Chapter

15

July 2003

The CPP2SDL Tool

The CPP2SDL tool isa C/C++-to-SDL translator that makesit pos-
sibleto accessC or C++ declarationsin SDL. Thetool takesa set of
C/C++ header filesasinput and generates SDL declarationsfor a

configurable set of the C/C++ declarationsin these files.

CPP2SDL isthenew generation of the H2SDL utility. Compared to
its predecessor, CPP2SDL offersa comprehensive C++ support as
well as superior translation configurability. CPP2SDL isfully inte-
grated in Telelogic Tau SDL suite, but can also be executed as a
stand-alone utility from the command shell.

Thischapter isthereference manual for CPP2SDL . Thereader is
assumed to be familiar with C/C++ and SDL.

Telelogic Tau 4.5 User’ sManual 757

Chapter 15 The CPP2SDL Tool

Introduction

758

The overall purpose of the CPP2SDL tool isto provide a convenient
means of making external C or C++ declarations availablein an SDL
context. Thisisaccomplished by translating the C/C++ declarations
into representing SDL declarations. These resulting declarations can be
injected at an arbitrary level in the SDL scope hierarchy, and may then
be used just asif they actually were declared at that scope level. When
target code is generated for the SDL system, the Code Generator pro-
duces C or C++ code for usages of generated SDL declarations that
matchesthe original C/C++ declarations. The picture below depictsthe
data flow when using CPP2SDL, and the context of the tool.

Other SDL/PR

Import specification

C/C++ header o

files
SDL/PR / CICH+
CPP2SDL Analyzer &

- —- .pr — .c

n P C/C++ Code -
Generator

C/C++

P> Compiler

C/C++ object Other object
files code
C/C++
.0
‘ P Linker [0

+ Object code
Application

Figure 170 CPP2SDL Data Flow and Context

As can be seen in the figure, the input to CPP2SDL is a set of C/C++
header files and, optionally, an import specification. From thisinput
CPP2SDL generates an SDL/PR file containing SDL representations
for the declarations in the header files, or for a subset of these declara-
tionsaccording to what is specified in theimport specification. The gen-
erated SDL/PR is analyzed together with other SDL/PR, e.g. the

Telelogic Tau 4.5 User's Manual July 2003

I ntroduction

July 2003

SDL/PR for the SDL system. The Code Generator then generatestarget
C/C++ codewhichiscompiled by a C/C++ compiler. Notethat the orig-
inal C/C++ headers are used in this compilation. The resulting object
code is linked together with the object files belonging to the C/C++
headers. Other object files are also included, e.g. the precompiled SDL
kernel that is to be used. The result is an executable application.

CPP2SDL tranglates from C/C++ to SDL according to certain transla
tion rules. These translation rules have been designed to be as simple
and intuitive as possible. A user that isfamiliar with C/C++ should find
it straight-forward to use a C/C++ declaration from SDL. The transla-
tion rules are described in full detail in “C/C++ to SDL Translation
Rules’ on page 778. Although CPP2SDL supports translation of a ma-
jor part of the C and C++ languages, not everything is supported. The
limitations of CPP2SDL arelisted in “Known Limitations” on page 28
in chapter 2, Release Notes.

Telelogic Tau 4.5 User's Manual 759

Chapter 15 The CPP2SDL Tool

Executing CPP2SDL

760

Normally, CPP2SDL isautomatically invoked by the SDL Analyzer as
part of the make process. Input header files and tool options are then
specified in the Organizer. However, CPP2SDL may also be executed
as astand-alonetool from acommand shell, and in that case input head-
ers and tool options are given as command-line options.

This section begins with a description of the integration with the Orga-
nizer and the Analyzer. Then how to execute CPP2SDL from the com-
mand-line isdescribed. Finally, follows a section on how to run thetool
through the PostM aster.

Execution from the Organizer

The most common way to execute CPP2SDL should be from the Orga-
nizer. In fact CPP2SDL will be started automatically by the Analyzer
oncefor each import specification symbol it findsin the Organizer view
(see “Import Specifications’ on page 771 to learn about import specifi-
cations). The Analyzer executes CPP2SDL by means of the PostM aster
as described in “ Execution from the PostM aster” on page 769. All mes-
sages that are output during the execution will be printed in the Orga-
nizer Log Window.

Example 77: Executing CPP2SDL from the Organizer

Consider asimple SDL system with one block and one process that
needs to access some C++ declarations. At system level certain decla-
rations of the C++ header file general . h isused, and at process level
declarations of thefiles £1.n and £2.h are needed. Figure 171 below
shows how the Organizer view of this SDL system could look like.

Telelogic Tau 4.5 User's Manual July 2003

Executing CPP2SDL

July 2003

% Organizer - tests_single.sdt

File Edit Yiew Generate Tools Help

3

ree ChcppZsdhdemositests_single.sdt
ree Chcpp2sdidemosh

classlicdtclass_1.ssy
class1vAis

general.h
class1ihl.shk
classTipr.spr
Specific.is

fI.h

2.h =
| 3

|System saved o

2222 2222

Figure 171 Organizer view with headersto be trandated by CPP2SDL

When this system is analyzed, the Analyzer will execute CPP2SDL
oncefor thefilegeneral .h, and oncefor thefilesf1.hand £2.n. The
result of thefirst trandlation isaset of SDL declarationsthat areinjected
at system level, and thus will be accessiblein al scopes. The result of
the second translation is a set of SDL declarations that are injected at
process level and thus are not accessible in the system or in the block
scope.

Adding Import Specifications to the Organizer view

The first step in accessing C/C++ declarations from SDL istoinsert a
PR symbol at the place in the SDL specification where the C/C++ dec-
larations are to be used. The PR symbol represents the inclusion of the
SDL PR that isthe translation of the C/C++ declarations.

To specify that this should be an import specification, double-click the
PR symbol either in the Organizer or inthe SDL Editor to open the Edit
Document dialog. In the dialog it is possible to select either C Import
Specification or C++ Import Specification.

An import specification can be edited manually by means of the Text
Editor (see “Import Specifications’ on page 771 to learn about import

Telelogic Tau 4.5 User's Manual 761

Chapter 15 The CPP2SDL Tool

762

specifications). However, an import specification can aso be edited in
the CPP2SDL Options dialog described below.

After adding an import specification it is necessary to specify which
C/C++ header filesareto betrandated. Thisisdone by selecting theim-
port specification in the Organizer and then use the Add Existing and
Add New commandsto select or create C/C++ header filesrespectively.

Setting CPP2SDL Options in the Organizer

Required options to CPP2SDL may be specified in the Organizer for
each import specification by using the CPP2SDL Options dialog. This
dialog may be opened from the menu that appears when the right mouse
button is pressed on an import specification symbol. Figure 172 shows
thisdialog.

CPP25DL Options 5 b4 I

—Input language

(T [~ Borland [~ GNU
& CH+ v Microsoft
[~ Bundtime type information [Allow ohject slicing

[~ Recognize S0L sorts in input

—Preprocessar
| =]

[~ Options |

—Code generation

Pointer |ptr_ Array |arr_ Template tl_
Fesward |keyw0rd_ Incomplete |comp|ete_ Underscore |usc0re

¥ Generate SDL representations for fundamental types

— Dptimizations
[Only generate class pointer types when necessary

cocs | _var_|

Figure 172 The CPP2SDL Options Dialog

Telelogic Tau 4.5 User's Manual July 2003

Executing CPP2SDL

July 2003

The fields and buttons of the CPP2SDL Options dialog correspond di-
rectly to the command-line options described in “ Command-L ine Op-
tions” on page 764:

Language

These radio buttons select the input language. If C is selected,
CPP2SDL will be executed in C mode, i.e. aswith the - < command-
line option.

Dialect

These check boxes determine what dialects to support in the input,
and correspond to the -dialects command-line option. If no
check-boxes are marked, the ANSI C/C++ dialect is supported.

Run-Time Type Information

Thischeck box should be set if Run-Time Type Information (RTTI)
isavailablein C++ and should be supported in the SDL trandlation.
It correspondsto the -rtti command-line option.

Allow object slicing

This check box should be set if object slicing should be supported
in the SDL trangation. It corresponds to the -s1icing command-
line option.

Recognize SDL sortsin input

This check box should be set if SDL sorts should be recognized in
theinput. It corresponds to the -sd1sorts command-line option.

Preprocessor

Thisfield is used to specify the preprocessor to use for preprocess-
ing the input. It corresponds to the -preprocessor command-line
option. Thisfield aso has a browse button that makesit possible to
select the preprocessor from afile selection dialog.

Preprocessor options

This field should contain the options to the preprocessor. It corre-
sponds to the - cppopt ions command-line option.

Pointer, Array, Template, Keyword, Incomplete, Underscore

Telelogic Tau 4.5 User's Manual 763

Chapter 15 The CPP2SDL Tool

764

These fields specify the prefixes and suffixes that are used when
C/C++ names must be modified in the SDL trandlation. They corre-
spond to the -prefix and -suf£ix command-line options.

» Generate SDL representations for fundamental types

This check box should be set if SDL representations for fundamen-
tal C/C++ typesshould beincluded in thetrand ation. It corresponds
to the -generatecpptypes command-line option.

* Only generate class pointer types when necessary

If this check box is set, CPP2SDL will optimize the generation of
class pointer types. It corresponds to the -optclasspointers
command-line option.

Execution from the Command-Line
CPP2SDL isinvoked from the command-line by the command:

cpp2sdl [options] <C/C++ header files>

Unlessthe -post option is set, all messages that are output by the tool,
e.g. errors and warnings, will be printed on the standard error stream
(stderr)

CPP2SDL will translate the declarations in the specified C/C++ header
files, or a subset of these declarationsif a suitable import specification
isused (see “Import Specifications’ on page 771). The resulting SDL

declarations will be saved in afile caled name. pr, where name isthe

name of theimport specification used. If noimport specificationisused,
name Will bethe name of thefirst input header file.The output file will
be placed in the same directory from where CPP2SDL is executed.

Command-Line Options

The command-line options recognized by CPP2SDL are listed and ex-
plained below. Note that an option may be abbreviated as indicated by
the underlined part of the option name.

e -append

Append the generated SDL declarations to the file that is specified
with the -output option. If that file does not exist, this option will

Telelogic Tau 4.5 User's Manual July 2003

Executing CPP2SDL

July 2003

be ignored and CPP2SDL will create a new file for the output as
usual.

-C

Execute in C mode. CPP2SDL will assume that no C++ specific
constructs are encountered in the input headers. If this assumption
doesnot hold, theresult of thetranslation isundefined. See* Special
Translation Rules for C Compilers’ on page 839 for a detailed de-
scription of translation rule modifications that are caused by using
this option.

-cppoptions <optionsstrings

Send the specified option string to the preprocessor. If the string
contains white spaces, it must be quoted.

-dialects <dialect> <dialect> ... <dialect>

Accept the specified C/C++ dialectsin theinput headers. Supported
dialectsare

— ANSI (ANSI C/C++)
— BC (Borland C/C++)

— GCC (Gnu C/C++)

— MSVC (Microsoft Visual C/C++)
— ALL (al supported C/C++ diaects)

If thisoption isnot used, CPP2SDL will assume that the input head-
ers conform to the ANSI C/C++ dialect.

-errorlimit <number>

Set the maximum number of errorsto report before terminating the
translation. The default it to terminate when 5 errors have been
found.

-extsyn

Will not generate for constants with numeric expressions, external
synonymswith its value (if the expression can be cal culated during
tranglation). Default, i.e. without this option, thevalueistranslated .

-generatecpptypes

Telelogic Tau 4.5 User's Manual 765

Chapter 15 The CPP2SDL Tool

766

Include SDL representations for fundamental C/C++ typesin the
trandation. See “SDL Library for Fundamental C/C++ Types’ on
page 841 for more information about what actually is generated
when this option is used.

-help

Print a help message about CPP2SDL. No trandation will be per-
formed.

-importspecification <file>

Use the specified file asimport specification for the translation. Im-
port specifications are described in “Import Specifications’ on page
771

-nocheckinput

Do not check that al input headers are existing and readabl e before
trying to trandate them. The use of this option could make it easier
to use CPP2SDL from scripts.

-nodepend

Do not transl ate depending decl arations when using an import spec-
ification. Only theidentifiersthat are explicitly present in theimport
specification will be translated. If this option is set, CPP2SDL can-
not guarantee that the resulting set of SDL declarationsis complete
and consistent. See “Import Specifications’ on page 771 for more
information.

-novariables

Do not generate external variables. This option is needed since the
rules for where SDL allows declarations of external variables are
more restrictive than for other declarations. For example, SDL does
not allow external variables declared at system or block level. If this
option is used, CPP2SDL will output awarning if it finds a con-
struct that otherwise would be translated to an external variable.

-optclasspointers

Optimize the generation of class pointer types so that they are only
generated when they appear intheinput headers. If thisoptionisnot
used, CPP2SDL will automatically generate a pointer type to all
trandated classes. Read more about thisin " Classes, Structs and
Unions’ on page 796.

Telelogic Tau 4.5 User's Manual July 2003

Executing CPP2SDL

July 2003

-output <file>

Write the resulting SDL declarations to the specified file. If the
-append option is set, the result will be appended to the file. Other-
wiseanew filewill be created, overwriting an existing file with the
same name, if any.

Note that dl files that CPP2SDL generates will be placed in the
same directory as the generated SDL/PR file.

-post

Start CPP2SDL asaPostMaster client waiting for requestsfrom the
PostMaster. The PostM aster messages that are handled by
CPP2SDL are described in “Execution from the PostM aster” on

page 769.

-prefix “ptr=<string> arr=<string> keyword=<string>
incomplete=<string> tpl=<string>”

Use the specified name prefixes when generating SDL. CPP2SDL
uses name prefixeswhen the original C/C++ namesfor some reason
cannot be used in SDL. This option makes it possible to fully con-
figure how such modified names are generated. Thisis often useful
in order to avoid name clashesin SDL.

-preprocessor <executablex>

Use the specified executable for preprocessing the input headers.
The executable should be a preprocessor or C/C++ compiler that is
supported by CPP2SDL :

‘cl’” (Microsoft Visual C/C++ Compiler), in Windows.

— ‘cpp32' (Borland C/C++ Preprocessor), in Windows.

— ‘cpp’ (C/C++ Preprocessor), on Unix.

— ‘cc’ and ‘CC' (Sun Workshop C and C++ Compilers), on Unix.
— ‘gec’ and ‘g++ (GNU C and C++ Compilers), on Unix.

If this option is hot used, CPP2SDL will attempt to use ‘cl’ in Win-
dows, and ‘cpp’ on Unix.

Notethat CPP2SDL uses name matching of the specified filename,
with the file name extension stripped, to determine what preproces-
sor or compiler to use for preprocessing. If the specified name does

Telelogic Tau 4.5 User's Manual 767

Chapter 15 The CPP2SDL Tool

768

not match the name of any supported preprocessor or compiler on
the current platform, CPP2SDL will attempt to call the executable
likethis:

<executable> <options> <input file> <output file>

<options> arethe option string specified with the -cppoptions
options.

If thiscall fails, CPP2SDL does not know how to preprocessthein-
put headers and terminates.

Hint:

If you want to preprocesstheinput headers using a preprocessor that
is not supported by CPP2SDL, you can write a simple shell script
that wraps the call to the desired preprocessor. The script should
conform to the call style that CPP2SDL uses for unknown prepro-
cessors. Then execute CPP2SDL, usingthe -preprocessor Op-
tion to specify the script as the preprocessor to use.

-ref

Include source referencesinthe generated SDL. Theformat of these
source references is described in “ Source and Error References’ on

page 776.

-rtti

Assume Run-Time Type Information, and support dynamic casting.
See “Run-Time Type Information and Dynamic Cast” on page 820
for more information what this means.

-sdlsorts

Recognize SDL sortsininput. CPP2SDL will translate C/C++ types
that are prefixed with * SDL_’ to the corresponding SDL sort. Refer
to “SDL Sortsin C/C++” on page 837 for an example on how this
feature can be used.

-slicing

Generate SDL cast operators to support slicing of C++ objects. See
“Type Compatibility between Inherited Classes’ on page 816 for
more information.

-sortmembers

Telelogic Tau 4.5 User's Manual July 2003

Executing CPP2SDL

July 2003

Sort struct membersin SDL newtypes alphabetically.
e -suffix "uscore=<strings>"

Use the specified name suffixes in the generated SDL. CPP2SDL
uses name suffixes when the original C/C++ name for some reason
cannot be used in SDL. This option makes it possible to fully con-
figure how such modified names are generated.

e -targetdir <directorys>

Set the target directory for generated files. CPP2SDL produces one
single header file which includes all the header files that are to be
trandated. If this option is used, this generated header fileis placed
in the specified target directory. Otherwise thefile will be placedin
the same directory as the generated SDL/PR file.

e -version

Show version information.

Example 78: Executing CPP2SDL from the command-line

% cpp2sdl -preprocessor /usr/ccs/lib/cpp -output
result.pr -prefix “ptr=p arr=a” -rtti -ref input.h

This command will trandate the input header input .h to SDL and
write the resulting SDL declarations to thefile result .pr. The speci-
fied preprocessor ‘cpp’ will be used to preprocess the input. If the input
contains pointer or array types, the corresponding SDL names will be
prefixed with ‘p’ and ‘@ respectively. Source referencesto the declara-
tionsin input . h will be generated by CPP2SDL, and Run-Time Type
Information is assumed so that dynamic cast operators are generated.

Execution from the PostMaster

As mentioned above, CPP2SDL may be started as a PostM aster client
by using the -post option at the command-line. AsaPostM aster client,
CPP2SDL will handle two different PostM aster events.

+ SESTOP
e SECPP2SDLCOMMAND <optionstring>

Telelogic Tau 4.5 User's Manual 769

Chapter 15 The CPP2SDL Tool

Thereception of a SESTOP event hasthe expected behavior; CPP2SDL
ceases to be a PostMaster client and terminates.

The SECPP2SDLCOMMAND event has an option string as argument.
The event will cause CPP2SDL to execute according to the options
specified in that string. The format of the option string is the same as
when CPP2SDL is executed from the command-line (see " Execution
from the Command-Line” on page 764). All messages that are output
by the tool will be broadcast to the PostM aster.

After the execution of a SECPP2SDLCOMMAND event areply issent:
SECPP2SDLCOMMANDREPLY <#errors> <#warnings> <status>

The <#errors> and <#warnings> arguments tell the number of errors
and warningsthat occurred during the translation, and <status> isatext
string with the same information in a more readable form.

