
July 2003 Telelo

Chapter
22 TTCN Access
This chapter describes TTCN Access. It is intended to be read by
developers of executable test suites, translator developers and test
result analyzers. It requires some basic programming knowledge in
C++ as TTCN Access is a C++ programming tool.
gic Tau 4.5 User’s Manual ,um-st1 945

Chapter 22 TTCN Access
Introduction to TTCN Access
A TTCN test suite can be looked upon as a formal description of a col-
lection of test sequences where each test sequence involves signals and
values. The abstract test suite contains formal definitions of these sig-
nals and values as well as a structural description of each test sequence.
A common formal notation used to describe these test sequences, as
well as all the other items in an abstract test suite, is TTCN.

TTCN Access is a C++ application programmers interface towards an
arbitrary abstract test suite written in TTCN and incorporated in the
TTCN suite. TTCN Access reveals the content of the test suite in a high
level abstraction and allows various users to access the content in a
read-only manner.

TTCN Access is a platform for writing applications related to an ab-
stract test suite such as:

• Executable test suites
• Interpreters
• Encoders and decoders
• Analyzers
• Reporters

By using TTCN Access, a variety of applications can be implemented
that will ease the maintenance of abstract test suites and the develop-
ment of executable test suites. TTCN Access is an easy-to-use applica-
tion programmers interface that provides the required functionality for
applications in these areas.

Terms Used in This Document:
• ISO/IEC 9646-3 : 1991 is called the TTCN standard.
• ISO/IEC 8824 : 1990 is called the ASN.1 standard.
• Backus-Naur Format is called BNF.

General Concepts
The easiest, and simplest way of describing TTCN Access would be to
state that TTCN Access is a TTCN compiler. Unfortunately this state-
ment is not fully true and also somewhat misleading as it might, concep-
tually, bring the reader (and TTCN Access users) towards the domain
of executable test suites and thereby not reveal all the other possibilities
that TTCN Access brings. A more correct statement would thereby be
946 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access and the TTCN Analyzer
that TTCN Access is a half compiler, more precisely the first phase of
a compiler, often called the front-end. For a general explanation of com-
piler theory and compiler front-ends, see chapter 21, Basic Compiling
Theory. The fact is that the TTCN to C compiler is built on top of TTCN
Access.

TTCN Access and the TTCN Analyzer
All the components and definitions mentioned in chapter 21, Basic
Compiling Theory, together build up the basics for compiling theory. As
mentioned, TTCN Access is a C++ application programmers interface
towards a test suite written in TTCN. It reveals the content of the test
suite in a high level abstraction and allows various users to access the
content in a read-only manner.

This section will once again mention these components, but this time
put them in the context of the TTCN suite and the functionality that it
provides, thereby explaining the relationship between the TTCN suite
and TTCN Access.

Lexical Analysis
The lexical analysis in the TTCN suite is done in two phases, depending
on the format of the abstract test suite.

• If the source code is in MP format, a basic lexical analysis is done
at the import stage, verifying that the imported test suite is written
in correct MP format. A full lexical analysis is done when using the
Analyzer. The complete lexical analysis is the first phase in the
analysis.

For more information see “Importing a TTCN-MP Document” on
page 1149 in chapter 25, The TTCN Browser (on UNIX).

• If the source code is written directly into the TTCN suite via one of
the editors, a lexical analysis is done by using the Analyzer as men-
tioned above.

For more information see chapter 27, Analyzing TTCN Documents
(on UNIX).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 947

Chapter 22 TTCN Access
Syntax Analysis
The syntax analysis is done when executing the Analyzer and it is done
in the second phase. This second phase also contains a semantic analy-
sis of the test suite, all in order to verify that the test suite complies with
the standardized notations for TTCN and ASN.1.

Parse Tree
The last phase of the analysis is to generate a parse tree. This can only
be done if the lexical and syntax analysis have been successfully com-
pleted.

Symbol Table Management
During execution of an TTCN Access application the symbol table is
accessible at any time.

Example of TTCN Access Functionality
As TTCN Access looks upon a test suite as a parse tree, it provides the
required primitives and functionality for parse tree handling. This in-
cludes parse tree traversing and hooks into the parse tree as well as tem-
plates for main() and several examples in source code format. The best
way to visualize the functionality of TTCN Access is by using an exam-
ple:

Figure 181: The PCO Declarations table
948 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example of TTCN Access Functionality
The PCO Declarations table, containing just one PCO declaration will
generate the parse tree visualized below:

Traversing
The basics of parse tree functionality has to include traversing primi-
tives. TTCN Access therefore provides a special visitor class with a de-
fault traverser that, given any node in the parse tree, traverses that parse
tree in a Left-Right-Depth-First manner. In the parse tree previously de-
scribed, the default traversing order for the sub tree PCO_Dcl will be:

Figure 182: Parse tree

Figure 183: Default traversing tree

PCO_Dcls

PCO_DclList DetailedComment

PCO_Dcl

PCO_Id PCO_TypeId P_Role Comment

Identifier Identifier PCO_Role

“C” “LCE_SAP” “LT”

“This PCO sends PDUs to and receives PDUs
from the LCE. It lies between the Protocol
Discriminator and Link control entities
shown in figure 4.1 in ETS 300 175-5.”

“The LCE form part of the service provider,
along with the DLC, MAC and Physical layers.”

