Chapter

62

July 2003

The Master Library

This chapter coversthe following topics:

The structure of the sour ce code of the SDL suite Master Li-
brary

Theruntime model used for the programs generated by the
SDL to C compiler. The chapter also describesthe data struc-
turesfor representing the various SDL objects.

The memory requirementsfor applications
How to make a customized Master Library

The compilation switches which affect the properties of the
Master Library

Notethat the Master Library isonly used together with the Cad-
vanced/Cbasic SDL to C Compiler. It cannot be used together with
the Cmicro SDL to C Compiler.

Telelogic Tau 4.5 User’ sManual 2949

Chapter 62 TheMaster Library

Introduction

2950

This chapter describes the source code of the runtime library for appli-
cations generated by the Cadvanced/Chasic SDL to C Compiler. Appli-
cations generated by the Cmicro SDL to C Compiler are not covered.
The chapter covers basically two topics:

1. Thesections"File Structure” on page 2951, “ The Symbol Table” on

page 2954, and “ The SDL Model” on page 2992 describe the run-
time model for programs generated by the SDL Cadvanced/Cbasic
SDL to C Compiler.

Mainly it isthe data structure used to represent various SDL objects
that is discussed, both from the static point of view (the type defini-
tions), and from the dynamic point of view (what information it rep-
resents and how it isinitialized, changed, and used).

The full runtime model that is used during simulations (with the
monitor) is described. From this model, an optimization ismade to
obtain an application (not using the monitor). The optimization is
discussed under “Compilation Switches’ on page 3041.

In the sections “ Compilation Switches’ on page 3041, “Creating a
New Library” on page 3061, and " Adaptation to Compilers’ on
page 3069, different aspects on how to make new versions of the
runtime library are discussed.

The compilation switches treated in the section “Compilation
Switches’ on page 3041 are used to determine the properties of the
runtime library and the generated C code, while section “ Creating a
New Library” on page 3061 showshow to make new versions of the
runtimelibrary using for example new combinations of compilation
switches.

In the section “ Adaptation to Compilers” on page 3069, porting is-
sues are discussed.

Telelogic Tau 4.5 User's Manual July 2003

File Structure

File Structure

July 2003

The runtime library is structured into a number of files. These are:

- scttypes.h
- sctlocal.h
- sctpred.h
- sctsdl.c

- sctpred.c
- sctutil.c
- sctmon.c

- sctpost.c
- sctos.c

- post.h, sdt.h, itex.h, dll.h
On UNIX:

- post.o

In Windows:

— 1libpost.lib (thestatically linked library)

— post.lib (for dynamically linking)

post.dll (thedynamically linked library)

On UNIX, al filescan befound inthedirectory $telelogic/sdt/sdt-
dir/<machine dependent dirs/INCLUDE where <machine depen-
dent dir> isfor example sunosssdtdir on SUNOS5, and hppasdt -
dir onHP.

In Windows, al files can be found in the directory <installation
directory>\sdt\sdtdir\wini38e6\include. There are different
kernel directories for the Borland and the Microsoft compiler. The Bor-
land directories have the prefix scta whilethe Microsoft compiler di-
rectories have the prefix sctam.

Description of Files

scttypes.h

This file contains type definitions and extern declarations of variables
and functions. Thefileisincluded by sctsdl.c, sctpred.c,
sctutil.c, sctmon.c, sctpost.c, sctos.c,andln/eachgener
ated Cfile.

Telelogic Tau 4.5 User's Manual 2951

Chapter 62 TheMaster Library

2952

sctlocal.h

Thisfile contains type definitions and extern declarations of variables
and functions that are used only in the kernel. Thisfileis not included
in generated code.

sctpred.h

Thisfile contains type definitions and extern declarations handling the
predefined data typesin SDL (except Pld, whichisin scttypes.h).
Thisfileisincluded in generated code via scttypes. h.

sctsdt.c

In this file the implementation of the SDL operations can be found, to-
gether with the functions used for scheduling. In more detail, thisfile
contains groups of functions for:

« Handling and reporting SDL dynamic errors

» SDL operations, such asOutput, Create, Stop, Nextstate, Set, Reset,
together with help functions for these activities

» Initialization and the main loop (the scheduler).

sctpred.c

The functions implementing the operations defined in the SDL pre-
defined data types can be fund in thisfile. Operators for Pld isimple-
mented in sctsdl.c.

sctutil.c

Thisfile contains basic read and write functions together with functions
to handlereading and writing of values of abstract datatypes, including
the predefined data types. It also contains the functions for MSC trace.

sctmon.c

The sctmon. ¢ file contains the functions that implement the monitor
interface, that is, interpreting and executing monitor commands.

sctpost.c

Thisfile contains all the basic functions that are used to connect a sim-
ulator with the other parts of the SDL suite.

Telelogic Tau 4.5 User's Manual July 2003

File Structure

sctos.c

Inthisfile, somefunctionsthat represent the dependencies of hardware,
operating system and compiler are placed.

The basic functions necessary for an application are a function to read
the clock and a function to allocate memory.

To move agenerated C program plus the runtime library to anew plat-
form (including a new compiler), the magjor changes are to be made in
thisfile, together with writing anew sectionin scttypes . h to describe
the properties of the new compiler.

post.h and sdt.h

Thesefilesareincluded in sctpost . ¢ if the communication mecha-
nism with other the SDL suite applications should be part of the actual
object code version of thelibrary. Thefile post.h containsthe func-
tion interface, while sdt.n contains message definitions.

Caution!

Windows only: When linking with the PostMaster’ s dynamically
linked libraries (post .1ib and post.d11), the environment vari-
able usine pLL must be defined beforeincluding post . h. Exam-
ple:

#define USING_DLL

#include “post.h”
#undef USING_DLL

post.o (post.lib in Windows)

Thisfile contains the implementation of functions needed to send mes-
sages, via the Postmaster, to other tools in the SDL suite.

July 2003 Telelogic Tau 4.5 User's Manual 2953

Chapter 62 TheMaster Library

The Symbol Table

The symbol tableisused for storing information mainly about the static
properties of the SDL system, such as the block structure, connections
of channelsand the valid input signal set for processes. Some dynamic
properties are also placed in the symbol table; for examplethelist of al
active process instances of a process instance set. Thisis part of the

2954

node representing the process instance set.

The nodesin the symbol table are structs with componentsinitialized in
thedeclaration. During theinitialization of the application, intheyInit

function in generated code, atreeis built up from these nodes.

Symbol Table Tree Structure

The symbol tableis created in two steps:

1

First, symbol table nodes are declared as structs with components

initialized in the declaration (in generated code).

Then, they1nit function (in generated code) updates some compo-
nentsin the nodes and builds a tree from the nodes. This operation

is not needed in an application!

The following names can be used to refer to some of the nodes that are

always present. These names are defined in scttypes.h.

xSymbolTableRoot
xEnvId

xSrtN_SDL_Bit
xSrtN_SDL Bit String
XSrtN_SDL_Boolean
XSrtN_SDL_Character
xSrtN_SDL_Charstring
xSrtN_SDL Duration
xSrtN_SDL IA5String
xSrtN_SDL_ Integer
XSrtN_SDL_Natural

XSrtN_SDL Null

xSrtN_SDL NumericString

xSrtN_SDL Object Identifier
xSrtN_SDL Octet
xSrtN_SDL Octet String
xSrtN_SDI_PId

xSrtN_SDL PrintableString
XSrtN_SDL_Real

xSrtN_SDL Time
xSrtN_SDL_VisibleString

Telelogic Tau 4.5 User's Manual

July 2003

The Symbol Table

July 2003

xSymbolTableRoot iSthe root node in the symbol table tree. Below
this node the system node is inserted. After the system node, thereisa
node representing the environment of the system (xenv1d). Then there
isone node for each package referenced from the SDL system. Thisis
true also for the package predefined containing the predefined data
types. The nodesfor the predefined data types, that are sonsto the node
for the package predefined, can be directly referenced by the names
xSrtN_SDL_xxx, according to the list above.

Nodes in the symbol table are placed in the tree exactly according its
place of declaration in SDL. A node that represent an item declared in
ablock isplaced as a child to that block node, and so on. The hierarchy
in the symbol table tree will directly reflect the block structure and dec-
larations within the blocks and processes.

A small example can be found in Figure 550 on page 3029. The follow-
ing node types will be present in the tree:

Node Type Description

xSystemEC Represent the system or the system instance.

xSystemTypeEC Represents a system type.

xPackageEC Represents a package.

xBlockEC Represent blocks and block instances.

xBlockTypeEC Represents a block type.

xBlockSubstEC Represents a block substructure and can be
found as a child of a block node.

xProcessEC Represent processes and process instances.
The environment process node is placed after
the system node and is used to represent the
environment of the system.

xProcessTypeEC Represents a process type.

xServiceEC Represents a service or service instance.

xServiceTypeEC Represents a service type.

xProcedureEC Represents a procedure.

Telelogic Tau 4.5 User’s Manual

2955

Chapter 62 TheMaster Library

Node Type Description

xOperatorEC Represents an operator diagram, i.e. an ADT
operator with an implementation in SDL.

xCompoundsStmtEC | Representsacompound statement containing
variable declarations.

xSignalEC Represents asignal or timer type.

xTimerEC

xRPCSignalEC Represents the implicit signals (pcaLr,
PREPLY) used to implement RPCs.

xSignalParEC Therewill be one signal parameter node, asa
childto asignal, timer, and RPC signal node,
for each signal or timer parameter.

xStartUpSignalEC | Representsastart-up signal, that is, thesignal
sent to anewly created process containing the
actual FPAR parameters. An
xStartUpSignalEC nodeis aways placed
directly after the node for its process.

xSortEC Represents a newtype or a syntype.

xSyntypeEC

Struct Component
Node

A sort node representing a struct has one
struct component node as child for each struct

VariableEC) S

bevariablenc) component in the sort definition.

xLiteralEC A sort node similar to an enum type has one
literal node as child for each literal in literal
list.

xStateEC Represents a state and can be found asachild
to process and procedure nodes.

xVariableEC Represents avariable (DCL) or aformal pa-

xFormalParEC rameter (FPAR) and can be found as children
of process and procedure nodes.

xChannelEC Representsachannel, asignal route, or agate.

xSignalRouteEC

xGate

xRemoteVarEC Represents a remote variable definition.

xRemotePrdEC Represents a remote procedure definition.

Telelogic Tau 4.5 User's Manual

July 2003

The Symbol Table

Node Type Description

xSyntVariableEC | Representsimplicit variables or components
introduced by the Cadvanced/Cbasic SDL to
C Compiler. Used only by the Validator.

xSynonymEC Represent synonyms. Used only by the Vali-
dator.

The nodes (the struct variables) will in generated code be given names
according to the following table:

ySysR_SystemName

(system, system type, system instance)
yPacR_PackageName
yBloR_BlockName

(block, block type, block instance)
yBSuR_SubstructureName
yPrsR_ProcessName

(process, process type, process instance)
yPrdR_ProcedureName (procedure, operator)
ySigR_SignalName

(signal, timer, startup signal, RPC signal)

yChaR_ChannelName (channel, signal route, gate)
yStaR_StateName
ySrtR_NewtypeName (newtype, syntype)

yLitR_LiteralName
yVarR_VariableName
(variable, formal parameter, signal
parameter, struct component, synt.variable)
yReVR_RemoteVariable
yRePR_RemoteProcedure

In most casesitisof interest to refer to asymbol table nodeviaapointer.
By taking the address of a variable according to the table above, i.e.

& yPrsR Processl

such areference is obtained. For backward compatibility, macros ac-
cording to thefollowing exampleisalso generated for several of theen-
tity classes:

#define yPrsN ProcessName (&yPrsR ProcessName)

July 2003 Telelogic Tau 4.5 User's Manual 2957

Chapter 62 TheMaster Library

Types Representing the Symbol Table Nodes

The following type definitions, from the file scttypes.h, areused in
connection with the symbol table:

typedef enum {
xRemoteVarEC,
xRemotePrdEC,
xSignalrouteEC,
xStateEC,
xTimerEC,
xFormalParEC,
xLiteralEC,
xVariableEC,
xBlocksubstEC,
xPackageEC,
xProcedureEC,
xOperatorEC,
xProcessEC,
xProcessTypeEC,
xGateEC,
xSignalEC,
xSignalParEC,
xStartUpSignalEC,
xRPCSignalEC,
XSortEC,
xSyntypeEC,
xSystemEC,
xSystemTypeEC,
xBlockEC,
xBlockTypeEC,
xChannelEC,
xServiceEC,
xServiceTypeEC,
xCompoundStmtEC,
xSyntVariableEC
xMonitorCommandEC

} xEntityClassType;

typedef enum {
xPredef, xUserdef, xEnum,
xStruct, xArray, xGArray, xCArray,
xOwn, xORef, xRef, xString,
xPowerSet, xGPowerSet, xBag, xInherits, xSyntype,
xUnion, xUnionC, xChoice
} xTypeOfSort ;

typedef char *xNameType;

2958 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

typedef struct xIdStruct {

xEntityClassType
#ifdef XSYMBTLINK
xIdNode
xIdNode
#endif
xIdNode
#ifdef XIDNAMES
xNameType
#endif
} xIdrRec;

xEntityClassType
#ifdef XSYMBTLINK
xIdNode
xIdNode
#endif
xIdNode
#ifdef XIDNAMES
xNameType
#endif
} xBlockSubstIdRec;

EC;

First;
Suc;

Parent;

Name;

/ *BLOCKSUBSTRUCTURE* /
typedef struct xBlockSubstIdStruct {

EC;

First;
Suc;

Parent;

Name;

/*LITERAL*/

typedef struct xLiteralIdStruct {

xEntityClassType
#ifdef XSYMBTLINK
xIdNode
xIdNode
#endif
xIdNode
#ifdef XIDNAMES
xNameType
#endif
int
} xLiteralIdRec;

EC;

First;
suc;

Parent;
Name;

Literalvalue;

/*PACKAGE* /

typedef struct xPackageIdStruct {

xEntityClassType
#ifdef XSYMBTLINK
xIdNode
xIdNode
#endif
xIdNode
#ifdef XIDNAMES
xNameType
#endif
#ifdef XIDNAMES
xNameType
#endif
} xPackageIdRec;

EC;

First;
suc;

Parent;

Name;

ModuleName ;

Telelogic Tau 4.5 User’s Manual

2959

Chapter 62 TheMaster Library

/*SYSTEM* /
typedef struct xSystemIdStruct {
xEntityClassType EC;
#ifdef XSYMBTLINK
xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name;
#endif
xIdNode *Contents;
xPrdIdNode *VirtPrdList;
xSystemIdNode Super;
#ifdef XTRACE
int Trace Default;
#endif
#ifdef XGRTRACE
int GRTrace;
#endif
#ifdef XMSCE
int MSCETrace;
#endif

} xSystemIdRec;

/*CHANNEL, SIGNALROUTE, GATE* /
#ifndef XOPTCHAN
typedef struct xChannelIdStruct {
xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name ;
#endif
xSignalIdNode *SignalSet; /*Array*/
xIdNode *ToId; /*Array*/
xChannelIdNode Reverse;
} xChannelIdRec; /* And xSignalRouteEC.*/
#endif

/*BLOCK* /
typedef struct xBlockIdStruct {
xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;
xIdNode Suc;
#endif

2960 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

xIdNode

#ifdef XIDNAMES
xNameType

#endif
xBlockIdNode
xIdNode
xPrdIdNode
xViewListRec
int

#ifdef XTRACE
int

#endif

#ifdef XGRTRACE
int

#endif

#ifdef XMSCE
int
int

#endif

} xBlockIdRec;

Parent;

Name;

Super;
*Contents;
*VirtPrdList;
*ViewList;

NumberOfInst;

Trace_Default;
GRTrace;
MSCETrace;

GlobalInstancelId;

/*PROCESS*/

typedef struct xPrsIdStruct

xEntityClassType
#ifdef XSYMBTLINK
xIdNode
xIdNode
#endif
xIdNode
#ifdef XIDNAMES
xNameType
#endif
xStateIdNode
xSignalIdNode

EC;

First;
suc;

Parent;
Name;

*StatelList;
*SignalSet;

#ifndef XNOUSEOFSERVICE

xIdNode
#endif
#ifndef XOPTCHAN
xIdNode
#endif
int
#ifdef XNRINST
int
int
#endif
xPrsNode
xptrint

#if defined (XPRSPRIO)

*Contents;

*ToId; /*Array*/
MaxNoOfInst;

NextNr;
NoOfStaticInst;

*ActivePrsList;
VarSize;
|| defined(XSIGPRSPRIO)

defined (XPRSSIGPRIO)

int
#endif
xPrsNode
#ifdef XTRACE
int

Prio;
*AvailPrsList;

Trace_Default;

Telelogic Tau 4.5 User’s Manual

2961

Chapter 62 TheMaster Library

#endif
#ifdef XGRTRACE
int GRTrace;
#endif
#ifdef XBREAKBEFORE
char * (*GRrefFunc) (int, xSymbolType *);

int MaxSymbolNumber ;
int SignalSetLength;
#endif
#ifdef XMSCE
int MSCETrace;
#endif
#ifdef XCOVERAGE
long int *CoverageArray;
long int NoOfStartTransitions;
long int MaxQueueLength;
#endif
void (*PAD_Function) (xPrsNode) ;
void (*Free_Vars) (void *);
xPrsIdNode Super;
xPrdIdNode *VirtPrdList;
xBlockIdNode InBlockInst;
#ifdef XBREAKBEFORE
char *RefToDefinition;
#endif

} xPrsIdRec;

#ifndef XNOUSEOFSERVICE
/*SERVICE*/
typedef struct xSrvIdStruct
xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;

xIdNode Suc;
#endif

xIdNode Parent;
#ifdef XIDNAMES

xNameType Name;
#endif

xStateIdNode *StatelList;

xSignalIdNode *SignalSet;
#ifndef XOPTCHAN

xIdNode *ToId;
#endif

xptrint VarSize;

#ifdef XBREAKBEFORE
char * (*GRrefFunc) (int, xSymbolType *);

int MaxSymbolNumber ;

int SignalSetLength;
#endif
#ifdef XCOVERAGE

long int *CoverageArray;

long int NoOfStartTransitions;
#endif

2962 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

xSrvNode

void

void

xSrvIdNode

xPrdIdNode
} xSrvIdRec;
#endif

*AvailSrvList;

(*PAD_Function) (xPrsNode) ;

(*Free Vars) (void *);
Super;

*VirtPrdList;

/*PROCEDURE* /

typedef struct xPrdIdStruct (

xEntityClassType

#ifdef XSYMBTLINK
xIdNode
xIdNode

#endif
xIdNode

#ifdef XIDNAMES
xNameType

#endif
xStateIdNode
xSignalIdNode
xbool
void
xptrint
xPrdNode

#ifdef XBREAKBEFORE
char *
int
int

#endif

#ifdef XCOVERAGE
long int

#endif
xPrdIdNode
xPrdIdNode

} xPrdIdRec;

EC;

First;
Suc;

Parent;
Name;

*StatelList;
*SignalSet;
(*Assoc_Function)
(*Free_Vars) (void *);
VarSize;
*AvailPrdList;

(*GRrefFunc)
MaxSymbolNumber ;
SignalSetLength;

*CoverageArray;

Super;
*VirtPrdList;

typedef struct xRemotePrdIdStruct {

xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;

xIdNode sSuc;
#endif

xIdNode Parent;
#ifdef XIDNAMES

xNameType Name ;
#endif

xRemotePrdListNode RemotelList;

} xRemotePrdIdRec;

(xPrsNode) ;

(int, xSymbolType*) ;

/* SIGNAL, TIMER */

typedef struct xSignalIdStruct {

Telelogic Tau 4.5 User’s Manual

2963

Chapter 62 TheMaster Library

xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name ;
#endif
xptrint VarSize;
xSignalNode *AvailSignallList;
xbool (*Equal_ Timer) (void *, void *);
#ifdef XFREESIGNALFUNCS
void (*Free_Signal) (void *);
#endif
#ifdef XBREAKBEFORE
char *RefToDefinition;
#endif
#if defined (XSIGPRIO) || defined(XSIGPRSPRIO) ||
defined (XPRSSIGPRIO)
int Prio;
#endif

} xSignalIdRec; /* and xTimerEC, xStartUpSignalEC,
and xRPCSignalEC.*/

/*STATE* /
typedef struct xStateIdStruct {
xEntityClassType EC;
#ifdef XSYMBTLINK
xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name ;
#endif
int StateNumber;
xInputAction *SignalHandlArray;
int *InputRef;
xInputAction (*EnablCond_ Function)
(XSIGTYPE, void *);
void (*ContSig Function)
(void *, int *, xIdNode *, int *);
int StateProperties;
#ifdef XCOVERAGE
long int *CoverageArray;
#endif
xStateIdNode Super;
#ifdef XBREAKBEFORE
char *RefToDefinition;
#endif

} xStateIdRec;

2964 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

/*SORT*/
typedef struct xSortIdStruct {
xEntityClassType EC;
#ifdef XSYMBTLINK
xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name;
#endif
#ifdef XFREEFUNCS
void (*Free Function) (void **);
#endif
#ifdef XTESTF
xbool (*Test_Function) (void *);
#endif
xptrint SortSize;
xTypeOfSort SortType;
xSortIdNode CompOrFatherSort;
xSortIdNode IndexSort;
long int LowestValue;
long int HighestValue;
long int yrecIndexOffset;
long int typeDataOffset;
} xSortIdRec;
/*VARIABLE, . .
typedef struct xVarIdStruct
xEntityClassType EC;
#ifdef XSYMBTLINK
xIdNode First;
xIdNode Suc;
#endif
xIdNode Parent;
#ifdef XIDNAMES
xNameType Name;
#endif
xSortIdNode SortNode;
xptrint Offset;
xptrint Offset2;
int IsAddress;
} xVarIdRec; /* And xFormalParEC and

xSignalParEC. */

typedef struct xRemoteVarIdStruct (

xEntityClassType EC;
#ifdef XSYMBTLINK

xIdNode First;

xIdNode Suc;
#endif

xIdNode Parent;
#ifdef XIDNAMES

xNameType Name;

Telelogic Tau 4.5 User’s Manual

.x/

2965

Chapter 62 TheMaster Library

2966

#endif
xptrint SortSize;
xRemoteVarListNode Remotelist;
} xRemoteVarIdRec;

There are also pointer types defined for each of the xectdstruct ac-
cording to the following example:

typedef XCONST struct xIdStruct *xIdNode;

The type definitions above define the contents in the symbol table
nodes. Each xEcidstruct, where EC should be replaced by an appro-
priate string, have the first five componentsin common. These compo-
nents are used to build the symbol table tree. To access these compo-
nents, a pointer to a symbol table node can be type cast to any of the
xIdECNode types. Thetype x1dNode is used as such general type, for
example when traversing the tree.

The five components present in all xIdNode are:

» Ec Of typexEntityClassType. Thiscomponent is used to deter-
mine what sort of SDL object the node represents.
xEntityClassType iSanenum type containing elementsfor all en-
tity classesin SDL.

* First, Suc, and Parent Of type xIdNode. These components are
used to build the symbol tabletree. First refersto thefirst child of
the current node. suc refersto the next brother, while parent refers
to the father node. Only parent is needed in an application.

* Name Of type xNameType, Which isdefined as char *. Thiscompo-
nent is used to represent the name of the current SDL object asa
character string. Not needed in an application.

Next there are components depending on what entity class that isto be
represented. Below we discuss the non-common elementsin the other
xECIdStruct.

Package

* ModuleName Of type xNameType. If the packageis generated from
ASN.1, this component holds the name of the ASN.1 module as a
char *.

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

System, System Type

* cContent Of typexIdNode *. Thiscomponent containsalist of all
channels at the system level.

* vVirtPrdList Of typexprrdidNode *. Thisisalistof all virtual pro-
cedures in this system instance.

* Super Of typexsystemIdNode. Thisisareferenceto theinherited
system type. In a system this component in null. In a system in-
stanceit is areference to the instantiated system type.

* Trace Default Of type int. Thiscomponent containsthe current
trace value defined for the system.

* GRTrace Of type int. This component contains the current GR
(graphical) trace value defined for the system.

* MSCETrace Of type int. This component contains the current
M SCE (M essage Sequence Chart Editor) trace val ue defined for the
system.

Channel, Signal route, Gate

For channels, signal routes, and gates there are always two consecutive
xChannelIdNodes in the symbol table, representing the two possible
directionsfor achannel, signal route, or gate. The components are:

* signalSet Of typexIdNode *. Thiscomponent representsthesig-
nal set of the channel in the current direction (aunidirectional chan-
nel has an empty signal set in the opposite direction).

Signalset isan array with components referring to the
xSignalIdNodes that represent the signals which are members of
the signal set. The last component in the array is always aNuLL
pointer (thevalue (xsignalIdNode)0).

* ToIdof typexIdNode *. Thisisanarray of x1dNodes, where each
array component is a pointer to asymbol table node representing an
SDL object, which this Channel/Signal route/Gate is connected to
(connected to in the sense: to the SDL objects that signals are sent
forward to).

The SDL objects that may be referenced in Tord are channels, sig-
nal routes, gates, processes, and services. Thelast component in the

Telelogic Tau 4.5 User's Manual 2967

Chapter 62 TheMaster Library

2968

array is always aNuLL pointer (the value (xIdNode) 0). See aso
“Channels and Signal Routes’ on page 3028.

Reverse Of type xChannelIdNode. Thisisareferenceto the sym-
bol table node that represents the other direction of the same chan-
nel, signal route, or gate.

Block, Block Type, Block Instance

Super Of type xBlockIdNode. Inablock, this component isNULL.
In ablock type this component is a reference to the block that this

block inheritsfrom (NuLL if no inheritance). In ablock instance, this
isareferenceto the block type that isinstantiated.

contents Of type xIdNode *.Inablock instance, these compo-
nents contains list of:

— The process instantiations in the block

— Thesigna routesin the block

— The outgoing gates from the block

— The processesin the block

— The gates defined in process instantiations in the block.

VirtPrdList Of typexPrdIdNode *. Thisisalist of al virtua pro-
ceduresin this block instance.

viewList Of typexviewListRec *. Thisisalist of al revealed
variables in the block or block instance.

NumberOfInst Of type int. Thisisthe number of block instances
in a block instance set. The component is thus only relevant for a
block instance.

Trace Default Of typeint. Thiscomponent containsthe current
value of the trace defined for the block.

GRTrace Of type int. Thiscomponent contains the current value of
the GR trace defined for the block.

MSCETrace Of type int. This component contains the current
M SCE (M essage Sequence Chart Editor) trace value defined for the
block.

GlobalInstanceId Of type int. Thiscomponent isusedto storea
unique id needed when performing M SCE trace.

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

Process, Process Type, Process Instance

StateList Of typexstateIdNode *. Thisisalist of referencesto
thexstateIdNodes for thisprocessor processtype. Using the state
value of an executing process, thislist can be used to find the corre-
sponding xStateIdNode.

Signalset Of type xIdNode *. Thisrepresentsthevalidinput sig-
nal set of the process or process type.

SignalSet isan array with components that refer to
xSignalIdNodes that represent the signalsand timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xsignalIdNode)o0).

Contents Of type xIdNode *. Thisisan array containing referenc-
esto the xsrvIdNodes of the services and service instancesin this
process.

ToId Of typexIdNode *. Thisisan array of xI1dNode, Where each
array component is a pointer to an IdNode representing an SDL ob-
ject that this process or processinstanceis connected to (connected
to in the sense: to the SDL objects that signals are sent forward to).

The SDL objects that may be referenced in To1d are channels, sig-
nal routes, gates, processes, and services. Thelast component inthe
array is always aNuLL pointer (the value (x1dNode) 0) . See also
section “ Channels and Signal Routes’ on page 3028.

MaxNoOfInst Of type int. Thisrepresentsthe maximum number of
concurrent processes that may exist according to the specification
for the current process or process instance. An infinite number of
concurrent processes is represented by -1.

NextNo Of type int. Thisisthe instance number that will be as-
signed to the next instance that is created of this processinstance set.

NoofStaticInst Of type int.Thiscomponent containsthe number
of static instance of this process instance set that should be present
at start up. Used for process and process instance.

ActivePrsList Of typexprsNode *. Thisisthe addressof apoint-
er to the“first” in the (single linked) list of active processinstances
of the current process or process instantiation.

Telelogic Tau 4.5 User's Manual 2969

Chapter 62 TheMaster Library

2970

Thelist iscontinued using the Next Prs component in the xPrsrec
struct that is used to represent a process instance. The order in the
listissuchthat thefirst created of the active processinstancesislast,
and the latest created isfirst.

varsize Of typexptrint. The size, in bytes, of the data area used
to represent the process (the struct: yvbef ProcessName).

prio Of type int. This represents the process priority.

AvailPrsList Of type xPrsNode. Thisisthe addressto the avail

list pointer for process instances that have stopped. The data area

can later be reused in subseguent Create actions on this process or
process instantiation.

Trace Default Of type int. Thiscomponent contains the current
value of the trace defined for the process.

GRTrace Of type int. Thiscomponent contains the current value of
the GR trace defined for the process.

GRrefFunc, Which isapointer to afunction that, given a symbol
number (number assigned to a process symbol), will return astring
containing the SDT reference to that symbol.

MaxSymbolNumber Of type int. This component is the number of
symbols contained in the current process or process type.

SignalsetLength Of type int. This component is the number of
signals contained in the signal set of the current process or process

type.

MSCETrace Of type int. This component contains the current
M SCE (M essage Sequence Chart Editor) trace value defined for the
process.

CoverageArray Of typelong int *. Thiscomponentisused asan
array over al symbolsin the process. Each time asymbol is execut-
ed the corresponding array component isincreased by 1.

NoOfStartTransitions Of type long int. Thiscomponentis
used to count the number of times the start transition of the current
process is executed. Thisinformation is presented in the coverage
tables.

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

MaxQueueLength Of typelong int. Thiscomponentisusedto reg-
ister the maximum input port length for any instance of the current
process. The information is presented in the coverage tables.

PAD Function, Whichisapointer to afunction. Thispointer refers
tothe yPaD Processname function for the current process. This
function is called when a process instance of thistype isto execute
atransition. Therap Functions will of coursebe part of generated
code, as they contain the action defined in the process graphs.

Free Vars, which isapointer to afunction. This pointer refersto
the yFree ProcessName function for the current process. This
function is called when the process performs a stop action to deal-
locate memory used by the local variables in the process.

Super Of typexPrsIdNode. In aprocessthiscomponent iSNULL. In
aprocesstype this component is areference to the process type that
this processtypeinheritsfrom (nuLL if no inheritance). In aprocess
instance set, thisis areference to the process type that is instantiat-
ed.

VirtPrdList Of typexPrdidNode *. Thisisalist of al virtual pro-
cedures in this process instantiation.

InBlockInst Of type xBlockIdNode. Thiscomponent is arefer-
enceto the block instance set (if any) that this process or processin-
stantiation is part of.

RefToDefinition Of type char *. Thisisthe SDT referenceto
this process.

Service, Service Type, Service Instance

StateList Of typexstateIdNode *. Thisisalist of thereferences
to the xstateIdNodes for this service or service type. Using the
state value of an executing service, thislist can be used to find the
corresponding xstateIdNode.

SignalSet Of typexIdNode *. Thisrepresentsthe valid input sig-
nal set of the service or service type.

SignalSet isan array with components that refer to
xSignalIdNodes that represent the signals and timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xsignalIdNode)o0).

Telelogic Tau 4.5 User's Manual 2971

Chapter 62 TheMaster Library

2972

ToId Of typexIdNode *. Thisisan array of x1dNode, Where each
array component is a pointer to an IdNode representing an SDL ob-
ject that this service or service instance is connected to (connected
toin the sense: to the SDL objectsthat signals are sent forward to).