Example 79: Executing CPP2SDL from the PostMaster
A single PostMaster may be started with this command:

% sdt -noclients

Then CPP2SDL is started as a PostM aster client:

o

% cpp2sdl -post &

CPP2SDL isnow waiting for requeststo come from the PostM aster. By
using for example the SERVERPC application, events can be sent to it.

% serverpc 58000 58101 “-rtti -ref input.h”

58000 isthe tool id of CPP2SDL, and 58101 isthe event id for the
SECPP2SDLCOMMAND event. As aresult the following reply event
could for example be received:

SECPP2SDLCOMMANDREPLY 02 “0 errorsand 2 warnings”

Finally, CPP2SDL isterminated using the SESTOP event (id 58303):

% serverpc 58000 58303

o)

770 Teldlogic Tau 4.5 User's Manual July 2003

Import Specifications

Import Specifications

July 2003

A simple but powerful way of configuring the trandation of a set of
C/C++ declarations is to use an import specification. As the name sug-
gests, an import specification specifies how to import external codeinto
SDL. Animport specification for CPP2SDL is atextfile writtenin a
simple C/C++-style syntax. The file consists of two sections that both
are optional:

* CPP2SDLOPTIONS

This section may contain options to the CPP2SDL tool. The syntax
is the same as when CPP2SDL is executed as a stand-al one tool
from the command-line. See “* Command-Line Options’ on page
764.

¢ TRANSLATE

This section may contain alist of C/C++ identifiers. CPP2SDL will
attempt to maketheseidentifiersavailablein SDL by trandating the
corresponding declarations.

Options and identifiersin an import specification are delimited by new-
lines.

The example below shows a simple import specification where the
identifiers func, ¢ and myint are made availablein SDL.

Example 80: A simple import specification

CPP2SDLOPTIONS {
-preprocessor /usr/ccs/lib/cpp

TRANSLATE {
func
c
myint
// C++ style comment (if supported by preproc.)
/* C style comment */

}

The import specification file will be preprocessed by CPP2SDL with
the same preprocessor and preprocessor optionsthat are used when pre-
processing the input C/C++ headers. This makesit possible to use, for
instance, C/C++ comments and macrosin an import specification.

Telelogic Tau 4.5 User's Manua 771

Chapter 15 The CPP2SDL Tool

Note:

Some preprocessors will refuse to preprocess files that have an un-
known file name extension (for example . is). In that case theim-
port specification file must be given afile name extension that is
known to the preprocessor (for example . h).

If anidentifier in an import specification refers to adeclaration that de-
pends on other declarations, CPP2SDL will, by default, translate all
these depending declarations as well. This principleis applied recur-
sively to all declarationsthat depend on depending declarations, thereby
making sure that the resulting SDL declarations are complete and con-
sistent. If the -nodepend option is set, depending declarations will not
be translated automatically. Then the tool cannot guarantee that the re-
sulting set of SDL declarationsis complete and consistent.

Example 81: Translation of depending declarations
File data.n:
typedef int myint;

class C {
public:
myint* mvar;

l

File import .is:

TRANSLATE {
c
}

Execution of CPP2SDL from the command-line,

% cpp2sdl -importspecification import.is data.h
will produce resulting SDL declarations in the file import . pr:

SYNTYPE myint = int
ENDSYNTYPE myint; EXTERNAL 'C++’;
NEWTYPE ptr myint Ref (myint);
OPERATORS
ptr myint : -> ptr myint;
ptr myint : ptr myint -> ptr myint;/
ENDNEWTYPE ptr myint; EXTERNAL ’'C++';
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;
ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';

772 Teldlogic Tau 4.5 User's Manual July 2003

Import Specifications

July 2003

NEWTYPE C
STRUCT
mvar ptr myint;
OPERATORS
c : -> C;
c: C->C;
ENDNEWTYPE C; EXTERNAL ’'C++';

Here, the import specification only specifies that the class ¢ shall be
translated, but since the declaration of ¢ depends on myint*, whichin
turn depends on myint, these declarations will be translated as well.

Note:

CPP2SDL will only translate those identifiers in an import specifi-
cation that refer to declarations in namespaces (including the global
namespace). If anidentifier refersto another kind of declaration, for
exampleaclassmember, it will beignored and CPP2SDL will issue
awarning.

Advanced Import Specifications

Besides from specifying which identifiers that should be translated to
SDL, there are some more advanced constructs that may be used in an
import specification.

Type Declarators

It is possible to append type declarators to identifiers that represent
types. The same type declarators asin C/C++ are allowed, i.e. pointer
(*), array ([]), and reference (&). Prefix and postfix declarators are sep-
arated by adot (.).

Example 82: Type declarators in import specification

TRANSLATE {

char* // A pointer to char.
MyClass.[8] // An array of 8 MyClass.
mytype& // A reference to mytype.
Cc*.[10] // An array of 10 pointers to C.

Telelogic Tau 4.5 User's Manual 773

Chapter 15 The CPP2SDL Tool

774

Prototypes for Ellipsis Functions

Thetranglation rule for afunction with unspecified arguments (a.k.aan
ellipsisfunction) requiresthat information is provided about which ver-
sions of the function that should be made availablein SDL (see “Un-
specified Arguments” on page 789). This information may be givenin
an import specification by specifying prototypes for the function.

Example 83: Prototypes for ellipsis functions in import specification

Input declaration:

int printf (const char*, ...);

Import specification:

TRANSLATE {
printf
printf (int)
printf (double, char)

Resulting SDL declarations:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
printf : ptr char, double, char -> int;
printf : ptr char, int -> int;
printf : ptr char -> int;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;

NEWTYPE ptr char Ref (char);
OPERATORS
ptr char : -> ptr char;
ptr char : ptr char -> ptr char;/
ENDNEWTYPE ptr char;EXTERNAL ’C++';

Template Instantiations

Similar to ellipsis functions, the translation of templates requires addi-
tional information about how the templates should be instantiated (see
“Templates’ on page 831). Thisinformation may be specified in anim-
port specification, using the same syntax as when templates are instan-
tiated in C++.

Example 84: Template instantiations in import specification

Input declarations:

Telelogic Tau 4.5 User's Manual July 2003

Import Specifications

July 2003

template <class C, int i> class S {
public:
C arr[i];

7

template <class D> D func(const D& pl);

Import specification:

TRANSLATE {
S<double, 5>
func<unsigned ints>

}
Resulting SDL declarations:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
tpl func_unsigned int /*#REFNAME ' func<unsigned
int >’*/ : unsigned_int -> unsigned_int;
ENDNEWTYPE global namespace; EXTERNAL ‘C++';

NEWTYPE arr 5 double CArray(5, double);
ENDNEWTYPE arr_S_dOuble;EXTERNAL "C++' ;

NEWTYPE ptr tpl S double 5 Ref(tpl S double 5);
OPERATORS
ptr_tpl S double 5 : -> ptr tpl S double 5;
ptr _tpl S double 5 : ptr tpl S double 5 ->
ptr tpl S double 5;
ENDNEWTYPE ptr tpl S double 5;EXTERNAL 'C++’;

NEWTYPE tpl S double 5 /*#REFNAME ’'S<double, 5 >'*/
STRUCT
arr arr 5 double;
OPERATORS
tpl S double 5 /*#REFNAME 'S’'*/ : ->
tpl_S double 5;
tpl_S double 5 /*#REFNAME 'S’'*/ : tpl S double 5
-> tpl S double_ 5;
ENDNEWTYPE tpl S double 5;EXTERNAL ‘C++';

Note that since class template instantiations define types, it is possible
to use type declarators for them.

Telelogic Tau 4.5 User's Manua 775

Chapter 15 The CPP2SDL Tool

Source and Error References

776

A source reference is areference from a generated SDL declaration to
the corresponding original C/C++ declaration. Source references are
placed in the generated SDL/PR file.

Anerror referenceisalso areferenceto adeclaration in theinput header
file, but is used to point out an error (or awarning) in that file. Error ref-
erences aretherefore printed as messagesto the standard error stream or
to the Organizer Log Window.

CPP2SDL uses the #SDTREF format both for source and error refer-
ences. See chapter 19, SDT References for more about #SDTREF.

Source References

When CPP2SDL isexecuted from the Organizer, or from the command-
linewith the -ref option set, the generated SDL/PR file will contain
referencesto the input source files. Such areference occurs just before
agenerated SDL declaration, and is on the form

/*#SDTREF (TEXT, filename, line) */

where

* filename isthe name of the input file where the corresponding
C/C++ declaration can be found.

* lineistheline number in that input file where the C/C++ declara-
tion starts.

A source reference is shown in Example 85 below.

Example 85: Source references

/*#SDTREF (TEXT, input .h, 226) */
NEWTYPE S STRUCT
a int;
OPERATORS
get_a: S -> int;
ENDNEWTYPE S;EXTERNAL ‘C++’;

Telelogic Tau 4.5 User's Manual July 2003

Source and Error References

July 2003

Error References

Error references have a similar format as source references but with a
column position added after the line number:

/*#SDTREF (TEXT, filename, line, column) */

CPP2SDL prints error references when errors or warnings are found
during the trandation. They are output to the standard error stream
(stderr) or to the Organizer Log Window depending upon whether
CPP2SDL is executed from the command-line or from the PostM aster.

Problems with error references may arise because of the preprocessor.
Among other things, the preprocessor expands macros, and a typical
problem isillustrated in Example 86 below.

Example 86: Error References
File def .h:
#define init InitializingFunction

void init (undefinedType *, int);

If CPP2SDL trandlates thisfile, the following error message will be
printed:

#SDTREF (TEXT,def.h, 3,27)
ERROR 3200 Syntax error.

Here the syntax error occurs at position (3,11) in the sourcefile, but be-
cause of the macro expansion of init t0 InitializingFunction,
CPP2SDL will report the error at position (3,27) instead. Thus the col-
umn position is several characters off the target in the original file.
When using the Organizer Log’s Show Error function (see " Show Er-
ror” on page 183 in chapter 2, The Organizer) to view the source of this
error message, the cursor will be placed at int instead of at
undefinedType. CPP2SDL cal culates both sourceand error references
from the preprocessed source code, and this may |ead to reference prob-
lems when macros are involved.

Telelogic Tau 4.5 User's Manua 7

Chapter 15 The CPP2SDL Tool

C/C++to SDL Translation Rules

778

The general idea behind the CPP2SDL tool isto take a set of C/C++
header files, preprocess them, and translate some or all of the declara-
tionsin these headersinto SDL/PR representations. This section de-
scribes the rules for this translation process.

Each C/C++ construct is described in a subsection of its own. First, a
general rule for the translation of the construct is presented. Then fol-
lows a description of exceptionsto thisrules, and rationals for these ex-
ceptions.

Before proceeding, it should be noted that the trandation rules have
been designed to support both C and C++ target compilers. To alarge
extent the translation rules are actually independent of whether a C or
C++ target compiler is used. However, there are some differences, so
when CPP2SDL executesin“C mode’ (i.e. withthe - c option set) afew
tranglation rules are slightly modified. These modifications are de-
scribed in “ Special Trandation Rules for C Compilers’ on page 839.

Names
Rule: The name of a C/C++ identifier isthe samein SDL.

Thenaming rulesof identifiersin SDL and C/C++ arerather similar but
differsin two important aspects:

» SDL isacase-insensitive language, while C/C++ is case-sensitive.

» SDL has some restrictions for how underscores may be used in
names. C/C++ has no such restrictions.

To overcomethese differencestool specific extensions have been made
inthe supported SDL dialect. The Analyzer hasan option to handle case
sensitive SDL (see “ Set-Case-Sensitive” on page 2416 in chapter 55,
The SDL Analyzer), and most of the restrictions with underscores have
been removed. However, the rule that a name that ends with an under-
score should be concatenated with the following name, makes it neces-
sary to modify such names in the SDL mapping. Thisis done by ap-
pending a string suffix to such names. Thisstring is by default “ uscore”
but may be configured to an arbitrary string be means of the CPP2SDL
option

-suffix.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

Another case where aname in C/C++ cannot be retained in the SDL
tranglation is when the nameis an SDL keyword. Such names are pre-
fixed with a user-configurable string that by default iskeyword . The
option -prefix can be used to configure this string.

Example 87 below gives some examples of the translation rules for
names.

Example 87: Translation of names

C++:
int ABC, abc; // Case sensitivity
char u_ sc, w, x ; // Unrestricted use of
underscores
double signal; // SDL keyword
SDL:

DCL ABC int; EXTERNAL ’'C++’';

DCL abc int; EXTERNAL ’'C++’';

DCL u__sc char; EXTERNAL ’'C++';

DCL _w char; EXTERNAL 'C++’;

DCL x_uscore /*#REFNAME 'x_’'*/ char; EXTERNAL 'C++’;
DCL keyword signal /*#REFNAME ‘signal’*/ double;
EXTERNAL ’'C++';

Note the #REFNAM E directive that passesthe original C/C++ nameto
the Code Generator for names that are modified in the SDL trandlation.

Fundamental Types

Rule: A fundamental C/C++ type is mapped to an SDL sort with the
same name.

The SDL sortsthat represent fundamental C/C++ types are not generat-
ed by CPP2SDL but are defined in special SDL/PR filesthat areinclud-
edif the -generatecpptypes optionisset. The SDL sortsinthesefiles
are normally syntypes of predefined SDL sorts. Refer to “SDL Library
for Fundamental C/C++ Types’ on page 841 for more information.

Thetable bel ow showshow thefundamental C/C++ typesaretranslated
to SDL sorts, and what predefined SDL sort that correspond to these
SDL sorts.

Telelogic Tau 4.5 User's Manual 779

Chapter 15 The CPP2SDL Tool

C/C++ Fundamental Type | SDL Sort Predefined SDL Sort

signed int int Integer

int

unsigned int unsigned_int Integer

unsigned

signed long int long_ int Integer

signed long

long int

long

unsigned long int unsigned long int Integer

unsigned long

signed short int short int Integer

signed short

short int

short

unsigned short int unsigned_short int Integer

unsigned short

signed long long int long long int Integer

signed long long

long long int

long long

unsigned long long int | unsigned long long int | Integer

unsigned long long

char char Character

signed char signed char Character

unsigned char unsigned char Octet

wchar t wchar t N/A

float float Real

double double Real

long double

bool bool Boolean

void N/A N/A

Note that the wchar_t type hasno counterpart in SDL, and thusisrep-
resented by a newtype rather than a syntype of a predefined sort.

780 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

Also note that the special void typeis not represented explicitly in
SDL. Instead this typeis translated by omitting input and result argu-
ments to operators as described in “ Functions’ on page 786.

Type Declarators

There aretwo different type declaratorsin C; pointer (*), and array ([]).
C++ has one additional type declarator; reference (&).

Pointers

Rule: A typewith apointer declarator istranslated by applying theref
generator on the SDL sort that corresponds to that type.

The name of the generated newtype for the pointer is prefixed with a
user-configurable string that by default isptr_. The option -prefix
can be used to configure this string.

Untyped pointers (void+) are translated to a special SDL sort called
ptr void. See“SDL Library for Fundamental C/C++ Types’ on page
841 for more information about the re £ generator and the special

ptr_ void sort.

Example 88: Translation of pointers
C++:

typedef int* p_ int;
extern void* generalp;

SDL:
NEWTYPE ptr_ int Ref(int);
OPERATORS
ptr_int : -> ptr int;

ptr_int : ptr_int -> ptr_ int;
ENDNEWTYPE ptr_int; EXTERNAL 'C++’;
SYNTYPE p_int = ptr_int
ENDSYNTYPE p_int;EXTERNAL ’'C++’;
DCL generalp ptr void; EXTERNAL ’'C++';

Arrays

Rule: A type with an array declarator is transated by applying the
CArray generator on the SDL sort that corresponds to that type.

July 2003 Telelogic Tau 4.5 User's Manual 781

Chapter 15 The CPP2SDL Tool

782

There is one important exception to thisrule. Array declarators that do
not specify the size of the array are translated in the same way as point-
ers (see “Pointers’ on page 781).

The name of the generated newtype for an array type with a specified
sizeisprefixed with auser-configurable string that by defaultis“arr_”.
The option -prefix can be used to configure thisstring. The namealso
contains the size of the array, since the sizeis used in the carray gen-
erator instantiation and thusis significant in SDL. This makes SDL ar-
ray sorts of different sizes type incompatible, but thisis normally not a
big problem since the elements of the arrays are type compatible.

Note:

SDL array sorts corresponding to C/C++ arrays with different sizes
are normally type incompatible.

Example 89: Translation of arrays

C++:

extern char c_arrl[20];
extern char c_arr2|[];

SDL:

NEWTYPE arr 20 char CArray(20, char);
ENDNEWTYPE arr 20_char; EXTERNAL ’'C++’;
DCL c¢_arrl arr 20 char; EXTERNAL 'C++’;
NEWTYPE ptr char Ref (char);
OPERATORS

ptr char : -> ptr char;

ptr _char : ptr_char -> ptr char;
ENDNEWTYPE ptr char;EXTERNAL ’C++';
DCL c¢_arr2 ptr char; EXTERNAL ’'C++’;

References

Rule: A typewith areference declarator istranslated asnormdl, i.e. the
reference declarator is not trandated to SDL.

A C++ reference can be looked upon as a constant pointer that is auto-
matically de-referenced each timeit is used. This makes areference an
aternative name for an object. Since no difference will be made be-
tween an object and areference to an object in the SDL mapping, refer-
ences will appear to be objectsin SDL.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

Example 90: Translation of references
C++:

extern int i; /* 1 is initialized elsewhere */
extern int& r; /* r is initialized to i elsewhere
(int& r =
i;), i.e. r and i refers to
the same int. */

SDL:

DCL i int; EXTERNAL 'C++';
DCL r int; EXTERNAL ’'C++’;/* N.B. C++ reference! */

Notethat if r in thisexampleisassigned avaluein SDL, itisin fact the
object that r refersto (i.e. i) that gets a new value. This could be con-
fusing if only the SDL trandlation of r isconsidered, and to avoid thisa
comment is attached to the declaration of r that tellsthat itisareference
in C++.

References could also appear as specifiers for formal function argu-
ments. Such argumentswill be translated to operator arguments marked
with the IN/OUT keyword if they are non-constant (see “ Argument
Passing and Return Value” on page 787).

Enumerated Types

Rule: An enumerated type is translated to a newtype with literals cor-
responding to the enum literals.

A special caseiswhen the enumerated type has no literals. Such atype
can be treated as an integer in C/C++, and is consequently translated to
asyntype of int.

