” and once more within a
block called “mysecondblock”, the Cmicro SDL to C Compiler then
creates two definitions which guarantee that the processes can be distin-
guished:

#define XPTID_myfirstblock_myprocess 0
#define XPTID_mysecondblock_myprocess 1

In this way, by adding scope names (block names), prefixes are always
generated in a way so that no naming conflicts occur. Of course, for pro-
cess and block type instantiations, the name of the instance is being used
to generate this unambiguous prefix.

SDL process types (process instance sets in SDL’92), as well as SDL
process instances are numbered consecutively beginning with zero. The
3354 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generation of Identifiers
ordering of these numbers is the same as the ordering of the processes
in the SDL/PR file.

The values 250 to 255 are reserved for internal purposes and must not
be used for process type numbering. The Targeting Expert checks this
rule automatically. For small systems this does not create any problems.

The Cmicro Kernel assumes the above definitions.

In the generated C code, the SDL values self, sender, parent and off-
spring, and variables of this type are represented by the typedef xPID.
The intention is to have unique numbering of processes and their in-
stances in the whole SDL system. This becomes necessary because of
the Cmicro Code no longer containing the structure of the SDL system
(system, block...). The typedef xPID is defined as

• unsigned char or unsigned int
if there are only (x,1) declarations in the system no distinction be-
tween instances is necessary. This is automatically detected. See the
flag XMK_USED_ONLY_X_1 in the section “Automatic Scaling In-
cluded in Cmicro” on page 3426 in chapter 67, The Cmicro Library.

• unsigned int or unsigned long
if there is at minimum one (x, N) declaration in the system, where
N > 1, instances need to be distinguishable from each other.

There are a few macros defined to extract the process type number or
the process instance number from a variable of the type xPID and to
build an xPID variable from a process type number and a process in-
stance number, the users do not have to think about the internal repre-
sentation:

Example 569: Macros to extract process type or instance number ––

processtype = EPIDTYPE(xPID_variable)
processinstance = EPIDINST(xPID_variable)
xPID_variable = GLOBALPID(processtype, processinstance)

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3355

Chapter 66 The Cmicro SDL to C Compiler
Signals and Timers
SDL signals and timers are numbered automatically by the Cmicro SDL
to C Compiler so that they have a unique number over the complete sys-
tem. Timers are represented by the values 1, 2, 3.... MT to the last timer
of the MT timers in the system. After that follow ordinary SDL signal
numbers beginning with MT+1, MT+2, MT+3... MT + MS.

When using the standard Cmicro Package, as delivered, then the values
0 and 251 to 255 are reserved for internal purposes. If the upper limit of
250 signals and timers is being reached, then the signal ID type has to
be changed from unsigned char to unsigned int, thus allowing
more than 60000 signals/timers to be handled. All these changes will be
done if the flag XMK_USE_MORE_THAN_250_SIGNALS is set.

Example 570: ––

C code generated for signals and timers:

#define znnn_SignalName 1
#define znnn_SignalName 2

––

Where znnn_ is the automatically generated prefix which is required to
cope with the SDL scope rules. Remember, that processes in SDL can
have the same name as signals, states etc. Prefixing, however, ensures
uniquely named SDL objects in the generated C Code.

Caution!

The Cmicro SDL to C Compiler does not check for the upper limit
of 250 signals being reached for a generated SDL system. Instead
the Targeting Expert will check the amount of signals and timers in
the SDL system and will inform the user.
3356 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generation of Identifiers
Example 571: ––

A system with 2 signals S1 and S2, and a timer TIMER1:

#define z049_TIMER1 1
#define z050_S1 2
#define z051_S2 3

––

When it comes to connecting the environment to the SDL system, the
automatic numbering of signal IDs and timer IDs may not be required.
If the user wants to prevent the automatic numbering of signals, then it
is possible to #include a file containing all the signal and timer numbers.
The file may contain something like:

#undef SignalOrTimerName
#define SignalOrTimerName AnyValueAccordingToKernelRules

States
SDL states are consecutively numbered from 1 through to N for each
process type. The values 0, and 250 to 255 are reserved for internal pur-
poses in the Cmicro Package. This restriction incurs no foreseeable dif-
ficulty as processes should never have more than 50 States as a recom-
mendation.

If there are even more states per process the flag
XMK_USE_HUGE_TRANSITIONTABLES must be set.

The following C code generation is supplied for the header-section of
the generated C file(s).

For each SDL process:

#define znnn_State1Name 1
#define znnn_State2Name 2
....
#define znnn_State3Name 3

Example 572: ––

For a process with 2 states S1 and S2:

#define z020_S1
#define z021_S2

––

These values are used in the state-index-table and in the generated C
functions, wherever a nextstate is referenced.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3357

Chapter 66 The Cmicro SDL to C Compiler
SDL Restrictions

General
The Cmicro SDL to C Compiler handles SDL concepts according to the
definition of SDL-92. In addition to the restrictions of all the SDL to C
Compilers, the following additional restrictions are introduced for the
Cmicro SDL to C Compiler:

• Inheritance of procedures
• Procedures with states
• Remote Procedure Calls
• Nested procedure call data scope
• Export / Import
• View / Reveal
• Enabling condition / Continuous signal
• Service and priority input and output
• Channel substructure
• Declaring an infinite number of process instances (x,) or (,)
• FPARS when creating a process
• Omission of parameters in a signal input
• Output via all
• Timers duration values cannot be real
• Timers with more than one parameter
• Timers with another parameter than sort integer
• The any expression
• Only the list of ADT and packages that are explained in the subsec-

tion “Exceptions for SDL Predefined Types” on page 3314 and the
subsection “Exceptions for Implementations of Operators” on page
3317 are handled correctly with Cmicro.

