
July 2003 Telelo

Chapter
�� ���������	
��
	���
��	��
�������	
��
����	�

	����	�����������������������
��	�������
������
�	�������	��������������������������������������

�
����	��������
��
�����	�������	������
������	�������	��������������� !!���������"

#���$
���������
�
������������ !!�����������	��%�����������&����
 !!���������'����
	���()(������	
��
��)�������		
��
������"
gic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
���������	��
The purpose of this chapter is to help H2SDL users to smoothly migrate 
from the obsolete H2SDL tool to CPP2SDL. In addition, Telelogic Cus-
tomer Support will be happy to assist in solving any migration problems 
not covered by this chapter.

The H2SDL tool provided automated support for accessing C code from 
within the Telelogic Tau SDL Suite. The CPP2SDL tool works accord-
ing to the same fundamental principle, i.e. by automatically translating 
C/C++ declarations into SDL representations. 

However, due to the difference between the C and C++ languages, 
CPP2SDL is not entirely backward compatible with H2SDL. This 
means that existing SDL systems that use H2SDL, may need to be up-
dated when upgrading to CPP2SDL.
��
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�,�	��������*��
	��

��
��
�����	�����
Apart from H2SDL being obsolete, there are several reasons to migrate 
from H2SDL to CPP2SDL:

• CPP2SDL has superior language support. Not only does it support 
C++, but it also covers a larger set of the C language.

• CPP2SDL allows the user to configure the translation from C/C++ 
to SDL by means of import specifications. This is a technique which 
often cuts the build time significantly, when large APIs are inter-
faced from SDL.

• With H2SDL, the user often has to edit input header files, to make 
them suitable for translation. This need is significantly reduced with 
CPP2SDL, since the import specification mechanism lets the user 
configure the translation of each C/C++ declaration individually.

• Translation rules implemented by CPP2SDL are considerably im-
proved, compared to the ones implemented by H2SDL. These im-
provements are due to the implementation of language extensions 
oriented towards SDL2000.

• CPP2SDL has an improved reference generator, allowing more pre-
cise analysis.

• The SDL package generated by H2SDL may only be used at system 
level, while the SDL declarations generated by CPP2SDL may be 
injected at any level in the SDL hierarchy. This is possible by means 
of a new SDL-PR symbol in the SDL Editor.

• CPP2SDL supports a wider range of preprocessors and compilers to 
be used for preprocessing input header files.

• CPP2SDL is built with state-of-the-art compiler technology on top 
of a commercial C/C++ parser. This provides for rapid incorpora-
tion of future extensions to C/C++.

�	����	�����	���	��

This section describes the procedure of upgrading an SDL system from 
H2SDL to CPP2SDL usage. Required changes are grouped into subsec-
tions corresponding to the main reasons for the changes.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
������������
��
��
	�	������
The following steps will help you convert your SDL system into case-
sensitive mode.

1. Make sure you use the standard Text Editor for editing text files in 
the SDL Suite.

2. Files should be write enabled. If not, the files will be updated but 
stored with the extension .keep.

3. Check the correctness of the system with the batch commands de-
scribed in “Checking diagrams for duplicated object IDs” on page 
206 in chapter 2, ������
��	���.

You should now be ready to convert to case-sensitive mode. Start 
with creating an extended cross reference file and a file with refer-
ences to all keywords in the system.

4. Issue the following command:

sdtbatch[.bat] -a systemPath/systemname.sdt -options 
optionFile.txt

The file optionFile.txt should include the following lines of op-
tions to the Analyzer:

[ANALYSEROPTIONS]
SDLKeywordFile=True
SetPredefinedXRef=True
XRef=True
CaseSensitiveSDL=False

Two files will be created in the target directory of the system. They 
are called casesensitive.xrf and casesensitive.key and 
should be used in the next step. 

�����

The CPP2SDL tool takes advantage of SDL2000 being case-sensi-
tive, therefore you should make sure that your SDL system is possi-
ble to analyze in case-sensitive mode prior to starting the migration 
work.

The Telelogic Tau SDL Suite includes a tool that helps you convert 
your SDL system into a case-sensitive SDL system (see Update to 
case-sensitive SDL.
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
5. Now you can start the update of the system by invoking the follow-
ing command.

sdtbatch[.bat] -changecase 
targetDir/casesensitive.xrf

The result of the operation is sent to sdtout and contains informa-
tion about what have been done, problems that have arisen and fi-
nally which files that was updated and saved. Since it is a lot of in-
formation you should probably pipe the output to a file.