Example 91: Translation of enumerated types
C/C++:

enum {} v;
enum E2 {};
enum E1 {a,

SDL:

b, c=10};

DCL v int; EXTERNAL 'C++’;
SYNTYPE E2 = int

ENDSYNTYPE E2; EXTERNAL 'C++’;
NEWTYPE E1

July 2003 Telelogic Tau 4.5 User's Manual 783

Chapter 15 The CPP2SDL Tool

784

LITERALS a, b, c;
OPERATORS
IntToEnum /*#REFNAME ' (E1)’*/ : int -> E1;
EnumToInt : El -> int; /*#OP(PY)*/
ORDERING;
ENDNEWTYPE E1;EXTERNAL 'C++';

By using the "type conversion" operators EnumToInt and IntToEnum
integer arithmetic and comparisons become available in SDL also for
enumerations. As can be seen from the #/REFNAME directivein the ex-
ample above, the generated code for callsto the 1nt ToEnum operator
will be aC style cast from int to enum. This explicit type conversion
should be acceptable by all target compilers. Also note that the
#OP(PY) directive means that there will be no generated code for calls
to the EnumToInt operator, which isdesired since that type conversion
isimplicit in C/C++.

If the enumerated typeisincomplete, i.e. if the enum tag ismissing, the
tranglation ruleisslightly modified according to the translation rulesfor
incomplete types (see “Incomplete Types’ on page 823). For enumera-
tions, these rules have the following impact:

- The name of the generated newtype follows the naming rules for in-
compl ete types described in “Incomplete Types’ on page 823.

- The newtype will not be external, sinceit does not correspond to a
C/C++ type that may be referred to.

- The Int ToEnum operator will not be generated for the same reason.

Typedef Declarations
Rule: A typedef declarationistranslated to an SDL syntype declaration.

There are two exceptions to thisrule:

» A typedef declaration of atagged typel, where the typedef nameis
the same as the name of the tag.

» A typedef declaration where the typedef name has been omitted.
Thisisalegal but not very common case.

In these cases the typedef declarations do not define new typenames,
and thus no syntypes need to be generated.

1. A tagged typeisaclass, struct, union or enum type with atag.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

Another specia caseiswhen asynonym for void isintroduced by
means of atypedef declaration. Such atypedef declaration is not trans-
lated, but the typedef name will be remembered. References to the ty-
pedef name will then be translated in the same way asvoid would have
been trandated in that context.

Example 92: Translation of typedef declarations
C++:

typedef int MyInt;
typedef struct r {
int a;
} r; // Typedef name is the same as the tag name!
typedef struct s
MyInt a;
}; // Omitted typedef name - legal but rare!
typedef void myvoid;
typedef myvoid myvoid2;
myvoid f (myvoid2) ;

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
f :;
ENDNEWTYPE global namespace; EXTERNAL ‘C++';
SYNTYPE MyInt = int
ENDSYNTYPE MyInt; EXTERNAL ’'C++’';
NEWTYPE ptr r Ref(r);
OPERATORS
ptr r : -> ptr r;
ptr r : ptr r -> ptr_r;
ENDNEWTYPE ptr r;EXTERNAL ’'C++';
NEWTYPE r
STRUCT
a int;
OPERATORS
r : ->r;
r : r ->r;
ENDNEWTYPE r; EXTERNAL ’'C++';
NEWTYPE ptr s Ref(s);
OPERATORS
ptr s : -> ptr_s;
ptr_ s : ptr_s -> ptr_s;
ENDNEWTYPE ptr s;EXTERNAL ’'C++';
NEWTYPE s
STRUCT
a MyInt;
OPERATORS
s : -> s8;
s : s -> 8;

July 2003 Telelogic Tau 4.5 User's Manual 785

Chapter 15 The CPP2SDL Tool

786

ENDNEWTYPE s; EXTERNAL 'C++';

Note:

Typedefsof function types are not supported by CPP2SDL , and will
not be translated to SDL.

Functions
Rule: A function prototype istrandated to an SDL operator signature.

Thisruleisvalid both for member and non-member functions. Opera-
torsthat result from functionsthat are members of aclasswill be placed
in the newtype that is the trandlation of that class. Operators that result
from non-member functions will be placed in a specia newtype called
global_ namespace™.

Member functions are described in “Members’ on page 800, and the
rest of this section will focus on non-member functions.

Example 93: Translation of non-member functions
C++:

char myfuncl (char) ;
int myfuncl () ;
void myfunc2() ;
void myfunc2 (int) ;

SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
myfuncl : char -> char;
myfuncl : -> int;
myfunc2 :;
myfunc2 : int;

ENDNEWTYPE global namespace; EXTERNAL 'C++’;

Note that functions without input arguments or return value, will be
translated to operators without input arguments or return value. Such
operators are not allowed according to the SDL 96 standard, but are ac-
cepted by the SDL Analyzer as atool specific language extension.

1. Thisname indicates that the newtype represents the global scopein C/C++. In
C++ terminology this scope is often called the global namespace.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

Overloaded Functions

Rule: Overloaded functions are translated to overloaded SDL opera-
tors.

The semantics of overloaded functionsin C++ differs sightly from the
semantics of overloaded operatorsin SDL. For example, C++ allows
overloading on constant arguments which is not possiblein SDL. A
C++ header file may therefore contain overloaded functionsthat cannot
betranglated to SDL. Normally thisisnot a problem since the C++ com-
piler resolves generated calls to these functions correctly anyway.

Example 94: Translation of overloaded functions

C++:

int £0();

int f£0 (double) ;

int fl1(inté&) ;

int f1(const inté&);

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
fo : -> int;
f0 : double -> int;
f1 : int -> int;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;

Argument Passing and Return Value

Rule: Function arguments that are passed by reference are translated to
IN/OUT operator argumentsin SDL.

Thereisoneexception to thisrule; argumentsthat are referencesto con-
stants do not translate to IN/OUT arguments since C++ allows these ar-
guments to take variables as well as constant values.

Example 95: Translation of function arguments and return value —
C++:
int f1 (int pl, int &p2, const int &p3, const int
*p4, int *const p5);

int &f2();
const int &f3 () ;

SDL:

Telelogic Tau 4.5 User's Manual 787

Chapter 15 The CPP2SDL Tool

788

NEWTYPE global namespace /*#NOTYPE*/

OPERATORS
f1 : int, IN/OUT int, int, ptr_ int, ptr int ->
int;
f2 : -> int;
f3 : -> int;

ENDNEWTYPE global namespace; EXTERNAL 'C++’;
NEWTYPE ptr int Ref(int);
OPERATORS
ptr_int : -> ptr_ int;
ptr_int : ptr _int -> ptr int;
ENDNEWTYPE ptr_int;EXTERNAL 'C++";

The exampl e showsthat information about constant argumentsislostin
the SDL mapping. Also note that no differencewill be madein SDL be-
tween functionsthat return data by value, data by reference, or constant
data by reference.

Finally notethat IN/OUT arguments to operatorsis atool specific SDL
extension.

Default Arguments
Rule: A function with default arguments are trandated to several over-
loaded SDL operators.

Thistrangation isreasonable given thefact that each C++ function with
default arguments may be rewritten to an equivalent set of overloaded
C++ functions.

Example 96: Translation of functions with default arguments

C++:
int func(int a, int b = 5, int ¢ = 7);
int func(int a); // Ambiguous function!
SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
func : int, int, int -> int;
func : int, int -> int;
func : int -> int;

ENDNEWTYPE global namespace; EXTERNAL 'C++’;

In C++, ambiguities between overloaded functions are allowed provid-
ed that the functions are never called. SDL is, however, more strict, and

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

operator resolution is made from the declarations of the operators. The
second version of func inthe example aboveistherefore not accessible
in the SDL mapping.

Unspecified Arguments

Rule: The trandation of a function with unspecified arguments (a.k.a.
an ellipsis function) requires the usage of an import specification that
specifies the types of the unknown arguments.

See “Prototypes for Ellipsis Functions” on page 774 for information
about how an import specification can be used to “expand” lipsis
functions.

Inline Functions

Rule: A function that isdeclared to beinlineistransated asan ordinary
function.

Thisisnatural sincethe in1ine keyword on functions can be seen asa
directive to the C++ compiler, which only affects the way that callsto
these functions are generated. Thisis of course nothing that needsto be
visiblein SDL.

Example 97: Translation of inline functions

C++:
inline int fac(int n){/*...*/};
SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
fac : int -> int;

ENDNEWTYPE global namespace; EXTERNAL ’'C++’;

Function Pointers
Rule: A function pointer istranslated to an untyped pointer in SDL, i.e.
toptr void.

Thistrandation rule makesit possible to represent afunction pointer in
SDL, but it is not possible to cal the function that it pointsto, or to as-
sign the address of another functiontoit. That hasto be donewithinline
C/C++ code, for example by means of the #CODE operator.

Telelogic Tau 4.5 User's Manual 789

Chapter 15 The CPP2SDL Tool

790

Example 98: Translation of function pointers
C++:

typedef int (*fp) (int, char);
fp g(double) ;

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
g : double -> fp;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;
SYNTYPE fp = ptr void
ENDSYNTYPE fp; EXTERNAL ’'C++’;

The specia ptr_void sortisdescribedin“SDL Library for Fundamen-

tal C/C++ Types’ on page 841.

Scope Units
Rule: A C/C++ scope unit istranslated to an SDL newtype.

Note that the global scope (known as the global namespace in C++) is
also translated to an SDL newtype. This newtypeis called

global namespace andisacontainer for all operators that are the
trangation of non-member or global functionsin the program. Other
global declarationsare however placed directly inthe SDL scopethatis
the context of the tranglation.

Example 99: Translation of the global namespace

C++:

int i;
void op (unsigned int) ;

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
op : unsigned int;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;
DCL i int; EXTERNAL ’'C++’;

The most important scope units that may be found in a C/C++ header
fileare:

¢ Namespaces

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

e Classes, structs and unions
* Template classes

In C++ these scope units may be nested to arbitrary depth, but since
nested newtypes are not allowed in SDL, the translation of a nested
scope unit will be a newtype that has a name that is prefixed with a
scope qualification prefix. This prefix consists of the names of all en-
closing scope units separated by underscores (“_").

Example 100: Translation of nested scope units
C++:

class C {
public:
int ci;
class cC {
public:
int op();
}i
SDL:

NEWTYPE ptr C CC Ref(C_CC);
OPERATORS
ptr C CC : -> ptr C CC;
ptr C CC : ptr C CC -> ptr C CC;
ENDNEWTYPE ptr C CC;EXTERNAL 'C++’;
NEWTYPE C _CC /*#REFNAME 'C::CC’'*/

OPERATORS
op : C_CC -> int;
C_CC /*#REFNAME 'CC’'*/ : -> C_CC;

C_CC /*#REFNAME 'CC’*/ : C _CC -> C_CC;
ENDNEWTYPE C_CC; EXTERNAL ’'C++’;
NEWTYPE ptr C Ref(C);

OPERATORS

ptr C : -> ptr C;

ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’'C++';
NEWTYPE C

STRUCT
ci int;
OPERATORS

cC : -> C;

c : C ->C;

ENDNEWTYPE C; EXTERNAL ’'C++';

Comparethe name”c_cc” of the nested class cc in this example, with
the fully qualified name“c: :cc” of thisclassin C++. Thelatter name

Telelogic Tau 4.5 User's Manual 791

Chapter 15 The CPP2SDL Tool

isprovided in a#REFNAME directive as information to the Code Gen-
erator.

Namespaces

Rule: A namespace is translated to a newtype that may not be instanti-
ated in SDL.

Classes, structs, unionsand templ ate classes not only define scope units,
but also types. They may thus be instantiated in for example variable
declarations. Namespaces, on the other hand, are plain scope units and
may not beinstantiated. Thisisindicated inthe SDL mapping by means
of aCode Generator directive called #NOTY PE. This directive enables
the Code Generator to catch attempts to instantiate newtypes that orig-
inates from namespaces.

Example 101: Translation of namespaces

C++:

namespace N {
const int ci;
class cC {
public:
int op();

int f (char) ;

}

SDL:
SYNONYM N ci /*#REFNAME 'N::ci’*/ int = EXTERNAL
"C++';
NEWTYPE ptr N_CC Ref(N_CC);
OPERATORS
ptr N CC : -> ptr N CC;

ptr N CC : ptr N CC -> ptr N CC;
ENDNEWTYPE ptr N CC; EXTERNAL 'C++’;
NEWTYPE N_CC /*#REFNAME 'N::CC’*/

OPERATORS
op : N _CC -> int;
N CC /*#REFNAME 'CC’'*/ : -> N CC;

N CC /*#REFNAME 'CC’*/ : N _CC -> N _CC;
ENDNEWTYPE N_CC; EXTERNAL 'C++’;
NEWTYPE N /*#NOTYPE*/
OPERATORS
N f /*#REFNAME 'N::f’*/ : char -> int;
ENDNEWTYPE N; EXTERNAL ’C++’;

792 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

Note that the newtype that corresponds to the namespace only contains
the operators that are the trandation of the functions declared in that
namespace. Thisisanal ogousto how the global namespaceistranslated
(see Example 99). Other declarations in the namespace will appear out-
side the newtype. All SDL declarations that are generated from
namespace declarations will be prefixed with the name of the newtype
that isthe transation of that namespace. Also, their fully qualified C++
nameis given in #REFNAME directives.

Variables

Rule: A variableistranslated to an externa variableif it is anon-mem-
ber or global variable, or to anewtypefield if it isamember variable.

Newtype fields that result from member variables of a class will be
placed in the newtype that is the trandation of that class. Member vari-
ables are described in “Members’ on page 800, and the rest of this sec-
tion will focus on non-member variables.

Example 102: Translation of non-member variables

C++:
int ivar, jvar;
class X {
int j;
public:
int Get() { return j;};
} xvar;
SDL:

DCL ivar int; EXTERNAL 'C++’;
DCL jvar int; EXTERNAL 'C++';
NEWTYPE ptr X Ref (X);
OPERATORS
ptr X : -> ptr X;
ptr X : ptr X -> ptr_ X;
ENDNEWTYPE ptr X;EXTERNAL ’'C++';
NEWTYPE X
OPERATORS
Get : X -> int;
X : -> X;
X : X -> X;
ENDNEWTYPE X; EXTERNAL ’C++';
DCL xvar X; EXTERNAL ’'C++';

Telelogic Tau 4.5 User's Manual 793

Chapter 15 The CPP2SDL Tool

794

External variables are atool-specific SDL extension that are similar to
external synonyms.

External variablesmay only bedeclared in aprocess, procedure, service
or operator diagram. Since CPP2SDL does not know the SDL context
where the tranglation takes place, it has a command-line option called
-novariables that tells whether external variables may be generated
or not. When CPP2SDL is executed from the Organizer, this option is
set automatically. If the option is set, and a C/C++ construct is found
that would map to an external variable, CPP2SDL will print awarning.

Constants
Rule: A constant istranslated to an external synonym.

Thisrule applies for al true C/C++ constants, i.e. constants that have
been declared using the const type specifier. It isnot uncommon, espe-
cialy inolder C API:s, to use macros to represent constants. Such con-
stants will not be directly accessible in SDL since the preprocessor ex-
pands them before CPP2SDL begins the translation. However, smple
macro constants may often be accessed by using inline target code, for
example by means of the #CODE operator. As an alternative external
synonyms could be declared to represent such macros.

Note: With the option -extsyn the translation of constants differs some.
For constants with numeric expressions that can be calculated during
translation, the default transformation ruleisthat al so the constant value
istrandated. If -extsyn is switched on, trandation is always an external
synonym without its value.

Example 103Translation using -extsyn
C++:
const int FOO = 1;

const float ScoobieDoo = FOO/4;
const bool YOU;

SDL without -extsyn option (default behaviour):
SYNONYM FOO int = 1; EXTERNAL ’'C++';

SYNONYM ScoobieDoo float = 0.25; EXTERNAL 'C++';
SYNONYM YOU bool = EXTERNAL ’'C++’;

SDL with -extsyn option:

SYNONYM FOO int = EXTERNAL 'C++';

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

SYNONYM ScoobieDoo float = EXTERNAL ’'C++’;
SYNONYM YOU bool = EXTERNAL ’‘C++’;

Example 104: Translation of constants

C++:

class MyClass;
const double pi = 3.1415;
const MyClass m(7, 'x');

SDL:

SYNONYM pi double = 3.1415; EXTERNAL ’'C++';
NEWTYPE MyClass /*#NOTYPE*/

ENDNEWTYPE MyClass; EXTERNAL ‘'C++';

SYNONYM m MyClass = EXTERNAL ’'C++’;

Constant Expressions
Rule: Constant expressions are evaluated while translated to SDL.

Constant expressions may be encountered at a number of placesin a
C/C++ header, for example as constant initializers, or as size specifiers
of array declarators or bitfields. If a constant expression hasto be trans-
lated to SDL, CPP2SDL attemptsto evaluateit during thetranslationin
order to simplify its representation in SDL.

Example 105: Translation of constant expressions
C++:

enum e {a, b, c=10};

const int i = (2+c)*b;
struct s{

int £f1 : (2+4c) *b;

typedef int intarr[sizeof (int)+1];

SDL:

NEWTYPE e
LITERALS a, b, c;
OPERATORS
IntToEnum /*#REFNAME ' (e)’*/ : int -> e;
EnumToInt : e -> int; /*#OP(PY)*/
ORDERING;
ENDNEWTYPE e; EXTERNAL ’'C++’;
SYNONYM i int = EXTERNAL 'C++’';

Telelogic Tau 4.5 User's Manual 795

Chapter 15 The CPP2SDL Tool

NEWTYPE ptr s Ref(s);
OPERATORS
ptr_ s : -> ptr_s;
ptr s : ptr s -> ptr s;
ENDNEWTYPE ptr s;EXTERNAL 'C++';
NEWTYPE s
STRUCT
f1 int : 12;
OPERATORS
s : -> 87
s : 8 -> 8;
ENDNEWTYPE s; EXTERNAL ’'C++’;
NEWTYPE arr 2 int CArray(2, int);
ENDNEWTYPE arr_2_int;EXTERNAL "C++' ;
SYNTYPE intarr = arr_2_ int
ENDSYNTYPE intarr; EXTERNAL ’'C++';

Note that not all the constant expressionsin this example arevisiblein
the SDL tranglation, and thus need not be evaluated by CPP2SDL.

Most constant expressions can be evaluated by CPP2SDL, but not all.
In particular, expressions containing the sizeof () operator are diffi-
cult to evaluate since CPP2SDL has no information about what compil-
er that will be used to compile the generated C/C++ code. Some stan-
dard assumptions are therefore used when a sizeof () operator isen-
countered, and awarning will beissued to encourage manual inspection
of the trandlation.