PCO_Dcl

PCO_Id PCO_TypeId P_Role Comment

Identifier Identifier PCO_Role

“C” “LCE_SAP” “LT”

“The LCE form part

along with the DLC, MAC

of the service provider,

and Physical layers.”
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 949

Chapter 22 TTCN Access
This default translating algorithm may be customized in order to fit any
user specific traversing order. For the above example, a customized tra-
verser could be implemented as traversing sub tree PCO_TypeId before
sub tree PCO_Id and ignoring sub tree Comment.

Translating
The second most important functionality when discussing parse trees, is
the possibility to access specific nodes in the parse tree in order to gen-
erate side effects, such as executing external code, print parse tree infor-
mation, etc. By being able to modify the default traverser, TTCN Ac-
cess provides the user with the possibility of defining such side effects.

Example of TTCN Access Usability
To visualize the strength of TTCN Access, this section will discuss a
small TTCN Access application. The example is a generic encoder.

The Encoder
Transforming an abstract test suite into an executable test suite will
eventually involve the problem of representing the actual ASP and PDU
signals as bit patterns. The step from abstract syntax (TTCN) to transfer
syntax (bit patterns) has to be provided and implemented by someone
with vast knowledge of the actual protocol as well as the test system and
the test environment.

The encoder described in this small example will assume the following:

• Elements of the same type are encoded identically.
• Encoding an ASP or PDU is performed by encoding its components

recursively.

These assumptions tell us that encoding functions are data driven and
that the encoding function has to be derived from the type definitions.
It also tells us that the encoding of base types, that is INTEGER, BOOL-
EAN, etc., are identical.

Before looking at the algorithm for the generic encoder, let us have a
look at a specific type and how the corresponding encoding function
may be implemented. The type will be a small PDU as below:
950 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example of TTCN Access Usability
The corresponding encoding function may look like:

void AUTHENT_REQ1_encode(AUTHENT_REQ1* me, char* enc_buf)
{
 INTEGER_encode(&me->message_flag, enc_buf);
 BITSTRING_encode(&me->message_type, enc_buf);
 AUTH_TYPE_encode(&me->auth_type, enc_buf);
}

It is a data driven encoding function that given any element of type
AUTHENT_REQ1 will encode them all identical. The first argument is a
pointer to the element that shall be encoded, the second argument is the
buffer where the result of the encoding shall be stored.

The function may of course contain more code and more information,
but for this example, the above is the smallest encoder function needed.

The following example will give an algorithm for how the encode func-
tions may be generated via TTCN Access. The algorithm is followed by
a small TTCN Access application generating the actual encoder.

Figure 184: TTCN PDU type definition
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 951

Chapter 22 TTCN Access
FUNCTION GenerateEncoder(type : typedefinition)
BEGIN
/* Generate encoder function header such as: */
/* void type_encode(type* me, char* enc_buf) */
/* { */
FOR(“every element in the structured type”)
/* Generate a call to the element type encoder
/* function
/* such as: */
/* element_type_encode(&type->element, enc_buf);
END
/* Generate encoder function footer such as: */
/* } */
END

The above algorithm will generate generic encoders for any type. Of
course, header files and base type encoder functions must be provid-
ed/generated as well. Below is a nearly complete TTCN Access appli-
cation that generates encoders for any TTCN PDU type definition. Ob-
serve how the visitor class is customized to traverse and generate side
effects for the specific parts we are interested in.

// Start by customizing the default visitor class

class Trav : public AccessVisitor
{
public:
 void VisitTTCN_PDU_TypeDef(const TTCN_PDU_TypeDef& Me);
 void VisitPDU_FieldDcl(const PDU_FieldDcl& Me);
};

void Trav::VisitTTCN_PDU_TypeDef(const TTCN_PDU_TypeDef& Me)
{
 // Generate the header part

 cout << Me.pdu_Identifier() << “_encode(const “;
 cout << Me.pdu_Identifier() << “& me, char* enc_buf)”;
 cout << “\n{“ << endl;

 // Traverse fields using default traverser

 AccessVisitor::VisitPDU_FieldDcls(Me.pdu_FieldDcls());

 // Generate the footer part

 cout << “}” << endl;
}

void Trav::VisitPDU_FieldDcl(const PDU_FieldDcl& Me)
{
 Astring type = get_type(Me.pdu_FieldType());
 Astring name = get_name(Me.pdu_FieldId());

 cout << “void “ << type << “_encode(me->”
 << name << “(), enc_buf);” << endl;
}

952 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example of TTCN Access Usability
All that remains now is a main function for the generic encode genera-
tor.

#include <stdio.h>
#include <iostream.h>
#include <time.h>
#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hh>

class Trav : public AccessVisitor
{
public:
 void VisitTTCN_PDU_TypeDef(const TTCN_PDU_TypeDef& Me);
 void VisitPDU_FieldDcl(const PDU_FieldDcl& Me);
};

int main(int argc, char **argv)
{
 //The actual suite

 AccessSuite suite;

 if (argc != 2)
 {
 fprintf(stderr, “usage: %s suitename\n”, argv[0]);
 return 0;
 }

 /* Open the suite and go for it! */

 if (suite.open(argv[1]))
 {
 Trav trav;

 trav.Visit(suite);
 suite.close();
 }
}

The get_type and get_name functions can be simple or complex. See
the example below:

Astring get_type(const PDU_FieldType& Me)
{
 TypeAndAttributes ta = Me.typeAndAttributes();
 switch (ta.choice())
 {
 case Choices::c_TypeAndLengthAttribute:
 return get_type(ta.typeAndLengthAttribute());
 default:
 cerr << “ERROR: Type not supported: “
 << Me.content() << endl;
 return “***#***”;
 }
}

