Chapter

22

July 2003

TTCN Access

Thischapter describes TTCN Access. It isintended to be read by
developers of executable test suites, translator developersand test

result analyzers. It requiressomebasic programming knowledgein
C++asTTCN Accessisa C++ programming tool.

Telelogic Tau 4.5 User’ sManual 945

Chapter 22 TTCN Access

Introduction to TTCN Access

946

A TTCN test suite can be looked upon as aformal description of acol-
lection of test sequences where each test sequence involves signals and
values. The abstract test suite contains formal definitions of these sig-
nalsand values aswell asastructural description of each test sequence.
A common formal notation used to describe these test sequences, as
well asall the other itemsin an abstract test suite, is TTCN.

TTCN Accessis a C++ application programmers interface towards an
arbitrary abstract test suite written in TTCN and incorporated in the
TTCN suite. TTCN Accessrevealsthe content of the test suitein ahigh
level abstraction and allows various users to access the content in a
read-only manner.

TTCN Accessisa platform for writing applications related to an ab-
stract test suite such as:

Executable test suites
Interpreters

Encoders and decoders
Analyzers

Reporters

By using TTCN Access, avariety of applications can be implemented
that will ease the maintenance of abstract test suites and the develop-
ment of executable test suites. TTCN Accessis an easy-to-use applica
tion programmers interface that provides the required functionality for
applicationsin these areas.

Terms Used in This Document:

e ISO/IEC 9646-3: 1991 is called the TTCN standard.
* ISO/IEC 8824 : 1990 is called the ASN.1 standard.

e Backus-Naur Format is called BNF.

General Concepts

The easiest, and simplest way of describing TTCN Accesswould beto
state that TTCN Accessisa TTCN compiler. Unfortunately this state-
ment is not fully true and also somewhat misleading asit might, concep-
tually, bring the reader (and TTCN Access users) towards the domain
of executabletest suitesand thereby not reveal al the other possibilities
that TTCN Access brings. A more correct statement would thereby be

Telelogic Tau 4.5 User's Manual July 2003

TTCN Access and the TTCN Analyzer

that TTCN Accessis ahalf compiler, more precisely the first phase of
acompiler, often called the front-end. For ageneral explanation of com-
piler theory and compiler front-ends, see chapter 21, Basic Compiling
Theory. Thefact isthat the TTCN to C compiler isbuilt ontop of TTCN
Access.

TTCN Access and the TTCN Analyzer

July 2003

All the components and definitions mentioned in chapter 21, Basic
Compiling Theory, together build up the basicsfor compiling theory. As
mentioned, TTCN Accessis a C++ application programmers interface
towards atest suite written in TTCN. It reveals the content of the test
suite in ahigh level abstraction and allows various users to access the
content in aread-only manner.

This section will once again mention these components, but this time

put them in the context of the TTCN suite and the functionality that it
provides, thereby explaining the relationship between the TTCN suite
and TTCN Access.

Lexical Analysis

Thelexica analysisinthe TTCN suiteisdonein two phases, depending
on the format of the abstract test suite.

» |f the source code isin MP format, abasic lexical analysisis done
at theimport stage, verifying that the imported test suite is written
in correct MPformat. A full lexical analysisis done when using the
Analyzer. The complete lexical analysisisthefirst phasein the
analysis.

For more information see “Importing a TTCN-MP Document” on
page 1149 in chapter 25, The TTCN Browser (on UNIX).

» If the source codeiswritten directly into the TTCN suite viaone of
the editors, alexical analysisisdone by using the Analyzer as men-
tioned above.

For more information see chapter 27, Analyzing TTCN Documents

(on UNIX).

Telelogic Tau 4.5 User's Manual 947

Chapter 22 TTCN Access

Syntax Analysis

The syntax analysisis done when executing the Analyzer and it isdone
in the second phase. This second phase a so contains a semantic analy-
sisof thetest suite, all in order to verify that the test suite complieswith
the standardized notations for TTCN and ASN.1.

Parse Tree

The last phase of the analysisis to generate a parse tree. This can only
be doneif the lexical and syntax analysis have been successfully com-
pleted.

Symbol Table Management

During execution of an TTCN Access application the symbol tableis
accessible at any time.

Example of TTCN Access Functionality

948

AsTTCN Access looks upon atest suite as a parse treg, it provides the
required primitives and functionality for parse tree handling. Thisin-

cludes parse tree traversing and hooksinto the parse tree aswell astem-
plates for main() and several examplesin source code format. The best
way to visualize the functionality of TTCN Accessis by using an exam-

ple:

PCO Declarations in TS

File Edit DalaDictionary Show Tools SDTLink Help |,

|t [S] Al

&L E 2]2l][7]

PCO Declarations

FCO Name

PCO Type

Fole

Cormments

<

LSE_SAF

LT

Detmiled Comments : The LCE forms pan of the service prowvider, adong with the DLG, MAC and Physical kyes.

This PG s2nds PDUs 10 and meeives PDUs from the LCE. It lies betwean the Protocol
Dizzrimination and Link contml entities shown in figue 4.4 in ETS 200 175-5.

Figure 181: The PCO Declarationstable

Telelogic Tau 4.5 User’s Manual July 2003

Example of TTCN Access Functionality

July 2003

The PCO Declarations table, containing just one PCO declaration will
generate the parse tree visualized below:

PCO_Dcls

PCO _| DcIList DetailedComment

|
“This PCO sends PDUSs to and receives PDUs
from the LCE. It lies between the Protocol

PCO Dcl Discriminator and Link control entities
/ / anmflgure4lm ETS 300 175-5."

PCO_ld PCO_Typeld p_Role Comment

Identifier Identifier PCO_Role “TheLcE form part of the service provider,
‘ along with the DLC, MAC and Physical layers.”

