
July 2003 Telelo

Chapter
62 The Master Library
This chapter covers the following topics:

• The structure of the source code of the SDL suite Master Li-
brary

• The runtime model used for the programs generated by the
SDL to C compiler. The chapter also describes the data struc-
tures for representing the various SDL objects.

• The memory requirements for applications

• How to make a customized Master Library

• The compilation switches which affect the properties of the
Master Library

Note that the Master Library is only used together with the Cad-
vanced/Cbasic SDL to C Compiler. It cannot be used together with
the Cmicro SDL to C Compiler.
gic Tau 4.5 User’s Manual ,um-st1 2949

Chapter 62 The Master Library
Introduction
This chapter describes the source code of the runtime library for appli-
cations generated by the Cadvanced/Cbasic SDL to C Compiler. Appli-
cations generated by the Cmicro SDL to C Compiler are not covered.

The chapter covers basically two topics:

1. The sections “File Structure” on page 2951, “The Symbol Table” on
page 2954, and “The SDL Model” on page 2992 describe the run-
time model for programs generated by the SDL Cadvanced/Cbasic
SDL to C Compiler.

Mainly it is the data structure used to represent various SDL objects
that is discussed, both from the static point of view (the type defini-
tions), and from the dynamic point of view (what information it rep-
resents and how it is initialized, changed, and used).

The full runtime model that is used during simulations (with the
monitor) is described. From this model, an optimization is made to
obtain an application (not using the monitor). The optimization is
discussed under “Compilation Switches” on page 3041.

2. In the sections “Compilation Switches” on page 3041, “Creating a
New Library” on page 3061, and “Adaptation to Compilers” on
page 3069, different aspects on how to make new versions of the
runtime library are discussed.

The compilation switches treated in the section “Compilation
Switches” on page 3041 are used to determine the properties of the
runtime library and the generated C code, while section “Creating a
New Library” on page 3061 shows how to make new versions of the
runtime library using for example new combinations of compilation
switches.

In the section “Adaptation to Compilers” on page 3069, porting is-
sues are discussed.
2950 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 File Structure
File Structure
The runtime library is structured into a number of files. These are:

– scttypes.h
– sctlocal.h
– sctpred.h
– sctsdl.c
– sctpred.c
– sctutil.c
– sctmon.c
– sctpost.c
– sctos.c
– post.h, sdt.h, itex.h, dll.h

On UNIX:
– post.o

In Windows:

– libpost.lib (the statically linked library)
– post.lib (for dynamically linking)
– post.dll (the dynamically linked library)

On UNIX, all files can be found in the directory $telelogic/sdt/sdt-
dir/<machine dependent dir>/INCLUDE where <machine depen-
dent dir> is for example sunos5sdtdir on SunOS 5, and hppasdt-
dir on HP.

In Windows, all files can be found in the directory <installation
directory>\sdt\sdtdir\wini386\include. There are different
kernel directories for the Borland and the Microsoft compiler. The Bor-
land directories have the prefix scta while the Microsoft compiler di-
rectories have the prefix sctam.

Description of Files

scttypes.h

This file contains type definitions and extern declarations of variables
and functions. The file is included by sctsdl.c, sctpred.c,
sctutil.c, sctmon.c, sctpost.c, sctos.c, and by each gener-
ated C file.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2951

Chapter 62 The Master Library
sctlocal.h

This file contains type definitions and extern declarations of variables
and functions that are used only in the kernel. This file is not included
in generated code.

sctpred.h

This file contains type definitions and extern declarations handling the
predefined data types in SDL (except PId, which is in scttypes.h).
This file is included in generated code via scttypes.h.

sctsdt.c

In this file the implementation of the SDL operations can be found, to-
gether with the functions used for scheduling. In more detail, this file
contains groups of functions for:

• Handling and reporting SDL dynamic errors

• SDL operations, such as Output, Create, Stop, Nextstate, Set, Reset,
together with help functions for these activities

• Initialization and the main loop (the scheduler).

sctpred.c

The functions implementing the operations defined in the SDL pre-
defined data types can be fund in this file. Operators for PId is imple-
mented in sctsdl.c.

sctutil.c

This file contains basic read and write functions together with functions
to handle reading and writing of values of abstract data types, including
the predefined data types. It also contains the functions for MSC trace.

sctmon.c

The sctmon.c file contains the functions that implement the monitor
interface, that is, interpreting and executing monitor commands.

sctpost.c

This file contains all the basic functions that are used to connect a sim-
ulator with the other parts of the SDL suite.
2952 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 File Structure
sctos.c

In this file, some functions that represent the dependencies of hardware,
operating system and compiler are placed.

The basic functions necessary for an application are a function to read
the clock and a function to allocate memory.

To move a generated C program plus the runtime library to a new plat-
form (including a new compiler), the major changes are to be made in
this file, together with writing a new section in scttypes.h to describe
the properties of the new compiler.

post.h and sdt.h

These files are included in sctpost.c if the communication mecha-
nism with other the SDL suite applications should be part of the actual
object code version of the library. The file post.h contains the func-
tion interface, while sdt.h contains message definitions.

post.o (post.lib in Windows)

This file contains the implementation of functions needed to send mes-
sages, via the Postmaster, to other tools in the SDL suite.

Caution!

Windows only: When linking with the PostMaster’s dynamically
linked libraries (post.lib and post.dll), the environment vari-
able USING_DLL must be defined before including post.h. Exam-
ple:

#define USING_DLL
#include “post.h”
#undef USING_DLL
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2953

Chapter 62 The Master Library
The Symbol Table
The symbol table is used for storing information mainly about the static
properties of the SDL system, such as the block structure, connections
of channels and the valid input signal set for processes. Some dynamic
properties are also placed in the symbol table; for example the list of all
active process instances of a process instance set. This is part of the
node representing the process instance set.

The nodes in the symbol table are structs with components initialized in
the declaration. During the initialization of the application, in the yInit
function in generated code, a tree is built up from these nodes.

Symbol Table Tree Structure
The symbol table is created in two steps:

1. First, symbol table nodes are declared as structs with components
initialized in the declaration (in generated code).

2. Then, the yInit function (in generated code) updates some compo-
nents in the nodes and builds a tree from the nodes. This operation
is not needed in an application!

The following names can be used to refer to some of the nodes that are
always present. These names are defined in scttypes.h.

xSymbolTableRoot
xEnvId
xSrtN_SDL_Bit
xSrtN_SDL_Bit_String
xSrtN_SDL_Boolean
xSrtN_SDL_Character
xSrtN_SDL_Charstring
xSrtN_SDL_Duration
xSrtN_SDL_IA5String
xSrtN_SDL_Integer
xSrtN_SDL_Natural
xSrtN_SDL_Null
xSrtN_SDL_NumericString
xSrtN_SDL_Object_Identifier
xSrtN_SDL_Octet
xSrtN_SDL_Octet_String
xSrtN_SDL_PId
xSrtN_SDL_PrintableString
xSrtN_SDL_Real
xSrtN_SDL_Time
xSrtN_SDL_VisibleString
2954 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
xSymbolTableRoot is the root node in the symbol table tree. Below
this node the system node is inserted. After the system node, there is a
node representing the environment of the system (xEnvId). Then there
is one node for each package referenced from the SDL system. This is
true also for the package predefined containing the predefined data
types. The nodes for the predefined data types, that are sons to the node
for the package predefined, can be directly referenced by the names
xSrtN_SDL_xxx, according to the list above.

Nodes in the symbol table are placed in the tree exactly according its
place of declaration in SDL. A node that represent an item declared in
a block is placed as a child to that block node, and so on. The hierarchy
in the symbol table tree will directly reflect the block structure and dec-
larations within the blocks and processes.

A small example can be found in Figure 550 on page 3029. The follow-
ing node types will be present in the tree:

Node Type Description

xSystemEC Represent the system or the system instance.

xSystemTypeEC Represents a system type.

xPackageEC Represents a package.

xBlockEC Represent blocks and block instances.

xBlockTypeEC Represents a block type.

xBlockSubstEC Represents a block substructure and can be
found as a child of a block node.

xProcessEC Represent processes and process instances.
The environment process node is placed after
the system node and is used to represent the
environment of the system.

xProcessTypeEC Represents a process type.

xServiceEC Represents a service or service instance.

xServiceTypeEC Represents a service type.

xProcedureEC Represents a procedure.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2955

Chapter 62 The Master Library
xOperatorEC Represents an operator diagram, i.e. an ADT
operator with an implementation in SDL.

xCompoundStmtEC Represents a compound statement containing
variable declarations.

xSignalEC
xTimerEC

Represents a signal or timer type.

xRPCSignalEC Represents the implicit signals (pCALL,
pREPLY) used to implement RPCs.

xSignalParEC There will be one signal parameter node, as a
child to a signal, timer, and RPC signal node,
for each signal or timer parameter.

xStartUpSignalEC Represents a start-up signal, that is, the signal
sent to a newly created process containing the
actual FPAR parameters. An
xStartUpSignalEC node is always placed
directly after the node for its process.

xSortEC
xSyntypeEC

Represents a newtype or a syntype.

Struct Component
Node
(xVariableEC)

A sort node representing a struct has one
struct component node as child for each struct
component in the sort definition.

xLiteralEC A sort node similar to an enum type has one
literal node as child for each literal in literal
list.

xStateEC Represents a state and can be found as a child
to process and procedure nodes.

xVariableEC
xFormalParEC

Represents a variable (DCL) or a formal pa-
rameter (FPAR) and can be found as children
of process and procedure nodes.

xChannelEC
xSignalRouteEC
xGate

Represents a channel, a signal route, or a gate.

xRemoteVarEC Represents a remote variable definition.

xRemotePrdEC Represents a remote procedure definition.

Node Type Description
2956 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
The nodes (the struct variables) will in generated code be given names
according to the following table:

ySysR_SystemName
 (system, system type, system instance)
yPacR_PackageName
yBloR_BlockName
 (block, block type, block instance)
yBSuR_SubstructureName
yPrsR_ProcessName
 (process, process type, process instance)
yPrdR_ProcedureName (procedure, operator)
ySigR_SignalName
 (signal, timer, startup signal, RPC signal)
yChaR_ChannelName (channel, signal route, gate)
yStaR_StateName
ySrtR_NewtypeName (newtype, syntype)
yLitR_LiteralName
yVarR_VariableName
 (variable, formal parameter, signal
 parameter, struct component, synt.variable)
yReVR_RemoteVariable
yRePR_RemoteProcedure

In most cases it is of interest to refer to a symbol table node via a pointer.
By taking the address of a variable according to the table above, i.e.

& yPrsR_Process1

such a reference is obtained. For backward compatibility, macros ac-
cording to the following example is also generated for several of the en-
tity classes:

#define yPrsN_ProcessName (&yPrsR_ProcessName)

xSyntVariableEC Represents implicit variables or components
introduced by the Cadvanced/Cbasic SDL to
C Compiler. Used only by the Validator.

xSynonymEC Represent synonyms. Used only by the Vali-
dator.

Node Type Description
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2957

Chapter 62 The Master Library
Types Representing the Symbol Table Nodes
The following type definitions, from the file scttypes.h, are used in
connection with the symbol table:

typedef enum {
 xRemoteVarEC,
 xRemotePrdEC,
 xSignalrouteEC,
 xStateEC,
 xTimerEC,
 xFormalParEC,
 xLiteralEC,
 xVariableEC,
 xBlocksubstEC,
 xPackageEC,
 xProcedureEC,
 xOperatorEC,
 xProcessEC,
 xProcessTypeEC,
 xGateEC,
 xSignalEC,
 xSignalParEC,
 xStartUpSignalEC,
 xRPCSignalEC,
 xSortEC,
 xSyntypeEC,
 xSystemEC,
 xSystemTypeEC,
 xBlockEC,
 xBlockTypeEC,
 xChannelEC,
 xServiceEC,
 xServiceTypeEC,
 xCompoundStmtEC,
 xSyntVariableEC
 xMonitorCommandEC
} xEntityClassType;

typedef enum {
 xPredef, xUserdef, xEnum,
 xStruct, xArray, xGArray, xCArray,
 xOwn, xORef, xRef, xString,
 xPowerSet, xGPowerSet, xBag, xInherits, xSyntype,
 xUnion, xUnionC, xChoice
} xTypeOfSort;

typedef char *xNameType;
2958 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
typedef struct xIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
} xIdRec;

 /*BLOCKSUBSTRUCTURE*/
typedef struct xBlockSubstIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
} xBlockSubstIdRec;

 /*LITERAL*/
typedef struct xLiteralIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 int LiteralValue;
} xLiteralIdRec;

 /*PACKAGE*/
typedef struct xPackageIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
#ifdef XIDNAMES
 xNameType ModuleName;
#endif
} xPackageIdRec;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2959

Chapter 62 The Master Library
 /*SYSTEM*/
typedef struct xSystemIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xIdNode *Contents;
 xPrdIdNode *VirtPrdList;
 xSystemIdNode Super;
#ifdef XTRACE
 int Trace_Default;
#endif
#ifdef XGRTRACE
 int GRTrace;
#endif
#ifdef XMSCE
 int MSCETrace;
#endif
} xSystemIdRec;

 /*CHANNEL,SIGNALROUTE,GATE*/
#ifndef XOPTCHAN
typedef struct xChannelIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xSignalIdNode *SignalSet; /*Array*/
 xIdNode *ToId; /*Array*/
 xChannelIdNode Reverse;
} xChannelIdRec; /* And xSignalRouteEC.*/
#endif

 /*BLOCK*/
typedef struct xBlockIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
2960 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xBlockIdNode Super;
 xIdNode *Contents;
 xPrdIdNode *VirtPrdList;
 xViewListRec *ViewList;
 int NumberOfInst;
#ifdef XTRACE
 int Trace_Default;
#endif
#ifdef XGRTRACE
 int GRTrace;
#endif
#ifdef XMSCE
 int MSCETrace;
 int GlobalInstanceId;
#endif
} xBlockIdRec;

 /*PROCESS*/
typedef struct xPrsIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xStateIdNode *StateList;
 xSignalIdNode *SignalSet;
#ifndef XNOUSEOFSERVICE
 xIdNode *Contents;
#endif
#ifndef XOPTCHAN
 xIdNode *ToId; /*Array*/
#endif
 int MaxNoOfInst;
#ifdef XNRINST
 int NextNr;
 int NoOfStaticInst;
#endif
 xPrsNode *ActivePrsList;
 xptrint VarSize;
#if defined(XPRSPRIO) || defined(XSIGPRSPRIO) || \
 defined(XPRSSIGPRIO)
 int Prio;
#endif
 xPrsNode *AvailPrsList;
#ifdef XTRACE
 int Trace_Default;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2961

Chapter 62 The Master Library
#endif
#ifdef XGRTRACE
 int GRTrace;
#endif
#ifdef XBREAKBEFORE
 char *(*GRrefFunc) (int, xSymbolType *);
 int MaxSymbolNumber;
 int SignalSetLength;
#endif
#ifdef XMSCE
 int MSCETrace;
#endif
#ifdef XCOVERAGE
 long int *CoverageArray;
 long int NoOfStartTransitions;
 long int MaxQueueLength;
#endif
 void (*PAD_Function) (xPrsNode);
 void (*Free_Vars) (void *);
 xPrsIdNode Super;
 xPrdIdNode *VirtPrdList;
 xBlockIdNode InBlockInst;
#ifdef XBREAKBEFORE
 char *RefToDefinition;
#endif
} xPrsIdRec;

#ifndef XNOUSEOFSERVICE
 /*SERVICE*/
typedef struct xSrvIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xStateIdNode *StateList;
 xSignalIdNode *SignalSet;
#ifndef XOPTCHAN
 xIdNode *ToId;
#endif
 xptrint VarSize;
#ifdef XBREAKBEFORE
 char *(*GRrefFunc) (int, xSymbolType *);
 int MaxSymbolNumber;
 int SignalSetLength;
#endif
#ifdef XCOVERAGE
 long int *CoverageArray;
 long int NoOfStartTransitions;
#endif
2962 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
 xSrvNode *AvailSrvList;
 void (*PAD_Function) (xPrsNode);
 void (*Free_Vars) (void *);
 xSrvIdNode Super;
 xPrdIdNode *VirtPrdList;
} xSrvIdRec;
#endif

 /*PROCEDURE*/
typedef struct xPrdIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xStateIdNode *StateList;
 xSignalIdNode *SignalSet;
 xbool (*Assoc_Function) (xPrsNode);
 void (*Free_Vars) (void *);
 xptrint VarSize;
 xPrdNode *AvailPrdList;
#ifdef XBREAKBEFORE
 char *(*GRrefFunc) (int, xSymbolType*);
 int MaxSymbolNumber;
 int SignalSetLength;
#endif
#ifdef XCOVERAGE
 long int *CoverageArray;
#endif
 xPrdIdNode Super;
 xPrdIdNode *VirtPrdList;
} xPrdIdRec;

typedef struct xRemotePrdIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xRemotePrdListNode RemoteList;
} xRemotePrdIdRec;

 /* SIGNAL, TIMER */
typedef struct xSignalIdStruct {
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2963

Chapter 62 The Master Library
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xptrint VarSize;
 xSignalNode *AvailSignalList;
 xbool (*Equal_Timer) (void *, void *);
#ifdef XFREESIGNALFUNCS
 void (*Free_Signal) (void *);
#endif
#ifdef XBREAKBEFORE
 char *RefToDefinition;
#endif
#if defined(XSIGPRIO) || defined(XSIGPRSPRIO) ||
defined(XPRSSIGPRIO)
 int Prio;
#endif
} xSignalIdRec; /* and xTimerEC, xStartUpSignalEC,
 and xRPCSignalEC.*/

 /*STATE*/
typedef struct xStateIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 int StateNumber;
 xInputAction *SignalHandlArray;
 int *InputRef;
 xInputAction (*EnablCond_Function)
 (XSIGTYPE, void *);
 void (*ContSig_Function)
 (void *, int *, xIdNode *, int *);
 int StateProperties;
#ifdef XCOVERAGE
 long int *CoverageArray;
#endif
 xStateIdNode Super;
#ifdef XBREAKBEFORE
 char *RefToDefinition;
#endif
} xStateIdRec;
2964 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
 /*SORT*/
typedef struct xSortIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
#ifdef XFREEFUNCS
 void (*Free_Function) (void **);
#endif
#ifdef XTESTF
 xbool (*Test_Function) (void *);
#endif
 xptrint SortSize;
 xTypeOfSort SortType;
 xSortIdNode CompOrFatherSort;
 xSortIdNode IndexSort;
 long int LowestValue;
 long int HighestValue;
 long int yrecIndexOffset;
 long int typeDataOffset;
} xSortIdRec;

 /*VARIABLE,...*/
typedef struct xVarIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
#endif
 xSortIdNode SortNode;
 xptrint Offset;
 xptrint Offset2;
 int IsAddress;
} xVarIdRec; /* And xFormalParEC and
 xSignalParEC.*/

typedef struct xRemoteVarIdStruct {
 xEntityClassType EC;
#ifdef XSYMBTLINK
 xIdNode First;
 xIdNode Suc;
#endif
 xIdNode Parent;
#ifdef XIDNAMES
 xNameType Name;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2965

Chapter 62 The Master Library
#endif
 xptrint SortSize;
 xRemoteVarListNode RemoteList;
} xRemoteVarIdRec;

There are also pointer types defined for each of the xECIdStruct ac-
cording to the following example:

typedef XCONST struct xIdStruct *xIdNode;

The type definitions above define the contents in the symbol table
nodes. Each xECIdStruct, where EC should be replaced by an appro-
priate string, have the first five components in common. These compo-
nents are used to build the symbol table tree. To access these compo-
nents, a pointer to a symbol table node can be type cast to any of the
xIdECNode types. The type xIdNode is used as such general type, for
example when traversing the tree.

The five components present in all xIdNode are:

• EC of type xEntityClassType. This component is used to deter-
mine what sort of SDL object the node represents.
xEntityClassType is an enum type containing elements for all en-
tity classes in SDL.

• First, Suc, and Parent of type xIdNode. These components are
used to build the symbol table tree. First refers to the first child of
the current node. Suc refers to the next brother, while Parent refers
to the father node. Only Parent is needed in an application.

• Name of type xNameType, which is defined as char *. This compo-
nent is used to represent the name of the current SDL object as a
character string. Not needed in an application.

Next there are components depending on what entity class that is to be
represented. Below we discuss the non-common elements in the other
xECIdStruct.

Package

• ModuleName of type xNameType. If the package is generated from
ASN.1, this component holds the name of the ASN.1 module as a
char *.
2966 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
System, System Type

• Content of type xIdNode *. This component contains a list of all
channels at the system level.

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual pro-
cedures in this system instance.

• Super of type xSystemIdNode. This is a reference to the inherited
system type. In a system this component in null. In a system in-
stance it is a reference to the instantiated system type.

• Trace_Default of type int. This component contains the current
trace value defined for the system.

• GRTrace of type int. This component contains the current GR
(graphical) trace value defined for the system.

• MSCETrace of type int. This component contains the current
MSCE (Message Sequence Chart Editor) trace value defined for the
system.

Channel, Signal route, Gate

For channels, signal routes, and gates there are always two consecutive
xChannelIdNodes in the symbol table, representing the two possible
directions for a channel, signal route, or gate. The components are:

• SignalSet of type xIdNode *. This component represents the sig-
nal set of the channel in the current direction (a unidirectional chan-
nel has an empty signal set in the opposite direction).

SignalSet is an array with components referring to the
xSignalIdNodes that represent the signals which are members of
the signal set. The last component in the array is always a NULL
pointer (the value (xSignalIdNode)0).

• ToId of type xIdNode *. This is an array of xIdNodes, where each
array component is a pointer to a symbol table node representing an
SDL object, which this Channel/Signal route/Gate is connected to
(connected to in the sense: to the SDL objects that signals are sent
forward to).

The SDL objects that may be referenced in ToId are channels, sig-
nal routes, gates, processes, and services. The last component in the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2967

Chapter 62 The Master Library
array is always a NULL pointer (the value (xIdNode)0). See also
“Channels and Signal Routes” on page 3028.

• Reverse of type xChannelIdNode. This is a reference to the sym-
bol table node that represents the other direction of the same chan-
nel, signal route, or gate.

Block, Block Type, Block Instance

• Super of type xBlockIdNode. In a block, this component is NULL.
In a block type this component is a reference to the block that this
block inherits from (NULL if no inheritance). In a block instance, this
is a reference to the block type that is instantiated.

• Contents of type xIdNode *. In a block instance, these compo-
nents contains list of:

– The process instantiations in the block
– The signal routes in the block
– The outgoing gates from the block
– The processes in the block
– The gates defined in process instantiations in the block.

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual pro-
cedures in this block instance.

• ViewList of type xViewListRec *. This is a list of all revealed
variables in the block or block instance.

• NumberOfInst of type int. This is the number of block instances
in a block instance set. The component is thus only relevant for a
block instance.

• Trace_Default of type int. This component contains the current
value of the trace defined for the block.

• GRTrace of type int. This component contains the current value of
the GR trace defined for the block.

• MSCETrace of type int. This component contains the current
MSCE (Message Sequence Chart Editor) trace value defined for the
block.

• GlobalInstanceId of type int. This component is used to store a
unique id needed when performing MSCE trace.
2968 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
Process, Process Type, Process Instance

• StateList of type xStateIdNode *. This is a list of references to
the xStateIdNodes for this process or process type. Using the state
value of an executing process, this list can be used to find the corre-
sponding xStateIdNode.

• SignalSet of type xIdNode *. This represents the valid input sig-
nal set of the process or process type.

SignalSet is an array with components that refer to
xSignalIdNodes that represent the signals and timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xSignalIdNode)0).

• Contents of type xIdNode *. This is an array containing referenc-
es to the xSrvIdNodes of the services and service instances in this
process.

• ToId of type xIdNode *. This is an array of xIdNode, where each
array component is a pointer to an IdNode representing an SDL ob-
ject that this process or process instance is connected to (connected
to in the sense: to the SDL objects that signals are sent forward to).

The SDL objects that may be referenced in ToId are channels, sig-
nal routes, gates, processes, and services. The last component in the
array is always a NULL pointer (the value (xIdNode)0). See also
section “Channels and Signal Routes” on page 3028.

• MaxNoOfInst of type int. This represents the maximum number of
concurrent processes that may exist according to the specification
for the current process or process instance. An infinite number of
concurrent processes is represented by -1.

• NextNo of type int. This is the instance number that will be as-
signed to the next instance that is created of this process instance set.

• NoOfStaticInst of type int.This component contains the number
of static instance of this process instance set that should be present
at start up. Used for process and process instance.

• ActivePrsList of type xPrsNode *. This is the address of a point-
er to the “first” in the (single linked) list of active process instances
of the current process or process instantiation.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2969

Chapter 62 The Master Library
The list is continued using the NextPrs component in the xPrsRec
struct that is used to represent a process instance. The order in the
list is such that the first created of the active process instances is last,
and the latest created is first.

• VarSize of type xptrint. The size, in bytes, of the data area used
to represent the process (the struct: yVDef_ProcessName).

• Prio of type int. This represents the process priority.

• AvailPrsList of type xPrsNode. This is the address to the avail
list pointer for process instances that have stopped. The data area
can later be reused in subsequent Create actions on this process or
process instantiation.

• Trace_Default of type int. This component contains the current
value of the trace defined for the process.

• GRTrace of type int. This component contains the current value of
the GR trace defined for the process.

• GRrefFunc, which is a pointer to a function that, given a symbol
number (number assigned to a process symbol), will return a string
containing the SDT reference to that symbol.

• MaxSymbolNumber of type int. This component is the number of
symbols contained in the current process or process type.

• SignalSetLength of type int. This component is the number of
signals contained in the signal set of the current process or process
type.

• MSCETrace of type int. This component contains the current
MSCE (Message Sequence Chart Editor) trace value defined for the
process.

• CoverageArray of type long int *. This component is used as an
array over all symbols in the process. Each time a symbol is execut-
ed the corresponding array component is increased by 1.

• NoOfStartTransitions of type long int. This component is
used to count the number of times the start transition of the current
process is executed. This information is presented in the coverage
tables.
2970 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
• MaxQueueLength of type long int. This component is used to reg-
ister the maximum input port length for any instance of the current
process. The information is presented in the coverage tables.

• PAD_Function, which is a pointer to a function. This pointer refers
to the yPAD_ProcessName function for the current process. This
function is called when a process instance of this type is to execute
a transition. The PAD_Functions will of course be part of generated
code, as they contain the action defined in the process graphs.

• Free_Vars, which is a pointer to a function. This pointer refers to
the yFree_ProcessName function for the current process. This
function is called when the process performs a stop action to deal-
locate memory used by the local variables in the process.

• Super of type xPrsIdNode. In a process this component is NULL. In
a process type this component is a reference to the process type that
this process type inherits from (NULL if no inheritance). In a process
instance set, this is a reference to the process type that is instantiat-
ed.

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual pro-
cedures in this process instantiation.

• InBlockInst of type xBlockIdNode. This component is a refer-
ence to the block instance set (if any) that this process or process in-
stantiation is part of.

• RefToDefinition of type char *. This is the SDT reference to
this process.

Service, Service Type, Service Instance

• StateList of type xStateIdNode *. This is a list of the references
to the xStateIdNodes for this service or service type. Using the
state value of an executing service, this list can be used to find the
corresponding xStateIdNode.

• SignalSet of type xIdNode *. This represents the valid input sig-
nal set of the service or service type.

SignalSet is an array with components that refer to
xSignalIdNodes that represent the signals and timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xSignalIdNode)0).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2971

Chapter 62 The Master Library
• ToId of type xIdNode *. This is an array of xIdNode, where each
array component is a pointer to an IdNode representing an SDL ob-
ject that this service or service instance is connected to (connected
to in the sense: to the SDL objects that signals are sent forward to).

The SDL objects that may be referenced in ToId are channels, sig-
nal routes, gates, processes, and service. The last component in the
array is always a NULL pointer (the value (xIdNode)0). See also
section “Channels and Signal Routes” on page 3028.

• VarSize of type xptrint. The size, in bytes, of the data area used
to represent the service (the struct: yVDef_ServiceName).

• GRrefFunc, which is a pointer to a function that, given a symbol
number (number assigned to a service symbol), will return a string
containing the SDT reference to that symbol.

• MaxSymbolNumber of type int. This component is the number of
symbols contained in the current service or service type.

• SignalSetLength of type int. This component is the number of
signals contained in the signal set of the current service or service
type.

• CoverageArray of type long int. This component is used as an
array over all symbols in the service. Each time a symbol is execut-
ed the corresponding array component is increased by 1.

• NoOfStartTransitions of type long int. This component is
used to count the number of times the start transition of the current
service is executed. This information is presented in the coverage ta-
bles.

• AvailSrvList of type xSrvNode. This is the address to the avail
list pointer for service instances that have stopped. The data area can
later be reused.

• PAD_Function, which is a pointer to a function. This pointer refers
to the yPAD_ServiceName function for the current service. This
function is called when a service instance of this type is to execute
a transition. The PAD_Functions will of course be part of generated
code, as they contain the action defined in the service graphs.

• Free_Vars, which is a pointer to a function. This pointer refers to
the yFree_SeriveName function for the current service. This func-
2972 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
tion is called when the service performs a stop action to deallocate
memory used by the local variables in the service.

• Super of type xSrvIdNode. In a service this component is NULL. In
a service type this component is a reference to the service type that
this service type inherits from (NULL if no inheritance). In a service
instantiation this is a reference to the service type that is instantiat-
ed.

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual pro-
cedures in this service instantiation.

Procedure, Operator Diagram, Compound Statement

Note that operator diagrams and compound statements containing vari-
able declarations are treated as procedures. However, such objects can,
for example, not contain states.

• StateList of type xStateIdNode *. This is a list of references to
the xStateIdNodes for this process or process type. Using the state
value of an executing process, this list can be used to find the corre-
sponding xStateIdNode.