The following restrictions are additional regarding the packages that are
delivered together with the SDL suite.

sdth2sdl
It is impossible to read in header files created with Cadvanced and use
them in Cmicro and the other way around. The reason is that it is impos-
sible to mix up C code between Cadvanced/Cbasic and Cmicro.
3358 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL Restrictions
Combining Cadvanced / Cmicro C Code
Mixing C code from different C Code Generators is not possible as the
different code generators use their own run-time model and run-time
data structures. Trying to mix up the C code will lead to compilation er-
rors.

Light and Tight Integrations
The Light and Tight Integrations delivered with the SDL suite are only
available for Cadvanced but not applicable to Cmicro. There are light
and tight integrations for Cmicro but these are not part of the product.

Restrictions in Combination with SDL Target
Tester

Scope Rules / Qualifiers

If the SDL Target Tester is to be used, then the scope rules of SDL are
handled in a restrictive fashion. No information is generated for the sys-
tem, block, block substructure, channel and signalroute. After applying
the Cmicro SDL to C Compiler, all the structuring information is lost.

This means that it is impossible to address two different processes with
the same name in different blocks. In order to avoid problems, give all
processes, signals and timers in the system a different (unique) name.

Predefined Sorts

The predefined sort charstring and all the predefined sort that are based
on the implementation of charstring (like predefined sorts from ASN.1)
cannot be handled, if the SDL Target Tester is to be used. All predefined
sorts which are generated into pointers in C cannot be used. In order to
get a detailed description, please see in chapter 68, The SDL Target
Tester.

Analyzer Restrictions

The restrictions in the SDL Analyzer, which also affects the Cmicro
SDL to C Compiler, are summarized in chapter 55, The SDL Analyzer.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3359

Chapter 66 The Cmicro SDL to C Compiler
3360 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	66 The Cmicro SDL to C Compiler
	Application Area for the Cmicro SDL to C Compiler
	Highly Optimized Code for Target
	Target Debug

	Overview of the Cmicro SDL to C Compiler
	Generated Files
	Generated Configuration File
	Generated C File
	Generated Environment Header File
	Sorts
	Signal IDs and Parameter Structures
	Process IDs

	Generated Make File
	Generated Symbol File
	Generated Kernel Group File

	Implementation
	Time
	Real Time

	Scheduling
	Assigning Priorities to Processes – Preemptive Scheduling
	Assigning Priorities to Signals
	Combinations of Signal/Process Priority

	Synonyms
	External Synonyms

	Procedure Calls and Operator Calls
	Generation of PAD function
	Any
	Calculation of Receiver in Outputs

	Abstract Data Types
	General C Definitions
	Exceptions for SDL Predefined Types
	External Synonyms
	Charstring
	Time/Duration
	UnionC
	Predefined Generators Array, String, Powerset, Bag, Ref
	ctypes.sdl
	byte.pr
	file.pr
	idnode.pr
	list1/list2.pr
	long_int.pr
	pidlist.pr
	random.pr
	unsigned.pr
	unsigned_long.pr
	Default Values

	Exceptions for Implementations of Operators
	Read and Write Functions
	Error Situations in Operators
	Access to Predefined Sorts based on Charstring

	Exceptions for Directives
	Selecting File Structure for Generated Code – Directive #SEPARATE
	An Example of the Usage of the Separate Feature

	Assigning Priorities�–�Directive #PRIO
	#PRIO for Processes
	#PRIO for Signals

	Modifying Outputs – Directive #EXTSIG, #ALT, #TRANSFER

	Output of Code Generation
	Header of Generated C File
	SECTION Types and Forward References
	Symbol Tables
	Tables for Processes
	Root Process Table
	Symbol Trace Table
	Optimized Decision Trace information
	Instance-Data-Struct
	Process State Table
	Transition Table
	State Index Table
	PID Table
	Process Description Table

	Actions by Processes and Procedures
	GR References
	Structure of Process and Procedure Functions
	Local Variables Section
	State – Input Selection
	Start Transition
	Transitions
	PAD-End-Section
	Translation of Actions
	Translation of SDL Expressions

	Init Function
	Initialization of Synonyms

	Function main

	Symbol Table File
	Generation of Identifiers
	Processes and Process IDs (PID)
	Signals and Timers
	States

	SDL Restrictions
	General
	sdth2sdl
	Combining Cadvanced / Cmicro C Code
	Light and Tight Integrations
	Restrictions in Combination with SDL Target Tester
	Scope Rules / Qualifiers
	Predefined Sorts
	Analyzer Restrictions