“cr “LCE_SAP’ ‘LT

Figure 182: Parsetree

Traversing

The basics of parse tree functionality hasto include traversing primi-
tives. TTCN Access therefore provides a special visitor classwith ade-
fault traverser that, given any nodein the parsetree, traversesthat parse
treein aLeft-Right-Depth-First manner. In the parse tree previously de-
scribed, the default traversing order for the sub tree PCO_Dcl will be:

PCO_Dcl

N T

PCO_lId PCO_Typeld P_Role Comment

Identifier Identifier PCO_Role “The LCE form part

“c “LCE_SAP" “LT

of the service'provider,
along with the DLC, MAC
and Physical layers.”

Figure 183: Default traversing tree

Telelogic Tau 4.5 User's Manual 949

Chapter 22 TTCN Access

This default translating algorithm may be customized in order to fit any
user specific traversing order. For the above example, a customized tra-
verser could beimplemented astraversing sub tree PCO_Typeld before
sub tree PCO_Id and ignoring sub tree Comment.

Translating

The second most important functionality when discussing parsetrees, is
the possibility to access specific nodes in the parse tree in order to gen-
erate side effects, such as executing external code, print parsetreeinfor-
mation, etc. By being able to modify the default traverser, TTCN Ac-

cess provides the user with the possibility of defining such side effects.

Example of TTCN Access Usability

950

To visualize the strength of TTCN Access, this section will discuss a
small TTCN Access application. The example is a generic encoder.

The Encoder

Transforming an abstract test suite into an executable test suite will
eventually involve the problem of representing the actual ASP and PDU
signalsashit patterns. The step from abstract syntax (TTCN) to transfer
syntax (bit patterns) has to be provided and implemented by someone
with vast knowledge of the actual protocol aswell asthetest system and
the test environment.

The encoder described in this small example will assume the following:

» Elements of the same type are encoded identically.
» Encodingan ASP or PDU isperformed by encoding its components
recursively.

These assumptions tell us that encoding functions are data driven and
that the encoding function has to be derived from the type definitions.
It also tellsusthat the encoding of basetypes, that isINTEGER, BOOL -
EAN, etc., areidentical.

Before looking at the algorithm for the generic encoder, let us have a
look at a specific type and how the corresponding encoding function
may be implemented. The type will be asmall PDU as below:

Telelogic Tau 4.5 User's Manual July 2003

Example of TTCN Access Usability

UTHEWT _REQT in T5:

File Edit DataDictionary Show Tools SDTLink Help

EREE

(&L 1] =] 2] [7]

PDU Type Definition

PDU Name : AUTHENT_RECHA
PCO Type : LGE_SAP
Encoding Rule Name :
Encoding Wariation
Comments
] Fizld Name Field Type Field Encoding Crormnrnents
message_flag INTEGER

message_type EBITSTRING[2]
{| auth_type AUTH_TYPE
Detailed Comments :

July 2003

Figure 184: TTCN PDU type definition

The corresponding encoding function may look like:

void AUTHENT REQ1 encode (AUTHENT REQl* me, char* enc_buf)

INTEGER_encode (&me->message flag, enc_buf);
BITSTRING encode(&me->message type, enc_buf);
AUTH_TYPE encode (&me->auth type, enc_buf);

It is a data driven encoding function that given any element of type
AUTHENT REQ1 Will encode them all identical. The first argument isa
pointer to the element that shall be encoded, the second argument isthe
buffer where the result of the encoding shall be stored.

The function may of course contain more code and more information,
but for this example, the above is the smallest encoder function needed.

Thefollowing example will give an algorithm for how the encode func-
tionsmay be generated viaTTCN Access. Thealgorithmisfollowed by
asmall TTCN Access application generating the actual encoder.

Telelogic Tau 4.5 User’ s Manual 951

Chapter 22 TTCN Access

952

FUNCTION GenerateEncoder(type : typedefinition)

BEGIN

/* Generate encoder function header such as: */
/* void type encode(type* me, char* enc buf) */
/[{ */

FOR(“every element in the structured type”)

/* Generate a call to the element type encoder

/* function

/* such as: */

/* element type encode(&type->element, enc buf);
END

/* Generate encoder function footer such as: */
/*)} x/

END

The above agorithm will generate generic encoders for any type. Of
course, header files and base type encoder functions must be provid-
ed/generated as well. Below is anearly complete TTCN Access appli-
cation that generates encodersfor any TTCN PDU type definition. Ob-
serve how the visitor classis customized to traverse and generate side
effects for the specific parts we are interested in.

// Start by customizing the default visitor class
class Trav : public AccessVisitor
public:

void VisitTTCN_PDU TypeDef (const TTCN_ PDU TypeDef& Me) ;
void VisitPDU_FieldDcl (const PDU_FieldDcl& Me) ;

i
void Trav::VisitTTCN_PDU TypeDef (const TTCN_PDU TypeDef& Me)
// Generate the header part
cout << Me.pdu_Identifier() << “_encode(const “;
cout << Me.pdu Identifier() << “& me, char* enc buf)”;
cout << “\n{“ << endl;
// Traverse fields using default traverser
AccessVisitor::VisitPDU FieldDcls(Me.pdu FieldDcls());

// Generate the footer part

cout << “}” << endl;

void Trav::VisitPDU FieldDcl(const PDU_FieldDcl& Me)

Astring type = get_type(Me.pdu_FieldType());
Astring name = get name(Me.pdu FieldId());

cout << “void “ << type << “_encode(me->"
<< name << “(), enc_buf);” << endl;

Telelogic Tau 4.5 User's Manual July 2003

Example of TTCN Access Usability

All that remains now is amain function for the generic encode genera-

tor.
#include <stdio.h>
#include <iostream.h>
#include <time.h>
#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hhs>

class Trav : public AccessVisitor
public:

void VisitTTCN_PDU TypeDef (const TTCN_PDU TypeDef& Me) ;
void VisitPDU_FieldDcl (const PDU_FieldDcl& Me) ;

i
int main(int argc, char **argv)
//The actual suite
AccessSuite suite;
if (argc != 2)
fprintf (stderr, “usage: %s suitename\n”, argv[0 1);

return 0;

