
July 2003 Telelo

Chapter
15 The CPP2SDL Tool
The CPP2SDL tool is a C/C++-to-SDL translator that makes it pos-
sible to access C or C++ declarations in SDL. The tool takes a set of
C/C++ header files as input and generates SDL declarations for a
configurable set of the C/C++ declarations in these files.

CPP2SDL is the new generation of the H2SDL utility. Compared to
its predecessor, CPP2SDL offers a comprehensive C++ support as
well as superior translation configurability. CPP2SDL is fully inte-
grated in Telelogic Tau SDL suite, but can also be executed as a
stand-alone utility from the command shell.

This chapter is the reference manual for CPP2SDL. The reader is
assumed to be familiar with C/C++ and SDL.
gic Tau 4.5 User’s Manual ,um-st1 757

Chapter 15 The CPP2SDL Tool
Introduction
The overall purpose of the CPP2SDL tool is to provide a convenient
means of making external C or C++ declarations available in an SDL
context. This is accomplished by translating the C/C++ declarations
into representing SDL declarations. These resulting declarations can be
injected at an arbitrary level in the SDL scope hierarchy, and may then
be used just as if they actually were declared at that scope level. When
target code is generated for the SDL system, the Code Generator pro-
duces C or C++ code for usages of generated SDL declarations that
matches the original C/C++ declarations. The picture below depicts the
data flow when using CPP2SDL, and the context of the tool.

.

As can be seen in the figure, the input to CPP2SDL is a set of C/C++
header files and, optionally, an import specification. From this input
CPP2SDL generates an SDL/PR file containing SDL representations
for the declarations in the header files, or for a subset of these declara-
tions according to what is specified in the import specification. The gen-
erated SDL/PR is analyzed together with other SDL/PR, e.g. the

Figure 170 CPP2SDL Data Flow and Context

 .pr

.is

Import specification

 .h .c

C/C++ header
files

SDL/PR

C/C++

CPP2SDL

Analyzer &
C/C++ Code
Generator

C/C++

.pr

CompilerOther object
code

.o

Other SDL/PR

.oC/C++ object
files

 .o C/C++
Linker

Object code

Application.exe
758 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
SDL/PR for the SDL system. The Code Generator then generates target
C/C++ code which is compiled by a C/C++ compiler. Note that the orig-
inal C/C++ headers are used in this compilation. The resulting object
code is linked together with the object files belonging to the C/C++
headers. Other object files are also included, e.g. the precompiled SDL
kernel that is to be used. The result is an executable application.

CPP2SDL translates from C/C++ to SDL according to certain transla-
tion rules. These translation rules have been designed to be as simple
and intuitive as possible. A user that is familiar with C/C++ should find
it straight-forward to use a C/C++ declaration from SDL. The transla-
tion rules are described in full detail in “C/C++ to SDL Translation
Rules” on page 778. Although CPP2SDL supports translation of a ma-
jor part of the C and C++ languages, not everything is supported. The
limitations of CPP2SDL are listed in “Known Limitations” on page 28
in chapter 2, Release Notes.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 759

Chapter 15 The CPP2SDL Tool
Executing CPP2SDL
Normally, CPP2SDL is automatically invoked by the SDL Analyzer as
part of the make process. Input header files and tool options are then
specified in the Organizer. However, CPP2SDL may also be executed
as a stand-alone tool from a command shell, and in that case input head-
ers and tool options are given as command-line options.

This section begins with a description of the integration with the Orga-
nizer and the Analyzer. Then how to execute CPP2SDL from the com-
mand-line is described. Finally, follows a section on how to run the tool
through the PostMaster.

Execution from the Organizer
The most common way to execute CPP2SDL should be from the Orga-
nizer. In fact CPP2SDL will be started automatically by the Analyzer
once for each import specification symbol it finds in the Organizer view
(see “Import Specifications” on page 771 to learn about import specifi-
cations). The Analyzer executes CPP2SDL by means of the PostMaster
as described in “Execution from the PostMaster” on page 769. All mes-
sages that are output during the execution will be printed in the Orga-
nizer Log Window.

Example 77: Executing CPP2SDL from the Organizer –––––––––––––

Consider a simple SDL system with one block and one process that
needs to access some C++ declarations. At system level certain decla-
rations of the C++ header file general.h is used, and at process level
declarations of the files f1.h and f2.h are needed. Figure 171 below
shows how the Organizer view of this SDL system could look like.
760 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Executing CPP2SDL
When this system is analyzed, the Analyzer will execute CPP2SDL
once for the file general.h, and once for the files f1.h and f2.h. The
result of the first translation is a set of SDL declarations that are injected
at system level, and thus will be accessible in all scopes. The result of
the second translation is a set of SDL declarations that are injected at
process level and thus are not accessible in the system or in the block
scope.