Astring get_type(const TypeAndLengthAttribute& Me)
{
 const TTCN_Type tt = Me.ttcn_Type();

 switch (tt.choice())
 {
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 953

Chapter 22 TTCN Access
 case Choices::c_PredefinedType:
 if (tt.predefinedType().choice() ==
 Choices::c_INTEGER)
 return “INTEGER”;
 break;
 case Choices::c_ReferenceType:
 return tt.referenceType().identifier();
 default:
 break;
 }
 cerr << “ERROR: Type not supported: “
 << Me.content() << endl;
 return “***#***”;
}

Astring get_name(const PDU_FieldId& Me)
{
 const PDU_FieldIdOrMacro pfid = Me.pdu_FieldIdOrMacro();
 if (pfid.choice() != Choices::c_PDU_FieldIdAndFullId)
 {
 cerr << “ERROR: Slot name not supported: “
 << Me.content() << endl;
 return “***#***”;
 }

 return pfid->pdu_FieldIdAndFullId().pdu_FieldIdentifier();
}

954 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access in Relation to TTCN and ASN.1
TTCN Access in Relation to TTCN and
ASN.1

TTCN Access is created for the purpose of accessing and traversing the
contents of a TTCN test suite. As a basis for the development of TTCN
Access, the TTCN-MP syntax productions in BNF [ISO/IEC 9646-3,
appendix A] together with the ASN.1 standard [ISO/IEC 8824] have
been used.

Differences
Every node in TTCN Access reflects a rule in the BNF. However there
are some small differences between the BNF and TTCN Access:

The Present Nodes

The intention is to map the ASN.1 and TTCN standards as good as pos-
sible. In a perfect world this would mean that no extra nodes could be
found in TTCN Access and that each rule in the standards would have
exactly one corresponding node in TTCN Access. Some differences be-
tween the perfect world and our world are listed in detail below. Differ-
ences exist due to redundancies in the standardized grammar or design
decisions made during the development of TTCN Access. The goal of
any implementation of TTCN Access is to make as few changes com-
pared to the perfect world as possible. However, some extra nodes have
been added to TTCN Access, and in a few places the exact calling order
of the pre/post functions has been altered to what we feel is a more
straight forward approach for executable languages.

The SEQUENCE OF

The TTCN and ASN.1 notations at times allow for arbitrary many
nodes to be grouped in lists of nodes or sequences of nodes. For exam-
ple there is the SubTypeValueSetList rule of the ASN.1 standard and
there is the AssignmentList rule of the TTCN standard. In both BNF no-
tations a difference is made between lists that are allowed to be empty
and those which must contain at least one element, corresponding to the
{} and {}+ notation in the TTCN standard.

In TTCN Access no difference is made between the two forms of lists,
since a well defined and simple access method is of prime interest. All
lists are allowed to be empty, and it is the work of the Analyzer to ensure
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 955

Chapter 22 TTCN Access
non-empty lists where appropriate. In the ASN.1 standard the non-emp-
ty lists are sometimes written by re-grouping already existing rules.
This re-grouped structure will not be represented in TTCN Access. The
decision does not alter the number of nodes or the names of nodes, but
merely the visiting order when traversing the nodes, i.e. SubTypeVal-
ueSetList before SubTypeValueSet.

Example 161 –––

ASN.1 rule SubTypeSpec:

SubTypeSpec ::= (SubTypeValueSet SubTypeValueSetList)

becomes:

SubTypeSpec ::= (SubTypeValueSetList)

––

In the TTCN standard there are nodes which contain an implicit group-
ing.

Example 162 –––

TTCN BNF rule:

TestStepLibrary ::= ({TestStepGroup | TestStep})

becomes:

TS_ConstDcls ::= {TS_ConstDcl}+ [Comment].

––

Furthermore there are nodes that contain groupings without the list
postfix name convention.

Example 163 –––

TTCN BNF rule:

TimerOps ::= TimerOp {Comma TimerOp}.

––

Whenever necessary, a grouping or/and choice node will be inserted be-
tween rules in the TTCN standard. When nodes are created without cor-
responding node in any of the standards, the nodes will be named ac-
cording to the convention used in the ASN.1 standard, i.e. these nodes
will have postfix “List”. Nodes which are a grouping but do not follow
the naming convention will be left as they are.
956 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access in Relation to TTCN and ASN.1
OPTIONAL

In the BNF rules for TTCN-MP, the use of [abc] implies zero or
one instance of abc. In the definition of TTCN Access the same effect
is achieved by the use of the symbol “OPTIONAL” after the TTCN Ac-
cess definition. If a TTCN Access element defined as “OPTIONAL” is
not present in a specific instance, no TTCN Access representation for
that specific field will be available. To detect whether or not a TTCN
Access node defined as “OPTIONAL” is present or not, a boolean
TTCN Access function will be necessary to apply to that TTCN Access
node in order to verify the presence/absence of the parse tree related to
the specific slotname.

FIELD

A difference between TTCN Access and the BNF rules is that TTCN
Access views every BNF production reflecting a field in the TTCN-GR
format to be optional even though the field is not defined as such in the
BNF. The reason for this is that no TTCN Access tree can be built for a
field unless a successful analysis has been performed on that field. If the
analysis failed, the field will not carry any TTCN Access information
and the field may not be accessed.

In TTCN Access all fields are marked with the symbol “FIELD”. This
“FIELD” symbol implies that the field may be empty. The field may be
empty even though the field is not defined as optional in the BNF. To
detect whether or not a field is present or not present, a boolean TTCN
Access function will be necessary to apply to that TTCN Access node
in order to verify the presence/absence of the parse tree related to the
specific field. This extension is applicable to all fields except if a field
is implemented in TTCN Access as a node of type TERMINAL. All
TERMINAL types are strings and TTCN Access sees the absence of a
TERMINAL as an empty string.