}
/* Open the suite and go for it! */
if (suite.open(argv[1]))
Trav trav;

trav.Visit (suite);
suite.close();

}

Theget_type and get_name functions can be simple or complex. See
the example below:
Astring get type(const PDU FieldType& Me)

TypeAndAttributes ta = Me.typeAndAttributes();
switch (ta.choice())

case Choices::c_TypeAndLengthAttribute:
return get_type(ta.typeAndLengthAttribute());

default:
cerr << “ERROR: Type not supported: “
<< Me.content() << endl;
) return “Wkkkffkkko

Astring get_type(const TypeAndLengthAttribute& Me)
const TTCN_Type tt = Me.ttcn Type();

switch (tt.choice())

July 2003 Telelogic Tau 4.5 User's Manual 953

Chapter 22 TTCN Access

case Choices::c_PredefinedType:
if (tt.predefinedType().choice() ==
Choices::c_INTEGER)
return “INTEGER”;

break;
case Choices::c_ReferenceType:

return tt.referenceType().identifier();
default:

break;

cerr << “ERROR: Type not supported: “
<< Me.content() << endl;
return “Wkkkfkkke

Astring get name(const PDU FieldId& Me)

const PDU_FieldIdOrMacro pfid = Me.pdu FieldIdOrMacro();
if (pfid.choice() != Choices::c_PDU_FieldIdAndFulllId)

cerr << “ERROR: Slot name not supported: “
<< Me.content () << endl;
return “Wkkkfkkkr

return pfid->pdu_FieldIdAndFullId() .pdu_FieldIdentifier();

954 Teldlogic Tau 4.5 User's Manual July 2003

TTCN Accessin Relationto TTCN and ASN.1

TTCN Access in Relation to TTCN and

ASN.1

July 2003

TTCN Accessiscreated for the purpose of accessing and traversing the
contentsof aTTCN test suite. Asabasisfor the development of TTCN
Access, the TTCN-MP syntax productionsin BNF [SO/IEC 9646-3,
appendix A] together with the ASN.1 standard [I SO/IEC 8824] have
been used.

Differences

Every nodein TTCN Accessreflects arulein the BNF. However there
are some small differences between the BNF and TTCN Access:

The Present Nodes

Theintention isto map the ASN.1 and TTCN standards as good as pos-
sible. In a perfect world this would mean that no extra nodes could be
found in TTCN Access and that each rule in the standards would have
exactly one corresponding nodein TTCN Access. Some differences be-
tween the perfect world and our world arelisted in detail below. Differ-
ences exist due to redundancies in the standardized grammar or design
decisions made during the development of TTCN Access. The goal of
any implementation of TTCN Access is to make as few changes com-
pared to the perfect world as possible. However, some extranodes have
been added to TTCN Access, and in afew placesthe exact calling order
of the pre/post functions has been altered to what we feel isamore
straight forward approach for executable languages.

The SEQUENCE OF

The TTCN and ASN.1 notations at times allow for arbitrary many
nodes to be grouped in lists of nodes or sequences of nodes. For exam-
plethereisthe SubTypeVaueSetList rule of the ASN.1 standard and
thereisthe AssignmentList rule of the TTCN standard. In both BNF no-
tations a difference is made between lists that are allowed to be empty
and those which must contain at |east one element, corresponding to the
{} and {} + notation in the TTCN standard.

In TTCN Access no difference is made between the two forms of lists,
since awell defined and simple access method is of prime interest. All
listsare allowed to beempty, and itisthework of the Analyzer to ensure

Telelogic Tau 4.5 User's Manual 955

Chapter 22 TTCN Access

956

non-empty listswhere appropriate. In the ASN.1 standard the non-emp-
ty lists are sometimes written by re-grouping aready existing rules.
Thisre-grouped structure will not be representedin TTCN Access. The
decision does not alter the number of nodes or the names of nodes, but
merely the visiting order when traversing the nodes, i.e. SubTypeVal-
ueSetL ist before SubTypeValueSet.

Example 161
ASN.1 rule SubTypeSpec:

SubTypeSpec ::= (SubTypeValueSet SubTypeValueSetList)
becomes:
SubTypeSpec ::= (SubTypeValueSetList)

Inthe TTCN standard there are nodes which contain an implicit group-
ing.

Example 162
TTCN BNFrule:

TestStepLibrary ::= ({TestStepGroup | TestStep})
becomes:
TS _ConstDcls ::= {TS ConstDcl}+ [Comment] .

Furthermore there are nodes that contain groupings without the list
postfix name convention.

Example 163
TTCN BNFrule:

TimerOps ::= TimerOp {Comma TimerOp}.

Whenever necessary, agrouping or/and choice node will beinserted be-
tween rulesin the TTCN standard. When nodes are created without cor-
responding node in any of the standards, the nodes will be named ac-
cording to the convention used in the ASN.1 standard, i.e. these nodes
will have postfix “List”. Nodes which are agrouping but do not follow
the naming convention will be |eft asthey are.

Telelogic Tau 4.5 User's Manual July 2003

TTCN Accessin Relationto TTCN and ASN.1

July 2003

OPTIONAL

Inthe BNF rulesfor TTCN-MP, theuseof [abc 1 implieszero or
oneinstance of abc. Inthe definition of TTCN Access the same effect
isachieved by the use of the symbol “OPTIONAL" after the TTCN Ac-
cessdefinition. If aTTCN Access element defined as“ OPTIONAL” is
not present in a specific instance, no TTCN Access representation for
that specific field will be available. To detect whether or not aTTCN
Access node defined as“OPTIONAL” is present or not, a boolean
TTCN Accessfunction will be necessary to apply to that TTCN Access
node in order to verify the presence/absence of the parse tree related to
the specific slotname.

