
July 2003 Telelogic Tau

Chapter
1 Introduction to

Languages and Notations
This chapter describes the benefits of formal methods. It also gives
a brief introduction to the TTCN, the ASN.1 and the MSC lan-
guage.

Note that this chapter is not a tutorial on TTCN, ASN.1 or MSC. In
TTCN Suite Methodology Guidelines you can find more informa-
tion about TTCN and how to use it.

If you want to know more about the languages supported in the
SDL suite, you should read chapter 1, Introduction to Languages
and Notations, in the SDL Suite Getting Started.
 4.5 TTCN Suite Getting Started gs-t3 1

Chapter 1 Introduction to Languages and Notations
Standardized Formal Methods
It is getting increasingly accepted within a steadily growing range of in-
dustrial segments that the only true way for software engineering to
achieve higher quality, deliver on time and decrease development costs,
is to use formal methods. Furthermore, as the international market
grows, equipment from different manufacturers must be able to com-
municate with each other. Therefore it is obvious that the formal meth-
od to be used should be internationally standardized.

There are a number of different formal standardized languages and
methods available today. The one you select, however, should fulfill a
few more important requirements.

One is the availability of professional development tools. Another is
clarity. The notation should be understood by a general audience, from
experts to end users. Ideally it should have a graphical syntax.

Formal standardized graphical languages ...

• ... enforce precision during specification, since ambiguities and un-
clear statements are impossible to make.

• ... allow tool support. Tools can help to perform all kind of analyses
like syntax/semantics check, simulation, test generation, code gen-
eration, etc.

• ... attract more than one tool-builder. The second-source possibility
creates vendor independence with all its advantages.

• ... are more often the subject for courses, seminars, and text-books.

• ... are more likely to be maintained. As with natural languages, for-
mal languages need to evolve to stay modern.

• ... promotes efficient verbal and written communication within de-
velopment teams, between manufactures and between suppliers and
customers, due to the conceptually formalized means of communi-
cation.

• ... have a graphical syntax that makes it simple and efficient to ex-
change information between different players within an organiza-
tion.
2 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 Standardized Formal Methods
The Test Suite Framework Standard
As the use of standards within the world of Information Technology and
Telecommunications has increased tremendously during the last de-
cade, so has the need for methods and tools that support the verification
and validation of both the standards and their implementations.

This need has been addressed by ISO and CCITT (ITU-T) in the
“Framework and Methodology for Conformance Testing of Implemen-
tations of OSI and CCITT Protocols”. The framework has now reached
the status of an International Standard as ISO/IEC 9646 (or X.290).

• The standard introduces the concept of Abstract Test Suites (con-
sisting of Abstract Test Cases), a description of a set of tests that
should be executed for a system. The tests should be described using
a black-box model, i.e. only control and observe using the available
external interfaces.

• The abstract tests are to be described using a formal language rather
than using informal natural language. As part of the standard, the
language TTCN is defined in order to describe the abstract tests.

• The possibility to copy the ASN.1 definitions from the protocol
specification into the test suite in TTCN assures consistency be-
tween the information transferred in system specification and the
test specification.

Conformance Testing
Conformance testing is the process of verifying that an implementation
performs in accordance with a particular standard/specification/envi-
ronment.

Conformance testing is exclusively concerned with the external behav-
ior of an implementation. Service and functional behavior is tested in
order to find logical errors and prerequisites for interoperability. Con-
formance testing is not intended to be exhaustive and a successfully
passed test suite does not imply a 100% guarantee. But it does ensure,
with a reasonable degree of confidence, that the implementation is con-
sistent with its specifications, and it does increase the probability that
implementations will interwork.
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 3

Chapter 1 Introduction to Languages and Notations
System Testing
• Conformance testing verifies whether an implementation performs

according to the stated standard/specification/environment.

• Interoperability testing checks the ability of different implementa-
tions to interact in a prescribed manner, achieving predictable re-
sults.

• Regression testing is performed after functional improvements or
corrections, to confirm that nothing unintentional has been intro-
duced.
4 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The TTCN Language
The TTCN Language
TTCN (Tree and Tabular Combined Notation, ISO/IEC 9646-3) is a
language standardized by ISO for the specification of tests for real-time
and communicating systems. TTCN has been developed within the
framework of standardized conformance testing (ISO/ IEC 9646).

With TTCN a test suite is specified. A test suite is a collection of various
test cases together with all the declarations and components it needs.
Each test case is described as an event tree. In this tree, behaviors such
as “First, we send A, then either B or C is received; if it was B we will
send D...” are described. Concurrent TTCN allows several event trees
to run concurrently.

TTCN is abstract in the sense of being test system independent. This
means that a test suite in TTCN for one application (e.g. protocol, sys-
tem, etc.) can be used in any test environment for that application.