• SignalSet of type xIdNode *. This represents the valid input sig-
nal set of the process or process type.

SignalSet is an array with components that refer to
xSignalIdNodes that represent the signals and timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xSignalIdNode)0).

• Assoc_Function, which is a pointer to a function. This pointer re-
fers to the yProcedureName function for the current procedure.
This function is called when the SDL procedure is called and will
execute the appropriate actions. The yProcedureName functions
will, of course, be part of generated code as they contain the action
defined in the procedure graphs.

• Free_Vars, which is a pointer to a function. This pointer refers to
the yFree_ProcedureName function for the current procedure.
This function is called when the procedure performs a return action
to deallocate memory used by the local variables in the procedure.

• VarSize of type xptrint. The size, in bytes, of the data area used
to represent the procedure (struct yVDef_ProcedureName).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2973

Chapter 62 The Master Library
• AvailPrdList of type xPrdNode *. This is the address of the avail
list pointer for the data areas used to represent procedure instances.
At a return action the data area is placed in the avail list and can later
be reused in subsequent Calls of this procedure type.

• GRrefFunc, which is a pointer to a function that given a symbol
number (number assigned to a procedure symbol) will return a
string containing the SDT reference to that symbol.

• MaxSymbolNumber of type int. This component is the number of
symbols contained in the current procedure.

• SignalSetLength of type int. This component is the number of
signals contained in the signal set of the current procedure.

• CoverageArray of type long int. This component is used as an
array over all symbols in the procedure. Each time a symbol is exe-
cuted the corresponding array component is increased by 1.

• Super of type xPrdIdNode. This component is a reference to the
procedure that this procedure inherits from (NULL if no inheritance).

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual pro-
cedures in this procedure.

Remote Procedure

• RemoteList of type xRemotePrdListNode. This component is the
start of a list of all processes that exports this procedure. This list is
a linked list of xRemotePrdListStructs, where each node con-
tains a reference to the exporting process.

Signal, Timer, StartUpSignal, and RPC Signals

• VarSize of type xptrint. The size, in bytes, of the data area used
to represent the signal (the struct: yPDef_SignalName).

• AvailSignalList of type xSignalNode *. This is the address to
the avail list pointer for signal instances of this signal type.

• Equal_Timer, which is a pointer to a function. This pointer only re-
fers to a function when this node is used to represent a timer with
parameters.

In this case the referenced function can be used to investigate if the
parameters of two timers are equal or not, which is necessary at reset
2974 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
actions. The Equal_Timer functions will be part of generated code.
These functions are called from the functions xRemoveTimer and
xRemoveTimerSignal, both defined in sctsdl.c

• Free_Signal, which is a function. This function takes a signal ref-
erence and returns any dynamic data referenced from the signal pa-
rameters to the pool of available memory.

• RefToDefinition of type char *. The SDT reference to the defi-
nition of the signal or timer.

• Prio, of type int. The priority of the signal.

State

• StateNumber of type int. The int value used to represent this state.

• SignalHandlArray of type xInputAction *. This component re-
fers to an array of xInputAction, where xInputAction is an
enum type with the possible values xDiscard, xInput, xSave,
xEnablCond, xPrioInput.

The array will have the same number of components as the
SignalSet array in the node representing the process in which this
state is contained. Each position in the SignalHandlArray repre-
sents the way the signal in the corresponding position in the
SignalSet array in the process should be treated in this state.

The last component in the SignalHandlArray is equal to
xDiscard, which corresponds to the 0 value last in the SignalSet.

If the SignalHandlArray contains the value xInput, xSave, or
xDiscard at a given index, the way to handle the signal is obvious.
If the SignalHandlArray contains the value xEnablCond, it is,
however, necessary to calculate the enabling condition expression
to know if the signal should cause an input or should be saved. This
calculation is exactly the purpose of the EnablCond_Function de-
scribed below.

• InputRef of type int *. This component is an array. If the
SignalHandlArray contains xInput, xPrioInput, or
xEnablCond at a certain index, this InputRef contains the symbol
number for the corresponding input symbol in the graph.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2975

Chapter 62 The Master Library
• EnablCond_Function, which is a function that returns
xInputAction. If the state contains any enabling conditions, this
pointer will refer to a function. Otherwise it refers to 0. An
EnablCond_Function takes a reference to an xSignalIdNode (re-
ferring to a signal) and a reference to a process instance and calcu-
lates the enabling condition for the input of the current signal in the
current state of the given process instance.

The function returns either of the values xInput or xSave. The
EnablCond_Functions will of course be part of generated code, as
they contain enabling condition expressions. These functions are
called from the function xFindInputAction in the file sctsdl.c.
xFindInputAction is used by the SDL_Output and
SDL_Nextstate functions.

• ContSig_Function, which is a function returning int. If the state
contains any continuous signals, this pointer will refer to a function.
Otherwise it refers to 0.

• StateProperties of type int. In this component the three least
significant bits are used to indicate:

– If any enabling condition or continuous signal expression in the
state contains a reference to an object that might change its val-
ue even though the process does not execute any actions.

– If there are any priority inputs in the state.
– If there are any virtual priority inputs in the state.

Objects according to the first item in the list are: Now, Active (timer
is active), Import, View, and Sender. StateProperties is used in
the function SDL_Nextstate to take appropriate actions when a
process enters a state.

• CoverageArray of type long int. This component is used as an
array over the signalset (+1) of the process. Each time an input op-
eration is performed, the corresponding array component is in-
creased by 1. The last component, at index equal to the length of the
signalset, is used to record the number of continuous signals “re-
ceived” in the state. The information stored in this component is
presented in the coverage table.

• Super of type xPrdIdNode. This component is a reference to the
procedure that this procedure inherits from (NULL if no inheritance).
2976 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
• RefToDefinition of type char *. The SDT reference to the defi-
nition of the state (one of the symbols where this state is defined).

Sort and Syntype

• Free_Function, which is a function. This function pointer is non-
0 for types represented using dynamic memory (Charstring,
Octet_string, Strings, Bags, for example). The Free_Functions
are used to return dynamic memory to the pool of dynamic memory.

• Test_Function, which is a function returning xbool. This func-
tion is non-0 for all types containing range conditions. The function
pointers are used by the monitor system to check the validity of a
value when assigning it to a variable.

• SortSize of type xptrint. This component represents the size, in
bytes, of a variable of the current sort.

• SortType of type xTypeOfSort. This component indicates the type
of sort. Possible values are: xPredef, xUserdef, xEnum,
xStruct, xArray, xGArray, xCArray, xRef, xString,
xPowerSet, xBag, xGPowerSet, xInherits, xSyntype,
xUnion, xUnionC, and xChoice.

SortType is xArray, xGArray, xCArray

• CompOrFatherSort of type xSortIdNode. This is a pointer to the
SortIdNode that represents the component sort.

• IndexSort of type xSortIdNode. This is a pointer to the
SortIdNode that represents the index sort. In a xCArray the index
sort in always Integer.

• In xGArray, LowestValue is used as the offset of Data in the
xxx_ystruct.
In xArray and xCArray it is 0.

• In xGArray, HighestValue is used as the size of the xxx_ystruct.
In xArray it is 0.
In xCArray it is the highest index, i.e. the Length - 1.

• In xGArray, yrecIndexOffset is used as the offset of Index in the
xxx_ystruct.
In xArray and xCArray it is 0.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2977

Chapter 62 The Master Library
• In xGArray, yrecDataOffset is used as the offset of Data in the type
(i.e. the value representing the default value).
In xArray and xCArray it is 0.

SortType is xString, xGPowerSet, xBag

• CompOrFatherSort of type xSortIdNode. This is a pointer to the
SortIdNode that represents the component sort.

• LowestValue is used as the offset of Data in the xxx_ystruct.

• HighestValue is used as the size of the xxx_ystruct.

SortType is xPowerSet, xRef, xOwn, xORef

• CompOrFatherSort of type xSortIdNode. This is a pointer to the
SortIdNode that represents the component sort.

SortType is xInherits

• CompOrFatherSort, of type xSortIdNode. This is a pointer to the
SortIdNode that represents the inherited sort.

SortType is xSyntype

• CompOrFatherSort, of type xSortIdNode. This is a pointer to the
SortIdNode that represents the father sort (the newtype from which
the syntype originates, even if it is a syntype of a syntype).

• IndexSort, of type xSortIdNode. This is a pointer to the SortIdN-
ode that represents the represents the father sort (the newtype or
syntype from which the syntype originates).

• LowestValue, of type long int. If the syntype can be used as an
index in an array (translated to a C array) then this value is the low-
est value in the syntype range, otherwise it is 0.

• HighestValue, of type long int. If the syntype can be used as an
index in an array (translated to a C array) then this value is the high-
est value in the syntype range, otherwise it is 0. The LowestValue
and HighestValue are used by the monitor when it handles arrays
with this type as index type.
2978 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
Variable, FormalPar, SignalPar, and Struct Components

• SortNode of type xSortIdNode. This component is a pointer to the
SortIdNode that represents the sort of this variable or parameter.

• Offset of type xptrint. This component represents the offset, in
bytes, within the struct that represents the process or procedure vari-
ables, the signal parameter, or the SDL struct. In other words, this is
the relative place of this component within the struct.

• Offset2 of type xptrint. For a formal parameter in a process this
component represents the offset, in bytes, of a formal parameter in
the StartUpSignal. For an exported variable in a process this com-
ponent represents the offset, in bytes, of the exported value for this
variable.

• IsAddress of type int. This component is only used for procedure
and operator formal parameters and is then used to indicate if the pa-
rameter in IN or IN/OUT or a result variable.

Remote Variable

• SortSize of type xptrint. This component is the size of the type
of the exported variables.

• RemoteList of type xRemoteVarListNode. This component is the
start of a list of all processes that exports this variable. This list is a
linked list of xRemoteVarListStructs, where each node contains
a reference to the exporting process and the Offset where to find
the exported value.

Type Info Nodes
This section describes the most important implementation details re-
garding the type info node. Type info nodes are data structures that are
used during run-time by the functions providing generic implementa-
tions of SDL operators. As the type info nodes contain essentially the
same information as the xSortIdNodes, the type info nodes are used in
more and more places in the code where xSortIdNode previously were
used. In the longer perspective the xSortIdNode will be removed com-
pletely.

The type definitions that describe the type info nodes are listed in the
sctpred.h file.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2979

Chapter 62 The Master Library
Each type info node is a struct that consists of:

• general components that are available for all type info nodes

• type-specific components that describe each specific type.

The following utility macros can be used to configure the type info
nodes:

#ifndef T_CONST
#define T_CONST const
#endif

#ifndef T_SDL_EXTRA_COMP
#define T_SDL_EXTRA_COMP
#define T_SDL_EXTRA_VALUE
#endif

#ifndef T_SDL_USERDEF_COMP
#define T_SDL_USERDEF_COMP
#endif

#if defined(XREADANDWRITEF) && !defined(T_SDL_NAMES)
#define T_SDL_NAMES
#endif

#ifdef T_SDL_NAMES
#define T_SDL_Names(P) , P
#else
#define T_SDL_Names(P)
#endif

#ifdef T_SIGNAL_SDL_NAMES
#define T_Signal_SDL_Names(P) , P
#else
#define T_Signal_SDL_Names(P)
#endif

#ifdef T_SDL_INFO
#define T_SDL_Info(P) , P
#else
#define T_SDL_Info(P)
#endif

#ifndef XNOUSE_OPFUNCS
#define T_SDL_OPFUNCS(P) , P
#else
#define T_SDL_OPFUNCS(P)
#endif

struct tSDLFuncInfo;
2980 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
General Components

The following components are available for all type info nodes. The
definition of the components is only listed in this section, but it is valid
for each type info node listed in the next section.

/* --- General type information for SDL types --- */

typedef T_CONST struct tSDLTypeInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
} tSDLTypeInfo;

• TypeClass: This component defines which type the info node de-
scribes. A list of available types and their corresponding values can
be found in the enum type definition below:

typedef enum
{
 /*SDL - standard types*/
 type_SDL_Integer=128,
 type_SDL_Real=129,
 type_SDL_Natural=130,
 type_SDL_Boolean=131,
 type_SDL_Character=132,
 type_SDL_Time=133,
 type_SDL_Duration=134,
 type_SDL_Pid=135,
 type_SDL_Charstring=136,
 type_SDL_Bit=137,
 type_SDL_Bit_string=138,
 type_SDL_Octet=139,
 type_SDL_Octet_string=140,
 type_SDL_IA5String=141,
 type_SDL_NumericString=142,
 type_SDL_PrintableString=143,
 type_SDL_VisibleString=144,
 type_SDL_NULL=145,
 type_SDL_Object_identifier=146,

 /* SDL - standard ctypes */
 type_SDL_ShortInt=150,
 type_SDL_LongInt=151,
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2981

Chapter 62 The Master Library
 type_SDL_UnsignedShortInt=152,
 type_SDL_UnsignedInt=153,
 type_SDL_UnsignedLongInt=154,
 type_SDL_Float=155,
 type_SDL_Charstar=156,
 type_SDL_Voidstar=157,
 type_SDL_Voidstarstar=158,

 /* SDL - user defined types */
 type_SDL_Syntype=170,
 type_SDL_Inherits=171,
 type_SDL_Enum=172,
 type_SDL_Struct=173,
 type_SDL_Union=174,
 type_SDL_UnionC=175,
 type_SDL_Choice=176,
 type_SDL_ChoicePresent=177,
 type_SDL_Powerset=178,
 type_SDL_GPowerset=179,
 type_SDL_Bag=180,
 type_SDL_String=181,
 type_SDL_LString=182,
 type_SDL_Array=183,
 type_SDL_Carray=184,
 type_SDL_GArray=185,
 type_SDL_Own=186,
 type_SDL_Oref=187,
 type_SDL_Ref=188,
 type_SDL_Userdef=189,
 type_SDL_EmptyType=190,

 /* SDL - signals */
 type_SDL_Signal=200,
 type_SDL_SignalId=201

} tSDLTypeClass;

• OpNeeds: This component contains four bits that give the proper-
ties of the type regarding assignment, equal test, free function, and
initialization.

– The first bit indicates if the type is a pointer that needs to be au-
tomatically freed, or if it contains a pointer that needs to be au-
2982 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
tomatically freed. If the first bit is set, it is necessary to look for
memory to be freed inside of a value of this type.

– The second bit indicates if memcmp can be used to test if two
values of this type are equal or not. If the bit is set, special treat-
ment is needed.

– The third bit indicates if memcpy can be used to perform assign
of this type. If the bit is set, special treatment is needed.

– The fourth bit indicates if this type needs to be initialized to any-
thing else than 0.

The following macros can be used to test these properties:

#define NEEDSFREE(P) \
 (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)1)
#define NEEDSEQUAL(P) \
 (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)2)
#define NEEDSASSIGN(P) \
 (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)4)
#define NEEDSINIT(P) \
 (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)8)

• SortSize: This component defines the size of the type.

• OpFuncs: This is a pointer to a struct containing references to spe-
cific assign, equal, free, read, and write functions. This component
is only used in special cases. If assign, equal, free, read or write
functions have been implemented using #ADT directives, informa-
tion about this is stored in the OpFuncs field. The default value of
the OpFuncs field is 0, but if you have provided any of these func-
tions, the field will be a pointer to a tSDLFuncInfo struct. This struct
will in turn refer to the provided functions.

typedef struct tSDLFuncInfo {
 void *(*AssFunc) (void *, void *, int);
 SDL_Boolean (*EqFunc) (void *, void *);
 void (*FreeFunc) (void **);
#ifdef XREADANDWRITEF
 char *(*WriteFunc) (void *);
 int (*ReadFunc) (void *);
#endif
} tSDLFuncInfo;

• Name: This is the name of the type as a string literal.

• FatherScope: This is a pointer to the IdNode for the scope that the
type is defined in.

• SortIdNode: This is a pointer to the xSortIdNode that describes the
same type. This field will in a longer perspective be removed.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2983

Chapter 62 The Master Library
Type-Specific Components

The following section lists the components that defines the type info
nodes. Only the type-specific components are explained. The general
components are listed and explained in the section above.

Enumeration types

/* ------------- Enumeration type --------------- */
typedef T_CONST struct {
 int LiteralValue;
 char *LiteralName;
} tSDLEnumLiteralInfo;

typedef T_CONST struct tSDLEnumInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
#ifdef XREADANDWRITEF
 int NoOfLiterals;
 tSDLEnumLiteralInfo *LiteralList;
#endif
} tSDLEnumInfo;

• NoOfLiterals: The number of literals in the enum type.

• LiteralList: a pointer to an array of tSDLEnumLiteralInfo ele-
ments. This list implements a translation table between enum values
and literal names as strings

Syntypes, types with inheritance, and Own, Ref, Oref instantiations

/* ------ Syntype, Inherits, Own, Oref, Ref ----- */
typedef T_CONST struct tSDLGenInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
2984 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *CompOrFatherSort;
} tSDLGenInfo;

• CompOrFatherSort: Reference to the type info node of the father
sort (syntype, inherits) or component sort (Own, Ref, Oref).

Powersets (implemented as unsigned in [])

/* ------------------ Powerset ------------------ */
typedef T_CONST struct tSDLPowersetInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *CompSort;
 int Length;
 int LowestValue;
} tSDLPowersetInfo;

• CompSort: Reference to the type info node of the component sort.

• Length: The number of possible values in the component sort.

• LowestValue: The value of the lowest value in the component sort.

Structs

/* ------------------- Struct ------------------- */
typedef int (*tGetFunc) (void *);
typedef void (*tAssFunc) (void *, int);

typedef T_CONST struct {
 xptrint OffsetPresent; /* 0 if not optional */
 void *DefaultValue;
} tSDLFieldOptInfo;

typedef T_CONST struct {
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2985

Chapter 62 The Master Library
 tGetFunc GetTag;
 tAssFunc AssTag;
} tSDLFieldBitFInfo;

typedef T_CONST struct {
 tSDLTypeInfo *CompSort;
#ifdef T_SDL_NAMES
 char *Name;
#endif
 xptrint Offset; /* ~0 for bitfield */
 tSDLFieldOptInfo *ExtraInfo;
} tSDLFieldInfo;

typedef T_CONST struct tSDLStructInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLFieldInfo *Components;
 int NumOfComponents;
} tSDLStructInfo;

• Components: An array of tSDLFieldInfo; one component in the ar-
ray for each field of the struct.

• NumOfComponents: The number of fields in the struct.

• CompSort in tSDLFieldInfo: The reference to the type info node
of the field sort.

• Name in tSDLFieldInfo: The name of the field as a string.

• Offset in tSDLFieldInfo: The offset of the field in the C struct that
represents the SDL struct. This component is ~0 for bitfield in SDL
(offsets cannot be calculated for bitfields).
2986 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
• ExtraInfo in tSDLFieldInfo: The interpretation of this component
depends on the properties in the SDL field.

– if Offset is ~0, the field is a bitfield and ExtraInfo is a pointer to
a tSDLFieldBitFInfo struct containing two functions to set and
get the value of the bitfield.

– if Offset is not ~0 and ExtraInfo != 0, the SDL field is either op-
tional or has a default value. ExtraInfo is a pointer to a
tSDLFieldOptInfo struct containing the offset for the Present
flag (0 if not optional) and a pointer to the default value (0 if no
default value).

Choice and #union

/* ---------------- Choice, Union --------------- */

typedef T_CONST struct {
 tSDLTypeInfo *CompSort;
#ifdef T_SDL_NAMES
 char *Name;
#endif
} tSDLChoiceFieldInfo;

typedef T_CONST struct tSDLChoiceInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLChoiceFieldInfo *Components;
 int NumOfComponents;
 xptrint OffsetToUnion;
 xptrint TagSortSize;
#ifdef XREADANDWRITEF
 tSDLTypeInfo *TagSort;
#endif
} tSDLChoiceInfo;

• Components: An array of tSDLChoiceFieldInfo; one component in
the array for each field in the choice/#union.

• NumOfComponents: The number of fields in the choice/#union.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2987

Chapter 62 The Master Library
• OffsetToUnion: The offset to where the union, within the represen-
tation of the choice/#union, starts.

• TagSortSize: The size of the tag type.

• TagSort: A reference to the type info node of the tag sort.

Array and Carray

/* --------------- Array, CArray ---------------- */
typedef T_CONST struct tSDLArrayInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *CompSort;
 int Length;
#ifdef XREADANDWRITEF
 tSDLTypeInfo *IndexSort;
 int LowestValue;
#endif
} tSDLArrayInfo;

• CompSort: The reference to the type info node of the component
sort.

• Length: The number of components in the array.

• IndexSort: The reference to the type info node of the index sort.

• LowestValue: The start value of the index range (as an int).

General arrays

A general array is an array that is represented as a linked list in C.

/* ------------------- GArray ------------------- */
typedef T_CONST struct tSDLGArrayInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
2988 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *IndexSort;
 tSDLTypeInfo *CompSort;
 xptrint yrecSize;
 xptrint yrecIndexOffset;
 xptrint yrecDataOffset;
 xptrint arrayDataOffset;
} tSDLGArrayInfo;

• IndexSort: The reference to the type info node of the index sort.

• CompSort: The reference to the type info node of the component
sort.

• yrecSize: The size of the type SDLType_yrec.

• yrecIndexOffset: The offset of Index in type SDLType_yrec.

• yrecDataOffset: The offset of Data in type SDLType_yrec.

• arrayDataOffset: The offset of Data in type SDLType, where
SDLType is the name in C of the translated array type.

General powersets, Bags, Strings and Object_identifier

/* -- GPowerset, Bag, String, Object_Identifier - */
typedef T_CONST struct tSDLGenListInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *CompSort;
 xptrint yrecSize;
 xptrint yrecDataOffset;
} tSDLGenListInfo;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2989

Chapter 62 The Master Library
• CompSort: The reference to the type info node of the component
sort.

• yrecSize: The size of the type SDLType_yrec

• yrecDataOffset: The offset of Data in type SDLType_yrec

Limited strings

A limited string is a string that is implemented as an array in C.

/* ------------------ LString ------------------- */
typedef T_CONST struct tSDLLStringInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 tSDLTypeInfo *CompSort;
 int MaxLength;
 xptrint DataOffset;
} tSDLLStringInfo;

• CompSort: The reference to the type info node of the component
sort.

• MaxLength: The maximum length of the string.

• DataOffset: The offset of Data in type SDLType, where SDLType
is the name in C of the translated string type.

SDL type (C representation decided with a #ADT directive)

/* ------------------ Userdef ------------------- */
/* used for user defined types #ADT(T(h)) */
typedef T_CONST struct tSDLUserdefInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
 char *Name;
2990 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Symbol Table
#endif
#ifdef XREADANDWRITEF
 xIdNode FatherScope;
 xSortIdNode SortIdNode;
#endif
 T_SDL_USERDEF_COMP
} tSDLUserdefInfo;

SDL signal

A signal is treated in the same way as a struct.

/* ------------------- Signal ------------------- */
typedef T_CONST struct {
 tSDLTypeInfo *ParaSort;
 xptrint Offset;
} tSDLSignalParaInfo;

typedef T_CONST struct tSDLSignalInfoS {
 tSDLTypeClass TypeClass;
 unsigned char OpNeeds;
 xptrint SortSize;
 struct tSDLFuncInfo *OpFuncs;
 T_SDL_EXTRA_COMP
#ifdef T_SIGNAL_SDL_NAMES
 char *Name;
#endif
 tSDLSignalParaInfo *Param;
 int NoOfPara;
} tSDLSignalInfo;

• Param: An array with a component of the type tSDLSignalParaInfo
for each signal parameter type. For each parameter, the parameter
sort is given as a reference to the type info node and as the offset for
the parameter value within the struct representing the signal.

• NoOfPara: The number of parameters in the signal.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2991

Chapter 62 The Master Library
The SDL Model
Signals and Timers

Data Structure Representing Signals and Timers

A signal is represented by a struct type. The xSignalRec struct, defined
in scttypes.h, is a struct containing general information about a signal
except from the signal parameters. In scttypes.h the following infor-
mation about signals can be found:

#ifdef XMSCE
#define GLOBALINSTID int GlobalInstanceId;
#else
#define GLOBALINSTID
#endif

#if defined(XSIGPATH) && defined(XMSCE)
#define ENVCHANNEL xChannelIdNode EnvChannel;
 /* Used if env split into channels in MSC trace */
#else
#define ENVCHANNEL
#endif

#ifdef XENV_CONFORM_2_3
#define XSIGNAL_VARP void * VarP;
#else
#define XSIGNAL_VARP
#endif

define SIGNAL_VARS \
 xSignalNode Pre; \
 xSignalNode Suc; \
 int Prio; \
 SDL_PId Receiver; \
 SDL_PId Sender; \
 xSignalIdNode NameNode; \
 GLOBALINSTID \
 ENVCHANNEL \
 XSIGNAL_VARP

typedef struct xSignalStruct *xSignalNode;
typedef struct xSignalStruct {
 SIGNAL_VARS
} xSignalRec;

The xSignalNode type is thus a pointer type which is used to refer to
allocated data areas of type xSignalRec. The components in the
xSignalRec struct are used as follows:

• Pre and Suc. These pointers are used to link a signal into the input
port of the receiving process instance.
2992 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The input port is a doubly linked list of signals. Suc is also used to
link a signal into the avail lists for the current signal type. This list
can be found in the SignalIdNode that represents this signal type.
If the signal is in the avail list Pre is 0.

• Prio is used to represent the priority of the signal instance. Signal
priorities are used by continuous signals and by ordinary signals if
signal priorities are defined (signal priority is a possible extension
provided in the product).

• Receiver is used to reference the receiver of the signal. It is either
set in the output statement (OUTPUT TO), or calculated (OUTPUT
without TO).

• Sender is the PId value of the sending process instance. This value
is necessary to provide the SDL function SENDER.

• NameNode is a reference to the xSignalIdNode representing the
signal type and thus defines the signal type of this signal instance.

• VarP is a pointer introduced via the macro XSIGNAL_VARP to make
signal compatible with SDT 2.3. Normally this components is not
present.

• EnvChannel is used to identify the outgoing channel in MSCE
trace.

• GlobalInstanceId is used in the MSCE trace as a unique identifi-
cation of the signal instance.

A signal without parameters are represented by a xSignalStruct,
while for signals with parameters a struct type named
yPDef_SignalName and a pointer type referencing this struct type
(yPDP_SignalName) are defined in generated code. The struct type will
start with the SIGNAL_VARS macro and then have one component for
each signal parameter, in the same order as the signal parameters are de-
fined. The components will be named Param1, Param2, and so on.

Example 491 –––

typedef struct {
 SIGNAL_VARS
 SDL_Integer Param1;
 SDL_Boolean Param2;
} yPDef_sig;
typedef yPDef_sig *yPDP_sig;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2993

Chapter 62 The Master Library
These types would represent a signal sig(Integer, Boolean).

––

As all signals starts with the components defined in SIGNAL_VARS it is
possible to type cast a pointer to a signal, to the xSignalNode type, if
only the components in SIGNAL_VARS is to be accessed.

Allocation of Data Areas for Signals

In sctos.c there are two functions, xGetSignal and
xReleaseSignal, where data areas for signal are handled:

xSignalNode xGetSignal(
 xSignalIdNode SType,
 SDL_PId Receiver,
 SDL_PId Sender)

void xReleaseSignal(xSignalNode *S)

xGetSignal takes a reference to the SignalIdNode identifying the sig-
nal type and two PId values (sending and receiving process instance)
and returns a signal instance. xGetSignal first looks in the avail list for
the signal type (the component AvailSignalList in the
SignalIdNode for the signal type) and reuses any available signal
there. Only if the avail list is empty new memory is allocated. The com-
ponent VarSize in the SignalIdNode for the signal type provides the
size information needed to correctly allocate the yPDef_SignalName
even though the type is unknown for the xGetSignal function.

The function xReleaseSignal takes the address of an xSignalNode
pointer and returns the referenced signal to the avail list for the signal
type. The xSignalNode pointer is then set to 0.
2994 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The function xGetSignal is used:

• In generated code (output, set, reset)

• In a number of places in the library:
SDL_Create
SDL_SimpleReset
SDL_Nextstate (to handle continuous signals)

• In the postmaster communication section and in the monitor to ob-
tain signal instances.

The function xReleaseSignal is used by:

• SDL_Nextstate

• SDL_Stop, in both cases to release the signal that initiated the tran-
sition.

Overview of Output and Input of Signals

In this subsection the signal handling operation is only outlined. More
details will be given in the section treating processes. See “Output and
Input of Signals” on page 3010.

Signal instances are sent using the function SDL_Output. That function
takes a signal instance and inserts it into the input port of the receiving
process instance.

If the receiver is not already in the ready queue (the queue containing
the processes that can perform a transition, but which have not yet been
scheduled to do so) and the current signal may cause an immediate tran-
sition, the process instance is inserted into the ready queue.

If the receiver is already in the ready queue or in a state where the cur-
rent signal should be saved, the signal instance is just inserted into the
input port.

If the signal instance can neither cause a transition nor should be saved,
it is immediately discarded (the data area for the signal instance is re-
turned to the avail list).

The input port is scanned during nextstate operations, according the
rules of SDL, to find the next signal in the input port that can cause a
transition. Signal instances may then be saved or discarded.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2995

Chapter 62 The Master Library
There is no specific input function, instead this behavior is distributed
both in the runtime library and in the generated code. The signal in-
stance that should cause the next transition to be executed is removed
from the input port in the main loop (the scheduler), immediately before
the PAD function for the current process is called. The PAD function is
the function where the behavior of the process is implemented and is
part of the generated code. The assignment of the signal parameters to
local SDL variables is one of the first actions performed by the PAD
function.

The signal instance that caused a transition is released and returned to
the avail list in the nextstate or stop action that ends the current transi-
tion.