The SDL objects that may be referenced in To1d are channels, sig-
nal routes, gates, processes, and service. The last component in the
array is always anuLL pointer (the value (x1dNode) 0) . See also
section “ Channels and Signal Routes” on page 3028.

varsize Of typexptrint. Thesize, in bytes, of the data area used
to represent the service (the struct: yvbef ServiceName).

GRrefFunc, Which isapointer to afunction that, given a symbol
number (number assigned to a service symbol), will return a string
containing the SDT reference to that symbol.

MaxSymbolNumber Of type int. Thiscomponent isthe number of
symbols contained in the current service or service type.

SignalsetLength Of type int. This component is the number of
signals contained in the signal set of the current service or service

type.

CoverageArray Of type long int. Thiscomponent is used as an
array over al symbolsin the service. Each time asymbol is execut-
ed the corresponding array component is increased by 1.

NoOfStartTransitions Of type long int. Thiscomponentis
used to count the number of times the start transition of the current
serviceisexecuted. Thisinformationis presented in the coverageta-
bles.

AvailsrvList Of type xsrvNode. Thisisthe addressto the avail
list pointer for serviceinstancesthat have stopped. Thedataareacan
later be reused.

PAD Function, Whichisapointer to afunction. Thispointer refers
totheypPap servicename function for the current service. This
function is called when a service instance of thistypeisto execute
atransition. Therap Functions Will of coursebe part of generated
code, as they contain the action defined in the service graphs.

Free Vars, which isapointer to afunction. This pointer refersto
theyFree seriveName function for the current service. Thisfunc-

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

tion is called when the service performs a stop action to deallocate
memory used by the local variablesin the service.

Super Of typexsrvIdNode. Inaservicethiscomponent isNuLL. In
aservice type this component is areference to the service type that
this service type inherits from (zuLL if no inheritance). In aservice
instantiation thisis a reference to the service type that is instantiat-
ed.

VirtPrdList Of typexPrdIdNode *. Thisisalistof al virtual pro-
cedures in this service instantiation.

Procedure, Operator Diagram, Compound Statement

Note that operator diagrams and compound statements containing vari-
able declarations are treated as procedures. However, such objects can,
for example, not contain states.

StateList Of typexstateIdNode *. Thisisalistof referencesto
thexstateIdNodes for thisprocessor processtype. Using the state
value of an executing process, thislist can be used to find the corre-
sponding xStateIdNode.

Signalset Of type xIdNode *. Thisrepresentsthevalidinput sig-
nal set of the process or process type.

SignalSet isan array with components that refer to
xSignalIdNodes that represent the signalsand timers which are
part of the signal set. The last component in the array is always a
NULL pointer (the value (xsignalIdNode)o0).

Assoc_Function, Which isapointer to afunction. This pointer re-
fersto the yprocedurename function for the current procedure.
This function is called when the SDL procedure is called and will
execute the appropriate actions. The yProcedurename functions
will, of course, be part of generated code as they contain the action
defined in the procedure graphs.

Free Vars, which isapointer to afunction. This pointer refersto
the yFree ProcedureName function for the current procedure.

Thisfunction is called when the procedure performs areturn action
to deallocate memory used by the local variablesin the procedure.

varsize Of typexptrint. Thesize, in bytes, of the data area used
to represent the procedure (struct yvbef ProcedureName).

Telelogic Tau 4.5 User's Manual 2973

Chapter 62 TheMaster Library

2974

AvailPrdList Of typexprdNode *. Thisistheaddressof theavail
list pointer for the data areas used to represent procedure instances.
Atareturn actionthedataareaisplaced in theavail list and can later
be reused in subsequent Calls of this procedure type.

GRrefFunc, Which isapointer to afunction that given a symbol
number (number assigned to a procedure symbol) will return a
string containing the SDT reference to that symbol.

MaxSymbolNumber Of type int. This component isthe number of
symbols contained in the current procedure.

SignalSetLength Of type int. This component is the number of
signals contained in the signal set of the current procedure.

CoverageArray Of type long int. Thiscomponent isused as an
array over al symbolsin the procedure. Each time asymbol is exe-
cuted the corresponding array component is increased by 1.

Super Of type xPrdIdNode. This component is areference to the
procedure that this procedure inherits from (NuLL if no inheritance).

VvirtPrdList Of typexprrdIdNode *. Thisisalistof al virtua pro-
ceduresin this procedure.

Remote Procedure

RemoteList Of typexRemotePrdListNode. Thiscomponentisthe
start of alist of all processesthat exportsthis procedure. Thislist is
alinked list of xrRemotePrdListstructs, where each node con-
tains a reference to the exporting process.

Signal, Timer, StartUpSignal, and RPC Signals

varsize Of typexptrint. Thesize, in bytes, of the data area used
to represent the signal (the struct: yrpef signalname).

AvailSignalList Of typexSignalNode *. Thisisthe addressto
the avail list pointer for signal instances of this signal type.

Equal Timer, Whichisapointer to afunction. Thispointer only re-
fersto afunction when this nodeis used to represent atimer with
parameters.

In this case the referenced function can be used to investigate if the
parameters of two timersareequal or not, whichisnecessary at reset

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

actions. TheEqual_Timer functionswill be part of generated code.
These functions are called from the functions xrRemoveTimer and
xRemoveTimerSignal, both defined in sctsdl.c

Free Signal, Whichisafunction. Thisfunction takesasignal ref-
erence and returns any dynamic data referenced from the signal pa-
rametersto the pool of available memory.

RefToDefinition Of type char *. The SDT reference to the defi-
nition of the signal or timer.

Prio, of typeint. The priority of the signal.

State

StateNumber Of type int. Theint value used to represent this state.

SignalHandlArray Of type xInputAction *. This component re-
fersto an array of xInputAction, Where xInputaAction isan
enum type with the possible values xDiscard, xInput, xSave,
xEnablCond, xPrioInput.

The array will have the same number of components as the
Signalset array in the node representing the processin which this
state is contained. Each position in the signalHandlArray repre-
sents the way the signal in the corresponding position in the
Signalset array in the process should be treated in this state.

Thelast component in the signalHandlarray iSequa to
xDiscard, which correspondsto the o valuelastinthesignalset.

If the signalHandlArray containsthe value xInput, xSave, Or
xDiscard a agiven index, the way to handle the signal is obvious.
If the signalHandlArray containsthe value xEnablcCond, it is,
however, necessary to cal culate the enabling condition expression
to know if the signal should cause an input or should be saved. This
calculation is exactly the purpose of the Enablcond Function de-
scribed below.

InputRef Of type int *. Thiscomponent isan array. If the
SignalHandlArray COntains xInput, xPrioInput, O
xEnablCond at acertain index, this inputref containsthe symbol
number for the corresponding input symbol in the graph.

Telelogic Tau 4.5 User's Manual 2975

Chapter 62 TheMaster Library

2976

EnablCond Function, Whichisafunction that returns
xInputAction. If the state contains any enabling conditions, this
pointer will refer to afunction. Otherwise it refersto o. An
EnablCond Function takesareferenceto an xsignalIdNode (re-
ferring to asignal) and a reference to a process instance and cal cu-
lates the enabling condition for the input of the current signal in the
current state of the given processinstance.

The function returns either of the values xInput or xsave. The
EnablCond Functions Will of coursebepart of generated code, as
they contain enabling condition expressions. These functions are
called from the function xFindInputAction inthefile sctsdl.c.
xFindInputAction isused by the sprn_output and
SDL_Nextstate functions.

ContSig Function, Whichisafunction returning int. If the state
contains any continuous signals, this pointer will refer to afunction.
Otherwiseit refersto o.

StateProperties Of type int. In this component the three least
significant bits are used to indicate:

— If any enabling condition or continuous signal expressionin the
state contains a reference to an object that might change its val-
ue even though the process does not execute any actions.

— If there are any priority inputsin the state.

— If thereare any virtual priority inputsin the state.

Objectsaccordingto thefirstitem inthelist are: Now, Act ive (timer
isactive), Import, View, and Sender. StatePropertiesisusedin
the function spL_Nextstate to take appropriate actions when a
process enters a state.

CoverageArray Of type long int. Thiscomponent is used as an
array over the signalset (+1) of the process. Each time an input op-
eration is performed, the corresponding array component isin-
creased by 1. Thelast component, at index equal to the length of the
signal set, is used to record the number of continuous signals “re-
ceived” in the state. The information stored in this component is
presented in the coverage table.

Super Of type xPrdIdNode. This component is areference to the
procedure that this procedure inherits from (NuLL if no inheritance).

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

RefToDefinition Of type char *. The SDT reference to the defi-
nition of the state (one of the symbols where this state is defined).

Sort and Syntype

Free Function, Whichisafunction. This function pointer is non-
o for types represented using dynamic memory (Charstring,
Octet_string, Strings, Bags, for example). The Free Functions
are used to return dynamic memory to the pool of dynamic memory.

Test Function, Which isafunction returning xbool. Thisfunc-
tionisnon-0for al types containing range conditions. Thefunction
pointers are used by the monitor system to check the validity of a
value when assigning it to avariable.

Sortsize Of type xptrint. Thiscomponent representsthesize, in
bytes, of avariable of the current sort.

SortType Of typexTypeofsort. Thiscomponent indicatesthetype
of sort. Possible values are: xPredef, xUserdef, xEnum,
xStruct, xArray, xGArray, xCArray, xRef, xString,
xPowerSet, xBag, xGPowerSet, xInherits, xSyntype,
xUnion, xUnionC, and xChoice.

SortType is xArray, xGArray, xCArray

CompOrFathersSort Of type xSort IdNode. Thisisapointer to the
SortIdNode that represents the component sort.

IndexSort Of type xSortIdNode. Thisisa pointer to the
SortIdNode that representsthe index sort. In axCArray the index
sort in always Integer.

In XxGArray, LowestValue iSused as the offset of pata inthe
XXX_ystruct.

In xArray and XxCArray it isO.

InXGArray, Highestvalue isused asthesize of thexxx ystruct.
InxArray itisO.
In xCArray it isthe highest index, i.e. the Length - 1.

In xGArray, yreclndexOffset is used as the offset of 1ndex inthe
xxx_ystruct.

In xArray and XxCArray it isO.

Telelogic Tau 4.5 User's Manual 2977

Chapter 62 TheMaster Library

* InxGArray, yrecDataOffset isused asthe offset of pata inthetype
(i.e. the value representing the default value).
In xArray and xCArray it isO.

SortType is xString, xGPowerSet, xBag

* CompOrFatherSort Of type xsortIdNode. Thisisapointer to the
Sort IdNode that represents the component sort.

* LowestValue iSused asthe offset of pata inthe xxx ystruct.

* HighestValue iSused asthe size of the xxx_ystruct.

SortType is xPowerSet, xRef, xOwn, xXORef

* CompOrFatherSort Of type xSortIdNode. Thisisapointer to the
Sort IdNode that represents the component sort.

SortType is xInherits

* CompOrFatherSort, Of typexsort IdNode. Thisisapointer to the
Sort IdNode that represents the inherited sort.

SortType is xSyntype

* CompOrFatherSort, Of typexsort IdNode. Thisisapointer to the
Sort IdNode that representsthefather sort (the newtypefromwhich
the syntype originates, evenif it is a syntype of asyntype).

* IndexSort, Of type xsortIdNode. Thisisapointer to the SortldN-
ode that represents the represents the father sort (the newtype or
syntype from which the syntype originates).

* LowestValue, Of type long int. If the syntype can be used asan
index in an array (translated to a C array) then this value isthe low-
est value in the syntype range, otherwiseit isO.

* HighestValue, Of typelong int. If the syntype can beused asan
index in an array (translated to a C array) then thisvalue isthe high-
est value in the syntype range, otherwiseitis0. The Lowestvalue
and HighestVvalue are used by the monitor when it handles arrays
with this type as index type.

2978 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

Variable, FormalPar, SignalPar, and Struct Components

* SortNode Of typexsortIdNode. Thiscomponent isapointer tothe
SortldNode that represents the sort of this variable or parameter.

* offset Of type xptrint. This component represents the offset, in
bytes, within the struct that represents the process or procedure vari-
ables, the signal parameter, or the SDL struct. In other words, thisis
the relative place of this component within the struct.

e offset2 Of typexptrint. For aformal parameter in aprocessthis
component represents the offset, in bytes, of aformal parameter in
thestartUpsignal. For an exported variablein aprocessthiscom-
ponent represents the offset, in bytes, of the exported value for this
variable.

* Isaddress Of typeint. Thiscomponentisonly used for procedure
and operator formal parametersand isthen used to indicateif the pa-
rameter in IN or IN/OUT or aresult variable.

Remote Variable

* Sortsize Of type xptrint. Thiscomponent isthe size of the type
of the exported variables.

* RemoteList Of typexRemotevarListNode. Thiscomponentisthe
start of alist of al processesthat exportsthisvariable. Thislistisa
linked list of xRemotevarListStructs, where each node contains
areference to the exporting process and the of fset where to find
the exported value.

Type Info Nodes

This section describes the most important implementation details re-
garding the type info node. Type info nodes are data structures that are
used during run-time by the functions providing generic implementa-
tions of SDL operators. As the type info nodes contain essentialy the
same information as the xSortldNodes, the type info nodes are used in
more and more places in the code where xSortldNode previously were
used. In the longer perspective the xSortldNode will be removed com-
pletely.

The type definitions that describe the type info nodes are listed in the
sctpred.h file.

Telelogic Tau 4.5 User's Manual 2979

Chapter 62 TheMaster Library

2980

Each type info node is a struct that consists of :

» genera componentsthat are available for all type info nodes

» type-specific components that describe each specific type.

The following utility macros can be used to configure the type info

nodes:

#ifndef
#define
#endif

#ifndef
#define
#define
#endif

#ifndef
#define
#endif

T_CONST
T CONST const

T SDL_EXTRA COMP
T_SDL_EXTRA_COMP
T_SDL_EXTRA_VALUE

T_SDL_USERDEF_COMP
T_SDL_USERDEF_COMP

#if defined (XREADANDWRITEF) && !defined(T_ SDL NAMES)

#define
#endif

T_SDI, NAMES

#ifdef T_SDL NAMES

#define
#else
#define
#endif

T SDL Names(P) , P

T SDL_Names (P)

#ifdef T_SIGNAL_SDL_NAMES

#define
#else
#define
#endif

T Signal SDL Names(P) , P

T Signal SDL Names (P)

#ifdef T_SDL_INFO

#define
#else
#define
#endif

#ifndef
#define
#else
#define
#endif

T SDL Info(P) , P

T SDL_Info(P)
XNOUSE_OPFUNCS

T SDL_OPFUNCS (P) , P

T SDL_OPFUNCS (P)

struct tSDLFuncInfo;

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

General Components

The following components are available for al type info nodes. The
definition of the componentsisonly listed in this section, but it isvalid
for each type info node listed in the next section.

/* --- General type information for SDL types --- */

typedef T CONST struct tSDLTypelInfoS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T_SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif

} tSDLTypelInfo;

» TypeClass: This component defines which type the info node de-
scribes. A list of available types and their corresponding values can
be found in the enum type definition below:

typedef enum

/*SDL - standard types*/
type_ SDL Integer=128,
type_SDL Real=129,

type SDL Natural=130,

type SDL Boolean=131,

type SDL_Character=132,

type SDL Time=133,

type SDL Duration=134,

type SDL Pid=135,

type SDL Charstring=136,

type SDL_Bit=137,

type SDL Bit string=138,

type SDL_Octet=139,

type SDL Octet string=140,
type SDL IA5String=141,

type SDL NumericString=142,
type SDL PrintableString=143,
type SDL VisibleString=144,
type_ SDL_NULL=145,

type SDL Object identifier=146,

/* SDL - standard ctypes */

type SDL_ShortInt=150,
type_ SDL LongInt=151,

July 2003 Telelogic Tau 4.5 User's Manual 2981

Chapter 62 TheMaster Library

type SDL UnsignedShortInt=152,
type SDL UnsignedInt=153,

type SDL UnsignedLongInt=154,
type SDL_Float=155,

type SDL_Charstar=156,
type_SDL Voidstar=157,

type SDL Voidstarstar=158,

/* SDL - user defined types */
type SDL Syntype=170,
type SDL Inherits=171,
type SDL Enum=172,

type SDL_Struct=173,
type SDL Union=174,
type SDL UnionC=175,
type_SDL Choice=176,
type SDL ChoicePresent=177,
type_SDL_Powerset=178,
type_ SDL_GPowerset=179,
type SDL Bag=180,

type SDL String=181,
type SDL LString=182,
type SDL Array=183,
type SDL Carray=184,
type SDL_GArray=185,
type_SDL_Own=186,

type SDL Oref=187,
type_SDL Ref=188,

type SDL Userdef=189,
type SDL EmptyType=190,

/* SDL - signals */

type SDL Signal=200,

type SDL SignalId=201
} tSDLTypeClass;

* OpNeeds: This component contains four bits that give the proper-
ties of the type regarding assignment, equal test, free function, and
initialization.

— Thefirst bit indicatesif the type isapointer that needs to be au-
tomatically freed, or if it contains a pointer that needs to be au-

2982 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

tomatically freed. If thefirst bitisset, it is necessary to look for
memory to be freed inside of avalue of thistype.

— Thesecond bit indicates if memecmp can be used to test if two
values of thistype are equal or not. If the bit is set, special treat-
ment is needed.

— Thethird bit indicates if memcpy can be used to perform assign
of thistype. If the bit is set, special treatment is needed.

— Thefourth bit indicatesif thistype needsto beinitialized to any-
thing el se than 0.

The following macros can be used to test these properties:

#define NEEDSFREE (P
(((tSDLTypeInfo *
#define NEEDSEQUAL (

)\

) (P

P
(((tSDLTypeInfo *)

(

)

)

)

)) ->OpNeeds & (unsigned char)1)
\
)) ->OpNeeds & (unsigned char)2)
\

P
#define NEEDSASSIGN (P)
P))->OpNeeds & (unsigned char)4)
\
P

(((tSDLTypeInfo *
#define NEEDSINIT (P
(((tSDLTypeInfo *

(
)
(
P
(

(P)) ->OpNeeds & (unsigned char)8)

SortSize: This component defines the size of the type.

OpFuncs: Thisis a pointer to a struct containing references to spe-
cific assign, equal, free, read, and write functions. This component
isonly used in specia cases. If assign, equal, free, read or write
functions have been implemented using #ADT directives, informa
tion about thisis stored in the OpFuncs field. The default value of
the OpFuncsfield is O, but if you have provided any of these func-
tions, thefield will beapointer to atSDL Funclnfo struct. Thisstruct
will in turn refer to the provided functions.

typedef struct tSDLFuncInfo

void * (*AssFunc) (void *, void *, int);
SDL_Boolean (*EgFunc) (void *, void *);
void (*FreeFunc) (void *¥*);

#ifdef XREADANDWRITEF
char * (*WriteFunc) (void *);
int (*ReadFunc) (void *);
#endif
} tSDLFuncInfo;

Name: Thisisthe name of thetype asastring literal.

Father Scope: Thisisapointer to the IdNode for the scope that the
typeisdefined in.

SortldNode: Thisisapointer to the xSortldNode that describesthe
same type. Thisfield will in alonger perspective be removed.

Telelogic Tau 4.5 User's Manual 2983

Chapter 62 TheMaster Library

Type-Specific Components

The following section lists the components that defines the type info
nodes. Only the type-specific components are explained. The general
components are listed and explained in the section above.

Enumeration types

[* - Enumeration type --------------- */
typedef T_CONST struct

int LiteralValue;

char *LiteralName;

} tSDLEnumLiteralInfo;

typedef T CONST struct tSDLEnumInfoS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
#ifdef XREADANDWRITEF
int NoOfLiterals;
tSDLEnumLiteralInfo *LiterallList;
#endif

} tSDLEnumInfo;

» NoOfLiterals: The number of literalsin the enum type.

e LiteralList: apointer to an array of tSDLEnumLiteralInfo ele-
ments. Thislistimplementsatranslation table between enum values
and literal names as strings

Syntypes, types with inheritance, and Own, Ref, Oref instantiations

[* —----- Syntype, Inherits, Own, Oref, Ref ----- */
typedef T CONST struct tSDLGenInfoS
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T SDL_NAMES
char *Name ;
#endif

2984 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

#ifdef XREADANDWRITEF

xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif

tSDLTypeInfo *CompOrFatherSort;
} tSDLGenInfo;

* CompOrFather Sort: Referenceto the typeinfo node of the father
sort (syntype, inherits) or component sort (Own, Ref, Oref).

Powersets (implemented as unsigned in [])

[* —mmmmm e Powerset ------------------ */
typedef T CONST struct tSDLPowersetInfoS ({
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T_SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLTypeInfo *CompSort ;
int Length;
int LowestValue;

} tsSDLPowersetInfo;

« CompsSort: Reference to the type info node of the component sort.
e Length: The number of possible valuesin the component sort.

« LowestValue: Thevaue of the lowest value in the component sort.

Structs

YA e T Struct ------------------- */
typedef int (*tGetFunc) (void *);
typedef void (*tAssFunc) (void *, int);

typedef T CONST struct
xptrint OffsetPresent; /* 0 if not optional */
void *DefaultValue;

} tSDLFieldOptInfo;

typedef T CONST struct

July 2003 Telelogic Tau 4.5 User's Manual 2985

Chapter 62 TheMaster Library

2986

tGetFunc GetTag;
tAssFunc AssTag;
} tSDLFieldBitFInfo;

typedef T CONST struct {
tSDLTypeInfo *CompSort;
#ifdef T_SDL NAMES

char *Name ;
#endif
xptrint Offset; /* ~0 for bitfield */

tSDLFieldOptInfo *ExtraInfo;
} tSDLFieldInfo;

typedef T CONST struct tSDLStructInfoS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds ;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_ COMP
#ifdef T_SDL NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLFieldInfo *Components;
int NumOfComponents;
} tSDLStructInfo;

Components: An array of tSDLFieldInfo; one component in the ar-
ray for each field of the struct.

NumOfComponents: The number of fieldsin the struct.

CompsSort in tSDL Fieldlnfo: The reference to the type info node
of the field sort.

Namein tSDL Fieldl nfo: The name of the field as a string.

Offset in tSDL Fieldl nfo: The offset of thefield in the C struct that
representsthe SDL struct. Thiscomponent is~0 for bitfield in SDL
(offsets cannot be calculated for bitfields).

Telelogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

Extralnfoin tSDLFieldInfo: Theinterpretation of this component
depends on the propertiesin the SDL field.

— if Offsetis~0, thefield isabitfield and Extralnfo isapointer to
atSDLFieldBitFInfo struct containing two functionsto set and
get the value of the bitfield.

— if Offsetisnot ~0 and Extralnfo !=0, the SDL field is either op-
tiona or has adefault value. Extralnfo is apointer to a
tSDLFieldOptinfo struct containing the offset for the Present
flag (O if not optional) and a pointer to the default value (0 if no
default value).

Choice and #union

Y ittt Choice, Union --------------- */

typedef T CONST struct {

tSDLTypeInfo *CompSort ;
#ifdef T_SDL_NAMES

char *Name ;
#endif

} tSDLChoiceFieldInfo;

typedef T CONST struct tSDLChoiceInfoS
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_ COMP
#ifdef T SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLChoiceFieldInfo *Components;
int NumOfComponents;
xptrint OffsetToUnion;
xptrint TagSortSize;
#ifdef XREADANDWRITEF
tSDLTypeInfo *TagSort;
#endif

} tSDLChoicelInfo;

Components: An array of tSDL ChoiceFieldinfo; onecomponentin
the array for each field in the choice/#union.

NumOfComponents: The number of fields in the choice/#union.

Telelogic Tau 4.5 User's Manual 2987

Chapter 62 TheMaster Library

» OffsetToUnion: The offset to where the union, within the represen-
tation of the choice/#union, starts.

» TagSortSize: The size of the tag type.
« TagSort: A reference to the type info node of the tag sort.

Array and Carray

J* mm e e - Array, CArray ---------------- */
typedef T CONST struct tSDLArrayInfoS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLTypeInfo *CompSort;
int Length;

#ifdef XREADANDWRITEF
tSDLTypeInfo *IndexSort;
int LowestValue;

#endif

} tSDLArrayInfo;

« CompsSort: The reference to the type info node of the component
sort.

» Length: The number of componentsin the array.
* IndexSort: The reference to the type info node of the index sort.

» LowestValue: The start value of the index range (as an int).

General arrays
A general array isan array that isrepresented asalinked listin C.

YA e GArray ------------------- */
typedef T CONST struct tSDLGArrayInfoS
tSDLTypeClass TypeClass;
unsigned char OpNeeds;

2988 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP

#ifdef T_SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif

tSDLTypeInfo *IndexSort;
tSDLTypeInfo *CompSort ;

xptrint yrecSize;

xptrint yrecIndexOffset;
xptrint yrecDataOffset;
xptrint arrayDataOffset;

} tSDLGArrayInfo;

» IndexSort: The reference to the type info node of the index sort.

» CompsSort: Thereference to the type info node of the component

sort.
» yrecSize: Thesize of the type SDLType _yrec.
» yreclndexOffset: The offset of Index in type SDLType yrec.
» yrecDataOffset: The offset of Datain type SDLType yrec.

» arrayDataOffset: The offset of Datain type SDLType, where

SDLTypeisthe namein C of the translated array type.

General powersets, Bags, Strings and Object_identifier

/* -- GPowerset, Bag, String, Object Identifier
typedef T CONST struct tSDLGenListInfoS ({
tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_ COMP
#ifdef T SDL_NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLTypeInfo *CompSort ;
xptrint yrecSize;
xptrint yrecDataOffset;

} tSDLGenListInfo;

Telelogic Tau 4.5 User’s Manual

- */

2989

Chapter 62 TheMaster Library

« CompSort: The reference to the type info node of the component
sort.

» yrecSize: Thesize of the type SDLType yrec
» yrecDataOffset: The offset of Datain type SDLType yrec

Limited strings
A limited string is a string that isimplemented as an array in C.

[* —cmmmm e LString ------------------- */
typedef T CONST struct tSDLLStringInfosS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds ;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_ COMP
#ifdef T_SDL NAMES

char *Name ;
#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif
tSDLTypeInfo *CompSort;
int MaxLength;
xptrint DataOffset;

} tSDLLStringInfo;

e CompsSort: Thereferenceto the type info node of the component
sort.

» MaxLength: The maximum length of the string.

» DataOffset: The offset of Datain type SDL Type, where SDL Type
isthe namein C of the trandlated string type.

SDL type (C representation decided with a #ADT directive)

J* mm e o Userdef ---------------—--~-—- */
/* used for user defined types #ADT (T (h)) */
typedef T CONST struct tSDLUserdefInfoS {
tSDLTypeClass TypeClass;
unsigned char OpNeeds ;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP
#ifdef T_SDL NAMES
char *Name ;

2990 Teldlogic Tau 4.5 User's Manual July 2003

The Symbol Table

July 2003

#endif
#ifdef XREADANDWRITEF
xIdNode FatherScope;
xSortIdNode SortIdNode;
#endif

T SDI, USERDEF COMP
} tSDLUserdefInfo;

SDL signal
A signal istreated in the same way as a struct.

YA e e T Signal -------------
typedef T CONST struct

tSDLTypeInfo *ParaSort;

xptrint Offset;

} tSDLSignalParalInfo;

typedef T CONST struct tSDLSignalInfoS

tSDLTypeClass TypeClass;
unsigned char OpNeeds;
xptrint SortSize;
struct tSDLFuncInfo *OpFuncs;
T SDL_EXTRA_COMP

#ifdef T_SIGNAL_SDL_NAMES

char *Name ;
#endif

tSDLSignalParaInfo *Param;

int NoOfPara;

} tSDLSignallInfo;

Param: Anarray with acomponent of thetypetSDL Signa Paralnfo
for each signal parameter type. For each parameter, the parameter
sort isgiven asareference to the type info node and as the of fset for

the parameter value within the struct representing the signal.

NoOfPara: The number of parametersin the signal.

Telelogic Tau 4.5 User’s Manual

2991

Chapter 62 TheMaster Library

The SDL Model

2992

Signals and Timers

Data Structure Representing Signals and Timers

A signal isrepresented by astruct type. ThexsignalRrec struct, defined
inscttypes.h,isastruct containing general information about asignal
except from the signal parameters. In scttypes. h the following infor-
mation about signals can be found:

#ifdef XMSCE

#define GLOBALINSTID int GlobalInstanceId;
#else

#define GLOBALINSTID

#endif

#if defined (XSIGPATH) && defined (XMSCE)
#define ENVCHANNEL xChannelIdNode EnvChannel;
/* Used if env split into channels in MSC trace */
#else
#define ENVCHANNEL
#endif

#ifdef XENV_CONFORM 2 3

#define XSIGNAL VARP void * VarP;
#else

#define XSIGNAL_VARP

#endif

define SIGNAL VARS \
xSignalNode Pre; \
xSignalNode Suc; \

int Prio; \
SDL_PId Receiver; \
SDL_PId Sender; \

xSignalIdNode NameNode; \
GLOBALINSTID \

ENVCHANNEL \

XSIGNAL_ VARP

typedef struct xSignalStruct *xSignalNode;
typedef struct xSignalStruct

SIGNAL_VARS
} xSignalRec;

The xsignalNode typeisthus a pointer type which is used to refer to
alocated data areas of type xsignalrec. The componentsin the
xSignalRec struct are used as follows:

Pre and suc. These pointers are used to link asignal into the input
port of the receiving process instance.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

Theinput port isadoubly linked list of signals. suc isaso used to
link asignal into the avail lists for the current signal type. Thislist
can be found in the signal1dNode that represents this signal type.
If the signal isin the avail list pre iso.

* Prioisused to represent the priority of the signal instance. Signal
priorities are used by continuous signals and by ordinary signalsif
signal priorities are defined (signal priority is apossible extension
provided in the product).

* Receiver isused to reference the receiver of thesignal. It is either
set in the output statement (OUTPUT TO), or calculated (OUTPUT
without TO).

* Sender iSther1d value of the sending processinstance. Thisvalue
is necessary to provide the SDL function SENDER.

* NameNode iSareference to the xsignalidNode representing the
signal type and thus defines the signal type of this signal instance.

e varP isapointer introduced viathe macro xsTGNAL_VARP to make
signal compatible with SDT 2.3. Normally this componentsis not
present.

* EnvChannel isused to identify the outgoing channel in MSCE
trace.

* GlobalInstanceId isusedinthe MSCE trace asaunique identifi-
cation of the signal instance.

A signal without parameters are represented by axsignalstruct,
while for signals with parameters a struct type named

yPDef SignalName and apointer type referencing this struct type
(yPDP_signalName) are defined in generated code. The struct typewill
start with the steNAL_vars macro and then have one component for
each signal parameter, in the same order asthe signal parameters are de-
fined. The components will be named Param1, Param2, and so on.

Example 491

typedef struct {
SIGNAL_VARS
SDL_Integer Paraml;
SDL_Boolean Param2;

} yPDef sig;

typedef yPDef sig *yPDP sig;

Telelogic Tau 4.5 User's Manual 2993

Chapter 62 TheMaster Library

These types would represent a signal sig(Integer, Boolean).

Asall signals starts with the components defined in s1gNaL_vars itis
possible to type cast a pointer to asignal, to the xsignalNode type, if
only the componentsin SIGNAL_VARS iSto be accessed.

Allocation of Data Areas for Signals

In sctos. c there are two functions, xGetSignal and
xReleaseSignal, Where data areas for signal are handled:

xSignalNode xGetSignal (
xSignalIdNode SType,
SDL_PId Receiver,
SDL_PId Sender)

void xReleaseSignal(xSignalNode *S)

xGetSignal takesareferencetothe signalIdNode identifying thesig-
nal type and two Pld values (sending and receiving process instance)
andreturnsasignal instance. xGetSignal firstlooksintheavail list for
the signal type (the component AvailSignalList inthe
SignalIdNode for the signal type) and reuses any available signal
there. Only if the avail list isempty new memory is allocated. The com-
ponent varsize inthe signalidNode for the signal type providesthe
size information needed to correctly allocate the yppef signalname
even though the type is unknown for the xcgetsignal function.