The use of TTCN has increased tremendously during the last few years.
This has been augmented by the significant amount of test suites re-
leased by various standardization bodies. TTCN is not only used in
standardization work. The language is very suitable for all kinds of
functional testing for real-time and communicating systems. This has
led to a wide usage throughout the industry.

The specifications of the messages being sent and received can be de-
fined using either the native form of TTCN or by using ASN.1 (Abstract
Syntax Notation One).

Theoretical Model
A TTCN specification describes an abstract test suite (ATS) that is in-
dependent of test system, hardware and software. The ATS defines the
test of the implementation under test (IUT), which is treated in a black
box model, i.e. only its exterior interface is of concern. The IUT is stim-
ulated by sequences of test events and its response is inspected.

A TTCN abstract test suite can be transformed into an executable test
suite (ETS) using the TTCN suite. This ETS is downloaded into the test
system (the system performing the test).

The test system performs the test by executing the ETS against the sys-
tem under test (SUT) which contains the implementation under test.
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 5

Chapter 1 Introduction to Languages and Notations
During execution the ETS will report any errors and log events for on-
line or post-test evaluation.

TTCN Specification Structure
A TTCN specification is similar to a Pascal or C program. (Being clean-
er and more comprehensive, TTCN is easier to learn.) Just like Pascal
and C, TTCN requires type and data declarations and it uses concepts
like modules and subroutines. Since TTCN is designed for testing, it
contains test specific concepts such as:

• Powerful pattern matching constructs for complex data structures
using both TTCN and ASN.1.

• Verdicts and preliminary verdicts to define the outcome of test cas-
es.

• Possibilities to handle alternative outcomes in a test case.

• Pre-ambles and post-ambles to show how to compose test cases.

• The “modules” concept supporting multi-user test development.

• The “modules” concept supporting the re-use of test components
and data structures.

• Constructs for parallel test component execution including synchro-
nization primitives.

Figure 1: Test System with Executable Test Suite (ETS)
connected to the system under test (SUT)

IUT

Implementation
under test

Software and hardware

TTCN

Test suite

Test equipment

PASS, FAIL or
INCONCLUSIVE

Send stimuli

Observe
response

Timing and data constraints
6 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The TTCN Language
A TTCN specification has a standardized layout that produces compre-
hensive and unambiguous paper printouts. This greatly improves clarity
and readability. A test suite is divided into the following four major
parts:

• The overview part, containing a table of contents and a description
of the test suite. Its purpose is mainly to document the test suite to
increase clarity and readability.

• The declarations part, declaring all messages, variables, timers,
data structures and black box interface towards the Implementation
Under Test.

• The constraints part, assigning values and creating constraints for
inspection of responses from the implementation under test.

• The dynamic part, containing all test cases, test steps and default ta-
bles with test events and verdicts, i.e. it describes the actual execu-
tion behavior of the test suite.

Figure 2: The basic structure of a TTCN Test Suite

Phones

Test Suite Overview

Declarations Part

Constraints Part

Test Suite Type Constraint Declarations

ASP Constraint Declarations

PDU Constraint Declarations

CM Constraint Declarations

Dynamic Part

Test Cases

Test Step Library

Defaults Library
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 7

Chapter 1 Introduction to Languages and Notations
Test Suite Dynamic Structure
The dynamic part of a TTCN abstract test suite is created in a hierarchi-
cal and nested manner. The building blocks are test groups, test cases,
test steps and test events. There are no limitations as to how many test
groups may be contained in a test suite, how many test events may be
contained in a test step, etc.

Test component explanation:

• Test event: The smallest, indivisible unit of a test suite. Typically, it
corresponds to a signal, interrupt, message, data or timer expiration.

• Test step: A grouping of test events, similar to a subroutine or pro-
cedure in other programming languages.

• Test case: The main fundamental building block in a test suite. A
test case tests a particular feature or function in the implementation
under test (IUT). A test case has an identified test purpose and it as-
signs a verdict that depends on the outcome of the test case.

• Test group: A grouping of test cases. It might for example be con-
venient to group all test cases concerning connection establishment,
and to put all test cases concerning transport into a separate test
group.

• Test suite dynamic part: The highest level, encompassing all test
components and serving as the root of the tree. A test suite can range
from a large number of test groups and test cases to a single test
event contained in a test case.

Figure 3: The TTCN dynamic part structure

Dynamic Part

Test Cases

BasicCall

CallW

Test Step Library

ConnectPhones

TestCallWaiting

HangUpAllPhones

Defaults Library
8 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The TTCN Language
Communication Mechanisms
TTCN uses the concepts of points of control and observation (PCOs),
abstract service primitives (ASPs) and protocol data units (PDUs) in
order to create an abstract interface towards the implementation under
test (IUT). A PCO is a point in the abstract interface where the IUT can
be stimulated and its responses can be inspected. An ASP or a PDU is
either a stimuli or a response that carries information, i.e. parameters
and data.