Timers and Operations on Timers

A timer with parameters is represented by a type definition, where the
timer parameters are defined, in exactly the same way as for a signal
definition, see “Data Structure Representing Signals and Timers” on
page 2992. At runtime, all timers that are set and where the timer time
has not expired, are represented by a xTimerRec struct and a signal in-
stance:

#define TIMER_VARS \
 xSignalNode Pre; \
 xSignalNode Suc; \
 int Prio; \
 SDL_PId Receiver; \
 SDL_PId Sender; \
 xSignalIdNode NameNode; \
 GLOBALINSTID \
 ENVCHANNEL \
 SDL_Time TimerTime;

typedef xTimerRec *xTimerNode;

typedef struct xTimerStruct {
 TIMER_VARS
} xTimerRec;

The TIMER_VARS is and must be identical to the SIGNAL_VARS macro,
except for the TimerTime component last in the macro. A timer with pa-
rameters have yPDef_timername and yPDP_timername types in gen-
erated code exactly as a signal (see previous section), except that
SIGNAL_VARS is replaced by TIMER_VARS.
2996 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
During its life-time a timer have two different appearances. First it is a
timer waiting for the timer time to expire. In that phase the timer is in-
serted in the xTimerQueue. When the timer time expires the timer be-
comes a signal and is inserted in the input port of the receiver just like
any other signal. Due to the identical typedefs for xSignalRec and
xTimerRec, there are no problems with type casting between
xTimerNode and xSignalNode types.

When a timer is treated as a signal the components in the xTimerRec
are used in the same ways as for a xSignalRec. While the timer is in
the timer queue, the components are used as follows:

• Pre and Suc are pointers used to link the xTimerRec into the timer
queue (the queue of active timers, see below).

• TimerTime is the time given in the Set operation.

The queue mentioned above, the timer queue for active timers is repre-
sented by the component xTimerQueue in the variable xSysD:

 xTimerNode xTimerQueue;

The variable is initialized in the function xInitKernel in sctsdl.c.
xTimerQueue is initialized it refers to the queue head of the timer
queue.

The queue head is an extra element in the timer queue that does not rep-
resent a timer, but is introduced as it simplifies the algorithms for queue
handling. The TimerTime component in the queue head is set to a very
large time value (xSysD.xMaxTime).

The timer queue is thus a doubly linked list with a list head and it is sort-
ed according to the timer times, so that the timer with lowest time is at
the first position.

The xTimerRec structs are allocated and reused in the same way as sig-
nal.

From the SDL point of view, timers are handled in:

• Timer definitions
• Set and reset operations
• Timer outputs.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2997

Chapter 62 The Master Library
The timer output is the event when the timer time has expired and the
timer signal is sent. After that, a timer signal is treated as an ordinary
signal. These operations are implemented as follows:

void SDL_Set(
 SDL_Time T,
 xSignalNode S)

This function, which represents the Set operation, takes the timer time
and a signal instance as parameters. It first uses the signal instance to
make an implicit reset (see reset operation below) It then updates the
TimerTime component in S and inserts S into the timer queue at the cor-
rect position.

The SDL_Set operation is used in generated code, together with
xGetSignal, in much the same way as SDL_Output. First a signal in-
stance is created (by xGetSignal), then timer parameters are assigned
their values, and finally the Set operation is performed (by SDL_Set).

void SDL_Reset(xSignalNode *TimerS)

void SDL_SimpleReset(
 xPrsNode P,
 xSignalIdNode TimerId)

Two functions are used to represent the SDL action reset.
SDL_SimpleReset is used for timers without parameters and
SDL_Reset for timers with parameters.

SDL_Reset uses the two functions xRemoveTimer and
xRemoveTimerSignal to remove a timer in the timer queue and to re-
move a signal instance in the input port of the process. It then releases
the signal instance given as parameter. This signal is only used to carry
the parameter values given in the reset action.

The function SDL_SimpleReset is implemented in the same way as
SDL_Reset, except that it creates its own signal instance (without pa-
rameters).

At a reset action the possibly found timer is removed from the timer
queue and returned to the avail list. A found signal instance (in the input
port) is removed from the input port and returned to the avail list for the
current signal type.

static void SDL_OutputTimerSignal(xTimerNode T)
2998 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The SDL_OutputTimerSignal is called from the main loop (the sched-
uler) when the timer time has expired for the timer first in the timer
queue. The corresponding signal instance is then sent.

SDL_OutputTimerSignal takes a pointer to an xTimerRec as param-
eter, removes it from the timer queue and sends as an ordinary output
using the function SDL_Output.

It can be checked if timer is active by using a call to the function
SDL_Active. This function is used in generated code to represent the
SDL operator active.

SDL_Boolean SDL_Active (
 xSignalIdNode TimerId,
 xPrsNode P)

There is one more place where timers are handled. When a process in-
stance performs a stop action all timers in the timer queue connected to
this process instance are removed. This is performed by calling the
function xRemoveTimer with the first parameter equal to 0.

Note:

Only timers without parameters can be tested. This is a restriction in
the Cadvanced/Cbasic SDL to C Compiler.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2999

Chapter 62 The Master Library
Processes

Data Structure Representing Processes

A process instance is represented by two structs, an xLocalPIdRec and
a struct containing both the general process data and the local variables
and formal parameters of the process (yVDef_ProcessName), see also
Figure 544. The reason for having both the xLocalPIdRec and the
yVDef_ProcessName will be discussed under “Create and Stop Opera-
tions” on page 3007.

Figure 544: Representation of a process instance

xLocalPIdRec

PrsP
InstNr

yVDef_ProcessName

Pre
Suc

PId Value

GlobalNodeNr
LocalPId

NextPrs
Self
NameNode

Signal
InputPort
Parent
Offspring

Sender
Trace_Default
GRTrace

Process variables
and parameters
depending on
process type

MSCETrace

GlobalInstanceId

RestartAddress
ActivePrd
RestartPAD
CallAddress

BlockInstNumber
pREPLY_Waited_For
pREPLY_Signal

State

InTransition

ActiveSrv
SrvList
3000 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The corresponding type definitions, which can be found in
scttypes.h, are:

#ifdef XPRSSENDER
#define XPRSSENDERCOMP SDL_PId Sender;
#else
#define XPRSSENDERCOMP
#endif

#ifdef XTRACE
#define XTRACEDEFAULTCOMP int Trace_Default;
#else
#define XTRACEDEFAULTCOMP
#endif

#ifdef XGRTRACE
#define XGRTRACECOMP int GRTrace;
#else
#define XGRTRACECOMP
#endif

#ifdef XMSCE
#define XMSCETRACECOMP int MSCETrace;
#else
#define XMSCETRACECOMP
#endif

#if defined(XMONITOR) || defined(XTRACE)
#define XINTRANSCOMP xbool InTransition;
#else
#define XINTRANSCOMP
#endif

#ifdef XMONITOR
#define XCALL_ADDR int CallAddress;
#else
#define XCALL_ADDR
#endif

#ifndef XNOUSEOFSERVICE
#define XSERVICE_COMP \
 xSrvNode ActiveSrv; xSrvNode SrvList;
#else
#define XSERVICE_COMP
#endif

#define PROCESS_VARS \
 xPrsNode Pre; \
 xPrsNode Suc; \
 int RestartAddress; \
 xPrdNode ActivePrd; \
 void (*RestartPAD) (xPrsNode VarP); \
 XCALL_ADDR \
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3001

Chapter 62 The Master Library
 XSERVICE_COMP \
 xPrsNode NextPrs; \
 SDL_PId Self; \
 xPrsIdNode NameNode; \
 int State; \
 xSignalNode Signal; \
 xInputPortRec InputPort; \
 SDL_PId Parent; \
 SDL_PId Offspring; \
 int BlockInstNumber; \
 XSIGTYPE pREPLY_Waited_For; \
 xSignalNode pREPLY_Signal; \
 XPRSSENDERCOMP \
 XTRACEDEFAULTCOMP \
 XGRTRACECOMP \
 XMSCETRACECOMP \
 XINTRANSCOMP

typedef struct {
 xPrsNode PrsP;
 int InstNr;
 int GlobalInstanceId;
} xLocalPIdRec;

typedef xLocalPIdRec *xLocalPIdNode;

typedef struct {
 int GlobalNodeNr;
 xLocalPIdNode LocalPId;
} SDL_PId;

typedef struct xPrsStruct *xPrsNode;

typedef struct xPrsStruct {
 PROCESS_VARS
} xPrsRec;
3002 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
A PId value is thus a struct containing two components:

• The global node number

• A pointer to a xLocalPIdRec struct.

The use of the global node number is discussed in the chapter 58, Build-
ing an Application.

A xLocalPIdRec contains the following three components:

• PrsP of type xPrsNode. This component is a pointer to the xPrsRec
struct that is part of the representation of the process instance.

• InstNr of type int. This is the instance number of the current pro-
cess instance, which is used in the communication with the user in
the monitor and in dynamic error messages.

• GlobalInstanceId is used in MSCE traces to have a unique iden-
tification of the process instance.

A xPrsRec struct contains the following components described below.
As each yVDef_ProcessName struct contains the PROCESS_VARS mac-
ro as first item, it is possible to cast pointer values between a pointer to
xPrsRec and a pointer to a yVDef_ProcessName struct.

• Pre and Suc of type xPrsNode. These components are used to link
the process instance in the ready queue (see below).

• RestartAddress of type int. This component is used to find the
appropriate SDL symbol to continue execute from.

• ActivePrd of type xPrdNode. This is a pointer to the xPrdRec that
represents the currently executing procedure called from this pro-
cess instance. The pointer is 0 if no procedure is currently called.

• RestartPAD, which is a pointer to a PAD function. This component
refers to the PAD function where to execute the sequence of SDL
symbols. RestartPAD is used to handle inheritance between pro-
cess types.

• CallAddress of type int. This component contains the symbol
number of the procedure call currently executed by this process.

• ActiveSrv of type xSrvNode. This component contains a reference
to the currently active service (or latest active service) in this pro-
cess.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3003

Chapter 62 The Master Library
• SrvList of type xSrvNode. This component contains a reference to
the first service contained in this process. The component NextSrv
in the struct representing a service can be used to find next active
service in the process.

• NextPrs of type xPrsNode. This component is used to link the pro-
cess instance either in the active list or in the avail list for this pro-
cess type. The start of these two lists are the components
ActivePrsList and AvailPrsList in the IdNode representing
the current process type.

• Self of type SDL_PId. This is the PId value of the current process
instance.

• NameNode of type xPrsIdNode. This is a pointer to the PrsIdNode
representing the current process or process instantiation.

• State of type int. This component contains the int value used to
representing the current state of the process instance.

• Signal of type xSignalNode. This is a pointer to a signal instance.
The referenced signal is the signal that will cause the next transition
by the current process instance, or that caused the transition that is
currently executed by the process instance.

• InputPort of type xInputPortRec. This is the queue head in the
doubly linked list that represents the input port of the process in-
stance. The signals are linked in this list using the Pre and Suc com-
ponents in the xSignalRec struct.

• Parent of type SDL_PId. This is the PId value of the parent process
(according to the rules of SDL). A static process instance has parent
equal to NULL.

• Offspring of type SDL_PId. This is the PId value of the latest cre-
ated process instance (according to the rules of SDL). A process in-
stance that has not created any processes has offspring equal to
NULL.

• BlockInstNumber of type int. If the process is part of a block in-
stance set, this component indicates which of the blocks that the
process belongs to.
3004 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
• pREPLY_Waited_For of type xSignalIdNode. When a process is
waiting in the implicit state for the pREPLY signal in a RPC call, this
components is used to store the IdNode for the expected pREPLY
signal.

• pREPLY_Signal of type xSignalNode. When a process receives a
pCALL signal, i.e. accepts a RPC, it immediately creates the return
signal, the pREPLY signal. This component is used to refer to this
pREPLY signal until it is sent.

• Sender of type SDL_PId. This component represents the SDL con-
cept Sender.

• Trace_Default of type int. This component contains the current
value of the trace defined for the process instance.

• GRTrace of type int. This component contains the current value of
the GR trace defined for the process instance.

• MSCETrace of type int. This component contains the current
MSCE trace value for the process instance.

• InTransition of type xbool. This component is true while the
process is executing a transition and it is false while the process is
waiting in a state. The monitor system needs this information to be
able to print out relevant information.

The Ready Queue, Scheduling

The ready queue is a doubly linked list with a head. It contains the pro-
cess instances that can execute an immediate transition, but which has
not been allowed to complete that transition. Process instances are in-
serted into the ready queue during output operations and nextstate oper-
ations and are removed from the ready queue when they execute the
nextstate or stop operation that ends the current transition. The head in
the ready queue, which is an object in the queue that does not represent
any process but is inserted only to simplify the queue operations, is ref-
erenced by the xSysD component:

 xPrsNode xReadyQueue;

This component is initiated in the function xInitKernel and used
throughout the runtime library to reference the ready queue.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3005

Chapter 62 The Master Library
Scheduling of events is performed by the function xMainLoop, which is
called from the main function after the initialization is performed.

void xMainLoop()

The strategy to have all interesting queues (the ready queue, the timer
queue, and the input ports) sorted in the correct order is used in the li-
brary. Sorting is thus performed when an object is inserted into a queue,
which means that scheduling is a simple task: select the first object in
the timer queue or in the ready queue and submit it for execution.

There are several versions of the body of the endless loop in the function
xMainLoop, which are used for different combinations of compilation
switches. When it comes to scheduling of transitions and timer outputs
they all have the following outline:

while (1) {
 if (xTimerQueue->Suc->TimerTime <= SDL_Now())
 SDL_OutputTimerSignal(xTimerQueue->Suc);
 else if (xReadyQueue->Suc != xReadyQueue) {
 xRemoveFromInputPort(xReadyQueue->Suc->Signal);
 xReadyQueue->Suc->Sender =
 xReadyQueue->Suc->Signal->Sender;
 (*xReadyQueue->Suc->RestartPAD)(xReadyQueue->Suc);
 }
}

or, in descriptive terms:

while (1) {
 if (there is a timer that has expired)
 send the corresponding timer signal;
 else if (there is a process that can execute
 a transition) {
 remove the signal causing the transition
 from input port;
 set up Sender in the process to Sender of
 the signal;
 execute the PAD function for the process;
 }
}

The different versions of the main loop handle different combinations
of compilation switches. Other actions necessary in the main loop are
dependent of the compilation switches. Example of such actions are:

• Handling of the monitor

• Calling the xInEnv function
3006 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
• Handling real time or simulated time

• Delay execution up to the next scheduled event

• Handling enabling conditions and continuous signals that need to be
recalculated.

Create and Stop Operations

A process instance is, while it is active, represented by the two structs:

• xLocalPIdRec
• The yVDef_ProcessName struct.

These two structs are dynamically allocated. A PId value is also a struct
(not allocated) containing two components, GlobalNodeNr and
LocalPId, where LocalPId is a pointer to the xLocalPIdRec.
Figure 545 shows how the xLocalPIdRec and the
yVDef_ProcessName structs representing a process instance are con-
nected.

When a process instance performs a stop action, the memory used for
the process instance should be reclaimed and it should be possible to re-
use in subsequent create actions. After the stop action, old (invalid) PId
values might however be stored in variables in other process instances.

If a signal is sent to such an old PId value, that is, to a stopped process
instance, it should be possible to find and perform appropriate actions.

Figure 545: A xLocalPIdRec and a yVDef_ProcessName
representing a Process instance

PId value

PrsP
InstNr

....
NextPrs
Self: GlobalNodeNr

....
 LocalPId
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3007

Chapter 62 The Master Library
If the complete representation of a process instance is reused then this
will not be possible. There must therefore remain some little piece of in-
formation and thus some memory for each process instance that has
ever existed. This is the purpose of the xLocalPIdRec. These structs
will never be reused. Instead the following (see Figure 546) will happen
when the process instance in Figure 545 performs a stop action.

A new xLocalPIdRec is allocated and its PrsP references the
yVDef_ProcessName (InstNr is 0). The Self component in the
yVDef_ProcessName is changed to reference this new xLocalPIdRec.
The old xLocalPIdRec still references the yVDef_ProcessName. The
yVDef_ProcessName is entered into the avail list for this process type.

To reuse the data area for a process instance at a create operation it is
only necessary to remove the yVDef_ProcessName from the avail list
and update the InstNr component in the xLocalPIdRec referenced by
Self.

Using this somewhat complicated structure to represent process in-
stances allows a simple test to see if a PId value refers to an active or a
stopped instance:

Figure 546: The memory structure after the process in
Figure 545 has performed a stop action

NextPrs
Self: GlobalNodeNr

....
 LocalPId

PrsP
InstNr

PrsP
InstNr

Old PId Value

New PId Value
3008 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
If P is a PId variable then the following expression:

P.LocalPId == P.LocalPId->PrsP->Self.LocalPId

is true if the process instance is active and false if it is stopped.

The basic behavior of the create and stop operations is performed by the
functions SDL_Create and SDL_Stop.

void SDL_Create(
 xSignalNode StartUpSig,
 xPrsIdNode PrsId)

void SDL_Stop(xPrsNode PrsP)

To create a process instance takes three steps performed in generated
code:

1. Call xGetSignal to obtain the start-up signal.

2. Assign the actual process parameters to the start up signal parame-
ters.

3. Call SDL_Create with the start-up signal as parameter, together
with the PrsIdNode representing the process to be created.

In xGetProcess the process instance is removed from the avail list of
the process instance set (the component AvailPrsList in the
PrsIdNode representing the process instance set), or if the avail list is
empty new memory is allocated.

The process instance is linked into the list of active process instances
(the component ActivePrsList in the PrsIdNode representing the
process instance set). Both the avail list and the active list are single
linked lists (without a head) using the component NextPrs in the
yVDef_ProcessName struct as link.

To have an equal treatment of the initial transition and other transitions,
the start state is implemented as an ordinary state with the name “start
state” It is represented by 0. To execute the initial transition a “startup”
signal is sent to the process. The start state can thus be seen as a state
with one input of the startup signal and with save for all other signals.
This implementation is completely transparent in the monitor, where
startup signals are never shown in any way.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3009

Chapter 62 The Master Library
Two IdNodes that are not part of the symbol table tree are created to
represent a start state and a startup signal.

xStateIdNode xStartStateId;
xSignalIdNode xStartUpSignalId;

These xSysD components are initialized in the function
xInitSymbolTable, which is part of sctsdl.c.

At a stop operation the function SDL_Stop is called. This function will
release the signal that caused the current transition and all other signals
in the input port. It will also remove all timers in the timer queue that
are connected to this process instance by calling xRemoveTimer with
the first parameter equal to 0. It then removes the process executing the
stop operation from the ready queue and from the active list of the pro-
cess type and returns the memory to the avail list of the current process
instance set.

Output and Input of Signals

There are three actions performed in generated code to send a signal.
First xGetSignal is called to obtain a data area that represents the sig-
nal instance, then the signal parameters are assigned their values and fi-
nally the function SDL_Output is called to actually send the signal. First
in the SDL_Output function there are a number of dynamic tests (check
if receiver in TO-clause is not NULL and not stopped, check if there is a
path to the receiver). If the output does not contain any TO-clause and
the Cadvanced/Cbasic SDL to C Compiler has not been able to calculate
the receiver, the xFindReceiver function is called to calculate the re-
ceiver according to the rules of SDL.

Next, in SDL_Output signals to the environment are handled. Three
cases can be identified here:

1. The environment function xOutEnv is called.

2. The corresponding function that sends signals via the SDL suite
communication mechanism (xOutPM) is called.

3. The signal is inserted into the input port of the process representing
the environment (xEnv).

Note:

The actual values for FPARs are passed in the startup signal.
3010 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
Finally, internal signals in the SDL system are treated. Here also three
cases can be identified (how this is evaluated is described last in this
subsection):

1. The signal can cause an immediate transition by the receiver.
2. The signal should be saved.
3. The signal should be immediately discarded.

If the signal can cause an immediate transition, the signal is inserted into
the input port of the receiver, and the receiving process instance is in-
serted into the ready queue.

If the signal should be saved, the signal is just inserted into the input
port of the receiver.

If the signal should be discarded, the function xReleaseSignal is
called to reused the data area for the signal.

When a signal is identified to be the signal that should cause the next
transition by the current process instance (at an Output or Nextstate op-
eration), the component Signal in the yVDef_ProcessName for the
process is set to refer to the signal. The signal is still part of the input
port list.

When the transition is to be executed, the signal is removed from the in-
put port in the main loop (see “The Ready Queue, Scheduling” on page
3005) immediately before the PAD function for the process is called.

First in the PAD function, the parameters of the signal are copied to the
local variables according to the input statement. In the ending Nextstate
or Stop operation of the transition the signal instance is returned to the
avail list.

Evaluating How To Handle a Received Signal

There are two places in the run-time kernel where it is necessary to eval-
uate how to handle signals (input, save, discard,...):

• At an Output operation to a currently idle process.

• At a Nextstate operation, when the process have signals in the input
port.

This calculation is implemented in the run-time kernel function
xFindInputAction.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3011

Chapter 62 The Master Library
typedef unsigned char xInputAction;
#define xDiscard (xInputAction)0
#define xInput (xInputAction)1
#define xSave (xInputAction)2
#define xEnablCond (xInputAction)3
#define xPrioInput (xInputAction)4

static xInputAction xFindInputAction(
 xSignalNode SignalId,
 xPrsNode VarP,
 xbool CheckPrioInput)

The parameters of this function is:

• SignalId, which is a pointer to a signal.

• VarP, which is a pointer to a process instance.

• CheckPrioInput, which is a boolean value indicating is the func-
tion should check only for priority inputs or for ordinary inputs.

As a result the function should return:

• The action that should be performed for this signal (input, save,...),
taking all information about this process into account, like inherit-
ance between processes, virtual - redefined transitions and so on.

• If the function result is xInput or xPrioInput, then the
RestartPAD and RestartAddr components in the VarP struct
should be updated with information about where this input can be
found.

After this last update the correct transition can be started by the sched-
uler by just calling the function referenced by RestartPAD, which the
as first action performs switch RestartAddr and starts execute the in-
put symbol.
3012 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The algorithm to find the InputAction, the RestartAddr, and the
RestartPAD is as follows:

1. Let ProcessId become yVarP->NameNode and let StateId be-
come ProcessId->StateList[yVarP->State].

2. In ProcessId->SignalSet find the index (Index) where
SignalId->NameNode is found. If the signal is not found, this sig-
nal is not in the signal set of the process, and the algorithm termi-
nates returning the result xDiscard.

3. StateId->SignalHandlArray[Index] now gives the action to be
performed. If this value is xEnablCond, then the function StateId-
>EnablCond_Function is called. This function returns either xIn-
put or xSave.

Figure 547: Data structure used to evaluate the xFindInputAction

xPrsNode

NameNode

State

VarP

xSignalNode

NameNode

SignalId

xPrsIdNode

StateList

SignalSet

PAD_Function

Super

xStateIdNode

SignalHandlArray
InputRef
EnablCond_Function

Super

List of point-
ers to xSig-
nalIdNodes in
the signalset.
Last item is 0.

List of point-
ers to
xStateId-
Nodes for
states in this
process

xSignalIdNode

xInput

xSave

xDiscard

xInput

xNotInSignalSet

2

0

0

4

0

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3013

Chapter 62 The Master Library
4. If the result from step 3 is xInput, the algorithm terminates return-
ing this value. yVarP->RestartAddr is also updated to
StateId->InputRef[Index], while yVarP->RestartPAD is up-
dated to ProcessId->PAD_Function.

If the result from step 3 is xSave, the algorithm terminates returning
this value.

If the result from step 3 is xDiscard and ProcessId->Super
equal to NULL, then the algorithm terminates returning this value.

If the result from step 3 is xDiscard and ProcessId->Super not
equal to NULL, then we are in a process type that inherits from an-
other process type. We then have to perform step 2 - 4 again, with
ProcessId assigned the value ProcessId->Super and StateId
assigned the value StateId->Super.

Nextstate Operations

The nextstate operation is implemented by the SDL_Nextstate func-
tion, where the following actions are performed:

1. The signal that caused the current transition (component Signal in
the yVDef_ProcessName) is released and the state variable (com-
ponent State in the yVDef_ProcessName) is updated to the new
state.

2. Then the input port of the process is scanned for a signal that can
cause a transition. During the scan signals might be saved or dis-
carded until a signal specified in an input is found. Priority inputs
are treated according to the rules of SDL.

3. If no signal that can cause a transition is found, a check is made if
any continuous signal can cause a transition (see “Enabling Condi-
tions and Continuous Signals” on page 3015). The process is there-
after removed from the ready queue.

4. If any signal (or continuous signal) can cause a transition then the
process is re-inserted into the ready queue again at a position deter-
mined by its priority, else if the new state contains any continuous
signal or enabling condition with an expression that might change
its value during the time the process is in the state (view, import...),
the process is inserted into the check list (see also “Enabling Condi-
tions and Continuous Signals” on page 3015).
3014 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
Decision and Task Operations

Decision and Task operations are implemented in generated code, ex-
cept for the Trace-functions implemented in the sctutil.c and
sctmon.c files and for informal and any decisions that uses some sup-
port functions in sctmon.c. A Decision is implemented as a C if-state-
ment, while the assignments in a Task are implemented as assignments
or function calls in C.

Compound Statements

A compound statement without variable declarations is translated just
to the sequence of action it contains, while a compound statement with
variable declarations is translated in the same way as an SDL procedure
(without parameters). Statements within a compound statement are
translated according to the normal rules. The new statement types in
compound statements are translated as:

• if in SDL is translated to if in C
• decision in compound statements is translated as ordinary deci-

sions.
• for loops, continue, and break are all translated using goto in C.

Enabling Conditions and Continuous Signals

The expressions involved in continuous signals and enabling conditions
are implemented in generated code in functions called
yCont_StateName and yEnab_StateName. These functions are gener-
ated for each state containing continuous signals respectively enabling
conditions. The functions are referenced through the components
ContSig_Function and EnablCond_Function in the StateIdNode
for the state. These components are 0 if no corresponding functions are
generated.

The EnablCond_Functions are called from the function
xFindInputAction, which is called from SDL_Output and
SDL_Nextstate. If the enabling condition expression for the current
signal is true then xInput is returned else xSave is returned. This infor-
mation is then used to determine how to handle the signal in this state.

The ContSig_Functions are called from SDL_Nextstate, if the com-
ponent ContSig_Function is not 0 and no signal that can cause an im-
mediate transition is found during the input port scan. A
ContSig_Function has the following prototype:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3015

Chapter 62 The Master Library
void ContSig_Function_Name (
 void *, int *, xIdNode *, int *);

where the first parameter is the pointer to the yVDef_ProcessName.
The remaining parameters are all out parameters; the second contains
the priority of the continuous signal with highest priority (=lowest val-
ue) that has an expression with the value true. Otherwise <0 is returned
here. The third and fourth is only defined the second parameter >=0; the
third is the IdNode for the process/procedure where the actual continu-
ous signal can be found and the fourth is the RestartAddress connect-
ed to this continuous signal.

If a continuous signal expression with value true is found, a signal in-
stance representing the continuous signal is created and inserted in the
input port, and is thereafter treated as an ordinary signal. The signal type
is continuous signal and is represented by an SignalIdNode (refer-
enced by the variable xContSigId).

The check list is a list that contains the processes that wait in a state
where enabling conditions or continuous signals need to be repeatedly
recalculated.

A process is inserted into the check list if:

1. It enters a state containing enabling conditions and/or continuous
signals and

2. No signal or continuous signal can cause an immediate transition
and

3. One or several of the expressions in the enabling conditions or con-
tinuous signals can change its value while the process is in the state
(view, import, now, ...)

The component StateProperties in the StateIdNode reflects if any
such expression is present in the state.

The check list is represented by the xSysD component:

xPrsNode xCheckList;

The behavior of enabling conditions and continuous signals is in SDL
modeled by letting the process repeatedly send signals to itself, thereby
to repeatedly entering the current state. In the implementation chosen
here, nextstate operations are performed “behind the scene” for all pro-
3016 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
cesses in the check list directly after a call to a PAD function is complet-
ed, that is directly after a transition is ended and directly after a timer
output. This is performed by calling the function xCheckCheckList in
the main loop of the program.

View and Reveal

A view expression is part of an expression in generated code and imple-
mented by calling the function SDL_View.

void * SDL_View (
 xViewListRec *VList,
 SDL_PId P,
 xbool IsDefP,
 xPrsNode ViewingPrs,
 char * Reveal_Var
 int SortSize);

• VList is a list of all revealed variables in this block.

• P is the PId expression given in the view statement.

• IsDefP is 1 is the view expression contained a PId value, 0 other-
wise.

• ViewingPrs is the process instance performing the view operation.

• Reveal_Var is the name of the revealed variable as a string. The
Reveal_Var parameter is only used in error messages and is re-
move under certain conditions.

• SortSize is the size of the data type of the viewed variable.

The SDL_View function performs a test that the view expression is not
NULL, refers to a process in the environment, or to a stopped process in-
stance. If no errors are found the address of the revealed variable is re-
turned as result from the SDL_View function. Otherwise the address of
a variable containing only zeros is returned.

Import, Export, and Remote Variables

For an exported variable there are two components in the
yVDef_ProcessName struct. One for the current value of the variable
and one for the currently exported value of the variable. For each ex-
ported variable there will also be a struct that can be linked into a list in
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3017

Chapter 62 The Master Library
the corresponding RemoteVarIdNode. This list is then used to find a
suitable exporter of a variable in an import action.

An export action is a simple operation. The current value of the variable
is copied to the component representing the exported value. This is per-
formed in generated code.