The Value Notation

The Common Value Notation

The value notations of the two standards must be unified. Some values
are clearly within one standard only (SetValue for instance), while oth-
ers are in both standards (7 for instance). Those values that have the
same syntax in both standards are considered to belong to the TTCN
standard. Note that the ASN.1 standard might specify some other chain
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 957

Chapter 22 TTCN Access
of productions to reach such a value and that this chain of productions
is not represented in TTCN Access.

The Expression Tree

The expression rule has been re-written since it is undesirable to have
the flat representation from the standard. Instead a normal tree oriented
representation of an expression is used. This means that the rules mak-
ing up an expression are heavily changed.

The Base Nodes
Base nodes are the representation of the terminals in the TTCN Access
tree. They can in most aspects be treated as strings, they can be printed
directly for example. The base nodes are:

• Identifier
Has an associated type

• Number
• All nodes having a single child of type BoundedFreeText (FullIden-

tifier or SO_SelExprId for example).
• Ostring, Cstring, Bstring and Hstring

Tree Traversing in the Dynamic Part
An extension to the BNF adds the possibility to access the content of
test cases, test steps and defaults, by using the logical tree structure of
the test. This is achieved by adding a slot in the node type definition Be-
haviourLine named “children”. By accessing that slot an TTCN Access
object is returned that holds a vector of children to the current statement
line. A child is a BehaviourLine with a level of indentation one greater
that the preceding BehaviourLine.

Note:

The Keyword class in ITEX Access 1.0 does not exist in ITEX Ac-
cess 2.0. Neither of the standards has the notion of a keyword
class/rule, and therefore there is no node/class named Keyword in
ITEX Access 2.0. It has been replaced with ITEX Access node
TERMINAL.
958 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The TTCN Access Notation
Naming Conventions
As a basis for naming TTCN Access nodes, the names in the BNF for
TTCN and ASN.1 have been used. There are some differences though,
and they will be discussed and explained in this subsection.

• No slot name, type name or type definition contains the symbol “&”
as it is a reserved symbol in C++. It is replaced with “and” or “And”
where appropriate.

• All type definitions start with an upper case letter (and are written
in bold).

• All slot names start with a lower case letter.
• All type names start with an upper case letter.

The TTCN Access Notation
The notation used to describe a node in TTCN Access is described as
below (a simple BNF for an example node):

Node ::= TypeReference Assign TypeAssignment
TypeReference ::= Identifier
 --has to start with an upper case letter
Assign ::= “::=”
TypeAssignment ::= ClassType ClassBody | “TERMINAL”
ClassType ::= “SEQUENCE” | “SEQUENCE OF” |
“CHOICE”
ClassBody ::= “{“ { Slot }+ “}”
Slot ::= SlotName TypeReference
 [“OPTIONAL” | “FIELD”]
SlotName ::= Identifier
 --has to start with a lower case letter

Example 164 –––

StructTypeDef ::= SEQUENCE {
 structId FullIdentifier FIELD
 comment Comment FIELD
 elemDcls ElemDcls
 detailedComment DetailedComment FIELD
}

––

• A TTCN Access node type is defined in Bold starting with an upper
case letter.

• A node can be of type SEQUENCE, SEQUENCE OF or CHOICE.
A SEQUENCE contains an ordered collection of elements, a SE-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 959

Chapter 22 TTCN Access
QUENCE OF a vector of elements (possibly empty) and a CHOICE
is a collection of possible elements.

• Each slot in a TypeAssignment starts with a SlotName followed by
a SlotType. Each SlotType has a corresponding node in TTCN Ac-
cess.

• The SlotType can be followed by a FIELD symbol meaning that the
slot is associated with a field in the TTCN-GR format.

• The SlotType can be followed by a OPTIONAL symbol meaning that
the slot can be absent.

• Each slot is followed by a page reference to the node corresponding
to the SlotType. This page reference is not a part of the Abstract
Data Structure.

For more information see chapter 24, The TTCN Access Class Refer-
ence Manual.

TTCN Access Primitives
Each node in TTCN Access is translated to a C++ class definition. Each
instance of a specific C++ class definition contains one or more ele-
ments as defined in the specific C++ class definition. For each type def-
inition there are a collection of TTCN Access functions.

In this chapter names written in italic are referred to as meta names.
Words written in courier are taken from the definition of TTCN Ac-
cess.

Note:

For further details see the TTCN Access include file access.hh.
960 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access Primitives
General TTCN Access Functions Description
• For every node definition with assignment of type SEQUENCE or

SEQUENCE OF there exists a general method

SlotType TypeReference.SlotName()

that returns an object of type SlotType. This type is the type of the
corresponding slot in TTCN Access.

Example 165 ––

Attach MyRepeat.attach()

where MyRepeat is of type Repeat and the return value is of type At-
tach.
–––

• For every TypeAssignment of type CHOICE there is a general method

Choices::choice TypeReference.choice()

that returns the allowed SlotName type for current object. It is then
possible to use the general method

SlotType TypeReference.SlotName()

that returns an object of type SlotType.