FIELD

A difference between TTCN Access and the BNF rulesisthat TTCN
Accessviews every BNF production reflecting afieldinthe TTCN-GR
format to be optional even though thefield is not defined as such in the
BNF. Thereason for thisisthat no TTCN Accesstree can be built for a
field unlessa successful analysishas been performed onthat field. If the
analysisfailed, the field will not carry any TTCN Access information
and the field may not be accessed.

In TTCN Access al fields are marked with the symbol “FIELD”. This
“FIELD” symbol impliesthat the field may be empty. Thefield may be
empty even though the field is not defined as optional in the BNF. To
detect whether or not afield is present or not present, aboolean TTCN
Access function will be necessary to apply to that TTCN Access node
in order to verify the presence/absence of the parse tree related to the
specific field. Thisextension isapplicable to all fields except if afield
isimplemented in TTCN Access as anode of type TERMINAL. All
TERMINAL types are strings and TTCN Access sees the absence of a
TERMINAL as an empty string.

The Value Notation

The Common Value Notation

The value notations of the two standards must be unified. Some values
are clearly within one standard only (SetVaue for instance), while oth-
ersarein both standards (7 for instance). Those values that have the
same syntax in both standards are considered to belong to the TTCN
standard. Note that the ASN.1 standard might specify some other chain

Telelogic Tau 4.5 User's Manual 957

Chapter 22 TTCN Access

958

of productions to reach such a value and that this chain of productions
isnot represented in TTCN Access.

The Expression Tree

The expression rule has been re-written sinceit is undesirable to have

the flat representation from the standard. Instead anormal tree oriented
representation of an expression is used. This means that the rules mak-
ing up an expression are heavily changed.

The Base Nodes

Base nodes are the representation of the terminalsin the TTCN Access
tree. They can in most aspects be treated as strings, they can be printed
directly for example. The base nodes are:

* Identifier
Has an associated type
* Number

« All nodeshaving asingle child of type BoundedFreeText (Fulll den-
tifier or SO_SelExprld for example).
e Ostring, Cstring, Bstring and Hstring

Note:

The Keyword classin ITEX Access 1.0 does not exist in ITEX Ac-
cess 2.0. Neither of the standards has the notion of a keyword
class/rule, and therefore there is no node/class named Keyword in
ITEX Access 2.0. It has been replaced with ITEX Access node
TERMINAL.

Tree Traversing in the Dynamic Part

An extension to the BNF adds the possibility to access the content of
test cases, test steps and defaults, by using the logical tree structure of
thetest. Thisisachieved by adding aslot in the node type definition Be-
haviourLine named “children”. By accessing that slot an TTCN Access
object isreturned that holds avector of children to the current statement
line. A childisaBehaviourLine with alevel of indentation one greater
that the preceding BehaviourLine.

Telelogic Tau 4.5 User's Manual July 2003

The TTCN Access Notation

Naming Conventions

Asabasisfor naming TTCN Access nodes, the namesin the BNF for
TTCN and ASN.1 have been used. There are some differences though,
and they will be discussed and explained in this subsection.

No slot name, type name or type definition containsthe symbol “&”
asitisareserved symbol in C++. It isreplaced with “and” or “ And”
where appropriate.

All type definitions start with an upper case letter (and are written
in bold).

All slot names start with alower case letter.

All type names start with an upper case letter.

The TTCN Access Notation

The notation used to describe anodein TTCN Accessis described as
below (asimple BNF for an example node):

July 2003

Node = TypeReference Assign TypeAssignment
TypeReference = Identifier
--has to start with an upper case letter
Assign ri= “io=”
TypeAssignment ::= ClassType ClassBody | “TERMINAL”
ClassType ::= “SEQUENCE” | “SEQUENCE OF” |
“CHOICE”
ClassBody = “{" { slot }+ v}~
Slot = SlotName TypeReference
[“OPTIONAL" | “FIELD”]
SlotName ::= Identifier
--has to start with a lower case letter
Example 164
StructTypeDef ::= SEQUENCE
structId FullIdentifier FIELD
comment Comment FIELD
elemDcls ElemDcls

detailedComment DetailedComment FIELD

A TTCN Accessnodetypeisdefined in Bold starting with an upper
case letter.

A node can be of type SEQUENCE, SEQUENCE OF or CHOICE.
A SEQUENCE contains an ordered collection of elements, a SE-

Telelogic Tau 4.5 User's Manual 959

Chapter 22 TTCN Access

QUENCE OF avector of elements (possibly empty) and aCHOICE
isacollection of possible elements.

Each dlot in a TypeAssignment starts with a SotName followed by
a SotType. Each SotType has a corresponding nodein TTCN Ac-
cess.

The SotType can befollowed by arIELD Symbol meaning that the
slot is associated with afield in the TTCN-GR format.

The SotType can be followed by aopT10oNAL Symbol meaning that
the slot can be absent.

Each dlot isfollowed by a page reference to the node corresponding
to the SotType. This page reference is not a part of the Abstract
Data Structure.

For more information see chapter 24, The TTCN Access Class Refer-
ence Manual.

TTCN Access Primitives

960

Each nodein TTCN Accessistranslated to a C++ class definition. Each
instance of a specific C++ class definition contains one or more ele-
ments as defined in the specific C++ class definition. For each type def-
inition there are a collection of TTCN Access functions.

In this chapter names written in italic are referred to as meta names.
Words written in courier aretaken from the definition of TTCN Ac-
cess.

Note:
For further details seethe TTCN Accessincludefile access.hh.

Telelogic Tau 4.5 User's Manual July 2003

TTCN Access Primitives

General TTCN Access Functions Description

» For every node definition with assignment of type SEQUENCE or
SEQUENCE OF there exists a general method

SlotType TypeReference.SlotName ()

that returns an object of type SotType. Thistypeisthe type of the
corresponding slot in TTCN Access.

Example 165

Attach MyRepeat.attach()

where MyRepeat is of type Repeat and thereturn vaueis of type At-
tach.