Adding Import Specifications to the Organizer view

The first step in accessing C/C++ declarations from SDL is to insert a
PR symbol at the place in the SDL specification where the C/C++ dec-
larations are to be used. The PR symbol represents the inclusion of the
SDL PR that is the translation of the C/C++ declarations.

To specify that this should be an import specification, double-click the
PR symbol either in the Organizer or in the SDL Editor to open the Edit
Document dialog. In the dialog it is possible to select either C Import
Specification or C++ Import Specification.

An import specification can be edited manually by means of the Text
Editor (see “Import Specifications” on page 771 to learn about import

Figure 171 Organizer view with headers to be translated by CPP2SDL
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 761

Chapter 15 The CPP2SDL Tool
specifications). However, an import specification can also be edited in
the CPP2SDL Options dialog described below.

After adding an import specification it is necessary to specify which
C/C++ header files are to be translated. This is done by selecting the im-
port specification in the Organizer and then use the Add Existing and
Add New commands to select or create C/C++ header files respectively.

Setting CPP2SDL Options in the Organizer

Required options to CPP2SDL may be specified in the Organizer for
each import specification by using the CPP2SDL Options dialog. This
dialog may be opened from the menu that appears when the right mouse
button is pressed on an import specification symbol. Figure 172 shows
this dialog.

Figure 172 The CPP2SDL Options Dialog
762 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Executing CPP2SDL
The fields and buttons of the CPP2SDL Options dialog correspond di-
rectly to the command-line options described in “Command-Line Op-
tions” on page 764:

• Language

These radio buttons select the input language. If C is selected,
CPP2SDL will be executed in C mode, i.e. as with the -c command-
line option.

• Dialect

These check boxes determine what dialects to support in the input,
and correspond to the -dialects command-line option. If no
check-boxes are marked, the ANSI C/C++ dialect is supported.

• Run-Time Type Information

This check box should be set if Run-Time Type Information (RTTI)
is available in C++ and should be supported in the SDL translation.
It corresponds to the -rtti command-line option.

• Allow object slicing

This check box should be set if object slicing should be supported
in the SDL translation. It corresponds to the -slicing command-
line option.

• Recognize SDL sorts in input

This check box should be set if SDL sorts should be recognized in
the input. It corresponds to the -sdlsorts command-line option.

• Preprocessor

This field is used to specify the preprocessor to use for preprocess-
ing the input. It corresponds to the -preprocessor command-line
option. This field also has a browse button that makes it possible to
select the preprocessor from a file selection dialog.

• Preprocessor options

This field should contain the options to the preprocessor. It corre-
sponds to the -cppoptions command-line option.

• Pointer, Array, Template, Keyword, Incomplete, Underscore
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 763

Chapter 15 The CPP2SDL Tool
These fields specify the prefixes and suffixes that are used when
C/C++ names must be modified in the SDL translation. They corre-
spond to the -prefix and -suffix command-line options.

• Generate SDL representations for fundamental types

This check box should be set if SDL representations for fundamen-
tal C/C++ types should be included in the translation. It corresponds
to the -generatecpptypes command-line option.

• Only generate class pointer types when necessary

If this check box is set, CPP2SDL will optimize the generation of
class pointer types. It corresponds to the -optclasspointers
command-line option.

Execution from the Command-Line
CPP2SDL is invoked from the command-line by the command:

cpp2sdl [options] <C/C++ header files>

Unless the -post option is set, all messages that are output by the tool,
e.g. errors and warnings, will be printed on the standard error stream
(stderr).

CPP2SDL will translate the declarations in the specified C/C++ header
files, or a subset of these declarations if a suitable import specification
is used (see “Import Specifications” on page 771). The resulting SDL
declarations will be saved in a file called name.pr, where name is the
name of the import specification used. If no import specification is used,
name will be the name of the first input header file.The output file will
be placed in the same directory from where CPP2SDL is executed.

Command-Line Options

The command-line options recognized by CPP2SDL are listed and ex-
plained below. Note that an option may be abbreviated as indicated by
the underlined part of the option name.

• -append

Append the generated SDL declarations to the file that is specified
with the -output option. If that file does not exist, this option will
764 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Executing CPP2SDL
be ignored and CPP2SDL will create a new file for the output as
usual.

• -c

Execute in C mode. CPP2SDL will assume that no C++ specific
constructs are encountered in the input headers. If this assumption
does not hold, the result of the translation is undefined. See “Special
Translation Rules for C Compilers” on page 839 for a detailed de-
scription of translation rule modifications that are caused by using
this option.