Example 166 ––

switch (MyEvent.choice()) {
case Choice::c_send:

do_something(Me.send());
break;

case Choice::c_receive:
do_something(Me.receive());
break;

case Choice::c_otherwise:
do_something(Me.otherwise());
break;

case Choice::c_timeout:
do_something(Me.timeout());
break;

case Choice::c_done:
do_something(Me.done());
break;

default:
do_something_default();
break;

}

–––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 961

Chapter 22 TTCN Access
• For every node of type SEQUENCE OF there is a general method

SlotTypeList TypeReference.SlotName()

that returns an object of type SlotTypeList which is a vector of ele-
ments of type SlotType.

Example 167 ––

Assume that MyEvent.choice() in the previous example returned
the value Choice::c_done. Then, TTCN Access method
MyEvent.done().tcompIdList will then be a valid method and
return an object of type TCompIdList.
–––

• Every object of type SlotTypeList has a method

int Object.nr_of_items()

that returns the number of elements in the vector. The elements can
be accessed with the method

SlotType Object[index]

where Object is an element of type SlotTypeList and index starts
with 0 for the first element. It returns an element of type SlotType.

Example 168 ––

According to the above example the method
MyTCompIdList.nr_of_items() returns an integer value of the
number if items in the vector object MyTCompIdList and
MyTCompIdList[2] will return the third element in the vector.

–––

• For slots with ending OPTIONAL or FIELD there is a general method

Boolean TypeReference.is_present_SlotName()

used for verifying if an object is present or not. It is the responsibil-
ity of the TTCN Access programmer to ensure that all calls to op-
tional slots are preceded with a call to the is_present method of
that slot. It is a fatal error to attempt to access a non-present optional
slot.
962 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access Primitives
• For slots with ending FIELD and slots residing in a sub tree to a field
there is a general method

Astring Node.content()

that returns an object of type Astring holding the content of the
current field in a vector of characters.

Example 169 ––

The following C++ code will print out the content of a behavior line:

BehaviourLine BLine = MyLine;

 cout << BLine.line().content() << endl;

–––

Terminal Nodes in TTCN Access

Every TTCN Access node that represents a leaf in the parse tree is con-
sidered to be a terminal TTCN Access node. A terminal TTCN Access
node is a node that does not have any TTCN Access child nodes and can
therefore not be accessed any further.

Terminal TTCN Access children are nodes containing identifiers,
strings, keywords as well as numbers (i.e. TTCN Access nodes of type
Identifier, IA5String, INTEGER, NUMBER, etc.). However, the con-
tent of such terminal nodes can be accessed through the methods sup-
plied by the inherited class Astring.

TTCN Access Class Astring

Every terminal TTCN Access node carries information in string format.
In order to access that information, every terminal TTCN Access node
inherits a class named Astring. This class contains various methods
for treating string information.

For terminal TTCN Access nodes, the following operations are avail-
able:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 963

Chapter 22 TTCN Access
• Initialization operations

Example 170 ––

The following C++ code will create and initiate a variable of type
Astring:

Astring tmp1; // tmp1 is empty
Astring tmp2(“test1”); // tmp2 contains “test1”
Astring tmp3 = “test2”; // tmp3 contains “test2”
Astring tmp4 = tmp2; // tmp4 contains “test1”

–––

• Relational operations

Example 171 ––

The following relational operations are available between Astring
elements:

==, !=

–––

• Astring objects are type cast equivalent with const char*

Example 172 ––

The following code is valid C++ code:

Astring myString(“test”);

cout << myString;
printf(“%s”, (const char*) myString);

–––

• Address the nth character in the string, starting with 0.

Example 173 ––

The following is valid C++ code:

char c = myString[2]; // save the third character
of the string

–––

Note:

For further details see class Astring in TTCN Access include file
ITEXAccessClasses.hh.
964 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 TTCN Access Primitives
Direct Access

AccessSuite

The AccessSuite object is the TTCN Access representation of a
TTCN test suite. The test suite is in turn contained in a TTCN suite data
base. The AccessSuite services include opening and closing the TTCN
suite data bases as well as services to start an TTCN Access application
and accessing the symbol table manager.

Example 174 –––

Opening and closing the test suite Test.itex for use in TTCN Access:

AccessSuite suite;

Boolean ok_open = suite.open(“Test.itex”);
if(ok_open)
{
 // do something
 Boolean ok_close = suite.close();
}

––

After opening a test suite for TTCN Access use, it is possible to use the
following methods to get a handle to the contents of the data base file:

• Get a handle to the root node of the document.

Example 175 ––

Getting a handle to the root object of a document:

AccessSuite suite;
Boolean ok_open = suite.open(“Test.itex”);
if(ok_open) {
 const AccessNode node = suite.root();
 // do something with NSAPaddr
 Boolean ok_close = suite.close();
}

–––

Note:

For further details see class AccessSuite in TTCN Access include
file access.hh.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 965

Chapter 22 TTCN Access
• Ask the AccessSuite object for a specific TTCN Access object in
the test suite. The object asked for must be a global object in the test
suite. This is performed by using TTCN Access class AccessNode.

Example 176 ––

Find the TTCN Access object NSAP in test suite Test.itex:

AccessSuite suite;
Boolean ok_open = suite.open(“Test.itex”);
if(ok_open) {
 const AccessNode node = suite.find(“NSAPaddr”);
 // do something with NSAPaddr
 Boolean ok_close = suite.close();
}

–––

The AccessNode object now holds the TTCN Access item correspond-
ing to the name NSAPaddr, if any.