When the case is updated we recommend that you analyze the sys-
tem again. Proceed as follow:

6. Change the last row in the optionFile.txt from above. The last 
row should now be:

CaseSensitiveSDL=True

7. If your system uses the ctypes package and H2SDL you will need to 
use a special ctypes package that makes it possible to analyze in 
case-sensitive mode. Open the system in the Organizer and connect 
ctypes package to the file <installation directory>/sdt/in-
clude/ADT/ctypes_migration.sun.

8. Analyze the system by issuing the following command:

sdtbatch[.bat] -a systemPath/systemname.sdt -options 
optionFile.txt

There are known restrictions that may make it necessary to manual-
ly make further changes of the case in some places in the system. 
Known problems are:

– Text in class symbols are ignored.

– Words spanning two symbols using the possibility to divide a 
word with ‘_’ are not updated.

– When generating SDL PR files from SDL GR files some words 
are trimmed for spaces. Those may not be handled correctly.

We recommend that you update the system further until you have no 
known errors in the system when running in case-sensitive mode before 
continuing the process to migrate to CPP2SDL.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
���������������������	��
CPP2SDL is integrated with the Organizer and the SDL Editor in a 
slightly different way than H2SDL is. Instead of placing the header files 
one by one at root level in the Organizer view, it is now possible to de-
fine a set of header files which will be translated by CPP2SDL as a 
group. Each such set is organized by an import specification which con-
trols what declarations should be translated and how they should be 
translated. The SDL/PR file that results from the processing of an im-
port specification is represented by means of a PR symbol in the SDL 
Editor.

1. Remove all header files from the root level in the Organizer view. 
Also remove the symbol for the ctypes package.

2. In the extended heading of the SDL system diagram, remove the use 
clauses of the packages, which were generated by H2SDL for the 
header files. Also remove the use clause of the ctypes package.

Now all dependencies on H2SDL have been removed, and the specifi-
cation may be set up for using CPP2SDL instead.

3. Add an import specification at system level in the Organizer view. 
Do this by placing a PR symbol in the SDL system diagram. Then 
double-click the PR symbol, and select it to be a C import specifi-
cation in the dialog that appears.

4. Add the removed header files to the import specification, by select-
ing the import specification and using the Add Existing command 
in the Organizer. The symbols for the added header files will appear 
below the import specification symbol in the Organizer.

5. Go to the CPP2SDL Options dialog for the import specification and 

set the option1 to generate SDL representations for fundamental 
types.

When the above steps have been performed, the SDL specification 
should be equivalent to the original specification from a tool integration 

�����

The ctypes package must not be used with CPP2SDL as it is de-
signed exclusively for H2SDL. A set of SDL/PR files plays the same 
role as the ctypes package and will be included by selecting an op-
tion in an import specification as described in step 5.
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
point-of-view. However, while doing these changes there are a few op-
timizations that are enabled by CPP2SDL which should be considered. 
We will look at these later in “Configuring CPP2SDL Translation” on 
page 874.

�	��������
�	������
���	���
���

Although the translation rules implemented by CPP2SDL in many ways 
are similar to the ones implemented by H2SDL, they are not identical. 
Therefore, it may be necessary to do some modifications in the SDL 
specification.

The following sections follow the presentation in chapter 15, ����
������������.

�� �


The names of generated SDL identifiers may differ in prefixes and suf-
fixes. All references to such identifiers from the SDL specification 
should be updated, if needed.

1. Remove suffixes generated by H2SDL to handle case-sensitivity. 
These suffixes have the format “_	”, where 	 is a natural number.

2. Remove prefixes generated by H2SDL to handle combinations of 
underscores that previously were not supported. These prefixes 
have the format “zz_UScr_	�_”, where 	 and � are natural numbers. 
Also change the name of these identifiers to be the same as the cor-
responding C identifiers.

3. Change prefixes generated by H2SDL to handle SDL keywords. 
These prefixes have the format “zz_CCod_” and should be replaced 
with “keyword_”.