An import action is more complicated. It involves mainly a call of the
function xGetExportAddr:

void * xGetExportAddr (
 xRemoteVarIdNode RemoteVarNode,
 SDL_PId P,
 xbool IsDefP,
 xPrsNode Importer)

RemoteVarNode is a reference to the RemoteVarIdNode representing
the remote variable (implicit or explicit), P is the PId expression given
in the import action and IsDef is 0 or 1 depending on if any PId expres-
sion was given in the import action or not, Importer is the importing pro-
cess instance. The xGetExportAddr will check the legality of the im-
port action and will, if no PId expression is given, calculate which pro-
cess it should be imported from.

If no errors are found the function will return the address where the ex-
ported value can be found. This address is then casted to the correct type
(in generated code) and the value is obtained. If no process possible to
import from is found, the address of a variable containing only zeros is
returned by the xGetExportAddr function.

Note:

The strategy for import actions is in one sense not equal to the model
for import given in the SDL recommendation. An import action is in
the recommendation modeled as a signal sent from the importing
process to the exporting process asking for the exported value, and
a signal with this value sent back again. The synchronization effects
by this signal communication is lost in the implementation model
we have chosen. Instead our model is much easier and faster and the
primary part of the import action, to obtain the exported value, is the
same.
3018 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
Services

Data Structure Representing Services

A service is represented by a struct type. The xSrvRec struct defined in
scttypes.h, is, just like xPrsRec for processes, a struct containing
general information about a service, while the parameters and variables
of the service are defined in generated code in the same way as for pro-
cesses.

In scttypes.h the following types concerning procedures can be
found:

#ifdef XMONITOR
#define XCALL_ADDR int CallAddress;
#else
#define XCALL_ADDR
#endif

#define SERVICE_VARS \
 xSrvNode NextSrv; \
 xPrsNode ContainerPrs; \
 int RestartAddress; \
 xPrdNode ActivePrd; \
 void (*RestartPAD) (xPrsNode VarP); \
 XCALL_ADDR \
 xSrvIdNode NameNode; \
 int State; \
 XSIGTYPE pREPLY_Waited_For; \
 xSignalNode pREPLY_Signal; \
 XINTRANSCOMP
#ifndef XNOUSEOFSERVICE
typedef struct xSrvStruct *xSrvNode;
#endif

#ifndef XNOUSEOFSERVICE
typedef struct xSrvStruct {
 SERVICE_VARS
} xSrvRec;
#endif

In generated code yVDef_ProcedureName structs are defined according
to the following:

typedef struct {
 SERVICE_VARS
 components for FPAR and DCL
} yVDef_ServiceName;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3019

Chapter 62 The Master Library
The components in the xSrvRec are used as follows:

• NextSrv of type xSrvNode. Reference to next service contained in
this process.

• ContainerPrs of type xPrsNode. Reference to the process in-
stance containing this service.

• RestartAddress of type int. This component is used to find the
appropriate SDL symbol to continue execution from.

• ActivePrd of type xPrdNode. This is a pointer to the xPrdRec that
represents the currently executing procedure called from this ser-
vice instance. The pointer is 0 if no procedure is currently called.

• RestartPAD, which is a pointer to a PAD function. This component
refers to the PAD function where to execute the sequence of SDL
symbols. RestartPAD is used to handle inheritance between service
types.

• CallAddress of type int. This component contains the symbol
number of the procedure call performed from this procedure (if
any).

• NameNode of type xSrvIdNode. This is a pointer to the IdNode rep-
resenting the service or service instantiation.

• State of type int. This component contains the int value used to
represent the current state of the service instance.

• pREPLY_Waited_For of type xSignalIdNode. When a service is
waiting in the implicit state for the pREPLY signal in a RPC call,
this components is used to store the IdNode for the expected pRE-
PLY signal.
3020 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
• pREPLY_Signal of type xSignalNode. When a service receives a
pCALL signal, i.e. accepts a RPC, it immediately creates the return
signal, the pREPLY signal. This component is used to refer to this
pREPLY signal until it is sent.

• InTransition of type xbool. This component is true while the ser-
vice is executing a transition and it is false while the service is wait-
ing in a state. The monitor system needs this information to be able
to print out relevant information.

Executing Transitions in Services

From the scheduler’s point view, it is not of interest if a process contains
services or not. It is still the process instance that is scheduled in the
ready queue and the PAD function of the process that is to be called to
execute a transition. The PAD function for a process containing services
performs three different actions:

• Assign default value to variables declared at the process level
• Create one service instance for each service or service instantiation

in the process.
• Calls the proper PAD function for a service to execute transitions.

The structure for a PAD function for a process with services are as fol-
lows:

YPAD_FUNCTION(yPAD_z00_P1)
{
 YPAD_YSVARP
 YPAD_YVARP(yVDef_z00_P1)
 YPRSNAME_VAR("P1")
 LOOP_LABEL_SERVICEDECOMP
 CALL_SERVICE

/*-----
* Initialization (no START symbol)
------*/
 BEGIN_START_TRANSITION(yPDef_z00_P1)
 yAssF_SDL_Integer(yVarP->z002_Global,
 SDL_INTEGER_LIT(10), XASS);
 START_SERVICES
}

where LOOP_LABEL_SERVICEDECOMP and BEGIN_START_TARNSITION
are empty macros, i.e. expanded to no code. The yAss_SDL_Integer
statement in an assignment of a default value to a process variable.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3021

Chapter 62 The Master Library
The macro CALL_SERVICE is expanded to:

if (yVarP->ActiveSrv != (xSrvNode)0) {
 (*yVarP->ActiveSrv->RestartPAD)(VarP);
 return; \
}

that is to a call of the PAD function of service reference by ActiveSrv.

The macro START_SERVICE is expanded to a call to the function
xStart_Services, which can be found in sctsdl.c.The function cre-
ates the service instances, sets up the ActiveSrv pointer for the process
to the first service, and then schedules the process for a new transition.
This means that the next action performed by the system will be the start
transition by the first service instance. When the first service executes a
nextstate or stop action in the end of its start transition, the process will
be scheduled again to execute the start transition of the second service,
and so on until all services in the process has executed its start transi-
tions.

For ordinary transitions, i.e. reception of a signal, it is obvious from the
code above that the ActiveSrv pointer is essential. It should refer to the
service instance that is to be executed. When a signal is to be received
by a process, it is the function xFindInputAction (in sctsdl.c) that de-
termines how to handle the signal and if it is to be received, where is the
code for that transition. This function now also determines and sets up
the ActiveSrv pointer.
3022 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
Procedures

Data Structure Representing Procedures

A procedure is represented by a struct type. The xPrdRec struct defined
in scttypes.h, is, just like xPrsRec for processes, a struct containing
general information about a procedure, while the parameters and vari-
ables of the procedure are defined in generated code in the same way as
for processes.

In scttypes.h the following types concerning procedures can be
found:

#define PROCEDURE_VARS \
 xPrdIdNode NameNode; \
 xPrdNode StaticFather; \
 xPrdNode DynamicFather; \
 int RestartAddress; \
 XCALL_ADDR \
 void (*RestartPAD) (xPrsNode VarP); \
 xSignalNode pREPLY_Signal; \
 int State;

typedef struct xPrdStruct *xPrdNode;

typedef struct xPrdStruct {
 PROCEDURE_VARS
} xPrdRec;

In generated code yVDef_ProcedureName structs are defined according
to the following:

typedef struct {
 PROCEDURE_VARS
 components for FPAR and DCL
} yVDef_ProcedureName;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3023

Chapter 62 The Master Library
The components in the xPrdRec are used as follows:

• NameNode of type xPrdIdNode. This is a pointer to the IdNode rep-
resenting the procedure type.

• StaticFather of type xPrdNode. This is a pointer that represents
the scope hierarchy of procedures (and the process at the top), which
is used when a procedure instance refers to non-local variables. An
example is shown in Figure 548 on page 3025. StaticFather ==
0 means that the static father is the process.

• DynamicFather of type xPrdNode. This is a pointer that represents
that this procedure is called by the referenced procedure.
DynamicFather == 0 means that this procedure was called from
the process. This component is also used to link the xPrdRec in the
avail list for the procedure type.

• RestartAddress of type int. This component is used to find the
appropriate SDL symbol to continue execution from.

• CallAddress of type int. This component contains the symbol
number of the procedure call performed from this procedure (if
any).

• RestartPRD is a pointer to a procedure function. This component
refers to the PRD function where to execute the next sequence of
SDL symbols. RestartPRD is used to handle inheritance between
procedures.

• pREPLY_Signal of type xSignalNode. When a process receives a
pCALL signal, i.e. accepts a RPC, it immediately creates the return
signal, the pREPLY signal. This component is used to refer to this
pREPLY signal until it is sent.

• State of type int. This is the value representing the current state
of the procedure instance.

In Figure 548 on page 3025 an example of the structure of
yVDef_ProcedureName after four nested procedure calls are presented.
Note that procedure Q is declared in the process, procedure R and S in
Q and T in S.
3024 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The SDL procedures are partly implemented using C functions and
partly using the structure shown above. Each SDL procedure is repre-
sented by a C function, which is called to execute actions defined in the
procedure. This function corresponds to the PAD function for processes.
The formal parameters and the variables are however implemented us-
ing a struct defined in generated code. The procedure stack for nested
procedure calls is implemented using the components StaticFather
and DynamicFather, and does not use the C function stack.

Figure 548: Structure of yVDef_ProcedureName
after four nested procedure calls

Procedure
NameNode
StaticFather
DynamicFather
RestartAddress
... Procedure

NameNode
StaticFather
DynamicFather
RestartAddress

Procedure
NameNode
StaticFather
DynamicFather
RestartAddress
...

Procedure
NameNode
StaticFather
DynamicFather
RestartAddress
...

....
RestartAddress
....
ActivePrd
....

Declarations: Calls

Process P P calls Q

Procedure Q Q calls R

Procedure R R calls S

Procedure S S calls T

Q

R

S

T

0 (which represents
the process instance)

yVDef_ProcessName

...
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3025

Chapter 62 The Master Library
Calling and Returning from Procedures

Procedure calls and procedure returns are handled by three functions,
one handling allocation of the data areas for procedures:

xPrdNode xGetPrd(xPrdIdNode PrdId)

and two functions called from generated code at a procedure call and a
procedure return:

void xAddPrdCall(
 xPrdNode R,
 xPrsNode VarP,
 int StaticFatherLevel,
 int RestartAddress)

void xReleasePrd (xPrsNode VarP)

A procedure call in SDL is in C represented by the following steps:

1. Calling xGetPrd to obtain a data area for the procedure.

2. Assigning procedure parameters to the data area.

3. Calling xAddPrdCall to link the procedure into the static and dy-
namic chains.

4. Calling the C function modeling the SDL procedure, i.e. the
yProcedureName function.

The parameters to xAddPrdCall are as follows:

• R. A reference to the xPrdNode obtained from the call of xGetPrd.

• VarP. A reference to the yVDef_ProcessName, i.e. the data area for
variables and parameters of the process (even if it is a procedure that
performed the procedure call).

• StaticFatherLevel. This is the difference in declaration levels
between the caller and the called procedure. This information is
used to set up the StaticFather component correctly.

• RestartAddress. This is the symbol number of the SDL symbol
directly after the procedure call. The symbol number is the switch
case label generated for all symbols.

The xGetPrd returns a pointer to an xPrdRec, which can then be used
to assign the parameter values directly to the components in the data
3026 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
area representing the formal parameters and variables of the procedure.
Note that IN/OUT parameters are represented as addresses in this struct.

A procedure return is in generated code represented by calling the
xReleasePrd followed by return 0, whereby the function representing
the behavior of the SDL procedure is left.

The function representing the behavior of the SDL procedure is re-
turned in two main situations:

• When an SDL Return is reached (the function returns 0)

• When a Nextstate is reached (the function returns 1).

If 0 is returned then the execution should continue with the next SDL
symbol after the procedure call, while if 1 is returned the execution of
the process instance should be terminated and the scheduler (main loop)
should take control. This could mean that a number of nested SDL pro-
cedure calls should be terminated.

To continue to execute at the correct symbol when a procedure should
be resumed after a nextstate operation, the following code is introduced
in the PAD function for processes containing procedure calls:

while (yVarP->ActivePrd != (xPrdNode)0)
 if ((*yVarP->ActivePrd->RestartPRD)(VarP))
 return;

This means that uncompleted procedures are resumed one after one
from the bottom of the procedure stack, until all procedures are com-
pleted or until one of them returns 1, i.e. executes a nextstate operation,
at which the process is left for the scheduler again.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3027

Chapter 62 The Master Library
Channels and Signal Routes
The ChannelIdNodes for channels, signal routes, and gates are used in
the functions xFindReceiver and xIsPath, which are both called
from SDL_Output, to find the receiving process when there is no TO
clause in the Output statement, respectively to check that there is a path
to the receiver in the case of a TO clause in the Output statement. In both
cases the paths built up using the ToId components in the IdNodes for
processes, channels and signal routes are followed. To show the struc-
ture of these paths we use the small SDL system given in Figure 549.

During the initialization of the system, the symbol table is built up. The
part of the symbol table starting with the system will then have the
structure outlined in Figure 550. As we can see in this example the dec-
larations in the SDL system are directly reflected by IdNodes.

Figure 549: A small SDL system
3028 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model

Each IdNode representing a process, a signal route, or a channel will
have a component ToId. A ToId component is an address to an array of
references to IdNodes. The size of this array is dependent on the num-
ber of items this object is connected to. A process that has three outgo-
ing signal routes will have a ToId array which can represent three point-
ers plus an ending 0 pointer.

In the example in Figure 549 and Figure 550 there is no branching, so
all ToId arrays will be of the size necessary for two pointers. Figure 551
shows how the IdNodes for the processes, signal routes and channels
are connected to form paths, using the components ToId. In this case
only simple paths are found (one from P1, via SR1, C, SR2, to P2, and

Note:

Each channel and signal route is represented by two IdNodes, one
for each direction. This is also true for an unidirectional channel or
signal route. In this case the signal set will be empty for the unused
direction.

.

Figure 550: The symbol table tree for the system in Figure 549

Block
"B1"

Block
"B2"

Signal
"S"

Signal
"T"

Channel
"C"

Channel
"C"

System
"S"

Process
"P1"

SignalRoute
"SR1"

SignalRoute
"SR2"

SignalRoute
"SR2"

Process
"P2"

First

Suc Suc Suc Suc Suc

First

Suc Suc

Suc SucFirst

SignalRoute
"SR1"
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3029

Chapter 62 The Master Library
one in the reverse direction). The generalization of this structure to han-
dle branches is straightforward and discussed in the previous paragraph.

Figure 551: The connection of ToId for the system in
Figure 549 and Figure 550

Channel

Name: "C"

SignalRoute

Name: "SR1"

Channel

Name: "C"

SignalRoute

Name: "SR2"

SignalRoute

Name: "SR2"

Process

Name: "P2"

0 0

0

0

0

0

0

0

Process

Name: "P1"

SignalRoute

Name: "SR1"
3030 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The SDL Model
The Type Concept in SDL-92
The probably most important new feature in SDL-92 is the introduction
of the object oriented features, such as TYPE, INHERITS, VIRTUAL,
and REDEFINED. Here we start by discussing process types.

For each process type the Cadvanced/Cbasic SDL to C Compiler will
generate:

• a PrsIdNode
• a PAD function
• a yVDef_ProcessName struct.

In the PrsIdNode there is one component (Super) that will refer to the
PrsIdNode for the process type inherited by this process type. As sons
to a PrsIdNode, IdNodes for declaration that are common for all in-
stantiation of the process type can be found. Examples of such IdNodes
are: nodes for variables, formal parameters, signals, timers, procedures,
states, newtypes, and syntypes. Any typedefs or help functions for such
units are also treated in the process type.

The PAD function will be independent of the PAD function for a inher-
ited type, each PAD function just implementing the action described in
its process type.

A yVDef_ProcessName struct will on the other hand include all vari-
ables and formal parameters from the top of the inheritance chain and
downwards. Example:

process type P1;
fpar f1 integer;
dcl d1 integer;
...
endprocess;

process type P2 inherits P1;
fpar f2 integer;
dcl d2 integer;
...
endprocess;

This will generate the following principle yVDef_... structs:

typedef struct {
 PROCESS_VARS
 SDL_Integer f1;
 SDL_Integer d1;
} yVDef_P1;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3031

Chapter 62 The Master Library
typedef struct {
 PROCESS_VARS
 SDL_Integer f1;
 SDL_Integer d1;
 SDL_Integer f2;
 SDL_Integer d2;
} yVDef_P2;

A pointer to yVDef_P2 can thus be casted to a pointer to yVDef_P1, if
only the common component (in PROCESS_VARS) or the variables in P1
is to be accessed. This possibility is used every time the PAD function
for an inherited process type is called.

Each process instantiation will all be implemented as a xPrsIdNode.
The Super component in such an object refers to the process type that
is instantiated. No PAD function or yVDef_... struct will be generated.
As sons to the PrsIdNode for a process instantiation, only such object
are inserted that are different in different instantiations. For a process in-
stantiation this is the gates. For other types of information the process
instantiation uses the information given for its process type.

A very similar structure when it comes to IdNodes generated for block
types and block instantiations are used by the code generator. There will
be a BlockIdNode for both a block type and for a block instantiation.
As sons to a block type, nodes that are the same in each block instanti-
ation can be found (example: signal, newtype, syntype, block type, pro-
cess type, procedure). As sons to a block instantiation, nodes that are
needs to be represented in each block instantiation can be found (exam-
ple: block instantiation, process instantiation, channel, signal route,
gate, remote definitions).

A way to look at the structure of IdNodes in a particular system is to
use the command Symboltable in the monitor system. This command
prints the IdNode structure as an indented list of objects.

Note:

A block or process (according to SDL-88), that is contained in a
block type or a system type, is translated as if it was a type and in-
stantiation at the same place.
3032 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Allocating Dynamic Memory
Allocating Dynamic Memory

Introduction
This section deals with the allocation and deallocation of dynamic
memory.

Information is provided about the following topics:

• Explanation about how dynamic memory is allocated and reused
(deallocation and avail lists)

• How to estimate the total need of dynamic memory for an applica-
tion.

Dynamic memory is used for a number of objects in a run-time model
for applications generated by the Cadvanced/Cbasic SDL to C Compil-
er. These objects are:

• Process instances

• Signal and timer instances

• Procedure instances

• Charstring, Octet_string, Bit_string, and Object_identifer variables
and variables of String, Bag, general Array, and general Powerset
types.

• Variables of other user-defined data types, where the user has decid-
ed to use dynamic memory.

To help to estimate the need for memory for an application we will give
information about the size of these objects and about how many of the
objects are created. The size information given is true for generated ap-
plications, that is, ones that do not, for example, contain the monitor.
The type definitions given are stripped of components that will not be
part of an application. The full definitions may be found in the file
scttypes.h.

Note:

This information is only valid when the Master Library is used. The
OS integrations might have different strategies for memory alloca-
tion.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3033

Chapter 62 The Master Library
Processes
Each process instance is represented by two structs that will be allocated
on the heap. In scttypes.h the type xLocalPIdRec is defined and in
generated code yVDef_ProcessName structs are defined:

typedef struct {
 xPrsNode PrsP;
} xLocalPIdRec;

typedef struct {
 xPrsNode Pre;
 xPrsNode Suc;
 int RestartAddress;
 xPrdNode ActivePrd;
 void (*RestartPAD) (xPrsNode VarP);
#ifndef XNOUSEOFSERVICE
 xSrvNode ActiveSrv;
 xSrvNode SrvList;
#endif
 xPrsNode NextPrs;
 SDL_PId Self;
 xPrsIdNode NameNode;
 int State;
 xSignalNode Signal;
 xInputPortRec InputPort;
 SDL_PId Parent;
 SDL_PId Offspring;
 int BlockInstNumber;
 xSignalIdNode pREPLY_Waited_For;
 xSignalNode pREPLY_Signal;

 /* variables and formal parameters in the
 process */
} yVDef_ProcessName;

To calculate the size of the structs above it is necessary to know more
about the components in the structs. The types xPrsNode, xPrdNode,
xSignalNode, xPrsIdNode, xStateIdNode, and xSignalIdNode are
all pointers, while SDL_PId is a struct containing an int and a pointer.
The xInputPortRec is a struct with two pointers and one int.

This means that it is possible to calculate the size of the xLocalPIdRec
and the xPrsRec struct using the following formulas, if the compiler
does not use any strange alignment rules:

SizexLocalPIdRec Sizeaddress=

SizexPrsRec 16 Sizeaddress⋅ 7 Sizeint⋅+=
3034 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Allocating Dynamic Memory
The size of xPrsRec can be reduced by 2 x sizeof (address) if the code
is compiled with the XNOUSEOFSERVICE flag. Then, of course, the
SDL concept service cannot be used. The size of yVDef_ProcessName
is the size of the xPrsRec plus the size of the variables and parameters
in the process. Any overhead introduced by the C system should also be
added. The size of the formal parameter and variables is of course de-
pendent on the declarations in the process. The translation rules for SDL
types, both predefined and user defined, can be found in chapter 57, The
Cadvanced/Cbasic SDL to C Compiler.

For each process instance set in the system the following number of
structs of a different kind will be allocated:

• There will be one xLocalPIdRec for each process instance created.
These structs will not be reused, as they serve as identification of
process instances that have existed (see also optimizations below).

• There will be as many yVDef_ProcessName structs as the maxi-
mum concurrently executing process instances of the process in-
stance set (maximum during the complete execution of the pro-
gram).

The yVDef_ProcessName structs are reused by having an avail list
where this struct is placed when the process instance it represents per-
form a stop action. There is one avail list for each process type. When a
process instance should be created, the runtime library first looks at the
avail list and reuses an item from the list. Only if the avail list is empty
new memory is allocated.

Compilation switch XPRSOPT

If the compilation switch XPRSOPT is defined then:

• xLocalPIdRecs are reused together with the xPrsRecs.

• xLocalPIdRecs contain an additional int component.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3035

Chapter 62 The Master Library
Services
Services are handled very similar to processes. The following struct
type are allocated for each service instance.

typedef struct xSrvStruct {
 xSrvNode NextSrv;
 xPrsNode ContainerPrs;
 int RestartAddress;
 xPrdNode ActivePrd;
 void (*RestartPAD) (xPrsNode VarP);
 xSrvIdNode NameNode;
 int State;
 XSIGTYPE pREPLY_Waited_For;
 xSignalNode pREPLY_Signal;
} xSrvRec;

This means that:

The size of yVDef_ServiceName is the size of the xSrvRec plus the
size of the variables in the service. yVDef_ServiceName struct are re-
used in the same way as for processes (see previous section).

Signals
Signals are handled in much the same way as processes. A signal in-
stance is represented by one struct (in generated code generated).

typedef struct {
 xSignalNode Pre;
 xSignalNode Suc;
 int Prio;
 SDL_PId Receiver;
 SDL_PId Sender;
 xIdNode NameNode;

 /* Signal parameters */
} yPDef_SignalName;

This struct type contains one component for each signal parameter. The
component types will be the translated version of the SDL types of the
parameters.

This means that it is possible can calculate the size of a xSignalRec,
which is the same as a struct for a signal without parameters, using the
following formula:

SizexSrvRec 7 Sizeaddress⋅ 2 Sizeint⋅+=

SizexSignalRec 5 Sizeaddress 3 Sizeint⋅+⋅=
3036 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Allocating Dynamic Memory
The size of a yPDef_SignalName struct is thus equal to the size of the
xSignalRec plus the size of the parameters. The translation rules for
SDL types, both the predefined and user defined, can be found in chap-
ter 57, The Cadvanced/Cbasic SDL to C Compiler.

For each signal type in the system the following number of data areas
will be allocated:

• There will be as many yPDef_SignalName struct as the maximum
number of signals (during the complete execution of the program)
of the signal type that are sent but not yet received in an input oper-
ation.

The yPDef_SignalName struct is reused by having an avail list, where
the struct is placed when the signal instance they represent is received.
The exact point where the signal instance is returned to the avail list is
when the transition caused by the signal instance is ended by a nextstate
or stop action. There is one avail list for each signal type. When a signal
instance should be created, for example during an output operation, the
runtime library first looks at the avail list and reuses an item from this
list. Only if the avail list is empty new memory is allocated.

Timers
The memory needed for timers can be calculated in the same way as for
signals with one exception, each timer contains an extra SDL_Time
component, i.e. two extra 32-bit integers.

Note:

There is one common avail list for all signals without parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3037

Chapter 62 The Master Library
Procedures
Procedures and processes have much in common in terms of memory
allocation. A procedure is, during the time it exists from call to return,
represented by a struct; the yVDef_ProcedureName.

typedef struct {
 xPrdIdNode NameNode;
 xPrdNode StaticFather;
 xPrdNode DynamicFather;
 int RestartAddress;
 int (*RestartPRD) (xPrsNode VarP);
 xSignalNode pREPLY_Signal;
 int State;

 /* Formal parameters and variables */
} yVDef_ProcedureName;

The struct type contains one component for each formal parameter or
variable. The component types will be the translated version of the SDL
types of the parameters, except for an IN/OUT parameter which is rep-
resented as an address.

The size of the xPrdRec struct (which is the same as a procedure with-
out variables and formal parameters) can be calculated using the follow-
ing formula:

The size of a yVDef_ProcedureName struct is the size of the xPrdRec
plus the size of the formal parameter and variables defined in the proce-
dure. The translation rules for SDL types, both the predefined and user
defined can be found in chapter 57, The Cadvanced/Cbasic SDL to C
Compiler.

For each type of procedure in the system the following number of data
areas will be allocated:

• There will be as many yVDef_ProcedureName structs as the maxi-
mum number of concurrent calls (during the complete execution of
the program) of the procedure. Concurrent calls occur both when a
procedure calls itself recursively within one process instance, and
when several process instances of the same process type calls the
same procedure during overlapping times.

The yVDef_ProcedureName struct is reused by having an avail list,
where this two struct is placed when the procedure instance executes a

SizexPrdRec 5 Sizeaddress 2 Sizeint⋅+⋅=
3038 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Allocating Dynamic Memory
return action. There is one avail list for each procedure type. When a
procedure instance should be created, that is, at a call operation, the
runtime library first looks at the avail list and reuses an item in the list.
Only if the avail list is empty new memory is allocated.

Data types
The predefined SDL type charstring is implemented as char * in C
and thus requires dynamic memory allocation. The predefined data
types Bit_string, Octet_string, and Object_identifier are also imple-
mented using dynamic memory.

The implementation of the SDL sorts Charstring, Bit_string,
Octet_string, and Object_identifier is both flexible in length and all
memory can be reused.

The mechanism used to release unused memory is to call the xFree
function in the file sctos.c, which uses the standard function free to
release the memory.

Charstrings, Bit_strings, Octet_strings, and Object_identifiers are also
handled correctly if they are part of structs or arrays. When, for exam-
ple, a new value is given to a struct having a charstring component, the
old charstring value will be released. For all structured types containing
any of these types there will also be a Free function that is utilized to
release all dynamic memory in the structured variable.

Functions for Allocation and Deallocation
The allocation and deallocation of memory is handled by the functions
xAlloc and xFree in the file sctos.c. The functions in this file are
used for the adoption of the generated applications to the operating sys-
tem or hardware. The sctos.c file is described in detail in “The sctos.c
File” on page 3071.

In generated code and in the run-time library the functions xAlloc and
xFree are used in each situation where memory is needed or can be re-
leased. xAlloc receives as parameter a requested size in bytes and re-
turns the address to a data area of the requested size. All bytes in the data
area are set to zero. xFree takes the address of a pointer and returns the
data area referenced by the pointer to the pool of free memory. It also
sets the pointer to 0.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3039

Chapter 62 The Master Library
The xAlloc and xFree functions are usually implemented using some
version of the C standard functions for allocation (malloc, calloc) and
deallocation (free). Other implementations are of course possible as
long as the interface described in the previous section is fulfilled. In a
micro controller, for example, it is probably necessary to handle alloca-
tion and deallocation directly towards the physical memory.

To prevent memory fragmentation we have used our own avail lists in
almost all circumstances. Memory fragmentation is phenomena occur-
ring when a program allocates and de-allocates data areas (of different
sizes) in some “random” order. Then small pieces of memory here and
there are lost, since their sizes are to small to fit an allocation request.
This can lead to a slowly increasing demand for memory for the appli-
cation.

Note that deallocation of memory is only used for data types. More spe-
cific it is used for variables of type:

• Charstring
• Octet_string
• Bit_string
• Object_identifier
• Types created by String (not #STRING) and Bag generator
• Types created by Array generator, if the index type is such that an

array in C cannot be used. (General array)
• Types created by Powerset generator, if the component type has the

has property as for the index type in general arrays.

This means that if variables of the above mentioned types are not used
and the user has not introduced the need for deallocation of memory
himself, no memory deallocation will occur. In this case it is of course
unnecessary to implement the xFree function.

It is easy to trace the need for dynamic memory. As all memory alloca-
tion is carried out through the xAlloc function and this function is
available in source code (in sctos.c), it is only necessary to introduce
whatever count statements or printout statements that are appropriate.
3040 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
Compilation Switches
The compilation switches are used to decide the properties of the Master
Library and the generated C code. Both in the library and in generated
code #ifdefs are used to include or exclude parts of the code.

The switches that are used can be divided into four groups.

1. Switches defining properties of the compiler.
2. Switches defining a library version.
3. Switches defining a property of a library version.
4. Switches defining the implementation of a property.

The first group will be discussed in “Adaptation to Compilers” on page
3069.

The following switches define the library version:

The definition of the properties of these libraries can be found in
scttypes.h and will be discussed below. Each library version is spec-
ified by the switches in the group property switches that it defines.

New library versions, containing other combinations of property
switches, can easily be defined by introducing new library definitions in
the scttypes.h file.

The property switches discussed below can be used to form library ver-
sions. If not stated otherwise for a certain property, all code, variables,
struct components, and so on, are either included or excluded using con-
ditional compiling (#ifdef), depending on whether the property is used
or not.