To gain access to the data in an AccessNode, you must now find out the
runtime type of the object. Based on that type, you will be able to use
the conversion routine for an object of the corresponding type:

Example 177 –––

Find the type of the TTCN Access node corresponding to a name:

extern void HandleSimpleType(const SimpleType *);

AccessSuite suite;
Boolean ok_open = suite.open(“Test.itex”);
if(ok_open) {
 AccessNode node = suite.find(“SomeName”);
 switch(node.choice()) {
 case Choice::_SimpleType:
 HandleSimpleType(node.SimpleType());
 break;
 default:
 break;
 }}

––

Note:

For further details see class AccessNode in TTCN Access include
file access.hh
966 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The AccessVisitor Class
The AccessVisitor Class
TTCN Access is a large class library, with over 600 classes, and there-
fore we also need suitable tools for simplifying the creation of TTCN
Access applications. The preferred solution is the usage of the class Ac-
cessVisitor, which definition is available in the C++ header file
ITEXAccessVisitor.hh.

The AccessVisitor class is a very close relative to the design pattern
‘Visitor’ (described by, for instance, Gamma, Helm, Johnson and Vlis-
sides in ‘Design Patterns - Elements of reusable software’, Addison-
Wesley1994). The difference is that the TTCN Access classes contain
runtime type information which eliminates the need for them to have
dependencies to the Visitor class (and therefore there is no need for ‘Ac-
cept’ methods in the visited classes).

An object of a class which is derived from the class AccessVisitor is lat-
er on referred to as a ‘visitor’.

AccessVisitor Class Members

Common Classes

The AccessVisitor class has two methods for visiting objects of com-
mon classes AccessSuite and AccessNode. These are declared

public:
void Visit(const AccessNode);
void Visit(const AccessSuite &);

and calling them with, will start a chain of calls in the visitor which ef-
fectively is a pre-order traversal of the subtree of the AccessNode, or the
complete syntactical tree of the AccessSuite.

TTCN/ASN.1 Derived Classes

The AccessVisitor class has one virtual member function for each
TTCN and ASN.1 derived class in TTCN Access. Each of the member
functions are declared

public:
virtual void Visit<class>(const <class> &);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 967

Chapter 22 TTCN Access
Example 178 –––

Visitor member method for an Identifier (excerpt from ITEXAccess-
Visitor.hh):

class AccessVisitor
{
public:
 ...
 virtual void VisitIdentifier(const Identifier&);
 virtual void VisitVerdict(const Verdict&);
 ...
};

––

The base class implementation of this method calls the related Vis-
it<child-class> function for all of the child objects to the current object.

If you need to change the behavior, for instance in order to generate
some code or report from the TTCN Access Suite, just derive a new
class from the AccessVisitor class and override the relevant method(s).
Call the base class implementation of the method to traverse the chil-
dren if needed.

Data Members

The AccessVisitor class contains no explicitly declared data members
and is therefore stateless. It therefore makes program re-entrance possi-
ble, and several visitors may be active in the same tree/document at the
same time if needed.

Using the AccessVisitor
The intended usage of the AccessVisitor class is by derivation. Derive
one or several specialized classes for each of the purposes which you
use TTCN Access. Override the relevant methods.

Use Case – Information Collection

It is simple to create a visitor class for collection of some kind of infor-
mation from the test suite. The basic method for this is to have a handle
or actual information in the visitor class.
968 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The AccessVisitor Class
Example 179 –––

An information collecting visitor class:

#include <time.h>
#include <iostream.h>
#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hh>

//
// A visitor which counts the number of testcases
// in a test suite.

class TestCounter : public AccessVisitor
{
public:
 TestCounter() : _count(0) { }
 ~TestCounter() { cout << _count << endl; }
 void VisitTestCase(const TestCase&) { _count++; }
private:
 unsigned int _count;
};

// Small example usage, no real fault control...

int main(int argc, char ** argv)
{
 AccessSuite suite;
 if (suite.open(argv[1])) {
 TestCounter testCounter;
 testCounter.Visit(suite);
 }
 return 0;
}

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 969

Chapter 22 TTCN Access
Use Case – Code Generation

It is likewise simple to create a class for simple code generation. The
following example is a class for generation of a c-style declaration
which contains a list of all SimpleType names in a test suite.

Example 180 –––

An information collecting visitor class:

#include <stdio.h>
#include <time.h>
#include <ITEXAccessClasses.hh>
#include <ITEXAccessVisitor.hh>

// A visitor which generate a c-style declaration
// of a null-terminated array of all Simple Type
// Declarations (identifiers) in a test suite.

class ListGenerator : public AccessVisitor
{
public:
 ListGenerator(FILE * f) : _file(f) {

 printf(“const char *ids[]={\n“);
 }
 void VisitSimpleTypeId(const SimpleTypeId& id) {
 printf(“ \”%s\”,\n”, (const char*)

 id.simpleTypeIdentifier());
 }
 ~ListGenerator() {

 printf(“ NULL\n};\n”);
 }
};

// Small example usage, no real fault control...

int main(int argc, char ** argv)
{
 AccessSuite suite;
 if (suite.open(argv[1])) {
 ListGenerator generator;
 generator.Visit(suite);
 }
 return 0;
}

––

The last two examples are not the most efficient implementations due to
the fact that they traverse the whole tree even though we are only inter-
ested in small parts, and therefore we may want to improve the efficien-
970 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The AccessVisitor Class
cy. This may be done using any of the techniques described in “Opti-
mizing Visitors” on page 972.

Advanced Use Case – Combined Visitors

More advanced designs may be possible by combining several visitors
for performing more advanced tasks. You may for instance have visitors
which are parameterized with other visitors for specialized tasks, where
you still would want to maintain decent performance and yet not have
trade-offs in clarity of the design.