Classes, Structs and Unions
Rule: A class, struct or union is translated to an SDL newtype.

Thisrulefollowsfrom the fact that classes, structs and unions are scope
units (see “ Scope Units” on page 790).

This section mainly uses classes in the discussions and examples, but
since the tranglation rules make no difference between classes, structs
and unions, thesameisvalid for structs and unions. Example 106 shows
the trandation of an empty class, struct and union.

Example 106: Translation of classes, structs and unions
C++:
class C {}

struct S {};
union U {};

796 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

SDL:
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;

ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr C;EXTERNAL 'C++';
NEWTYPE C
OPERATORS
cC : -> C;
c : C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++';
NEWTYPE ptr S Ref(S);
OPERATORS
ptr S : -> ptr_ S;
ptr S : ptr_S -> ptr_S;
ENDNEWTYPE ptr S;EXTERNAL 'C++';
NEWTYPE S
OPERATORS
S : -> S;
S : S ->8S;
ENDNEWTYPE S; EXTERNAL ’'C++';
NEWTYPE ptr U Ref(U);
OPERATORS
ptr U : -> ptr U;
ptr U : ptr U -> ptr U;
ENDNEWTYPE ptr U; EXTERNAL 'C++';
NEWTYPE U
OPERATORS
Uu: ->70U;
U : U -> U;
ENDNEWTYPE U; EXTERNAL ’'C++';

In the example above three C++ types trandate to six SDL sorts. The
reason for thisis that when CPP2SDL generates a newtype for a class,
it will also, by default, generate a newtype that represents a pointer type
for thisclass. Thisis convenient since pointersto aclass often are need-
ed. If the classinherits other classes this pointer newtypeisin fact nec-
essary, since it then holds cast operators to the base types of the class
(see " Type Compatibility between Pointers to Inherited Classes’ on
page 817). If the command-line option -optclasspointers hasbeen
set, CPP2SDL will not generate this extra newtype unless a pointer to
the classis explicitly present in the input code.

If the class, struct, or union has no tag, it is an incomplete type declara-
tion. Thetrand ation rules for incomplete types are described in “ Incom-
plete Types’ on page 823.

Telelogic Tau 4.5 User's Manual 797

Chapter 15 The CPP2SDL Tool

798

Anonymous Unions

Rule: An anonymous union is translated by making its members be-
come fields of the newtype that represents the enclosing scope unit.

Thistranglation rule is natural since an anonymous union is ho scope
unit.

Example 107: Translation of Anonymous Unions

C++:

struct S {
int i;

union {

int j;

int k;

NEWTYPE ptr_S Ref (S);
OPERATORS
ptr S : -> ptr_S;
ptr S : ptr_S -> ptr_S;
ENDNEWTYPE ptr S;EXTERNAL ’'C++’;
NEWTYPE S
STRUCT
j int;/* member of anonymous union */
k int;/* member of anonymous union */

i int;
OPERATORS
S : -> S;/* implicit parameter-less constructor
*/
S : S -> S;/* implicit copy constructor */

ENDNEWTYPE S;EXTERNAL ’'C++’;

Note that an anonymous union is not an incomplete type declaration, al-
though the syntax issimilar. An anonymous union isnot used to declare
atypenor avariable, and doesnot defineatype at all. Consequently, the
tranglation rules for anonymous unions and incomplete types differ sig-
nificantly. Compare with “Incomplete Types’ on page 823.

Constructors

Rule: A constructor for aclassistranslated to an operator with the same
name as the newtype that represents the class.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

The return sort of the operator will be the sort defined by the newtype
for the class, and the operator will of course also be placed in that new-

type.
There are two different kinds of constructorsin C++:

» User-defined constructors. These constructors are manually de-
clared and implemented.

» Implicit constructors. These constructors are implicitly declared
and are auto-generated by the C++ compiler, provided that they are
not already declared by the user.

While a class may contain an arbitrary number of user-defined con-
structors, it may at the most contain two auto-generated ones; a param-
eter-less (or default) constructor and a copy constructor. A parameter-
less constructor is available only if the class has no user-defined con-
structors, and a copy constructor is available only if no user-defined
copy constructor is declared.

CPP2SDL will generate operators both for user-defined and implicit
constructors. Example 108 bel ow shows a class with three user-defined
constructors, and one implicit copy constructor.

Example 108: Translation of constructors
C++:

class C {

public:
cO);
C(int 1) ;
C(char c);
~C();

}i

SDL:

NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;
ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C
OPERATORS
cC: ->C;
C : char -> C;
C : int -> C;
C: C -> C;/* implicit copy constructor */

Telelogic Tau 4.5 User's Manual 799

Chapter 15 The CPP2SDL Tool

ENDNEWTYPE C; EXTERNAL 'C++';

Destructors
Rule: A destructor is not trandated to SDL.

The reason why a class destructor is not made accessiblein SDL, isthat
it normally should not be called explicitly. Instead it will be called au-
tomatically when an object of the class goes out of scope or is deleted.
See Example 108 for an example of how a destructor disappearsin the
SDL mapping.

Members

Rule: Member variables of a C++ class are trandated to fields in the
newtype that is the translation of that class, and member functions are
trandated to operators in the same newtype.

Other declarations than variables and functionsin a class, for example
type declarations, are also sometimes called members of the class, but
they are not translated according to the trandlation rule above. Instead
they are considered to be declarations on their own, but defined in an
enclosing scope unit (i.e. the class). See “ Scope Units’ on page 790 for
more information.

Example 109: Translation of class members
C++:

class C {

public:
int mvl; // Member variable
void mfl(long long pl); // Member function
enum e {a,b,c}; // “Member” type declaration

SDL:

NEWTYPE C_e /*#REFNAME 'C::e'*/
LITERALS a, b, c;
OPERATORS
IntToEnum /*#REFNAME '(C::e)'*/ : int -> C e;
EnumToInt : C e -> int; /*#OP(PY)x*/
ORDERING;
ENDNEWTYPE C_e; EXTERNAL 'C++';
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;

800 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C
STRUCT
mvl int;
OPERATORS
mfl : C, long long int;
C : -> C;/* implicit parameter-less constructor

*/
C: C -> C;/* implicit copy constructor */
ENDNEWTYPE C;EXTERNAL 'C++';

Note that the operator that represents a member function will have an
additional initial formal argument. This argument has the sort of the
newtype that represents the class where the member function is de-
clared. Member functions are called from SDL in afunctional style,
where the first actual argument to the member function operator is the
class instance on which the member function is to be invoked.

Member Access Specifier
Rule: Only memberswith public access specifier aretranslated to SDL .

Thisrule follows from the fact that public members of a class are the
only members that are accessible from outside that class or its derived
classes.

Example 110: Translation of members with different access specifiers
C++:

class C {
private:
int 1i;
protected:
int j;
public:
int k;
int GetI();
int Getd () ;
int Calc (int x, int y);

Vi

SDL:
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;

ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL 'C++';

July 2003 Telelogic Tau 4.5 User's Manual 801

Chapter 15 The CPP2SDL Tool

NEWTYPE C
STRUCT
k int;
OPERATORS
Calc : C, int, int -> int;
GetI : C -> int;
Getd : C -> int;
CcC : -> C;
cC : C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++’;

Virtual Member Functions

Rule: A virtual member function istranslated in the same way as an or-
dinary member function.

In C++, virtual functions of a base class may be redefined in derived
classes. Although this means that there is only one version of a particu-
lar virtual function in aderived class, the version defined in the base
class may still be called by means of explicit qualification. Both ver-
sions of the function must thus be present in the SDL translation, exact-
ly asisthe casefor non-virtual functions. See“ Inheritance” on page 807
for more about how C++ inheritanceis represented in SDL .

Example 111: Translation of virtual member functions

C++:

class CPen ({

public:
virtual void Draw(); // Virtual member function
double GetRep(); // Non-virtual member function

}i
class CPenD : public CPen ({
public:

virtual void Draw(); // Redefinition of
CPen: :Draw ()

l

SDL.:
NEWTYPE ptr CPen Ref (CPen) ;
OPERATORS
ptr CPen : -> ptr CPen;

ptr CPen : ptr_CPen -> ptr CPen;
ENDNEWTYPE ptr CPen; EXTERNAL 'C++’;
NEWTYPE CPen
OPERATORS
Draw : CPen;
GetRep : CPen -> double;

802 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

CPen : -> CPen;

CPen : CPen -> CPen;
ENDNEWTYPE CPen; EXTERNAL 'C++’;
NEWTYPE ptr CPenD Ref (CPenD) ;

OPERATORS
cast : ptr CPenD -> ptr CPen; /*#OP (PY)*/
ptr CPenD : -> ptr CPenD;

ptr CPenD : ptr_ CPenD -> ptr CPenD;
ENDNEWTYPE ptr CPenD;EXTERNAL ’'C++’;
NEWTYPE CPenD
OPERATORS
Draw : CPenD;
CPen Draw /*#REFNAME 'CPen::Draw’*/ : CPenD;/*
Inherited from CPen */
GetRep : CPenD -> double;/* Inherited from CPen
*
/

CPenD : -> CPenD;/
CPenD : CPenD -> CPenD;
ENDNEWTYPE CPenD; EXTERNAL ’'C++’;

Pure Virtual Member Functions

Rule: A pure virtual member function is translated in the same way as
an ordinary member function.

Although “purevirtuality” does not affect the translation of the member
function itself, it will haveimpact on how the containing class, whichis
an abstract class, istrandated. Thereason is that special trandation
rules apply for abstract classes. See“ Abstract Classes’” on page 819 for
more information and an example on how pure virtual member func-
tions are translated.

Static Members

Rule: A static member istrans ated both as an ordinary member, and as
if it was declared in the global namespace.

There will thus be two representationsin SDL of a static C++ member.
The additional representation is caused by the fact that a static member
is accessible without having an instance of the classwhereit is defined.

As shown in Example 112 below, a static member variable will be
translated both to a newtype field and an external variable (see “Vari-
ables’” on page 793), while a static member function will result in both
an operator in the newtype for the class and an operator in the special
global namespace Newtype (see“Functions’ on page 786).

Telelogic Tau 4.5 User's Manual 803

Chapter 15 The CPP2SDL Tool

804

Example 112: Translation of static members
C++:

class C {
public:
static int k;
static void InitI (int);

Vi
SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
C InitI /*#REFNAME ’'C::InitI’*/ : int;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;
DCL C_k /*#REFNAME ‘C::k’*/ int; EXTERNAL ’'C++’;
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;
ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++’;
NEWTYPE C
STRUCT
k int;
OPERATORS
InitI : C, int;
cC : -> C;
c: C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++’;

If the resulting SDL declarations are to be inserted in an SDL context
where external variables are not allowed (i.e. if CPP2SDL executes
with the -novariables option set), static member variables cannot be
translated to external variables. Inthat case only the standard transl ation
of class members can be applied. Naturally, CPP2SDL will issue a
warning if this happens.

Constant Members

Rule: A constant member istrandated as an ordinary member, but with
a#CONSTANT directive attached.

The semantics of a constant member variableisthat it may not be writ-
ten to after itsinitialization, and a constant member function may not
change the state of its object. There is no way to express these restric-
tionsin SDL, so the Analyzer will not be able to detect if they are vio-
lated. However, by attaching the #CONSTANT directiveto SDL decla-

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

rations that result from constant members, the Code Generator can do
the necessary checks.

Example 113: Translation of constant members

C++:

class C {

public:
const int cm; // constant member
c(int k) : em(k) {};

void Do (double) ;
void Undo (double) const; //
constant member function

7

SDL:
NEWTYPE ptr C Ref(C);
OPERATORS
ptr_C : -> ptr_C;

ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C

STRUCT
cm /*#CONSTANT*/ int;
OPERATORS

C : int -> C;

Do : C, double;

Undo : C, double; /*#CONSTANT*/

c: C->C;

ENDNEWTYPE C; EXTERNAL ’'C++';

Member Constants

Rule: A member constant istranslated both asan ordinary member with
a#CONSTANT directive attached, and as if it was declared in the glo-
bal namespace.

This translation rule is a combination of the trandation rules for static
and constant members, which is natural since amember constant is de-
clared both to be constant and static in C++.

Example 114: Translation of member constants

C++:

class X {
public:
static const int i = 99; // member constant

Telelogic Tau 4.5 User's Manual 805

Chapter 15 The CPP2SDL Tool

Vi

const int X::i; // definition of i

SDL:

SYNONYM X i /*#REFNAME ‘X::i’*/ int = EXTERNAL
"C++';
NEWTYPE ptr X Ref(X);
OPERATORS
ptr X : -> ptr_ X;
ptr X : ptr X -> ptr X;
ENDNEWTYPE ptr X;EXTERNAL ’'C++’;
NEWTYPE X
STRUCT
i /*#CONSTANT*/ int;
OPERATORS
X : -> X;
X : X -> X;
ENDNEWTYPE X; EXTERNAL ’C++’;

Mutable Member Variables

Rule: A mutable member variable istranslated as an ordinary member
variable.

Themutable keyword in C++ can belooked upon as some kind of com-
piler directive, and needstherefore not bevisiblein the SDL trand ation.

Bitfield Member Variables
Rule: A bitfield member variable istranslated to an SDL bitfield.

Thisrule appliesfor al bitfields that have a name. Bitfields without
name are not translated to SDL.

It would have been possible to translate bitfields to ordinary newtype
fields. However, by including the bitfield size in the SDL trandlation,
the Analyzer is given a possibility to check that these fields are not as-
signed values that will not fit in the corresponding bitfield.

Example 115: Translation of bitfields

C++:

struct A {
unsigned int i : 12;
int : 3;
bool dirty : 1;

7

806 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

SDL:
NEWTYPE ptr A Ref(A);
OPERATORS
ptr A : -> ptr A;

ptr A : ptr A -> ptr_ A;
ENDNEWTYPE ptr A;EXTERNAL 'C++';
NEWTYPE A

STRUCT

dirty bool : 1;

i unsigned int : 12;
OPERATORS

A : -> A;

A : A -> A;

ENDNEWTYPE A; EXTERNAL ’'C++';

Note that bitfields are atool-specific SDL extension.

Friends
Rule: Friend declarations will not be translated to SDL.

Friendship between a class C and another declaration D only affects
what members of C that theimplementation of D may access. Itisthere-
fore uninteresting to supply thisinformation in the SDL trandation of
the class C.

Inheritance

Rule: C++ inheritance is represented in SDL by adding the translation
of all public base class members to the newtype that represents a de-
rived class.

Thisrule simply means that the C++ inheritance hierarchy is flattened
in the SDL newtype representation. The reason for choosing this trans-
lation strategy, instead of using SDL inheritance between newtypes, is
that the semantics of C++ and SDL inheritanceis quite different.

All public member variables and member functions (but not construc-
tors) of direct or indirect bases of aclass will be generated in the new-
type that is the translation of that class. Such an inherited field or oper-
ator will normally have the same namein SDL asin C++, but in some
casesit is necessary to prefix the name with the name of the class from
which it isinherited!. This happens when the name of the inherited
member is the same as the name of one of the members in the derived

1. Thisnaming ruleis generalized in “Multiple Inheritance” on page 811.

Telelogic Tau 4.5 User's Manual 807

Chapter 15 The CPP2SDL Tool

class. Example 116 below shows how such ambiguities between inher-

ited members are handled.

Example 116: Translation of inheritance

C++:

class A {
public:
int am;
A (char) ;
class B : public A
public:
char bm;
virtual void calc() ;
} void set () ;
class C : public B
public:
int am;
double cm;
void calc(); // Redefines B::calc()
void set () ;

}i
SDL:

NEWTYPE ptr_ A Ref (A);
OPERATORS
ptr A : -> ptr A;
ptr A : ptr A -> ptr A;
ENDNEWTYPE ptr A;EXTERNAL ’'C++’;
NEWTYPE A
STRUCT
am int;
OPERATORS
A : char -> A;
A : A -> A;
ENDNEWTYPE A; EXTERNAL ’'C++’';
NEWTYPE ptr_ B Ref (B);

OPERATORS
cast : ptr B -> ptr A; /*#OP(PY)*/
ptr B : -> ptr B;

ptr B : ptr B -> ptr B;
ENDNEWTYPE ptr B;EXTERNAL ’'C++';
NEWTYPE B

STRUCT

am int;/* Inherited from A */

bm char;
OPERATORS

calc : B;

keyword set /*#REFNAME ’'set’*/ : B;

B : B -> B;

808 Teldlogic Tau 4.5 User's Manual

July 2003

C/C++to SDL Trandation Rules

ENDNEWTYPE B; EXTERNAL ’'C++’
NEWTYPE ptr C Ref (C);
OPERATORS
cast : ptr C -> ptr A; /*#OP(PY)*/
cast : ptr C -> ptr B; /*#OP(PY)*/
ptr C : -> ptr C;
ptr C : ptr C -> ptr_C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++’
NEWTYPE C
STRUCT
am int;
B am /*#REFNAME ‘B::am’*/ int;/* Inherited from
A */
bm char;/* Inherited from B */
cm double;
OPERATORS
calc : C;
B calc /*#REFNAME 'B::calc’*/ : C;/* Inherited
from B */
keyword set /*#REFNAME ’'set’*/ : C;
B keyword set /*#REFNAME ’B::keyword set’*/
C;/* Inherited from B */
c : C->C;
ENDNEWTYPE C; EXTERNAL ’'C++’;

In C++, it isalways possible to use afully qualified name when access-
ing a class member, even if the name of the member is unambiguous
without qualification. In the example above, the member variable bm in
c that isinherited from B, may be referred to both asm and B: :bm. TO
avoid getting too many fields and operators in the generated newtypes,
only the unqualified name can be used from SDL. Thisis natural since
qualification in C++ normally only is done when necessary to resolve
ambiguities.

There are more cases where C++ allows a member to be accessed by
more than one name, while the SDL translation only supplies one of
these possible names. For example, this applies for inherited types and
static members as shown in Example 117 below.