Switch Corresponds to Library

SCTDEBCOM Simulation

SCTDEBCLCOM RealTimeSimulation

SCTAPPLCLENV Application

SCTDEBCLENVCOM ApplicationDebug
(Simulation with environment)

SCTPERFSIM PerformanceSimulation
(Library with simulated time, no environ-
ment functions, no monitor.)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3041

Chapter 62 The Master Library
This means, for example, that all code for the monitor interface will be
removed in an application not using the monitor, which makes the ap-
plication both smaller and faster.

Description of Compilation Switches

XCLOCK

If this compilation switch is not defined then simulated time is used,
otherwise the system time is connected to a real clock, via the sctos.c
function SDL_Clock.

XCALENDARCLOCK

This is the same as XCLOCK (it will actually define XCLOCK), except that
if XCLOCK is used, time will be zero at system start up, while if XCALEN-
DARCLOCK is used, time will be whatever the clock returns at system
start up.

XPMCOMM

Define this compilation switch if the application should be able to com-
municate with signals via the SDL suite communication mechanism.
This facility is used to accomplish communicating simulations and sim-
ulations communicating with, for example, user interfaces.

XITEXCOMM

This switch should be defined if a generated simulator should be able to
communicate with a TTCN simulator.

XENV

If this compilation switch is defined the environment functions
xInitEnv, xCloseEnv, xInEnv, and xOutEnv will be called at appro-
priate places.

XTENV

This is the same as XENV (it will actually define XENV), except that
xInEnv should return a time value which is the next time it should be
called (a value of type SDL_Time). The main loop will call xInEnv at
3042 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
the first possible occasion after the specified time has expired, or when
the SDL system becomes idle.

XENV_CONFORM_2_3

This switch make signals using a compatible data structure as in SDT
2.3. This means that an extra and unnecessary component yVarP is in-
serted in each signal.

XSIGLOG

This facility makes it possible for a user to implement his own log of the
major events in the system. This compilation switch is normally not de-
fined. By defining this switch, each output of a signal, i.e. each call of
the function SDL_Output, will result in a call of the function
xSignalLog. Each time a transition is started, the function
xProcessLog will be called.

These functions have the following prototypes:

extern void xSignalLog
 (xSignalNode Signal,
 int NrOfReceivers,
 xIdNode * Path,
 int PathLength);

extern void xProcessLog
 (xPrsNode P);

which are included in scttypes.h if XSIGLOG is defined.

Signal will be a pointer to the data area representing the signal in-
stance.

NrOfReceivers will indicate the success of the output according to the
following table:

NrOfReceivers Output Statement Contents

-1: A TO clause, but no path of channels and signal
routes were found between the sender and the re-
ceiver.

0: No TO clause, and no possible receivers were
found in the search for receivers.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3043

Chapter 62 The Master Library
The third parameter, Path, is an array of pointer to IdNodes, where
Path[0] refers to the IdNode for the sending process, Path[1] refers
to the first signal route (or channel) in the path between the sender and
the receiver, and so on, until Path[PathLength] which refers to the
IdNode for the receiving process.

The parameter P in the xProcessLog function will refer to the process
just about to start executing.

The fourth parameter, PathLength, represents thus the number of com-
ponents in the Path array that are used to represent the path for the sig-
nal sent in the output. If the signal is sent to or from the environment,
either Path[0] or Path[PathLength] will refer to xEnvId, that is to
the IdNode for the environment process.

In the implementation of the xSignalLog and xProcessLog functions
which should be provided by the user, the user has full freedom to use
the information provided by the parameters in any suitable way, except
that it is not possible to change the contents of the signal instance. The
functions are provided to make it possible for a user to implement a sim-
ple log facility in environments where standard IO is not provided, or
where the monitor system is too slow or too large to fit. A suitable im-
plementation can be found in the file sctenv.c

XTRACE

If this compilation switch is defined, traces of the execution can be
printed.

1: If the output statement contains a TO clause, a
path of channels and signal routes was found be-
tween the sender and the receiver.
If the output statement contains no TO clause, ex-
actly one possible receiver was found in the
search for receivers.
The output was thus successful. The only error sit-
uation that still might be present is if an output
with a TO clause is directed to a process instance
that is stopped.

NrOfReceivers Output Statement Contents
3044 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
This facility is normally used together with the monitor, but can also be
used without the monitor. The file stdout must of course be available
for printing.

Setting trace values must, without the monitor, be performed in includ-
ed C code, as the monitor interface is excluded. The trace components
are called Trace_Default and can be found in IdNodes representing
system, blocks, and processes, and in the struct xPrsRec used to repre-
sent a process instance. The values stored in these components are the
values given in the Set-Trace command in the monitor. The value unde-
fined is represented by -1.

When the monitor is excluded all trace values will be undefined at star-
tup, except for the system which has trace value 0. This means that no
trace is active at start up.

Example 492 –––

Suitable statements to set trace values in C code:

xSystemId->Trace_Default = value;
 /* System trace */
xPrsN_ProcessName->Trace_Default = value;
 /* Process type trace */
PId_Var.LocalPId->PrsP->NameNode->Trace_Default =
 value
 /* Process type trace */
PId_Var.LocalPId->PrsP->Trace_Default = value;
 /* Process instance trace */

PId_Var is assumed to be a variable of type PId.

––

XGRTRACE

If this compilation switch is defined it is possible for a simulation to
communicate with the Organizer and the SDL Editor to highlight SDL
symbols in the graphical representation.

Note:

Note that the variable xPrsN_ProcessName is declared, and there-
fore only available, in the file containing the block where the pro-
cess is defined (and in files representing processes contained in the
block).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3045

Chapter 62 The Master Library
This feature is used together with the monitor to implement graphical
trace and commands like Show-Next-Symbol and
Show-Previous-Symbol. It is possible to use graphical trace without the
monitor in the same way as the ordinary trace (substitute
Trace_Default with GRTrace in the description above). However the
graphical trace is synchronized which means that the speed of the appli-
cation is dramatically reduced.

XCTRACE

Defining this compilation switch makes information available to the
monitor about where in the source C code the execution is currently sus-
pended. This facility, which is used together with the monitor, makes it
possible to implement the monitor command Show-C-Line-Number.

XMONITOR

If this compilation switch is defined, the monitor system is included in
the generated application.

XCOVERAGE

This compilation switch makes it possible to generate coverage tables.
It should be used together with XMONITOR.

MAX_READ_LENGTH

This macro controls the length of the char * buffers used to read values
of SDL sorts. A typical usage is when the monitor commands
Assign-Value is entered. If large data types are used, it is possible to re-
define the sizes of the buffers from their default size (10000 bytes) to
something more appropriate.

XSIMULATORUI

This compilation switch should be defined if the generated simulator is
to be executed from the Graphical User Interface to the simulator mon-
itor.

XMSCE

This compilation switch should be defined if the generated simulator
should be able to generate Message Sequence Charts.
3046 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
XSDLENVUI

This compilation switch should be defined if it should be possible to
start and communicate with a user interface (or another application)
from the simulation. This feature should be used together with the mon-
itor and will define the switch XPMCOMM (see also this switch).

XNOMAIN

When this compilation switch is defined the functions main and
xMainLoop are removed using conditional compiling. This feature is in-
tended to be used when a generated SDL application should be part of
an already existing application, that is when the SDL system imple-
ments a new function in an existing environment. The following func-
tions are available for the user to implement scheduling of SDL actions:

extern void xMainInit(
 void (*Init_System) (void)
#ifdef XCONNECTPM
 ,int argc,
 char *argv[]
#endif
);

#ifdef XNOMAIN
extern void SDL_Execute (void);

extern int SDL_Transition_Prio (void);

extern void SDL_OutputTimer (void);

extern int SDL_Timer_Prio (void);

extern SDL_Time SDL_Timer_Time (void);
#endif

The behavior of these functions are as follows:

xMainInit: This function should be called to initialize the SDL system
before any other function in the runtime library is called. An appropriate
way to call xMainInit is:

#ifdef XCONNECTPM
xMainInit(yInit, argc, argv);
#else
xMainInit(yInit);
#endif
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3047

Chapter 62 The Master Library
The compilation switch XCONNECTPM will be defined if the any switch
that requires communication via the SDL suite communication mecha-
nism is defined (XPMCOMM or XGRTRACE).

SDL_Execute: This function will execute one transition by the process
instance first in the ready queue.

Before calling this function it must be checked that there really is at
least one process instance in the ready queue. This test can be performed
using the function SDL_Transition_Prio discussed below.

SDL_Transition_Prio: This function returns the priority of the pro-
cess first in the ready queue (if signal priorities are used it is the priority
of the signal that has caused the transition by the actual process in-
stance). If the ready queue is empty, -1 is returned.

SDL_OutputTimer: This function will execute one timer output and
may only be called if there is a timer ready to perform a timer output.
This test can be performed with either SDL_Timer_Prio or
SDL_Timer_Time described below.

SDL_Timer_Prio: This function returns the priority of the timer first in
the timer queue if the timer time has expired for this timer. That is, if
Now is greater than or equal to the time given in the Set statement for
the timer.

If the timer queue is empty or the timer time for the first timer has not
expired, -1 will be returned.

If signal priorities are used, the priority returned is the priority assigned
to the timer type (in the timer definition) or the default timer priority;
while if process priorities are used the priority returned is the priority of
the process that has set the timer.

SDL_Timer_Time: This function returns the time given in the set state-
ment for the first timer in the timer queue. If the timer queue is empty,
the largest possible time value (xSysD.xMaxTime) is returned.

Depending on how the SDL system is integrated in an existing environ-
ment it might be possible to also use the monitor system. In that case the
function xCheckMonitors should be called to execute monitor com-
mands.

extern void xCheckMonitors (void);
3048 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
To give some idea of how to use the functions discussed above, an ex-
ample reflecting the way the internal scheduler in the runtime library
works is given below:

Example 493 –––

 while (1) {
#ifdef XMONITOR
 xCheckMonitors();
#endif
 if (SDL_Timer_Prio() >= 0)
 SDL_OutputTimer();
 else if (SDL_Transition_Prio() >= 0)
 SDL_Execute();
 }

––

XMAIN_NAME

Sometimes when integrating generated application or simulations in
larger environments the main function can be useful but cannot have the
name main. This name can be changed to something else by defining
the macro XMAIN_NAME. The main function came be found in the file
sctsdl.c.

XSIGPRIO

The XSIGPRIO compilation switch defines that priorities on signals (set
in Output statements) should be used. This switch and the three other
switches for priorities given below are, of course, mutually exclusive.

A signal priority is specified with a priority directive (see “Assigning
Priorities – Directive #PRIO” on page 2667 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler, that is by a comment with the fol-
lowing outline:

 /*#PRIO 5 */.

A priority can be assigned to a signal instance in an output statement by
putting a #PRIO directive last in the output symbol. In SDL/PR it is
possible to put the #PRIO directive both immediately before and imme-
diately after the semicolon ending the output statement. The Cad-
vanced/Cbasic SDL to C Compiler will first look for #PRIO directives
in the output statement. If no directive is found there it will look in the
signal definition for the signal for a priority directive. A #PRIO direc-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3049

Chapter 62 The Master Library
tive should be placed directly before the comma or semicolon ending
the definition of the signal.

Example 494 –––

SIGNAL
 S1 /*#PRIO 3 */,
 S2 (Integer) /*#PRIO 5 */;

––

If no priority directive is found in the output symbol or in the definition
of the signal, the default value for signal priority is used. This value is
100. Timers can be assigned priorities in timer definitions in the same
way as signals in signal definitions.

The signal priorities will be used to sort the input port of process in-
stances in priority order, so that the signal with highest priority (lowest
priority value) is at the first position. Two signals with same priority are
placed in the order they arrive. The priority of the signal that can cause
the next transition by a process instance is used to sort the ready queue
in priority order, so that the process with a signal of highest priority is
first. With equal priority, the processes are placed in the order they are
inserted into the ready queue. If a continuous signal caused a processes
to be inserted into the ready queue, it is the priority of the continuous
signal that will be used as signal priority for this “signal”.

Note that a start transition also have a “signal priority”. This is by de-
fault also 100 and is set by the macro xDefaultPrioCreate described
below.

XPRSPRIO

This compilation switch defines that process priorities should be used.
For more information see chapter 57, The Cadvanced/Cbasic SDL to C
Compiler, section Assigning Priorities - Directive #PRIO.

Caution!

Signal priority is not included in SDL according to ITU Recommen-
dation Z.100, and that sorting the signals in the input port of a pro-
cess instance according to priorities is a direct violation of the SDL
standard. This feature is however included for users that need such
a behavior to implement their applications.
3050 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
XSIGPRSPRIO

This compilation switch defines that priorities on signals should be used
as first key for sorting in priority order, and process priorities should be
used as second key.

XPRSSIGPRIO

This compilation switch defines that process priorities should be used
as first key for sorting in priority order, and priorities on signals should
be used as second key.

xDefaultPrio...

It is possible to redefine the default priorities for processes, signals, tim-
er signals, continuous signals and start-up signals by defining the sym-
bols below to appropriate values. The default value for these defaults
are 100.

xDefaultPrioProcess
xDefaultPrioSignal
xDefaultPrioTimerSignal
xDefaultPrioContSignal
xDefaultPrioCreate

XOPT

This compilation switch will turn on full optimization (except
XOPTCHAN), that is, it will define the following switches:

For more information, see these switches below. The XOPT switches
should not be used together with the monitor.

XOPTSIGPARA

In the symbol table tree (see section “Symbol Table Tree Structure” on
page 2954) there will be one node for each parameter to a signal. These
nodes are not necessary in an application and can be removed by defin-
ing the compilation switch XOPTSIGPARA.

XOPTSIGPARA XOPTDCL

XOPTFPAR XOPTSTRUCT

XOPTLIT XOPTSORT
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3051

Chapter 62 The Master Library
XOPTDCL

There will be a VarIdNode in the symbol table tree for each variable de-
clared in processes, procedures, or operator diagram. These nodes are
not used in an application (without the monitor) and can be removed by
defining the compilation switch XOPTDCL.

XOPTFPAR

There will be a VarIdNode in the symbol table tree for each formal pa-
rameter in a processes, procedures, or operator diagram. These node are
not used in an application and may be removed by defining the compi-
lation switch XOPTFPAR.

XOPTSTRUCT

For each component in an SDL struct there will be one VarIdNode de-
fining the properties of this component. These VarIdNodes are not used
in an application and can be removed by defining the compilation
switch XOPTSTRUCT.

XOPTLIT

For each literal in a newtype that will be translated to an enum type,
there will be an LitIdNode representing the literal. These nodes will
not be used in an application and can be removed by defining the com-
pilation switch XOPTLIT.

XOPTSORT

Each newtype and syntype, including the SDL standard types, will be
represented by an SortIdNode. These nodes are not used in an applica-
tion if all the other XOPT... mentioned above are defined.

XNOUSEOFREAL

Defining this compilation switch will remove all occurrences of C
float and double types, and means for example that the SDL type
Real is no longer available.

This switch is intended to be used in situations when it is important to
save space, to see to that the library functions for floating type opera-
tions are not necessary to load. It cannot handle situations when the user
includes floating type operations in C code, for example #CODE direc-
tives. Another consideration is if BasicCTypes.pr, or other ADTs, are
3052 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
included in the system. If so, it is required that types dependent on SDL
Real be removed from these packages.

XNOUSEOFOBJECTIDENTIFER

Defining this switch will remove all code for the SDL predefined sort
Object_identifier.

XNOUSEOFOCTETBITSTRING

Defining this switch will remove all code for the SDL predefined sorts
Bit_string, Octet, and Octet_string.

Special consideration needs to be taken if BasicCTypes.pr, or other
ADTs, are included in the system. If so, it is required that types depen-
dent on these types be removed from these packages.

XNOUSEOFEXPORT

By defining this switch the user states that he is not going to use the ex-
port - import concept in SDL.

XNOUSEOFSERVICE

This compilation switch can be defined to save space, both in data and
in the size of the kernel, if the SDL concept service is not used. If ser-
vices are used and this switch is defined, there will be compilation er-
rors (probably many!), when the generated code is compiled.

XPRSOPT

Section “Create and Stop Operations” on page 3007 describes how
xLocalPIdRec structs are allocated for each created process instance,
and how these structs are used to represent process instances even after
they have performed stop actions. This method for handling
xLocalPIdRecs is required to be able to detect when a signal is sent to
a process instance that has performed a stop operation.

Caution!

An attempt to perform an import operation when
XNOUSEOFEXPORT is defined will result in a compilation error,
as the function xGetExportAddr is not defined.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3053

Chapter 62 The Master Library
In an application that is going to run for a “long” period of time and that
uses dynamic processes instances, this way of handling
xLocalPIdRecs will eventually lead to no memory being available.

By defining the compilation switch XPRSOPT, the memory for the
xLocalPIdRecs will be reused together the yVDef_ProcessName
structs. This has two consequences:

1. The need for memory will not increase due to the use of dynamic
processes (the memory need depends on the maximum number of
concurrent instances).

2. It will no longer be possible to always find the situation when a sig-
nal is sent to a process instance that has performed a stop action.

More precisely, if we have a PId variable that refers to a process in-
stance which performs a stop operation and after that a create operation
(on the same process instance set) is performed where the same data
area is reused, then the PId variable will now refer to the new process
instance.

This means, for example, that signals intended for the old instance will
be sent to the new instance. Note that it is still possible to detect signal
sending to processes in the avail list even if XPRSOPT is defined.

XOPTCHAN

This switch can be used to remove all information about the paths of
channels and signal routes in the system. The following memory opti-
mization will take place:

• The two ChannelIdNodes for each channel, signal route, and gate
are removed.

• The ToId component in the xPrsIdNodes representing processes is
removed.

• A number of functions in the library (sctsdl.c) are no longer need-
ed and are removed.

When the information about channels, signal routes, and gates is not
present two types of calculations can no longer be performed:

1. To check if there is a path of channels and signal routes between the
sender and the receiver in an OUTPUT statement with a TO clause.
3054 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
This is no problem as this is just an error test that we probably do
not want to be performed in an application.

2. To calculate the receiver in an OUTPUT without TO clause, if the
Cadvanced/Cbasic SDL to C Compiler has not performed this cal-
culation at generate time (see “Calculation of Receiver in Outputs”
on page 2585 in chapter 57, The Cadvanced/Cbasic SDL to C Com-
piler). This is more serious, as it means that OUTPUT without TO
cannot always be used. The restrictions are:

– No outputs without to in process types, or in process in block or
system types.

– No outputs without to, designated to a process in a SEPARATE
unit.

In an ordinary SDL system OUTPUTs without TO must be used to start
up the communication between different parts of the system, as there is
no other way in SDL to distribute the PId values needed for OUTPUTs
with TO.

This problem is solved if the Cadvanced/Cbasic SDL to C Compiler can
calculate the receiver. Otherwise the data type PIdList in the library of
abstract data types is intended to solve this problem. It is described in
chapter 63, The ADT Library. When this data type is used, global PId
literals my be introduced, implemented as SDL synonyms. These liter-
als can then be used to utilize OUTPUT statements with TO clauses
from the very beginning.

X_LONG_INT

The SDL sort Integer is translated to int in C. To translate the Integer
sort to long int instead, just define the compilation switch X_LONG_INT.

Caution!

If the XOPTCHAN switch is defined and still OUTPUT without TO
clause are used (which the Cadvanced/Cbasic SDL to C Compiler
cannot optimize), there will be a C compilation error saying that the
name xNotDefPId is not defined.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3055

Chapter 62 The Master Library
XENVSIGNALLIMIT

If this switch is defined, only a limited number of signals will be stored
in the input port of the Env function. The limit is equal to the value de-
fined for XENVSIGNALLIMIT and is normally set to 20.

XEALL

This switch will define all error handling switches (XE...) and XASSERT
given below.

XECREATE

This switch will report if the initial number of instances of a process
type is greater than the maximum number.

XECSOP

This switch will report error situations in ADT operator.

XEDECISION

This switch will report if no path out from a Decision is found.

XEEXPORT

This switch will report errors during Import actions.

XEFIXOF

This switch will report overflow when an SDL Real value is converted
to an SDL Integer value using the operator Fix.

XEINDEX

This switch will report value out of range for array index.

XEINTDIV

This switch will report division by zero in an integer division.

XEOUTPUT

This switch will report errors during Output operations.
3056 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
XERANGE

This switch will report range errors when a value is assigned to a vari-
able of a sort containing range conditions.

XEREALDIV

This switch will report division by zero in a real division.

XEVIEW

This switch will report errors in View operations

XECHOICE

This switch will turn on error reports when accessing non-active choice
components.

XEOPTIONAL

This switch will turn on error reports when accessing non-present op-
tional struct components.

XEUNION

This switch will turn on error reports when accessing non-active union
components.

XEREF, XEOWN

These switches turn on error checking on pointers (generator Ref and
Own).

XASSERT

By defining this switch the possibility to define user assertions which is
described in “Assertions” on page 2127 in chapter 50, The SDL Simula-
tor.

XTRACHANNELSTOENV

When using partitioning of a system a problem during the redirection of
channels is that the number of channels going to the environment is not
known at code generation time, which means that the size of the data
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3057

Chapter 62 The Master Library
area used for the connections is not known. This problem is solved in
two ways.

Either the function handling redirections allocates more memory, which
is the default, or the user specifies how many channels that will be redi-
rected (which could be difficult to compute, but will lead to less need of
memory).

In the first case (allocation of more memory) the macros:

#define XTRACHANNELSTOENV 0
#define XTRACHANNELLIST

should be defined like above. This is the standard in scttypes.h. If the
user wants to specify the number of channels himself then

#define XTRACHANNELSTOENV 10
#define XTRACHANNELLIST ,0,0,0,0,0,0,0,0,0,0

i.e. XTRACHANNELSTOENV should be the number of channels, while
XTRACHANNELLIST should be a list of that many zeros.

XDEBUG_LABEL

It is for debugging purposes sometimes of interest to introduce extra la-
bels. The macro XDEBUG_LABEL is inserted in the code for each input
symbol. As macro parameter it has a name which is the name of the state
concatenated with an underscore concatenated with the signal name.

Example 495 –––

state State1; input Sig1;
state State2; input *;
state *; input Sig2;

In the generated code for these input statements the following macros
will be found:

XDEBUG_LABEL(State1_Sig1)
XDEBUG_LABEL(State2_ASTERISK)
XDEBUG_LABEL(ASTERISK_Sig2)

A suitable macro definition to introduce label would be:

#define XDEBUG_LABEL(L) L: ;

To use these label the usage of SDL must be restricted in one area. The
same state may not receive two different signals with the same name!
This is allowed and handled by the SDL suite. The signal have to be de-
3058 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Compilation Switches
fined at different block or system level and the outermost signal must be
referenced with a qualifier.

––

XCONST, XCONST_COMP

Using these compilation switches most of the memory used for the
IdStructs can be moved from RAM to ROM. This depends of course
on the compiler and what properties it has.

The following macro definitions can be inserted:

#define XCONST const
#define XCONST_COMP const

This will introduce const in the declaration of most of the IdStructs.
It is then up to the compiler to handle const.

The XCONST_COMP macro is used to introduce const on components
within a struct definition. This is necessary for some compilers to accept
const on the struct as such.

If const is successfully introduced, there is a lot of RAM memory that
will be saved, as probably 90% of the data area for IdStructs can be
made const.

Compilation Switches – Summary
The property switches are in principle independent, except for the rela-
tions given in the descriptions above, and it should always be possible
to any combination.

The number of combinations is, however, so huge that it is impossible
for us to even compile all combinations. If you happen to form a com-
bination that does not work, please let us know, so that we either can
correct the code, or, if that is not possible, publish a warning against that
combination.

The switches defining a standard library version will define the follow-
ing property switches:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3059

Chapter 62 The Master Library
The lowest layer of switches (that handle the implementation details)
are set up using the three layers above. These switches will not be dis-
cussed here. Please refer to the source code files scttypes.h and
sctsdl.c for more details.

SCTDEBCOM
XPRSPRIO
XPARTITION
XEALL
XMONITOR
XTRACE
XCTRACE
XMSCE
XCOVERAGE
XGRTRACE
XPMCOMM
XSDLENVUI
XITEXCOMM
XSIMULATORUI

SCTDEBCLCOM
XCLOCK
XPRSPRIO
XPARTITION
XEALL
XMONITOR
XTRACE
XCTRACE
XMSCE
XCOVERAGE
XGRTRACE
XPMCOMM
XSDLENVUI
XSIMULATORUI

SCTAPPLCLENV
XCALENDARCLOCK
XENV
XPRSPRIO
XOPT
XPRSOPT

SCTDEBCLENVCOM
XCALENDARCLOCK
XPRSPRIO
XPARTITION
XENV
XPRSOPT
XEALL
XMONITOR
XTRACE
XCTRACE
XMSCE
XCOVERAGE
XGRTRACE
XPMCOMM
XSDLENVUI
XSIMULATORUI

SCTPERFSIM
XEALL
XPRSPRIO
3060 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Creating a New Library
Creating a New Library

This section describes how to generate a new library. The following
topics are covered:

• The directory structure for source and object code.

• The sdtsct.knl file, which determines what libraries the Analyzer
knows about, that is, what libraries that will be shown when Gener-
ate-Options is selected.

• The comp.opt file and the makeoptions (make.opt in Windows)
file, which determines the properties of an object code library.

• The make file Makefile, which includes the makeoptions
(make.opt) file and generates a new object code library with the
properties given by the included makeoptions (make.opt) file.

• The relations with the generated make files for SDL systems will
also be discussed.

Directory Structure
The structure of files and directories used for the Cadvanced/Cbasic
SDL to C Compiler libraries is shown in Figure 552 The directory sdt-
dir is in the installation:

<installation directory>/sdt/sdtdir/<machine
dependent dir>

where <machine dependent dir> is for example sunos5sdtdir on
SunOS 5, hppasdtdir on HP, and wini386 in Windows. (In Windows,
/ should be replaced by \ in the path above.)

This directory is here called sdtdir and is in UNIX normally referred to
by the environment variable sdtdir.

Caution!

If you create new versions of the library, make sure that the library
and the generated code are compiled with the same compilation
switches. If not, you might experience any type of strange behavior
in the generated application!
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3061

Chapter 62 The Master Library
“sctdir” is a reference to an object library and is usually setup as a pa-
rameter in the call to make. It can also be an environment variable.

In the sdtdir directory three important files are found:

3. predef.sdl contains the definition of the predefined sorts in SDL.

4. sdtsct.knl contains a list of the available libraries that can be used
together with code generated by the Cadvanced/Cbasic SDL to C
Compiler.

5. help_sct.hlp contains the help information that can be obtained
using the monitor command help.

The file predef.sdl is read by the SDL Analyzer during analysis,
while the file sdtsct.knl is used to present the available libraries in
the Make dialog in the Organizer (see “Make” on page 119 in chapter
2, The Organizer).

Figure 552: Directory structure

 INCLUDE

scttypes.h

sctlocal.h

sdt.h

post.h

dll.h

post.o/post.lib

sctsdl.c

sctutil.c

sctpost.c

sctpred.c

sctpred.h

sctmon.c

sctos.c

sctenv.c

 sdtdir

predef.sdl

sdtsct.knl

help_sct.hlp

 SCTDEBCOM

comp.opt

makeoptions / make.opt

More libraries

sdtdir

sctdir
3062 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Creating a New Library
In the INCLUDE directory, there are two important groups of files:

1. The source code files for the runtime library:
scttypes.h, sctlocal.h, sctsdl.c, sctutil.c,
sctpost.c, sctpred.h, sctpred.c, sctmon.c, sctos.c
and sctenv.c

2. The files necessary to include communication with other SCT appli-
cations: post.h, post.o (post.lib in Windows), sdt.h,
itex.h.

In parallel with the INCLUDE directory there are a number of directories
for libraries in object form. The SCTDEBCOM directory in Figure 552 is
an example of such a directory. Each of these directories will contain
three files: comp.opt, makeoptions (make.opt in Windows).

The comp.opt file determines the contents of the generated makefile
and how make is called. For more details see below.

 The makeoptions (make.opt) file describes the properties of the li-
brary, such as the compiler used, compiler options, linker options, and
so on.

To guarantee the consistency of, for example, compilation flags be-
tween the SDL system and the kernel, the makeoptions (make.opt)
file is used both by the make file compiling the library (Makefile) and
by the generated make files used to compile the generated SDL system.
Non-consistency in this sense between the library and the SDL system
will make the result unpredictable.

File sdtsct.knl
The sdtsct.knl file describes which libraries that are available. This
is presented by the Organizer in the Make dialog see “Make” on page
119 in chapter 2, The Organizer). The sdtsct.knl file has the follow-
ing structure. Each available library is described on a line of its own.
Such a line should first contain the name of the library (the name pre-
sented in the dialog), then the path to the directory containing the li-
brary, and last a comment up to end of line.

The path to the library can either be the complete path or a relative path.
A relative path is relative to the environment variable sdtdir (on
UNIX) or SDTDIR (in Windows), if that variable is defined. Otherwise
it is relative to the SDL suite installation.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3063

Chapter 62 The Master Library
Example 496 –––

Simulation SCTDEBCOM
RealTimeSimulation SCTDEBCLCOM
Application SCTAPPLCLENV
ApplicationDebug /util/sct/SCTDEBCLENVCOM

ApplicationDebug x:\sdt\sdtdir\dbclecom
MyTestLibrary ..\testlib\dbcom

Not that the two last lines is examples for Windows, while the fourth
line is for UNIX.

––

The Organizer will look for an sdtsct.knl file first in the directory the
SDL suite is started from, then in the home directory for the user, and
then in the directory referenced by the environment variable sdtdir
(SDTDIR) if it is defined, and in the directory where the SDL suite was
installed.

File Makefile
In each directory that contains a library version there is a Makefile that
can “make” the library. To create a new library after an update of the
source code, change directory to the directory for the library and exe-
cute the Makefile. The Makefile uses the makeoptions
(make.opt) file in the directory to get the correct compilation switches
and other relevant information.