Example 181 –––

A TTCN Interpreter would need a mechanism for building an internal
representation of values. Values are always built by using the same
structure, but you may wish to have several possible representations of
atomic values. A visitor could be used to generate the value objects,
where one visitor is used for building the overall structure, and another
is used for building individual fields. There are at least two choices
available in the design:

• To inherit the structure building class into the class which builds the
atomic values

• To parameterize the structure building class with the atomic value
handing class (which gives you a possibility to tune the behavior at
runtime).

In this example, the value building class inherits from the AccessVisitor
class and the Visit<xxx> functions are used to generate a new value.
The class GciValueBuilder in the example, may visit any structured
type and will on the Visit<class> function either create itself a data val-
ue, or if it is a structured type, create a dynamic array, and then invoke
a new visitor for each of the fields, which results will later be assigned
to each of the fields in the same array. The implementation is not present
in the example. It is just outlined below.

The solution of using visitors for building the values, removes the
switch statements, which otherwise would undoubtedly clobber an im-
plementation which uses Direct Access as described in a previous sec-
tion.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 971

Chapter 22 TTCN Access
class GciValueBuilder : public AccessVisitor
{
 // basic structure for building/matching values
 virtual void VisitXxxx(const Xxxx &);
 ...
 // built value
 GciValue * _value;
};

class GciValueBinaryBuilder : public GciValueBuilder
{
 // suitable overrides for efficient binary value
 // handling
 ...
};

class GciValueBigNumBuilder : public GciValueBuilder
{
 // suitable ovverides for a ‘bignum’
 // implementation
 ...
};

––

Optimizing Visitors
A visitor is a potentially inefficient way to find and process objects,
since it in its unmodified version traverses the whole document, without
regarding what parts of the document the inherited visitor is interested
in. All optimizations are in the domain of limiting the subtree for which
we are traversing. The following examples shows methods for avoiding
unnecessary traversal and optimally, constant time access.

Example 182 –––

Optimizing a visitor class to avoid traversal of all parts but the declara-
tions part, may improve performance for suite traversal by over 100
times for some fairly representable suites (since most suites contain
more and larger syntactical trees in the dynamic part than in all other
parts, possibly with the exception of ASN.1 constraint declarations).
972 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The AccessVisitor Class
class DeclarationChecker : public AccessVisitor
{
 public:
 void VisitSuiteOverviewPart(

const SuiteOverViewPart&) { }
 void VisitConstraintsPart(

const ConstraintsPart &) { }
 void VisitDeclarationsPart (

const DeclarationsPart &) { }

 // Add the functions which actually do processing
 // below ...
};

––

Optimizing a visitor class to traverse only parts we are interested in, is
also possible, by using one or a few levels of Direct Access instead of
the default traversal.

Example 183 –––

This example skips all traversal down to the Simple Type Definitions
table, and only traverses those.

class SimpleTypeIdPrinter : public AccessVisitor
{
 public:
 void VisitASuite(const ASuite&);
 void VisitSimpleTypeId (const SimpleTypeId &);
};

void
SimpleTypeIdPrinter::VisitASuite(const ASuite & s)
{
 VisitSimpleTypeDefs(s.declarationsPart().

definitions().
ts_TypeDefs().
simpleTypeDefs());

}

void
SimpleTypeIdPrinter::VisitSimpleTypeId(const

SimpleTypeId & id)
{
 cout << “Id: “

<< id.simpleTypeIdentifier()
<< endl;

}

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 973

Chapter 22 TTCN Access
Finally, you may combine several visitors into one visitor, thus avoid-
ing multiple passes when processing a suite. This implies that you de-
fine several classes which are not truly visitors, and define a inherited
class from AccessVisitor which calls methods in these classes.

Example 184 –––

Two objects driven by a visitor, thus performing two passes on one tra-
versal.

class IdOperation
{
 public:
 virtual void AtIdentifier(const Identifier&) = 0;
};

// A IdOperation

class IdCounter : public IdOperation
{
 public:
 IdCounter() : _count(0) { }
 void AtIdentifier(const Identifier & id)
 { _count++; }
 ~IdCounter() { cout << _count << endl; }
 private:
 unsigned int _count;
};

// Another IdOperation

class IdPrinter : public IdOperation
{
 public:
 void AtIdentifier(const Identifier & id)

{ cout << id << endl; }
};

// A class which drives up to IdOpDriverMax
// IdOperations

const int IdOpDriverMax = 10;

class IdOpDriver : public AccessVisitor
{
 public:
 IdOpDriver() : _ops_used(0) { }
 void VisitIdentifier(const Identifier & id) {
 for (unsigned int op = 0 ; op < _ops_used; ++op)
 _ops[op].AtIdentifier(id);
 }
 void AddIdOp(IdOperation * op)

{ _ops[_ops_used++] = op; }
974 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The AccessVisitor Class
 private:
 IdOperation _ops[IdOpDriverMax];
 unsigned int _ops_used;
};

// Main routine which opens a suite and applies two
// IdOperations.

int main(int argc, char ** argv)
{
 AccessSuite suite;
 if (suite.open(argv[1])) {
 IdCounter counter;
 IdPrinter printer;
 IdOpDriver driver;
 driver.AddIdOp(&counter);
 driver.AddIdOp(&printer);
 driver.Visit(suite);
 suite.close();
 }
 return 0;
}

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 975

Chapter 22 TTCN Access
Common Class Definitions
This part contains the declaration of the three common TTCN Access
classes AccessSuite, AccessNode and Astring. For further informa-
tion see TTCN Access include file access.hh.