The function xrReleaseSignal takesthe address of an xsignalNode
pointer and returns the referenced signal to the avail list for the signa
type. The xsignalNode pointer isthen set to o.

2994 Teldlogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

The function xGetSignal is used:
* Ingenerated code (output, set, reset)

* Inanumber of placesin thelibrary:
SDL_Creste
SDL_SimpleReset
SDL_Nextstate (to handle continuous signals)

* Inthe postmaster communication section and in the monitor to ob-
tain signal instances.

The function xReleaseSignal isused by:

e SDL_Nextstate

e SDL_Stop, in both casesto release the signal that initiated the tran-
sition.

Overview of Output and Input of Signals

In this subsection the signal handling operation is only outlined. More
details will be given in the section treating processes. See “ Output and
Input of Signals” on page 3010.

Signal instances are sent using the function SDL_Output. That function
takes asignal instance and insertsit into the input port of the receiving
process instance.

If the receiver is not already in the ready queue (the queue containing
the processesthat can perform atransition, but which have not yet been
scheduled to do so) and the current signal may cause an immediate tran-
sition, the process instance isinserted into the ready queue.

If the receiver is already in the ready queue or in a state where the cur-
rent signal should be saved, the signal instanceis just inserted into the
input port.

If the signal instance can neither cause atransition nor should be saved,
it isimmediately discarded (the data area for the signal instance is re-
turned to the avail list).

The input port is scanned during nextstate operations, according the
rules of SDL, to find the next signal in the input port that can cause a
transition. Signal instances may then be saved or discarded.

Telelogic Tau 4.5 User's Manual 2995

Chapter 62 TheMaster Library

2996

There is no specific input function, instead this behavior is distributed
both in the runtime library and in the generated code. The signal in-
stance that should cause the next transition to be executed is removed
from theinput port in the main loop (the schedul er), immediately before
the pap function for the current processis called. The pap function is
the function where the behavior of the processisimplemented and is
part of the generated code. The assignment of the signal parameters to
local SDL variablesis one of the first actions performed by the pap
function.

The signal instance that caused atransition is rel eased and returned to
the avail list in the nextstate or stop action that ends the current transi-
tion.

Timers and Operations on Timers

A timer with parametersis represented by atype definition, where the
timer parameters are defined, in exactly the same way as for asignal
definition, see “Data Structure Representing Signals and Timers’ on
page 2992. At runtime, all timersthat are set and where the timer time
has not expired, are represented by a xTimerRec struct and asignal in-
stance:

#define TIMER VARS \
xSignalNode Pre; \
xSignalNode Suc; \

int Prio; \
SDL_PId Receiver; \
SDL_PId Sender; \

xSignalIdNode NameNode; \
GLOBALINSTID \

ENVCHANNEL \

SDL_Time TimerTime;

typedef xTimerRec *xTimerNode;

typedef struct xTimerStruct
TIMER_ VARS
} xTimerRec;

The T1MER_VARS isand must be identical to the steNar,_vars macro,
except for the TimerTime component last in the macro. A timer with pa-
rameters have yppef timername and yPDP_timername typesin gen-
erated code exactly asasignal (see previous section), except that
SIGNAL VARS isreplaced by TIMER VARS.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

During itslife-time atimer have two different appearances. Firstitisa
timer waiting for the timer time to expire. In that phase the timer isin-
serted in the xTimerQueue. When the timer time expires the timer be-
comes asignal and isinserted in theinput port of the receiver just like
any other signal. Due to the identical typedefsfor xsignalrec and
xTimerRec, there are no problems with type casting between
xTimerNode and xSignalNode types.

When atimer istreated as a signal the componentsin the xTimerRec
are used in the same ways as for axsignalrec. Whilethetimer isin
the timer queue, the components are used as follows:

* Pre and suc are pointers used to link the xTimerrec into the timer
gueue (the queue of active timers, see below).

* TimerTime iSthetimegiveninthe set operation.

The queue mentioned above, the timer queue for active timersis repre-
sented by the component xTimerQueue in the variable xsysD:

xTimerNode xTimerQueue;

The variableisinitialized in the function xInitKernel in sctsdl.c.
xTimerQueue iSinitialized it refers to the queue head of the timer
queue.

The queue head is an extra element in the timer queue that does not rep-
resent atimer, but isintroduced asit simplifiesthe algorithmsfor queue
handling. The TimerTime component in the queue head is set to avery
large time value (xSysD . xMaxTime).

Thetimer queueisthusadoubly linked list with alist head and it is sort-
ed according to the timer times, so that the timer with lowest timeisat
thefirst position.

The xTimerRec structs are allocated and reused in the same way assig-
nal.

From the SDL point of view, timers are handled in:

* Timer definitions
e Set and reset operations
» Timer outputs.

Telelogic Tau 4.5 User's Manual 2997

Chapter 62 TheMaster Library

2998

The timer output is the event when the timer time has expired and the
timer signal is sent. After that, atimer signal istreated as an ordinary
signal. These operations are implemented as follows:

void SDL_Set (
SDL_Time T,
xSignalNode S)

Thisfunction, which representsthe set operation, takes the timer time
and asignal instance as parameters. It first uses the signal instance to
make an implicit reset (see reset operation below) It then updates the
TimerTime component in S and inserts Sinto the timer queue at the cor-
rect position.

The sp1._set operation is used in generated code, together with

xGetSignal, in much the same way as spL,_output. First asignal in-
stanceis created (by xGetsignal), then timer parameters are assigned
their values, and finally the set operation is performed (by spr._set).

void SDL_Reset (xSignalNode *TimerS)

void SDL_SimpleReset (
xPrsNode P,
xSignalIdNode TimerId)

Two functions are used to represent the SDL action reset.
SDL_SimpleReset iSused for timers without parameters and
SDL_Reset for timerswith parameters.

SDL_Reset USes the two functions xRemoveTimer and
xRemoveTimerSignal tO remove atimer in the timer queue and to re-
move asignal instance in the input port of the process. It then releases
the signal instance given as parameter. Thissignal isonly used to carry
the parameter values given in the reset action.

The function sp1,_simpleRreset iSimplemented in the same way as
SDL_Reset, except that it creates its own signal instance (without pa-
rameters).

At areset action the possibly found timer is removed from the timer
gueue and returned to the avail list. A found signal instance (in theinput
port) isremoved from the input port and returned to the avail list for the
current signal type.

static void SDL_OutputTimerSignal (xTimerNode T)

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

The spL_outputTimersSignal iscaled from the mainloop (the sched-
uler) when the timer time has expired for the timer first in the timer
gueue. The corresponding signal instance is then sent.

SDI, OutputTimerSignal takes apointer to an xTimerRec as param-
eter, removesit from the timer queue and sends as an ordinary output
using the function spr,_output.

It can be checked if timer is active by using acall to the function
sp1,_Active. Thisfunction isused in generated code to represent the
SDL operator active.

SDL_Boolean SDL_Active (
xSignalIdNode TimerId,
xPrsNode P)

Note:
Only timerswithout parameters can betested. Thisisarestrictionin
the Cadvanced/Cbasic SDL to C Compiler.

There is one more place where timers are handled. When a process in-
stance performs a stop action al timersin the timer queue connected to
this process instance are removed. Thisis performed by calling the
function xrRemoveTimer with the first parameter equal to o.

Telelogic Tau 4.5 User's Manual 2999

Chapter 62 TheMaster Library

Processes

Data Structure Representing Processes

A processinstance isrepresented by two structs, an xL.ocalpP1drec and
astruct containing both the general process dataand thelocal variables
and formal parameters of the process (yvbef ProcessName), See also
Figure 544. The reason for having both the x1.oca1pP1drec and the
yVDef ProcessName Will be discussed under “Create and Stop Opera-
tions” on page 3007.

Pld Value

GlobalNodeNr
LocalPld

Y

yVDef ProcessName

Pre
v Suc
RestartAddress

xLocalPIdRec

PrsP
InstNr
Globallnstanceld

ActivePrd
RestartPAD
CallAddress
ActiveSrv
SrvList

NextPrs

Self

NameNode

State

Signal

InputPort

Parent

Offspring
BlockinstNumber
pREPLY_Waited_For
pREPLY_Signal
Sender
Trace_Default
GRTrace
MSCETrace
InTransition
Process variables
and parameters
depending on
process type

Figure 544: Representation of a process instance

3000 Teldlogic Tau 4.5 User's Manual July 2003

The SDL Model

The corresponding type definitions, which can be found in
scttypes.h, dre

#ifdef XPRSSENDER

#define XPRSSENDERCOMP SDL_PId Sender;
#else

#define XPRSSENDERCOMP

#endif

#ifdef XTRACE

#define XTRACEDEFAULTCOMP int Trace_Default;
#else

#define XTRACEDEFAULTCOMP

#endif

#ifdef XGRTRACE

#define XGRTRACECOMP int GRTrace;
#else

#define XGRTRACECOMP

#endif

#ifdef XMSCE

#define XMSCETRACECOMP int MSCETrace;
#else

#define XMSCETRACECOMP

#endif

#if defined(XMONITOR) || defined (XTRACE)
#define XINTRANSCOMP xbool InTransition;
#else

#define XINTRANSCOMP

#endif

#ifdef XMONITOR

#define XCALL_ ADDR int CallAddress;
#else

#define XCALL ADDR

#endif

#ifndef XNOUSEOFSERVICE
#define XSERVICE_COMP \
xSrvNode ActiveSrv; xSrvNode SrvList;
#else
#define XSERVICE_ COMP
#endif

#define PROCESS_VARS \

xPrsNode Pre; \

xPrsNode Suc; \

int RestartAddress; \
xPrdNode ActivePrd; \

void (*RestartPAD) (xPrsNode VarP); \
XCALL_ADDR \

July 2003 Telelogic Tau 4.5 User's Manual 3001

Chapter 62 TheMaster Library

XSERVICE COMP \

xPrsNode NextPrs; \

SDL_PId Self; \

xPrsIdNode NameNode; \

int State; \
xSignalNode Signal; \
xInputPortRec InputPort; \
SDL_PId Parent; \

SDL_PId Offspring; \

int BlockInstNumber; \
XSIGTYPE PREPLY Waited For; \
xSignalNode PREPLY Signal; \

XPRSSENDERCOMP \
XTRACEDEFAULTCOMP \
XGRTRACECOMP \
XMSCETRACECOMP \

XINTRANSCOMP
typedef struct {
xPrsNode PrspP;
int InstNr;
int GlobalInstancelId;

} xLocalPIdRec;
typedef xLocalPIdRec *xLocalPIdNode;

typedef struct {

int GlobalNodeNr;
xLocalPIdNode LocalPId;
} sDL_PIg;

typedef struct xPrsStruct *xPrsNode;
typedef struct xPrsStruct

PROCESS_VARS
} xPrsRec;

3002 Teldlogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

A p1d vaueisthus astruct containing two components:

The global hode number
A pointer to axLocalPIdRec Struct.

The use of the global node number is discussed in the chapter 58, Build-
ing an Application.

A xLocalPIdRec contains the following three components:

PrsP Of typexpPrsNode. Thiscomponentisapointer tothexprsrec
struct that is part of the representation of the process instance.

InstNr Of type int. Thisisthe instance number of the current pro-
cess instance, which is used in the communication with the user in
the monitor and in dynamic error messages.

GlobalInstanceId isused in MSCE tracesto have auniqueiden-
tification of the process instance.

A xPrsRec struct contains the following components described below.
Aseach yvDef ProcessName Struct contains the PRocESS vaARrs mac-
ro asfirstitem, it is possibleto cast pointer values between a pointer to
xPrsRec and a pointer to ayvbef ProcessName Struct.

Pre and suc Of type xPrsNode. These components are used to link
the process instance in the ready queue (see below).

RestartAddress Of type int. This component is used to find the
appropriate SDL symbol to continue execute from.

ActivePrd Of type xPrdNode. Thisisapointer to the xprdrec that
represents the currently executing procedure called from this pro-
cess instance. The pointer is 0 if no procedure is currently called.

RestartPAD, Whichisapointer to a pap function. This component
refers to the pap function where to execute the sequence of SDL
symbols. RestartPAD is used to handle inheritance between pro-
cess types.

calladdress Of type int. Thiscomponent contains the symbol
number of the procedure call currently executed by this process.

Activesrv Of typexsrvNode. Thiscomponent containsareference
to the currently active service (or latest active service) in this pro-
cess.

Telelogic Tau 4.5 User's Manual 3003

Chapter 62 TheMaster Library

3004

srvList Of typexsrvNode. Thiscomponent containsareferenceto
thefirst service contained in this process. The component Nextsrv
in the struct representing a service can be used to find next active
servicein the process.

NextPrs Of type xPrsNode. Thiscomponent isused to link the pro-
cess instance either in the active list or in the avail list for this pro-
cess type. The start of these two lists are the components
ActivePrsList and AvailPrsList inthe IdNode representing
the current process type.

self of type spr,_p1d. Thisisthe p1d value of the current process
instance.

NameNode Of type xPrsIdNode. Thisisapointer to the prsIdNode
representing the current process or process instantiation.

state Of type int. This component contains the int value used to
representing the current state of the process instance.

Signal Of typexsignalNode. Thisisapointer to asignal instance.
Thereferenced signal isthe signal that will cause the next transition
by the current process instance, or that caused the transition that is
currently executed by the process instance.

InputPort Of type xInputPortRrec. Thisisthe queue head in the
doubly linked list that represents the input port of the processin-
stance. Thesignalsarelinked in thislist using the pre and suc com-
ponentsin the xsignalRec Struct.

Parent Of typespr,_p1d. Thisisthe p1d value of the parent process
(according totherulesof SDL). A static processinstance has parent
equal to NULL.

offspring Of type spL_p1d. Thisisthe p1d value of thelatest cre-
ated processinstance (according to the rules of SDL). A processin-
stance that has not created any processes has offspring equal to
NULL.

BlockInstNumber Of type int. If the processis part of ablock in-
stance set, this component indicates which of the blocks that the
process belongs to.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

* PREPLY Waited For Of typexsignalIdNode. When aprocessis
waiting intheimplicit state for theprepLY signal inaRPC call, this
components is used to store the 1anode for the expected prEPLY
signal.

* PREPLY Signal Of typexsignalNode. When aprocess receivesa
pCALL signal, i.e. accepts aRPC, it immediately creates the return
signal, the prepLY signal. This component is used to refer to this
pREPLY signal until it is sent.

* Sender Of typespL_p1d. This component represents the SDL con-
cept Sender.

* Trace Default Of type int. This component contains the current
value of the trace defined for the process instance.

* GRTrace Of type int. Thiscomponent containsthe current value of
the GR trace defined for the process instance.

* MSCETrace Of type int. This component contains the current
M SCE trace value for the process instance.

* InTransition Of type xbool. Thiscomponent istrue while the
process is executing atransition and it is false while the processis
waiting in a state. The monitor system needs this information to be
able to print out relevant information.

The Ready Queue, Scheduling

The ready queue isadoubly linked list with a head. It contains the pro-
cess instances that can execute an immediate transition, but which has
not been allowed to complete that transition. Process instances are in-
serted into the ready queue during output operations and nextstate oper-
ations and are removed from the ready queue when they execute the
nextstate or stop operation that ends the current transition. The head in
the ready queue, which isan object in the queue that does not represent
any process but isinserted only to simplify the queue operations, is ref-
erenced by the xsysD component:

xPrsNode xReadyQueue;

This component isinitiated in the function xInitkernel and used
throughout the runtime library to reference the ready queue.

Telelogic Tau 4.5 User's Manual 3005

Chapter 62 TheMaster Library

3006

Scheduling of eventsis performed by the function xMa inLoop, whichis
called from the main function after the initialization is performed.

void xMainLoop ()

The strategy to have all interesting queues (the ready queue, the timer

gueue, and the input ports) sorted in the correct order is used in the li-

brary. Sorting isthus performed when an object isinserted into aqueue,
which means that scheduling is asimple task: select the first object in

the timer queue or in the ready queue and submit it for execution.

Thereare several versionsof thebody of the endlessloop in thefunction
xMainLoop, Which are used for different combinations of compilation
switches. When it comes to scheduling of transitions and timer outputs
they al have the following outline:

while (1) {

if (xTimerQueue->Suc->TimerTime <= SDL Now ())
SDL_OutputTimerSignal (xTimerQueue->Suc) ;

else if (xReadyQueue->Suc != xReadyQueue)
xRemoveFromInputPort (xReadyQueue->Suc->Signal) ;
xReadyQueue->Suc->Sender =

xReadyQueue->Suc->Signal->Sender;

(*xReadyQueue->Suc->RestartPAD) (xReadyQueue->Suc) ;

}
or, in descriptive terms:

while (1) {
if (there is a timer that has expired)
send the corresponding timer signal;
else if (there is a process that can execute
a transition)
remove the signal causing the transition
from input port;
set up Sender in the process to Sender of
the signal;
execute the PAD function for the process;

}

The different versions of the main loop handle different combinations
of compilation switches. Other actions necessary in the main loop are
dependent of the compilation switches. Example of such actions are:

» Handling of the monitor

e Cdling the x1nEnv function

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

* Handling real time or simulated time
» Delay execution up to the next scheduled event

» Handling enabling conditionsand continuous signal sthat need to be
recal culated.

Create and Stop Operations
A process instance is, whileit is active, represented by the two structs:

e xLocalPIdRec
e Theyvbef ProcessName Struct.

Thesetwo structsaredynamically allocated. A p1d valueisa so astruct
(not allocated) containing two components, G1obalNodeNr and
LocalPId, where Localpid isapointer to the xL.ocalPIdRec.

Figure 545 shows how the xLocalP1drec and the

yVDef ProcessName Structs representing a process instance are con-
nected.

Pld value

PrsP

InstNr

Y

NextPrs
Self] GlobalNodeNr
LocalPId

Figure 545: A xLocalPldRec and a yVDef ProcessName
representing a Process instance

When a process instance performs a stop action, the memory used for

the process instance should be reclaimed and it should be possible to re-
usein subsequent create actions. After the stop action, old (invalid) p1d
values might however be stored in variablesin other process instances.

If asignal issent to such an old p1d value, that is, to a stopped process
instance, it should be possible to find and perform appropriate actions.

Telelogic Tau 4.5 User's Manual 3007

Chapter 62 TheMaster Library

3008

If the compl ete representation of a process instance is reused then this
will not be possible. There must therefore remain some little piece of in-
formation and thus some memory for each process instance that has
ever existed. Thisisthe purpose of the xL.ocalP1drec. These structs
will never bereused. Instead the following (see Figure 546) will happen
when the process instance in Figure 545 performs a stop action.

Old PId Value
PrsP
InstNr
/
NextPrs
Self: | GlobalNodeNr
LocalPId

New Pld Value
PrsP : *
InstNr -

Figure 546: The memory structure after the processin
Figure 545 has performed a stop action

A new xLocalPIdrec is allocated and its prsp references the

yVDef ProcessName (InstNr iS0). Theself component in the
yVDef ProcessName iSchanged to referencethisnew xLocalPIdrec.
The old xLocalpridrec dtill referencesthe yvbef ProcessName. The
yVvDef ProcessName iSentered into the avail list for this processtype.

To reuse the data area for a process instance at a create operation it is
only necessary to remove the yvbDef ProcessName from the avail list
and update the I1nstNr component in the xL.ocalPIdrec referenced by
Self.

Using this somewhat complicated structure to represent processin-
stances alows asimpletest to seeif apr1d valuerefersto an active or a
stopped instance:

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

If pisapr1d variable then the following expression:

P.LocalPId == P.LocalPId->PrsP->Self.LocalPId

istrueif the processinstance is active and falseif it is stopped.

The basic behavior of the create and stop operationsis performed by the
functions spL._create and spDL_Stop.

void SDL_Create (
xSignalNode StartUpSig,
xPrsIdNode PrsId)

void SDL_Stop(xPrsNode PrsP)

To create a process instance takes three steps performed in generated
code:

1. Call xcetsignal to obtain the start-up signal.

2. Assign the actual process parameters to the start up signal parame-
ters.

3. Cal spL_create with the start-up signal as parameter, together
with the prs1dNode representing the processto be created.

In xGetProcess the process instance is removed from the avail list of
the process instance set (the component AvailbPrsList in the
PrsIdNode representing the process instance set), or if the avail list is
empty new memory is allocated.

The process instance is linked into the list of active process instances
(the component ActivePrsList in the PrsIdNode representing the
process instance set). Both the avail list and the active list are single
linked lists (without a head) using the component NextPrs in the
yVDef ProcessName struct aslink.

To have an equal treatment of theinitial transition and other transitions,
the start state isimplemented as an ordinary state with the name “ start
state” It isrepresented by 0. To executetheinitial transition a“ startup”
signal is sent to the process. The start state can thus be seen as a state
with one input of the startup signal and with save for all other signals.
Thisimplementation is completely transparent in the monitor, where
startup signals are never shown in any way.

Telelogic Tau 4.5 User's Manual 3009

Chapter 62 TheMaster Library

3010

Note:
The actual values for FPARs are passed in the startup signal.

Two 1dNodes that are not part of the symbol table tree are created to
represent a start state and a startup signal.

xStateIdNode xStartStateld;
xSignalIdNode xStartUpSignallId;

These xsysD components are initialized in the function
xInitSymbolTable, Whichispart of sctsdl.c.

At astop operation the function spr._stop iscalled. This function will
release the signal that caused the current transition and all other signals
in the input port. It will also remove all timersin the timer queue that
are connected to this process instance by calling xRemoveTimer with
thefirst parameter equal to o. It then removes the process executing the
stop operation from the ready queue and from the activelist of the pro-
cess type and returns the memory to the avail list of the current process
instance set.

Output and Input of Signals

There are three actions performed in generated code to send asignal.
First xcetsignal iscalled to obtain a data areathat represents the sig-
nal instance, then the signal parameters are assigned their values and fi-
nally thefunction spr,_output iscaledto actually sendthesignal. First
inthe sp1._output function there are anumber of dynamic tests (check
if receiver in TO-clause is not NuLL and not stopped, check if thereisa
path to the receiver). If the output does not contain any TO-clause and
the Cadvanced/Cbasic SDL to C Compiler has not been ableto calculate
thereceiver, the xFindreceiver function iscalled to calculate the re-
ceiver according to the rules of SDL.

Next, in spL_output signals to the environment are handled. Three
cases can be identified here:

1. The environment function xoutEnv is called.

2. The corresponding function that sends signals viathe SDL suite
communication mechanism (xout pm) is called.

3. Thesignal isinserted into theinput port of the process representing
the environment (xEnv).

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

Finally, internal signalsin the SDL system are treated. Here also three
cases can be identified (how thisis evaluated is described last in this
subsection):

1. Thesignal can cause an immediate transition by the receiver.
2. Thesignal should be saved.
3. Thesignal should be immediately discarded.

If thesignal can cause animmediate transition, thesignal isinserted into
the input port of the receiver, and the receiving processinstanceisin-
serted into the ready queue.

If the signal should be saved, the signal is just inserted into the input
port of the receiver.

If the signal should be discarded, the function xReleaseSignal is
called to reused the data area for the signal.

When asignal isidentified to be the signal that should cause the next
transition by the current process instance (at an Output or Nextstate op-
eration), the component signal inthe yvbef ProcessName for the
process is set to refer to the signal. The signal is still part of the input
port list.

When the transition isto be executed, the signal isremoved from thein-
put port in the main loop (see The Ready Queue, Scheduling” on page
3005) immediately before the pap function for the processis called.

First in the pap function, the parameters of the signal are copied to the
local variables according to theinput statement. In the ending Nextstate
or Stop operation of the transition the signal instance is returned to the
avail list.

Evaluating How To Handle a Received Signal

Therearetwo placesin therun-timekernel whereit is necessary to eval-
uate how to handle signals (input, save, discard,...):

» At an Output operation to a currently idle process.

» AtaNextstate operation, when the process have signalsin the input
port.

This calculation isimplemented in the run-time kernel function
xFindInputAction.

Telelogic Tau 4.5 User's Manual 3011

Chapter 62 TheMaster Library

typedef unsigned char xInputAction;

#define xDiscard (xInputAction) 0
#define xInput (xInputAction) 1
##define xSave (xInputAction) 2
#define xEnablCond (xInputAction) 3
#define xPrioInput (xInputAction) 4

static xInputAction xFindInputAction(
xSignalNode SignalId,
xPrsNode Varp,
xbool CheckPrioInput)

The parameters of thisfunctionis:
e Signalld, whichisapointer to asignal.
* varp, which isapointer to a process instance.

* CheckPrioInput, Whichisaboolean valueindicating is the func-
tion should check only for priority inputs or for ordinary inputs.

As aresult the function should return:

» Theaction that should be performed for this signal (input, save,...),
taking all information about this process into account, like inherit-
ance between processes, virtual - redefined transitions and so on.

e If thefunction result is xInput Or xPrioInput, thenthe
RestartPAD and RestartAddr componentsin the varp struct
should be updated with information about where this input can be
found.

After thislast update the correct transition can be started by the sched-
uler by just calling the function referenced by restartPap, which the
asfirst action performs switch Restartaddr and starts execute thein-
put symbol.

3012 Teldlogic Tau 4.5 User's Manual July 2003

The SDL Model

VarP j Signalld j

xPrsNode - = xSignalldNode xSignalNode
- NameNode : - NameNode
State |
|
|
|
|
xPrsldNode I - — — | xStateldNode
|
StateList | : |SignalHandlArray
SignalSet Jo InputRef _
. s | EnablCond_Function
PAD_Function
Super [Super
u I
P Ay i
List of point- || List of point- ||XInput 2
ers to xSig- ||ersto xSave 0
nalldNodes in||xStateld- Di d
the signalset. || Nodes for xbiscar 0
Last item is O//|states in this ||xInput 4
process xNotInSignalSet 0

Figure 547: Data structure used to evaluate the xFindlnputAction

The algorithm to find the InputAction, the Restartaddr, and the
RestartPAD isasfollows:

1. Let processId become yvarp->NameNode and let state1d be-
Ccome ProcessId->StateList[yVarP->State] .

2. InpProcessId->Signalset find theindex (1ndex) where
SignalId->NameNode isfound. If the signal is not found, thissig-
nal is not in the signal set of the process, and the algorithm termi-
nates returning the result xpiscard.

3. StateId->SignalHandlArray[Index] NOW givestheactiontobe
performed. If thisvalueisxEnablcond, thenthefunction staterd-
>EnablCond Function iscalled. Thisfunction returnseither xIn-
put O xSave.

July 2003 Telelogic Tau 4.5 User's Manual 3013

Chapter 62 TheMaster Library

3014

4,

If the result from step 3 is xInput, the algorithm terminates return-
ing thisvalue. yvarp->RestartAddr isalso updated to
StatelId->InputRef [Index], While yvarpP->RestartPAD iSUp-
dated to ProcessId->PAD Function.

If theresult from step 3isxsave, theagorithm terminates returning
this value.

If the result from step 3 iSxDiscard and ProcessId->Super
equal to nuLL, then the algorithm terminates returning this value.

If the result from step 3isxDiscard and ProcessId->Super NOt
equal to nuLL, then we are in a process type that inherits from an-
other process type. We then have to perform step 2 - 4 again, with
ProcessId assigned the value ProcessId->Super and StateId
assigned the value stateId- >Super.

Nextstate Operations

The nextstate operation isimplemented by the spL, Nextstate func-
tion, where the following actions are performed:

1.

Thesignal that caused the current transition (component signal in
the yvDef ProcessName) isreleased and the state variable (com-
ponent state inthe yvbef ProcessName) is updated to the new
state.

Then the input port of the processis scanned for asignal that can

cause atransition. During the scan signals might be saved or dis-

carded until asignal specified in an input isfound. Priority inputs
are treated according to the rules of SDL.

If no signal that can cause atransition is found, a check is made if
any continuous signal can cause a transition (see “Enabling Condi-
tions and Continuous Signals’ on page 3015). The processis there-
after removed from the ready queue.

If any signal (or continuous signal) can cause a transition then the
process is re-inserted into the ready queue again at a position deter-
mined by its priority, else if the new state contains any continuous
signal or enabling condition with an expression that might change
its value during the time the processisin the state (view, import...),
the processisinserted into the check list (see aso “Enabling Condi-
tions and Continuous Signals” on page 3015).

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

Decision and Task Operations

Decision and Task operations are implemented in generated code, ex-
cept for the Trace-functionsimplemented in the sctutil.c and
sctmon. c filesand for informal and any decisions that uses some sup-
port functionsin sctmon. c. A Decision isimplemented as a C if-state-
ment, while the assignmentsin a Task are implemented as assignments
or function callsin C.

Compound Statements

A compound statement without variable declarationsis translated just
to the sequence of action it contains, while acompound statement with
variable declarationsistranslated in the sameway asan SDL procedure
(without parameters). Statements within a compound statement are
trandated according to the normal rules. The new statement typesin
compound statements are translated as:

o ifinSDL istrandated toif in C

» decision in compound statements is trandated as ordinary deci-
sions.

» for loops, continue, and break are al translated using gotoin C.

Enabling Conditions and Continuous Signals

Theexpressionsinvolved in continuous signalsand enabling conditions
are implemented in generated code in functions called
yCont_StateName and yEnab StateName. These functions are gener-
ated for each state containing continuous signal s respectively enabling
conditions. The functions are referenced through the components
ContSig Function and EnablCond Function inthestateIdNode
for the state. These components are o if no corresponding functions are
generated.

The EnablcCond Functions are caled from the function
xFindInputAction, whichiscalled from SDL_Output and
SDL_Nextstate. |f the enabling condition expression for the current
signal istruethen xInput isreturned else xsave isreturned. Thisinfor-
mation is then used to determine how to handle the signal in this state.

Thecontsig Functions arecalled from spr_Nextstate, if the com-
ponent contSig Function isnot o and no signal that can cause anim-
mediate transition is found during the input port scan. A

ContSig Function hasthe following prototype:

Telelogic Tau 4.5 User's Manual 3015

Chapter 62 TheMaster Library

3016

void ContSig Function Name (
void *, int *, xIdNode *, int *);

where the first parameter is the pointer to the yvbef ProcessName.
The remaining parameters are all out parameters; the second contains
the priority of the continuous signal with highest priority (=lowest val-
ue) that has an expression with the value true. Otherwise <0 isreturned
here. Thethird and fourth is only defined the second parameter >=0; the
third is the 1dNode for the process/procedure where the actual continu-
oussignal can befound and the fourthisthe Restartaddress connect-
ed to this continuous signal .

If a continuous signal expression with value trueisfound, asignal in-
stance representing the continuous signal is created and inserted in the
input port, and isthereafter treated asan ordinary signal. Thesignal type
is continuous signal and is represented by an signalidNode (refer-
enced by the variable xcont sig1d).

The check list isalist that contains the processes that wait in a state
where enabling conditions or continuous signa s need to be repeatedly
recalcul ated.

A processisinserted into the check list if:

1. It enters astate containing enabling conditions and/or continuous
signalsand

2. Nosignal or continuous signal can cause an immediate transition
and

3. Oneor severa of the expressionsin the enabling conditions or con-
tinuous signals can change its value while the processisin the state
(view, import, now, ...)

The component stateProperties inthe stateIdNode reflectsif any
such expression is present in the state.