File comp.opt
This file determines the details of the generated make files, and the
command issued to execute the makefile. A comp.opt file contains zero,

Caution!

Do not generate and test libraries in the installation directory struc-
ture. Create an appropriate copy.

Note:

The environment variables (if used) sdtdir (SDTDIR) and sctdir
(SCTDIR) need not necessarily refer to directories in the installation
directory. Any directory containing the relevant files may be used.
3064 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Creating a New Library
one or more initial lines starting with a #. These lines are treated as com-
ments. After that it contains five lines of essential data.

• Line 1: How to include the makeoptions (make.opt) file
• Line 2: Compile script
• Line 3: Link script
• Line 4: Command to run make
• Line 5: How to build a library (archive). Used for coders/decoders.

On each of these lines % codes can be used to insert specific informa-
tion.

On all five lines:

%n : newline
%t : tab
%d : target directory
%s : source directory
%k : kernel directory
%f : base name of generated executable (no path, no
 file extension). NOT on line 2 or 5.

On line 2, the compile script:

%c : c file in compile script
%C : c file in compile script, without extension
%o : resulting object file in compile script

On line 3, the link script:

%o : list of all object files in link script
%O : list of all object files in link script, with
 \ followed by newline between files
%e : executable file in link script

On line 4, the make command:

%m : name of generated makefile

On line 5, the archive command:

%o : list of object files, i.e. $(sctCODER_OBJS).
%a : the archive file, i.e.
 libstcoder$(sctLIBEXTENSION)

Example 497: comp.opt file for UNIX –––––––––––––––––––––––––––

makefile for unix make
include $(sctdir)/makeoptions
%t$(sctCC) $(sctCPPFLAGS) $(sctCCFLAGS) $(sctIFDEF) %c -o %o
%t$(sctLD) $(sctLDFLAGS) %o -o %e
make -f %m sctdir=%k
%t$(sctAR) $(sctARFLAGS) %a %o

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3065

Chapter 62 The Master Library
File makeoptions / make.opt
This file has the following structure:

Example on UNIX:

#
sctLIBNAME = Simulation
sctIFDEF = -DSCTDEBCOM
sctEXTENSION = _smd.sct
sctOEXTENSION = _smd.o
sctLIBEXTENSION= _smd.a
sctKERNEL = $(sctdir)/../INCLUDE
sctCODERDIR = $(sctdir)/../coder

#Compiling, linking
sctCC = cc
sctCODERFLAGS = -I$(sctCODERDIR)
sctCPPFLAGS = -I. -I$(sctKERNEL) $(sctCODERFLAGS)
 $(sctCOMPFLAGS) $(sctUSERDEFS)
sctCCFLAGS = -c -Xc
sctLD = cc
sctLDFLAGS =
sctAR = ar
sctARFLAGS = rcu

all : default

below this point there are a large number of
compilation rules for compiling the Master Library
and the Coder library (used for encoding/decoding)
The following name of any importance are defined:

sctLINKKERNEL =
sctLINKKERNELDEP =
sctLINKCODERLIB =
sctLINKCODERLIBDEP =

The information to the right of the equal signs should be seen as an ex-
ample. These environment variables set in the makeoptions
(make.opt) file should specify:

• sctLIBNAME. This is only used by the Makefile to report what it is
doing.

• sctIFDEF. This variable should specify what compilation switches,
among those defined by the Cadvanced/Cbasic SDL to C Compiler
system, that should be used. Usually there is one switch defining the
library version.
3066 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Creating a New Library
• sctEXTENSION. This is used to determine the file extension of the
executable files.

• sctOEXTENSION. This is used to determine the file extension of the
object files.

• sctLIBEXTENSION. The extension of the archive/library

• sctKERNEL. Directory of Master Library source code.

• sctCODERDIR. The directory for the source code of the coders/de-
coders.

• sctCC. This defines the compiler to be used.

• sctCODERFLAGS. Compilation options needed to compile the cod-
er/decoder files

• sctCPPFLAGS. This variable should give the compilation flag nec-
essary to specify where the C preprocessor can find the include files
scttypes.h, sctlocal.h, sctpred.h, sdt.h, and post.h.

• sctCCFLAGS. This should specify other compiler flags that should
be used, as for example -g (Sun cc) or -v (Borland bcc32) for debug
information, -O for optimization.

• sctLD. This defines the linker to be used.

• sctLDFLAGS. This should specify other flags that should be used in
the link operation.

• sctAR. The archive application

• sctARFLAGS. Flags to sctAR.

• sctLINKKERNEL. This variable should specify the .o files for the
Master Library source files. It will be used in the link command in
the generated make file.

• sctLINKKERNELDEP. Used to implement the dependencies to re-
compile the kernel when it is needed.

• sctLINKCODERLIB. This variable should specify the .o files for the
Coder Library source files. It will be used in the link command in
the generated make file.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3067

Chapter 62 The Master Library
• sctLINKCODERLIBDEP. Used to implement the dependencies to re-
compile the Coder Library when it is needed.

Generated Make Files
The generated make files for an SDL system will as first action include
the makeoptions (make.opt) file in the directory referenced by the en-
vironment variable sctdir. It will then use the variables sctIFDEF,
sctLINKKERNEL, sctCC, sctCPPFLAGS, sctCCFLAGS, sctLD, and
sctLDFLAGS to compile and link the SDL system with the selected li-
brary.

The make file is generated and executed by the Cadvanced/Cbasic SDL
to C Compiler.

Example 498 –––

Below, a UNIX make file generated for the SDL system example is
shown.

makefile for System: example

sctAUTOCFGDEP =
sctCOMPFLAGS = -DXUSE_GENERIC_FUNC

include $(sctdir)/makeoptions

default: example$(sctEXTENSION)

example$(sctEXTENSION): \
 example$(sctOEXTENSION) \
 $(sctLINKKERNELDEP)

$(sctLD) $(sctLDFLAGS) \
 example$(sctOEXTENSION) $(sctLINKKERNEL) \
 -o example$(sctEXTENSION)

example$(sctOEXTENSION): \
 example.c

$(sctCC) $(sctCPPFLAGS) $(sctCCFLAGS) \
 $(sctIFDEF) example.c -o example$(sctOEXTENSION)

––
3068 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
Adaptation to Compilers
In this section the necessary changes to the source code to adapt it to a
new environment are discussed. Adapting to a new environment could
mean moving the code to new hardware or using a new compiler.

There are two parts of the source code that might need changes:

1. In scttypes.h there is a section defining the properties of different
compilers, where a new compiler can be added.

2. In sctos.c the functions that depend on the operating system or
hardware are collected. These might need to be changed due to a
new compiler, a new OS, or a new hardware.

In “Compiler Definition Section in scttypes.h” on page 3069 the com-
piler definition section in scttypes.h is discussed in detail, while sc-
tos.c is treated in “The sctos.c File” on page 3071.

Compiler Definition Section in scttypes.h

In scttypes.h the properties of the compiler is recognized by the com-
piler/computer dependent switches set by the compiler:

#if defined(__linux)
#define SCT_POSIX

#elif defined(__sun)
#define SCT_POSIX

#elif defined(__hpux)
#define SCT_POSIX

#elif defined(__CYGWIN__)
#define SCT_POSIX

#elif defined(QNX4_CC)
#define SCT_POSIX

Caution!

Do not to use the compiler /usr/ucb/cc. Our experience is that the
bundled compiler is subject to generating compilation errors.

Instead, we recommend to run the unbundled compiler
/opt/SUNWSpro/bin/cc or the GNU C compiler.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3069

Chapter 62 The Master Library
#elif defined(__BORLANDC__)
#define SCT_WINDOWS

#elif defined(_MSC_VER)
#define SCT_WINDOWS

#else
#include "user_cc.h"

#endif

Basically this section distinguishes between Unix-like/POSIX compil-
ers and Windows compilers. In the case the compiler is not in the list
above, the user must configure it himself by writing a file user_cc.h,
which is best placed in the target directory.

The compilers above are:

• __linux : gcc on linux
• __sun : different compilers on SUN
• __hpux : different compilers on HP
• __CYGWIN__ : gcc on windows, for more information please see

http://sources.redhat.com/cygwin/
• QNX4_CC : QNX
• __BORLANDC__ : Borland compiler on Windows
• _MSC_VER : Microsoft compiler on Windows

After this compiler configuration section a general configuration sec-
tion follows:

#if defined(SCT_POSIX) || defined(SCT_WINDOWS)
#define XMULTIBYTE_SUPPORT
#endif

#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <stdarg.h>
#ifdef XREADANDWRITEF
#include <stdio.h>
#ifdef XMULTIBYTE_SUPPORT
#include <locale.h>
#endif
#endif

#ifndef GETINTRAND
#define GETINTRAND rand()
#endif
#ifndef GETINTRAND_MAX
#define GETINTRAND_MAX RAND_MAX
#endif
3070 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
#ifndef xptrint
#if (UINT_MAX < 4294967295)
#define xptrint unsigned long
#define X_XPTRINT_LONG
#else
#define xptrint unsigned
#endif
#endif

#ifndef xint32
#if (INT_MAX >= 2147483647)
#define xint32 int
#define X_XINT32_INT
#else
#define xint32 long int
#endif
#endif

First, the presence of multi-byte character support is set up. Then a num-
ber of standard include files are included, followed by setting up prop-
erties for random number generation. Last the two types, xptrint,
which defines an unsigned int type with the same size as an address,
and xint32, which defines a 32-bits int type, is configured.

The last three parts in this section handle the utility functions needed by
sctos.c to implement some of the operating system dependent func-
tions. Please see below where sctos.c is discussed in detail.

The sctos.c File
The following important functions are defined in sctos.c

extern void * xAlloc (xptrint Size);

extern void xFree (void **P);

extern void xHalt (void);

#ifdef XCLOCK
extern SDL_Time SDL_Clock (void);
#endif

#if defined(XCLOCK) && !defined(XENV)
extern void xSleepUntil (SDL_Time WakeUpTime);
#endif

#if defined(XPMCOMM) && !defined(XENV)
extern int xGlobalNodeNumber (void);
#endif
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3071

Chapter 62 The Master Library
#if defined(XMONITOR) && !defined(XNOSELECT)
extern xbool xCheckForKeyboardInput (
 long xKeyboardTimeout);
#endif

Several of these functions have three different implementations, one for
SCT_POSIX, one for SCT_WINDOWS and one for other cases. The
other cases solution is “an empty implementation” that does not do any-
thing. If the standard solutions in sctos.c do not fit the needs of a certain
application, any of the functions above can be supplied by the user in-
stead. By defining some of the switches:

• XUSER_ALLOC_FUNC
• XUSER_FREE_FUNC
• XUSER_HALT_FUNC
• XUSER_CLOCK_FUNC
• XUSER_SLEEP_FUNC
• XUSER_KEYBOARD_FUNC

the corresponding function or functions are removed from sctos.o and
have to be supplied by the user instead.

xAlloc

The function xAlloc is used to allocate dynamic memory and is used
throughout the runtime library and in generated code. The function is
given a size in bytes and should return a pointer to a data area of the re-
quested size. All bytes in this data area are set to zero. The standard im-
plementation of this function uses the C function calloc.

A user who wants to estimate the need for dynamic memory can intro-
duce statements in xAlloc to record the number of calls of xAlloc and
the total requested size of dynamic memory. Please note two things. A
program using the monitor requires more dynamic memory than a pro-
gram not using the monitor, so estimates should be made with the ap-
propriate compilation switches. A call of calloc will actually allocate
more memory than is requested to make it possible for the C runtime
system to deallocate and reuse memory. The size of this additional
memory is compiler-dependent.

A user who wants to handle the case when no more memory is available
at an allocation request can implement that in xAlloc. In the standard
implementation for xAlloc a test if calloc returns 0 can be introduced,
at which the program can be terminated with an appropriate message.
3072 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
xFree

The function xFree is used to return memory to the list of free memory
so it can be reused by subsequent calls of xAlloc. The standard imple-
mentation of this function uses the C function free. In very simple cas-
es, no data types using dynamic memory are used and no other introduc-
tion of dynamic data by the user, this function will not be used.

The parameter of the xFree function, is the address of the pointer to the
allocated memory.

Example 499 Using the xFree function –––––––––––––––––––––––––

unsigned char *ptr;
ptr = xAlloc(100);
xFree (&ptr); /* NOTE: Not xFree(ptr); */

––

xHalt

The function xHalt is used to exit from a program and is in the standard
implementation using the C function exit to perform its task.

SDL_Clock

The function SDL_Clock should return the current time, read from a
clock somewhere in the OS or hardware. The return value is of type
SDL_Time, that is a struct with two 32-bits integer components, repre-
senting seconds and nanoseconds in the time value.

typedef struct {
 xint32 s; /* for seconds */
 xint32 ns; /* for nanoseconds */
} SDL_Time;

The standard implementation of SDL_Clock uses the C function time,
which returns the number of seconds since some defined date.

In an embedded system or any other application that requires better time
resolution, or when the C function time is not available, SDL_Clock
should be implemented by the user.

Note:

Note that the C function time only handles full seconds.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3073

Chapter 62 The Master Library
A typical implementation in an embedded system is to have hardware
generating interrupts at a predefined rate. At each such interrupt a vari-
able containing the current time is updated. This variable can then be
read by SDL_Clock to return the current time.

xSleep_Until

The function xSleep_Until is given a time value, as a value of type
SDL_Time (see above) and should suspend the executing until this time
is reached, when it should return.

This function is used only when real time is used (the switch XCLOCK is
defined) and when there is no environment functions (XENV is not de-
fined). The xSleep_Until function is used to wait until the next event
is scheduled when there is no environment that can generate events.

xGlobalNodeNumber

The function xGlobalNodeNumber is used to assign unique numbers to
each SDL system which is part of an application.

If environment functions are used for an SDL system this function
should be implemented there. If, however, we have communicating
simulations, there are no env functions and the xGlobalNodeNumber
function is defined in sctos.c instead.

Note:

If an application does not require a connection with real time (for ex-
ample if it is not using timers and should run as fast as possible),
there is no need for a clock function. In such a case it is probably
suitable to use simulated time by not defining the compilation
switch XCLOCK, whereby SDL_Clock is never called and does not
need to be implemented. An alternative is to let SDL_Clock always
return the time value 0.

Caution!

The variable must be protected from updates during the period of
time that the SDL_Clock reads the clock variable.

Calling the interrupt routine while the SDL_Clock reads the clock
variable would cause a system disaster.
3074 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Adaptation to Compilers
So the xGlobalNodeNumber function is only used if XPMCOMM is de-
fined and XENV is not defined. As this function is only used in the case
of a communicating simulation, it is only necessary to implement it for
computers/compilers that communicate with the SDL suite, which
means that it is not interesting for a user to change the standard imple-
mentation of this function. The implementation calls the function get-
pid, and uses thus the OS process number as global node number.

xCheckForKeyboardInput

The function xCheckForKeyboardInput is used to determine if there
is a line typed on the keyboard (stdin) or not. If this is difficult to im-
plement it can instead determine if there are any characters typed on the
keyboard or not. This function is only used by the monitor system,
(when XMONITOR is defined).

The xCheckForKeyboardInput function is used to implement the pos-
sibility to interrupt the execution of SDL transitions by typing
<Return> and to handle polling of the environment (xInEnv or its
equivalent when communicating simulations is used) when the program
is waiting at the “Command :” prompt in the monitor.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3075

Chapter 62 The Master Library
List of All Compilation Switches

Introduction
This section is a reference to the macros that are used together with the
generated C code from the Cadvanced/Cbasic SDL to C Compiler. Here
the macros are just enumerated and explained. The section is divided in
a number of subsection, each treating one major aspect of the code.
Within the subsections the macros are enumerated in alphabetic order.

Information about some of the macros (Library Version Macros, Com-
piler Definition Section Macros, and General Properties) can also be
found in the section “Compilation Switches” on page 3041.

To fully understand the descriptions of the macros in this section it is
also necessary to know the basic data structures used, especially for the
static structures, i.e. the xIdNodes. This information can be found in the
section “The Symbol Table” on page 2954.

The information about the data types used for the dynamic structure of
the system, i.e. about process instances, signal, timers, and so on, are
also of interest. This can be found in “The SDL Model” on page 2992.

Library Version Macros

SCTAPPLCLENV

Application.

SCTAPPLENV

Application without clock.

SCTDEB

Stand-alone simulator for any environment. Should be executed from
OS.

SCTDEBCL

Stand-alone simulator with real time for any environment. Should be
executed from OS.
3076 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
SCTDEBCLCOM

Simulator with real time for host. Can be executed from the SDL suite
or from OS.

SCTDEBCLENV

Stand-alone simulator, with real time and env functions, for any envi-
ronment. Should be executed from OS.

SCTDEBCLENVCOM

Simulator, with real time and env functions, for any environment. May
be executed from OS or from simulator GUI.

SCTDEBCOM

Simulator for host. Can be executed from the SDL suite or from OS.

SCTOPT1APPLCLENV

Application with minimal memory requirements. Real cannot be used.
No channel information

SCTOPT2APPLCLENV

Application with minimal memory requirements. Real cannot be used.
Const for all channel information.

SCTPERFSIM

Suitable for execution of performance simulations.

Compiler Definition Section Macros

SCT_POSIX

Set up for UNIX/POSIX like compilers/systems.

SCT_WINDOWS

Set up for compilers on Windows
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3077

Chapter 62 The Master Library
Some Configuration Macros

COMMENT(P)

Should be defined as:

 #define COMMENT(P)

The macro is used to insert comments in included C code. See
Example 360 on page 2613.

GETINTRAND

A random generation function. Usually rand() or random().

GETINTRAND_MAX

The max int value generated by function mentioned in GETINTRAND.
Usually RAND_MAX or 2147483647 (32-bit integers).

SCT_VERSION_4_5

Defined in generated code if the Cadvanced/Cbasic SDL to C Compiler
version 4.5 was used.

XCAT(P1,P2)

Should concatenate token P1 and P2. Possibilities:

#define XCAT(P1,P2) P1##P2

or

#define XCAT(P1,P2) P1/**/P2

or

#define XCAT(P1,P2) XCAT2(P1)P2
#define XCAT2(P2) P2

XMULTIBYTE_SUPPORT

Should be set if the compiler supports multi byte characters.

XNOSELECT

Should be defined if there is no support for the select function found in
UNIX operating systems. This is used to implement “user defined inter-
rupt” by typing the return key while simulating.
3078 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XNO_VERSION_CHECK

If this macro is defined there will be no version check between the gen-
erated code and the scttypes.h file.

XSCT_CBASIC

Defined in generated code if Cbasic was used.

XSCT_CADVANCED

Defined in generated code if Cadvanced was used.

X_SCTTYPES_H

Defined in scttypes.h in a way that it possible to include the
scttypes.h file several times without any problems.

X_XINT32_INT

Should be defined if xint32 is int.

X_XPTRINT_LONG

Should be defined if xptrint is unsigned long.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3079

Chapter 62 The Master Library
General Properties

TARGETSIM

Can be used to connect an application with a monitor on a target system
with the SDL suite running on a host computer.

XASSERT

Detect and report user defined assertions that are not valid.

XCALENDARCLOCK

Use the clock function in sctos.c (not simulated time). Time is what-
ever the clock function returns.

XCLOCK

Use the clock function in sctos.c (not simulated time). Time is zero at
system start up.

XCOVERAGE

Compile with code to store information about the current coverage of
the SDL system. This information can also be printed in the monitor.

XCTRACE

Compile preserving the possibility to report the current C line number
during simulations.

XEALL

Defines XEOUTPUT, XEINTDIV, XEREALDIV, XECSOP,
XEFIXOF, XERANGE, XEINDEX, XECREATE, XEDECISION,
XEEXPORT, XEVIEW, XEERROR, XEUNION, XECHOICE,
XEOPTIONAL, XEREF, XEOWN, and XASSERT.

For more information, see these macros.

XECHOICE

Detect and report attempts to access non-active components in Choice
variables.
3080 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XECREATE

Detect and report if more static instances are created at start up, than the
maximum number of concurrent instances.

XECSOP

Detect and report errors in ADT operators.

XEDECISION

Detect and report when there is no possible path out from a decision.

XEERROR

Detect and report the usage of the error term in an SDL expression.

XEEXPORT

Detect and report errors in import actions.

XEFIXOF

Detect and report integer overflow in the operator fix.

XEINDEX

Detect and report index out of bounds in arrays.

XEINTDIV

Detect and report integer division with 0.

XENV

Call the env functions.

XENV_CONFORM_2_3

Insert the VarP pointer in the xSignalNode so that signals conform
with their implementation in SDT 2.3.

XEOPTIONAL

Detect and report attempts to access optional struct components that are
not present.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3081

Chapter 62 The Master Library
XEOUTPUT

Detect and report warnings in outputs (mainly outputs where signal is
immediately discarded).

XEOWN

Detect and report illegal usage of Own and ORef pointers.

XERANGE

Detect and report subrange errors.

XEREALDIV

Detect and report real division with 0.0.

XEREF

Detect and report attempts to dereference null pointer.

XEUNION

Detect and report attempts to access non-active components in a
#UNION.

XEVIEW

Detect and report errors in view actions.

XGRTRACE

Compile with the trace in source SDL graphs enabled.

XITEXCOMM

Enable the possibility for an executable to communicate with the TTCN
suite via the Postmaster.

XMAIN_NAME

If this macro is defined the main function in sctsdl.c will be renamed
to the name given by the macro.
3082 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XMONITOR

Compile with the monitor system. This macro will implicitly set up a
number of other macros as well.

XMSCE

Compile with the MSC trace enabled.

XNOMAIN

If this macro is defined the main function in sctsdl.c will be removed.

XPMCOMM

Enable the possibility for an executable to communicate via the Post-
master.

XPRSPRIO

Use priorities on process instance sets.

XPRSSIGPRIO

Use first priorities on process instance sets and then priorities on signal
instances.

XSDLENVUI

Enable the possibility to communicate with a user-defined UI.

XSIGLOG

Call the xSignalLog and xProcessLog functions.

XSIGPRIO

Use priorities on signal instances.

XSIGPRSPRIO

Use first priorities on signal instances and then priorities on process in-
stance sets.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3083

Chapter 62 The Master Library
XSIMULATORUI

Enable the possibility to communicate with the simulator UI.

XTENV

As XENV but call xInEnv at specified times (next event time is out pa-
rameter from function xInEnv).

XTRACE

Compile with the textual trace enabled.

Code Optimization

XCONST

The majority of the xIdNode structs can be made const by defining
CONST as const. This is only possible in applications (not simulations).

XCONST_COMP

This should normally be defined as const if XCONST is const. It is used
to introduce const in the component declarations within the xIdNode
structs.

XNOCONTSIGFUNC

Do not include functions to calculate the expressions in continuous sig-
nals. This saves also one function pointer in the xIdNode for the states.
If this switch is defined, continuous signals cannot be used.

XNOENABCONDFUNC

Do not include functions to calculate the expressions in enabling condi-
tions. This saves also one function pointer in the xIdNode for the states.
If this switch is defined, enabling conditions cannot be used.

XNOEQTIMERFUNC

Do not include function to compare the parameters of two timers. This
saves also one function pointer in the xIdNode for the signals. If this
switch is defined, timers with parameters cannot be used.
3084 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XNOREMOTEVARIDNODE

Do not include xIdNodes for remote variable definitions.

XNOSIGNALIDNODE

Do not include xSignalIdNodes for signals and timers.

XNOSTARTUPIDNODE

Do not include xSignalIdNodes for start up signals.

XNOUSEOFOBJECTIDENTIFIER

The type Object_identifier and all operations on that type are removed.

XNOUSEOFOCTETBITSTRING

The types Bit_string, Octet, Octet_string and all operations on these
types are removed.

XNOUSEOFSERVICE

All data and code needed to handle services are removed.

XNOUSEOFREAL

The type real and all operations on real are removed.

XOPT

Defines XOPTSIGPARA, XOPTDCL, XOPTFPAR, XOPTSTRUCT,
XOPTLIT, and XOPTSORT.

For more information see these macros.

XOPTCHAN

Do not include xIdNodes for channels, signal routes, and gates. Infor-
mation in services and processes about connections to signal routes and
gates are also removed.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3085

Chapter 62 The Master Library
XOPTDCL

Do not include xIdNodes for variables.

XOPTFPAR

Do not include xIdNodes for formal parameters.

XOPTLIT

Do not include xIdNodes for literals.

XOPTSIGPARA

Do not include xIdNodes for signal parameters.

XOPTSORT

Do not include xIdNodes for newtypes and syntypes.

XOPTSTRUCT

Do not include xIdNodes for struct components.

XPRSOPT

Optimize memory for process instances. All memory for a process in-
stance can be reused, but signal sending to a stopped process, who’s
memory has been reused by a new process, cannot be detected. The new
process will in this case receive the signal.

XSYNTVAR

If this compilation switch is defined, xVarIdNodes are inserted for the
Present components for optional struct components. This feature is only
needed by the Validator and by LINK. It should not be defined other-
wise.

Note:

If this compilation switch is defined all outputs must either be sent
TO a process or the receiver must be possible to calculate during
code generation.
3086 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Definitions of Minor Features

XBREAKBEFORE

Should be used mainly if the MONITOR or GRTRACE switches are
defined. It will make the functions and struct components for SDT ref-
erences available and is also used to expand the macros
XAT_FIRST_SYMBOL, XBETWEEN_SYMBOLS,
XBETWEEN_SYMBOLS_PRD, XBETWEEN_STMTS,
XBETWEEN_STMTS_PRD, XAFTER_VALUE_RET_PRDCALL,
and XAT_LAST_SYMBOL to suitable function calls. These functions
are used to interrupt a transition between symbols during simulation.

XCASEAFTERPRDLABELS

See XCASELABELS below. The SDL symbols just after an SDL pro-
cedure call have to be treated specially, as the symbol number (=case la-
bel) for these symbols are used as the restart address for the calling
graph. Normally this macro should be defined. If SDL procedure calls
are transformed to proper C function calls, and SDL return is translated
to a C return, and nextstate in a procedure is NOT translated to a C re-
turn (i.e. the process will be hanging in the C function representing the
SDL procedure) then it is not necessary to define
XCASEAFTERPRDLABELS.

XCASELABELS

The function implementing the behavior of a process, procedure, or ser-
vice contains one large switch statement with a case label for each SDL
symbol in the graph. This switch is used to be able to restart the execu-
tion of a process, procedure, or service at any symbol. In an application
most of these label can be removed (all except for those symbols that
start a transition, i.e. start, input, continuous signal). The macro
XCASELABELS should be defined to introduce the case labels for all
SDL symbol. This means that XCASELABELS should be defined in a
simulation but not in an application.

XCONNECTPM

If XCONNECTPM is defined the SDL simulation will try to connect it-
self to the postmaster. This is necessary if GR trace (XGRTRACE),
communicating simulations (XPMCOMM), or communication with the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3087

Chapter 62 The Master Library
TTCN suite (XITEXCOMM) is to be used. The XCONNECTPM fea-
ture is normally only used in simulations.

XCOUNTRESETS

Count the number of timers that are removed at a reset operation. This
information is used by the textual trace system (XTRACE) to present
this information. The information is really only of interest at a stop ac-
tion when more then one timer might be (implicitly) reset.
XCOUNTRESETS should not be defined in an application.

XENVSIGNALLIMIT

This macro is used to determine the number of signals sent to the envi-
ronment that, during simulation, should be saved in the input port of the
env process instance. Such signals can be inspected with the normal
monitor commands for viewing of signals. This macro is only of interest
in a simulation and has the default value 20.

XERRORSTATE

Insert the data structure to represent an “error” state that can be used if
no path is found out from a decision. This should normally be defined
if XEDECISION is defined.

XFREESIGNALFUNCS

Insert free functions for each signal, timer, or startup signal that con-
tains a parameter of a type having a free function. These signal free
functions can the be used to free allocated data within a signal. This
macro should be defined if Master Library is used.

XFREEVARS

Insert free function calls for all variables of a type with free function,
just before stop or return actions. This means that free actions are per-
formed on allocated data referred to from variables is before the object
ceases to exist. This macro should be defined.

XIDNAMES

This macro is used to determine if the SDL name of an SDL object
should be stored in the xIdNode for the object. This character string is
used for communication with the user in for example the monitor. Nor-
3088 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
mally this macro should not be used in an application. Sometime it
might be useful for target debugging to define XIDNAMES, as it is then
fairly easy to identify objects by just printing the SDL name from a de-
bugger. On average this seems to cost approximately 5% more memory.

XNRINST

This macro should be defined if process instance numbers are to be
maintained. The instance number is the number in the monitor printout
Test:2, identifying the individual instances of the process instance set
Test in this case. XNRINST is normally only used in a simulation.

XOPERRORF

Include the function xSDLOpError in sctsdl.c. This function is used
to print run-time errors in ADT operators.

XPRSSENDER

Store the value of sender also in the xPrsNode. The normal place is in
the latest received signal. This is only needed in a simulation as sender
might be accessed from the monitor system after the transition is com-
pleted and the signal has been returned to the pool of available memory.

XREADANDWRITEF

Include the functions for basic Read and Write. This is needed mainly
in simulations.

XREMOVETIMERSIG

Allow the removal of timer signals for not-executing PIds. This is need-
ed only in simulations to implement the monitor commands set-timer
and reset-timer.

XSIGPATH

If this macro is defined then the functions xIsPath and
xFindReceiver will return the path of signal routes, channels, and
gates from the sender to the receiver, as out parameters. This informa-
tion can then be used in the monitor system, for example, to produce
signal logs. This macro should normally not be defined in an applica-
tion.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3089

Chapter 62 The Master Library
XSYMBTLINK

The XSYMBTLINK macro is used to determine if a complete tree
should be built from the xIdNodes of the system. If XSYMBTLINK is
defined then all xIdNodes contains a Parent, a Suc, and a First point-
er. The value of the Parent pointer is generated directly into the
xIdNodes. Suc and First, however, are calculated in the yInit func-
tion by calling the xInsertIdNode function. The Suc and First point-
ers are needed by the monitor system, but not in an application, i.e.
XSYMBTLINK should be defined in a simulation but not in an appli-
cation.