• -cppoptions <optionsstring>

Send the specified option string to the preprocessor. If the string
contains white spaces, it must be quoted.

• -dialects <dialect> <dialect> ... <dialect>

Accept the specified C/C++ dialects in the input headers. Supported
dialects are

– ANSI (ANSI C/C++)

– BC (Borland C/C++)

– GCC (Gnu C/C++)

– MSVC (Microsoft Visual C/C++)

– ALL (all supported C/C++ dialects)

If this option is not used, CPP2SDL will assume that the input head-
ers conform to the ANSI C/C++ dialect.

• -errorlimit <number>

Set the maximum number of errors to report before terminating the
translation. The default it to terminate when 5 errors have been
found.

• -extsyn

Will not generate for constants with numeric expressions, external
synonyms with its value (if the expression can be calculated during
translation). Default, i.e. without this option, the value is translated .

• -generatecpptypes
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 765

Chapter 15 The CPP2SDL Tool
Include SDL representations for fundamental C/C++ types in the
translation. See “SDL Library for Fundamental C/C++ Types” on
page 841 for more information about what actually is generated
when this option is used.

• -help

Print a help message about CPP2SDL. No translation will be per-
formed.

• -importspecification <file>

Use the specified file as import specification for the translation. Im-
port specifications are described in “Import Specifications” on page
771.

• -nocheckinput

Do not check that all input headers are existing and readable before
trying to translate them. The use of this option could make it easier
to use CPP2SDL from scripts.

• -nodepend

Do not translate depending declarations when using an import spec-
ification. Only the identifiers that are explicitly present in the import
specification will be translated. If this option is set, CPP2SDL can-
not guarantee that the resulting set of SDL declarations is complete
and consistent. See “Import Specifications” on page 771 for more
information.

• -novariables

Do not generate external variables. This option is needed since the
rules for where SDL allows declarations of external variables are
more restrictive than for other declarations. For example, SDL does
not allow external variables declared at system or block level. If this
option is used, CPP2SDL will output a warning if it finds a con-
struct that otherwise would be translated to an external variable.

• -optclasspointers

Optimize the generation of class pointer types so that they are only
generated when they appear in the input headers. If this option is not
used, CPP2SDL will automatically generate a pointer type to all
translated classes. Read more about this in “Classes, Structs and
Unions” on page 796.
766 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Executing CPP2SDL
• -output <file>

Write the resulting SDL declarations to the specified file. If the
-append option is set, the result will be appended to the file. Other-
wise a new file will be created, overwriting an existing file with the
same name, if any.

Note that all files that CPP2SDL generates will be placed in the
same directory as the generated SDL/PR file.

• -post

Start CPP2SDL as a PostMaster client waiting for requests from the
PostMaster. The PostMaster messages that are handled by
CPP2SDL are described in “Execution from the PostMaster” on
page 769.

• -prefix “ptr=<string> arr=<string> keyword=<string>
incomplete=<string> tpl=<string>”

Use the specified name prefixes when generating SDL. CPP2SDL
uses name prefixes when the original C/C++ names for some reason
cannot be used in SDL. This option makes it possible to fully con-
figure how such modified names are generated. This is often useful
in order to avoid name clashes in SDL.

• -preprocessor <executable>

Use the specified executable for preprocessing the input headers.
The executable should be a preprocessor or C/C++ compiler that is
supported by CPP2SDL:

– ‘cl’ (Microsoft Visual C/C++ Compiler), in Windows.

– ‘cpp32’ (Borland C/C++ Preprocessor), in Windows.

– ‘cpp’ (C/C++ Preprocessor), on Unix.

– ‘cc’ and ‘CC’ (Sun Workshop C and C++ Compilers), on Unix.

– ‘gcc’ and ‘g++’ (GNU C and C++ Compilers), on Unix.

If this option is not used, CPP2SDL will attempt to use ‘cl’ in Win-
dows, and ‘cpp’ on Unix.

Note that CPP2SDL uses name matching of the specified filename,
with the file name extension stripped, to determine what preproces-
sor or compiler to use for preprocessing. If the specified name does
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 767

Chapter 15 The CPP2SDL Tool
not match the name of any supported preprocessor or compiler on
the current platform, CPP2SDL will attempt to call the executable
like this:

<executable> <options> <input file> <output file>

<options> are the option string specified with the -cppoptions
options.
If this call fails, CPP2SDL does not know how to preprocess the in-
put headers and terminates.

• -ref

Include source references in the generated SDL. The format of these
source references is described in “Source and Error References” on
page 776.