1. This option plays the same role as the ctypes package did for H2SDL. When it is 
set, the generated SDL will include suitable SDL/PR files with SDL representa-
tions of fundamental C/C++ types and type declarators (e.g. int, char, pointers 
and arrays). If set at more than one specification, errors will occur. Therefore, set 
this option at the broadest scope in which it will be used.

!	����

An alternative to changing all keyword prefixes manually, is to set 
the keyword prefix to be “zz_CCod_” in the CPP2SDL Options di-
alog.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
"���� �������#��


The ctypes package used by H2SDL, is replaced by one of two sets of 
SDL/PR files, depending on the used input language; BasicCTypes and 
CPointer, or BasicC++Types and C++Pointer. They are included auto-
matically in the SDL generated by CPP2SDL if the ������
����������
�����
�
	����������������
���
���� is set. Refer to “Fundamental 
Types” on page 779 in chapter 15, ���������������� for more infor-
mation.

The table below describes the differences between the H2SDL ctypes 
package and the corresponding CPP2SDL SDL/PR files. The most ob-
vious difference is that the SDL names of the sorts that represent funda-
mental C/C++ types are more consistent and intuitive when CPP2SDL 
is used.

Also note that the CharStar and VoidStarStar sorts of ctypes (repre-
senting char* and void** in C/C++) are not predefined in the 
CPP2SDL included SDL/PR files. See “Predefined Pointer Types” on 
page 871 and “Predefined Operators” on page 871.

 - ..
/���	$���	����
�

������
�
����������������

������
�
����������� !!����

signed int
int

Integer int

unsigned int
unsigned

UnsignedInt unsigned_int

signed long int
signed long
long int
long

LongInt long_int

unsigned long int
unsigned long

UnsignedLongInt unsigned_long_int

signed short int
signed short
short int
short

ShortInt short_int

unsigned short int
unsigned short

UnsignedShortInt unsigned_short_int
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
4. Update all references to sorts corresponding to fundamental types, 
with the names of the corresponding SDL sorts generated by 
CPP2SDL.

�#�������������


The names of SDL sorts representing pointer and array types have been 
changed to be more intuitive and shorter when CPP2SDL is used.

5. Update all references to sorts corresponding to pointer types by 
changing the old pointer prefix “Ref_�	������_” to “ptr_”.

signed long long int
signed long long
long long int
long long

LongLongInt long_long_int

unsigned long long 
int
unsigned long long

UnsignedLongLongInt unsigned_long_long_i
nt

char Character char

signed char Character signed_char

unsigned char Octet unsigned_char

char * CharStar N/A

float Float float

double
long double

Real double

bool N/A bool

wchar_t N/A wchar_t

void * VoidStar ptr_void

void ** VoidStarStar N/A

!	����

An alternative to changing all these references manually is to define 
a set of syntypes mapping the old names to the new ones.

 - ..
/���	$���	����
�

������
�
����������������

������
�
����������� !!����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
6.  Update all references to sorts corresponding to array types by 
changing the old array prefix “CA_�	������_	_X_” to “arr_	 ”, 
where 	 is the number of elements in the array. 

As the H2SDL array prefix “CA_�	������_	_X_” would result in very 
long SDL sort names when translating multi-dimensional arrays, 
H2SDL generates syntypes to shorten the sort names. These syntypes 
are named “MA_�	������_�”, where � is a natural number. Example 140 
gives an example of this technique and the corresponding CPP2SDL 
translation.

������� �	
��
�����������������������������������������������������
����������������������                                       

 ���	��
0

int func(int[2][3][4]);

�������
	���	����0

newtype CA_��������_4_X_Integer /*#SYNT*/
  CArray(4,Integer);
endnewtype CA_��������_4_X_Integer;

newtype CA_��������_3_X_CA_��������_4_X_Integer 
/*#SYNT*/
  CArray(3,CA_��������_4_X_Integer);
endnewtype CA_��������_3_X_CA_��������_4_X_Integer;

syntype MA_��������_0 /*#SYNT*/ =
 CA_��������_3_X_CA_��������_4_X_Integer
endsyntype;

newtype CA_��������_2_X_MA_��������_0 /*#SYNT*/
  CArray(2,MA_��������_0);
endnewtype CA_��������_2_X_MA_��������_0;

procedure func;
  fpar
    fpar_0 CA_��������_2_X_MA_��������_0;
  returns Integer;
external;