AccessSuite
class AccessSuite
{
public:
 AccessSuite();
 ~AccessSuite();
 AccessSuite(const AccessSuite& orig);
 void operator=(const AccessSuite& orig);

 Boolean open(const char* suite_name);
 Boolean open(Suite* suite);
 Boolean close();

 const AccessNode root();
 const AccessNode find(const Identifier & id);
 const AccessNode find(const char* id);
 };

AccessNode
class AccessNode
{
public:
 AccessNode();
 AccessNode(NodeInfo nodeinfo);
 ~AccessNode();
 AccessNode(const AccessNode& Me);

 int operator==(const AccessNode& o) const;
 void operator=(const AccessNode& orig);

 Boolean is_equal(const AccessNode& o) const;
 Choices::Choice choice() const;
 Boolean ok() const;

};
976 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Common Class Definitions
Astring
class Astring
{
public:
 Astring();
 Astring(const char* s);
 // end should point to the char after the last
char
 Astring(const char* begin, const char* end);
 Astring(Field* field, PT* pt);
 Astring(const Astring& orig);

 ~Astring();

 //operators
 Astring* operator->();
 const Astring* operator->() const;
 operator const char*() const;
 char& operator[](unsigned i) ;
 char operator[](unsigned i) const ;

 void operator=(const Astring&);
 void operator=(const String&);
 void operator=(const char*);
 void operator=(const char);

 int operator==(const Astring& s) const;
 int operator!=(const Astring& s) const;
 int operator==(const char* cs) const;
 int operator!=(const char* cs) const;
};
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 977

Chapter 22 TTCN Access
Getting Started with TTCN Access

Setting Up the TTCN Access Environment
When building applications using TTCN Access, the compiler will need
to find a few files, the ITEXAccessClasses.hh include file and the
libaccess.a library file. Normally these files are found in the
.../itex/include/CC and .../itex/lib/CC directory respective-
ly. The include file must be included in every TTCN Access application
and the library libaccess.a must be used when linking.

TTCN Access operates on the TTCN suite data bases. These data bases
must have passed analysis and be saved before using TTCN Access. If
the data base contains a TTCN test suite that is not analyzed, the TTCN
Access application can not reach into the fields of the tables. The default
behavior of TTCN Access is to simply skip those fields that are not an-
alyzed. De-referencing a particular field in an non-analyzed data base,
will result in undefined behavior.

TTCN test suite data bases are managed by the AccessSuite object,
which has member functions for opening and closing the TTCN suite
data bases and also for starting traversing. From an AccessSuite object
it is also possible to access tables in a random manner via the symbol
table manager.

Using Example Applications
TTCN Access is delivered with some simple example applications. To
compile the examples, the installation directory, where the ITEXAc-
cessClasses.hh and libaccess.a files reside, must be known to
the makefiles. Do this by setting the environment variable ACCESS or
by explicitly filling in the local variable ACCESS in every makefile or
using make with the syntax make ACCESS=$telelogic/itex/ac-
cess.

Note:

For further information, contact your system administrator.
978 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Getting Started with TTCN Access
Starting an TTCN Access Application
You have to retrieve the TTCN Access license when you start the TTCN
suite. To do this, start the TTCN suite from the command line with the
switch -access.

Then you can execute TTCN Access applications from the command
line or from the window manager.

You can also select Start Application in the Access menu in the Brows-
er. This will open a dialog in which you may change settings and start
the TTCN Access application.

Save selection first

Select this to save the current selection in the Browser before executing
the TTCN Access application.

Figure 185: The Start Application dialog
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 979

Chapter 22 TTCN Access
Switches

Switches may be passed to the chosen TTCN Access application. The
switches are written as free text. As the last argument is the name of the
the TTCN suite database passed. This name is always passed to the
TTCN Access application.

Filter

Sets the filter for the files that will be displayed in the Suites list. There
are no predefined naming conventions for TTCN Access applications.

For example the name filter *.acc will cause only those files whose
names end with .acc to be displayed.

Access application

Displays the selected application.

Note:

Observe that it is the name of the (working) database file and not the
name of the test suite that is passed to the TTCN Access application.
980 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	22 TTCN Access
	Introduction to TTCN Access
	Terms Used in This Document:
	General Concepts

	TTCN Access and the TTCN Analyzer
	Lexical Analysis
	Syntax Analysis
	Parse Tree
	Symbol Table Management

	Example of TTCN Access Functionality
	Traversing
	Translating

	Example of TTCN Access Usability
	The Encoder

	TTCN Access in Relation to TTCN and ASN.1
	Differences
	The Present Nodes
	The SEQUENCE OF
	OPTIONAL
	FIELD
	The Value Notation

	The Base Nodes
	Tree Traversing in the Dynamic Part
	Naming Conventions

	The TTCN Access Notation
	TTCN Access Primitives
	General TTCN Access Functions Description
	Terminal Nodes in TTCN Access
	TTCN Access Class Astring

	Direct Access
	AccessSuite

	The AccessVisitor Class
	AccessVisitor Class Members
	Common Classes
	TTCN/ASN.1 Derived Classes
	Data Members

	Using the AccessVisitor
	Use Case – Information Collection
	Use Case – Code Generation
	Advanced Use Case – Combined Visitors

	Optimizing Visitors

	Common Class Definitions
	AccessSuite
	AccessNode
	Astring

	Getting Started with TTCN Access
	Setting Up the TTCN Access Environment
	Using Example Applications
	Starting an TTCN Access Application
	Save selection first
	Switches
	Filter
	Access application