The check list is represented by the xsysb component:

xPrsNode xCheckList;
The behavior of enabling conditions and continuous signalsisin SDL
modeled by letting the process repeatedly send signalsto itself, thereby

to repeatedly entering the current state. In the implementation chosen
here, nextstate operations are performed “behind the scene” for all pro-

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

cessesin the check list directly after acall to apap function is complet-
ed, that is directly after atransition is ended and directly after atimer
output. Thisis performed by calling the function xCheckCheckList in
the main loop of the program.

View and Reveal
A view expression is part of an expression in generated code and imple-
mented by calling the function spr, view.

void * SDL View (
xViewListRec *VList,

SDL,_PId P,

xbool IsDefpP,
xPrsNode ViewingPrs,
char * Reveal Var
int SortSize) ;

* vList isalist of al revealed variablesin this block.
» pisthepr1d expression givenin the view statement.

* 1sDefP islistheview expression contained a Pld value, O other-
wise.

* viewingPrs iSthe processinstance performing the view operation.

* Reveal Var iSthe name of the revealed variable as a string. The
Reveal Var parameter isonly used in error messages and isre-
move under certain conditions.

* sortsize isthesize of the datatype of the viewed variable.

The spL_view function performs a test that the view expression is not
NULL, refersto a processin the environment, or to a stopped processin-
stance. If no errors are found the address of the revealed variable isre-
turned as result from the spr._view function. Otherwise the address of
avariable containing only zerosiis returned.

Import, Export, and Remote Variables

For an exported variable there are two components in the

yVDef ProcessName struct. One for the current value of the variable
and one for the currently exported value of the variable. For each ex-
ported variable there will also be astruct that can belinkedinto alistin

Telelogic Tau 4.5 User's Manual 3017

Chapter 62 TheMaster Library

3018

the corresponding RemotevarIdNode. Thislist isthen used to find a
suitable exporter of avariable in an import action.

An export action isasimple operation. The current value of the variable
is copied to the component representing the exported value. Thisis per-
formed in generated code.

An import action is more complicated. It involves mainly acall of the
function xGetExportAddr:

void * xGetExportAddr (
xRemoteVarIdNode RemoteVarNode,

SDL_PId P,
xbool IsDefpP,
xPrsNode Importer)

RemoteVarNode is areference to the RemotevarIdNode representing
the remote variable (implicit or explicit), p isthe Pld expression given
intheimport action and 1spef isOor 1 depending onif any p1d expres-
sionwasgivenintheimport action or not, Importer istheimporting pro-
cess instance. The xGetExportaddr Will check the legality of the im-
port action and will, if no p1d expression is given, calculate which pro-
cess it should be imported from.

If no errors are found the function will return the address where the ex-
ported value can befound. Thisaddressisthen casted to the correct type
(in generated code) and the value is obtained. If no process possible to
import from isfound, the address of avariable containing only zerosis
returned by the xGet Exportaddr function.

Note:

Thestrategy for import actionsisin one sense not equal to the model
for import giveninthe SDL recommendation. Animport actionisin
the recommendation modeled as a signal sent from the importing

process to the exporting process asking for the exported value, and
asignal with thisvalue sent back again. The synchronization effects
by this signal communication islost in the implementation model

we have chosen. Instead our model is much easier and faster and the
primary part of theimport action, to obtain the exported value, isthe

same.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

Services

Data Structure Representing Services

A serviceisrepresented by astruct type. The xsrvrec struct defined in
scttypes.h, IS, just like xPrsrec for processes, a struct containing
general information about aservice, while the parameters and variables
of the service are defined in generated code in the same way as for pro-
Cesses.

In scttypes.h the following types concerning procedures can be
found:

#ifdef XMONITOR
#define XCALL_ ADDR int CallAddress;

#else

#define XCALL_ ADDR

#endif

#define SERVICE_VARS \
xSrvNode NextSrv; \
xPrsNode ContainerPrs; \
int RestartAddress; \
xPrdNode ActivePrd; \

void (*RestartPAD) (xPrsNode VarP); \
XCALL_ADDR \

xSrvIdNode NameNode; \

int State; \

XSIGTYPE PREPLY Waited For; \
xSignalNode PREPLY Signal; \
XINTRANSCOMP

#ifndef XNOUSEOFSERVICE
typedef struct xSrvStruct *xSrvNode;
#endif

#ifndef XNOUSEOFSERVICE

typedef struct xSrvStruct {
SERVICE_ VARS

} xSrvRec;

#endif

Ingenerated codeyVDef_ProcedureName structsaredefined according
to the following:

typedef struct {

SERVICE_VARS

components for FPAR and DCL
} yVDef ServiceName;

July 2003 Telelogic Tau 4.5 User's Manual 3019

Chapter 62 TheMaster Library

The components in the xsrvRrec are used as follows:

3020

NextSrv Of type xsrvNode. Reference to next service contained in
this process.

ContainerPrs Of type xPrsNode. Reference to the processin-
stance containing this service.

RestartAddress Of type int. This component is used to find the
appropriate SDL symbol to continue execution from.

ActivePrd Of type xprdNode. Thisisapointer to the xPrdRec that
represents the currently executing procedure called from this ser-
vice instance. The pointer is0 if no procedureis currently called.

RestartPAD, Whichisapointer toaPAD function. Thiscomponent
refersto the PAD function where to execute the sequence of SDL
symbols. RestartPAD is used to handle inheritance between service
types.

calladdress Of type int. This component contains the symbol
number of the procedure call performed from this procedure (if

any).

NameNode Of type xsrvidNode. Thisisapointer to the IdNode rep-
resenting the service or service instantiation.

state Of type int. This component contains theint value used to
represent the current state of the service instance.

PREPLY Waited For Of type xSignalIdNode. When aserviceis
waiting in the implicit state for the pREPLY signal in a RPC call,

this componentsis used to store the IdNode for the expected pRE-
PLY signal.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

* PREPLY Signal Of type xSignalNode. When a service receives a
pCALL signd, i.e. acceptsaRPC, it immediately creates the return
signal, the pREPLY signal. This component is used to refer to this
pPREPLY signa until it is sent.

* InTransition Of typexbool. Thiscomponent istruewhilethe ser-
viceisexecuting atransition and it is false while the service is wait-
ing in astate. The monitor system needs thisinformation to be able
to print out relevant information.

Executing Transitions in Services

From the scheduler’ spoint view, itisnot of interest if aprocess contains
services or not. It is still the process instance that is scheduled in the
ready queue and the PAD function of the process that isto be called to
executeatransition. The PAD function for aprocess containing services
performs three different actions:

» Assign default value to variables declared at the process level

» Create one service instance for each service or service instantiation
in the process.

» Cadllsthe proper PAD function for a service to execute transitions.

The structure for a PAD function for a process with services are as fol-
lows:

YPAD_ FUNCTION (yPAD z00_P1)

YPAD YSVARP
YPAD YVARP (yVDef z00_ P1)
YPRSNAME VAR ("P1")
LOOP_LABEL_SERVICEDECOMP
CALL_SERVICE

/* _____
* Initialization (no START symbol)

BEGIN START TRANSITION (yPDef z00 P1)
yAssF_SDL Integer (yVarP->z002 Global,

SDL_INTEGER_LIT(10), XASS);
START_SERVICES

where LooP LABEL SERVICEDECOMP@NUBEGIN START TARNSITION
are empty macros, i.e. expanded to no code. The yass SDL_Integer
statement in an assignment of a default value to a process variable.

July 2003 Telelogic Tau 4.5 User's Manual 3021

Chapter 62 TheMaster Library

3022

The macro CALL_SERVICE is expanded to:

if (yVarP->ActiveSrv != (xSrvNode)O0)
(*yVarP->ActiveSrv->RestartPAD) (VarP) ;
return; \

that isto acall of the PAD function of service reference by ActiveSrv.

The macro START_SERVICE is expanded to acall to the function
xStart_Services, Whichcanbefoundin sctsdl.c.Thefunctioncre-
ates the service instances, sets up the ActiveSrv pointer for the process
to thefirst service, and then schedules the process for a new transition.
Thismeansthat the next action performed by the system will bethe start
transition by the first service instance. When the first service executesa
nextstate or stop action in the end of its start transition, the processwill
be scheduled again to execute the start transition of the second service,
and so on until all servicesin the process has executed its start transi-
tions.

For ordinary transitions, i.e. reception of asignal, it is obviousfrom the
code above that the ActiveSrv pointer is essential. It should refer to the
service instance that is to be executed. When asignal isto be received

by aprocess, it isthe function xFindlnputAction (in sctsdl . c) that de-
termines how to handlethe signa and if it isto bereceived, whereisthe
code for that transition. This function now also determines and sets up

the ActiveSrv pointer.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

Procedures

Data Structure Representing Procedures

A procedureisrepresented by astruct type. Thexprdrec struct defined
inscttypes.h, is, just likexprsrec for processes, astruct containing
general information about a procedure, while the parameters and vari-

ables of the procedure are defined in generated code in the same way as
for processes.

In scttypes.h the following types concerning procedures can be
found:

#define PROCEDURE_VARS \
xPrdIdNode NameNode; \

xPrdNode StaticFather; \
xPrdNode DynamicFather; \
int RestartAddress; \

XCALL_ADDR \

void (*RestartPAD) (xPrsNode VarP); \
xSignalNode pREPLY Signal; \

int State;

typedef struct xPrdStruct *xPrdNode;

typedef struct xPrdStruct ({
PROCEDURE_VARS
} xPrdrRec;

Ingenerated codeyVDef_ProcedureName structsaredefined according
to the following:

typedef struct {
PROCEDURE_VARS
components for FPAR and DCL
} yVDef ProcedureName;

July 2003 Telelogic Tau 4.5 User's Manual 3023

Chapter 62 TheMaster Library

The components in the xprdrec are used as follows:

NameNode Of type xPrdIdNode. Thisisapointer to the TdNode rep-
resenting the procedure type.

StaticFather Of type xPrdNode. Thisisapointer that represents
the scope hierarchy of procedures (and the processat thetop), which
is used when a procedure instance refersto non-local variables. An
exampleisshownin Figure 548 on page 3025. staticFather ==
0 means that the static father is the process.

DynamicFather Of type xprdNode. Thisisapointer that represents
that this procedureis called by the referenced procedure.
DynamicFather == 0 meansthat this procedure was called from
the process. This component is also used to link the xprdrec in the
avail list for the procedure type.

RestartAddress Of type int. This component is used to find the
appropriate SDL symbol to continue execution from.

calladdress Of type int. This component contains the symbol
number of the procedure call performed from this procedure (if

any).

RestartPRD iS a pointer to a procedure function. This component
refersto the prp function where to execute the next sequence of
SDL symbols. RestartPRD is used to handle inheritance between
procedures.

PREPLY Signal Of type xSignalNode. When aprocessreceivesa
pCALL signal, i.e. acceptsaRPC, it immediately creates the return
signal, the prEPLY Signal. This component is used to refer to this
pREPLY signal until it is sent.

state Of type int. Thisisthe value representing the current state
of the procedure instance.

In Figure 548 on page 3025 an example of the structure of

yVDef ProcedureName after four nested procedure callsare presented.
Note that procedure Q is declared in the process, procedure R and Sin
QandTinS.

3024

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

Q yVDef_ProcessName
Procedure 0 (which .
which represents
NameNode the process instance) RestartAddress
StaticFather- e
DynamicFather/ R ActivePrd
RestartAddress -
Procedure
NameNode
A4 A—- StaticFather
DynamicFather s
RestartAddress
Procedure
i NameNode
StaticFather
DynamicFather
RestartAddress
'
W\ Procedure
NameNode
StaticFather
Declarations: Calls Dynamlcggther
RestartAddress
Process P P calls Q
Procedure Q QcallsR
Procedure R Rcalls S
Procedure S ScallsT

Figure 548: Structure of yvDef ProcedureName
after four nested procedure calls

The SDL procedures are partly implemented using C functions and
partly using the structure shown above. Each SDL procedureis repre-
sented by a C function, which is called to execute actions defined in the
procedure. Thisfunction corresponds to the pap function for processes.
The formal parameters and the variables are however implemented us-
ing astruct defined in generated code. The procedure stack for nested
procedure calls isimplemented using the components staticFather
and DynamicFather, and does not use the C function stack.

July 2003 Telelogic Tau 4.5 User's Manual 3025

Chapter 62 TheMaster Library

3026

Calling and Returning from Procedures

Procedure calls and procedure returns are handled by three functions,
one handling allocation of the data areas for procedures:

xPrdNode xGetPrd(xPrdIdNode PrdId)

and two functions called from generated code at a procedure call and a
procedure return:
void xAddPrdCall (
xPrdNode R,
xPrsNode VarP,
int StaticFatherLevel,
int RestartAddress)

void xReleasePrd (xPrsNode VarP)

A procedure call in SDL isin C represented by the following steps:
1. Caling xcetPrd to obtain a data areafor the procedure.
2. Assigning procedure parameters to the data area.

3. Cadling xaddprdcall to link the procedure into the static and dy-
namic chains.

4. Cadling the C function modeling the SDL procedure, i.e. the
yProcedureName function.

The parametersto xaddprrdcall are asfollows:
* R. A reference to the xprdnode obtained from the call of xgetprad.

* varp. A referenceto theyVDef ProcessName, i.e. the dataareafor
variablesand parameters of the process (evenif itisaprocedurethat
performed the procedure call).

* staticFatherLevel. Thisisthedifferencein declaration levels
between the caller and the called procedure. Thisinformation is
used to set up the staticFather component correctly.

* RestartAddress. Thisisthe symbol number of the SDL symbol
directly after the procedure call. The symbol number is the switch
case label generated for all symbols.

The xcetPrd returns a pointer to an xprdrec, which can then be used
to assign the parameter values directly to the componentsin the data

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

arearepresenting the formal parameters and variables of the procedure.
Notethat IN/OUT parameters are represented as addressesin this struct.

A procedure return is in generated code represented by calling the
xReleasePrd followed by return O, whereby the function representing
the behavior of the SDL procedure is left.

The function representing the behavior of the SDL procedureisre-
turned in two main situations:

* Whenan SDL Rreturn isreached (the function returns 0)
* When anextstate isreached (the function returns 1).

If O isreturned then the execution should continue with the next SDL
symbol after the procedure call, whileif 1 isreturned the execution of
the processinstance should be terminated and the scheduler (main loop)
should take control. This could mean that a number of nested SDL pro-
cedure calls should be terminated.

To continue to execute at the correct symbol when a procedure should
be resumed after a nextstate operation, the following codeisintroduced
inthe pap function for processes containing procedure calls:

while (yVarP->ActivePrd != (xPrdNode)O0)
if ((*yVarP->ActivePrd->RestartPRD) (VarP))
return;

This means that uncompleted procedures are resumed one after one
from the bottom of the procedure stack, until all procedures are com-
pleted or until one of them returns 1, i.e. executes anextstate operation,
at which the processis |eft for the scheduler again.

July 2003 Telelogic Tau 4.5 User's Manual 3027

Chapter 62 TheMaster Library

3028

Channels and Signal Routes

The channelIdNodes for channels, signal routes, and gatesare usedin
the functions xFindrReceiver and xIsPath, which are both called
from spr._output, to find the receiving process when thereisno TO
clausein the Output statement, respectively to check that thereisapath
tothereceiver inthe case of aTO clausein the Output statement. In both
cases the paths built up using the Tozd componentsin the 1dNodes for
processes, channels and signal routes are followed. To show the struc-
ture of these paths we use the small SDL system given in Figure 549.

System 5 1 (1)

‘ 1 ‘ ‘ P2 ‘

ElockBE1 ElockBZ

Figure 549: A small DL system

During theinitiaization of the system, the symbol tableisbuilt up. The
part of the symbol table starting with the system will then have the
structure outlined in Figure 550. Aswe can seein this example the dec-
larations in the SDL system are directly reflected by 1dNodes.

Telelogic Tau 4.5 User's Manual July 2003

The SDL Model

July 2003

Note:

Each channel and signal route is represented by two IdNodes, one
for each direction. Thisisalso true for an unidirectional channel or
signal route. In this case the signal set will be empty for the unused
direction.

System
. s
First
Suc Suc Suc Suc Suc
Y
Block Block Signal Signal Channel Channel
"B1" "B2" 'St "T" "c" "c"
First First Suc Suc
| Vo v
»| Process SignalRoute SignalRoute
"P1" "SR1" "SR1"
Suc Suc
Y [v Y
Process| | SignalRoute| |SignalRoute
"pon "SR2" "SR

Figure 550: The symbol table tree for the systemin Figure 549

Each IdNode representing a process, asignal route, or a channel will
have acomponent To1d. A To1d component isan addressto an array of
references to rdNodes. The size of thisarray is dependent on the num-
ber of items this object is connected to. A process that has three outgo-
ing signal routeswill haveaTo1d array which can represent three point-
ersplus an ending o pointer.

In the examplein Figure 549 and Figure 550 there is no branching, so
all Toxd arrayswill be of the size necessary for two pointers. Figure 551
shows how the 1aNodes for the processes, signal routes and channels
are connected to form paths, using the components To1d. In this case
only simple paths are found (one from P1, via SR1, C, SR2, to P2, and

Telelogic Tau 4.5 User's Manual 3029

Chapter 62 TheMaster Library

3030

onein thereverse direction). The generalization of this structureto han-
dle branchesis straightforward and discussed in the previous paragraph.

Channel | v Channel

Name: "C" \ Name: "C"
SignalRoute v SignalRoute
Name: "SR1*| 0 ™. Name: "SR2"
SignalRoute v SignalRoute
Name: "SR1" 0 Tl Name: "SR2"
Process B o Process

=g

Name: "P1—"] 0 ™| Name: "P2"

Figure 551: The connection of To1d for the systemin

Telelogic Tau 4.5 User's Manual

Figure 549 and Figure 550

July 2003

The SDL Model

The Type Concept in SDL-92

The probably most important new featurein SDL-92 istheintroduction
of the object oriented features, such as TYPE, INHERITS, VIRTUAL,
and REDEFINED. Here we start by discussing process types.

For each process type the Cadvanced/Cbasic SDL to C Compiler will
generate:

* AaPrsIdNode
» a pap function
* QAyVDef ProcessName Struct.

In the prs1dNode thereis one component (Super) that will refer to the
prsIdNode for the process typeinherited by this processtype. As sons
to a PrsIdNode, IdNodes for declaration that are common for al in-
stantiation of the processtype can be found. Examplesof such 1dNodes
are: nodesfor variables, formal parameters, signa's, timers, procedures,
states, newtypes, and syntypes. Any typedefs or help functionsfor such
units are also treated in the process type.

The pap function will be independent of the pap function for ainher-
ited type, each pap function just implementing the action described in
its process type.

A yvDef ProcessName Struct will on the other hand include al vari-
ables and formal parameters from the top of the inheritance chain and
downwards. Example:

process type P1;
fpar f1 integer;
dcl dl integer;

endprocess;

process type P2 inherits P1;
fpar f2 integer;

dcl d2 integer;

endprocess;

Thiswill generate the following principle yVDef ... structs:

typedef struct {
PROCESS_VARS
SDL_Integer f1;
SDL_Integer dl;
} yvDef P1;

July 2003 Telelogic Tau 4.5 User's Manual 3031

Chapter 62 TheMaster Library

3032

typedef struct {
PROCESS_VARS
SDL_Integer f1;
SDL_Integer dl;
SDL_Integer f2;
SDL_Integer d2;
} yvDef P2;

A pointer to yvpef P2 can thus be casted to a pointer to yvbef p1, if
only the common component (in ProcESs_VaRs) or thevariablesin P1
isto be accessed. This possibility is used every timethe pap function
for an inherited processtypeiscaled.

Each process instantiation will al be implemented as a xPrsldNode.
The super component in such an object refers to the process type that
isinstantiated. No pap function or yVDef ... struct will be generated.
As sonsto the prs1dNode for a process instantiation, only such object
areinserted that aredifferent in different instantiations. For aprocessin-
stantiation this is the gates. For other types of information the process
instantiation uses the information given for its process type.

A very similar structure when it comesto 1dNodes generated for block
typesand block instantiations are used by the code generator. Therewill
be aBlock1anode for both ablock type and for a block instantiation.
As sonsto a block type, nodes that are the same in each block instanti-
ation can be found (example: signal, newtype, syntype, block type, pro-
cess type, procedure). As sonsto a block instantiation, nodes that are
needs to be represented in each block instantiation can be found (exam-
ple: block instantiation, process instantiation, channel, signal route,
gate, remote definitions).

Note:

A block or process (according to SDL-88), that is contained in a
block type or a system type, istransated asif it was atype and in-
stantiation at the same place.

A way to look at the structure of 1dNodes in aparticular system isto
use the command Symboltable in the monitor system. This command
prints the TaNode structure as an indented list of objects.

Telelogic Tau 4.5 User's Manual July 2003

Allocating Dynamic Memory

Allocating Dynamic Memory

July 2003

Introduction

This section deals with the allocation and deallocation of dynamic
memory.

Note:

Thisinformation isonly valid when the Master Library isused. The
OS integrations might have different strategies for memory alloca
tion.

Information is provided about the following topics:

» Explanation about how dynamic memory is allocated and reused
(deallocation and avail lists)

* How to estimate the total need of dynamic memory for an applica-
tion.

Dynamic memory is used for anumber of objectsin arun-time model
for applications generated by the Cadvanced/Cbasic SDL to C Compil-
er. These objects are:

* Process instances
e Signal and timer instances
* Procedure instances

» Charstring, Octet_string, Bit_string, and Object_identifer variables
and variables of String, Bag, general Array, and general Powerset
types.

» Variablesof other user-defined datatypes, where the user has decid-
ed to use dynamic memory.

To help to estimate the need for memory for an application we will give
information about the size of these objects and about how many of the
objects are created. The size information given istrue for generated ap-
plications, that is, ones that do not, for example, contain the monitor.
The type definitions given are stripped of components that will not be
part of an application. The full definitions may be found in the file
scttypes.h.

Telelogic Tau 4.5 User's Manual 3033

Chapter 62 TheMaster Library

Processes

Each processinstanceisrepresented by two structsthat will beallocated
on the heap. In scttypes.h the type xLocalPIdrec isdefined andin
generated code yvDef ProcessName Structs are defined:
typedef struct {
xPrsNode PrspP;
} xLocalPIdRec;

typedef struct {

xPrsNode Pre;

xPrsNode suc;

int RestartAddress;
xPrdNode ActivePrd;

void (*RestartPAD) (xPrsNode VarP);
#ifndef XNOUSEOFSERVICE

xSrvNode ActiveSrv;
xSrvNode SrvList;

#endif
xPrsNode NextPrs;
SDL_PId Self;
xPrsIdNode NameNode ;
int State;
xSignalNode Signal;
xInputPortRec InputPort;
SDL_PId Parent;
SDL_PId Offspring;
int BlockInstNumber;
xSignalIdNode pREPLY Waited For;
xSignalNode PREPLY Signal;

/* variables and formal parameters in the
process */
} yVDef_ ProcessName;

To calculate the size of the structs above it is necessary to know more
about the components in the structs. The types xPrsNode, xPrdNode,
xSignalNode, xPrsIdNode, xStateIdNode, and xSignalIdNode are
al pointers, while sp1,_p1d isastruct containing an int and a pointer.
The xInputPortRec isastruct with two pointers and oneint.

Thismeansthat it ispossible to cal culate the size of the xL.ocalP1drec
and the xprsRrec struct using the following formulas, if the compiler
does not use any strange alignment rules:

S|ZexLocallPIdRec = gzeaddre&

S|ZexPrsRec =16: szeaddre& +7- S|Zeint

3034 Teldlogic Tau 4.5 User's Manual July 2003

Allocating Dynamic Memory

The size of xPrsRec can be reduced by 2 x sizeof (address) if the code
is compiled with the XNOUSEOFSERV ICE flag. Then, of course, the
SDL concept service cannot be used. The size of yvbef ProcessName
isthe size of the xprsrec plus the size of the variables and parameters
inthe process. Any overhead introduced by the C system should also be
added. The size of the formal parameter and variablesis of course de-
pendent on thedeclarationsin the process. Thetransation rulesfor SDL
types, both predefined and user defined, can befound in chapter 57, The
Cadvanced/Cbasic SDL to C Compiler.

For each process instance set in the system the following number of
structs of adifferent kind will be allocated:

» Therewill beonexrocalridrec for each processinstance created.
These structs will not be reused, as they serve asidentification of
process instances that have existed (see also optimizations below).

* Therewill beasmany yvbef ProcessName structs as the maxi-
mum concurrently executing process instances of the processin-
stance set (maximum during the compl ete execution of the pro-
gram).

The yvDef ProcessName Structs are reused by having an avail list
where this struct is placed when the process instance it represents per-
form astop action. Thereisone avail list for each processtype. When a
process instance should be created, the runtime library first looks at the
avail list and reuses anitem from the list. Only if the avail list is empty
new memory is allocated.

Compilation switch XPRSOPT
If the compilation switch xprsopT is defined then:

* xLocalPIdRecS are reused together with the xprsrecs.
* xLocalPIdRecS contain an additional int component.

July 2003 Telelogic Tau 4.5 User's Manual 3035

Chapter 62 TheMaster Library

Services

Services are handled very similar to processes. The following struct
type are alocated for each service instance.

typedef struct xSrvStruct {

xSrvNode NextSrv;

xPrsNode ContainerPrs;

int RestartAddress;
xPrdNode ActivePrd;

void (*RestartPAD) (xPrsNode VarP);
xSrvIdNode NameNode ;

int State;

XSIGTYPE PREPLY Waited For;
xSignalNode PREPLY Signal;

} xSrvRec;

This means that:

S|ZexSrvRec =7 Szea:ldress+ 2: S'Zeint

Thesizeof yvbef serviceName isthe size of the xSrvRec plusthe
size of thevariablesin the service. yvbef ServiceName struct arere-
used in the same way as for processes (see previous section).

Signals

Signals are handled in much the same way as processes. A signal in-
stance is represented by one struct (in generated code generated).

typedef struct {

xSignalNode Pre;
xSignalNode Suc;

int Prio;
SDL_PId Receiver;
SDL_PId Sender;
xIdNode NameNode ;

/* Signal parameters */
} yPDef SignalName;

Thisstruct type contains one component for each signal parameter. The
component types will be the trandated version of the SDL types of the
parameters.

Thismeansthat it is possible can calcul ate the size of axsignalrec,
which isthe same as a struct for asignal without parameters, using the
following formula:

Size

xSignalRec — S SzeaddrES-'- 3 S|Zeint

3036 Teldlogic Tau 4.5 User's Manual July 2003

Allocating Dynamic Memory

July 2003

Thesize of ayppef signalName Struct isthus equal to the size of the
xSignalRec plusthe size of the parameters. The translation rules for
SDL types, both the predefined and user defined, can be found in chap-
ter 57, The Cadvanced/Chasic SDL to C Compiler.

For each signal type in the system the following number of data areas
will be alocated:

e Therewill beasmany yppef SignalName Struct asthe maximum
number of signals (during the complete execution of the program)
of the signal type that are sent but not yet received in an input oper-
ation.

Theyppef SignalName Structisreused by having an avail list, where
the struct is placed when the signal instance they represent is received.
The exact point where the signal instance is returned to the avail list is
when thetransition caused by the signal instanceisended by anextstate
or stop action. Thereisone avail list for each signal type. When asignal
instance should be created, for example during an output operation, the
runtime library first looks at the avail list and reuses an item from this
list. Only if the avail list is empty new memory is allocated.

Note:
There is one common avail list for al signals without parameters.

Timers

The memory needed for timers can be calculated in the same way asfor
signals with one exception, each timer contains an extra spL,_Time
component, i.e. two extra 32-bit integers.

Telelogic Tau 4.5 User's Manual 3037

Chapter 62 TheMaster Library

3038

Procedures

Procedures and processes have much in common in terms of memory
alocation. A procedureis, during the time it exists from call to return,
represented by a struct; the yvDef ProcedureName.

typedef struct {
xPrdIdNode NameNode;

xPrdNode StaticFather;
xPrdNode DynamicFather;
int RestartAddress;

int (*RestartPRD) (xPrsNode VarP) ;
xSignalNode pREPLY Signal;
int State;

/* Formal parameters and variables */
} yVDef ProcedureName;

The struct type contains one component for each formal parameter or
variable. The component typeswill be thetranslated version of the SDL
types of the parameters, except for an IN/OUT parameter which is rep-
resented as an address.

The size of the xpPrdrec struct (which is the same as a procedure with-
out variablesand formal parameters) can be calculated using the follow-
ing formula:

Size

xPrdRec S Szeaddres"' 2: S|Zeint

The size of ayvpef ProcedureName Struct isthe size of the xprdrec
plusthe size of the formal parameter and variables defined in the proce-
dure. Thetrandation rulesfor SDL types, both the predefined and user
defined can be found in chapter 57, The Cadvanced/Cbasic SDL to C

Compiler.

For each type of procedure in the system the following number of data
areas will be allocated:

e Therewill be as many yvbef ProcedureName Structs as the maxi-
mum number of concurrent calls (during the compl ete execution of
the program) of the procedure. Concurrent calls occur both when a
procedure callsitself recursively within one process instance, and
when several process instances of the same process type calls the
same procedure during overlapping times.

The yvDef ProcedureName Struct isreused by having an avail list,
where this two struct is placed when the procedure instance executes a

Telelogic Tau 4.5 User's Manual July 2003

Allocating Dynamic Memory

July 2003

return action. Thereisone avail list for each procedure type. When a
procedure instance should be created, that is, at a call operation, the
runtime library first looks at the avail list and reuses an item in the list.
Only if the avail list is empty new memory is allocated.

Data types

The predefined SDL type charstring isimplemented as char * inC
and thus requires dynamic memory allocation. The predefined data
types Bit_string, Octet_string, and Object_identifier are also imple-
mented using dynamic memory.

The implementation of the SDL sorts Charstring, Bit_string,
Octet_string, and Object_identifier is both flexible in length and all
memory can be reused.

The mechanism used to release unused memory isto call the xFree
function in the file sctos . ¢, which uses the standard function free to
release the memory.

Charstrings, Bit_strings, Octet_strings, and Object_identifiers are a so
handled correctly if they are part of structs or arrays. When, for exam-
ple, anew valueisgiven to astruct having a charstring component, the
old charstring value will bereleased. For all structured types containing
any of these typesthere will also be arree function that is utilized to
release all dynamic memory in the structured variable.

Functions for Allocation and Deallocation

The allocation and deallocation of memory is handled by the functions
xAlloc and xFree in thefile sctos.c. Thefunctionsin thisfile are
used for the adoption of the generated applications to the operating sys-
tem or hardware. The sctos . ¢ fileisdescribed in detail in “ The sctos.c
File” on page 3071.

In generated code and in the run-time library the functions xa11oc and
xFree are used in each situation where memory is needed or can bere-
leased. xalloc receives as parameter arequested size in bytes and re-
turnsthe addressto adataareaof therequested size. All bytesinthedata
area are set to zero. xFree takes the address of apointer and returnsthe
data areareferenced by the pointer to the pool of free memory. It also
sets the pointer to 0.

Telelogic Tau 4.5 User's Manual 3039

Chapter 62 TheMaster Library

3040

The xalloc and xFree functions are usually implemented using some
version of the C standard functionsfor allocation (malloc, calloc) and
deallocation (free). Other implementations are of course possible as
long as the interface described in the previous section is fulfilled. Ina
micro controller, for example, it is probably necessary to handle aloca-
tion and deallocation directly towards the physical memory.

To prevent memory fragmentation we have used our own avail listsin
amost al circumstances. Memory fragmentation is phenomena occur-
ring when a program allocates and de-allocates data areas (of different
sizes) in some “random” order. Then small pieces of memory here and
there arelost, since their sizes are to small to fit an allocation request.
This can lead to aslowly increasing demand for memory for the appli-
cation.