Example 117: Translation of inherited types and static members——
C++:

class B {
public:
static int mv;
static char mf (double) ;
struct s
int y;
} ms;

July 2003 Telelogic Tau 4.5 User's Manual 809

Chapter 15 The CPP2SDL Tool

810

Vi

class D : public B

Vi

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
B mf /*#REFNAME 'B::mf’*/ : double

NEWTYPE ptr B Ref(B);
OPERATORS
ptr B : -> ptr B;
ptr B : ptr B -> ptr_ B;
ENDNEWTYPE ptr B;EXTERNAL ’'C++';
NEWTYPE B
STRUCT
ms B_s;
mv int;
OPERATORS
mf : B, double -> char;
B : -> B;
B : B -> B;
ENDNEWTYPE B; EXTERNAL 'C++’;

-> char;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;

DCL B mv /*#REFNAME 'B::mv’*/ int; EXTERNAL ’'C++';

NEWTYPE ptr B_s Ref(B_s);
OPERATORS
ptr B s : -> ptr_B_s;
ptr B s : ptr B s -> ptr B s;
ENDNEWTYPE ptr B s;EXTERNAL 'C++';
NEWTYPE B s /*#REFNAME 'B::s’*/
STRUCT
y int;
OPERATORS
B s /*#REFNAME ’'s’*/ : -> B_s;
B s /*#REFNAME 's’*/ : B s -> B_s;
ENDNEWTYPE B_s;EXTERNAL 'C++';
NEWTYPE ptr D Ref(D);

OPERATORS
cast : ptr D -> ptr B; /*#OP(PY)*/
ptr D : -> ptr D;

ptr D : ptr D -> ptr D;
ENDNEWTYPE ptr D;EXTERNAL ’'C++';
NEWTYPE D

STRUCT
ms B_s;/* Inherited from B */
mv int;/* Inherited from B */
OPERATORS

mf : D, double -> char;/* Inherited from B */

D : -> D;
D : D -> D;
ENDNEWTYPE D; EXTERNAL ’C++’';

Telelogic Tau 4.5 User's Manual

July 2003

C/C++to SDL Trandation Rules

July 2003

The declarationsB: :mv, B: :mf and B: : s in thisexample may in C++
a so bereferred to by means of thenamesp: :mv, D: :mf andD: : s. This
isnot possible in the SDL trandlation, i.e. there are no declarations
caledp mv,p mf oro_s. CPP2SDL will choosethefirst version of the
names since the members are declared in .

Multiple Inheritance

The trandation rule for C++ inheritance works al so when a class inher-
its from more than one base class. However, the naming strategy de-
scribed in “Inheritance” on page 807 for handling ambiguous inherited
members have to be generalized to also cover the case when aclassin-
herits the same base class more than once.

Example 118: Translation of multiple inheritance
C++:

class A {
public:
int m;

class B {
public:
int m;
int n;
}i
class C: public A, public B {

l

SDL:
NEWTYPE ptr A Ref(A);
OPERATORS
ptr A : -> ptr A;

ptr A : ptr A -> ptr A;
ENDNEWTYPE ptr A;EXTERNAL ’'C++';
NEWTYPE A

STRUCT
m int;
OPERATORS

A -> A;

A : A -> A;

ENDNEWTYPE A;EXTERNAL ’'C++’;
NEWTYPE ptr B Ref(B);
OPERATORS

ptr B : -> ptr B;

ptr B : ptr B -> ptr B;
ENDNEWTYPE ptr B;EXTERNAL ’'C++';
NEWTYPE B

STRUCT

Telelogic Tau 4.5 User's Manual 811

Chapter 15 The CPP2SDL Tool

812

m int;
n int;
OPERATORS
B : -> B;
B : B -> B;
ENDNEWTYPE B; EXTERNAL ’'C++’;
NEWTYPE ptr C Ref(C);
OPERATORS
cast : ptr C -> ptr B; /*#OP(PY)*/
cast : ptr C -> ptr A; /*#OP(PY)*/
ptr C : -> ptr C;
ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C
STRUCT
A m /*#REFNAME 'A::m’*/ int;/* Inherited from A
*
/
B m /*#REFNAME 'B::m’*/ int;/* Inherited from B
*
/

n int;/* Inherited from B */

OPERATORS
cC : -> C;
cC : C ->C;

ENDNEWTYPE C;EXTERNAL ’'C++’;

The names of the generated fields and operators correspond to the qual-
ified namesthat must be used in C++ to accessthemembersin question.
The ruleisto qualify an ambiguous member with the most specialized
base classthat makesthe name of the member unique. In most casesthis
base class is the class where the ambiguous member is declared, but
when the inheritance hierarchy forms a graph rather than atree (see
Example 119) it might be necessary to qualify with the name of a class
further down on the inheritance path.

Note that in some extraordinary inheritance hierarchies, it is possible
that amember of abase classisinaccessiblein aderived class. Thishap-
penswhen theinherited member cannot be unambiguously qualified ac-
cording to the naming rule described above. If this happens, CPP2SDL
will not translate the member to SDL, and awarning will be printed.

Virtual and Non-Virtual Inheritance

Rule: Virtual inheritanceis translated in the same way as ordinary in-
heritance.

Virtual inheritance affects the way data s replicated when multiple in-
heritance is used. As shown in “Multiple Inheritance” on page 811

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

members that are inherited more than once from the same base class
need to be prefixed in SDL.

Since data from a base class is not replicated in derived classes that in-
herit from the base classwith virtual inheritance, it would be possible to
avoid prefixing the name of the members that are virtually inherited
from the base class. However, since avirtually inherited member in
general may be accessed using many alternative prefixes (correspond-
ing to possible paths for reaching the member in the inheritance graph),
and none of these prefixes can be said to be more natural to use than the
others, al versions of the member's name areincluded in the SDL trans-
lation. Thisisthe reason why no difference is made between virtual and
non-virtual inheritancein SDL.

Example 119: Translation of virtual inheritance

C++:
class A {
public:
int a;
bi .
class C : public A {
}i
class D : public virtual A {
class E : public virtual A {
}i
class G : public C, public D, public E
}i
SDL:
NEWTYPE ptr A Ref (A);
OPERATORS
ptr A : -> ptr A;

ptr A : ptr A -> ptr A;
ENDNEWTYPE ptr A;EXTERNAL 'C++';
NEWTYPE A

STRUCT
a int;
OPERATORS

A

A
ENDNEWTYPE A;EXTERNAL 'C++';
NEWTYPE ptr C Ref(C);

-> A;
A -> A;

OPERATORS
cast : ptr C -> ptr A; /*#OP(PY)*/
ptr C : -> ptr C;

ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL 'C++';

Telelogic Tau 4.5 User’s Manual

813

Chapter 15 The CPP2SDL Tool

NEWTYPE C
STRUCT
a int;/* Inherited from A */
OPERATORS
Cc : -> C;
c : C ->C;

ENDNEWTYPE C; EXTERNAL 'C++';
NEWTYPE ptr D Ref(D);

OPERATORS
cast : ptr D -> ptr A; /*#OP(PY)*/
ptr D : -> ptr D;

ptr D : ptr D -> ptr_ D;
ENDNEWTYPE ptr D;EXTERNAL ’'C++';
NEWTYPE D

STRUCT
a int;/* Inherited from A */
OPERATORS

D : -> D;

D : D -> D;

ENDNEWTYPE D; EXTERNAL ’'C++’;
NEWTYPE ptr E Ref(E);

OPERATORS
cast : ptr E -> ptr A; /*#OP(PY)*/
ptr E : -> ptr_ E;

ptr E : ptr E -> ptr E;
ENDNEWTYPE ptr E;EXTERNAL ’'C++’;
NEWTYPE E
STRUCT
a int;/* Inherited from A */
OPERATORS
E : -> E;
E : E -> E;
ENDNEWTYPE E; EXTERNAL ’'C++’;
NEWTYPE ptr_G Ref (G);
OPERATORS
cast : ptr G -> ptr E; /*#OP(PY)*/
cast : ptr G -> ptr D; /*#OP(PY)*/
cast : ptr G -> ptr C; /*#OP(PY)*/
ptr G : -> ptr G;
ptr G : ptr_G -> ptr_G;
ENDNEWTYPE ptr G;EXTERNAL ’'C++';

NEWTYPE G
STRUCT
C a /*#REFNAME ’‘C::a’*/ int;/* Inherited from A
*/
D a /*#REFNAME 'D::a’*/ int;/* Inherited from A
*/
E a /*#REFNAME 'E::a’*/ int;/* Inherited from A
*/
OPERATORS

G : -> G;
G : G -> G;
ENDNEWTYPE G; EXTERNAL ’'C++’';

814 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

Inheritance Access Specifier

Rule: Only members that are inherited using public inheritance are
translated to SDL.

When the inheritance s private or protected, the members of the base
class are not accessible from outside the class. It is therefore natural to
exclude members, that are inherited from private and protected bases,
in the newtype that represents the derived class.

Example 120: Translation of inheritance with different access
specifiers

C++:

class X {
public:

int a;
} void £ () ;
class Y1 : public X {};
class Y2 : protected X {};
class Y3 : private X {};

SDL:
NEWTYPE ptr X Ref(X);
OPERATORS
ptr X : -> ptr X;

ptr X : ptr X -> ptr X;
ENDNEWTYPE ptr X;EXTERNAL ’'C++';
NEWTYPE X

STRUCT
a int;
OPERATORS

f : X;

X : -> X;

X : X -> X;

ENDNEWTYPE X; EXTERNAL ’'C++';
NEWTYPE ptr Y1 Ref(Y1);

OPERATORS
cast : ptr Y1 -> ptr X; /*#OP(PY)*/
ptr Y1 : -> ptr Y1;

ptr Y1 : ptr Y1 -> ptr_Y1;
ENDNEWTYPE ptr Y1;EXTERNAL 'C++';
NEWTYPE Y1
STRUCT
a int;/* Inherited from X */
OPERATORS
f : Y1;/* Inherited from X */
Y1 : -> Y1;
Yl : Y1l -> Y1;
ENDNEWTYPE Y1 ;EXTERNAL ‘'C++';

July 2003 Telelogic Tau 4.5 User's Manual 815

Chapter 15 The CPP2SDL Tool

816

NEWTYPE ptr Y2 Ref (Y2);
OPERATORS
ptr Y2 : -> ptr Y2;
ptr_Y2 : ptr Y2 -> ptr_Y2;
ENDNEWTYPE ptr Y2;EXTERNAL 'C++';
NEWTYPE Y2
OPERATORS
Y2 : -> Y2;
Y2 : Y2 -> Y2,
ENDNEWTYPE Y2;EXTERNAL 'C++';
NEWTYPE ptr Y3 Ref(Y3);
OPERATORS
ptr Y3 : -> ptr Y3;
ptr_Y¥3 : ptr Y3 -> ptr_Y3;
ENDNEWTYPE ptr Y3;EXTERNAL 'C++';
NEWTYPE Y3
OPERATORS
Y3 : -> Y3;
Y3 : Y3 -> Y3,
ENDNEWTYPE Y3;EXTERNAL 'C++';

The inheritance access specifier also affects how casting from the de-
rived typeto the base type can be done. Thisisdescribed in “ Type Com-

patibility between Inherited Classes’ on page 816 and in “ Type Com-
patibility between Pointers to Inherited Classes’ on page 817.

Type Compatibility between Inherited Classes

Rule: An object of aderived class may be assigned to an object of a
base class by using an explicit cast operator in SDL.

The above assignment (known as slicing) is type-compatible in C++
without the use of a cast operator. Since only the common membersare
copied in the assignment, this operation is somewhat dangerous and is
not generally recommended. Therefore, the cast operatorsthat are need-
ed in SDL to do slicing between objects, are only generated when the
-slicing optionisset.

Example 121: Generation of operators for slicing

C++:

class C H
class D ;
class CD : public C, public D {};

SDL:

NEWTYPE ptr C Ref(C);
OPERATORS

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

ptr C : -> ptr C;
ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C; EXTERNAL ’'C++';
NEWTYPE C
OPERATORS
cC : -> C;
c : C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++';
NEWTYPE ptr D Ref(D);
OPERATORS
ptr D : -> ptr D;
ptr D : ptr D -> ptr D;
ENDNEWTYPE ptr_D;EXTERNAL ’'C++';
NEWTYPE D
OPERATORS
D : -> D;
D : D -> D;
ENDNEWTYPE D; EXTERNAL ’'C++';
NEWTYPE ptr CD Ref(CD);
OPERATORS
cast : ptr CD -> ptr D; /*#OP(PY)*/
cast : ptr CD -> ptr C; /*#OP(PY)*/
ptr CD : -> ptr CD;
ptr CD : ptr CD -> ptr_ CD;
ENDNEWTYPE ptr_ CD;EXTERNAL 'C++’;
NEWTYPE CD
OPERATORS
cast : CD -> D; /*#OP(PY)*/
cast : CD -> C; /*#OP(PY)*/
CD : -> CD;
Ch : CD -> CD;
ENDNEWTYPE CD; EXTERNAL ’'C++';

Note that the inheritance access specifier affects how these cast opera-
tors are generated. A cast operator from aclassp to aclass B will only
be generated if B is a public unambiguous base of p. If it is private or
protected, or isan ambiguous basefor p, it isnot allowed to cast from p
toB.

Type Compatibility between Pointers to Inherited Classes

Rule: A pointer to an object of a derived class may be assigned to a
pointer to an object of abase class by using an explicit cast operator in
SDL.

The above assignment is type-compatiblein C++, i.e. “up-casts’ ina
classhierarchy areimplicit in C++. Thisisan important property of ob-
ject-oriented languages that support for example polymorphism. In
SDL, however, the newtypesfor abase class and aderived classwill be
unrelated and thus type incompatible. To support up-casting in SDL,

Telelogic Tau 4.5 User's Manual 817

Chapter 15 The CPP2SDL Tool

818

explicit cast operators are generated in the newtype that represents the
pointer type to a derived class.

Example 122: Generation of cast operators for up-casting

C++:
class C H
class D ;
class CD : public C, public D {};
SDL:
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;

ptr C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_ C;EXTERNAL ’'C++';
NEWTYPE C
OPERATORS
CcC : -> C;
cC : C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++’;
NEWTYPE ptr D Ref(D);
OPERATORS
ptr D : -> ptr D;
ptr_ D : ptr D -> ptr D;
ENDNEWTYPE ptr_ D;EXTERNAL ’'C++';
NEWTYPE D
OPERATORS
D : -> D;
D : D -> D;
ENDNEWTYPE D; EXTERNAL ’C++’;
NEWTYPE ptr CD Ref (CD);
OPERATORS
cast : ptr CD -> ptr D; /*#OP(PY)*/
cast : ptr CD -> ptr C; /*#OP(PY)x/
ptr CD : -> ptr CD;
ptr CD : ptr CD -> ptr_CD;
ENDNEWTYPE ptr_ CD; EXTERNAL 'C++’;
NEWTYPE CD
OPERATORS
CD : -> CD;
Ch : CD -> CD;
ENDNEWTYPE CD; EXTERNAL ’'C++';

Note that the inheritance access specifier istaken into consideration so
that acast operator fromref (D) toref (B) only will begenerated if the
class B is a public unambiguous base of the class p.

Sometimes it is necessary to do down-casts, or even cross-casts, in a
class hierarchy. Such casts (known as dynamic casts) are explicit both

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

in C++and SDL. SeeRun-Time Type Information and Dynamic Cast”
on page 820 for more information.

Abstract Classes

Rule: An abstract classis translated to a newtype without constructor
operators.

Thistranslation rule makesit possible to declare pointersto an abstract
class, but no objects of such a class may be alocated since there are no
constructor operators that can be used as argument to the new operator
(see “Dynamic Memory Management” on page 825).

Example 123: Translation of abstract classes

C++:

class C {
public:
virtual int f(int) = 0; // pure virtual member
function
c() {};
class D : public C {

SDL:

NEWTYPE ptr C Ref (C);
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C
OPERATORS
f : C, int -> int;
ENDNEWTYPE C; EXTERNAL ’'C++’;
NEWTYPE ptr D Ref (D) ;
OPERATORS
cast : ptr D -> ptr C; /*#OP(PY)*/
ENDNEWTYPE ptr D;EXTERNAL ’'C++';
NEWTYPE D
OPERATORS
f : D, int -> int;/* Inherited from C */
ENDNEWTYPE D; EXTERNAL ’'C++’;

Note from the example above that abstractnessisinherited to a derived
classif not each pure virtual member function of all itsbase classes are
redefined in the derived class.

July 2003 Telelogic Tau 4.5 User's Manual 819

Chapter 15 The CPP2SDL Tool

820

Run-Time Type Information and Dynamic Cast

Rule: A pointer to an object of abase class may be assigned to apointer
to an abject of aderived class, or to apointer to an object of abase class
of such aderived class, by using an explicit cast operator in SDL.

The above assignments require a dynamic cast in C++, which is done
with an explicit cast operator that supports down-casts and cross-casts
in an inheritance hierarchy. Since these casts require run-time type in-
formation (RTTI) about the dynamic type of an object, most C++ com-
pilers have an option that must be set to safely support dynamic casts.
For the same reason, CPP2SDL also has such an option called -rtti.
If it is set, cast operators will be generated that enable the type conver-
sionsthat are possible in C++ using dynamic casts.

The sourcetype of adynamic cast must be polymorphic, i.e. contain one
or more virtual member functions, possibly inherited ones. For each
such polymorphic class x, cast operators will be generated that convert
from ref (x) tORef (Y), for each class v that either inherits from x
(down-casts), or is apublic base class of a class that inherits from x
(cross-casts).

Example 124 below illustratesthistranslation rule. It is assumed that all
classes in the example contain virtual functions and thus are polymor-
phic.