 !!������
	���	����0

NEWTYPE global_namespace /*#NOTYPE*/
  OPERATORS
    func : arr_2_arr_3_arr_4_int -> int;
/*#ADT(A(S) E(S) K(H))*/
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
NEWTYPE arr_4_int CArray( 4, int);
/*#ADT(A(S) E(S) K(H))*/
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
ENDNEWTYPE arr_4_int;EXTERNAL ’C++’;
NEWTYPE arr_3_arr_4_int CArray( 3, arr_4_int);
/*#ADT(A(S) E(S) K(H))*/
ENDNEWTYPE arr_3_arr_4_int;EXTERNAL ’C++’;
NEWTYPE arr_2_arr_3_arr_4_int CArray( 2, 
arr_3_arr_4_int);
/*#ADT(A(S) E(S) K(H))*/
ENDNEWTYPE arr_2_arr_3_arr_4_int;EXTERNAL ’C++’;

                                                          

7. If syntypes for multi-dimensional arrays are present 
(“MA_�	������_�”), replace them with one “arr_	 ” prefix for each 
array dimension.

$�����	����$�	������#��


The H2SDL ctypes package includes the definition of the SDL sorts 
CharStar and VoidStarStar corresponding to the C/C++ pointer 
types char* and void**. These predefined sorts are not supported by 
CPP2SDL. Instead CPP2SDL will translate these pointer types using 
the Ref generator as they are needed.

8. Update all references to the obsolete sort CharStar to the translated 
sort ptr_char.

9. Update all references to the obsolete sort VoidStarStar to the 
translated sort ptr_ptr_void.

$�����	����%�������


The ctypes package also defines a number of obsolete conversion oper-
ators for the Ref generator and the CharStar and VoidStarStar sorts, 
these are replaced with the cast operator according to the table below.

�������
�
	��
  !!������
�
	��
  �$$���

ref2vstar cast

vstar2ref cast

ref2vstarstar N/A Use cast(cast( )) instead, 
i.e <type>* to void* to 
void**

cstar2cstring cast Defined in CharConvert.pr

cstring2cstar cast Defined in CharConvert.pr
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
10. If the cstar2cstring or cstring2cstar operators are used, add 
a PR symbol and connect it to the file <installation directory>/in-
clude/ADT/CharConvert.pr.

11. Replace all occurrences of the obsolete conversions operators with 
the cast operator according to the table above.

&�� ��������#��


H2SDL has two alternative translations of enum declarations; using in-
teger synonyms or using newtype literals. CPP2SDL only supports the 
latter of these alternatives.

If H2SDL was configured to translate enum literals to integer synonyms 
instead of newtype literals, and such a generated SDL synonym is used 
as an arithmetic expression, then the EnumToInt operator generated by 
CPP2SDL should be invoked on the newtype literal that corresponds to 
that synonym. See “Enumerated Types” on page 783 in chapter 15, ����
������������ for more information.

Another difference in the translation of enumerated types is that H2SDL 
adds an Enum_ prefix to the generated newtype, while CPP2SDL uses 
the name as it is.

12. Remove all Enum_ prefixes from identifiers in references to new-
types representing enumerated types.

"����	��


While H2SDL translates function prototypes to SDL procedures, 
CPP2SDL translates them to operators.

cstar2vstar cast

vstar2cstar cast

cstar2vstarstar N/A Use cast(cast( )) instead, 
i.e <type>* to void* to 
void**

vstarstar2vstar cast

vstar2vstarstar cast

�������
�
	��
  !!������
�
	��
  �$$���
��
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
13. Convert all calls to procedures that represent C functions into oper-
ator calls by removing the call keyword.

14. If the Procedure call symbol is used to call procedures representing 
C functions, replace the Procedure call symbol with a Task symbol.

 

'��	�(��


H2SDL does not translate C variables directly, but generates two proce-
dures for getting and setting the value of the variable. CPP2SDL, on the 
other hand, generates external SDL variables, which is a tool-specific 
SDL extension.

15. For each accessed variable v, replace all procedure calls to 
Set_v(���	�) with the assignment v := ���	�. Replace proce-
dure calls to Get_v() with the variable name v.

������
�������	��


With CPP2SDL, the names of newtypes generated from structs and 
unions are retained, while H2SDL adds a Struct_ or a Union_ prefix 
to these names.