XTESTF

This macro is used to include or remove test functions for syntype (or
newtypes) with range conditions. The yTest function is used by the
monitor system and by the functions to test index out of bounds in ar-
rays and to test subranges. This means that XTESTF should be defined
if the monitor is used or if XERANGE or XEINDEX is defined.

XTRACHANNELSTOENV

When using partitioning of a system a problem during the redirection of
channels is that the number of channels going to the environment is not
known at code generation time, which means that the size of the data
area used for the connections is not known. This problem is solved in
two ways.

Either the function handling redirections allocates more memory, which
is the default, or the user specifies how many channels that will be redi-
rected (which could be difficult to compute, but will lead to less need of
memory).

In the first case (allocation of more memory) the macros:

#define XTRACHANNELSTOENV 0
#define XTRACHANNELLIST

should be defined like above. This is the standard in scttypes.h. If the
user wants to specify the number of channels himself then

#define XTRACHANNELSTOENV 10
#define XTRACHANNELLIST ,0,0,0,0,0,0,0,0,0,0

i.e. XTRACHANNELSTOENV should be the number of channels, while
XTRACHANNELLIST should be a list of that many zeros.
3090 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XTRACHANNELLIST

See XTRACHANNELSTOENV just above.

Static Data, Mainly xIdNodes

XBLO_EXTRAS

All generated struct values for block, block type, and block instance
structs contain this macro last in the struct. By defining this macro new
components can be inserted. Note that the type xBlockIdStruct must
be updated as well. Normally this macro should be empty.

Example 500 –––

#define XBLO_EXTRAS ,0

––

XBLS_EXTRAS

All generated struct values for block substructure structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Note that the type xBlockSubstIdStruct must be updated as
well. Normally this macro should be empty.

Example 501 –––

#define XBLS_EXTRAS ,0

––

XCOMMON_EXTRAS

All generated struct values for xIdNode structs contain this macro after
the common components. This means that it is possible to insert new
components in all xIdNodes by defining this macro. Normally this mac-
ro should be empty.

Example 502 –––

To insert a new int component with value 0 the following definition can
be used:

#define XCOMMON_EXTRAS ,0

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3091

Chapter 62 The Master Library
XLIT_EXTRAS

All generated struct values for literal structs contain this macro last in
the struct. By defining this macro new components can be inserted.
Note that the type xLiteralIdStruct must be updated as well. Nor-
mally this macro should be empty.

Example 503 –––

#define XLIT_EXTRAS ,0

––

XPAC_EXTRAS

All generated struct values for package structs contain this macro last in
the struct. By defining this macro new components can be inserted.
Note that the type xPackageIdStruct must be updated as well. Nor-
mally this macro should be empty.

Example 504 –––

#define XSYS_EXTRAS ,0

––

XPRD_EXTRAS

All generated struct values for procedure structs contain this macro last
in the struct. By defining this macro new components can be inserted.
Note that the type xPrdIdStruct must be updated as well. Normally
this macro should be empty.

Example 505 –––

#define XSYS_EXTRAS ,0

––

XPRS_EXTRAS
(PREFIX_PROC_NAME)

All generated struct values for process, process type, and process in-
stance structs contain this macro last in the struct. By defining this mac-
ro new components can be inserted. Note that the type xPrsIdStruct
must be updated as well.
3092 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Example 506 –––

#define XPRS_EXTRAS(PREFIX_PROC_NAME) \
 ,XCAT(PREFIX_PROC_NAME,_STACKSIZE)

––

XSIG_EXTRAS

All generated struct values for signal, timer, RPC_signal, startup signal
structs contain this macro last in the struct. By defining this macro new
components can be inserted. Note that the type xSignalIdStruct must
be updated as well. Normally this macro should be empty.

Example 507 –––

#define XSIG_EXTRAS ,0

––

XSPA_EXTRAS

All generated struct values for signal parameter structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Note that the type xVarIdStruct must be updated as well
(Note that variables, formal parameters, signal parameters, and struct
components are all handled in xVarIdStruct.) Normally this macro
should be empty.

Example 508 –––

#define XSPA_EXTRAS ,0

––

XSRT_EXTRAS

All generated struct values for newtype and syntype structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Note that the type xSortIdStruct must be updated as well.
Normally this macro should be empty.

Example 509 –––

#define XSRT_EXTRAS ,0

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3093

Chapter 62 The Master Library
XSRV_EXTRAS

All generated struct values for service, service type, and service in-
stance structs contain this macro last in the struct. By defining this mac-
ro new components can be inserted. Note that the type xSrvIdStruct
must be updated as well. Normally this macro should be empty.

Example 510 –––

#define XSRV_EXTRAS ,0

––

XSTA_EXTRAS

All generated struct values for state structs contain this macro last in the
struct. By defining this macro new components can be inserted. Note
that the type xStateIdStruct must be updated as well. Normally this
macro should be empty.

Example 511 –––

#define XSTA_EXTRAS ,0

––

XSYS_EXTRAS

All generated struct values for system, system type, and system instance
structs contain this macro last in the struct. By defining this macro new
components can be inserted. Note that the type xSystemIdStruct must
be updated as well. Normally this macro should be empty.

Example 512 –––

#define XSYS_EXTRAS ,0

––

XSYSTEMVARS

This macro gives the possibility to introduce global variables declared
in the beginning of the C file containing the implementation of the SDL
system unit.
3094 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XSYSTEMVARS_H

If extern definitions are needed for the data declared in
XSYSTEMVARS, this is the place to introduce it. These definitions
will be present in the .h file for the system unit (if separate generation
is used).

XVAR_EXTRAS

All generated struct values for variables, formal parameters, and struct
components structs contain this macro last in the struct. By defining this
macro new components can be inserted. Note that the type
xVarIdStruct must be updated as well (Note that signal parameters
also uses the type xVarIdStruct). Normally this macro should be emp-
ty.

Example 513 –––

#define XVAR_EXTRAS ,0

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3095

Chapter 62 The Master Library
Data in Processes, Procedures and Services

PROCEDURE_VARS

The struct components that are needed for each procedure instance. Ex-
ample: state.

PROCESS_VARS

The struct components that are needed for each process instance. Exam-
ple: state, parent, offspring, self, sender, inputport.

SERVICE_VARS

The struct components that are needed for each service instance. Exam-
ple: state

YGLOBALPRD_YVARP

This macro is used to declare the yVarP pointer (which is a pointer to
the yVDef struct for the process) in a procedure defined outside of a pro-
cess. As a global procedure never can access process local data, it is
suitable to let yVarP be a pointer to a struct only containing the compo-
nents defined in the macro PROCESS_VARS.

YGLOBALSRV_YVARP

This macro is used to declare the yVarP pointer (which is a pointer to
the yVDef struct for the process) in a service type defined outside of a
process. As a global service type never can access process local data, it
is suitable to let yVarP be a pointer to a struct only containing the com-
ponents defined in the macro PROCESS_VARS.

YPAD_TEMP_VARS

Local variables in the PAD function for a process or service. Example:
temporary variables needed for outputs, create actions.

YPAD_YSVARP

Declaration of the ySVarP pointer used to refer to the received signal.
Normally ySVarP is void *.
3096 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
YPAD_YVARP
(VDEF_TYPE)

This macro is used within a process and in a service defined within a
process. It should be expanded to a declaration of yVarP, which is the
pointer that is used to access SDL variables in the process. yVarP
should be of type VDEF_TYPE *, where VDEF_TYPE is the type of the
yVDef struct for the process. If the pointer to the yVDef struct is passed
as parameter to the PAD function, yVarP can be assigned its correct val-
ue already in the declaration.

YPRD_TEMP_VARS

Local variables in the function implementing the behavior of an SDL
procedure.

YPRD_YVARP
(VDEF_TYPE)

This macro is used within a procedure defined in a process. It should be
expanded to a declaration of yVarP, which is the pointer that is used to
access SDL variables in the process. yVarP should be of type
VDEF_TYPE *, where VDEF_TYPE is the type of the yVDef struct for the
process. If the pointer to the yVDef struct is passed as parameter to the
procedure function, yVarP can be assigned its correct value already in
the declaration.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3097

Chapter 62 The Master Library
Some Macro Used Within PAD Functions

BEGIN_PAD
(VDEF_TYPE)

BEGIN_PAD is a macro that can be used to insert code that is executed
in the beginning of the PAD functions. VDEF_TYPE is the yVDef type
for the process.

BEGIN_START_TRANSITION
(STARTUP_PAR_TYPE)

This macro can be used to introduce code that is executed at the begin-
ning of the start transition. STARTUP_PAR_TYPE is the yPDef struct for
the startup signal for this process.

CALL_SERVICE

This macro is used in the PAD function of a process that contains ser-
vices. It should be expanded to a call to PAD function for the service
that should execute the next transition (ActiveSrv).

CALL_SUPER_PAD_START
(PAD)

During the start transition of a process all inherited PAD functions up
to and including the PAD function containing the START symbol have
to be called. The reason is to initialize all variables defined in the pro-
cess. This macro is used to perform a call to the inherited PAD function
(the macro parameter PAD). Usually this macro is expanded to some-
thing like:

yVarP->RestartPAD = PAD; PAD(VarP);

followed by either a return or a goto NewTransition depending on
execution model.

CALL_SUPER_PRD_START
(PRD, THISPRD)

This macro is used in the same way as CALL_SUPER_PAD_START
(see above) but for the start transition in a procedure. THISPRD is the ex-
ecuting procedure function, while PRD is the inherited procedure func-
tion.
3098 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
CALL_SUPER_SRV_START
(PAD)

This macro is used in the same way as CALL_SUPER_PAD_START
(see above) but for the start transition in a service. PAD is the inherited
PAD function.

LOOP_LABEL

The LOOP_LABEL macro should be used to form the loop from a next-
state operation to the next input operation necessary in the OS where OS
tasks does not perform return at end of transition (most commercial
OS). This macro is also suitable to handle free on received signals and
the treatment of the save queue. In an OS where SDL nextstate is imple-
mented using a C return (the Master Library for example) the
LOOP_LABEL macro is usually empty.

LOOP_LABEL_PRD

Similar to LOOP_LABEL but used in procedures with states.

LOOP_LABEL_PRD_NOSTATE

Similar to LOOP_LABEL but used in procedures without states. This
macro is in many circumstances expanded to nothing.

LOOP_LABEL_SERVICEDECOMP

Similar to LOOP_LABEL but used in the PAD function for a process
containing services.

SDL_OFFSPRING

Should return the value of offspring.

SDL_PARENT

Should return the value of parent.

SDL_SELF

Should return the value of self.

SDL_SENDER

Should return the value of sender.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3099

Chapter 62 The Master Library
START_SERVICES

This macro is used in the PAD function of a process that contains ser-
vices. It should be expanded in such a way that the start transitions for
all of the services are executed.

XEND_PRD

This is a macro generated at the end of a function that represents the be-
havior of a procedure. It needs not to be expanded to anything. To de-
fine it as

return (xbool)0;

might remove a compiler warning that the end of a value returning func-
tion might be reached.

XPRSNODE

Should usually be expanded to the type xPrsNode.

XNAMENODE

How to reach the xPrsIdNode from a PAD function. Normally this is
yVarP->NameNode.

XNAMENODE_PRD

How to reach the xPrdIdNode from a PRD function. Normally this is
yPrdVarP->NameNode.

XNAMENODE_SRV

How to reach the xSrvIdNode from a PAD function. Normally this is
ySrvVarP->NameNode.

YPAD_FUNCTION
(PAD)

The function heading of the PAD function given as parameter.

YPAD_PROTOTYPE
(PAD)

The function prototype of the PAD function given as parameter.
3100 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
YPRD_FUNCTION
(PRD)

The function heading of the PRD function given as parameter.

YPRD_PROTOTYPE
(PRD)

The function prototype of the PRD function given as parameter.

yInit Function

BEGIN_YINIT

This macro is placed in the beginning of the yInit function in the file
containing code for the system. It can be expanded to variable declara-
tions and initialization code.

XPROCESSDEF_C
(PROC_NAME, PROC_NAME_STRING, PREFIX_PROC_NAME,
PAD_FUNCTION, VDEF_TYPE)

This macro can be used to introduce code for each process instance set
in the system.

Parameters:

• PROC_NAME

the name of the process without prefix.

• PROC_NAME_STRING
the name of the process as a character string.

• PREFIX_PROC_NAME

the name of the process with prefix.

• PAD_FUNCTION

the PAD function for this process instance set.

• VDEF_TYPE

the yVDef struct for this process.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3101

Chapter 62 The Master Library
XPROCESSDEF_H
(PROC_NAME, PROC_NAME_STRING, PREFIX_PROC_NAME,
PAD_FUNCTION, VDEF_TYPE)

This macro can be used to introduce extern declaration (placed in the
proper .h file) for each process instance set in the system.

Parameters:

• PROC_NAME

the name of the process without prefix.

• PROC_NAME_STRING

the name of the process as a character string.

• PREFIX_PROC_NAME

the name of the process with prefix.

• PAD_FUNCTION

the PAD function for this process instance set.

• VDEF_TYPE

the yVDef struct for this process.

xInsertIdNode

In the yInit function the function xInsertIdNode is called for each
IdNode. In an application this is not necessary, and xInsertIdNode
can be defined as

#define xInsertIdNode(Node)

The function xInsertIdNode is needed if XSYMBTLINK,
XCOVERAGE, or XMONITOR is defined.

YINIT_TEMP_VARS

This macro is placed in all yInit functions and can be expanded to local
variables needed within the yInit function.
3102 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Implementation of Signals and Output

ALLOC_SIGNAL

ALLOC_SIGNAL_PAR
(SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)

These macros are used to allocate a data area for a signal to be sent.
ALLOC_SIGNAL is used if the signal has no parameters, while
ALLOC_SIGNAL_PAR is used if the signal has parameters. The re-
sulting data area should be reference by the variable mentioned by the
macro OUTSIGNAL_DATA_PTR (see below).

Parameters:

• SIG_NAME

the name of the signal without prefix.

• SIG_IDNODE

the xSignalIdNode of the signal.

• RECEIVER

the receiver given in the TO clause, or calculated. In a NO_TO out-
put, RECEIVER is xNotDefPId.

• SIG_PAR_TYPE

the yPDef type of the signal. If the signal has no parameters this
macro parameter is XSIGNALHEADERTYPE (see below).

INSIGNAL_NAME

This macro should be expanded to the identification of the currently re-
ceived signal. It is used to distinguish between signals when several sig-
nal is enumerated in the same input symbol.

OUTSIGNAL_DATA_PTR

This should be the pointer referring to be signal data area while building
the signal during an output. It should be assigned its value in
ALLOC_SIGNAL or ALLOC_SIGNAL_PAR, and will then be used
during assignment of signal parameters and in the SDL_2OUTPUT
macro just below.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3103

Chapter 62 The Master Library
SDL_2OUTPUT

SDL_2OUTPUT_NO_TO

SDL_2OUTPUT_COMPUTED_TO

SDL_ALT2OUTPUT

SDL_ALT2OUTPUT_NO_TO

SDL_ALT2OUTPUT_COMPUTED_TO
(PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER,
SIG_PAR_SIZE, SIG_NAME_STRING)

These six macros are used to send the signal created in
ALLOC_SIGNAL or ALLOC_SIGNAL_PAR. The SDL_ALT ver-
sions of the macros are used if the directive /*#ALT*/ has been given
in the output. The version without suffix is used for an output TO, while
the suffix _COMPUTED_TO is used for an output without to but it was
possible to compute the receiver during code generation time. The suf-
fix _NO_TO indicates an output without to, where the receiver cannot
be calculated during code generation time.

Parameters:

• PRIO

the priority of the signal specified in a #PRIO directive.

• VIA

the via list given in the output.

• SIG_NAME

the name of the signal without prefix

• SIG_IDNODE

the xSignalIdNode for the signal.

• RECEIVER

the receiver given in the TO clause, or calculated. In a NO_TO out-
put, RECEIVER is xNotDefPId.

• SIG_PAR_SIZE

the size of the yPDef struct of the signal. If signal without parame-
ters SIG_PAR_SIZE is 0.

• SIG_NAME_STRING

the name of the signal as a character string.
3104 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
SDL_THIS

In an output TO THIS in SDL, the RECEIVER parameter in the
ALLOC_SIGNAL and SDL_2OUTPUT macros discussed above will
become SDL_THIS.

SIGCODE
(P)

This macro makes it possible to store a signal code (signal number) in
the xSignalIdNode for a signal. The macro parameter P is the signal
name without prefix.

SIGNAL_ALLOC_ERROR

This macro is inserted after the ALLOC_SIGNAL macro and the as-
signment of parameter values to the signal. It can be used to test if the
alloc was successful or not.

SIGNAL_ALLOC_ERROR_END

This macro is inserted after the SDL_2OUTPUT macro.

SIGNAL_NAME
(SIG_NAME, SIG_IDNODE)

This macro should be expanded to an identification of the signal given
as parameter. Normally the identification is either the xSignalIdNode
for the signal or an int value. If the id is an int value it is suitable to
insert defines of type #define signal_name number. A file containing
such defines can be generated using the Generate Signal Numbers fea-
ture in Cadvanced/Cbasic.

Parameters:

• SIG_NAME

the name of the signal without parameters

• SIG_IDNODE

the xSignalIdNode for the signal.

SIGNAL_VARS

The struct components that are needed for each signal instance. Exam-
ple: sender, receiver, signal type.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3105

Chapter 62 The Master Library
TO_PROCESS
(PROC_NAME, PROC_IDNODE)

This macro is used as RECEIVER in the ALLOC_SIGNAL and
SDL_2OUTPUT macros if the signal is sent to a process instance set in
SDL.

Parameters:

• PROC_NAME

the name of the receiving process without prefix.

• PROC_IDNODE

the xPrsIdNode of the receiving process.

TRANSFER_SIGNAL

TRANSFER_SIGNAL_PAR
(SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)

These macros are used as alternative for the ALLOC_SIGNAL macros
(see these macros above) if the directive #TRANSFER if given in the out-
put.

• SIG_NAME

the name of the signal without prefix.

• SIG_IDNODE

the xSignalIdNode of the signal.

• RECEIVER

the receiver given in the TO clause, or calculated. In a NO_TO out-
put, RECEIVER is xNotDefPId.

• SIG_PAR_TYPE

the yPDef type of the signal. If the signal has no parameters this
macro parameter is XSIGNALHEADERTYPE (see below).

XNONE_SIGNAL

The representation for a none signal.

XSIGNALHEADERTYPE

This macro is used to indicate a yPDef struct for a signal without param-
eters. Such a signal has no generated yPDef struct. It is suitable to let
3106 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
XSIGNALHEADERTYPE be the name of a struct just containing the
components in SIGNAL_VARS.

XSIGTYPE

Depending on the representation of the signal type that is used
(xSignalIdNode or int) this macro should either be xSignalIdNode
or int.

Implementation of RPC

ALLOC_REPLY_SIGNAL

ALLOC_REPLY_SIGNAL_PAR

ALLOC_REPLY_SIGNAL_PRD

ALLOC_REPLY_SIGNAL_PRD_PAR
(SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)

These macros are used to allocate the Reply signal in the signal ex-
change in an RPC. The suffix _PAR is used if the reply signal contains
parameters. The suffix _PRD is used if the implicit RPC transition is
part of a procedure.

Parameters:

• SIG_NAME

the reply signal name without prefix.

• SIG_IDNODE

the xSignalIdNode for the reply signal.

• RECEIVER

the receiver of the reply signal. The macro
XRPC_SENDER_IN_ALLOC or
XRPC_SENDER_IN_ALLOC_PRD are used as actual parameter.
The suffix _PRD is used if the implicit RPC transition is part of a
procedure.

• SIG_PAR_TYPE

the yPDef type for the reply signal. If the reply signal does not con-
tain any parameters the macro name XSIGNALHEADERTYPE is
generated as actual parameter.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3107

Chapter 62 The Master Library
REPLYSIGNAL_DATA_PTR

REPLYSIGNAL_DATA_PTR_PRD

This should be a reference to the data area for the reply signal that is al-
located in the ALLOC_REPLY_SIGNAL macro. The suffix _PRD is
used if the implicit RPC transition is part of a procedure.

SDL_RPCWAIT_NEXTSTATE

SDL_RPCWAIT_NEXTSTATE_PRD
(PREPLY_IDNODE, PREPLY_NAME, RESTARTADDR)

These macros are used to implement the implicit nextstate operation in
the caller of an RPC. The suffix _PRD is used if the implicit RPC tran-
sition is part of a procedure.

Parameters:

• PREPLY_IDNODE

the xSignalIdNode for the reply signal.

• PREPLY_NAME

the name without prefix for the reply signal.

• RESTARTADDR

the restart address (symbol number) for the implicit input of the re-
ply signal.

SDL_2OUTPUT_RPC_CALL
(PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER,
SIG_PAR_SIZE, SIG_NAME_STRING)

Send the call signal of an RPC.

Parameters:

• PRIO

priority of signal.

• VIA

the via list, which in this case always is (xIdNode *)0, i.e. no via
list.

• SIG_NAME

the RPC call signal name without prefix.

• SIG_IDNODE

the xSignalIdNode for the RPC call signal.
3108 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
• RECEIVER

the receiver of the call signal. This is either expressed as an ordinary
TO-expression or using the macro XGETEXPORTINGPRS (see
below) in case of no explicit receiver specified in the call.

• SIG_PAR_SIZE

the size of the yPDef struct for the call signal. If the call signal has
no parameters this parameter will be 0.

• SIG_NAME_STRING

the name of the RPC call signal as a character string.

SDL_2OUTPUT_RPC_REPLY

SDL_2OUTPUT_RPC_REPLY_PRD
(PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER,
SIG_PAR_SIZE, SIG_NAME_STRING)

These macros are used to send the RPC reply signal. The suffix _PRD
is used if the implicit RPC transition is part of a procedure.

Parameters:

• PRIO

priority of signal.

• VIA

the via list, which in this case always is (xIdNode *)0, i.e. no via
list.

• SIG_NAME

the RPC reply signal name without prefix.

• SIG_IDNODE

the xSignalIdNode for the RPC reply signal.

• RECEIVER

the receiver of the reply signal. This is expressed using the macro
XRPC_SENDER_IN_OUTPUT or
XRPC_SENDER_IN_OUTPUT_PRD.

• SIG_PAR_SIZE

the size of the yPDef struct for the reply signal. If the reply signal
has no parameters this parameter will be 0.

• SIG_NAME_STRING

the name of the RPC reply signal as a character string.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3109

Chapter 62 The Master Library
XGETEXPORTINGPRS
(REMOTENODE)

This macro should be expanded to an expression that given the remote
procedure given as actual macro parameter (more exactly the IdNode
for the remote procedure), returns one possible exporter of this remote
procedure. Usually this macro is expanded to a call of the library func-
tion xGetExportingPrs.

XRPC_REPLY_INPUT

XRPC_REPLY_INPUT_PRD

Macros that can be used for special processing needed to receive an
RPC reply signal. The macros are usually expanded to nothing.

XRPC_SAVE_SENDER

XRPC_SAVE_SENDER_PRD

These macros can be used to save the sender of a received RPC call sig-
nal, for further use when the reply signal is to be sent. The suffix _PRD
is used if the implicit RPC transition is part of a procedure.

XRPC_SENDER_IN_ALLOC

XRPC_SENDER_IN_ALLOC_PRD

These macros are used to obtain the receiver of the reply signal (from
the sender of the call signal) in the ALLOC_REPLY_SIGNAL macros.
The suffix _PRD is used if the implicit RPC transition is part of a pro-
cedure.

XRPC_SENDER_IN_OUTPUT

XRPC_SENDER_IN_OUTPUT_PRD

These macros are used to obtain the receiver of the reply signal (from
the sender of the call signal) in the SDL_2OUTPUT_RPC_REPLY
macros. The suffix _PRD is used if the implicit RPC transition is part of
a procedure.

XRPC_WAIT_STATE

The state number used for a RPC wait state. XRPC_WAIT_STATE is
usually defined as -3.
3110 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Implementation of View and Import

XGETEXPORTADDR
(REMOTENODE, EXPORTER, IS_DEF_EXPORTER)

This macro should be expanded to an expression that returns the address
of the exported variable. Usually the function xGetExportAddr is
called.

Parameters:

• REMOTENODE

the IdNode for the remote variable.

• EXPORTER

the value of the optional PId expression. If no PId expression is giv-
en this parameter is SDL_NULL.

• IS_DEF_EXPORTER

has the value (xbool)1 if a PId expression was found in the import
statement, otherwise it is (xbool)0.

SDL_VIEW
(PID_EXPR, HAS_EXPR, VAR_NAME_STRING, REVEALED_LIST,
SORT_SIZE)

This macro should be expanded to an expression that returns the address
of the viewed variable. Usually the function SDL_View is called.

Parameters:

• PID_EXPR

the value of the optional PId expression. If no PId expression is giv-
en this parameter is SDL_NULL.

• HAS_EXPR

has the value (xbool)1 if a PId expression was found in the view
statement, otherwise it is (xbool)0.

• VAR_NAME_STRING

the name of the viewed variable as a character string.

• REVEALED_LIST

the list of the revealed variables.

• SORT_SIZE

the size of the sort of the revealed variable.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3111

Chapter 62 The Master Library
Implementation of Static and Dynamic Create
and Stop

ALLOC_STARTUP

ALLOC_STARTUP_PAR
(PROC_NAME, STARTUP_IDNODE, STARTUP_PAR_TYPE)

Allocate the data area for a startup signal and let the pointer mentioned
in the macro STARTUP_DATA_PTR refer to this data area. The suffix
_PAR is used if the startup signal contains parameters.

Parameters:

• PROC_NAME

the name without prefix for the created process.

• STARTUP_IDNODE

the xSignalIdNode for the startup signal of the created process.

• STARTUP_PAR_TYPE

the yPDef for the startup signal of the created process.

ALLOC_STARTUP_THIS

Allocate the data area for a startup signal and let the pointer mentioned
in the macro STARTUP_DATA_PTR refer to this data area. This mac-
ro is used in a create THIS operation.

INIT_PROCESS_TYPE
(PROC_NAME, PREFIX_PROC_NAME, PROC_IDNODE,
PROC_NAME_STRING, MAX_NO_OF_INST, STATIC_INST,
VDEF_TYPE, PRIO, PAD_FUNCTION)

This macro will be call once for each process instance set in the yInit
function. It should be used to initiated common features for all instances
of a process instance set.

Parameters:

• PROC_NAME

the name without prefix for the process instance set.

• PREFIX_PROC_NAME

the name with prefix for the process instance set.

• PROC_IDNODE

the xPrsIdNode for the process instance set.
3112 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
• PROC_NAME_STRING

the name as character string for the process instance set.

• MAX_NO_OF_INST

the maximum number of instances of this process instance set.

• STATIC_INST

the number of static instances of this process instance set.

• VDEF_TYPE

the yVDef type for this process instance set.

• PRIO

the priority for process instance set.

• PAD_FUNCTION

the PAD for this process instance set.

SDL_CREATE
(PROC_NAME, PROC_IDNODE, PROC_NAME_STRING)

This macro is used to create (a create action) a process instance.

Parameters:

• PROC_NAME

the name without prefix for the process instance set.

• PROC_IDNODE

the xPrsIdNode for the process instance set.

• PROC_NAME_STRING

he name as character string for the process instance set.

SDL_CREATE_THIS

This macro is used to implement create this.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3113

Chapter 62 The Master Library
SDL_STATIC_CREATE
(PROC_NAME, PREFIX_PROC_NAME, PROC_IDNODE,
PROC_NAME_STRING, STARTUP_IDNODE, STARTUP_PAR_TYPE,
VDEF_TYPE, PRIO, PAD_FUNCTION, BLOCK_INST_NUMBER)

This macro is called in the yInit function once for each static process in-
stances that should be created of a process instance set.

Parameters:

• PROC_NAME

the name without prefix for the process instance set.

• PREFIX_PROC_NAME

the name with prefix for the process instance set.

• PROC_IDNODE

the xPrsIdNode for the process instance set.

• PROC_NAME_STRING

the name as character string for the process instance set.

• STARTUP_IDNODE

the xSignalIdNode for the startup signal for the process instance
set.

• STARTUP_PAR_TYPE

the yPDef type for the startup signal for the process instance set.

• VDEF_TYPE

the yVDef type for the process instance set.

• PRIO

the priority for the process instance set.

• PAD_FUNCTION

the PAD function for the process instance set.

• BLOCK_INST_NUMBER

if this process instance set is part if a block instance set then this
macro is the block instance number for the block instance set that
this process belongs to. Otherwise this macro parameter is 1.

SDL_STOP

This macro is used to implement the SDL operation stop (both in pro-
cesses and in services).
3114 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
STARTUP_ALLOC_ERROR

This macro is inserted after the ALLOC_STARTUP macro and the as-
signment of parameter values to the signal. It can be used to test if the
alloc was successful or not.

STARTUP_ALLOC_ERROR_END

This macro is inserted after the SDL_CREATE macro.

STARTUP_DATA_PTR

This macro should be expanded to a temporary variable used to store a
reference to the startup signal data area. It should be assigned in the
ALLOC_STARTUP macro and will be used to assign the actual signal
parameters (the fpar values) to the startup signal.

STARTUP_VARS

This macro can be used to insert additional general components in the
startup signals. In all startup signal yPDef structs SIGNAL_VARS will
be followed by STARTUP_VARS.

Implementation of Timers, Timer Operations
and Now

ALLOC_TIMER_SIGNAL_PAR
(TIMER_NAME, TIMER_IDNODE, TIMER_PAR_TYPE)

Allocate a data area for the timer signal with parameters.