Example 124: Generation of cast operators for dynamic casting ——

C++:

class A H

class B: public A {};

class E H

class D: protected E {};

class C: public B, public D {};
SDL:

NEWTYPE ptr A Ref(A);

OPERATORS
ptr A : -> ptr A;

ptr A : ptr A -> ptr_ A;
ENDNEWTYPE ptr A;EXTERNAL 'C++’;
NEWTYPE A
OPERATORS

A : -> A;

A : A -> A;
ENDNEWTYPE A;EXTERNAL 'C++’;
NEWTYPE ptr B Ref(B);

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

OPERATORS
cast /*#REFNAME ’‘dynamic_cast<B*>'*/ : ptr A ->
ptr_B;
cast : ptr B -> ptr A; /*#OP(PY)*/
ptr B : -> ptr B;

ptr B : ptr B -> ptr_ B;
ENDNEWTYPE ptr B;EXTERNAL 'C++’;
NEWTYPE B

OPERATORS

B : -> B;

B : B -> B;

ENDNEWTYPE B;EXTERNAL 'C++’;
NEWTYPE ptr E Ref(E);
OPERATORS

ptr E : -> ptr E;

ptr E : ptr E -> ptr_E;
ENDNEWTYPE ptr E;EXTERNAL 'C++’;
NEWTYPE E

OPERATORS

E : -> E;

E : E -> E;

ENDNEWTYPE E;EXTERNAL 'C++’;
NEWTYPE ptr D Ref(D);
OPERATORS

ptr D : -> ptr D;

ptr D : ptr D -> ptr_D;
ENDNEWTYPE ptr D;EXTERNAL 'C++’;
NEWTYPE D

OPERATORS

D : -> D;

D : D -> D;

ENDNEWTYPE D;EXTERNAL 'C++’;
NEWTYPE ptr C Ref(C);

OPERATORS

cast /*#REFNAME ‘dynamic_cast<A*>’*/ : ptr D ->
ptr_A;

cast /*#REFNAME ’'dynamic_ cast<B*>’*/ : ptr D ->
ptr_B;

cast /*#REFNAME ’'dynamic_cast<D*>’*/ : ptr A ->
ptr_D;

cast /*#REFNAME ’‘dynamic_cast<D*>’*/ : ptr B ->
ptr_D;

cast /*#REFNAME ’'dynamic cast<C*>’*/ : ptr D ->
ptr_ C;

cast : ptr C -> ptr D; /*#OP(PY)*/

cast /*#REFNAME ’‘dynamic_cast<C*>'*/ : ptr A ->
ptr_C;

cast : ptr C -> ptr A; /*#OP(PY)*/

cast /*#REFNAME ‘dynamic_ cast<C*>’*/ : ptr B ->

ptr_C;
cast : ptr C -> ptr B; /*#OP(PY)*/
ptr C : -> ptr C;

ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr C;EXTERNAL ’'C++';
NEWTYPE C

July 2003 Telelogic Tau 4.5 User's Manual 821

Chapter 15 The CPP2SDL Tool

822

OPERATORS
CcC : -> C;
c: C ->C;
ENDNEWTYPE C; EXTERNAL ’'C++’';

Note that no cast operators are generated that cast toptr E SinceEisa
protected base of p. But in fact there are no cast operatorsthat cast from
ptr_E neither. The somewhat subtle reason for thisis that those opera-
tors cannot be used in practice, since the protected inheritance makesit
impossibleto haveavariablewithptr Easstatictypeandptr_ c asdy-
namic type. CPP2SDL will therefore not generate these cast operators.

In C++ dynamic casts work both for pointers and references to objects.
In SDL, however, itisonly possibleto do dynamic casts between point-
ers, sincereferences are not explicitly represented in the translation (see
“References’ on page 782).

Forward Declarations
Rule: A forward declaration is not translated to SDL.

Thisruleisvalid for all forward declarations for which there are defini-
tions later on in the header file. Thisisthe most common case, and the
purpose of such forward declarations is simply to make an identifier

known to the C/C++ compiler so that it may be used beforeit is defined.

However, it is possible to make a forward declaration for which no def-
inition existsin the header file. In that case CPP2SDL must generate an
extra newtype to represent the missing definition. Since this extra new-
type does not correspond to areal C/C++ type, it is marked with a
#NOTY PE directive.

Example 125 below contains two forward declarations, one of which
has no corresponding definition (class c).

Example 125: Translation of forward declarations
C++:
typedef struct S *fwdS;
class C *fwdC;
struct S {
int a;
}i

SDL:

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

SYNTYPE fwdS = ptr_S
ENDSYNTYPE fwdS; EXTERNAL ’'C++’;
NEWTYPE C /*#NOTYPE*/
ENDNEWTYPE C; EXTERNAL ’'C++’;
NEWTYPE ptr C Ref(C);
OPERATORS
ptr C : -> ptr C;
ptr C : ptr C -> ptr C;
ENDNEWTYPE ptr_C;EXTERNAL ’'C++';
DCL fwdC ptr C; EXTERNAL ’'C++';
NEWTYPE ptr S Ref(S);
OPERATORS
ptr S : -> ptr_ S;
ptr_ S : ptr_S -> ptr_ S;
ENDNEWTYPE ptr_S;EXTERNAL ’'C++';
NEWTYPE S
STRUCT
a int;
OPERATORS
S : -> S;
S : S ->8S;
ENDNEWTYPE S; EXTERNAL ’'C++’;

Incomplete Types

Rule: Anincomplete type declaration is translated to a newtype that
may not beinstantiatedin SDL. Thisruleappliesto all incompletetypes
even if they are declared within complete types. For example atagless
type within a container type will not be correctly instantiated in SDL.

Compare thistrandlation rule with the one for namespaces (see
“Namespaces’ on page 792). While a namespace does not define atype
at al, an incomplete type declaration defines an incomplete type that
may not be referred to. That isthe reason why such a newtype must not
beinstantiated in SDL.

C/C++ alows declarations of incomplete classes, structs, unions and
enums, i.e. al types having atag. Incomplete types are therefore also
called tag-less types.

Incomplete types can be used in

» datadeclarations (i.e. variables, constants etc.)

» typedeclarations (i.e. typedefs)

e ‘“useless’ declarations (i.e. without declaring data or type)

Telelogic Tau 4.5 User's Manual 823

Chapter 15 The CPP2SDL Tool

Example 126: Translation of incomplete types

C++:

struct S {
int i;
struct {
int j;
} ssl, *ss2, ss3[2]; // Data declarations

typedef enum {
a, b, c
} ss1, *ss2, ss3[2]; // Type declarations
typedef struct {
int 1i;
}; // Missing type name - “useless” declaration
struct
int i;
}; // Missing variable name - “useless” declaration

SDL:

NEWTYPE S_incomplete ss3
STRUCT
j int;
ENDNEWTYPE S_incomplete_ss3;
NEWTYPE ptr S incomplete ss3 Ref (S_incomplete ss3);
OPERATORS
ptr S incomplete ss3 : -> ptr S incomplete ss3;
ptr_S_incomplete ss3 : ptr_S_incomplete_ss3 ->
ptr S incomplete ss3;
ENDNEWTYPE ptr_S_incomplete_ ss3;EXTERNAL 'C++';
NEWTYPE arr 2 S incomplete ss3 CArray (2,
S_incomplete_ss3) ;
ENDNEWTYPE arr 2 S incomplete ss3;EXTERNAL 'C++';
NEWTYPE ptr S Ref(S);
OPERATORS
ptr_ S : -> ptr_S;
ptr S : ptr_S -> ptr_S;
ENDNEWTYPE ptr S;EXTERNAL 'C++';
NEWTYPE S
STRUCT
i int;
ssl S_incomplete_ss3;
ss2 ptr_S incomplete ss3;
ss3 arr_2_S_incomplete_ss3;

OPERATORS
S : -> S;
S : S ->8S;

ENDNEWTYPE S; EXTERNAL 'C++';
NEWTYPE incomplete ss3
LITERALS a, b, c;
OPERATORS
EnumToInt : incomplete ss3 -> int; /*#OP(PY)x/
ORDERING;

824 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

ENDNEWTYPE incomplete ss3;

SYNTYPE ssl = incomplete_ss3

ENDSYNTYPE ssl;EXTERNAL ’'C++';

NEWTYPE ptr_ incomplete_ss3 Ref(incomplete_ ss3);

OPERATORS
ptr incomplete ss3 : -> ptr incomplete ss3;
ptr incomplete ss3 : ptr incomplete ss3 ->

ptr_incomplete_ss3;

ENDNEWTYPE ptr_incomplete_ ss3;EXTERNAL ’'C++’;
SYNTYPE ss2 = ptr_ incomplete ss3

ENDSYNTYPE ss2; EXTERNAL ’'C++';

NEWTYPE arr 2 incomplete_ ss3 CArray(2,
incomplete ss3);

ENDNEWTYPE arr 2 incomplete ss3;EXTERNAL ’‘C++';
SYNTYPE ss3 = arr_ 2 incomplete_ss3

ENDSYNTYPE ss3;EXTERNAL 'C++';

As can be seen in the example, incompl ete typesthat are used in data or
type declarations will have the name of the last declared variable or
type, prefixed with a user-configurable string that by default is
“incomplete ". The option -prefix can be used to configure this
string.

Incomplete typesin “useless’ declarations will not be translated to
SDL, and CPP2SDL will issue warnings that the declarations were ig-
nored.

Note that the translation of incomplete enum declarations differs from
the normal trandation rule of an enum declaration. The differences are
listed in “Enumerated Types’ on page 783.

Finally note that incompl ete classes, structs and unions define scope
units although they are incomplete. Their names thus follows the rules
for naming of scope units described in “ Scope Units’ on page 790.

Dynamic Memory Management

Rule: The C/C++ primitives for dynamic memory management is rep-
resented in SDL by means of specia operators.

Dynamic memory management is done differently in C and C++. How
C or C++ datais dynamically allocated and deallocated in SDL there-
fore depends on whether CPP2SDL executesin C or C++ mode (con-
trolled by the option -c). In both cases dynamic memory management
is done by means of special SDL operators that are defined in the ref
generator. However, the definition of there £ generator isdifferentin C

Telelogic Tau 4.5 User's Manual 825

Chapter 15 The CPP2SDL Tool

and C++ mode (see “SDL Library for Fundamental C/C++ Types’ on

page 841).

C Mode

The following operators are used to support dynamic memory manage-

ment of C datafrom SDL:

* Make!

Enables dynamic allocation of simple C data.

e free

Enables dynamic deall ocation of data that was allocated by the

Make ! Operator.

Example 127: Dynamic memory management of C data from SDL —

C:
struct S {
int 1i;
double 7j;
SDL:
NEWTYPE ptr_S Ref (S);
ENDNEWTYPE ptr S;EXTERNAL 'C’;
NEWTYPE S /*#REFNAME ’struct S’'*/
STRUCT
i int;
j double;
ENDNEWTYPE S; EXTERNAL ’'C’;
SDL Usage:
dcl var s, ptrs ptr_s;
task {
ptrs := (. var .);
ptrs*>!i := 4;
free (ptrs) ;
826 Teldlogic Tau 4.5 User's Manual

July 2003

C/C++to SDL Trandation Rules

July 2003

C++ Mode

The following operators are used to support dynamic memory manage-
ment of C++ datafrom SDL.:

1
d new

Enables dynamic alocation of scalar C++ data of, for example,
classtype, fundamental type, or pointer type. It corresponds to the
C++ operator with the same name.

¢ delete
Enables dynamic deallocation of datathat was allocated by the new
operator. It corresponds to the C++ operator with the same name.

®* new_array
Enables dynamic alocation of arrays of C++ data of, for example,
class type, fundamental type, or pointer type. It corresponds to the
C++ operator new [].

* delete_array
Enables dynamic deallocation of datathat was alocated by the
new_array operator. It correspondsto the C++ operator delete[].

Example 128: Dynamic memory management of C++ data from SDL—
C++:
struct S {
int i;
double j;

7

Import Specification:

TRANSLATE {

S**
int*
SDL:
NEWTYPE ptr int Ref (int);
OPERATORS
ptr_int : -> ptr_int;

ptr_int : ptr_int -> ptr int;
ENDNEWTYPE ptr int; EXTERNAL ’'C++’';
NEWTYPE ptr ptr S Ref(ptr_S);

1. InfacttheMake ! operator can aso be usedin C++ mode. Inthat caseit behaves
exactly like the new operator.

Telelogic Tau 4.5 User's Manual 827

Chapter 15 The CPP2SDL Tool

828

OPERATORS
ptr ptr_S : -> ptr_ptr_S;
ptr ptr S : ptr ptr S -> ptr ptr_S;
ENDNEWTYPE ptr ptr S;EXTERNAL ’'C++’;
NEWTYPE ptr S Ref(S);
OPERATORS
ptr S : -> ptr_S;
ptr S : ptr_S -> ptr_S;’
ENDNEWTYPE ptr S;EXTERNAL 'C++';

NEWTYPE S
STRUCT
i int;
j double;
OPERATORS
S : ->S;
S : S ->8S;
ENDNEWTYPE S;EXTERNAL 'C++';
SDL Usage:
dcl ptrs ptr_ s, ptrptrs ptr ptr s, ptri ptr int;
task {
ptrs := new(s);
ptrs*>!i := 4;
ptrptrs := new(ptr_s);
ptri := new(int) ;

delete (ptrs) ;

delete (ptrptrs) ;

delete (ptri) ;

ptri := newArray(int, 5);
deleteArray (ptri) ;

}i

Theinput tothenew andnew_array operators must be an operator that
corresponds to a constructor in C++. To enable dynamic allocation of
datawith non-classtypes, there must thus exist constructor operatorsfor
these types. These operators correspond to the implicit parameter-less
and copy constructors, which exist for each C++ type. The definition of
these constructor operators are part of the non-generated SDL declara-
tionsthat areincluded when the -generatecpptypes option isset (see
“SDL Library for Fundamental C/C++ Types’ on page 841).

Overloaded Operators

Rule: An overloaded C++ operator is translated to a corresponding
overloaded SDL operator.

Since the sets of operators that may be overloaded are different in C++
and SDL, not all overloaded C++ operators can be translated to SDL.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

The table below shows which C++ operators that can be translated to

SDL

C++ operator Description SDL operator
+ (binary) Addition +

- (binary) Subtraction -

* (binary) Multiplication *

* (unary prefix) Dereference | *>
/ (binary) Division /

% (binary) Modulo rem
! (unary prefix) Not not
< (binary) Less <

> (binary) Greater >
<< (binary) Left Shift <
>> (binary) Right Shift >
== (binary) Equal =
1= (binary) Not Equal /=
<= (binary) Less Equal <=
>= (binary) Gresater Equal >=
&& (binary) And and
II (binary) Or or

Note that even if thereis acorresponding SDL operator to trandate to,
aC++ operator could be declared in away that would make it necessary
to qualify its SDL name, which is not possible. This happens for exam-
pleif the operator is declared to be static, or declared inside a
namespace (see " Scope Units” on page 790 for more about scope name
qualifications). It may also happen due to name qualification rules for
inherited members (see” Multiplelnheritance” on page811). CPP2SDL
will issue awarning if it encounters an overloaded operator that cannot
be translated.

July 2003 Telelogic Tau 4.5 User's Manual 829

Chapter 15 The CPP2SDL Tool

The table above shows that the translation of the less and greater oper-
ators (<, >) isthe same as the translation of the shift operators (<<, >>).
Obviously, thismay lead to ambiguitiesif both these operator pairs are
overloaded in aclass. In that case, the less and greater operators will

have precedence, and CPP2SDL will issue awarning that the overload-

ed shift operators cannot be trandlated to SDL.

Example 129: Translation of overloaded operators

C++:

class ostream {
public:
ostream& operator< (const char* pl)

ostream& operator<<(const char* pl);
)i

ostream& operators>>(const char* pl
static int operator$% (int pl);
bool operator! () ;

Vi

SDL:
NEWTYPE ptr char Ref (char);
OPERATORS
ptr _char : -> ptr char;

ptr_char : ptr_char -> ptr_char;
ENDNEWTYPE ptr char;EXTERNAL ‘C++';
NEWTYPE ptr ostream Ref (ostream);
OPERATORS
ptr ostream : -> ptr ostream;

ptr ostream : ptr ostream -> ptr_ostream;
ENDNEWTYPE ptr ostream; EXTERNAL 'C++’;

NEWTYPE ostream
OPERATORS
"not" /*#REFNAME ’operator!’*/
bool;

"rem" /*#REFNAME ‘operator%’*/ : ostream,

int;

ostream ->

int ->

"<" /*#REFNAME ’'operator<’*/ : ostream, ptr char

-> ostream;

ostream : -> ostream;

ostream : ostream -> ostream;
ENDNEWTYPE ostream; EXTERNAL ’'C++';

Conversion Operators

Rule: A conversion operator istranslated to aspecial conv operator in

SDL.

830 Teldlogic Tau 4.5 User's Manual

July 2003

C/C++to SDL Trandation Rules

July 2003

In C++, aconversion operator isimplicitly called by the compiler when
amatching type conversion is needed. The conv operator, however,
must be called explicitly in SDL.

Example 130: Translation of conversion operators

C++:

class Tiny {

public:
operator int(); // Implicit conversion from Tiny
to int
SDL:
NEWTYPE ptr Tiny Ref (Tiny) ;
OPERATORS
ptr Tiny : -> ptr Tiny;

ptr Tiny : ptr Tiny -> ptr Tiny;
ENDNEWTYPE ptr_Tiny;EXTERNAL 'CH++";
NEWTYPE Tiny

OPERATORS
conv : Tiny -> int; /*#OP(PY)*/
Tiny : -> Tiny;

Tiny : Tiny -> Tiny;
ENDNEWTYPE Tiny; EXTERNAL ’'C++’;

Note that the conv operator returns the target type of the type conver-
sion specified by the conversion operator. The #OP(PY) directivetells
the Code Generator that the operator isimplicitly called in C++.

Templates
Rule: A template declaration is translated to SDL by instantiating it.

A template declaration as such cannot be translated to SDL. Only spec-
ified instantiations of the template can be transated. CPP2SDL will
print a warning about this when atemplate declaration is encountered.

A template instantiation may of course be present in the input headers.
In that case CPP2SDL will translate the template instantiation by sub-
stituting all formal template argumentsin the template declaration with
the actual template arguments used in the template instantiation. If the
input headers contain no suitable instantiation of a certain template, an
import specification may be used to provide such an instantiation. See
“Template Instantiations” on page 774 to learn more about that.

Telelogic Tau 4.5 User's Manual 831

Chapter 15 The CPP2SDL Tool

832

There are two main kinds of template declarationsin C++; class tem-
plates and function templates.

Class Templates

Rule: Aninstantiation of aclasstemplateistranslated in the same way
asthe non-template class that is obtained if all formal arguments of the
class template declaration are substituted with the actual arguments of
the class template instantiation.

Thistranglation rule implies that class template instantiations will be-
come newtypesin SDL. The name of such anewtypewill consist of the
name of the template class, followed by the names of all actual template
arguments of the template instantiation. The name will aso be prefixed
with astring that by default is "tpl_". The option -prefix can be used
to configure this string.

Example 131: Translation of class template instantiations
C++:
template <class T> class C {
public:
T t;
T £();
C(T v);

typedef C<int> mytype; // Class template

instantiation
SDL:
NEWTYPE ptr_tpl C int Ref(tpl C int);
OPERATORS
ptr tpl C int : -> ptr tpl C int;

ptr _tpl C int : ptr tpl C int -> ptr tpl C int;
ENDNEWTYPE ptr tpl C int; EXTERNAL 'C++';
NEWTYPE tpl C_int /*H#REFNAME ’'C<int >'*/
STRUCT
t int;
OPERATORS
tpl C int /*#REFNAME 'C’*/ : int -> tpl C int;
f : tpl C int -> int;
tpl C int /*#REFNAME 'C’*/ : tpl C int ->
tpl C int;
ENDNEWTYPE tpl C_int; EXTERNAL ’'C++';
SYNTYPE mytype = tpl C int
ENDSYNTYPE mytype; EXTERNAL 'C++';

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

Note that a #REFNAME directive passes the C++ name of the class
template instantiation to the Code Generator.