Each PCO has two first in first out queues for temporary storage of
ASPs and PDUs: One queue for send and one queue for receive. These
queues are infinite, i.e. they can store any number of ASPs and PDUs.

Event Trees, Constraints and Verdicts
TTCN uses event trees with test events to express the behavior of test
steps and test cases.

All the leaves in the event tree are assigned a verdict that can be PASS,
FAIL or INCONCLUSIVE. PASS means that the test case completed
without detecting any error. FAIL means that an error was detected, that
is, the behavior of the IUT did not conform with the pre-defined speci-
fication. INCONCLUSIVE means that there was insufficient evidence

Figure 4: PCOs together with ASPs and PDUs create an
abstract interface towards the IUT
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 9

Chapter 1 Introduction to Languages and Notations
for a conclusive verdict to be assigned, but that the behavior of the IUT
was valid.

A verdict can be either preliminary or final, allowing for flexibility in
the specification. A final verdict will terminate the active test case and
return its verdict. A preliminary verdict will not terminate test case ex-
ecution but it will flag either PASS, FAIL or INCONCLUSIVE. This
preliminary verdict can be inspected during test execution, like any
variable.

TTCN uses the comprehensive format shown in Figure 6. The indenta-
tion level of statements in the Behaviour Description column indicates
where in the event tree an event belongs. The leaves of the tree hold ver-
dicts that define test case outcome.

Figure 5: An event tree and the corresponding execution order

! LiftHook

? DialTone

! Digits

? CallTone

? LineConnect

! DropHook

? BusyTone

! DropHook

? NoTone

Alternative

Sequence
10 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The TTCN Language
Data and Value Model
The TTCN data and value model is somewhat different from the one in
traditional programming languages. It allows for the creation of com-
plex data structures and types, and has the concept of constraints to do
value assignments. Constraints are more powerful than values in that
they also allow the use of patterns. A pattern can contain wild cards and
define allowable value ranges for complex data structures. This is very
useful when inspecting responses from the implementation under test.

TTCN has two alternative data and constraint representation formats:
the TTCN native tabular form and ASN.1 (Abstract Syntax Notation
One). ASN.1, which is a purely textual notation, provides a more flexi-
ble platform for describing complex data structures. ASN.1 also allows
data descriptions to be shared between an SDL (Z.105) specification
and a TTCN test suite.

Figure 6: The TTCN test case corresponding to the event tree in Figure 5

Verdict PASS, FAIL,
INCONCLUSIVE

VALUE REFERENCE
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 11

Chapter 1 Introduction to Languages and Notations
Modular TTCN
With modular TTCN, it is possible to define test suite components for
re-use. This facilitates test component re-use, and provides a language
platform for multi-user test development projects. See also “Distributed
Development (UNIX)” on page 118 in chapter 1, The TTCN Introduc-
tion, in the TTCN Suite Methodology Guidelines.

Concurrent TTCN
Concurrent TTCN introduces a parallel architecture for simultaneous
execution of several test components, allowing many interfaces to be
tested concurrently. There are several benefits:

• Test components become more cohesive/modular since they focus
on the test of a specific interface of the IUT. Each interface is iso-
lated in specific test components.

• Module and integration testing is easier and it facilitates test com-
ponent re-use.

• Test suite maintenance becomes easier since test components are
less monolithic. If one interface of the IUT changes, it will not in-
fluence any test components but the ones specifically dedicated to
this interface.

• Each test component becomes smaller and simpler since it deals
with fewer alternatives.

In concurrent TTCN, each test case consists of several parallel test com-
ponents (PTCs) that execute autonomously, performing concurrent
tests. A master test component (MTC) starts the execution of the PTCs
and controls the final verdict. The PTCs can only set preliminary ver-
dicts and the test case is completed and its verdict is decided when all
the PTCs are finished. The PTCs are synchronized through co-ordina-
tion points (CPs) and co-ordination messages (CMs).

Graphical and Textual Notations
The TTCN language supports two notations that are equivalent. The
graphical notation (TTCN-GR) and a textual notation (TTCN-MP).
12 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The ASN.1 Language
Application Areas
Currently, TTCN is mainly known within the telecommunications in-
dustry. However, it has broader areas of application, which can be sum-
marized as follows:

• Any protocol conformance testing.

• Any communicating systems testing, e.g. interactive, message-driv-
en, real-time or distributed.

• Any system with a well defined interface that can be stimulated and
observed.