Notethat deallocation of memory isonly used for datatypes. More spe-
cificit isused for variables of type:

Charstring

Octet_string

Bit_string

Object_identifier

Types created by String (not #STRING) and Bag generator

Types created by Array generator, if theindex typeis such that an
array in C cannot be used. (General array)

» Typescreated by Powerset generator, if the component type hasthe
has property as for the index type in general arrays.

Thismeans that if variables of the above mentioned types are not used
and the user has not introduced the need for deallocation of memory
himself, no memory deallocation will occur. Inthiscaseit is of course
unnecessary to implement the xrree function.

Itiseasy to trace the need for dynamic memory. As al memory alloca-
tionis carried out through the xa110c function and this function is
availablein source code (in sctos . c), itisonly necessary to introduce
whatever count statements or printout statements that are appropriate.

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

Compilation Switches

July 2003

The compilation switches are used to decide the properties of the M aster
Library and the generated C code. Both in the library and in generated
code #ifdefs are used to include or exclude parts of the code.

The switches that are used can be divided into four groups.

1. Switches defining properties of the compiler.

2. Switches defining alibrary version.

3. Switches defining a property of alibrary version.

4. Switches defining the implementation of a property.

Thefirst group will be discussed in “ Adaptation to Compilers’ on page
3069.

The following switches define the library version:

Switch Correspondsto Library
SCTDEBCOM Smulation

SCTDEBCLCOM Real TimeSmulation
SCTAPPLCLENV Application
SCTDEBCLENVCOM ApplicationDebug

(Simulation with environment)

SCTPERFSIM PerformanceSimulation
(Library with simulated time, no environ-
ment functions, no monitor.)

The definition of the properties of these libraries can be found in
scttypes.h and will be discussed below. Each library versionis spec-
ified by the switches in the group property switches that it defines.

New library versions, containing other combinations of property
switches, can easily be defined by introducing new library definitionsin
the scttypes.hfile

The property switches discussed below can be used to form library ver-
sions. If not stated otherwise for a certain property, all code, variables,

struct components, and so on, are either included or excluded using con-
ditional compiling (#ifdef), depending on whether the property isused
or not.

Telelogic Tau 4.5 User's Manual 3041

Chapter 62 TheMaster Library

3042

This means, for example, that all code for the monitor interface will be
removed in an application not using the monitor, which makes the ap-
plication both smaller and faster.

Description of Compilation Switches

XCLOCK

If this compilation switch is not defined then simulated timeis used,
otherwisethe system timeis connected to areal clock, viathe sctos.c
function spL_clock.

XCALENDARCLOCK

Thisisthe sameasxcrock (it will actualy define xcr.ock), except that
if xcnock isused, timewill be zero at system start up, whileif xcarLeN-
DARCLOCK iS used, time will be whatever the clock returns at system
start up.

XPMCOMM

Define this compilation switch if the application should be able to com-
municate with signals viathe SDL suite communication mechanism.
Thisfacility isused to accomplish communicating simulations and sim-
ulations communicating with, for example, user interfaces.

XITEXCOMM

Thisswitch should be defined if agenerated simulator should be ableto
communicate witha TTCN simulator.

XENV

If this compilation switch is defined the environment functions
xInitEnv, xCloseEnv, xInEnv, and xoutEnv Will be called at appro-
priate places.

XTENV

Thisisthe same as xenv (it will actually define xenv), except that
xInEnv should return atime value which is the next time it should be
called (avalue of type sp1._Time). The main loop will call xInEnv at

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

thefirst possible occasion after the specified time has expired, or when
the SDL system becomesidle.

XENV_CONFORM_2_3

This switch make signals using a compatible data structure asin SDT
2.3. Thismeans that an extra and unnecessary component yvarp isin-
serted in each signal.

XSIGLOG

Thisfacility makesit possiblefor auser to implement hisown log of the
major eventsin the system. This compilation switch is normally not de-
fined. By defining this switch, each output of asignal, i.e. each cal of
the function spr._output, will result in acall of the function
xSignalLog. Each time atransition is started, the function
xProcessLog Will be called.

These functions have the following prototypes:

extern void xSignalLog
(xSignalNode Signal,

int NrOfReceivers,
xIdNode * Path,
int PathLength) ;

extern void xProcessLog
(xPrsNode P) ;

which areincluded in scttypes.hif xs1cLoG is defined.

signal Will be apointer to the data area representing the signal in-
stance.

NrofReceivers Will indicate the success of the output according to the
following table:

NrOfReceivers | Output Statement Contents

-1 A TO clause, but no path of channels and signal
routes were found between the sender and the re-
ceiver.

0: No TO clause, and no possible receivers were

found in the search for receivers.

July 2003 Telelogic Tau 4.5 User's Manual 3043

Chapter 62 TheMaster Library

NrOfReceivers | Output Statement Contents

1 If the output statement containsa TO clause, a
path of channels and signal routes was found be-
tween the sender and the receiver.

If the output statement contains no TO clause, ex-
actly one possible receiver was found in the
search for receivers.

The output wasthus successful. The only error sit-
uation that still might be present isif an output
with aTO clauseis directed to a process instance
that is stopped.

The third parameter, path, isan array of pointer to 1dNodes, where
path[0] refersto the tdnNode for the sending process, path [1] refers
to thefirst signal route (or channel) in the path between the sender and
the receiver, and so on, until Path [PathLength] Which refersto the
1dNode for the receiving process.

The parameter p in the xProcessLog function will refer to the process
just about to start executing.

Thefourth parameter, Pat hL.ength, represents thus the number of com-
ponentsin the path array that are used to represent the path for the sig-
nal sent in the output. If the signal is sent to or from the environment,
either path[0] Or Path [PathLength] Wwill refer to xEnvid, that isto
the 1dNode for the environment process.

In the implementation of the xsignalLog and xProcessLog functions
which should be provided by the user, the user has full freedom to use
theinformation provided by the parametersin any suitable way, except
that it is not possible to change the contents of the signal instance. The
functions are provided to makeit possiblefor auser to implement asim-
plelog facility in environments where standard 10 is not provided, or
where the monitor system istoo slow or too large to fit. A suitable im-
plementation can be found in thefile sctenv.c

XTRACE

If this compilation switch is defined, traces of the execution can be
printed.

3044 Teldlogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

Thisfacility isnormally used together with the monitor, but can also be
used without the monitor. The file stdout must of course be available
for printing.

Setting trace values must, without the monitor, be performed in includ-
ed C code, as the monitor interface is excluded. The trace components
arecalled Trace Default and can befound in IdNodes representing
system, blocks, and processes, and in the struct xprsrec used to repre-
sent a process instance. The values stored in these components are the
values given in the Set-Trace command in the monitor. The value unde-
fined is represented by -1.

When the monitor is excluded al trace values will be undefined at star-
tup, except for the system which has trace value 0. This means that no
traceis active at start up.

Example 492

Suitable statements to set trace valuesin C code:

xSystemId->Trace_Default = value;
/* System trace */
XPrsN_ProcessName->Trace_Default = value;
/* Process type trace */
PId Var.LocalPId->PrsP->NameNode->Trace_ Default =
value
/* Process type trace */
PId Var.LocalPId->PrsP->Trace Default = value;
/* Process instance trace */

pId var isassumed to be avariable of type p1d.

Note:

Note that the variable xPrsN_ProcessName is declared, and there-
fore only available, in the file containing the block where the pro-
cessisdefined (and in files representing processes contained in the
block).

XGRTRACE

If this compilation switch isdefined it is possible for asimulation to
communicate with the Organizer and the SDL Editor to highlight SDL
symbols in the graphical representation.

Telelogic Tau 4.5 User's Manual 3045

Chapter 62 TheMaster Library

3046

Thisfeature is used together with the monitor to implement graphical
trace and commands like Show-Next-Symbol and
Show-Previous-Symbol. It is possible to use graphical trace without the
monitor in the same way as the ordinary trace (substitute
Trace_Default With GRTrace in the description above). However the
graphical traceis synchronized which meansthat the speed of the appli-
cation is dramatically reduced.

XCTRACE

Defining this compilation switch makes information available to the
monitor about wherein the source C code the execution is currently sus-
pended. Thisfacility, which is used together with the monitor, makesit
possible to implement the monitor command Show-C-Line-Number.

XMONITOR

If this compilation switch is defined, the monitor system isincluded in
the generated application.

XCOVERAGE

This compilation switch makesit possible to generate coverage tables.
It should be used together with xMONTTOR.

MAX_READ_LENGTH

Thismacro controlsthe length of thechar * buffersused to read values
of SDL sorts. A typical usage is when the monitor commands
Assign-Valueisentered. If large datatypes are used, it is possible to re-
define the sizes of the buffers from their default size (10000 bytes) to
something more appropriate.

XSIMULATORUI

This compilation switch should be defined if the generated simulator is
to be executed from the Graphical User Interface to the simulator mon-
itor.

XMSCE

This compilation switch should be defined if the generated simulator
should be able to generate M essage Sequence Charts.

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

XSDLENVUI

This compilation switch should be defined if it should be possible to
start and communicate with a user interface (or another application)
from the simulation. Thisfeature should be used together with the mon-
itor and will define the switch xpmcomm (see also this switch).

XNOMAIN

When this compilation switch is defined the functions main and
xMainLoop areremoved using conditional compiling. Thisfeatureisin-
tended to be used when a generated SDL application should be part of
an aready existing application, that is when the SDL system imple-
ments anew function in an existing environment. The following func-
tionsare available for the user to implement scheduling of SDL actions:

extern void xMainInit (

void (*Init_System) (void)
#ifdef XCONNECTPM

,int argc,

char *argv/[]
#endif

)i

#ifdef XNOMAIN
extern void SDL_Execute (void) ;

extern int SDL_Transition Prio (void);
extern void SDL_ OutputTimer (void) ;
extern int SDL_Timer Prio (void) ;

extern SDL Time SDL_Timer Time (void);
#endif

The behavior of these functions are as follows:

xMainInit: Thisfunction should becalledtoinitialize the SDL system
beforeany other functionintheruntimelibrary iscalled. An appropriate
way to cal xMainInit is:

#ifdef XCONNECTPM

XMainInit (yInit, argc, argv);
#else

xXMainInit (yInit) ;

#endif

Telelogic Tau 4.5 User's Manual 3047

Chapter 62 TheMaster Library

3048

The compilation switch xconnecTeM will be defined if the any switch
that requires communication viathe SDL suite communication mecha-
nism is defined (xPMCOMM OF XGRTRACE).

SpL_Execute: Thisfunction will execute one transition by the process
instance first in the ready queue.

Before calling this function it must be checked that therereally is at
least one processinstancein theready queue. Thistest can be performed
using the function spL, Transition Prio discussed below.

SDL_Transition Prio: Thisfunction returnsthe priority of the pro-
cessfirstintheready queue (if signal prioritiesare used it isthe priority
of the signal that has caused the transition by the actual processin-
stance). If the ready queueis empty, -1 is returned.

SDL_outputTimer: Thisfunction will execute one timer output and
may only be called if thereis atimer ready to perform atimer output.
Thistest can be performed with either spr, Timer Prio oOr
SDL_Timer Time described below.

SDL_Timer Prio: Thisfunction returnsthepriority of thetimer firstin
the timer queueif the timer time has expired for thistimer. That is, if
Now isgreater than or equal to thetime given in the set statement for
the timer.

If the timer queue is empty or the timer time for the first timer has not
expired, -1 will be returned.

If signal prioritiesare used, the priority returned isthe priority assigned
to the timer type (in the timer definition) or the default timer priority;
whileif process prioritiesare used the priority returned isthe priority of
the process that has set the timer.

SDL_Timer Time: Thisfunction returnsthetime given in the set state-
ment for the first timer in the timer queue. If the timer queue is empty,
the largest possible time value (xSysD. xMaxTime) iS returned.

Depending on how the SDL system isintegrated in an existing environ-
ment it might be possibleto also usethe monitor system. Inthat casethe
function xcheckMonitors should be called to execute monitor com-
mands.

extern void xCheckMonitors (void) ;

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

To give some idea of how to use the functions discussed above, an ex-
ample reflecting the way the internal scheduler in the runtime library
works is given below:

Example 493

while (1) {
#ifdef XMONITOR
xCheckMonitors () ;
#endif
if (SDL_Timer Prio() >= 0)
SDL_OutputTimer () ;
else if (SDL Transition Prio() >= 0)
SDL_Execute() ;

XMAIN_NAME

Sometimes when integrating generated application or simulationsin
larger environmentsthe main function can be useful but cannot havethe
name main. This name can be changed to something else by defining
the macro xMaIN_NaME. The main function came be found in the file
sctsdl.c.

XSIGPRIO

Thexs1ieprIo compilation switch definesthat prioritieson signals (set
in Output statements) should be used. This switch and the three other
switches for priorities given below are, of course, mutually exclusive.

A signal priority is specified with a priority directive (see “Assigning
Priorities — Directive #PRIO” on page 2667 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler, that is by a comment with the fol-
lowing outline:

/*#PRIO 5 */.

A priority can be assigned to asignal instancein an output statement by
putting a#PRIO directive last in the output symbol. In SDL/PRitis
possible to put the #PRIO directive both immediately before and imme-
diately after the semicolon ending the output statement. The Cad-
vanced/Chasic SDL to C Compiler will first look for #PRIO directives
in the output statement. If no directive isfound thereit will 1ook in the
signal definition for the signal for apriority directive. A #PRIO direc-

Telelogic Tau 4.5 User's Manual 3049

Chapter 62 TheMaster Library

3050

tive should be placed directly befor e the comma or semicolon ending
the definition of the signal.

Example 494

SIGNAL
S1 /*#PRIO 3 */,
S2 (Integer) /*#PRIO 5 */;

If no priority directive isfound in the output symbol or in the definition
of the signal, the default value for signal priority isused. Thisvalueis
100. Timers can be assigned prioritiesin timer definitions in the same
way as signalsin signal definitions.

The signal priorities will be used to sort the input port of processin-
stancesin priority order, so that the signal with highest priority (lowest
priority value) isat thefirst position. Two signalswith same priority are
placed in the order they arrive. The priority of the signal that can cause
the next transition by a processinstance is used to sort the ready queue
in priority order, so that the process with asignal of highest priority is
first. With equal priority, the processes are placed in the order they are
inserted into the ready queue. If acontinuous signal caused a processes
to be inserted into the ready queue, it is the priority of the continuous
signal that will be used as signal priority for this“signal”.

Note that a start transition also have a“signal priority”. Thisis by de-
fault also 100 and is set by the macro xpefaultPrioCreate described
below.

Caution!

Signal priority isnotincluded in SDL according to ITU Recommen-
dation Z.100, and that sorting the signals in the input port of a pro-
cess instance according to prioritiesis adirect violation of the SDL
standard. Thisfeature is however included for users that need such
abehavior to implement their applications.

XPRSPRIO

This compilation switch defines that process priorities should be used.
For moreinformation see chapter 57, The Cadvanced/Cbasic SDL to C
Compiler, section Assigning Priorities - Directive #PRIO.

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

XSIGPRSPRIO

Thiscompilation switch definesthat priorities on signal s should be used
asfirst key for sorting in priority order, and process priorities should be
used as second key.

XPRSSIGPRIO

This compilation switch defines that process priorities should be used
asfirst key for sorting in priority order, and priorities on signals should
be used as second key.

xDefaultPrio...

It is possibleto redefine the default prioritiesfor processes, signals, tim-
er signals, continuous signals and start-up signals by defining the sym-
bols below to appropriate values. The default value for these defaults
are 100.

xDefaultPrioProcess
xDefaultPrioSignal
xDefaultPrioTimerSignal
xDefaultPrioContSignal
xDefaultPrioCreate

XOPT

This compilation switch will turn on full optimization (except
XOPTCHAN), that is, it will define the following switches:

XOPTSIGPARA XOPTDCL
XOPTFPAR XOPTSTRUCT
XOPTLIT XOPTSORT

For more information, see these switches below. The xopT switches
should not be used together with the monitor.

XOPTSIGPARA

In the symbol table tree (see section “ Symbol Table Tree Structure” on
page 2954) there will be one node for each parameter to asignal. These
nodes are not necessary in an application and can be removed by defin-
ing the compilation switch XOPTSIGPARA.

Telelogic Tau 4.5 User's Manual 3051

Chapter 62 TheMaster Library

3052

XOPTDCL

Therewill beavar1idnode inthe symbol tabletreefor each variable de-
clared in processes, procedures, or operator diagram. These nodes are
not used in an application (without the monitor) and can be removed by
defining the compilation switch xopTDCL.

XOPTFPAR

Therewill be avar1dnode in the symbol tabletree for each formal pa-
rameter in aprocesses, procedures, or operator diagram. Thesenode are
not used in an application and may be removed by defining the compi-
lation switch xopTFPAR.

XOPTSTRUCT

For each component in an SDL struct there will be one var1dnode de-
fining the properties of thiscomponent. These var1dNodes arenot used
in an application and can be removed by defining the compilation
switch XOPTSTRUCT.

XOPTLIT

For each literal in a newtype that will be translated to an enum type,
there will be an Lit 1dNode representing the literal. These nodes will
not be used in an application and can be removed by defining the com-
pilation switch XxOPTLIT.

XOPTSORT

Each newtype and syntype, including the SDL standard types, will be
represented by an sort IdNode. These nodes are not used in an applica
tionif all the other xopT. .. mentioned above are defined.

XNOUSEOFREAL

Defining this compilation switch will remove all occurrences of C
float and double types, and means for example that the SDL type
Real is no longer available.

This switch isintended to be used in situations when it isimportant to
save space, to seeto that the library functions for floating type opera-
tionsare not necessary toload. It cannot handle situationswhen the user
includes floating type operations in C code, for example #CODE direc-
tives. Another consideration is if BasicCTypes.pr, or other ADTSs, are

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

included in the system. If so, it isrequired that types dependent on SDL
Real be removed from these packages.

XNOUSEOFOBJECTIDENTIFER

Defining this switch will remove al code for the SDL predefined sort
Object_identifier.

XNOUSEOFOCTETBITSTRING
Defining this switch will remove all code for the SDL predefined sorts
Bit_string, Octet, and Octet_string.

Special consideration needs to be taken if BasicCTypes.pr, or other
ADTs, are included in the system. If so, it isrequired that types depen-
dent on these types be removed from these packages.

XNOUSEOFEXPORT

By defining this switch the user states that he is not going to use the ex-
port - import concept in SDL.

Caution!

An attempt to perform an import operation when
XNOUSEOFEXPORT isdefined will result in acompilation error,
as the function xGet ExportaAddr is not defined.

XNOUSEOFSERVICE

This compilation switch can be defined to save space, both in data and
in the size of the kernel, if the SDL concept serviceis not used. If ser-
vices are used and this switch is defined, there will be compilation er-
rors (probably many!), when the generated code is compiled.

XPRSOPT

Section “ Create and Stop Operations’ on page 3007 describes how
xLocalPIdRec Structsare alocated for each created process instance,
and how these structs are used to represent process instances even after
they have performed stop actions. This method for handling
xLocalPIdRecs iSrequired to be ableto detect when asignal issent to
a process instance that has performed a stop operation.

Telelogic Tau 4.5 User's Manual 3053

Chapter 62 TheMaster Library

3054

Inan application that isgoing to run for a“long” period of time and that
uses dynamic processes instances, this way of handling
xLocalPIdrecs Will eventually lead to no memory being available.

By defining the compilation switch xprsopT, the memory for the
xLocalPIdrecs Will bereused together the yvpef ProcessName
structs. This has two consequences.

1. Theneed for memory will not increase due to the use of dynamic
processes (the memory need depends on the maximum number of
concurrent instances).

2. It will nolonger be possible to always find the situation when asig-
nal is sent to a process instance that has performed a stop action.

More precisely, if we have aPld variable that refersto a processin-
stance which performs a stop operation and after that a create operation
(on the same process instance set) is performed where the same data
areais reused, then the Pid variable will now refer to the new process
instance.

This means, for example, that signalsintended for the old instance will
be sent to the new instance. Note that it is still possible to detect signal
sending to processes in the avail list even if xprsopT is defined.

XOPTCHAN

This switch can be used to remove all information about the paths of
channels and signal routes in the system. The following memory opti-
mization will take place:

e Thetwo channelIdNodes for each channel, signal route, and gate
are removed.

* TheToId componentinthexprrsIdNodes representing processesis
removed.

* A number of functionsinthelibrary (sctsdl.c) arenolonger need-
ed and are removed.

When the information about channels, signal routes, and gatesis not
present two types of calculations can no longer be performed:

1. Tocheckif thereisapath of channelsand signal routes between the
sender and the receiver inan OUTPUT statement witha TO clause.

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

Thisisno problem as thisisjust an error test that we probably do
not want to be performed in an application.

2. To calculate the receiver in an OUTPUT without TO clause, if the
Cadvanced/Chasic SDL to C Compiler has not performed this cal-
culation at generate time (see Calculation of Receiver in Outputs’
on page 2585 in chapter 57, The Cadvanced/Cbasic SDL to C Con+
piler). Thisismore serious, asit meansthat OUTPUT without TO
cannot alwaysbe used. Therestrictionsare:

— Nooutputswithout to in processtypes, or in processin block or
system types.

— Nooutputswithout to, designated to aprocessin aSEPARATE
unit.

Caution!

If the xorTCcHAN switch is defined and still OUTPUT without TO
clause are used (which the Cadvanced/Chasic SDL to C Compiler
cannot optimize), there will be a C compilation error saying that the
name xNotDefPId is not defined.

Inanordinary SDL system OUTPUTswithout TO must be used to start
up the communication between different parts of the system, asthereis
no other way in SDL to distribute the Pid values needed for OUTPUTs
with TO.

Thisproblemissolvedif the Cadvanced/Chasic SDL to C Compiler can
calculatethereceiver. Otherwisethe datatype p1drist inthelibrary of
abstract datatypesisintended to solve this problem. It is described in
chapter 63, The ADT Library. When this datatype is used, globa Pid
literals my be introduced, implemented as SDL synonyms. These liter-
als can then be used to utilize OUTPUT statements with TO clauses
from the very beginning.

X_LONG_INT

The SDL sort Integer istranslated to int in C. To trandlate the Integer
sort to long int instead, just define the compilation switch x_L.oNg INT.

Telelogic Tau 4.5 User's Manual 3055

Chapter 62 TheMaster Library

3056

XENVSIGNALLIMIT

If this switch is defined, only alimited number of signalswill be stored
in the input port of the Env function. The limit is equal to the value de-
fined for xenvsteNaLLIMIT and is hormally set to 20.

XEALL

Thisswitch will defineall error handling switches (XE...) and XxASSERT
given below.

XECREATE

This switch will report if theinitial number of instances of a process
type is greater than the maximum number.

XECSOP
This switch will report error situationsin ADT operator.

XEDECISION
This switch will report if no path out from a Decision is found.

XEEXPORT
This switch will report errors during Import actions.

XEFIXOF

This switch will report overflow when an SDL Real valueis converted
to an SDL Integer value using the operator Fix.

XEINDEX
This switch will report value out of range for array index.

XEINTDIV
This switch will report division by zero in an integer division.

XEOUTPUT
This switch will report errors during Output operations.

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

XERANGE

This switch will report range errors when avalue is assigned to a vari-
able of asort containing range conditions.

XEREALDIV
This switch will report division by zeroin areal division.

XEVIEW
This switch will report errorsin View operations

XECHOICE

Thisswitch will turn on error reports when accessing non-active choice
components.

XEOPTIONAL

This switch will turn on error reports when accessing non-present op-
tional struct components.

XEUNION

This switch will turn on error reports when accessing non-active union
components.

XEREF, XEOWN

These switches turn on error checking on pointers (generator Ref and
Own).

XASSERT

By defining this switch the possibility to define user assertionswhichis
described in “Assertions’ on page 2127 in chapter 50, The SDL Smula-
tor.

XTRACHANNELSTOENV

When using partitioning of asystem aproblem during the redirection of
channelsisthat the number of channels going to the environment is not
known at code generation time, which means that the size of the data

Telelogic Tau 4.5 User's Manual 3057

Chapter 62 TheMaster Library

3058

area used for the connections is not known. This problem is solved in
two ways.

Either the function handling redirections allocatesmore memory, which
isthe default, or the user specifies how many channels that will be redi-
rected (which could be difficult to compute, but will lead to less need of
memory).

In thefirst case (allocation of more memory) the macros:
#define XTRACHANNELSTOENV O

#define XTRACHANNELLIST
should be defined like above. Thisis the standard in scttypes.h. If the
user wants to specify the number of channels himself then

#define XTRACHANNELSTOENV 10

#define XTRACHANNELLIST ,0,0,0,0,0,0,0,0,0,0
i.6. XTRACHANNELSTOENV should be the number of channels, while
XTRACHANNELLIST should be alist of that many zeros.

XDEBUG_LABEL

It isfor debugging purposes sometimes of interest to introduce extrala-
bels. The macro xpEBUG LABEL isinserted in the code for each input
symbol. Asmacro parameter it hasanamewhich isthe name of the state
concatenated with an underscore concatenated with the signal name.

Example 495

state Statel; input Sigl;

state State2; input *;

state *; input Sig2;
In the generated code for these input statements the following macros
will be found:

XDEBUG_LABEL (Statel_Sigl)

XDEBUG_LABEL (State2 ASTERISK)
XDEBUG_LABEL (ASTERISK Sig2)

A suitable macro definition to introduce label would be:

#define XDEBUG LABEL(L) L: ;

To usethese label the usage of SDL must berestricted in one area. The
same state may not receive two different signals with the same name!
Thisisallowed and handled by the SDL suite. The signal haveto be de-

Telelogic Tau 4.5 User's Manual July 2003

Compilation Switches

July 2003

fined at different block or system level and the outermost signal must be
referenced with a qualifier.

XCONST, XCONST_COMP

Using these compilation switches most of the memory used for the
Idstructs can be moved from RAM to ROM. This depends of course
on the compiler and what propertiesit has.

The following macro definitions can be inserted:

#define XCONST const
#define XCONST COMP const

Thiswill introduce const in the declaration of most of the 1dstructs.
It isthen up to the compiler to handle const.

The XCONST_COMP macro is used to introduce const on components
within astruct definition. Thisisnecessary for some compilersto accept
const on the struct as such.

If const issuccessfully introduced, thereisalot of RAM memory that
will be saved, as probably 90% of the data areafor 1dstructs can be
made const.

Compilation Switches — Summary

The property switches are in principle independent, except for the rela
tions given in the descriptions above, and it should always be possible
to any combination.

The number of combinationsis, however, so huge that it isimpossible
for usto even compile all combinations. If you happen to form acom-
bination that does not work, please et us know, so that we either can
correct the code, or, if that isnot possible, publish awarning against that
combination.

The switches defining a standard library version will define the follow-
ing property switches:

Telelogic Tau 4.5 User's Manual 3059

Chapter 62 TheMaster Library

SCTDEBCOM SCTDEBCLCOM
XPRSPRIO XCLOCK
XPARTITION XPRSPRIO
XEALL XPARTITION
XMONITOR XEALL
XTRACE XMONITOR
XCTRACE XTRACE
XMSCE XCTRACE
XCOVERAGE XMSCE
XGRTRACE XCOVERAGE
XPMCOMM XGRTRACE
XSDLENVUI XPMCOMM
XITEXCOMM XSDLENVUI
XSIMULATORUI XSIMULATORUI
SCTAPPLCLENV SCTDEBCLENVCOM
XCALENDARCLOCK XCALENDARCLOCK
XENV XPRSPRIO
XPRSPRIO XPARTITION
XOPT XENV
XPRSOPT XPRSOPT
XEALL
XMONITOR
XTRACE
XCTRACE
XMSCE
XCOVERAGE
XGRTRACE
XPMCOMM
XSDLENVUI
XSIMULATORUI
SCTPERFSIM
XEALL
XPRSPRIO

The lowest layer of switches (that handle the implementation details)
are set up using the three layers above. These switches will not be dis-
cussed here. Please refer to the source code files scttypes.h and

sctsdl. c for more details.

3060 Teldlogic Tau 4.5 User's Manual July 2003

Creatinga New Library

Creating a New Library

July 2003

Caution!

If you create new versions of the library, make sure that the library
and the generated code are compiled with the same compilation
switches. If not, you might experience any type of strange behavior
in the generated application!

This section describes how to generate anew library. The following
topics are covered:

e Thedirectory structure for source and object code.

e Thesdtsct.knl file, which determineswhat librariesthe Analyzer
knows about, that is, what libraries that will be shown when Gener-
ate-Optionsis selected.

* Thecomp.opt fileand themakeoptions (make.opt in Windows)
file, which determines the properties of an object code library.

e ThemakefileMakefile, which includesthe makeoptions
(make .opt) file and generates a new object code library with the
properties given by the included makeoptions (make.opt) file.

» Therelations with the generated make files for SDL systems will
also be discussed.

Directory Structure

The structure of files and directories used for the Cadvanced/Cbasic
SDL to C Compiler librariesis shown in Figure 552 The directory sdt -
dir isintheinstallation:

<installation directory>/sdt/sdtdir/<machine
dependent dirs

where <machine dependent dir> isfor example sunosssdtdir on
SunOS5, hppasdtdir onHP, andwini3se in Windows. (In Windows,
/ should be replaced by \ in the path above.)

Thisdirectory is here called sdtdir and isin UNIX normally referred to
by the environment variable sdtdir.

Telelogic Tau 4.5 User's Manual 3061

Chapter 62 TheMaster Library

3062

sdtdir
R sdtdir
predef.sdl
INCLUDE sdtsct.knl
scttypes.h help_sct.hip sctdir
sctlocal.h / \ /
sdt.h /
post.h SCTDEBCOM More libraries
dil.h comp.opt
post.o/post.lib makeoptions / make.opt
sctsdl.c
sctutil.c
sctpost.c
sctpred.c
sctpred.h
sctmon.c
sctos.c
sctenv.c

Figure 552: Directory structure

“sctdir” is areference to an object library and is usually setup as a pa-
rameter in the call to make. It can also be an environment variable.

In the satdir directory three important files are found:

3. predef.sdl containsthe definition of the predefined sortsin SDL.

4. sdtsct.knl containsalist of theavailablelibrariesthat can be used
together with code generated by the Cadvanced/Chasic SDL to C

Compiler.

5. help sct.hlp containsthe help information that can be obtained
using the monitor command help.

Thefilepredef.sdl isread by the SDL Analyzer during analysis,
whilethefile sdtsct .knl isused to present the available librariesin
the Make dialog in the Organizer (see “Make” on page 119 in chapter

2, The Organizer).

Telelogic Tau 4.5 User's Manual

July 2003

Creatinga New Library

July 2003

In the IncLUDE directory, there are two important groups of files:

1. The source code filesfor the runtime library:
scttypes.h, sctlocal.h, sctsdl.c, sctutil.c,
sctpost.c, sctpred.h, sctpred.c, sctmon.c, sctos.c
and sctenv.c

2. Thefilesnecessary to include communication with other SCT appli-
cations: post .h, post.o (post.lib in Windows), sdt.h,
itex.h.

Inparallel withthe 1ncLUDE directory there are anumber of directories
for librariesin object form. The scTpeBcoMm directory in Figure 552 is
an example of such adirectory. Each of these directories will contain
threefiles: comp . opt, makeoptions (make.opt in Windows).

The comp . opt file determines the contents of the generated makefile
and how makeis called. For more details see below.

Themakeoptions (make.opt) file describesthe properties of the li-
brary, such as the compiler used, compiler options, linker options, and
So on.

To guarantee the consistency of, for example, compilation flags be-
tween the SDL system and the kernel, the makeoptions (make.opt)
fileisused both by the make file compiling the library (Makefile) and
by the generated make files used to compile the generated SDL system.
Non-consistency in this sense between the library and the SDL system
will make the result unpredictable.