Function Templates

Rule: Aninstantiation of afunction template is translated in the same
way as the non-template function that is obtained if al formal argu-
ments of the function template declaration are substituted with the actu-
a arguments of the function template instantiation.

Thistrangation rule implies that function template instantiations will
become operatorsin SDL. The name of such an operator will consist of
the name of the template function, followed by the names of all actual
template arguments of the template instantiation. The namewill also be
prefixed with astring that by default is"tpl_". The option -prefix can
be used to configure this string.

Since afunction template isinstantiated when called, a C++ header file
will normally not contain any function template instantiations. Instead
an import specification should be used to provide the necessary instan-
tiations (see “ Template Instantiations’ on page 774). In Example 132
below an import specification is used to instantiate the template func-
tion with the type int *.

Example 132: Translation of function template instantiations
C++:

template <class T> T func(T t);
Import Specification:

TRANSLATE {
func<int*>

SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
tpl func_ptr int /*#REFNAME ’'func<int* >’'*/ :
ptr_int
-> ptr int;

ENDNEWTYPE global namespace; EXTERNAL ’'C++’;
NEWTYPE ptr_ int Ref(int);
OPERATORS
ptr_int : -> ptr int;
ptr_int : ptr_int -> ptr_ int;

Telelogic Tau 4.5 User's Manual 833

Chapter 15 The CPP2SDL Tool

834

ENDNEWTYPE ptr int;EXTERNAL ’‘C++';

As can be seen from the translation of the example above, the
#REFNAME directive contains the C++ name of the template instanti-
ation written on the so called explicit form®. This makes the Code Gen-
erator use this explicit form when the template function is called from
SDL.

Note:

Calling afunction template from SDL requires that the target C++
compiler can handle calls using the explicit form of the function
template instantiation.

Default Template Arguments

Rule: Aninstantiation of atemplate declaration with default arguments
istranslated in the same way as an ordinary template instantiation,
where omitted actual argumentsin the instantiation are substituted with
the specified default types or values.

Thistrandlation rule is very similar to the one used for functions with
default arguments (see “ Default Arguments” on page 788).

Example 133: Translation of templates with default arguments

C++:
template <class T, class U = char, int i = 5> class
c {
public:
T t[i];
T £();

C(U pl1);

C<int> varl; // Using all the default values
C<int, bools> var2; // Using the default value for i
C<int, bool, 5> var3; // Not using any default value

SDL:

NEWTYPE ptr tpl C_int char_ 5 Ref(tpl C_int_char_5);
OPERATORS

1. Intheexplicit form of afunction template instantiation, all actual template
arguments are provided explicitly in theinstantiation rather than being de-
duced from the types of the actual argumentsin acall to the function tem-
plate.

Telelogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

ptr tpl C int char 5 : -> ptr tpl C int char 5;
ptr_tpl C int char 5 : ptr_tpl C int char 5 ->
ptr tpl C int char 5;
ENDNEWTYPE ptr tpl C_int_char 5; EXTERNAL 'C++';
NEWTYPE tpl C_int char 5 /*#REFNAME 'C<int, char, 5
> */
STRUCT
t arr 5 int;
OPERATORS
tpl_C_int_char 5 /*#REFNAME 'C’*/ : char ->
tpl C int char 5;
f : tpl C_ int char 5 -> int;
tpl C int char 5 /*#REFNAME 'C’*/
tpl C int char 5
-> tpl C_ int char 5;
ENDNEWTYPE tpl c int char 5;EXTERNAL 'C++’ ;
DCL varl tpl C int char 5; EXTERNAL 'C++’
DCL var2 tpl C int bool 5; EXTERNAL ’C++’
NEWTYPE arr 5 int CArray(5, int);
ENDNEWTYPE arr 5 int; EXTERNAL 'C++’
NEWTYPE ptr tpl C int bool 5 Ref(tpl C int bool 5);
OPERATORS
ptr tpl C int bool 5 : -> ptr tpl C int bool 5;
ptr tpl C int bool 5 : ptr tpl C int bool 5 ->
ptr_tpl C int bool 5;
ENDNEWTYPE ptr tpl C_int_bool 5; EXTERNAL 'C++';
NEWTYPE tpl C_int bool 5 /*#REFNAME 'C<int, bool, 5
> */
STRUCT
t arr 5 int;
OPERATORS
tpl_C_int_bool 5 /*#REFNAME 'C’*/ : bool ->
tpl C int bool 5;
f : tpl C int bool 5 -> int;
-> tpl C_int bool 5;
ENDNEWTYPE tpl C int bool 5;EXTERNAL 'C++’;
DCL var3 tpl C int bool 5; EXTERNAL 'C++’

Note that although the template instantiations of var2 and var3 in the
example above look different, they evaluate to the same template type
both in C++ and in the SDL translation.

Miscellaneous

This section covers some miscellaneous issues that have not been dis-
cussed so far. They are divided into constructs that are part of the C or
C++ languages, and constructsthat are not part of thelanguagesas such,
but that nevertheless may be found in an input C/C++ header file.

Telelogic Tau 4.5 User's Manual 835

Chapter 15 The CPP2SDL Tool

Language Constructs

Volatile

Rule: A volatile declarationistranslated in the sameway asan ordinary
declaration.

The volatile specifier can belooked upon as some kind of compiler
directive, and needs therefore not be visible in the SDL trandlation.

Linkage

Rule: Thelinkage of a C/C++ identifier isnot visible in the SDL trans-
lation of the identifier.

There is one important exception to this rule; static linkage of class
members affects their translation as described in “ Static Members’ on

page 803.

In general, the linkage of a C/C++ identifier can be specified to bein-
ternal or externa using the keywords static oOr extern (although the
former isadeprecated featurein C++ for all declarations but class mem-
bers). In C++ it isalso possible to use the extern keyword to specify
that aset of declarations have C linkage, i.e. belong to atranslation unit
that is compiled with a C compiler.

Example 134: Translation of identifiers with different linkage
C++:

extern int a; // Declaration of a
extern int a; // Legal redeclaration of a
int a; // Definition of a
extern "C"
struct S
int x;
}
SDL:

DCL a int; EXTERNAL ’'C++';
NEWTYPE ptr S Ref(S);
OPERATORS
ptr S : -> ptr_S;
ptr S : ptr_S -> ptr_S;
ENDNEWTYPE ptr S;EXTERNAL 'C++’;
NEWTYPE S
STRUCT
x int;

836 Teldlogic Tau 4.5 User's Manual July 2003

C/C++to SDL Trandation Rules

July 2003

OPERATORS
S : -> S;
S : S ->8S;

ENDNEWTYPE S;EXTERNAL 'C++';

Note that the extern "c directivein this example does not affect the
mapping of s at all. For example, it will be possible to instantiate s us-
ing the new operator.

Non-Language Constructs

Macros
Rule: Macros are not translated to SDL.

The reason for not translating macros is that they are not part of the C
or C++ languages. Macros are expanded and removed by the preproces-
sor before CPP2SDL performs the trandlation.

Some header files (especialy C headers) contain numerous macros that
could be useful or even essential to accessin SDL. Fortunately most
macros can actually be accessed from SDL, although they are not trans-
lated by CPP2SDL. Refer to “Constants’” on page 794 for more infor-
mation.

SDL Sorts in C/C++

Rule: A C/C++typecalled “SDL_<sort>", where <sort>isapre-
defined SDL sort, is translated to that SDL sort.

Since this translation rule restricts the way ordinary C/C++ types may
be named, it is only respected by CPP2SDL if the -sd1sorts optionis
Set.

Example 135: Translation of types referring to SDL sorts

C++:

SDL_Real func(SDL_Integer, int);

SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
func : Integer, int -> Real;

ENDNEWTYPE global namespace; EXTERNAL 'C++’;

Telelogic Tau 4.5 User's Manual 837

Chapter 15 The CPP2SDL Tool

The feature of referring to SDL sorts from a C/C++ header file may be
useful if the header has been designed to be used from SDL exclusively.

838 Teldlogic Tau 4.5 User's Manual July 2003

Special Tranglation Rulesfor C Compilers

Special Translation Rules for C Compilers

July 2003

CPP2SDL by default assumes that its input is C++ code, and that the
target compiler isa C++ compiler. In order to aso support C code and
C target compilers, the trandation rules have to be dlightly modified.
CPP2SDL doesthisif the -c optionis set. Thetool then executesin“C
mode”.

A general differenceis how the external specifier for al SDL declara
tionswill be generated. Normally this specifier isfollowed by the string
‘C++' to tell the Code Generator that the declaration was translated
from a C++ declaration. In C mode the string will instead be ‘C’.

Example 136: Different external specifier in C mode

C++:

const int a;

SDL:
SYNONYM a int = EXTERNAL 'C’;

In C, astruct or aunion is not a scope unit, which means that declara-
tions inside a struct or a union should be treated as ordinary declara-
tions. This means that the #REFNAME directive that normally is used
for specifying the qualified name of for example a nested struct decla-
ration, will not be printed in C mode.

Instead, a#REFNAME directive will beinserted after the name of new-
types that represent tagged types (i.e. structs, unions and enums). The
reason isthat C, contrary to C++, does not allow such types to be refer-
enced only with the name of thetag. Another placewherethe"full” type
nameisrequired in C modeisin the C style cast that is generated by
means of a#REFNAME directive for 1nt ToEnum operators (see “ Enu-
merated Types’ on page 783).

Example 137: Differences in translation of structs, unions and enums
C++:
struct S {
int a;
struct SS {
int b;

7

Vi

Telelogic Tau 4.5 User's Manual 839

Chapter 15 The CPP2SDL Tool

840

typedef enum E {el, e2, e3} Etype;
SDL:

NEWTYPE ptr_SS Ref (SS) ;
ENDNEWTYPE ptr SS;EXTERNAL 'C’;
NEWTYPE SS /*#REFNAME ’struct SS’*/
STRUCT
b int;
ENDNEWTYPE SS;EXTERNAL ’'C’;
NEWTYPE ptr_S Ref (S);
ENDNEWTYPE ptr S;EXTERNAL 'C’;
NEWTYPE S /*#REFNAME 'struct S’*/
STRUCT
a int;
ENDNEWTYPE S; EXTERNAL 'C’;
NEWTYPE E /*#REFNAME ’enum E’*/
LITERALS el, e2, e3;
OPERATORS
IntToEnum /*#REFNAME ' (enum E)’*/ : int -> E;
EnumToInt : E -> int; /*#OP(PY)*/
ORDERING;
ENDNEWTYPE E; EXTERNAL ’'C’;
SYNTYPE Etype = E
ENDSYNTYPE Etype; EXTERNAL ’'C’;

Finally, note that memory allocation is done differently in C and C++.
Thisisreflected in SDL by using a different definition of the ref gen-
erator when CPP2SDL executesin C mode, where for examplethe new,
delete,new array,anddelete array Operatorsarenot present. See
“Dynamic Memory Management” on page 825 and “SDL Library for
Fundamental C/C++ Types’ on page 841 for more information.

Telelogic Tau 4.5 User's Manual July 2003

SDL Library for Fundamental C/C++ Types

SDL Library for Fundamental C/C++ Types

The SDL declarations that are generated by CPP2SDL will normally
not be semantically correct on their own. They typically contain several
referencesto SDL sortsthat represent fundamental C/C++ types, for ex-
ample int, char and bool, and type declarators such as pointers (*)
and arrays ([1). The SDL representations of all fundamental C/C++
types and type declarators are defined in alibrary consisting of a few
SDL/PR files. The table below lists these files and their contents.

July 2003 Telelogic Tau 4.5 User's Manual 841

Chapter 15 The CPP2SDL Tool

SDL/PR file

Contents

BasicCTypes.pr

Contains SDL rep-
resentations of
fundamental C
types. Also con-
tains representa-
tions for an un-
typed pointer
(void*) and the
array type de-
clarator ([]).

SYNTYPE int = Integer
ENDSYNTYPE int;

SYNTYPE unsigned int = Integer
ENDSYNTYPE unsigned_int;

SYNTYPE long int = Integer
ENDSYNTYPE long int;

SYNTYPE unsigned long int = Integer
ENDSYNTYPE unsigned long int;
SYNTYPE short_int = Integer
ENDSYNTYPE short int;

SYNTYPE unsigned short int = Integer

ENDSYNTYPE unsigned_short_int;

SYNTYPE char = Character
ENDSYNTYPE char;

SYNTYPE signed char = Character
ENDSYNTYPE signed char;

SYNTYPE unsigned char = Octet
ENDSYNTYPE unsigned char;

SYNTYPE float = Real
ENDSYNTYPE float;

SYNTYPE double = Real
ENDSYNTYPE double;

NEWTYPE ptr void
LITERALS Null;
DEFAULT Null;
ENDNEWTYPE ptr void;

GENERATOR CArray (CONSTANT Length, TYPE

Itemsort)

OPERATORS
modify!: CArray, Integer, Itemsort
extract!: CArray, Integer -> Itemsort;

ENDGENERATOR CArray;

-> CArray;

842

Telelogic Tau 4.5 User's Manual

July 2003

SDL Library for Fundamental C/C++ Types

SDL/PR file

Contents

BasicC++Types.pr

Contains SDL rep-
resentations of
fundamental C++
types. Also con-
tains operators
representing im-
plicit construc-
tors for funda-
mental types.

Note that this
file includes the
files Basic-
Ctypes.pr and Ex-
traCTypes.pr.

/*#INCLUDE ’'BasicCTypes.pr’*/
/*#INCLUDE 'ExtraCTypes.pr’*/

SYNTYPE bool = Boolean
ENDSYNTYPE bool;

NEWTYPE wchar_ t
ENDNEWTYPE wchar t;

NEWTYPE _ ConstructorOperators /*#NOTYPE*/
OPERATORS

int: -> int;

int: int -> int;

unsigned_int: -> unsigned_int;

unsigned_int: unsigned int -> unsigned int;

long_int: -> long_int;

long int: long int -> long int;

unsigned long_int: -> unsigned long_int;

unsigned long_ int: unsigned long int ->
unsigned long int;

short_int: -> short_int;

short int: short int -> short int;

unsigned short_int: -> unsigned_short_int;

unsigned short int: unsigned short int ->
unsigned short int;

char: -> char;

char: char -> char;

signed char: -> signed char;

signed_char: signed char -> signed_char;

unsigned char: -> unsigned char;

unsigned_char: unsigned_char -> unsigned_char;

float: -> float;

float: float -> float;

double: -> double;

double: double -> double;
ptr_void: -> ptr_void;

ptr void: ptr void -> ptr void;
bool: -> bool;

bool: bool -> bool;

wchar_t: -> wchar_t;

wchar t: wchar t -> wchar t;
ENDNEWTYPE __ ConstructorOperators; EXTERNAL 'C++';

July 2003

Telelogic Tau 4.5 User's Manual 843

Chapter 15 The CPP2SDL Tool

SDL/PR file

Contents

ExtraCTypes.pr

Contains SDL rep-
resentations of
additional funda-
mental C types.

SYNTYPE long long_ int Integer
ENDSYNTYPE long long int;

SYNTYPE unsigned long long int = Integer
ENDSYNTYPE unsigned long long int;

ExtraC++Types.pr

Contains SDL rep-
resentations of

additional funda-
mental C++ types.

NEWTYPE ExtraConstructorOperators

long long int -> long long int;

long long int long long int -> long long int;
unsigned_long_ long_int
unsigned_long_long_int;
unsigned long long int

> unsigned_long long int
ENDNEWTYPE__ExtraConstructorOperators

->

unsigned long long int

CPointer.pr

Contains SDL rep-
resentation of
the C pointer
type declarator

(*).

GENERATOR Ref (TYPE Itemsort)
LITERALS Null, Alloc;

OPERATORS
modify! Ref, Integer, Itemsort -> Ref;
extract! Ref, Integer -> Itemsort;
R Ref, Itemsort -> Ref;
x50 Ref -> Itemsort;
"E" Itemsort -> Ref;
make! Itemsort -> Ref;
free in/out Ref;
"yn Ref, Integer -> Ref;
n_n Ref, Integer -> Ref;
cast Ref -> ptr void;
cast ptr void -> Ref;

DEFAULT Null;
ENDGENERATOR Ref;

844

Telelogic Tau 4.5 User's Manual July 2003

SDL Library for Fundamental C/C++ Types

SDL/PR file Contents
C++Pointer.pr GENERATOR Ref (TYPE Itemsort)
LITERALS Null;
Contains SDL rep- |OPERATORS
resentation of modify! : Ref, Integer, Itemsort -> Ref;
the C++ pointer extract! : Ref, Integer -> Itemsort;
type declarator k50 : Ref, Itemsort -> Ref;
(*). kS0 : Ref -> Itemsort;
"E&" : Itemsort -> Ref;
new : Itemsort -> Ref;
delete : Ref;
new_array : Itemsort, Integer -> Ref;
delete array : Ref;
"yn : Ref, Integer -> Ref;
w-_mn : Ref, Integer -> Ref;
cast : Ref -> ptr void;
cast : ptr_void -> Ref;
DEFAULT Null;
ENDGENERATOR Ref;

July 2003

If theoption -generatecpptypes isset, CPP2SDL will include some
of thefilesfrom the table abovein the SDL trandlation. Which filesthat
areincluded depends on if CPP2SDL executesin C or C++ mode (con-
trolled by the -c option).

The following files will be included in C mode:

e BasicCTypes.pr
e (CPointer.pr

The following files will be included in C++ mode:

e BasicC++Types.pr
e C++Pointer

The reason for breaking out thetypes 1ong long int andunsigned
long long int into separatefiles, isthat not all compilers support
these types. These files must be manually included if these types are
present in the input headers.

Telelogic Tau 4.5 User's Manual 845

Chapter 15 The CPP2SDL Tool

Hint:

The syntype definitions of the SDL sortsthat represent fundamental
C/C++ types can easily be changed. For example, the definitions of
the SDL sorts ‘char’ and ‘unsigned char’ could be swapped if the
target platform specifiesthat asimple‘char’ isunsigned rather than
signed.

Example usage of some C/C++
functionality

846

Overloaded Operators

This example illustrates how to call an operator which has been made

accessible by CPP2SDL. There are two operators defined and used, the
first being a member operator, and the second a non-member operator.
Also see " Overloaded Operators’ on page 846.