The ASN.1 Language
Abstract Syntax Notation One is a language specifically designed for
describing structured information that is conveyed across some inter-
face or communication medium. ASN.1 is standardized internationally
(ISO/IEC 8824) and it is a key ingredient of Open Systems Interconnec-
tion (OSI).

In the presentation layer of the OSI hierarchy, data values of quite com-
plex types, such as character strings, intricate structures or arrays of val-
ues, need to be determined in a unique way without saying anything
about the representation. ASN.1 is developed to fill this need.

ASN.1 is a generic notation for the specification of data types and val-
ues. The basic principle is to define a small number of simple types by
defining their possible values, and give rules for combining these into
increasingly complicated types. The original use of ASN.1 was in the
information description of high-level protocols (FTAM, CMIP, MHS
etc.), but today it is widely used in the telecommunications industry for
protocols and applications.

Figure 7: A sample ASN.1 type definition

AtmInterfaceTCEntry ::= SEQUENCE {

atmInterfaceOCDEvents Counter32,

atmInterfaceTCAlarmState INTEGER

}

July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 13

Chapter 1 Introduction to Languages and Notations
ASN.1 Encoding and Transfer Syntax
ASN.1 requires a transfer syntax in order to pass data between two en-
tities. Basic encoding rules (BER, ISO 8825) is a standardized transfer
syntax of OSI. Others exist as well: canonical encoding rules (CER) for
security applications, distinguished encoding rules (DER) for digital
signatures, traditional C/C++, etc. Any transfer syntax can be used for
ASN.1 descriptions.

ASN.1, SDL and TTCN – a Powerful
Combination
TTCN includes ASN.1, i.e. ASN.1 is used for creating data descriptions
and constraints in test suite specifications. Through the new standard of
Z.105, ASN.1 is merged with SDL (Specification and Description Lan-
guage) to create an extremely powerful language environment for spec-
ification of real-time, interactive and distributed systems.

Data descriptions made in ASN.1 can be used for both SDL and TTCN
specifications, thus making a tight integration between implementation
and test, and promoting re-use.

The Message Sequence Chart Language

History
During the last years, ITU has made a considerable effort in standardiz-
ing a formal language that defines message sequence charts (MSCs). A

Figure 8: ASN.1 specifications can be shared between
SDL and TTCN specifications

SDL TTCN

ASN.1
14 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

 The Message Sequence Chart Language
first version of the MSC recommendation was published in the summer
of 1992.

As defined in the recommendation Z.120, the MSC language offers a
powerful complement to SDL in describing the dynamic behavior of an
SDL system. Its graphical representation is well suited for presenting a
complex dynamic behavior in a clear and unambiguous way that is easy
to understand.

Theoretical Model
An MSC describes one or more traces from one node to another node of
an abstract communication tree generated from an SDL specification.
Basically, the information interchange is carried out by sending mes-
sages from one instance to another. In an SDL specification, those mes-
sages would coincide with the signals that are sent from one process and
consumed in another process. The instances would correspond to any
part of the specification (an SDL system, a block or a process).

Graphical and Textual Notations
The MSC language supports two notations that are equivalent. Beside
the graphical notation (MSC/GR), a textual notation (MSC/PR) is stan-
dardized.

Application Areas
Among several application areas, we have selected the following:

• Producing documents with the purpose of defining the requirements
on a system.

• Facilitating the design phase, by identifying and documenting a
multitude of dynamic cases before starting designing with SDL.

• Presenting the execution of a simulation as a graphical output. This
output is easy to follow and can later be verified against a reference.
MSCs can be verified against an SDL system using the SDL suite.

• Presenting the execution trace of an SDL system during an interac-
tive simulation and generation of reports.

• A convenient way to define test purposes, particularly in conjunc-
tion with the Autolink test generation features.
July 2003 Telelogic Tau 4.5 TTCN Suite Getting Started gs-t3 15

Chapter 1 Introduction to Languages and Notations
16 gs-t3 Telelogic Tau 4.5 TTCN Suite Getting Started July 2003

	1 Introduction to Languages and Notations
	Standardized Formal Methods
	The Test Suite Framework Standard
	Conformance Testing
	System Testing

	The TTCN Language
	Theoretical Model
	TTCN Specification Structure
	Test Suite Dynamic Structure
	Communication Mechanisms
	Event Trees, Constraints and Verdicts
	Data and Value Model
	Modular TTCN
	Concurrent TTCN
	Graphical and Textual Notations
	Application Areas

	The ASN.1 Language
	ASN.1 Encoding and Transfer Syntax
	ASN.1, SDL and TTCN – a Powerful Combination

	The Message Sequence Chart Language
	History
	Theoretical Model
	Graphical and Textual Notations
	Application Areas