» For every TypeAssignment of type cro1cE thereisageneral method

Choices: :choice TypeReference.choice ()

that returns the allowed SlotName type for current object. It isthen
possible to use the general method

SlotType TypeReference.SlotName ()
that returns an object of type SlotType.

Example 166

switch (MyEvent.choice()) {

case Choice::c_send:
do_something(Me.send());
break;

case Choice::c_receive:
do_something(Me.receive());
break;

case Choice::c_otherwise:
do_something (Me.otherwise());
break;

case Choice::c_timeout:
do_something(Me.timeout ());
break;

case Choice::c_done:
do_something(Me.done());
break;

default:
do_something default () ;
break;

July 2003 Telelogic Tau 4.5 User's Manual 961

Chapter 22 TTCN Access

962

For every node of type sequence or thereis a general method

SlotTypeList TypeReference.SlotName ()
that returns an object of type SotTypeList which is avector of ele-
ments of type SotType.

Example 167

Assumethat MyEvent .choice () inthepreviousexamplereturned
thevalue choice::c_done. Then, TTCN Access method
MyEvent .done () . tcompIdList Will then be avalid method and
return an object of type TCompIdList.

Every object of type SotTypelist has a method

int Object.nr_of_ items ()

that returns the number of elementsin the vector. The elements can
be accessed with the method

SlotType Object[index]

where Object is an element of type SotTypelist and index starts
with O for the first element. It returns an element of type SotType.

Example 168

According to the above exampl e the method

MyTCompIdList.nr of items () returnsan integer value of the
number if itemsin the vector object MmyTcompIdList and
MyTCompIdList [2 1 will return the third element in the vector.

For slots with ending orr1onar Or rreLD thereis a general method

Boolean TypeReference.is present SlotName ()

used for verifying if an object is present or not. It is the responsibil-
ity of the TTCN Access programmer to ensure that al callsto op-
tional slots are preceded with acall tothe is present method of
that slot. Itisafatal error to attempt to access anon-present optional
slot.

Telelogic Tau 4.5 User's Manual July 2003

TTCN Access Primitives

» Fordotswithending F1ELD and slotsresidinginasub treeto afield
thereis a general method

Astring Node.content ()

that returns an object of type astring holding the content of the
current field in avector of characters.

Example 169
Thefollowing C++ codewill print out the content of abehavior line:
BehaviourLine BLine = MyLine;

cout << BLine.line().content() << endl;

Terminal Nodes in TTCN Access

Every TTCN Access node that represents aleaf in the parse treeis con-
sidered to be aterminal TTCN Accessnode. A terminal TTCN Access
nodeisanodethat doesnot haveany TTCN Access child nodesand can
therefore not be accessed any further.

Terminal TTCN Access children are nodes containing identifiers,
strings, keywords as well as numbers (i.e. TTCN Access nodes of type
Identifier, IA5String, INTEGER, NUMBER, €tc.). However, the con-
tent of such terminal nodes can be accessed through the methods sup-
plied by the inherited class Astring.

TTCN Access Class Astring

Every terminal TTCN Access node carriesinformation in string format.
In order to access that information, every terminal TTCN Access node
inheritsaclassnamed astring. This class contains various methods
for treating string information.

For terminal TTCN Access nodes, the following operations are avail-
able:

July 2003 Telelogic Tau 4.5 User's Manual 963

Chapter 22 TTCN Access

* Initialization operations

Example 170

The following C++ code will create and initiate a variable of type
Astring:

Astring tmpl; // tmpl is empty

Astring tmp2(“testl”); // tmp2 contains “testl”
Astring tmp3 = “test2”; // tmp3 contains “test2”
Astring tmp4 = tmp2; // tmp4 contains “testl”

» Relational operations

Example 171

The following relational operations are available between Astring
elements:

e Astring objectsaretype cast equivalent with const char*

Example 172
The following codeisvalid C++ code:
Astring myString(“test”);

cout << myString;
printf (“%s”, (const char*) myString);

e Address the nth character in the string, starting with O.

Example 173
The following isvalid C++ code:

char ¢ = myString[2]; // save the third character
of the string

Note:

For further detailsseeclass astring in TTCN Accessincludefile
ITEXAccessClasses.hh.

964 Teldlogic Tau 4.5 User's Manual July 2003

TTCN Access Primitives

July 2003

Direct Access

AccessSuite

The Accesssuite objectisthe TTCN Access representation of a
TTCN test suite. Thetest suiteisinturn contained inaTTCN suite data
base. The AccessSuite services include opening and closing the TTCN
suite data bases aswell as servicesto start an TTCN Access application
and accessing the symbol table manager.

Example 174

Opening and closing the test suite Test.itex for usein TTCN Access:
AccessSuite suite;

Boolean ok open = suite.open(“Test.itex”);
if (ok _open)

// do something
Boolean ok_close = suite.close();

}

After opening atest suitefor TTCN Accessuse, itispossibleto usethe
following methods to get a handle to the contents of the data base file:

* Get ahandle to the root node of the document.

Example 175
Getting a handle to the root object of a document:

AccessSuite suite;
Boolean ok open = suite.open(“Test.itex”);
if (ok _open)

const AccessNode node = suite.root () ;

// do something with NSAPaddr

Boolean ok close = suite.close() ;

Note:

For further detailsseeclass accesssuite iINTTCN Accessinclude
fileaccess.hh.

Telelogic Tau 4.5 User's Manual 965

Chapter 22 TTCN Access

e Asktheaccesssuite object for aspecific TTCN Accessobjectin
thetest suite. The object asked for must be aglobal object in thetest
suite. Thisis performed by using TTCN Access class AccessNode.

Example 176

Find the TTCN Access object NsaP in test suite Test.itex:

AccessSuite suite;

Boolean ok open = suite.open(“Test.itex”);

if(ok_open) ({
const AccessNode node = suite.find(“NSAPaddr”) ;
// do something with NSAPaddr
Boolean ok close = suite.close();

The AccessNode object now holdsthe TTCN Accessitem correspond-
ing to the name NSAPaddr, if any.