File sdtsct.knl

The sdtsct . knl file describes which libraries that are available. This
is presented by the Organizer in the Make dialog see “Make” on page
119 in chapter 2, The Organizer). The sdtsct .knl file has the follow-
ing structure. Each available library is described on aline of its own.
Such aline should first contain the name of the library (the name pre-
sented in the dialog), then the path to the directory containing the li-
brary, and last a comment up to end of line.

Thepath to thelibrary can either bethe complete path or arelative path.
A relative path is relative to the environment variable sdtdir (on
UNIX) or sDTDIR (in Windows), if that variableis defined. Otherwise
it isrelative to the SDL suiteinstallation.

Telelogic Tau 4.5 User's Manual 3063

Chapter 62 TheMaster Library

Example 496
Simulation SCTDEBCOM
RealTimeSimulation SCTDEBCLCOM
Application SCTAPPLCLENV
ApplicationDebug /util/sct/SCTDEBCLENVCOM
ApplicationDebug x:\sdt\sdtdir\dbclecom
MyTestLibrary ..\testlib\dbcom

Not that the two last lines is examples for Windows, while the fourth
lineisfor UNIX.

The Organizer will look for an sdtsct . kn1 filefirstinthedirectory the
SDL suiteis started from, then in the home directory for the user, and
then in the directory referenced by the environment variable sdatdir
(sprp1r) if it isdefined, and in the directory where the SDL suite was
installed.

File Makefile

In each directory that containsalibrary versionthereisamakefile that
can “make” thelibrary. To create anew library after an update of the
source code, change directory to the directory for the library and exe-
cutethe Makefile. The Makefile usesthe makeoptions
(make.opt) fileinthedirectory to get the correct compilation switches
and other relevant information.

Caution!

Do not generate and test libraries in the installation directory struc-
ture. Create an appropriate copy.

Note:

Theenvironment variables(if used) sdtdir (SDTDIR) andsctdir
(scTDIR) heed not necessarily refer to directoriesin theinstallation
directory. Any directory containing the relevant files may be used.

File comp.opt

Thisfile determines the details of the generated make files, and the
command issued to execute the makefile. A comp.opt file contains zero,

3064 Teldlogic Tau 4.5 User's Manual July 2003

Creatinga New Library

oneor moreinitia linesstarting with a#. Theselines aretreated as com-
ments. After that it contains five lines of essential data.

* Line 1: How to include the makeoptions (make.opt) file

* Line2: Compile script

e Line3: Link script

* Line4: Command to run make

» Line5: How to build alibrary (archive). Used for coders/decoders.

On each of these lines % codes can be used to insert specific informa-
tion.

Onall fivelines:

newline

tab

target directory

source directory

kernel directory

base name of generated executable (no path, no
file extension). NOT on line 2 or 5.

On line 2, the compile script:

o\° o\ o\° o\® o\° o\
A0 QB

c ¢ file in compile script
C : ¢ file in compile script, without extension
o resulting object file in compile script

o\° o° o\

On line 3, the link script:

o list of all object files in link script

O : list of all object files in link script, with
\ followed by newline between files

%e : executable file in 1link script

On line 4, the make command:

o o

$m : name of generated makefile
On line 5, the archive command:
list of object files, i.e. $(sctCODER_OBJS) .

the archive file, i.e.
libstcoders (sctLIBEXTENSION)

o° o

)
a

Example 497: comp.opt file for UNIX

makefile for unix make

include $(sctdir)/makeoptions

%tS (sctCC) $(sctCPPFLAGS) $(SctCCFLAGS) S (sctIFDEF) %c -o %o
t (sctlD) $(sctLDFLAGS) %o -o %e

make -f %m sctdir=%k

%tS$ (sctAR) $ (sctARFLAGS) %a %o

July 2003 Telelogic Tau 4.5 User's Manual 3065

Chapter 62 TheMaster Library

3066

File makeoptions / make.opt
Thisfile has the following structure:

Example on UNIX:

4

sctLIBNAME = Simulation

sctIFDEF = -DSCTDEBCOM
SctEXTENSION = smd.sct
SCtOEXTENSION = _smd.o
SctLIBEXTENSION= smd.a

SCtKERNEL = $(sctdir)/../INCLUDE
sct CODERDIR = $(sctdir)/../coder

#Compiling, linking

sctCC = cc

SCtCODERFLAGS = -I$(sctCODERDIR)

sctCPPFLAGS = -I. -I$(sctKERNEL) $ (sctCODERFLAGS)
$ (sct COMPFLAGS) $ (sctUSERDEFS)

sctCCFLAGS = -c -Xc

sctLD = cc

sctLDFLAGS =

sctAR = ar

sctARFLAGS = rcu

all : default

below this point there are a large number of

compilation rules for compiling the Master Library
and the Coder library (used for encoding/decoding)
The following name of any importance are defined:
SCctLINKKERNEL =

sct LINKKERNELDEP =

sctLINKCODERLIB =

sct LINKCODERLIBDEP =

The information to the right of the equal signs should be seen as an ex-
ample. These environment variables set in the makeoptions
(make . opt) file should specify:

sctLIBNAME. Thisisonly used by themMakefile toreport whatitis
doing.

sctIFDEF. Thisvariableshould specify what compilation switches,
among those defined by the Cadvanced/Cbasic SDL to C Compiler
system, that should be used. Usually thereisone switch defining the
library version.

Telelogic Tau 4.5 User's Manual July 2003

Creatinga New Library

July 2003

sctEXTENSION. Thisisused to determine the file extension of the
executablefiles.

sctOEXTENSION. Thisisused to determinethefile extension of the
object files.

SctLIBEXTENSION. The extension of the archive/library
sctKERNEL. Directory of Master Library source code.

sctCODERDIR. The directory for the source code of the coders/de-
coders.

sctce. This defines the compiler to be used.

sctCODERFLAGS. Compilation options needed to compile the cod-
er/decoder files

sctcpPFLAGS. Thisvariable should give the compilation flag nec-
essary to specify where the C preprocessor can find theincludefiles
scttypes.h, sctlocal.h, sctpred.h, sdt.h, and post .h.

sctccFLAGS. This should specify other compiler flags that should
be used, asfor example-g (Sun cc) or -v (Borland bce32) for debug
information, -O for optimization.

sctLD. This definesthe linker to be used.

sctLDFLAGS. Thisshould specify other flagsthat should beused in
the link operation.

sctaR. The archive application
sctARFLAGS. Flagsto sctAR.

sctLINKKERNEL. This variable should specify the .o filesfor the
Master Library sourcefiles. It will be used in the link command in
the generated makefile.

sctLINKKERNELDEP. Used to implement the dependenciesto re-
compile the kernel when it is needed.

sctLINKCODERLIB. Thisvariableshould specify the .o filesforthe
Coder Library sourcefiles. It will be used in the link command in
the generated makefile.

Telelogic Tau 4.5 User's Manual 3067

Chapter 62 TheMaster Library

* sctLINKCODERLIBDEP. Used to implement the dependenciesto re-
compile the Coder Library when it is needed.

Generated Make Files

The generated make filesfor an SDL system will asfirst action include
themakeoptions (make.opt) fileinthedirectory referenced by the en-
vironment variable sctdir. It will then use the variables sct IFDEF,
sctLINKKERNEL,sctCC,sctCPPFLAGS,sctCCFLAGS,sctLD,and
sctLDFLAGS to compile and link the SDL system with the selected li-
brary.

The make fileisgenerated and executed by the Cadvanced/Cbasic SDL
to C Compiler.

Example 498

Below, a UNIX make file generated for the SDL system exampleis
shown.

makefile for System: example

sctAUTOCFGDEP =
sctCOMPFLAGS = -DXUSE_GENERIC_ FUNC

include $(sctdir)/makeoptions
default: examples (sctEXTENSION)

example$ (sctEXTENSION) : \
examples (SCtOEXTENSION) \
$ (sctLINKKERNELDEP)
$ (sctLD) $(sctLDFLAGS) \
example$ (SCtOEXTENSION) $ (sctLINKKERNEL) \
-0 example$ (sctEXTENSION)

examples (SCtOEXTENSION) : \
example.c
$ (sctCC) $(sctCPPFLAGS) $ (sctCCFLAGS) \
S (SctIFDEF) example.c -o examples$S (sctOEXTENSION)

3068 Teldlogic Tau 4.5 User's Manual July 2003

Adaptation to Compilers

Adaptation to Compilers

July 2003

In this section the necessary changes to the source code to adapt it to a
new environment are discussed. Adapting to a new environment could
mean moving the code to new hardware or using a new compiler.

There are two parts of the source code that might need changes:

1. Inscttypes.hthereisasection defining the propertiesof different
compilers, where a new compiler can be added.

2. Insctos.c thefunctions that depend on the operating system or
hardware are collected. These might need to be changed dueto a
new compiler, anew OS, or a new hardware.

In “Compiler Definition Section in scttypes.h” on page 3069 the com-
piler definition section in scttypes.hisdiscussed in detail, while sc-
tos.c istreated in “ The sctos.c File” on page 3071.

Compiler Definition Section in scttypes.h

Caution!
Do not to usethe compiler /usr/ucb/cc. Our experienceisthat the
bundled compiler is subject to generating compilation errors.

Instead, we recommend to run the unbundled compiler
/opt /SUNWSpro/bin/cc or the GNU C compiler.

In scttypes . htheproperties of the compiler isrecognized by the com-
piler/computer dependent switches set by the compiler:

#if defined(_ linux)
#define SCT_POSIX

#elif defined(_ sun)
#define SCT POSIX

#elif defined(_ hpux)
#define SCT_POSIX

#elif defined(_ CYGWIN_)
#define SCT_ POSIX

#elif defined(QNX4 CC)
#define SCT_POSIX

Telelogic Tau 4.5 User's Manual 3069

Chapter 62 TheMaster Library

3070

#elif defined(_ BORLANDC_)
#define SCT_WINDOWS

#elif defined(MSC VER)
#define SCT_ WINDOWS

#else
#include "user_ cc.h"

#endif
Basically this section distinguishes between Unix-like/POSIX compil-
ers and Windows compilers. In the case the compiler isnot in the list

above, the user must configure it himself by writing afileuser cc.h,
which is best placed in the target directory.

The compilers above are:

e linux: gccon linux
e sun: different compilerson SUN
e hpux: different compilers on HP

__CYGWIN___: gcc on windows, for more information please see
http://sources.redhat.com/cygwin/

QNX4_CC: QNX

e _ BORLANDC__ : Borland compiler on Windows

e _MSC_VER: Microsoft compiler on Windows

After this compiler configuration section a general configuration sec-
tion follows:

#if defined(SCT_POSIX) || defined(SCT_WINDOWS)
#define XMULTIBYTE SUPPORT
#endif

#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <stdarg.h>
#ifdef XREADANDWRITEF
#include <stdio.h>

#ifdef XMULTIBYTE SUPPORT
#include <locale.h>
#endif

#endif

#ifndef GETINTRAND

#define GETINTRAND rand ()
#endif

#ifndef GETINTRAND MAX

#define GETINTRAND MAX RAND MAX
#endif

Telelogic Tau 4.5 User's Manual July 2003

Adaptation to Compilers

#ifndef xptrint

#if (UINT_MAX < 4294967295)

#define xptrint unsigned long
#define X XPTRINT LONG

#else

#define xptrint unsigned
#endif

#endif

#ifndef xint32

#if (INT_MAX >= 2147483647)
#define xint32 int
#define X_XINT32_ INT

#else

#define xint32 long int
#endif

#endif

First, the presence of multi-byte character support is set up. Then anum-
ber of standard include files are included, followed by setting up prop-
erties for random number generation. Last the two types, xptrint,
which definesan unsigned int typewith the same size asan address,
and xint32, which defines a 32-bitsint type, is configured.

Thelast three partsin this section handle the utility functions needed by
sctos. c toimplement some of the operating system dependent func-
tions. Please see below where sctos . c is discussed in detail.

The sctos.c File

The following important functions are defined in sctos . c
extern void * xAlloc (xptrint Size);
extern void xFree (void **P);
extern void xHalt (void) ;
#ifdef XCLOCK
extern SDL Time SDL_Clock (void) ;
#endif
#if defined (XCLOCK) && !defined (XENV)
extern void xSleepUntil (SDL_Time WakeUpTime) ;
#endif
#if defined (XPMCOMM) && !defined (XENV)

extern int xGlobalNodeNumber (void) ;
#endif

July 2003 Telelogic Tau 4.5 User's Manual 3071

Chapter 62 TheMaster Library

3072

#if defined (XMONITOR) && !defined (XNOSELECT)
extern xbool xCheckForKeyboardInput (

long xKeyboardTimeout) ;
#endif

Several of thesefunctions have three different implementations, onefor
SCT_POSIX, one for SCT_WINDOWS and one for other cases. The
other cases solution is “an empty implementation” that does not do any-
thing. If the standard solutionsin sctos.c do not fit the needs of acertain
application, any of the functions above can be supplied by the user in-
stead. By defining some of the switches:

XUSER_ALLOC_FUNC
XUSER_FREE_FUNC
XUSER_HALT_FUNC
XUSER_CLOCK_FUNC
XUSER_SLEEP_FUNC
XUSER_KEYBOARD_FUNC

the corresponding function or functions are removed from sctos.o and
have to be supplied by the user instead.

xAlloc

The function xa11oc is used to allocate dynamic memory and is used
throughout the runtime library and in generated code. The function is
given asizein bytes and should return apointer to a data area of the re-
guested size. All bytesin this data area are set to zero. The standard im-
plementation of this function uses the C function calloc.

A user who wants to estimate the need for dynamic memory can intro-
duce statementsin xal1oc to record the number of callsof xa11oc and
the total requested size of dynamic memory. Please note two things. A
program using the monitor requires more dynamic memory than a pro-
gram not using the monitor, so estimates should be made with the ap-
propriate compilation switches. A call of cal1oc will actually alocate
more memory than is requested to make it possible for the C runtime
system to deall ocate and reuse memory. The size of this additional
memory is compiler-dependent.

A user who wantsto handle the case when no more memory isavailable
a an allocation regquest can implement that in xal1oc. In the standard
implementation for xa11oc atest if calloc returns O can be introduced,
a which the program can be terminated with an appropriate message.

Telelogic Tau 4.5 User's Manual July 2003

Adaptation to Compilers

July 2003

XFree

Thefunction xFree isused to return memory to thelist of free memory
so it can be reused by subsequent calls of xa11oc. The standard imple-
mentation of thisfunction usesthe C function free. In very simple cas-
es, no datatypes using dynamic memory are used and no other introduc-
tion of dynamic data by the user, this function will not be used.

The parameter of the xFree function, isthe address of the pointer to the
allocated memory.

Example 499 Using the xFree function

unsigned char *ptr;
ptr = xAlloc(100) ;
xFree (&ptr) ; /* NOTE: Not xFree(ptr); */

xHalt

Thefunction xHalt isused to exit from aprogram and isin the standard
implementation using the C function exit to perform its task.

SDL_Clock

The function spr._clock should return the current time, read from a
clock somewhere in the OS or hardware. The return valueis of type
SDL_Time, that isastruct with two 32-bits integer components, repre-
senting seconds and nanoseconds in the time value.

typedef struct {
xint32 s; /* for seconds */
xint32 ns; /* for nanoseconds */
} SDL_Time;

The standard implementation of sp1._clock usesthe C function time,
which returns the number of seconds since some defined date.

Note:
Note that the C function t ime only handles full seconds.

I'n an embedded system or any other application that requires better time
resolution, or when the C function time is not available, spr, clock
should be implemented by the user.

Telelogic Tau 4.5 User's Manual 3073

Chapter 62 TheMaster Library

3074

Note:

If an application does not require aconnection with real time (for ex-
ampleif it is not using timers and should run as fast as possible),
there is no need for a clock function. In such a caseit is probably
suitable to use simulated time by not defining the compilation
switch xcrock, whereby sp1,_clock is never called and does not
need to be implemented. An alternativeisto let sbr,_clock aways
return the time value O.

A typical implementation in an embedded system is to have hardware
generating interrupts at a predefined rate. At each such interrupt a vari-
able containing the current time is updated. This variable can then be
read by sp1,_clock to return the current time.

Caution!
The variable must be protected from updates during the period of
timethat the spr_clock readsthe clock variable.

Cdling theinterrupt routine while the sp1._clock reads the clock
variable would cause a system disaster.

xSleep_Until

The function xs1eep Until isgiven atimevalue, asavalue of type
SpL_Time (Seeabove) and should suspend the executing until thistime
isreached, when it should return.

Thisfunction isused only when real timeisused (the switch xcLock is
defined) and when there is no environment functions (xenv is not de-
fined). Thexsleep Until function isused to wait until the next event
is scheduled when there is no environment that can generate events.

xGlobalNodeNumber

Thefunction xG1lobalNodeNumber isused to assign unigue numbersto
each SDL system which is part of an application.

If environment functions are used for an SDL system this function
should be implemented there. If, however, we have communicating
simulations, there are no env functions and the xG1obalNodeNumber
function isdefined in sctos. c instead.

Telelogic Tau 4.5 User's Manual July 2003

Adaptation to Compilers

July 2003

S0 the xGlobalNodeNumber function isonly used if xpmcomm is de-
fined and xenv is not defined. Asthisfunction is only used in the case
of acommunicating simulation, it isonly necessary to implement it for
computers/compilers that communicate with the SDL suite, which
means that it is not interesting for a user to change the standard imple-
mentation of this function. The implementation calls the function get -
pid, and uses thus the OS process number as globa node number.

xCheckForKeyboardInput

The function xcheckForKeyboardInput iSused to determineif there
isaline typed on the keyboard (stdin) or not. If thisis difficult to im-
plement it can instead determineif there are any characterstyped on the
keyboard or not. This function is only used by the monitor system,
(when xMoNTTOR is defined).

The xCheckForKeyboardInput functionisused to implement the pos-
sibility to interrupt the execution of SDL transitions by typing
<Returns> and to handle polling of the environment (xInEnv or its
equival ent when communicating simulationsis used) when the program
iswaiting at the “ command :” prompt in the monitor.

Telelogic Tau 4.5 User's Manual 3075

Chapter 62 TheMaster Library

List of All Compilation Switches

3076

Introduction

This section is areference to the macros that are used together with the
generated C code from the Cadvanced/Cbasic SDL to C Compiler. Here
the macros arejust enumerated and explained. The sectionisdividedin
anumber of subsection, each treating one major aspect of the code.

Within the subsections the macros are enumerated in alphabetic order.

Information about some of the macros (Library Version Macros, Com-
piler Definition Section Macros, and General Properties) can also be
found in the section “ Compilation Switches” on page 3041.

To fully understand the descriptions of the macrosin this section it is
also necessary to know the basic data structures used, especially for the
static structures, i.e. the xldNodes. Thisinformation can befoundinthe
section “The Symbol Table” on page 2954.

The information about the data types used for the dynamic structure of
the system, i.e. about process instances, signal, timers, and so on, are
also of interest. This can befound in “The SDL Model” on page 2992.

Library Version Macros

SCTAPPLCLENV
Application.

SCTAPPLENYV
Application without clock.

SCTDEB

Stand-alone simulator for any environment. Should be executed from
Os.

SCTDEBCL

Stand-alone simulator with real time for any environment. Should be
executed from OS.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

SCTDEBCLCOM

Simulator with real time for host. Can be executed from the SDL suite
or from OS.

SCTDEBCLENV

Stand-alone simulator, with real time and env functions, for any envi-
ronment. Should be executed from OS.

SCTDEBCLENVCOM

Simulator, with real time and env functions, for any environment. May
be executed from OS or from simulator GUI.

SCTDEBCOM
Simulator for host. Can be executed from the SDL suite or from OS.

SCTOPT1APPLCLENV

Application with minimal memory requirements. Real cannot be used.
No channel information

SCTOPT2APPLCLENV

Application with minimal memory requirements. Real cannot be used.
Const for al channel information.

SCTPERFSIM
Suitable for execution of performance simulations.

Compiler Definition Section Macros

SCT_POSIX
Set up for UNIX/POSIX like compilers/systems.

SCT_WINDOWS
Set up for compilers on Windows

Telelogic Tau 4.5 User's Manual 3077

Chapter 62 TheMaster Library

3078

Some Configuration Macros

COMMENT(P)
Should be defined as:
#define COMMENT (P)

The macro is used to insert commentsin included C code. See
Example 360 on page 2613.

GETINTRAND
A random generation function. Usually rand () oOf random().

GETINTRAND_MAX

Themax int value generated by function mentioned in GETINTRAND.
Usually RAND_MAX or 2147483647 (32-bit integers).

SCT_VERSION_4_5

Defined in generated codeif the Cadvanced/Chasic SDL to C Compiler
version 4.5 was used.

XCAT(P1,P2)
Should concatenate token P1 and P2. Possibilities:

#define XCAT (P1,P2) P1##P2
or

#define XCAT(P1l,P2) P1/*+*/P2
or

#define XCAT (P1,P2) XCAT2 (P1l)P2
#define XCAT2 (P2) P2

XMULTIBYTE_SUPPORT
Should be set if the compiler supports multi byte characters.

XNOSELECT

Should be defined if there is no support for the select function found in
UNIX operating systems. Thisisused to implement “ user defined inter-
rupt” by typing the return key while simulating.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XNO_VERSION_CHECK

If this macro is defined there will be no version check between the gen-

erated code and the scttypes.hfile.

XSCT_CBASIC
Defined in generated code if Chbasic was used.

XSCT_CADVANCED
Defined in generated code if Cadvanced was used.

X _SCTTYPES_H
Defined in scttypes.hin away that it possible to include the

scttypes.h file several times without any problems.

X_XINT32_INT
Should be defined if xint32 is int.

X_XPTRINT_LONG
Should be defined if xptrint iISunsigned long.

Telelogic Tau 4.5 User’s Manual

3079

Chapter 62 TheMaster Library

3080

General Properties

TARGETSIM

Can be used to connect an application with amonitor on atarget system
with the SDL suite running on a host computer.

XASSERT
Detect and report user defined assertions that are not valid.

XCALENDARCLOCK

Use the clock function in sctos. ¢ (not simulated time). Time is what-
ever the clock function returns.

XCLOCK

Usetheclock function in sctos . ¢ (not simulated time). Timeis zero at
system start up.

XCOVERAGE

Compile with code to store information about the current coverage of
the SDL system. Thisinformation can also be printed in the monitor.

XCTRACE

Compile preserving the possihility to report the current C line number
during simulations.

XEALL

Defines XEOUTPUT, XEINTDIV, XEREALDIV, XECSOP,
XEFIXOF, XERANGE, XEINDEX, XECREATE, XEDECISION,
XEEXPORT, XEVIEW, XEERROR, XEUNION, XECHOICE,
XEOPTIONAL, XEREF, XEOWN, and XASSERT.

For more information, see these macros.
XECHOICE

Detect and report attempts to access non-active componentsin Choice
variables.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XECREATE

Detect and report if more static instances are created at start up, than the
maximum number of concurrent instances.

XECSOP
Detect and report errorsin ADT operators.

XEDECISION
Detect and report when there is no possible path out from a decision.

XEERROR
Detect and report the usage of the error term in an SDL expression.

XEEXPORT
Detect and report errorsin import actions.

XEFIXOF
Detect and report integer overflow in the operator fix.

XEINDEX
Detect and report index out of boundsin arrays.

XEINTDIV
Detect and report integer division with O.

XENV
Call the env functions.

XENV_CONFORM_2_3

Insert the varp pointer in the xsignalNode SO that signals conform
with their implementation in SDT 2.3.

XEOPTIONAL

Detect and report attempts to access optional struct componentsthat are
not present.

Telelogic Tau 4.5 User's Manual 3081

Chapter 62 TheMaster Library

3082

XEOUTPUT

Detect and report warnings in outputs (mainly outputs where signal is
immediately discarded).

XEOWN
Detect and report illegal usage of Own and ORef pointers.

XERANGE
Detect and report subrange errors.

XEREALDIV
Detect and report real division with 0.0.

XEREF
Detect and report attempts to dereference null pointer.

XEUNION

Detect and report attempts to access hon-active componentsin a
#UNION.

XEVIEW
Detect and report errorsin view actions.

XGRTRACE
Compile with the trace in source SDL graphs enabled.

XITEXCOMM

Enablethe possibility for an executableto communicatewiththe TTCN
suite via the Postmaster.

XMAIN_NAME

If this macro is defined the main function in sctsdl . ¢ will berenamed
to the name given by the macro.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XMONITOR

Compile with the monitor system. This macro will implicitly set up a
number of other macros as well.

XMSCE
Compile with the M SC trace enabled.

XNOMAIN
If this macro isdefined the main functionin sctsdl . ¢ will beremoved.

XPMCOMM

Enable the possibility for an executable to communicate via the Post-
master.

XPRSPRIO
Use priorities on process instance sets.

XPRSSIGPRIO

Usefirst priorities on process instance sets and then priorities on signal
instances.

XSDLENVUI
Enable the possibility to communicate with a user-defined UlI.

XSIGLOG
Call the xsignallog and xProcessLog functions.

XSIGPRIO
Use priorities on signal instances.

XSIGPRSPRIO

Use first priorities on signal instances and then priorities on processin-
stance sets.

Telelogic Tau 4.5 User's Manual 3083

Chapter 62 TheMaster Library

3084

XSIMULATORUI
Enable the possibility to communicate with the simulator Ul.

XTENV

As XENV but call x1nEnv at specified times (next event timeis out pa-
rameter from function xInEnv).

XTRACE
Compile with the textual trace enabled.

Code Optimization

XCONST

The majority of the x1dNode structs can be made const by defining
CONST aSconst. Thisisonly possible in applications (not simulations).

XCONST_COMP

Thisshould normally be defined as const if XCONST isconst. Itisused
to introduce const in the component declarations within the x1dNode
structs.

XNOCONTSIGFUNC

Do not include functions to calculate the expressionsin continuous sig-
nals. This saves aso one function pointer in the x1aNode for the states.
If this switch is defined, continuous signals cannot be used.

XNOENABCONDFUNC

Do not include functions to cal culate the expressions in enabling condi-
tions. This savesalso onefunction pointer in the x1anNode for the states.
If this switch is defined, enabling conditions cannot be used.

XNOEQTIMERFUNC

Do not include function to compare the parameters of two timers. This
saves aso one function pointer in the xTdnode for the signals. If this
switch is defined, timers with parameters cannot be used.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XNOREMOTEVARIDNODE
Do not include xIdNodes for remote variable definitions.

XNOSIGNALIDNODE
Do not include xsignalIdNodes for signals and timers.

XNOSTARTUPIDNODE
Do not include xsignalIdNodes for start up signals.

XNOUSEOFOBJECTIDENTIFIER
Thetype Object_identifier and all operations on that type are removed.

XNOUSEOFOCTETBITSTRING

The types Bit_string, Octet, Octet_string and all operations on these
types are removed.

XNOUSEOFSERVICE
All data and code needed to handle services are removed.

XNOUSEOFREAL
The type real and all operations on real are removed.

XOPT

Defines XOPTSIGPARA, XOPTDCL, XOPTFPAR, XOPTSTRUCT,
XOPTLIT, and XOPTSORT.

For more information see these macros.

XOPTCHAN

Do not include xIdNodes for channels, signal routes, and gates. Infor-
mation in services and processes about connectionsto signal routes and
gates are also removed.

Telelogic Tau 4.5 User's Manual 3085

Chapter 62 TheMaster Library

3086

Note:

If this compilation switch is defined all outputs must either be sent
TO aprocess or the receiver must be possible to calculate during
code generation.

XOPTDCL
Do not include xIdNodes for variables.

XOPTFPAR
Do not include xIdNodes for formal parameters.

XOPTLIT
Do not include xIdNodes for literas.

XOPTSIGPARA
Do not include xIdNodes for signal parameters.

XOPTSORT
Do not include xIdNodes for newtypes and syntypes.

XOPTSTRUCT
Do not include xIdNodes for struct components.

XPRSOPT

Optimize memory for process instances. All memory for aprocessin-
stance can be reused, but signal sending to a stopped process, who’s
memory has been reused by anew process, cannot be detected. The new
process will in this case receive the signal.

XSYNTVAR

If this compilation switch is defined, xVVarldNodes are inserted for the
Present componentsfor optional struct components. Thisfeatureisonly
needed by the Validator and by LINK. It should not be defined other-
wise.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Definitions of Minor Features

XBREAKBEFORE

Should be used mainly if the MONITOR or GRTRACE switches are
defined. It will make the functions and struct components for SDT ref-
erences available and is also used to expand the macros
XAT_FIRST_SYMBOL, XBETWEEN_SYMBOLS,
XBETWEEN_SYMBOLS PRD, XBETWEEN_STMTS,
XBETWEEN_STMTS PRD, XAFTER VALUE RET PRDCALL,
and XAT_LAST_SYMBOL to suitable function calls. These functions
are used to interrupt a transition between symbols during simulation.

XCASEAFTERPRDLABELS

See XCASELABEL S below. The SDL symbols just after an SDL pro-
cedure call haveto betreated specially, asthe symbol number (=casela-
bel) for these symbols are used as the restart address for the calling
graph. Normally this macro should be defined. If SDL procedure calls
aretransformed to proper C function calls, and SDL return istranslated
to a C return, and nextstate in a procedureis NOT translated to aC re-
turn (i.e. the process will be hanging in the C function representing the
SDL procedure) then it is not necessary to define
XCASEAFTERPRDLABELS.

XCASELABELS

The function implementing the behavior of aprocess, procedure, or ser-
vice contains one large switch statement with a case label for each SDL
symbol in the graph. This switch is used to be able to restart the execu-
tion of a process, procedure, or service at any symbol. In an application
most of these label can be removed (al except for those symbols that
start atransition, i.e. start, input, continuous signal). The macro
XCASELABELS should be defined to introduce the case labels for all
SDL symbol. This means that XCASELABELS should be defined in a
simulation but not in an application.

XCONNECTPM

If XCONNECTPM isdefined the SDL simulation will try to connect it-
self to the postmaster. Thisis necessary if GR trace (XGRTRACE),
communicating simulations (XPMCOM M), or communication with the

Telelogic Tau 4.5 User's Manual 3087

Chapter 62 TheMaster Library

3088

TTCN suite (XITEXCOMM) isto be used. The XCONNECTPM fea-
tureisnormally only used in simulations.

XCOUNTRESETS

Count the number of timers that are removed at areset operation. This
information is used by the textual trace system (XTRACE) to present
thisinformation. The information isreally only of interest at a stop ac-
tion when more then one timer might be (implicitly) reset.
XCOUNTRESETS should not be defined in an application.

XENVSIGNALLIMIT

This macro is used to determine the number of signals sent to the envi-
ronment that, during simulation, should be saved in the input port of the
env process instance. Such signals can be inspected with the normal
monitor commandsfor viewing of signals. Thismacroisonly of interest
in asimulation and has the default value 20.

XERRORSTATE

Insert the data structure to represent an “error” state that can be used if
no path is found out from a decision. This should normally be defined
if XEDECISION is defined.

XFREESIGNALFUNCS

Insert free functions for each signal, timer, or startup signal that con-
tains a parameter of atype having a free function. These signal free
functions can the be used to free allocated data within asignal. This
macro should be defined if Master Library is used.

XFREEVARS

Insert free function calls for all variables of atype with free function,
just before stop or return actions. This means that free actions are per-
formed on allocated data referred to from variables is before the object
ceases to exist. This macro should be defined.

XIDNAMES

Thismacro is used to determine if the SDL name of an SDL object
should be stored in the x1dnode for the object. This character string is
used for communication with the user in for example the monitor. Nor-

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

mally this macro should not be used in an application. Sometime it

might be useful for target debugging to define XIDNAMES, asitisthen
fairly easy to identify objects by just printing the SDL name from a de-
bugger. On average this seemsto cost approximately 5% more memory.