Parameters:

• TIMER_NAME

the name without prefix of the timer.

• TIMER_IDNODE

the xSignalIdNode for the timer.

• TIMER_PAR_TYPE

the yPDef for the timer.

DEF_TIMER_VAR

DEF_TIMER_VAR_PARA
(TIMER_VAR)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3115

Chapter 62 The Master Library
There will be one application of this macro in the yVDef type for the
process for each timer declaration the process contains. These declara-
tions can be used to introduce components (timer variables) in the
yVDef struct to track timers. The parameter TIMER_VAR is a suitable
name for such a variable. The suffix _PARA is used if the timer has pa-
rameters.

INIT_TIMER_VAR

INIT_TIMER_VAR_PARA
(TIMER_VAR)

These macros will be inserted in start transitions, during initialization of
process variables. This makes it possible to initialize the timer variables
that might be inserted in the DEF_TIMER_VAR macro. The parameter
TIMER_VAR is the name for such a variable. The suffix _PARA is used
if the timer has parameters.

INPUT_TIMER_VAR

INPUT_TIMER_VAR_PARA
(TIMER_VAR)

These macros will be inserted at an input operation on a timer signal.
This makes it possible to update the timer variables that might be insert-
ed in the DEF_TIMER_VAR macro. The parameter TIMER_VAR is the
name for such a variable. The suffix _PARA is used if the timer has pa-
rameters. Note that if a timer signal is received in an input * statement,
no INPUT_TIMER_VAR will be present in this case.

RELEASE_TIMER_VAR

RELEASE_TIMER_VAR_PARA
(TIMER_VAR)

These macros will be inserted at a stop. This makes it possible to per-
form cleaning up of the timer variables that might be inserted in the
DEF_TIMER_VAR macro. The parameter TIMER_VAR is the name for
such a variable. The suffix _PARA is used if the timer has parameters.

SDL_ACTIVE
(TIMER_NAME, TIMER_IDNODE, TIMER_VAR)
3116 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
This macro is used to implement the SDL operation active on a timer.
Note that active on timers with parameters is not implemented in the
Cadvanced/Cbasic SDL to C Compiler.

Parameters:

• TIMER_NAME

the name without prefix of the timer.

• TIMER_IDNODE

the xSignalIdNode for the timer.

• TIMER_VAR

the timer variable that might be inserted in the macro
DEF_TIMER_VAR.

SDL_NOW

This is the implementation of now in SDL.

SDL_RESET
(TIMER_NAME, TIMER_IDNODE, TIMER_VAR,
TIMER_NAME_STRING)

This macro is used to implement the SDL operation reset on a timer
without parameters.

Parameters:

• TIMER_NAME

the name without prefix of the timer.

• TIMER_IDNODE

the xSignalIdNode for the timer.

• TIMER_VAR

the timer variable that might be inserted in the macro
DEF_TIMER_VAR.

• TIMER_NAME_STRING

the name of the timer as a character string.

SDL_RESET_WITH_PARA
(EQ_FUNC, TIMER_VAR, TIMER_NAME_STRING)

This macro is used to implement the SDL operation reset on a timer
with parameters. Before this macro a timer signal with the timer param-
eters in the reset operation is created.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3117

Chapter 62 The Master Library
Parameters:

• EQ_FUNC

the name of the generated equal function that can test if two timer
instance are equal or not.

• TIMER_VAR

the timer variable that might be inserted in the macro
DEF_TIMER_VAR.

• TIMER_NAME_STRING

the name of the timer as a character string.

SDL_SET
(TIME_EXPR, TIMER_NAME, TIMER_IDNODE, TIMER_VAR,
TIMER_NAME_STRING)

SDL_SET_WITH_PARA
(TIME_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR,
TIMER_NAME_STRING)

SDL_SET_DUR
(TIME_EXPR, DUR_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_VAR, TIMER_NAME_STRING)

SDL_SET_DUR_WITH_PARA
(TIME_EXPR, DUR_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR,
TIMER_NAME_STRING)

SDL_SET_TICKS
(TIME_EXPR, DUR_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_VAR, TIMER_NAME_STRING)

SDL_SET_TICKS_WITH_PARA
(TIME_EXPR, DUR_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR,
TIMER_NAME_STRING)

These six SDL_SET macros are used to implement the SDL operation
set on a timer. The suffix _WITH_PARA indicates the set of a timer
with parameters. In this case the SDL_SET macro is preceded by an
ALLOC_TIMER_SIGNAL_PAR macro call, plus the assignment of
the timer parameters. The suffix _DUR is used if the time value in the
set operation is expressed as:

now + expression
3118 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
In this case both the time value and the duration value (the expression
above) is available as macro parameter. The suffix _TICKS is used if
the time value in the set operation is expressed as:

now + TICKS(...)

where TICKS is an operator returning a duration value. In this case both
the time value and the duration value (the TICKS expression above) is
available as macro parameter.

Parameters:

• TIME_EXPR

the time expression.

• DUR_EXPR

the duration expression (only in _DUR and _TICKS).

• TIMER_NAME

the timer name without prefix.

• TIMER_IDNODE

the xSignalIdNode for the timer.

• TIMER_PAR_TYPE

the yPDef struct for the timer (only in _WITH_PARA)

• EQ_FUNC

the function that can be used to test if two timers have the same pa-
rameter values (only in _WITH_PARA).

• TIMER_VAR

the name of the timer variable that might be introduced in the macro
DEF_TIMER_VAR.

• TIMER_NAME_STRING

the name of the timer as a character string.

TIMER_DATA_PTR

This should be the pointer referring to be timer data area while building
the timer. It should be assigned its value in
ALLOC_TIMER_SIGNAL_PAR, and will then be used during assign-
ment of signal parameters and in the SDL_SET macro
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3119

Chapter 62 The Master Library
TIMER_SIGNAL_ALLOC_ERROR

This macro is inserted after the ALLOC_TIMER_SIGNAL_PAR mac-
ro and the assignment of parameter values to the timer. It can be used to
test if the alloc was successful or not.

TIMER_SIGNAL_ALLOC_ERROR_END

This macro is inserted after the SDL_SET macro.

TIMER_VARS

The struct components that are needed for each timer instance. Exam-
ple: sender, receiver, timer type.

As timers are signals as well, after the timer signal has been sent,
TIMER_VARS has to be identical to SIGNAL_VARS, except that new
component may be add last in TIMER_VARS.

XTIMERHEADERTYPE

This macro is used to indicate a yPDef struct for a timer without param-
eters. Such a timer has no generated yPDef struct. It is suitable to let
XTIMERHEADERTYPE be the name of a struct just containing the
components in TIMER_VARS.

Implementation of Call and Return

ALLOC_PROCEDURE
(PROC_NAME, PROC_IDNODE, VAR_SIZE)

Allocate a data area (yVDef) for the called procedure.

Parameters:

• PROC_NAME

the name of procedure with prefix.

• PROC_IDNODE

the xPrdIdNode of the called procedure

• VAR_SIZE

the size of the yVDef struct for the procedure.
3120 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
ALLOC_THIS_PROCEDURE

Allocate a data area (yVDef) for a procedure when call THIS is used.

ALLOC_VIRT_PROCEDURE
(PROC_IDNODE)

Allocate a data area (yVDef) for the called procedure when calling a vir-
tual procedure. The PROC_IDNODE parameter is the xPrdIdNode for the
call procedure.

CALL_PROCEDURE

CALL_PROCEDURE_IN_PRD
(PROC_NAME, PROC_IDNODE, LEVELS, RESTARTADDR)

These macros are used to implement a call operation in SDL. The yVDef
struct has been allocated earlier (in ALLOC_PROCEDURE) and the
actual parameters have been assigned to components in this struct. The
suffix _IN_PRD indicates that the procedure call is made in a proce-
dure.

Parameters:

• PROC_NAME

the name of procedure with prefix, which is the same as the name of
the C function representing the behavior of the procedure.

• PROC_IDNODE

the xPrdIdNode of the called procedure.

• LEVELS

the scope level between the caller and the called procedure.

• RESTARTADDR

the restart address the symbol number for the symbol after the pro-
cedure call.

CALL_PROCEDURE_STARTUP

CALL_PROCEDURE_STARTUP_SRV

These two macros are only of interest if the PAD functions are left via
a return at the end of transitions. In that case any outstanding procedure
must be restarted when the process becomes active again.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3121

Chapter 62 The Master Library
CALL_THIS_PROCEDURE
(RESTARTADDR)

This macro is used to implement a call THIS operation in SDL.
RESTARTADDR is the restart address the symbol number for the symbol
after the procedure call.

CALL_VIRT_PROCEDURE

CALL_VIRT_PROCEDURE_IN_PRD
(PROC_IDNODE, LEVELS, RESTARTADDR)

These macros are used to implement a call operation on a virtual proce-
dure in SDL. The yVDef struct has been allocated earlier (in
ALLOC_VIRT_PROCEDURE) and the actual parameters have been
assigned to components in this struct. The suffix _IN_PRD indicates
that the procedure call is made in a procedure.

Parameters:

• PROC_IDNODE

the xPrdIdNode of the called procedure.

• LEVELS

the scope level between the caller and the called procedure.

• RESTARTADDR

the restart address the symbol number for the symbol after the pro-
cedure call.

PROCEDURE_ALLOC_ERROR

This macro is inserted after the ALLOC_PROCEDURE macro and the
assignment of parameter values to the procedure parameters. It can be
used to test if the alloc was successful or not.

PROCEDURE_ALLOC_ERROR_END

This macro is inserted after the CALL_PROCEDURE macro.

PROC_DATA_PTR

This macro should be expanded to a temporary variable used to store a
reference to the procedure data area. It should be assigned in the
ALLOC_PROCEDURE macro and will be used to assign the actual
procedure parameters (the fpar values).
3122 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
SDL_RETURN

The implementation of return in SDL.

XNOPROCATSTARTUP

If this macro is defined then all the code discussed for the macro
CALL_PROCEDURE_STARTUP (just above) is removed.

Implementation of Join
Joins in SDL are normally implemented as goto:s in C, but in one case
a more complex implementation is needed. This is when the label, men-
tioned in the join, is in a super type.

XJOIN_SUPER_PRS
(RESTARTADDR,RESTARTPAD)

XJOIN_SUPER_PRD
(RESTARTADDR,RESTARTPRD)

XJOIN_SUPER_SRV
(RESTARTADDR,RESTARTSRV)

These macros represent join to super type in processes, procedures, and
services, in that order.

Parameters:

• RESTARTADDR

The restart address in the super type.

• RESTARTPAD, RESTARTPRD, RESTARTSRV

The PAD function for the super type.

Implementation of State and Nextstate

ASTERISK_STATE

The state number for an asterisk state. ASTERISK_STATE is usually
defined as -1.

Note:

Implicit nextstate operations in RPC calls are treated in the RPC sec-
tion.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3123

Chapter 62 The Master Library
ERROR_STATE

The state number used for the error state. ERROR_STATE is usually
defined as -2.

START_STATE

The state number for the start state. START_STATE should be defined
as 0.

START_STATE_PRD

The state number for the start state in a procedure.
START_STATE_PRD should be defined as 0.

SDL_NEXTSTATE
(STATE_NAME, PREFIX_STATE_NAME, STATE_NAME_STRING)

Nextstate operation (in process or service) of the given state.

Parameters:

• STATE_NAME

the name without prefix of the state.

• PREFIX_STATE_NAME

the name with prefix for the state. This identifier is defined as a suit-
able state number in generated code and is usually used as the rep-
resentation of the state.

• STATE_NAME_STRING

the name of the state as a character string.

SDL_DASH_NEXTSTATE

Dash nextstate operation in a process.

SDL_DASH_NEXTSTATE_SRV

Dash nextstate operation in a service.

SDL_NEXTSTATE_PRD
(STATE_NAME, PREFIX_STATE_NAME, STATE_NAME_STRING)

Nextstate operation (in procedure) of the given state.
3124 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Parameters:

• STATE_NAME

the representation of the state.

• PREFIX_STATE_NAME

the name with prefix for the state. This identifier is defined as a suit-
able state number in generated code and is usually used as the rep-
resentation of the state.

• STATE_NAME_STRING

the name of the state as a character string.

SDL_DASH_NEXTSTATE_PRD

Dash nextstate operation in a procedure.

Implementation of Any Decisions
An any decision with two paths are generated according to the follow-
ing structure:

BEGIN_ANY_DECISION(2)
DEF_ANY_PATH(1, 2)
DEF_ANY_PATH(2, 0)
END_DEFS_ANY_PATH(2)
BEGIN_FIRST_ANY_PATH(1)
 statements
END_ANY_PATH
BEGIN_ANY_PATH(2)
 statements
END_ANY_PATH
END_ANY_DECISION

BEGIN_ANY_DECISION
(NO_OF_PATHS)

Start of the any decision. NO_OF_PATHS is the number of paths in the de-
cision.

BEGIN_ANY_PATH
(PATH_NO)

A path (not the first) in implementation part of the any decision.
PATH_NO is the path number.

BEGIN_FIRST_ANY_PATH
(PATH_NO)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3125

Chapter 62 The Master Library
The first possible path in implementation part of the any decision.
PATH_NO is the path number.

DEF_ANY_PATH
(PATH_NO, SYMBOLNUMBER)

Definition of a path in the decision.

Parameters:

• PATH_NO

the path number.

• SYMBOLNUMBER

the symbol number for the first symbol in this path.

END_ANY_DECISION

The end of the any decision.

END_ANY_PATH

End of one of the paths in the implementation section.

END_DEFS_ANY_PATH
(NO_OF_PATHS)

End of the definition part of the any decision. NO_OF_PATHS is the num-
ber of paths in the decision.

Implementation of Informal Decisions
The implementation of informal decisions are similar to any decisions.

BEGIN_FIRST_INFORMAL_PATH
(PATH_NO)

The first possible path in implementation part of the informal decision.
PATH_NO is the path number.

BEGIN_INFORMAL_DECISION
(NO_OF_PATHS, QUESTION)

Start of the any decision.
3126 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Parameters:

• NO_OF_PATHS

the number of paths in the decision.

• QUESTION

the question charstring.

BEGIN_INFORMAL_ELSE_PATH
(PATH_NO)

The else path in implementation part of the any decision. PATH_NO is the
path number.

BEGIN_INFORMAL_PATH
(PATH_NO)

A path in implementation part of the any decision. PATH_NO is the path
number.

DEF_INFORMAL_PATH
(PATH_NO, ANSWER, SYMBOLNUMBER)

Definition of a path in the decision.

Parameters:

• PATH_NO

the path number.

• ANSWER

the answer string.

• SYMBOLNUMBER

the symbol number for the first symbol in this path.

DEF_INFORMAL_ELSE_PATH
(PATH_NO, SYMBOLNUMBER)

Definition of the else path in the decision.

Parameters:

• PATH_NO

the path number.

• SYMBOLNUMBER

the symbol number for the first symbol in this path.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3127

Chapter 62 The Master Library
END_DEFS_INFORMAL_PATH
(NO_OF_PATHS)

End of the definition part of the informal decision. NO_OF_PATHS is the
number of paths in the decision.

END_INFORMAL_ELSE_PATH

End of the else paths in the implementation section.

END_INFORMAL_DECISION

The end of the informal decision.

END_INFORMAL_PATH

End of one of the paths in the implementation section.

Macros for Component Selection Tests
The macros in this section handles testing the validity of for example a
component selection of a choice or #UNION variable. Also tests for op-
tional components in structs and for de-referencing of pointers is treated
here.

XCHECK_CHOICE_USAGE
(TAG,VALUE,NEQTAG,COMPNAME,CURR_VALUE,TYPEINFO)

XSET_CHOICE_TAG
(TAG,VALUE,ASSTAG,NEQTAG,COMPNAME,CURR_VALUE,
 TYPEINFO)

XSET_CHOICE_TAG_FREE
(TAG,VALUE,ASSTAG,NEQTAG,FREEFUNC,COMPNAME,
 CURR_VALUE,TYPEINFO)

The CHOICE macros are used to test and to set the implicit tag in a
choice variable. The XSET_CHOICE_TAG and
XSET_CHOICE_TAG_FREE set the tag when some component of the
choice is assigned a value. The FREE version of the macro is used if the
choice contains some component that has a Free function. The
XCHECK_CHOICE_USAGE is used to test if an accessed component
is active or not.
3128 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
Parameters:

• TAG
The implicit tag component

• VALUE
The new or expected tag value

• ASSTAG
The assignment function for the tag type

• NEQTAG
The equal test function for the tag type

• FREEFUNC
The Free function for the Choice type

• COMPNAME
The name of the selected component as a char string

• CURR_VALUE
The current value of the tag type

• TYPEINFO
The type info node for the tag type.

XCHECK_OPTIONAL_USAGE
(PRESENT_VAR,COMPNAME)

This macro is used to check that a selected optional component is
present. The PRESENT_VAR parameter is the present variable for this
component, while COMPNAME is the selected components name as a
char string.

XCHECK_UNION_TAG_USAGE
(TAG,VALUE,NEQTAG,COMPNAME,CURR_VALUE,TYPEINFO)

XCHECK_UNION_TAG
(TAG,VALUE,ASSTAG,NEQTAG,COMPNAME,CURR_VALUE,
 TYPEINFO)

XCHECK_UNION_TAG_FREE
(TAG,VALUE,ASSTAG,NEQTAG,FREEFUNC,COMPNAME,
 CURR_VALUE,TYPEINFO)

The UNION macros are used to test tag in a union variable. The
XCHECK_UNION_TAG and XCHECK_UNION_TAG_FREE check
the tag when some component of the union is assigned a value. The
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3129

Chapter 62 The Master Library
FREE version of the macro is used if the union contains some compo-
nent that has a Free function. The XCHECK_UNION_USAGE is used
to test if an accessed component is active or not.

Parameters:

• TAG
The tag component

• VALUE
The expected tag value

• ASSTAG
The assignment function for the tag type

• NEQTAG
The equal test function for the tag type

• FREEFUNC
The Free function for the UNION type

• COMPNAME
The name of the selected component as a char string

• CURR_VALUE
The current value of the tag type

• TYPEINFO
The type info node for the tag type.

XCHECK_REF

XCHECK_OWN

XCHECK_OREF
(VALUE,REF_TYPEINFO,REF_SORT)

These macros are used to implement a test that Null pointers (using the
Ref, Own, or ORef generator) are not de-referenced. These macros are
inserted before each statement containing a Ref/Own/ORef pointer de-
referencing. In case of an ORef pointer it is also checked that the ORef
is valid, i.e. that it refers to an object owned by the current process.

Parameters:

• VALUE
This is the value of the pointer.
3130 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
• REF_TYPEINFO
The typeinfo node for the Ref sort.

• REF_SORT
The C type that corresponds to the Ref instantiation newtype.

XCHECK_OREF2
(VALUE)

Checks that a ORef pointer is a valid pointer, i.e. NULL, or that it refers
to an object owned by the current process.

Debug and Simulation Macros

XAFTER_VALUE_RET_PRDCALL
(SYMB_NO)

A macro generated between the implementation of a value returning
procedure call (implicit call symbol) and the symbol containing the val-
ue returning procedure call. SYMB_NO is the symbol number of the sym-
bol containing the value returning procedure call.

XAT_FIRST_SYMBOL
(SYMB_NO)

A macro generated between an input or start symbol and the first sym-
bol in the transition. SYMB_NO is the symbol number of the first symbol
in the transition.

XAT_LAST_SYMBOL

A macro generated immediately before a nextstate or stop operation.

XBETWEEN_STMTS

XBETWEEN_STMTS_PRD
(SYMB_NO, C_LINE_NO)

A macro generated between statements in a task. The suffix _PRD indi-
cates that these statements are part of a procedure.

Parameters:

• SYMB_NO

the symbol number of the next statement.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3131

Chapter 62 The Master Library
• C_LINE_NO

line number in C of this statement.

XBETWEEN_SYMBOLS

XBETWEEN_SYMBOLS_PRD
(SYMB_NO, C_LINE_NO)

A macro generated between symbols in a transition. The suffix _PRD
indicates that these symbols are part of a procedure.

Parameters:

• SYMB_NO

the symbol number of the next symbol.

• C_LINE_NO

line number in C of this statement.

XDEBUG_LABEL
(LABEL_NAME)

This macro gives the possibility to insert label at the beginning of tran-
sitions. Such labels can be useful during debugging. The LABEL_NAME
parameter is a concatenation of state name and the signal name. The *
in state *; and input *; will cause the name ASTERISK to appear.

XOS_TRACE_INPUT
(SIG_NAME_STRING)

This macro is generated at input statements and can, for example, be
used to generated trace information about inputs. The
SIG_NAME_STRING parameter is the name of the signal in the input.

YPRSNAME_VAR
(PRS_NAME_STRING)

This macro is generated among the declarations of variables in the PAD
function for a process. It can, for example, be used to declare a char *
variable containing the name of the process. Such a variable can be use-
ful during debugging. The PRS_NAME_STRING parameter is the name of
the process as a character string.

YPRDNAME_VAR
(PRD_NAME_STRING)
3132 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
This macro is generated among the declarations of variables in the PRD
function for a procedure. It can, for example, be used to declare a char*
variable containing the name of the procedure. Such a variable can be
useful during debugging. The PRD_NAME_STRING parameter is the name
of the procedure as a character string.

Utility Macros to Be Inserted
The following sequence of macros should be inserted. Most of them
concern removal of struct components (in IdNodes) that are not used
due to the combination of other switches used.

#define NIL 0
#define XXFREE xFree
#define XSYSD xSysD.

#if defined(XPRSPRIO) || defined(XSIGPRSPRIO) ||
 defined(XPRSSIGPRIO)
#define xPrsPrioPar(p) , p
#else
#define xPrsPrioPar(p)
#endif

#if defined(XSIGPRIO) || defined(XSIGPRSPRIO) ||
 defined(XPRSSIGPRIO)
#define xSigPrioPar(p) , p
#define xSigPrioParS(p) p;
#else
#define xSigPrioPar(p)
#define xSigPrioParS(p)
#endif

#ifdef XTESTF
#define xTestF(p) , p
#else
#define xTestF(p)
#endif

#ifdef XREADANDWRITEF
#define xRaWF(p) , p
#else
#define xRaWF(p)
#endif

#ifdef XFREEFUNCS
#define xFreF(p) , p
#else
#define xFreF(p)
#endif

#ifdef XFREESIGNALFUNCS
#define xFreS(p) , p
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3133

Chapter 62 The Master Library
#else
#define xFreS(p)
#endif

#define xAssF(p)
#define xEqF(p)

#ifdef XIDNAMES
#define xIdNames(p) , p
#else
#define xIdNames(p)
#endif

#ifndef XOPTCHAN
#define xOptChan(p) , p
#else
#define xOptChan(p)
#endif

#ifdef XBREAKBEFORE
#define xBreakB(p) , p
#else
#define xBreakB(p)
#endif

#ifdef XGRTRACE
#define xGRTrace(p) , p
#else
#define xGRTrace(p)
#endif

#ifdef XMSCE
#define xMSCETrace(p) , p
#else
#define xMSCETrace(p)
#endif

#ifdef XTRACE
#define xTrace(p) , p
#else
#define xTrace(p)
#endif

#ifdef XCOVERAGE
#define xCoverage(p) , p
#else
#define xCoverage(p)
#endif

#ifdef XNRINST
#define xNrInst(p) , p
#else
#define xNrInst(p)
3134 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 List of All Compilation Switches
#endif

#ifdef XSYMBTLINK
#define xSymbTLink(p1, p2) , p1, p2
#else
#define xSymbTLink(p1, p2)
#endif

#ifdef XEVIEW
#define xeView(p) p,
#define xeViewS(p) p;
#else
#define xeView(p)
#define xeViewS(p)
#endif

#ifdef XCTRACE
#define xCTrace(p) p,
#define xCTraceS(p) p;
#else
#define xCTrace(p)
#define xCTraceS(p)
#endif

#ifndef XNOUSEOFSERVICE
#define xService(p) , p
#else
#define xService(p)
#endif

#if !defined(XPMCOMM) && !defined(XENV)
#define xGlobalNodeNumber() 1
#endif

#define xSizeOfPathStack 50

#ifndef xOffsetOf
#define xOffsetOf(type, field) \
 ((xptrint) &((type *) 0)->field)
#endif
#define xToLower(C) \
 ((C >= ‘A’ && C <= ‘Z’) ? \
 (char)((int)C - (int)’A’ + (int)’a’) : C)

#ifndef xDefaultPrioProcess
#define xDefaultPrioProcess 100
#endif

#ifndef xDefaultPrioSignal
#define xDefaultPrioSignal 100
#endif

#ifndef xDefaultPrioTimerSignal
#define xDefaultPrioTimerSignal 100
#endif
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3135

Chapter 62 The Master Library
#ifndef xDefaultPrioContSignal
#define xDefaultPrioContSignal 100
#endif

#ifndef xDefaultPrioCreate
#define xDefaultPrioCreate 100
#endif

#define xbool int

#ifndef MAX_READ_LENGTH
#define MAX_READ_LENGTH 5000
 /* max length of input line */
#endif

The xDefaultPrio macros above should, of course, be defined to the
suitable default values.

Other macros that should be defined are.

SDL_NULL

a null value for the type PId.

xNotDefPId

which is used as RECEIVER parameter in the SDL_2OUTPUT macros.
Please see also the section were signals are treated.
3136 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	62 The Master Library
	Introduction
	File Structure
	Description of Files
	scttypes.h
	sctlocal.h
	sctpred.h
	sctsdt.c
	sctpred.c
	sctutil.c
	sctmon.c
	sctpost.c
	sctos.c
	post.h and sdt.h
	post.o (post.lib in Windows)

	The Symbol Table
	Symbol Table Tree Structure
	Types Representing the Symbol Table Nodes
	Package
	System, System Type
	Channel, Signal route, Gate
	Block, Block Type, Block Instance
	Process, Process Type, Process Instance
	Service, Service Type, Service Instance
	Procedure, Operator Diagram, Compound Statement
	Remote Procedure
	Signal, Timer, StartUpSignal, and RPC Signals
	State
	Sort and Syntype
	Variable, FormalPar, SignalPar, and Struct Components
	Remote Variable

	Type Info Nodes
	General Components
	Type-Specific Components

	The SDL Model
	Signals and Timers
	Data Structure Representing Signals and Timers
	Allocation of Data Areas for Signals
	Overview of Output and Input of Signals
	Timers and Operations on Timers

	Processes
	Data Structure Representing Processes
	The Ready Queue, Scheduling
	Create and Stop Operations
	Output and Input of Signals
	Nextstate Operations
	Decision and Task Operations
	Compound Statements
	Enabling Conditions and Continuous Signals
	View and Reveal
	Import, Export, and Remote Variables

	Services
	Data Structure Representing Services
	Executing Transitions in Services

	Procedures
	Data Structure Representing Procedures
	Calling and Returning from Procedures

	Channels and Signal Routes
	The Type Concept in SDL-92

	Allocating Dynamic Memory
	Introduction
	Processes
	Compilation switch XPRSOPT

	Services
	Signals
	Timers
	Procedures
	Data types
	Functions for Allocation and Deallocation

	Compilation Switches
	Description of Compilation Switches
	XCLOCK
	XCALENDARCLOCK
	XPMCOMM
	XITEXCOMM
	XENV
	XTENV
	XENV_CONFORM_2_3
	XSIGLOG
	XTRACE
	XGRTRACE
	XCTRACE
	XMONITOR
	XCOVERAGE
	MAX_READ_LENGTH
	XSIMULATORUI
	XMSCE
	XSDLENVUI
	XNOMAIN
	XMAIN_NAME
	XSIGPRIO
	XPRSPRIO
	XSIGPRSPRIO
	XPRSSIGPRIO
	xDefaultPrio...
	XOPT
	XOPTSIGPARA
	XOPTDCL
	XOPTFPAR
	XOPTSTRUCT
	XOPTLIT
	XOPTSORT
	XNOUSEOFREAL
	XNOUSEOFOBJECTIDENTIFER
	XNOUSEOFOCTETBITSTRING
	XNOUSEOFEXPORT
	XNOUSEOFSERVICE
	XPRSOPT
	XOPTCHAN
	X_LONG_INT
	XENVSIGNALLIMIT
	XEALL
	XECREATE
	XECSOP
	XEDECISION
	XEEXPORT
	XEFIXOF
	XEINDEX
	XEINTDIV
	XEOUTPUT
	XERANGE
	XEREALDIV
	XEVIEW
	XECHOICE
	XEOPTIONAL
	XEUNION
	XEREF, XEOWN
	XASSERT
	XTRACHANNELSTOENV
	XDEBUG_LABEL
	XCONST, XCONST_COMP

	Compilation Switches – Summary

	Creating a New Library
	Directory Structure
	File sdtsct.knl
	File Makefile
	File comp.opt
	File makeoptions / make.opt
	Generated Make Files

	Adaptation to Compilers
	Compiler Definition Section in scttypes.h
	The sctos.c File
	xAlloc
	xFree
	xHalt
	SDL_Clock
	xSleep_Until
	xGlobalNodeNumber
	xCheckForKeyboardInput

	List of All Compilation Switches
	Introduction
	Library Version Macros
	Compiler Definition Section Macros
	Some Configuration Macros
	General Properties
	Code Optimization
	Definitions of Minor Features
	Static Data, Mainly xIdNodes
	Data in Processes, Procedures and Services
	Some Macro Used Within PAD Functions
	yInit Function
	Implementation of Signals and Output
	Implementation of RPC
	Implementation of View and Import
	Implementation of Static and Dynamic Create and Stop
	Implementation of Timers, Timer Operations and Now
	Implementation of Call and Return
	Implementation of Join
	Implementation of State and Nextstate
	Implementation of Any Decisions
	Implementation of Informal Decisions
	Macros for Component Selection Tests
	Debug and Simulation Macros
	Utility Macros to Be Inserted