• -rtti

Assume Run-Time Type Information, and support dynamic casting.
See “Run-Time Type Information and Dynamic Cast” on page 820
for more information what this means.

• -sdlsorts

Recognize SDL sorts in input. CPP2SDL will translate C/C++ types
that are prefixed with ‘SDL_’ to the corresponding SDL sort. Refer
to “SDL Sorts in C/C++” on page 837 for an example on how this
feature can be used.

• -slicing

Generate SDL cast operators to support slicing of C++ objects. See
“Type Compatibility between Inherited Classes” on page 816 for
more information.

• -sortmembers

Hint:

If you want to preprocess the input headers using a preprocessor that
is not supported by CPP2SDL, you can write a simple shell script
that wraps the call to the desired preprocessor. The script should
conform to the call style that CPP2SDL uses for unknown prepro-
cessors. Then execute CPP2SDL, using the -preprocessor op-
tion to specify the script as the preprocessor to use.
768 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Executing CPP2SDL
Sort struct members in SDL newtypes alphabetically.

• -suffix "uscore=<string>"

Use the specified name suffixes in the generated SDL. CPP2SDL
uses name suffixes when the original C/C++ name for some reason
cannot be used in SDL. This option makes it possible to fully con-
figure how such modified names are generated.

• -targetdir <directory>

Set the target directory for generated files. CPP2SDL produces one
single header file which includes all the header files that are to be
translated. If this option is used, this generated header file is placed
in the specified target directory. Otherwise the file will be placed in
the same directory as the generated SDL/PR file.

• -version

Show version information.

Example 78: Executing CPP2SDL from the command-line –––––––––

% cpp2sdl -preprocessor /usr/ccs/lib/cpp -output
result.pr -prefix “ptr=p arr=a” -rtti -ref input.h

This command will translate the input header input.h to SDL and
write the resulting SDL declarations to the file result.pr. The speci-
fied preprocessor ‘cpp’ will be used to preprocess the input. If the input
contains pointer or array types, the corresponding SDL names will be
prefixed with ‘p’ and ‘a’ respectively. Source references to the declara-
tions in input.h will be generated by CPP2SDL, and Run-Time Type
Information is assumed so that dynamic cast operators are generated.

––

Execution from the PostMaster
As mentioned above, CPP2SDL may be started as a PostMaster client
by using the -post option at the command-line. As a PostMaster client,
CPP2SDL will handle two different PostMaster events.

• SESTOP

• SECPP2SDLCOMMAND <optionstring>
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 769

Chapter 15 The CPP2SDL Tool
The reception of a SESTOP event has the expected behavior; CPP2SDL
ceases to be a PostMaster client and terminates.

The SECPP2SDLCOMMAND event has an option string as argument.
The event will cause CPP2SDL to execute according to the options
specified in that string. The format of the option string is the same as
when CPP2SDL is executed from the command-line (see “Execution
from the Command-Line” on page 764). All messages that are output
by the tool will be broadcast to the PostMaster.

After the execution of a SECPP2SDLCOMMAND event a reply is sent:

SECPP2SDLCOMMANDREPLY <#errors> <#warnings> <status>

The <#errors> and <#warnings> arguments tell the number of errors
and warnings that occurred during the translation, and <status> is a text
string with the same information in a more readable form.

Example 79: Executing CPP2SDL from the PostMaster ––––––––––––

A single PostMaster may be started with this command:

% sdt -noclients

Then CPP2SDL is started as a PostMaster client:

% cpp2sdl -post &

CPP2SDL is now waiting for requests to come from the PostMaster. By
using for example the SERVERPC application, events can be sent to it.

% serverpc 58000 58101 “-rtti -ref input.h”

58000 is the tool id of CPP2SDL, and 58101 is the event id for the
SECPP2SDLCOMMAND event. As a result the following reply event
could for example be received:

SECPP2SDLCOMMANDREPLY 0 2 “0 errors and 2 warnings”

Finally, CPP2SDL is terminated using the SESTOP event (id 58303):

% serverpc 58000 58303

––
770 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Import Specifications
Import Specifications
A simple but powerful way of configuring the translation of a set of
C/C++ declarations is to use an import specification. As the name sug-
gests, an import specification specifies how to import external code into
SDL. An import specification for CPP2SDL is a textfile written in a
simple C/C++-style syntax. The file consists of two sections that both
are optional:

• CPP2SDLOPTIONS

This section may contain options to the CPP2SDL tool. The syntax
is the same as when CPP2SDL is executed as a stand-alone tool
from the command-line. See “Command-Line Options” on page
764.