To gain accessto the datain an AccessNode, you must now find out the
runtime type of the object. Based on that type, you will be able to use
the conversion routine for an object of the corresponding type:

Example 177

Find the type of the TTCN Access node corresponding to a name:

extern void HandleSimpleType(const SimpleType *) ;

AccessSuite suite;
Boolean ok open = suite.open(“Test.itex”);
if(ok_open) ({
AccessNode node = suite.find(“SomeName”) ;
switch(node.choice()) {
case Choice:: SimpleType:
HandleSimpleType (node.SimpleType()) ;
break;
default:
break;

Note:

For further details see class accessNode in TTCN Access include
file access.hh

966 Teldlogic Tau 4.5 User's Manual July 2003

The AccessVisitor Class

The AccessVisitor Class

July 2003

TTCN Accessisalarge class library, with over 600 classes, and there-
fore we also need suitable tools for simplifying the creation of TTCN
Access applications. The preferred solution isthe usage of the class Ac-
cessVisitor, which definition is available in the C++ header file
ITEXAccessVisitor.hh.

The AccessVisitor classisavery close relative to the design pattern
‘Visitor’ (described by, for instance, Gamma, Helm, Johnson and Vlis-
sidesin ‘Design Patterns - Elements of reusable software’, Addison-
Wesley1994). The difference is that the TTCN Access classes contain
runtime type information which eliminates the need for them to have
dependenciesto the Visitor class (and therefore thereisno need for ‘Ac-
cept’ methods in the visited classes).

An object of aclasswhichisderived from the class AccessVisitor islat-
er on referred to as a‘visitor’.

AccessVisitor Class Members

Common Classes

The AccessVisitor class has two methods for visiting objects of com-
mon classes AccessSuite and AccessNode. These are declared

public:

void Visit (const AccessNode) ;
void Visit (const AccessSuite &);

and calling them with, will start achain of callsin the visitor which ef-
fectively isapre-order traversal of the subtree of the AccessNode, or the
complete syntactical tree of the AccessSuite.

TTCN/ASN.1 Derived Classes

The AccessVisitor class has one virtual member function for each
TTCN and ASN.1 derived classin TTCN Access. Each of the member
functions are declared

public:
virtual void Visit<class>(const <class> &);

Telelogic Tau 4.5 User's Manual 967

Chapter 22 TTCN Access

968

Example 178

Visitor member method for an Identifier (excerpt from ITEXAccess-
Visitor.hh):

class AccessVisitor

{

public:

virtual void VisitIdentifier (const Identifieré&) ;
virtual void VisitVerdict (const Verdicté&) ;

Vi

The base class implementation of this method callstherelated Vis-
it<child-class> function for all of the child objectsto the current object.

If you need to change the behavior, for instance in order to generate
some code or report from the TTCN Access Suite, just derive a new
classfrom the AccessVisitor class and override the relevant method(s).
Call the base class implementation of the method to traverse the chil-
dren if needed.

Data Members

The AccessVisitor class contains no explicitly declared data members
and istherefore stateless. It therefore makes program re-entrance possi-
ble, and several visitors may be active in the same tree/document at the
sametimeif needed.

Using the AccessVisitor

The intended usage of the AccessVisitor classis by derivation. Derive
one or several specialized classes for each of the purposes which you
use TTCN Access. Override the relevant methods.

Use Case — Information Collection

It issimpleto create avisitor classfor collection of some kind of infor-
mation from the test suite. The basic method for thisisto have ahandle
or actual information in the visitor class.

Telelogic Tau 4.5 User's Manual July 2003

The AccessVisitor Class

Example 179

An information collecting visitor class:

#include <time.h>

#include <iostream.h>

#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hh>

//
// A visitor which counts the number of testcases
// in a test suite.

class TestCounter : public AccessVisitor

public:

TestCounter() : count(0) { }

~TestCounter () { cout << _count << endl; }

void VisitTestCase (const TestCase&) { _count++; }
private:

unsigned int _count;

// Small example usage, no real fault control...

int main(int argc, char ** argv)
AccessSuite suite;
if (suite.open(argv([1])) {
TestCounter testCounter;
testCounter.Visit (suite);

return O0;

July 2003 Telelogic Tau 4.5 User's Manual 969

Chapter 22 TTCN Access

Use Case — Code Generation

It islikewise simple to create a class for simple code generation. The
following exampleis aclass for generation of a c-style declaration
which contains alist of all SimpleType namesin atest suite.

Example 180
An information collecting visitor class:

#include <stdio.h>
#include <time.h>
#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hh>

// A visitor which generate a c-style declaration
// of a null-terminated array of all Simple Type
// Declarations (identifiers) in a test suite.

class ListGenerator : public AccessVisitor
{
public:
ListGenerator (FILE * f) : file(£)
printf(“const char *ids[]l={\n");

void VisitSimpleTypeld(const SimpleTypeIds id)
printf (* \”%s\”,\n”, (const char*)
id.simpleTypeldentifier()) ;

~ListGenerator ()
printf(“ NULL\n};\n”);

Vi
// Small example usage, no real fault control...

int main(int argc, char ** argv)
AccessSuite suite;
if (suite.open(argv[1])) {
ListGenerator generator;
generator.Visit(suite);

return 0;

The last two exampl es are not the most efficient implementations dueto
the fact that they traverse the whole tree even though we are only inter-
ested in small parts, and therefore we may want to improve the efficien-

970 Teldlogic Tau 4.5 User's Manual July 2003

The AccessVisitor Class

July 2003

cy. This may be done using any of the techniques described in “ Opti-
mizing Visitors’ on page 972.

Advanced Use Case — Combined Visitors

M ore advanced designs may be possible by combining several visitors
for performing more advanced tasks. Y ou may for instance havevisitors
which are parameterized with other visitorsfor specialized tasks, where
you still would want to maintain decent performance and yet not have
trade-offsin clarity of the design.