XNRINST

This macro should be defined if process instance numbers are to be
maintained. The instance number isthe number in the monitor printout
Test : 2, identifying the individual instances of the process instance set
Test in this case. XNRINST isnormally only used in asimulation.

XOPERRORF

Include the function xSpLOpError in sctsdl. c. Thisfunction isused
to print run-time errorsin ADT operators.

XPRSSENDER

Store the value of sender also in the xPrsNode. The normal placeisin
the latest received signal. Thisisonly needed in asimulation as sender
might be accessed from the monitor system after the transition is com-
pleted and the signal has been returned to the pool of available memory.

XREADANDWRITEF

Include the functions for basic Read and Write. Thisis needed mainly
in simulations.

XREMOVETIMERSIG

Allow theremoval of timer signalsfor not-executing Plds. Thisis need-
ed only in simulations to implement the monitor commands set-timer
and reset-timer.

XSIGPATH

If this macro is defined then the functions xIspath and
xFindReceiver Will return the path of signal routes, channels, and
gates from the sender to the receiver, as out parameters. This informa-
tion can then be used in the monitor system, for example, to produce
signal logs. This macro should normally not be defined in an applica-
tion.

Telelogic Tau 4.5 User's Manual 3089

Chapter 62 TheMaster Library

3090

XSYMBTLINK

The XSYMBTLINK macro is used to determine if a complete tree
should be built from the xIdNodes of the system. If XSYMBTLINK is
defined then all xIdNodes containsaparent, asuc, and arirst point-
er. The value of the parent pointer is generated directly into the
xldNodes. suc and First, however, are calculated in the yInit func-
tion by calling the xInsert IdNode function. The suc and First point-
ers are needed by the monitor system, but not in an application, i.e.
XSYMBTLINK should be defined in a simulation but not in an appli-
cation.

XTESTF

Thismacro is used to include or remove test functions for syntype (or
newtypes) with range conditions. The yTest function is used by the
monitor system and by the functions to test index out of boundsin ar-
rays and to test subranges. This meansthat X TESTF should be defined
if the monitor isused or if XERANGE or XEINDEX is defined.

XTRACHANNELSTOENV

When using partitioning of asystem aproblem during the redirection of
channelsisthat the number of channels going to the environment is not
known at code generation time, which means that the size of the data
area used for the connections is not known. This problem is solved in
two ways.

Either thefunction handling redirectionsallocates more memory, which
isthe default, or the user specifies how many channels that will be redi-
rected (which could be difficult to compute, but will lead to less need of
memory).

In the first case (allocation of more memory) the macros:
#define XTRACHANNELSTOENV 0

#define XTRACHANNELLIST

should be defined like above. Thisis the standard in scttypes.h. If the
user wants to specify the number of channels himself then

#define XTRACHANNELSTOENV 10
#define XTRACHANNELLIST ,0,0,0,0,0,0,0,0,0,0

i.6. XTRACHANNELSTOENV should be the number of channels, while
XTRACHANNELLIST should be alist of that many zeros.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XTRACHANNELLIST
See XTRACHANNELSTOENV just above.

Static Data, Mainly xIdNodes

XBLO_EXTRAS

All generated struct values for block, block type, and block instance
structs contain this macro last in the struct. By defining this macro new
components can be inserted. Note that the type xBlock1dst ruct must
be updated as well. Normally this macro should be empty.

Example 500

#define XBLO_EXTRAS ,0

XBLS_EXTRAS

All generated struct values for block substructure structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Notethat thetype xBlocksubst Idstruct must be updated as
well. Normally this macro should be empty.

Example 501

#define XBLS EXTRAS ,0

XCOMMON_EXTRAS

All generated struct valuesfor xI1dnNode structs contain this macro after
the common components. This means that it is possible to insert new
componentsin al xIdNodes by defining this macro. Normally this mac-
ro should be empty.

Example 502

Toinsert anew int component with value 0 the following definition can
be used:

#define XCOMMON EXTRAS ,0

Telelogic Tau 4.5 User's Manual 3091

Chapter 62 TheMaster Library

3092

XLIT_EXTRAS

All generated struct values for literal structs contain this macro last in
the struct. By defining this macro new components can be inserted.
Notethat thetype xL.iteral1dstruct must be updated as well. Nor-
mally this macro should be empty.

Example 503

#define XLIT EXTRAS ,0

XPAC_EXTRAS

All generated struct valuesfor package structs contain thismacrolast in
the struct. By defining this macro new components can be inserted.
Note that the type xPackageTdstruct must be updated as well. Nor-
mally this macro should be empty.

Example 504

#define XSYS EXTRAS ,0

XPRD_EXTRAS

All generated struct values for procedure structs contain this macro last
in the struct. By defining this macro new components can be inserted.
Note that the type xPrd1dstruct must be updated as well. Normally
this macro should be empty.

Example 505

#define XSYS EXTRAS ,0

XPRS_EXTRAS

(PREFIX_PROC_NAME)
All generated struct values for process, process type, and process in-
stance structs contain this macro last in the struct. By defining this mac-
ro new components can be inserted. Note that the type xprsIdstruct
must be updated as well.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Example 506

#define XPRS_EXTRAS (PREFIX_PROC_NAME) \
,XCAT (PREFIX_PROC_NAME, STACKSIZE)

XSIG_EXTRAS

All generated struct valuesfor signal, timer, RPC_signal, startup signal
structs contain this macro last in the struct. By defining this macro new
components can beinserted. Notethat thetypexsignalIdstruct must
be updated as well. Normally this macro should be empty.

Example 507

#define XSIG _EXTRAS ,0

XSPA_EXTRAS

All generated struct values for signal parameter structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Note that the type xvar1dstruct must be updated as well
(Note that variables, formal parameters, signal parameters, and struct
components are all handled in xvar1dstruct.) Normally this macro
should be empty.

Example 508

#define XSPA EXTRAS ,0

XSRT_EXTRAS

All generated struct values for newtype and syntype structs contain this
macro last in the struct. By defining this macro new components can be
inserted. Note that the type xSortTdstruct must be updated as well.
Normally this macro should be empty.

Example 509

#define XSRT_EXTRAS ,0

Telelogic Tau 4.5 User's Manual 3093

Chapter 62 TheMaster Library

3094

XSRV_EXTRAS

All generated struct values for service, service type, and servicein-
stance structs contain thismacro last in the struct. By defining this mac-
ro new components can be inserted. Note that the type xsrvidstruct
must be updated as well. Normally this macro should be empty.

Example 510

#define XSRV_EXTRAS ,0

XSTA_EXTRAS

All generated struct valuesfor state structs contain thismacro last in the
struct. By defining this macro new components can be inserted. Note
that the type xstateIdstruct must be updated aswell. Normally this
macro should be empty.

Example 511

#define XSTA EXTRAS ,0

XSYS_EXTRAS

All generated struct valuesfor system, system type, and system instance
structs contain this macro last in the struct. By defining this macro new
components can beinserted. Notethat thetype xsystemIdstruct must
be updated as well. Normally this macro should be empty.

Example 512

#define XSYS EXTRAS ,0

XSYSTEMVARS

This macro gives the possibility to introduce global variables declared
in the beginning of the C file containing the implementation of the SDL
system unit.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XSYSTEMVARS_H

If extern definitions are needed for the data declared in
XSYSTEMVARS, thisisthe place to introduce it. These definitions
will be present in the . n file for the system unit (if separate generation
is used).

XVAR_EXTRAS

All generated struct values for variables, formal parameters, and struct
components structs contain thismacro last in the struct. By defining this
macro new components can be inserted. Note that the type
xVarIdstruct must be updated aswell (Note that signal parameters
also usesthetypexvaridstruct). Normally thismacro should be emp-

ty.

Example 513

#define XVAR EXTRAS ,0

Telelogic Tau 4.5 User's Manual 3095

Chapter 62 TheMaster Library

3096

Data in Processes, Procedures and Services

PROCEDURE_VARS

The struct components that are needed for each procedure instance. Ex-
ample: state.

PROCESS_VARS

The struct components that are needed for each processinstance. Exam-
ple: state, parent, offspring, self, sender, inputport.

SERVICE_VARS

The struct components that are needed for each service instance. Exam-
ple: state

YGLOBALPRD_YVARP

This macro is used to declare the yvarp pointer (which isa pointer to
the yvpef struct for the process) in a procedure defined outside of apro-
cess. Asaglobal procedure never can access process local data, itis
suitableto let yvarp be apointer to astruct only containing the compo-
nents defined in the macro PROCESS VARS.

YGLOBALSRV_YVARP

This macro is used to declare the yvarp pointer (which isa pointer to
the yvpef struct for the process) in a service type defined outside of a
process. Asaglobal service type never can access processlocal data, it
issuitableto let yvarp be a pointer to a struct only containing the com-
ponents defined in the macro PROCESS VARS.

YPAD_TEMP_VARS

Local variablesin the PAD function for a process or service. Example:
temporary variables needed for outputs, create actions.

YPAD_YSVARP

Declaration of the ysvarp pointer used to refer to the received signal.
Normally ysvarp iSvoid *.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

YPAD_YVARP

(VDEF_TYPE)
This macro is used within a process and in a service defined within a
process. It should be expanded to adeclaration of yvarp, which isthe
pointer that is used to access SDL variablesin the process. yvarp
should be of type vDEF_TYPE *, where vDEF_TYPE is the type of the
yVDef struct for the process. If the pointer to the yvpe £ struct is passed
as parameter to the PAD function, yvarp can beassigned its correct val-
ue already in the declaration.

YPRD_TEMP_VARS

Local variablesin the function implementing the behavior of an SDL
procedure.

YPRD_YVARP

(VDEF_TYPE)
Thismacro is used within aprocedure defined in aprocess. It should be
expanded to a declaration of yvarp, which isthe pointer that is used to
access SDL variables in the process. yvare should be of type
VDEF_TYPE *, Where vDEF_TYPE isthetype of the yvpef struct for the
process. If the pointer to the yvpef struct is passed as parameter to the
procedure function, yvarp can be assigned its correct value already in
the declaration.

Telelogic Tau 4.5 User's Manual 3097

Chapter 62 TheMaster Library

3098

Some Macro Used Within PAD Functions

BEGIN_PAD

(VDEF_TYPE)
BEGIN_PAD isamacro that can be used to insert code that is executed
in the beginning of the PAD functions. vDEr_TYPE isthe yVDef type
for the process.

BEGIN_START_TRANSITION

(STARTUP_PAR_TYPE)
This macro can be used to introduce code that is executed at the begin-
ning of the start transition. STARTUP_PAR_TYPE iSthe yPDef struct for
the startup signal for this process.

CALL_SERVICE

This macro is used in the PAD function of a process that contains ser-
vices. It should be expanded to acall to PAD function for the service
that should execute the next transition (activesrv).

CALL_SUPER_PAD_START

(PAD)
During the start transition of aprocess all inherited PAD functions up
to and including the PAD function containing the START symbol have
to becalled. Thereasonisto initiaize al variables defined in the pro-
cess. Thismacro isused to perform acall to theinherited PAD function
(the macro parameter PAD). Usually this macro is expanded to some-
thing like:

yVarP->RestartPAD = PAD; PAD(VarP) ;

followed by either areturn Or agoto NewTransition depending on
execution model.

CALL_SUPER_PRD_START

(PRD, THISPRD)
This macro isused in the sameway as CALL_SUPER_PAD_START
(see above) but for the start transition in aprocedure. THISPRD iSthe ex-
ecuting procedure function, while prp is the inherited procedure func-
tion.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

CALL_SUPER_SRV_START

(PAD)
Thismacro isused in the sameway as CALL_SUPER PAD_START
(see above) but for the start transition in a service. pap is the inherited
PAD function.

LOOP_LABEL

The LOOP_LABEL macro should be used to form theloop from anext-
state operation to the next input operation necessary inthe OSwhere OS
tasks does not perform return at end of transition (most commercial
0S). Thismacro is also suitable to handle free on received signals and
thetreatment of the save queue. In an OSwhere SDL nextstateisimple-
mented using a C return (the Master Library for example) the
LOOP_LABEL macrois usualy empty.

LOOP_LABEL_PRD
Similar to LOOP_LABEL but used in procedures with states.

LOOP_LABEL_PRD_NOSTATE

Similar to LOOP_LABEL but used in procedures without states. This
macro isin many circumstances expanded to nothing.

LOOP_LABEL_SERVICEDECOMP

Similar to LOOP_LABEL but used in the PAD function for a process
containing services.

SDL_OFFSPRING
Should return the value of offspring.

SDL_PARENT
Should return the value of parent.

SDL_SELF
Should return the value of self.

SDL_SENDER
Should return the value of sender.

Telelogic Tau 4.5 User's Manual 3099

Chapter 62 TheMaster Library

3100

START_SERVICES

This macro is used in the PAD function of a process that contains ser-
vices. It should be expanded in such away that the start transitions for
all of the services are executed.

XEND_PRD

Thisisamacro generated at the end of afunction that represents the be-
havior of a procedure. It needs not to be expanded to anything. To de-
fineit as

return (xbool)O0;
might remove acompiler warning that the end of avalue returning func-
tion might be reached.

XPRSNODE
Should usually be expanded to the type xPrsNode.

XNAMENODE

How to reach the xPrs1dNode from a PAD function. Normally thisis
yVarP->NameNode.

XNAMENODE_PRD

How to reach the xprd1dnode from a PRD function. Normally thisis
yPrdVarP->NameNode.

XNAMENODE_SRV

How to reach the xsrvidnode from a PAD function. Normally thisis
ySrvVarP->NameNode.

YPAD_FUNCTION
(PAD)

The function heading of the PAD function given as parameter.

YPAD_PROTOTYPE
(PAD)

The function prototype of the PAD function given as parameter.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

YPRD_FUNCTION
(PRD)

The function heading of the PRD function given as parameter.

YPRD_PROTOTYPE
(PRD)

The function prototype of the PRD function given as parameter.

yInit Function

BEGIN_YINIT

Thismacro is placed in the beginning of the yinit functionin thefile
containing code for the system. It can be expanded to variable declara-
tions and initialization code.

XPROCESSDEF_C

(PROC_NAME, PROC NAME STRING, PREFIX PROC_NAME,
PAD FUNCTION, VDEF_TYPE)

This macro can be used to introduce code for each process instance set
in the system.

Parameters:

* PROC_NAME
the name of the process without prefix.

* PROC_NAME_STRING
the name of the process as a character string.

* PREFIX_PROC_NAME
the name of the process with prefix.

* PAD FUNCTION
the PAD function for this process instance set.

4 VDEF_TYPE
the yvpef struct for this process.

Telelogic Tau 4.5 User's Manual 3101

Chapter 62 TheMaster Library

3102

XPROCESSDEF_H
(PROC_NAME, PROC NAME STRING, PREFIX PROC NAME,
PAD_FUNCTION, VDEF_TYPE)

This macro can be used to introduce extern declaration (placed in the
proper .h file) for each process instance set in the system.

Parameters:

* PROC_NAME
the name of the process without prefix.

* PROC_NAME STRING
the name of the process as a character string.

* PREFIX_PROC_NAME
the name of the process with prefix.

d PAD FUNCTION
the PAD function for this process instance set.

° VDEF_TYPE
the yvpef struct for this process.

xInsertldNode

Inthe y1nit function the function xInsert1dNode iscaled for each
IdNode. In an application thisis not necessary, and xInsert IdNode
can be defined as

#define xInsertIdNode (Node)

The function xInsertIdNode isneeded if XSYMBTLINK,
XCOVERAGE, or XMONITOR is defined.

YINIT_TEMP_VARS

Thismacroisplaced in all ylInit functions and can be expanded to local
variables needed within the yInit function.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Implementation of Signals and Output

ALLOC_SIGNAL

ALLOC_SIGNAL_PAR

(SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)
These macros are used to allocate a data area for asignal to be sent.
ALLOC_SIGNAL isusedif the signa has no parameters, while
ALLOC_SIGNAL_PAR isused if the signal has parameters. There-
sulting data area should be reference by the variable mentioned by the
macro OUTSIGNAL_DATA_PTR (see below).

Parameters:

* SIG NAME
the name of the signal without prefix.

* SIG_IDNODE
the xsignalIdNode oOf the signal.

* RECEIVER
the receiver given in the TO clause, or calculated. InaNO_TO out-
put, RECEIVER iS xNotDefPId.

* SIG PAR TYPE
the yPDef type of the signal. If the signal has no parametersthis
macro parameter is XSIGNALHEADERTY PE (see below).

INSIGNAL_NAME

This macro should be expanded to the identification of the currently re-
ceived signal. It isused to distinguish between signalswhen several sig-
nal is enumerated in the same input symbol.

OUTSIGNAL_DATA_PTR

Thisshould bethe pointer referring to be signal dataareawhile building
the signal during an output. It should be assigned itsvalue in

ALLOC SIGNAL or ALLOC SIGNAL_PAR, and will then be used
during assignment of signal parameters and in the SDL_20UTPUT
macro just below.

Telelogic Tau 4.5 User's Manual 3103

Chapter 62 TheMaster Library

3104

SDL_20UTPUT
SDL_20UTPUT_NO_TO
SDL_20UTPUT_COMPUTED_TO
SDL_ALT20UTPUT
SDL_ALT20UTPUT_NO_TO

SDL_ALT20UTPUT_COMPUTED_TO

(PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER,
SIG PAR SIZE, SIG NAME STRING)

These six macros are used to send the signal created in
ALLOC_SIGNAL or ALLOC SIGNAL_PAR. The SDL_ALT ver-
sions of the macros are used if the directive /*#a1.T+*/ has been given
inthe output. Theversion without suffix isused for an output TO, while
thesuffix _COMPUTED_TO isused for an output without to but it was
possible to compute the receiver during code generation time. The suf-
fix _NO_TO indicates an output without to, where the receiver cannot
be calculated during code generation time.

Parameters:
* PRIO
the priority of the signal specified in a#PRIO directive.

* VIA
the vialist given in the output.

* SIG_NAME
the name of the signal without prefix

N SIG_IDNODE
the xsignalIdNode for the signal.

* RECEIVER
the receiver given in the TO clause, or calculated. InaNO_TO out-
put, RECEIVER IS xNotDefPId.

* SIG _PAR SIZE
the size of the yppef struct of the signal. If signal without parame-
terssic_par sizeisO.

* SIG _NAME STRING
the name of the signal as a character string.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

SDL_THIS

Inanoutput TO THISin SDL, the RECEIVER parameter in the
ALLOC SIGNAL and SDL_20UTPUT macros discussed above will
become SDL_THIS.

SIGCODE

(P)
This macro makes it possible to store asignal code (signal number) in
the xsignalIdNode for asignal. The macro parameter p isthe signal
name without prefix.

SIGNAL_ALLOC_ERROR

This macro isinserted after the ALLOC_SIGNAL macro and the as-
signment of parameter values to the signal. It can be used to test if the
alloc was successful or not.

SIGNAL_ALLOC _ERROR_END
This macro isinserted after the SDL_20UTPUT macro.

SIGNAL_NAME

(SIG_NAME, SIG IDNODE)
This macro should be expanded to an identification of the signal given
as parameter. Normally theidentification is either the xsignalIdNode
for thesignal or an int value. If theid isan int valueit is suitable to
insert defines of type #define signal_name number. A file containing
such defines can be generated using the Generate Signal Numbers fea-
ture in Cadvanced/Chasic.

Parameters:

* SIG NAME
the name of the signal without parameters

* SIG IDNODE

the xsignalIdNode for the signal.

SIGNAL_VARS

The struct components that are needed for each signal instance. Exam-
ple: sender, receiver, signa type.

Telelogic Tau 4.5 User's Manual 3105

Chapter 62 TheMaster Library

3106

TO_PROCESS

(PROC_NAME, PROC_IDNODE)
Thismacro isused as RECEIVER inthe ALLOC_SIGNAL and
SDL_20UTPUT macrosif thesignal issent to aprocessinstance setin
SDL.

Parameters:

* PROC_NAME
the name of the receiving process without prefix.

d PROC_IDNODE
the xpPrsIdNode Of the receiving process.

TRANSFER_SIGNAL

TRANSFER_SIGNAL_PAR

(SIG_NAME, SIG IDNODE, RECEIVER, SIG_PAR_TYPE)
These macros are used as alternative for the ALLOC_SIGNAL macros
(see these macros above) if the directive #TRaNSFER if given in the out-
put.

* SIG_NAME
the name of the signal without prefix.

N SIG_IDNODE
the xSignalIdNode oOf the signal.

* RECEIVER
the receiver given in the TO clause, or calculated. InaNO_TO out-
put, RECEIVER IS xNotDefPId.

* SIG _PAR TYPE
the yppef type of the signdl. If the signal has no parameters this
macro parameter is XSIGNALHEADERTY PE (see below).

XNONE_SIGNAL
The representation for a none signal.

XSIGNALHEADERTYPE

Thismacroisusedtoindicateayppef struct for asignal without param-
eters. Such asignal has no generated yppef struct. It is suitable to let

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

XSIGNALHEADERTY PE be the name of a struct just containing the
componentsin SIGNAL_VARS.

XSIGTYPE

Depending on the representation of the signal type that is used
(xSsignalIdNode Or int) this macro should either be xsignalIdNode
Oor int.

Implementation of RPC

ALLOC_REPLY_SIGNAL
ALLOC_REPLY_SIGNAL_PAR
ALLOC_REPLY_SIGNAL_PRD

ALLOC_REPLY_SIGNAL_PRD_PAR

(SIG_NAME, SIG IDNODE, RECEIVER, SIG PAR TYPE)
These macros are used to allocate the Reply signal in the signal ex-
changein an RPC. The suffix _PAR isused if thereply signal contains
parameters. The suffix _PRD is used if theimplicit RPC transition is
part of a procedure.

Parameters:

* SIG NAME
the reply signal name without prefix.

* SIG IDNODE
the xsignalidNode for thereply signal.

d RECEIVER
the receiver of the reply signa. The macro
XRPC_SENDER_IN_ALLOC or
XRPC_SENDER _IN_ALLOC PRD are used as actual parameter.
The suffix _PRD isused if theimplicit RPC transition is part of a
procedure.

* SIG PAR TYPE
the yppef type for the reply signal. If the reply signal does not con-
tain any parameters the macro name XSIGNALHEADERTYPE is
generated as actual parameter.

Telelogic Tau 4.5 User's Manual 3107

Chapter 62 TheMaster Library

3108

REPLYSIGNAL_DATA_PTR

REPLYSIGNAL_DATA_PTR_PRD

This should be areference to the data area for the reply signal that isal-
located inthe ALLOC REPLY_SIGNAL macro. The suffix _PRD is
used if theimplicit RPC transition is part of a procedure.

SDL_RPCWAIT_NEXTSTATE

SDL_RPCWAIT_NEXTSTATE_PRD
(PREPLY IDNODE, PREPLY NAME, RESTARTADDR)

These macros are used to implement the implicit nextstate operation in
the caller of an RPC. The suffix _PRD isused if theimplicit RPC tran-
sition is part of a procedure.

Parameters:
b PREPLY IDNODE
the xsignalIdNode for thereply signal.

* PREPLY NAME
the name without prefix for the reply signal.

* RESTARTADDR
the restart address (symbol number) for theimplicit input of the re-

ply signal.

SDL_20UTPUT_RPC_CALL

(PRIO, VIA, SIG NAME, SIG IDNODE, RECEIVER,
SIG PAR SIZE, SIG NAME STRING)

Send the call signal of an RPC.

Parameters:

b PRIO
priority of signal.

* VIA
thevialist, which in this case dwaysis (xIdNode *)o,i.e. novia
list.

* SIG NAME
the RPC call signal name without prefix.

* SIG_IDNODE
the xsignalIdNode for the RPC call signal.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

RECEIVER
thereceiver of thecall signal. Thisiseither expressed asan ordinary
TO-expression or using the macro XGETEXPORTINGPRS (see
below) in case of no explicit receiver specified in the call.

SIG PAR SIZE
the size of the yppef struct for the call signadl. If the call signal has
no parameters this parameter will be 0.

SIG_NAME STRING
the name of the RPC call signal as a character string.

SDL_20UTPUT_RPC_REPLY
SDL_20UTPUT_RPC_REPLY_PRD

(PRIO, VIA, SIG NAME, SIG IDNODE, RECEIVER,
SIG PAR SIZE, SIG NAME STRING)

These macros are used to send the RPC reply signal. The suffix _PRD
isused if the implicit RPC transition is part of a procedure.

Parameters:

PRIO
priority of signal.

VIA
the vialist, which in this case dwaysis (xIdNode *)o0,i.e. hovia
list.

SIG NAME
the RPC reply signal name without prefix.

SIG_IDNODE
the xsignalIdNode for the RPC reply signal.

RECEIVER
the receiver of the reply signal. Thisis expressed using the macro
XRPC_SENDER_IN_OUTPUT or
XRPC_SENDER_IN_OUTPUT_PRD.

SIG_PAR_SIZE
the size of the yPDef struct for the reply signal. If the reply signal
has no parameters this parameter will be 0.

SIG _NAME STRING
the name of the RPC reply signal as a character string.

Telelogic Tau 4.5 User's Manual 3109

Chapter 62 TheMaster Library

3110

XGETEXPORTINGPRS
(REMOTENODE)

This macro should be expanded to an expression that given the remote
procedure given as actual macro parameter (more exactly the 1dNode
for the remote procedure), returns one possible exporter of this remote
procedure. Usually this macro is expanded to acall of the library func-
tion xGetExportingPrs.

XRPC_REPLY_INPUT

XRPC_REPLY_INPUT_PRD

Macros that can be used for special processing needed to receive an
RPC reply signal. The macros are usually expanded to nothing.

XRPC_SAVE_SENDER

XRPC_SAVE_SENDER_PRD

These macros can be used to save the sender of areceived RPC call sig-
nal, for further use when the reply signal isto be sent. The suffix _PRD
isused if theimplicit RPC transition is part of a procedure.

XRPC_SENDER_IN_ALLOC

XRPC_SENDER_IN_ALLOC_PRD

These macros are used to obtain the receiver of the reply signal (from

the sender of thecall signal) inthe ALLOC_REPLY _SIGNAL macros.
The suffix _PRD isused if theimplicit RPC transition is part of apro-
cedure.

XRPC_SENDER_IN_OUTPUT

XRPC_SENDER_IN_OUTPUT_PRD

These macros are used to obtain the receiver of the reply signal (from
the sender of the call signal) inthe SDL_20UTPUT_RPC REPLY
macros. The suffix _PRD isusedif theimplicit RPC transitionis part of
aprocedure.

XRPC_WAIT_STATE

The state number used for a RPC wait state. XRPC_WAIT_STATE is
usually defined as -3.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Implementation of View and Import

XGETEXPORTADDR

(REMOTENODE, EXPORTER, I S_DEF_EXPORTER)
Thismacro should be expanded to an expression that returnsthe address
of the exported variable. Usually the function xGet Exportaddr is
caled.

Parameters:

° REMOTENODE
the IdNode for the remote variable.

* EXPORTER
the value of the optional Pld expression. If no Pld expression isgiv-
en this parameter is SDL_NULL.

* IS DEF EXPORTER
hasthevalue (xbool) 1 if aPld expression wasfound in the import
statement, otherwiseit is (xbool) o.

SDL_VIEW

(PID_EXPR, HAS_EXPR, VAR _NAME STRING, REVEALED_LIST,
SORT SIZE)

Thismacro should be expanded to an expression that returnsthe address
of the viewed variable. Usually the function SDL_View is called.

Parameters:

b PID_EXPR
the value of the optional Pld expression. If no Pld expression isgiv-
en this parameter is SDL_NULL.

* HAS EXPR
has the value (xboo1) 1 if aPld expression was found in the view
statement, otherwiseit is (xbool) 0.

* VAR NAME STRING
the name of the viewed variable as a character string.

. REVEALED_LIST
the list of therevealed variables.

e SORT SIZE
the size of the sort of the revealed variable.

Telelogic Tau 4.5 User's Manual 3111

Chapter 62 TheMaster Library

3112

Implementation of Static and Dynamic Create
and Stop

ALLOC_STARTUP

ALLOC_STARTUP_PAR
(PROC_NAME, STARTUP_IDNODE, STARTUP_PAR_TYPE)

Allocate the data areafor a startup signal and let the pointer mentioned
inthemacro STARTUP_DATA_PTR refer tothisdataarea. The suffix
_PAR isused if the startup signal contains parameters.

Parameters:

* PROC_NAME
the name without prefix for the created process.

* STARTUP_IDNODE
the xsignalidNode for the startup signal of the created process.

b STARTUP_PAR TYPE
the yppef for the startup signal of the created process.

ALLOC_STARTUP_THIS

Allocate the data area for a startup signal and let the pointer mentioned
inthe macro STARTUP_DATA_PTR refer to this dataarea. This mac-
roisused in acreate THIS operation.

INIT_PROCESS_TYPE

(PROC_NAME, PREFIX PROC_NAME, PROC_IDNODE,
PROC NAME STRING, MAX NO OF INST, STATIC INST,
VDEF_TYPE, PRIO, PAD FUNCTION)

This macro will be call once for each process instance set in the ylnit
function. It should be used to initiated common featuresfor all instances
of aprocess instance set.

Parameters:

* PROC_NAME
the name without prefix for the process instance set.

* PREFIX_ PROC_NAME
the name with prefix for the process instance set.

d PROC_IDNODE
the xpPrsIdNode for the process instance set.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

* PROC _NAME STRING
the name as character string for the process instance set.

* MAX NO OF_INST
the maximum number of instances of this process instance set.

d STATIC INST
the number of static instances of this process instance set.

b VDEF_TYPE
the yvpef type for this process instance set.

* PRIO
the priority for process instance set.

* PAD FUNCTION
the PAD for this process instance set.

SDL_CREATE
(PROC_NAME, PROC IDNODE, PROC_NAME STRING)

This macro is used to create (a create action) a process instance.

Parameters:

* PROC_NAME
the name without prefix for the process instance set.

* PROC_IDNODE
the xpPrsIdNode for the process instance set.

* PROC_NAME STRING
he name as character string for the process instance set.

SDL_CREATE_THIS
This macro is used to implement create this.

July 2003 Telelogic Tau 4.5 User's Manual 3113

Chapter 62 TheMaster Library

SDL_STATIC_CREATE

(PROC_NAME, PREFIX PROC NAME, PROC IDNODE,
PROC_NAME_STRING, STARTUP_ IDNODE, STARTUP_ PAR_TYPE,
VDEF_TYPE, PRIO, PAD FUNCTION, BLOCK INST NUMBER)

Thismacroiscalled intheylnit function once for each static processin-
stances that should be created of a process instance set.

Parameters:

* PROC_NAME
the name without prefix for the process instance set.

* PREFIX PROC_NAME
the name with prefix for the process instance set.

d PROC_IDNODE
the xPrsIdNode for the process instance set.

* PROC_NAME STRING
the name as character string for the process instance set.

* STARTUP_IDNODE
the xsignalidNode for the startup signal for the process instance
set.

b STARTUP_PAR TYPE
the yppef type for the startup signal for the process instance set.

* VDEF_TYPE
the yvpef type for the process instance set.

* PRIO
the priority for the process instance set.

® PAD FUNCTION
the PAD function for the process instance set.

* BLOCK_INST NUMBER
if this process instance set is part if a block instance set then this
macro is the block instance number for the block instance set that
this process belongs to. Otherwise this macro parameter is 1.

SDL_STOP

Thismacro is used to implement the SDL operation stop (both in pro-
cesses and in services).

3114 Teldlogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

STARTUP_ALLOC_ERROR

This macro isinserted after the ALLOC_STARTUP macro and the as-
signment of parameter values to the signal. It can be used to test if the
alloc was successful or not.

STARTUP_ALLOC _ERROR_END
This macro isinserted after the SDL_CREATE macro.