C++:

class CInt {

int val;
public:
cint () : val(o) {};
CInt (int i) : val(i) {};
int value() const { return val; };

int operator+ (const int& i) {val+= i; return val;};

7

int operator+ (const int& left, const CInté& right)
{return right.value()+left;};

SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
"+" /*#REFNAME ’operator+’*/ : int, CInt -> int;
ENDNEWTYPE global namespace; EXTERNAL 'C++’;
/*#SDTREF(TEXT,header_CPP2SDL.i,16,7)*/
NEWTYPE ptr_CInt Ref (CInt);
OPERATORS
ptr CInt : -> ptr CInt;/* implicit parameter-
less constructor */
ptr CInt : ptr CInt -> ptr CInt;/* implicit copy
constructor */
ENDNEWTYPE ptr CInt; EXTERNAL 'C++’;
/*#SDTREF(TEXT,header_CPP2SDL.i,16,7)*/
NEWTYPE CInt

Telelogic Tau 4.5 User's Manual July 2003

Example usage of some C/C++ functionality

July 2003

OPERATORS
"+ /*#REFNAME 'operator+’*/ : CInt, int -> int;
CInt : -> CInt;
CInt : int -> CInt;
value : CInt -> int; /*#CONSTANT*/
CInt : CInt -> CInt;/* implicit copy constructor
*
/
ENDNEWTYPE CInt;EXTERNAL 'C++';

Usein SDL:

process proci

B PR
; header

DL

an_int Integer,
value Clnt,
member ptr_Clnt;

member:=newClni(13);

%

an_[nt:=membert+2;

%

an_ipt:=3+ membgrs,

sig_out

B

Telelogic Tau 4.5 User’ s Manual 847

Chapter 15 The CPP2SDL Tool

848

String handling

Itispossibleto do C-style string handling in SDL, by using the standard
C header string.h. By including ‘string.h’ and ‘stdio.h’ weare
given access to the functions defined within themin SDL. Y ou may no-
tice that strcpy is defined in the hand written header aswell asin
‘string.h’. Theformer definition allows usto assign the string “good-
bye” to empty, without using the return value of strcpy, and importing
itto SDL. Also needed is an allocate and deall ocate function. An exam-
ple alocate function has been defined in the header, a deall ocate func-
tion should aso be done in the practice to avoid memory leaks.

C:

#include<string.h>
#include<stdio.h>

#ifdef CPP2SDL
void strcpy (char*,char*) ;
#endif

typedef char* string;
char ara[10];
string hello= "hello";
string empty;

char* allocateString(int length) {
return (char*) calloc (length,sizeof (char)) ;

1
SDL:

NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
memcpy : ptr void, ptr void, size t -> ptr void;
memcmp : ptr void, ptr void, size t -> int;
memset : ptr_void, int, size_t -> ptr void;
strset : ptr_char, int -> ptr char;
strcpy : ptr char, ptr_char -> ptr char;
strcat : ptr_char, ptr char -> ptr_ char;
strcmp : ptr char, ptr char -> int;
strlen : ptr char -> size t;

unlink : ptr char -> int;

strcpy ptr char, ptr_ char;

allocateStrlng : int -> ptr char;
ENDNEWTYPE global namespace; EXTERNAL 'C’;

SYNTYPE string = ptr_char

ENDSYNTYPE string;EXTERNAL ‘C’;
/*#SDTREF (TEXT, header CPP2SDL.1i,728,6)*/
NEWTYPE arr 10 char CArray(10, char);

Telelogic Tau 4.5 User's Manual July 2003

Example usage of some C/C++ functionality

July 2003

ENDNEWTYPE arr 10 char; EXTERNAL ’'C’;
/*#SDTREF (TEXT, header CPP2SDL.1i,728,6)*/
DCL ara arr_10_ char; EXTERNAL ’'C’;
/*#SDTREF (TEXT, header CPP2SDL.1i,729,8)*/
DCL hello string; EXTERNAL 'C’;
/*#SDTREF (TEXT, header CPP2SDL.1i,730,8)*/
DCL empty string; EXTERNAL 'C’;

Usein SDL:

Telelogic Tau 4.5 User’s Manual

849

Chapter 15 The CPP2SDL Tool

process proci

PR
header

empty|=allocateString(11);

——

stropylempty #oode(ggodbye");

——

empty:Fstropy(empty hello);

=0

FRcodelprintilempty hello)y;™/ (-

850 Telelogic Tau 4.5 User' s Manual

July 2003

Example usage of some C/C++ functionality

Type conversion

Some type conversions are easier in C/C++ thanin SDL, in particular
those that are implicit. An implicit type conversion must often be ex-
plicit in SDL, by introducing a simple cast operator that performsthe
conversion. For example, by using the mapping of SDL sorts between
unsigned_char and char we can create a cast operator in SDL that con-
verts achar to an Octet. (See “Fundamental Types’ on page 779 for
more information). This corresponds to the implicit conversion in
C/C++ between char and unsigned char.

Usein SDL:

process proci

fF‘R DCL
. H a_char char,
header an_octet Octet;

NEWTYFE dummy
OPERATORS
Wi

cast: char-» Octet,FOP{PY)
ENDNEWTYPE;

an_odtet .= cast(a_char);

sig_out

July 2003 Telelogic Tau 4.5 User's Manual 851

Chapter 15 The CPP2SDL Tool

Error Handling

852

Theinput headersto CPP2SDL havein many cases been compiled with
a C/C++ compiler previously, and it should then be relatively uncom-
mon that CPP2SDL will have to issue any error messages. However,
differences in language support, and inappropriate preprocessor set-
tings, are common sources for error reports also from input files that
otherwise are perfectly correct.

If CPP2SDL finds an error in the input, a message will be printed that
briefly describes the reason for the error.

Note:

The error messages produced by CPP2SDL are often less descrip-
tive than the corresponding error messages from a C/C++ compiler.
If CPP2SDL reportserrorsin aheader file, itisthereforeagoodidea
to run a C/C++ compiler on the same header file to get moreinfor-
mation about the reason for the error.

Theformat of printed error messages are described in “ Source and Error
References’ on page 776.

CPP2SDL performs acomplete syntactic analysis of the input C/C++
code, and syntax errors are reported as shown in Example 138 below.

Example 138: Syntax errors

File syn.h:

int f(};
conts int i = 7;

Command Prompt:
% cpp2sdl syn.h

Parsing C/C++ input...

Syntax errors found. Cannot perform SDL translation.
#SDTREF (TEXT, syn.h,1,7)

ERROR 3200 Syntax error.

#SDTREF (TEXT, syn.h,2,7)

ERROR 3200 Syntax error.

2 errors and 0 warnings.

CPP2SDL will proceed with semantic analysis only if no errors were
found during the syntactic analysis. The semantic analysis that is done

Telelogic Tau 4.5 User's Manual July 2003

Error Handling

July 2003

by CPP2SDL isnot complete according to the C/C++ standards, but

only alimited number of semantic tests are performed:

« Thetype of variables, constants, typedefs, functions, function argu-
ments, actual template arguments, and base classes are checked. If
atypeisundeclared, or if it dependson an undeclared typel, anerror

message will be issued.

» Theactua argumentsof atemplateinstantiation are checked against
theformal arguments of the template definition. If therearetoo few
or too many actual arguments, or if there are type mismatches be-
tween actual and formal arguments, an error message will beissued.

Example 139: Semantic errors
File sem.h:
template <class U, int d> class S {

public:
U arr[d];

typedef unknown T; // T depends on undeclared type

const unknown a = 3;
T f(int, char);
S<T, 3> var;

typedef S<> tl; // Too few actual arguments
typedef S<char, 5, 5> t2; // Too many actual

arguments

typedef S<int, int> t3; // Argument type mismatch

Command Prompt:

% cpp2sdl -errorlimit 10 sem.h
Parsing C/C++ input...
Translating C/C++ to SDL...
Generating SDL. ..

#SDTREF (TEXT, sem.h, 11, 9)

ERROR 3263 Illegal instantiation of template ’'S’.

#SDTREF (TEXT, sem.h, 10, 9)

ERROR 3263 Illegal instantiation of template ’'S’.

#SDTREF (TEXT, sem.h, 9,9)

ERROR 3263 Illegal instantiation of template ’'S’.

#SDTREF (TEXT, sem.h, 8, 3)

ERROR 3261 The type ‘T’ is undeclared, or is

depending on an undeclared type.
#SDTREF (TEXT, sem.h, 7, 3)

ERROR 3261 The type ‘T’ is undeclared, or is

1. Oneexample of such atypedependency iswhen the sourcetype of atypedef type
is undeclared. Usages of the typedef type will then be considered to be unde-

clared.

Telelogic Tau 4.5 User’s Manual

853

Chapter 15 The CPP2SDL Tool

depending on an undeclared type.

#SDTREF (TEXT, sem.h, 6, 15)

ERROR 3261 The type ’‘unknown’ is undeclared, or is
depending on an undeclared type.

#SDTREF (TEXT, sem.h,5,17)

ERROR 3261 The type ’‘unknown’ is undeclared, or is
depending on an undeclared type.

#SDTREF (TEXT, sem.h, 1, 33)

WARNING 3211 Cannot translate template declaration.
The declaration will be ignored.

7 errors and 1 warnings.

Note that the command-line option -errorlimit can be used to set a
limit for the number of errorsto report before terminating a trand ation.

854 Teldlogic Tau 4.5 User's Manual July 2003

CPP2SDL M essages

CPP2SDL Messages

July 2003

CPP2SDL may produce three kinds of messages during the translation
of aset of header files.

» Error messages are printed if CPP2SDL finds any syntactic or se-
mantic errorsin theinput header files. See“ Example usage of some
C/C++ functionality” on page 846 for more information about how
CPP2SDL handles errorsin the input.

e Warnings are given if CPP2SDL finds language constructs that for
some reason cannot be fully translated. The tool aso prints warn-
ings if it has to make assumptions about a construct that not neces-
sarily arevalid.

» Information messages are al other messages that are printed.

Therest of this section lists and explains al errors and warnings that
may be issued by CPP2SDL.

Errors
ERROR 3200 Syntax error.

An error wasfound during the syntactic analysis of theinput. CPP2SDL
will not continue with semantic analysis and translation to SDL, since
the program is not correct.

Note:

If this error message is printed for a program that is accepted by a
C/C++ compiler, make sure that the correct language dialect has
been set to CPP2SDL by means of the -dialect option.

ERROR 3260 The identifier <identifier name> is unde-
clared.

Anidentifier isundeclared, i.e. the program is not semantically correct
and will therefore not be translated to SDL.

ERROR 3261 The type <type name> is undeclared, or is de-
pending on an undeclared type.

A typeisundeclared, or depends on atypethat isundeclared. A type de-
fined by atypedef of an undeclared typeisan example of atypethat de-
pends on a undeclared type. Since the program is not semantically cor-
rect, it will not be trandated to SDL.

Telelogic Tau 4.5 User's Manual 855

Chapter 15 The CPP2SDL Tool

856

ERROR 3262 The base <base class name> is undeclared.

A classinherits from abase class that isundeclared. Thisis asemantic
error, and the program will thus not be translated to SDL.

ERROR 3263 Illegal instantiation of template <template
names>.

A template instantiation is semantically incorrect. Make sure that the
number of actual argumentsin the template instantiation matches the
number of formal arguments in the template declaration, and that the
kinds of the arguments are correct. Since the program is not semantical -
ly correct, it will not be translated to SDL.

Warnings

WARNING 3201 Static member variable <variable name> will
not be globally accessible since no SDL variables are al-
lowed.

A static member variable cannot be fully trandlated, since no external
variables are allowed in the context where the generated SDL declara-
tions are to be injected. The static variable will still be accessible asan
ordinary member variable, but not asaglobally accessible variable. Un-
set the option -novariables to alow generation of external SDL vari-
ables.

WARNING 3202 Static overloaded operator <operator name>
will not be globally accessible.

A static overloaded operator cannot be fully translated, sinceit is not
possible to qualify the name of an overloaded operator in SDL which
otherwise would be required. The static operator will still be accessible
as an ordinary member overloaded operator, but not asaglobally acces-
sible overloaded operator. Refer to “Overloaded Operators’ on page
828.

WARNING 3203 Cannot translate incomplete type declara-
tion without declared objects. The declaration will be
ignored.

Anincompletetype declaration that is not used asthetype of at |least one
object (e.g. variable, constant, or type) is auseless declaration that will

not betranslated to SDL.. See*Incomplete Types’ on page 823 for more
about useless incompl ete type declarations.

Telelogic Tau 4.5 User's Manual July 2003

CPP2SDL M essages

July 2003

WARNING 3204 Cannot translate overloaded operator, since
it is declared in a namespace.

An overloaded operator declared in anamespace cannot betranslated to
SDL, sinceit is not possible to qualify the name of an overloaded oper-

ator in SDL which otherwise would be required. Refer to “ Overloaded
Operators” on page 828.

WARNING 3205 Cannot translate overloaded shift operator,
since the ‘<’ or '>’ operator also is overloaded in this
scope.

The translation rule for overloaded operators only supports trandation
of either the < and > operators or the << and > > operators. Thiswarning
isgiven if an operator from both these operator pairs are overloaded in
a certain scope. See “Overloaded Operators’ on page 828 for more in-
formation.

WARNING 3206 Cannot translate overloaded operator, since
no corresponding SDL operator exists.

An overloaded operator cannot be translated to SDL, since ho appropri-
ate SDL operator existsthat could represent it. Thetablein“Overloaded

Operators” on page 828 showswhat overloaded C++ operatorsthat may
be represented in SDL.

WARNING 3207 Unable to evaluate sizeof expression prop-
erly.

A constant expression contains a usage of the sizeof () operator, and
could therefore not be safely evaluated by CPP2SDL. Thetrand ation of
the constant expression may thus be incorrect, and should be manually
reviewed. See " Constant Expressions’ on page 795 for more informa-
tion about constant expressions.

WARNING 3208 The member <member name> of <class name> in-
herited via <base class names> is inaccessible and will
not be translated.

An inherited class member cannot be accessed in C++ due to a combi-
nation of multiple inheritance and base classes with members having
the same name. The member will thus not be translated to SDL.

Telelogic Tau 4.5 User's Manual 857

Chapter 15 The CPP2SDL Tool

858

WARNING 3209 Cannot translate function pointer type. It
will be represented by ptr_void.

Thiswarningisgiven when afunction pointer typeisencountered inthe
input. The support for function pointersislimited (see " Function Point-
ers’ on page 789), and they will be represented as untyped pointersin
SDL (i.e. ptr_void).

WARNING 3210 Cannot translate typedef of function type.
The declaration will be ignored.

A typedef declaration wherethe source typeisafunction type cannot be
translated to SDL, since there is no translation rule for function types.

WARNING 3211 Cannot translate template declaration. The
declaration will be ignored.

A template declaration cannot betranslated to SDL. Only instantiations
of atemplate declaration can be translated. Note that thiswarningisgiv-
en also when atemplate instantiation has been specified in an import
specification (see “ Template Instantiations” on page 774). In that case
the warning could be ignored.

WARNING 3212 Cannot fully translate ellipsis function.
Unspecified function arguments will be ignored.

A function with unspecified arguments (a.k.a. an ellipsis function) can-
not be fully translated to SDL, since no information has been provided
about the unspecified arguments. The function will be translated, but
without taking the unspecified arguments into consideration. See “Pro-
totypes for Ellipsis Functions” on page 774 to learn how to use an im-
port specification to provide CPP2SDL with actua arguments for un-
specified formal arguments of ellipsis functions.

WARNING 3213 The typedef name <name> conflicts with the
name of another non-compatible type. The declaration
will be ignored.

A typedef declaration cannot be translated to SDL, since the typedef
name is the same as another type that is not type compatible with the
type defined by the typedef itself. This warning may be given for type-
defs of pointers or arrays of tagged types. For example:

typedef struct T ({
int i;
}o*T;

Telelogic Tau 4.5 User's Manual July 2003

CPP2SDL M essages

July 2003

This declaration, which isillegal in C++ but legal in C, contains two
typescalled T that are type incompatible. CPP2SDL will makethe type
struct Tavailablein SDL (called T there), whilethe type T will not be
trand ated.

Itisrecommended to change the name of either the typedef name or the
type tag to enable CPP2SDL to translate both types, and thus avoid get-
ting this warning.

WARNING 3290 The identifier <identifier name> does not
refer to a declared object. It will be ignored.

Thiswarning isgiven if CPP2SDL findsan identifier in an import spec-
ification that does not exist in the input program. The identifier will be
ignored.

WARNING 3291 Cannot translate the identifier <identifier
name>, since it is a class member.

Thiswarning isgiven if CPP2SDL findsan identifier in an import spec-
ification that refersto a class member in the input program. The identi-
fier will not betranslated, since only declarationsin namespaces may be
translated (see “Import Specifications’ on page 771).

Telelogic Tau 4.5 User's Manual 859

Chapter 15 The CPP2SDL Tool

860 Telelogic Tau 4.5 User' s Manual July 2003

	15 The CPP2SDL Tool
	Introduction
	Executing CPP2SDL
	Execution from the Organizer
	Adding Import Specifications to the Organizer view
	Setting CPP2SDL Options in the Organizer

	Execution from the Command-Line
	Command-Line Options

	Execution from the PostMaster

	Import Specifications
	Advanced Import Specifications
	Type Declarators
	Prototypes for Ellipsis Functions
	Template Instantiations

	Source and Error References
	Source References
	Error References

	C/C++ to SDL Translation Rules
	Names
	Fundamental Types
	Type Declarators
	Pointers
	Arrays
	References

	Enumerated Types
	Typedef Declarations
	Functions
	Argument Passing and Return Value
	Default Arguments
	Unspecified Arguments
	Inline Functions
	Function Pointers

	Scope Units
	Namespaces

	Variables
	Constants
	Constant Expressions
	Classes, Structs and Unions
	Anonymous Unions
	Constructors
	Destructors
	Members
	Friends
	Inheritance
	Abstract Classes
	Run-Time Type Information and Dynamic Cast

	Forward Declarations
	Incomplete Types
	Dynamic Memory Management
	C Mode
	C++ Mode

	Overloaded Operators
	Templates
	Class Templates
	Function Templates
	Default Template Arguments

	Miscellaneous
	Language Constructs
	Non-Language Constructs

	Special Translation Rules for C Compilers
	SDL Library for Fundamental C/C++ Types
	Example usage of some C/C++ functionality
	Overloaded Operators
	String handling
	Type conversion

	Error Handling
	CPP2SDL Messages
	Errors
	Warnings