16. Remove all Struct_ and Union_ prefixes from identifiers in refer-
ences to newtypes representing structs or unions.

�#�� 	���� ��#������� ���

The definition of the Ref generator that was used with H2SDL only con-
tained an operator (Make!) or literal (Alloc) for instance allocation, 

�����

A procedure without parameters is called differently than an opera-
tor without parameters:

/* Calling a procedure p without parameters. */

task call p(); 

/* Calling an operator o without parameters. */

task o; 

�����

CPP2SDL will only translate variables when the Import Specifica-
tion is placed in a SDL diagram that allows declaration of variables.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
while instance deallocation was made with a Free procedure, defined 
outside the generator. With CPP2SDL, the Free procedure has been re-
placed with a free operator in the Ref generator.

17. Convert all calls to the Free procedure into calls to the free oper-
ator by removing the �	�� keyword and changing Free to free.

����	���	����$$)��������
���	��
While H2SDL performs a full translation of all supported C constructs 
to the system scope of the SDL specification, the Import Specification 
makes it possible to define what CPP2SDL translates and where to im-
port it.

Additionally, it is also possible to use multiple Import Specifications to 
import C declarations to different scopes in the SDL specification.

*������������������� ���������	�	���	��


For example, instead of always placing an import specification at sys-
tem level, it should be placed at the most narrow scope that encloses all 
SDL usages of the declarations in the header files that are present under 
that import specification.

�$$)����%��	��


H2SDL used a centralized setting controlling which preprocessor and 
what preprocessor options to use for preprocessing input headers. 
CPP2SDL is more flexible, and makes it possible to specify these set-
tings for each import specification.

1. Open the CPP2SDL Options dialog for each import specification, 
and enter the preprocessor and preprocessor options to use for pre-
processing the headers grouped by that import specification.

Also note that H2SDL defines the macro __H2SDL__ while preprocess-
ing the C header files. When using CPP2SDL this macro is replaced by 
the __CPP2SDL__ macro.

�����

The SDL language does not contain any construct like the C #ifdef 
construct, so take care not to import any declarations more than once 
if you are planning to use multiple Import Specifications.
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



�*��
	�����+���������
2. If the __H2SDL__ macro is used in your C headers change this to 
__CPP2SDL__.

For more information on the options available in the CPP2SDL Options 
dialog please refer to “Setting CPP2SDL Options in the Organizer” on 
page 762 in chapter 15, ����������������.

*�����������
����

The TRANSLATE section of the Import Specification controls which C 
identifier that should be translated, by default CPP2SDL will also trans-
late any declarations that these identifiers are depending on.

With the TRANSLATE section it is also possible to add type declarators 
to types and supply prototypes for ellipsis functions making these avail-
able in SDL.

Read more about the TRANSLATE section in “Import Specifications” on 
page 771 in chapter 15, ����������������.

��+�,�	���%��	��


Contrary to H2SDL, CPP2SDL requires the generated SDL to be ana-
lyzed as case sensitive SDL.

3. In the Analyzer Options dialog, set the Case sensitive SDL option.

It should now be possible to analyze the SDL specification.

When the SDL specification has been accepted by the Analyzer, it 
should also be possible to generate code without further modification. 
Note, however, that using the Targeting Expert is the recommended 
way of generating code when CPP2SDL is used. This means that if a 
makefile or makefile template was used with H2SDL to link the exter-
nal object files to the generated application, this could now be achieved 
in an easier way using the Targeting Expert. For more information, see 
“Generated Makefile” on page 2922 in chapter 60, �������
�
	�
�!"�
���
.

!	���

An alternative to changing the __H2SDL__ macro is to use the pre-
processor options in the CPP2SDL Options dialog to define the 
__H2SDL__ macro.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���



 �	
��
 ��  !!�����*��
	�����+�����
��� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003


	16 CPP2SDL Migration Guide
	Introduction
	Reasons to Migrate
	Migration Guidelines
	Update to case-sensitive SDL
	Changed Tool Integration
	Differences in Translation Rules
	Names
	Fundamental Types
	Type Declarators
	Predefined Pointer Types
	Predefined Operators
	Enumerated Types
	Functions
	Variables
	Structs and Unions
	Dynamic Memory Management

	Configuring CPP2SDL Translation
	Where to place the Import Specifications
	CPP2SDL Options
	What to Translate
	New Build Options