Example 181

A TTCN Interpreter would need a mechanism for building an internal
representation of values. Values are always built by using the same
structure, but you may wish to have several possible representations of
atomic values. A visitor could be used to generate the value objects,
where onevisitor is used for building the overall structure, and another
isused for building individual fields. There are at least two choices
available in the design:

« Toinherit the structure building classinto the classwhich buildsthe
atomic values

* To parameterize the structure building class with the atomic value
handing class (which gives you a possibility to tune the behavior at
runtime).

Inthisexample, the value building classinheritsfrom the AccessVisitor
class and the Visit<xxx> functions are used to generate a new value.
The class GciValueBuilder in the example, may visit any structured
type and will on the Visit<class> function either create itself adataval-
ue, or if it isastructured type, create a dynamic array, and then invoke
anew visitor for each of the fields, which results will later be assigned
to each of thefieldsin the samearray. Theimplementationisnot present
in the example. It isjust outlined below.

The solution of using visitors for building the values, removes the
switch statements, which otherwise would undoubtedly clobber an im-
plementation which uses Direct Access as described in a previous sec-
tion.

Telelogic Tau 4.5 User's Manual 971

Chapter 22 TTCN Access

class GciValueBuilder : public AccessVisitor

// basic structure for building/matching values
virtual void VisitXxxx(const XxxX &) ;

// built value
Gecivalue * value;

}i
class GciValueBinaryBuilder : public GeciValueBuilder

// suitable overrides for efficient binary value
// handling

class GcivValueBigNumBuilder : public GciValueBuilder

// suitable ovverides for a ‘bignum’
// implementation

TR

Optimizing Visitors

A visitor is a potentially inefficient way to find and process objects,
sinceit initsunmodified version traverses the whole document, without
regarding what parts of the document the inherited visitor is interested
in. All optimizationsarein the domain of limiting the subtree for which
we aretraversing. Thefollowing examples shows methodsfor avoiding
unnecessary traversal and optimally, constant time access.

Example 182

Optimizing avisitor class to avoid traversa of al parts but the declara-
tions part, may improve performance for suite traversal by over 100
times for some fairly representable suites (since most suites contain
more and larger syntactica treesin the dynamic part than in al other
parts, possibly with the exception of ASN.1 constraint declarations).

972 Teldlogic Tau 4.5 User's Manual July 2003

The AccessVisitor Class

July 2003

?lass DeclarationChecker : public AccessVisitor
public:
void VisitSuiteOverviewPart (
const SuiteOverViewPart&) { }
void VisitConstraintsPart (
const ConstraintsPart &) { }
void VisitDeclarationsPart (
const DeclarationsPart &) { }

// Add the functions which actually do processing
// below ...

Optimizing avisitor classto traverse only partswe are interested in, is
also possible, by using one or afew levels of Direct Accessinstead of
the default traversal.

Example 183

This example skips al traversal down to the Simple Type Definitions
table, and only traverses those.

class SimpleTypeIdPrinter : public AccessVisitor

public:
void VisitASuite(const ASuite&) ;
void VisitSimpleTypeId (const SimpleTypeId &);

bi

void
SimpleTypeIdPrinter: :VisitASuite (const ASuite & s)

VisitSimpleTypeDefs(s.declarationsPart ().
definitions() .
ts_TypeDefs () .
simpleTypeDefs()) ;

}

void

SimpleTypeIdPrinter: :VisitSimpleTypeId(const
SimpleTypeId & id)

{

cout << “Id: “
<< id.simpleTypeIdentifier ()
<< endl;

Telelogic Tau 4.5 User's Manual 973

Chapter 22 TTCN Access

Finally, you may combine several visitorsinto one visitor, thus avoid-
ing multiple passes when processing a suite. Thisimplies that you de-
fine severa classes which are not truly visitors, and define ainherited
class from AccessVisitor which calls methods in these classes.

Example 184
Two objects driven by avisitor, thus performing two passes on one tra-
versal.
class IdOperation
public:
virtual void AtIdentifier (const Identifier&) = 0;

// A IdOperation
class IdCounter : public IdOperation

public:
IdCounter() : _count(0) { }
void AtIdentifier(const Identifier & id)
{ _count++; }
~IdCounter() { cout << _count << endl; }
private:
unsigned int _count;

7

// Another IdOperation
class IdPrinter : public IdOperation

public:
void AtIdentifier(const Identifier & id)
{ cout << id << endl; }

l

}
// A class which drives up to IdOpDriverMax
// IdOperations

const int IdOpDriverMax = 10;

class IdOpDriver : public AccessVisitor

public:
IdopDriver() : _ops_used(0) { }
void VisitIdentifier(const Identifier & id) {
for (unsigned int op = 0 ; op < _ops_used; ++0p)

_opslop] .AtIdentifier(id);

void AddIdOp(IdOperation * op)
{ opsl ops used++] = op; }

974 Teldlogic Tau 4.5 User's Manual July 2003

The AccessVisitor Class

private:
IdOperation _ops[IdOpDriverMax] ;
unsigned int _ops_used;

7

}
// Main routine which opens a suite and applies two
// IdOperations.

int main(int argc, char ** argv)

AccessSuite suite;

if (suite.open(argv([1])) {
IdCounter counter;
IdPrinter printer;
IdOpDriver driver;
driver.AddIdOp(&counter) ;
driver.AddIdOp(&printer);
driver.Visit (suite);
suite.close();

return O0;

July 2003 Telelogic Tau 4.5 User's Manual 975

Chapter 22 TTCN Access

Common Class Definitions

This part contains the declaration of the three common TTCN Access
classes AccessSuite, AccessNode and Astring. For further informa-
tion see TTCN Accessincludefile access.hh.