STARTUP_DATA_PTR

This macro should be expanded to atemporary variable used to store a
reference to the startup signal data area. It should be assigned in the
ALLOC_STARTUP macro and will be used to assign the actual signal
parameters (the fpar values) to the startup signal.

STARTUP_VARS

This macro can be used to insert additional general componentsin the
startup signals. In al startup signal yPDef structs SIGNAL_VARSwill
be followed by STARTUP_VARS.

Implementation of Timers, Timer Operations
and Now

ALLOC_TIMER_SIGNAL_PAR
(TIMER NAME, TIMER IDNODE, TIMER PAR TYPE)

Allocate a data area for the timer signa with parameters.

Parameters:

* TIMER_NAME
the name without prefix of the timer.

° TIMER_ IDNODE
the xSignalIdNode for thetimer.

* TIMER PAR TYPE
the yppef for the timer.

DEF_TIMER_VAR

DEF_TIMER_VAR_PARA
(TIMER_VAR)

Telelogic Tau 4.5 User's Manual 3115

Chapter 62 TheMaster Library

3116

There will be one application of this macro in the yvpef type for the
process for each timer declaration the process contains. These declara-
tions can be used to introduce components (timer variables) in the
yVDef struct to track timers. The parameter TIMER_VAR iSa suitable
name for such avariable. The suffix _PARA isused if thetimer has pa
rameters.

INIT_TIMER_VAR

INIT_TIMER_VAR_PARA

(TIMER_VAR)
These macroswill beinserted in start transitions, during initialization of
processvariables. Thismakesit possibleto initialize thetimer variables
that might beinsertedinthe DEF_TIMER VAR macro. The parameter
TIMER VAR iSthe namefor such avariable. The suffix PARA isused
if the timer has parameters.

INPUT_TIMER_VAR

INPUT_TIMER_VAR_PARA

(TIMER_VAR)
These macros will be inserted at an input operation on atimer signal.
Thismakesit possibleto update the timer variablesthat might beinsert-
edinthe DEF_TIMER VAR macro. The parameter TIMER VAR iSthe
name for such avariable. The suffix _PARA isused if thetimer has pa-
rameters. Note that if atimer signal isreceived in aninput * statement,
no INPUT_TIMER VAR will be present in this case.

RELEASE_TIMER_VAR

RELEASE_TIMER_VAR_PARA

(TIMER_VAR)
These macros will be inserted at a stop. This makesit possible to per-
form cleaning up of the timer variables that might be inserted in the
DEF TIMER_VAR macro. The parameter TIMER VAR is the name for
such avariable. The suffix PARA isused if the timer has parameters.

SDL_ACTIVE
(TIMER NAME, TIMER IDNODE, TIMER VAR)

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

This macro is used to implement the SDL operation active on atimer.
Note that active on timers with parametersis not implemented in the
Cadvanced/Chasic SDL to C Compiler.

Parameters:

¢ TIMER NAME
the name without prefix of the timer.

* TIMER_IDNODE
the xSignalldNode for the timer.

¢ TIMER_ VAR
the timer variable that might be inserted in the macro
DEF_TIMER_VAR.

SDL_NOW
Thisis the implementation of now in SDL.

SDL_RESET

(TIMER_NAME, TIMER IDNODE, TIMER VAR,
TIMER NAME STRING)

This macro is used to implement the SDL operation reset on atimer
without parameters.

Parameters:
b TIMER_NAME
the name without prefix of the timer.

e TIMER IDNODE
the xsignalIdNode for thetimer.

* TIMER_VAR
the timer variable that might be inserted in the macro
DEF TIMER VAR.

¢ TIMER NAME STRING
the name of the timer as a character string.

SDL_RESET_WITH_PARA
(EQ_FUNC, TIMER_VAR, TIMER_NAME_STRING)

This macro is used to implement the SDL operation reset on atimer
with parameters. Before this macro atimer signal with the timer param-
etersin the reset operation is created.

Telelogic Tau 4.5 User's Manual 3117

Chapter 62 TheMaster Library

3118

Parameters:

* EQ FUNC
the name of the generated equal function that can test if two timer
instance are equal or not.

¢ TIMER VAR
the timer variable that might be inserted in the macro
DEF TIMER_VAR.

* TIMER NAME STRING
the name of the timer as a character string.

SDL_SET

(TIME _EXPR, TIMER NAME, TIMER IDNODE, TIMER VAR,
TIMER NAME STRING)

SDL_SET_WITH_PARA

(TIME_EXPR, TIMER NAME, TIMER IDNODE,
TIMER _PAR TYPE, EQ FUNC, TIMER VAR,
TIMER NAME STRING)

SDL_SET_DUR

(TIME_EXPR, DUR_EXPR, TIMER NAME, TIMER IDNODE,
TIMER VAR, TIMER_NAME STRING)

SDL_SET_DUR_WITH_PARA

(TIME _EXPR, DUR_EXPR, TIMER NAME, TIMER IDNODE,
TIMER_PAR TYPE, EQ FUNC, TIMER VAR,
TIMER NAME STRING)

SDL_SET_TICKS

(TIME_EXPR, DUR_EXPR, TIMER NAME, TIMER IDNODE,
TIMER VAR, TIMER_NAME STRING)

SDL_SET_TICKS_WITH_PARA

(TIME _EXPR, DUR_EXPR, TIMER NAME, TIMER IDNODE,
TIMER_PAR TYPE, EQ FUNC, TIMER VAR,
TIMER NAME STRING)

These six SDL_SET macros are used to implement the SDL operation
set on atimer. The suffix _WITH_PARA indicates the set of atimer
with parameters. In this case the SDL_SET macro is preceded by an
ALLOC TIMER_SIGNAL_PAR macro call, plus the assignment of
the timer parameters. The suffix _DUR isused if thetime valuein the
set operation is expressed as:

now + expression

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

In this case both the time value and the duration value (the expression
above) is available as macro parameter. The suffix _TICKSisused if
the time value in the set operation is expressed as:

now + TICKS(...)
where TICK Sisan operator returning aduration value. In thiscase both
the time value and the duration value (the TICK S expression above) is
available as macro parameter.

Parameters:

b TIME_ EXPR
the time expression.

* DUR_EXPR
the duration expression (only in_DUR and _TICKYS).

* TIMER_NAME
the timer name without prefix.

4 TIMER_ IDNODE
the xsignalIdNode for thetimer.

* TIMER PAR TYPE
the yppef struct for thetimer (only in_WITH_PARA)

* EQ FUNC
the function that can be used to test if two timers have the same pa-
rameter values (only in_WITH_PARA).

b TIMER_VAR
the name of the timer variable that might beintroduced in the macro
DEF_TIMER_VAR.

* TIMER_NAME_STRING
the name of the timer as a character string.

TIMER_DATA_PTR

This should bethe pointer referring to be timer data areawhile building
the timer. It should be assigned its valuein

ALLOC TIMER_SIGNAL_PAR, and will then be used during assign-
ment of signal parameters and in the SDL_SET macro

Telelogic Tau 4.5 User's Manual 3119

Chapter 62 TheMaster Library

3120

TIMER_SIGNAL_ALLOC_ERROR

Thismacroisinserted after the ALLOC_TIMER_SIGNAL_PAR mac-
ro and the assignment of parameter values to the timer. It can be used to
test if the alloc was successful or not.

TIMER_SIGNAL_ALLOC _ERROR_END
This macro is inserted after the SDL_SET macro.

TIMER_VARS

The struct components that are needed for each timer instance. Exam-
ple: sender, receiver, timer type.

Astimers are signals as well, after the timer signal has been sent,
TIMER_VARShasto beidentical to SIGNAL_VARS, except that new
component may be add last in TIMER_VARS.

XTIMERHEADERTYPE

Thismacroisused toindicate ayppef struct for atimer without param-
eters. Such atimer has no generated yppef struct. It is suitable to let
XTIMERHEADERTY PE be the name of a struct just containing the
componentsin TIMER_VARS.

Implementation of Call and Return

ALLOC_PROCEDURE
(PROC_NAME, PROC IDNODE, VAR SIZE)

Allocate adata area (yvpef) for the called procedure.

Parameters:

* PROC_NAME
the name of procedure with prefix.

d PROC_IDNODE
the xprd1dNode of the called procedure

* VAR _SIZE
the size of the yvpef struct for the procedure.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

ALLOC_THIS_PROCEDURE
Allocate adata area (yvpef) for aprocedure when call THIS is used.

ALLOC VIRT_PROCEDURE

(PROC_IDNODE)
Allocate adataarea (yvpef£) for the called procedure when calling avir-
tua procedure. The ProC_IDNODE parameter isthe xprd1dnode for the
call procedure.

CALL_PROCEDURE

CALL_PROCEDURE_IN_PRD

(PROC_NAME, PROC _IDNODE, LEVELS, RESTARTADDR)
Thesemacrosare used to implement acall operationin SDL. Theyvpef
struct has been allocated earlier (in ALLOC_PROCEDURE) and the
actual parameters have been assigned to componentsin this struct. The
suffix _IN_PRD indicates that the procedure call is made in a proce-
dure.

Parameters:

* PROC_NAME
the name of procedure with prefix, which isthe same asthe name of
the C function representing the behavior of the procedure.

* PROC_IDNODE
the xPrd1dnode of the called procedure.

* LEVELS
the scope level between the caller and the called procedure.

b RESTARTADDR
the restart address the symbol number for the symbol after the pro-
cedure call.

CALL_PROCEDURE_STARTUP

CALL_PROCEDURE_STARTUP_SRV

These two macros are only of interest if the PAD functions are | eft via
areturn at the end of transitions. In that case any outstanding procedure
must be restarted when the process becomes active again.

Telelogic Tau 4.5 User's Manual 3121

Chapter 62 TheMaster Library

3122

CALL_THIS_PROCEDURE

(RESTARTADDR)
Thismacro is used to implement acall THIS operation in SDL.
RESTARTADDR isthe restart address the symbol number for the symbol
after the procedure call.

CALL_VIRT_PROCEDURE

CALL_VIRT_PROCEDURE_IN_PRD

(PROC_IDNODE, LEVELS, RESTARTADDR)
These macros are used to implement acall operation on avirtual proce-
durein SDL. The yvpef struct has been allocated earlier (in
ALLOC VIRT_PROCEDURE) and the actual parameters have been
assigned to components in this struct. The suffix _IN_PRD indicates
that the procedure call is made in a procedure.

Parameters:

¢* PROC_IDNODE
the xPrdldNode of the called procedure.

* LEVELS
the scope level between the caller and the called procedure.

* RESTARTADDR
the restart address the symbol number for the symbol after the pro-
cedure call.

PROCEDURE_ALLOC_ERROR

This macro isinserted after the ALLOC PROCEDURE macro and the
assignment of parameter values to the procedure parameters. It can be
used to test if the alloc was successful or not.

PROCEDURE_ALLOC_ERROR_END
Thismacro is inserted after the CALL _PROCEDURE macro.

PROC_DATA_PTR

This macro should be expanded to atemporary variable used to store a
reference to the procedure data area. It should be assigned in the
ALLOC PROCEDURE macro and will be used to assign the actual
procedure parameters (the fpar values).

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

SDL_RETURN
The implementation of returnin SDL.

XNOPROCATSTARTUP

If this macro is defined then all the code discussed for the macro
CALL_PROCEDURE_STARTUP (just above) isremoved.

Implementation of Join

Joinsin SDL are normally implemented as goto:sin C, but in one case
amore complex implementation is needed. Thisiswhen thelabel, men-
tioned in the join, isin a super type.

XJOIN_SUPER_PRS
(RESTARTADDR, RESTARTPAD)

XJOIN_SUPER_PRD
(RESTARTADDR , RESTARTPRD)

XJOIN_SUPER_SRV
(RESTARTADDR, RESTARTSRV)

These macros represent join to super type in processes, procedures, and
services, in that order.

Parameters:
b RESTARTADDR
Therestart address in the super type.

* RESTARTPAD, RESTARTPRD, RESTARTSRV
The PAD function for the super type.

Implementation of State and Nextstate

Note:

Implicit nextstate operationsin RPC callsare treated in the RPC sec-
tion.

ASTERISK_STATE

The state number for an asterisk state. ASTERISK_STATE isusually
defined as-1.

Telelogic Tau 4.5 User's Manual 3123

Chapter 62 TheMaster Library

3124

ERROR_STATE

The state number used for the error state. ERROR_STATE isusually
defined as -2.

START_STATE

The state number for the start state. START_STATE should be defined
asO.

START_STATE_PRD

The state number for the start state in a procedure.
START_STATE_PRD should be defined as 0.

SDL_NEXTSTATE
(STATE_NAME, PREFIX STATE NAME, STATE NAME_STRING)

Nextstate operation (in process or service) of the given state.

Parameters:

b STATE_NAME
the name without prefix of the state.

* DPREFIX_ STATE NAME
the namewith prefix for the state. Thisidentifier is defined as asuit-
able state number in generated code and is usually used as the rep-
resentation of the state.

¢ STATE NAME STRING
the name of the state as a character string.

SDL_DASH_NEXTSTATE
Dash nextstate operation in a process.

SDL_DASH_NEXTSTATE_SRV
Dash nextstate operation in a service.

SDL_NEXTSTATE_PRD
(STATE NAME, PREFIX STATE NAME, STATE NAME STRING)

Nextstate operation (in procedure) of the given state.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Parameters:

* STATE_NAME
the representation of the state.

b PREFIX STATE NAME
the namewith prefix for the state. Thisidentifier is defined as a suit-
able state number in generated code and is usually used as the rep-
resentation of the state.

* STATE NAME STRING
the name of the state as a character string.

SDL_DASH_NEXTSTATE_PRD
Dash nextstate operation in a procedure.

Implementation of Any Decisions

An any decision with two paths are generated according to the follow-
ing structure;

BEGIN_ ANY DECISION(2)

DEF_ANY PATH(1, 2)

DEF_ANY PATH(2, 0)

END_DEFS_ANY PATH(2)

BEGIN_ FIRST ANY PATH(1)
statements

END_ANY PATH

BEGIN_ANY PATH(2)
statements

END ANY PATH

END_ANY DECISION

BEGIN_ANY_DECISION
(NO_OF_PATHS)

Start of the any decision. no_oF_paTHs isthe number of pathsin the de-
cision.

BEGIN_ANY_PATH
(PATH_NO)

A path (not the first) in implementation part of the any decision.
PATH_NO is the path number.

BEGIN_FIRST_ANY_PATH
(PATH_NO)

Telelogic Tau 4.5 User's Manual 3125

Chapter 62 TheMaster Library

The first possible path in implementation part of the any decision.
PATH_NO is the path number.

DEF_ANY_PATH
(PATH_NO, SYMBOLNUMBER)

Definition of a path in the decision.

Parameters:
* PATH NO
the path number.

* SYMBOLNUMBER
the symbol number for the first symbol in this path.

END_ANY_DECISION
The end of the any decision.

END_ANY_PATH
End of one of the pathsin the implementation section.

END_DEFS_ANY_PATH
(NO_OF_PATHS)

End of the definition part of theany decision. no_or_paTHs isthe num-
ber of pathsin the decision.

Implementation of Informal Decisions
The implementation of informal decisions are similar to any decisions.

BEGIN_FIRST_INFORMAL_PATH
(PATH_NO)

Thefirst possible path in implementation part of the informal decision.
PATH_NO is the path number.

BEGIN_INFORMAL_DECISION

(NO_OF_PATHS, QUESTION)
Start of the any decision.

3126 Teldlogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Parameters:

* NO OF_PATHS
the number of pathsin the decision.

b QUESTION
the question charstring.

BEGIN_INFORMAL_ELSE_PATH
(PATH_NO)

Theelsepath inimplementation part of theany decision. pATH_Noisthe
path number.

BEGIN_INFORMAL_PATH
(PATH_NO)

A path in implementation part of the any decision. paTH_wo isthe path
number.

DEF_INFORMAL_PATH
(PATH NO, ANSWER, SYMBOLNUMBER)

Definition of apath in the decision.

Parameters:

* PATH NO
the path number.

* ANSWER
the answer string.

b SYMBOLNUMBER
the symbol number for the first symbol in this path.

DEF_INFORMAL_ELSE_PATH
(PATH_NO, SYMBOLNUMBER)

Definition of the else path in the decision.

Parameters:

* PATH NO
the path number.

b SYMBOLNUMBER
the symbol number for the first symbol in this path.

Telelogic Tau 4.5 User's Manual 3127

Chapter 62 TheMaster Library

3128

END_DEFS_INFORMAL_PATH
(NO_OF PATHS)

End of the definition part of the informal decision. no_or_paThs isthe
number of pathsin the decision.

END_INFORMAL_ELSE_PATH
End of the else paths in the implementation section.

END_INFORMAL_DECISION
The end of the informal decision.

END_INFORMAL_PATH
End of one of the pathsin the implementation section.

Macros for Component Selection Tests

The macros in this section handles testing the validity of for example a
component selection of achoice or #UNION variable. Also testsfor op-
tional componentsin structsand for de-referencing of pointersistreated
here.

XCHECK_CHOICE_USAGE
(TAG, VALUE, NEQTAG, COMPNAME, CURR_VALUE, TYPE INFO)

XSET_CHOICE_TAG

(TAG, VALUE, ASSTAG, NEQTAG, COMPNAME, CURR_VALUE,
TYPEINFO)

XSET_CHOICE_TAG_FREE

(TAG, VALUE, ASSTAG, NEQTAG, FREEFUNC, COMPNAME,,
CURR_VALUE, TYPEINFO)

The CHOICE macros are used to test and to set the implicit tag in a
choice variable. The XSET_CHOICE _TAG and
XSET_CHOICE_TAG_FREE set thetag when some component of the
choiceisassigned avalue. The FREE version of the macroisusedif the
choice contains some component that has a Free function. The
XCHECK_CHOICE_USAGE isused to test if an accessed component
is active or not.

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

Parameters:
« TAG
Theimplicit tag component
+ VALUE
The new or expected tag value
» ASSTAG
The assignment function for the tag type
+ NEQTAG
The equal test function for the tag type
+ FREEFUNC

The Free function for the Choice type

« COMPNAME
The name of the selected component as a char string

« CURR_VALUE
The current value of the tag type

* TYPEINFO
The type info node for the tag type.

XCHECK_OPTIONAL_USAGE
(PRESENT VAR, COMPNAME)

Thismacro is used to check that a selected optional component is
present. The PRESENT_V AR parameter isthe present variablefor this
component, while COMPNAME isthe selected components name as a
char string.

XCHECK_UNION_TAG_USAGE
(TAG, VALUE, NEQTAG, COMPNAME, CURR_VALUE, TYPEINFO)

XCHECK_UNION_TAG

(TAG, VALUE, ASSTAG, NEQTAG, COMPNAME , CURR_VALUE,
TYPEINFO)

XCHECK_UNION_TAG_FREE

(TAG, VALUE, ASSTAG, NEQTAG, FREEFUNC, COMPNAME,,
CURR_VALUE, TYPEINFO)

The UNION macros are used to test tag in aunion variable. The
XCHECK_UNION_TAG and XCHECK_UNION_TAG_FREE check
the tag when some component of the union is assigned avalue. The

Telelogic Tau 4.5 User's Manual 3129

Chapter 62 TheMaster Library

FREE version of the macro is used if the union contains some compo-
nent that has a Free function. The XCHECK_UNION_USAGE is used
to test if an accessed component is active or not.

Parameters:

« TAG
The tag component

+ VALUE
The expected tag value

» ASSTAG
The assignment function for the tag type

« NEQTAG
The equal test function for the tag type

 FREEFUNC
The Free function for the UNION type

+ COMPNAME
The name of the selected component as a char string

+ CURR_VALUE
The current value of the tag type

e TYPEINFO
The type info node for the tag type.

XCHECK_REF
XCHECK_OWN

XCHECK_OREF
(VALUE, REF_TYPEINFO,REF SORT)

These macros are used to implement atest that Null pointers (using the
Ref, Own, or ORef generator) are not de-referenced. These macros are
inserted before each statement containing a Ref/Own/ORef pointer de-
referencing. In case of an ORef pointer it is also checked that the ORef
isvalid, i.e. that it refers to an object owned by the current process.

Parameters:

+ VALUE
Thisisthe value of the pointer.

3130 Teldlogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

July 2003

 REF_TYPEINFO
The typeinfo node for the Ref sort.

* REF_SORT
The C type that corresponds to the Ref instantiation newtype.

XCHECK_OREF2
(VALUE)

Checksthat a ORef pointer isavalid pointer, i.e. NULL, or that it refers
to an object owned by the current process.

Debug and Simulation Macros

XAFTER_VALUE_RET_PRDCALL
(SYMB_NO)

A macro generated between the implementation of a value returning
procedure call (implicit call symbol) and the symbol containing the val-
uereturning procedure call. syMB_No isthe symbol number of the sym-
bol containing the value returning procedure call.

XAT_FIRST_SYMBOL
(SYMB_NO)

A macro generated between an input or start symbol and the first sym-
bol in thetransition. symB_no isthe symbol number of the first symbol
in the transition.

XAT_LAST_SYMBOL
A macro generated immediately before a nextstate or stop operation.

XBETWEEN_STMTS

XBETWEEN_STMTS_PRD
(SYMB NO, C LINE NO)

A macro generated between statementsin atask. The suffix _PRD indi-
cates that these statements are part of a procedure.

Parameters:
* SYMB NO
the symbol number of the next statement.

Telelogic Tau 4.5 User's Manual 3131

Chapter 62 TheMaster Library

3132

* C_LINE NO
line number in C of this statement.

XBETWEEN_SYMBOLS

XBETWEEN_SYMBOLS_PRD

(SYMB_NO, C_LINE_NO)
A macro generated between symbolsin atransition. The suffix _PRD
indicates that these symbols are part of a procedure.

Parameters:

* SYMB NO
the symbol number of the next symbol.

* C_LINE_NO
line number in C of this statement.

XDEBUG_LABEL

(LABEL_NAME)
This macro gives the possibility to insert label at the beginning of tran-
sitions. Such |abels can be useful during debugging. The LABEL NAME
parameter is a concatenation of state name and the signal name. The *
in state*; and input *; will cause the name ASTERISK to appear.

XOS_TRACE_INPUT
(SIG_NAME STRING)
Thismacro is generated at input statements and can, for example, be
used to generated trace information about inputs. The
SIG_NAME_ STRING parameter isthe name of the signal in the input.

YPRSNAME_VAR

(PRS_NAME_STRING)
Thismacro isgenerated among the declarations of variablesinthe PAD
function for aprocess. It can, for example, be used to declarea char *
variable containing the name of the process. Such avariable can be use-
ful during debugging. The prs_NaME_STRING parameter isthe name of
the process as a character string.

YPRDNAME_VAR
(PRD_NAME STRING)

Telelogic Tau 4.5 User's Manual July 2003

List of All Compilation Switches

Thismacro is generated among the declarations of variablesin the PRD
function for aprocedure. It can, for example, be used to declareachar*
variable containing the name of the procedure. Such avariable can be

useful during debugging. TheprRD NAME STRING parameter isthename
of the procedure as a character string.

Utility Macros to Be Inserted

The following sequence of macros should be inserted. Most of them
concern removal of struct components (in IdNodes) that are not used
due to the combination of other switches used.

#define NIL 0
#define XXFREE xFree
#define XSYSD xSysD.

#if defined (XPRSPRIO) || defined (XSIGPRSPRIO) ||
defined (XPRSSIGPRIO)

#define xPrsPrioPar (p) , P

#else

#define xPrsPrioPar (p)

#endif

#if defined(XSIGPRIO) ||
defined (XPRSSIGPRIO)
#define xSigPrioPar(p) , p
#define xSigPrioParS(p) p;
#else
#define xSigPrioPar (
#define xSigPrioParS
#endif

defined (XSIGPRSPRIO) ||

p)
(p)

#ifdef XTESTF

#define xTestF(p) , p
#else

#define xTestF (p)
#endif

#ifdef XREADANDWRITEF
#define xRaWF(p) , p
#else

#define xRaWF (p)
#endif

#ifdef XFREEFUNCS
#define xFreF(p) , p
#else

#define xFreF (p)
#endif

#ifdef XFREESIGNALFUNCS
#define xFreS(p) , p

July 2003 Telelogic Tau 4.5 User's Manual 3133

Chapter 62 TheMaster Library

3134

#else
#define xFreS (p)
#endif

#define xAssF

(p)
#define xEQgF (p)

#ifdef XIDNAMES

#define xIdNames(p) , p
#else

#define xIdNames (p)
#endif

#ifndef XOPTCHAN

#define xOptChan(p) , p
#else

#define xOptChan (p)
#endif

#ifdef XBREAKBEFORE
#define xBreakB(p) , p
#else

#define xBreakB (p)
#endif

#ifdef XGRTRACE

#define xGRTrace(p) , p
#else

#define xGRTrace (p)
#endif

#ifdef XMSCE

#define xMSCETrace(p) , p
#else

#define xMSCETrace (p)
#endif

#ifdef XTRACE

#define xTrace(p) , p
#else

#define xTrace (p)

#endif

#ifdef XCOVERAGE

#define xCoverage(p) , p
#else

#define xCoverage (p)
#endif

#ifdef XNRINST

#define xNrInst(p) , p
#else

#define xNrInst (p)

Telelogic Tau 4.5 User's Manual

July 2003

List of All Compilation Switches

July 2003

#endif

#ifdef XSYMBTLINK

#define xSymbTLink (pl, p2) , pl, p2
#else

#define xSymbTLink (pl, p2)

#endif

#ifdef XEVIEW
#define xeView(p
#define xeViews (
#else

#define xeView(p
#define xeViewsS (
#endif

) P,
p) Dp;

)
p)

#ifdef XCTRACE
#define xCTrace (
#define xCTraceS
#else

#define xCTrace (p
#define xCTraceS (
#endif

p) D,
(p) pi
)

p)

#ifndef XNOUSEOFSERVICE
#define xService(p) , P
#else

#define xService(p)
#endif

#if !defined (XPMCOMM) && !defined (XENV)
#define xGlobalNodeNumber () 1
#endif

#define xSizeOfPathStack 50

#ifndef xOffsetOf
#define xOffsetOf (type, field) \
((xptrint) &((type *) 0)->field)
#endif
#define xToLower (C) \
((C >= ‘A" && C <= ‘Z’) ? \

(char) ((int)C - (int) ‘A’ + (int)’a’)

#ifndef xDefaultPrioProcess

#define xDefaultPrioProcess 100
#endif

#ifndef xDefaultPrioSignal

#define xDefaultPrioSignal 100
#endif

#ifndef xDefaultPrioTimerSignal
#define xDefaultPrioTimerSignal 100
#endif

Telelogic Tau 4.5 User’s Manual

C)

3135

Chapter 62 TheMaster Library

3136

#ifndef xDefaultPrioContSignal
#define xDefaultPrioContSignal 100
#endif

#ifndef xDefaultPrioCreate

#define xDefaultPrioCreate 100
#endif

#define xbool int

#ifndef MAX_ READ LENGTH
#define MAX READ LENGTH 5000

/* max length of input line */
#endif

The xDefaultPrio macros above should, of course, be defined to the
suitable default values.

Other macros that should be defined are.

SDL_NULL
anull value for the type PId.

xNotDefPld

whichisused asRECEIVER parameter inthe SDL_20UTPUT macros.
Please see al so the section were signals are treated.

Telelogic Tau 4.5 User's Manual July 2003

	62 The Master Library
	Introduction
	File Structure
	Description of Files
	scttypes.h
	sctlocal.h
	sctpred.h
	sctsdt.c
	sctpred.c
	sctutil.c
	sctmon.c
	sctpost.c
	sctos.c
	post.h and sdt.h
	post.o (post.lib in Windows)

	The Symbol Table
	Symbol Table Tree Structure
	Types Representing the Symbol Table Nodes
	Package
	System, System Type
	Channel, Signal route, Gate
	Block, Block Type, Block Instance
	Process, Process Type, Process Instance
	Service, Service Type, Service Instance
	Procedure, Operator Diagram, Compound Statement
	Remote Procedure
	Signal, Timer, StartUpSignal, and RPC Signals
	State
	Sort and Syntype
	Variable, FormalPar, SignalPar, and Struct Components
	Remote Variable

	Type Info Nodes
	General Components
	Type-Specific Components

	The SDL Model
	Signals and Timers
	Data Structure Representing Signals and Timers
	Allocation of Data Areas for Signals
	Overview of Output and Input of Signals
	Timers and Operations on Timers

	Processes
	Data Structure Representing Processes
	The Ready Queue, Scheduling
	Create and Stop Operations
	Output and Input of Signals
	Nextstate Operations
	Decision and Task Operations
	Compound Statements
	Enabling Conditions and Continuous Signals
	View and Reveal
	Import, Export, and Remote Variables

	Services
	Data Structure Representing Services
	Executing Transitions in Services

	Procedures
	Data Structure Representing Procedures
	Calling and Returning from Procedures

	Channels and Signal Routes
	The Type Concept in SDL-92

	Allocating Dynamic Memory
	Introduction
	Processes
	Compilation switch XPRSOPT

	Services
	Signals
	Timers
	Procedures
	Data types
	Functions for Allocation and Deallocation

	Compilation Switches
	Description of Compilation Switches
	XCLOCK
	XCALENDARCLOCK
	XPMCOMM
	XITEXCOMM
	XENV
	XTENV
	XENV_CONFORM_2_3
	XSIGLOG
	XTRACE
	XGRTRACE
	XCTRACE
	XMONITOR
	XCOVERAGE
	MAX_READ_LENGTH
	XSIMULATORUI
	XMSCE
	XSDLENVUI
	XNOMAIN
	XMAIN_NAME
	XSIGPRIO
	XPRSPRIO
	XSIGPRSPRIO
	XPRSSIGPRIO
	xDefaultPrio...
	XOPT
	XOPTSIGPARA
	XOPTDCL
	XOPTFPAR
	XOPTSTRUCT
	XOPTLIT
	XOPTSORT
	XNOUSEOFREAL
	XNOUSEOFOBJECTIDENTIFER
	XNOUSEOFOCTETBITSTRING
	XNOUSEOFEXPORT
	XNOUSEOFSERVICE
	XPRSOPT
	XOPTCHAN
	X_LONG_INT
	XENVSIGNALLIMIT
	XEALL
	XECREATE
	XECSOP
	XEDECISION
	XEEXPORT
	XEFIXOF
	XEINDEX
	XEINTDIV
	XEOUTPUT
	XERANGE
	XEREALDIV
	XEVIEW
	XECHOICE
	XEOPTIONAL
	XEUNION
	XEREF, XEOWN
	XASSERT
	XTRACHANNELSTOENV
	XDEBUG_LABEL
	XCONST, XCONST_COMP

	Compilation Switches – Summary

	Creating a New Library
	Directory Structure
	File sdtsct.knl
	File Makefile
	File comp.opt
	File makeoptions / make.opt
	Generated Make Files

	Adaptation to Compilers
	Compiler Definition Section in scttypes.h
	The sctos.c File
	xAlloc
	xFree
	xHalt
	SDL_Clock
	xSleep_Until
	xGlobalNodeNumber
	xCheckForKeyboardInput

	List of All Compilation Switches
	Introduction
	Library Version Macros
	Compiler Definition Section Macros
	Some Configuration Macros
	General Properties
	Code Optimization
	Definitions of Minor Features
	Static Data, Mainly xIdNodes
	Data in Processes, Procedures and Services
	Some Macro Used Within PAD Functions
	yInit Function
	Implementation of Signals and Output
	Implementation of RPC
	Implementation of View and Import
	Implementation of Static and Dynamic Create and Stop
	Implementation of Timers, Timer Operations and Now
	Implementation of Call and Return
	Implementation of Join
	Implementation of State and Nextstate
	Implementation of Any Decisions
	Implementation of Informal Decisions
	Macros for Component Selection Tests
	Debug and Simulation Macros
	Utility Macros to Be Inserted