AccessSuite

class AccessSuite

public:
AccessSuite () ;
~AccessSuite () ;
AccessSuite(const AccessSuite& orig);
void operator=(const AccessSuite& orig);

Boolean open(const char* suite name);
Boolean open(Suite* suite);
Boolean close() ;

const AccessNode root () ;
const AccessNode find(const Identifier & id);
const AccessNode find(const char* id);

7

AccessNode

class AccessNode

public:
AccessNode () ;
AccessNode (NodeInfo nodeinfo) ;
~AccessNode () ;
AccessNode (const AccessNode& Me) ;

int operator==(const AccessNode& o) const;
void operator=(const AccessNode& orig) ;

Boolean is_equal (const AccessNode& o) const;

Choices: :Choice choice() const;
Boolean ok () const;

976 Teldlogic Tau 4.5 User's Manual July 2003

Common Class Definitions

July 2003

Astring

?lass Astring
public:
Astring() ;
Astring(const char* g);
// end should point to the char after the last
char
Astring(const char* begin, const char* end);
Astring(Field* field, PT* pt);
Astring(const Astring& orig) ;

~Astring () ;

//operators

Astring* operator->();

const Astring* operator->() const;
operator const char* () const;

char& operator[] (unsigned 1) ;
char operator[] (unsigned i) const ;

void operator=(const Astring&) ;
void operator=(const Stringé&) ;
void operator=(const char*) ;
void operator=(const char) ;

int operator==(const Astring& s) const;
int operator!=(const Astring& s) const;
int operator==(const char* cs) const;
int operator!=(const char* cs) const;

Telelogic Tau 4.5 User’s Manual

977

Chapter 22 TTCN Access

Getting Started with TTCN Access

978

Setting Up the TTCN Access Environment

When building applicationsusing TTCN Access, the compiler will need
tofind afew files, the 1TEXxaAccessClasses.hh includefileand the
libaccess.a library file. Normally these files are found in the
.../itex/include/cc and .../itex/lib/cc directory respective-
ly. Theincludefilemust beincluded in every TTCN Access application
and thelibrary libaccess.a must be used when linking.

Note:
For further information, contact your system administrator.

TTCN Access operates on the TTCN suite data bases. These data bases
must have passed analysis and be saved before using TTCN Access. If

the database containsa TTCN test suite that is not analyzed, the TTCN

Access application can not reach into thefields of thetables. The default
behavior of TTCN Accessisto simply skip those fields that are not an-
alyzed. De-referencing a particular field in an non-analyzed data base,

will result in undefined behavior.

TTCN test suite data bases are managed by the AccessSuite object,
which has member functions for opening and closing the TTCN suite
data bases and also for starting traversing. From an AccessSuite object
itisalso possible to access tables in arandom manner viathe symbol
table manager.

Using Example Applications

TTCN Accessisdelivered with some simple example applications. To
compile the examples, the install ation directory, where the 1TExAc-
cessClasses.hh and libaccess.a filesreside, must be known to
the makefiles. Do this by setting the environment variable ACCESS or
by explicitly filling in the local variable ACCESS in every makefile or
using make with the syntax make ACCESS=$telelogic/itex/ac-
cess.

Telelogic Tau 4.5 User's Manual July 2003

Getting Started with TTCN Access

July 2003

Starting an TTCN Access Application

Y ou havetoretrievethe TTCN Accesslicensewhen you start the TTCN
suite. To do this, start the TTCN suite from the command line with the
switch -access.

Then you can execute TTCN Access applications from the command
line or from the window manager.

You can also select Sart Application in the Access menu in the Brows-
er. Thiswill open adialog in which you may change settings and start
the TTCN Access application.

[% Save selection first

Switches
[:

Filter

|EKitexfitex—cHdocHitex—manualKaccessf*‘acd

Directories Files

application,acc A
pprint,acc
test,acc

x-manual/access/

ACCESS application

|’opaIEKitexfitex—cHdocHitex—manualﬁaccessé

Filter | cancel | | Help |

Figure 185: The Sart Application dialog

Save selection first
Select thisto save the current selection in the Browser before executing
the TTCN Access application.

Telelogic Tau 4.5 User’ s Manual 979

Chapter 22 TTCN Access

980

Switches

Switches may be passed to the chosen TTCN Access application. The
switches are written asfree text. Asthelast argument isthe name of the
the TTCN suite database passed. This name is always passed to the
TTCN Access application.

Note:

Observethat it isthe name of the (working) databasefile and not the
name of thetest suite that is passed to the TTCN Access application.

Filter

Setsthefilter for thefilesthat will be displayed in the Suiteslist. There
are no predefined naming conventions for TTCN Access applications.

For example the namefilter *.acc will cause only those files whose
names end with .acc to be displayed.

Access application
Displays the selected application.

Telelogic Tau 4.5 User's Manual July 2003

	22 TTCN Access
	Introduction to TTCN Access
	Terms Used in This Document:
	General Concepts

	TTCN Access and the TTCN Analyzer
	Lexical Analysis
	Syntax Analysis
	Parse Tree
	Symbol Table Management

	Example of TTCN Access Functionality
	Traversing
	Translating

	Example of TTCN Access Usability
	The Encoder

	TTCN Access in Relation to TTCN and ASN.1
	Differences
	The Present Nodes
	The SEQUENCE OF
	OPTIONAL
	FIELD
	The Value Notation

	The Base Nodes
	Tree Traversing in the Dynamic Part
	Naming Conventions

	The TTCN Access Notation
	TTCN Access Primitives
	General TTCN Access Functions Description
	Terminal Nodes in TTCN Access
	TTCN Access Class Astring

	Direct Access
	AccessSuite

	The AccessVisitor Class
	AccessVisitor Class Members
	Common Classes
	TTCN/ASN.1 Derived Classes
	Data Members

	Using the AccessVisitor
	Use Case – Information Collection
	Use Case – Code Generation
	Advanced Use Case – Combined Visitors

	Optimizing Visitors

	Common Class Definitions
	AccessSuite
	AccessNode
	Astring

	Getting Started with TTCN Access
	Setting Up the TTCN Access Environment
	Using Example Applications
	Starting an TTCN Access Application
	Save selection first
	Switches
	Filter
	Access application