• TRANSLATE

This section may contain a list of C/C++ identifiers. CPP2SDL will
attempt to make these identifiers available in SDL by translating the
corresponding declarations.

Options and identifiers in an import specification are delimited by new-
lines.

The example below shows a simple import specification where the
identifiers func, C and myint are made available in SDL.

Example 80: A simple import specification ––––––––––––––––––––––

CPP2SDLOPTIONS {
 -preprocessor /usr/ccs/lib/cpp
}

TRANSLATE {
 func
 C
 myint
 // C++ style comment (if supported by preproc.)
 /* C style comment */
}

––

The import specification file will be preprocessed by CPP2SDL with
the same preprocessor and preprocessor options that are used when pre-
processing the input C/C++ headers. This makes it possible to use, for
instance, C/C++ comments and macros in an import specification.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 771

Chapter 15 The CPP2SDL Tool
If an identifier in an import specification refers to a declaration that de-
pends on other declarations, CPP2SDL will, by default, translate all
these depending declarations as well. This principle is applied recur-
sively to all declarations that depend on depending declarations, thereby
making sure that the resulting SDL declarations are complete and con-
sistent. If the -nodepend option is set, depending declarations will not
be translated automatically. Then the tool cannot guarantee that the re-
sulting set of SDL declarations is complete and consistent.

Example 81: Translation of depending declarations –––––––––––––––

File data.h:

typedef int myint;

class C {
public:
 myint* mvar;
};

File import.is:

TRANSLATE {
 C
}

Execution of CPP2SDL from the command-line,

% cpp2sdl -importspecification import.is data.h

will produce resulting SDL declarations in the file import.pr:

SYNTYPE myint = int
ENDSYNTYPE myint;EXTERNAL ’C++’;
NEWTYPE ptr_myint Ref(myint);
 OPERATORS
 ptr_myint : -> ptr_myint;
 ptr_myint : ptr_myint -> ptr_myint;/
ENDNEWTYPE ptr_myint;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;

Note:

Some preprocessors will refuse to preprocess files that have an un-
known file name extension (for example .is). In that case the im-
port specification file must be given a file name extension that is
known to the preprocessor (for example .h).
772 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Import Specifications
NEWTYPE C
 STRUCT
 mvar ptr_myint;
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

Here, the import specification only specifies that the class C shall be
translated, but since the declaration of C depends on myint*, which in
turn depends on myint, these declarations will be translated as well.

––

Advanced Import Specifications
Besides from specifying which identifiers that should be translated to
SDL, there are some more advanced constructs that may be used in an
import specification.

Type Declarators

It is possible to append type declarators to identifiers that represent
types. The same type declarators as in C/C++ are allowed, i.e. pointer
(*), array ([]), and reference (&). Prefix and postfix declarators are sep-
arated by a dot (.).

Example 82: Type declarators in import specification –––––––––––––

TRANSLATE {
 char* // A pointer to char.
 MyClass.[8] // An array of 8 MyClass.
 mytype& // A reference to mytype.
 C*.[10] // An array of 10 pointers to C.
}

––

Note:

CPP2SDL will only translate those identifiers in an import specifi-
cation that refer to declarations in namespaces (including the global
namespace). If an identifier refers to another kind of declaration, for
example a class member, it will be ignored and CPP2SDL will issue
a warning.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 773

Chapter 15 The CPP2SDL Tool
Prototypes for Ellipsis Functions

The translation rule for a function with unspecified arguments (a.k.a an
ellipsis function) requires that information is provided about which ver-
sions of the function that should be made available in SDL (see “Un-
specified Arguments” on page 789). This information may be given in
an import specification by specifying prototypes for the function.

Example 83: Prototypes for ellipsis functions in import specification

Input declaration:

int printf(const char*, ...);

Import specification:

TRANSLATE {
 printf
 printf(int)
 printf(double, char)
}

Resulting SDL declarations:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 printf : ptr_char, double, char -> int;
 printf : ptr_char, int -> int;
 printf : ptr_char -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

NEWTYPE ptr_char Ref(char);
 OPERATORS
 ptr_char : -> ptr_char;
 ptr_char : ptr_char -> ptr_char;/
ENDNEWTYPE ptr_char;EXTERNAL ’C++’;

––

Template Instantiations

Similar to ellipsis functions, the translation of templates requires addi-
tional information about how the templates should be instantiated (see
“Templates” on page 831). This information may be specified in an im-
port specification, using the same syntax as when templates are instan-
tiated in C++.

Example 84: Template instantiations in import specification––––––––

Input declarations:
774 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Import Specifications
template <class C, int i> class S {
public:
 C arr[i];
};

template <class D> D func(const D& p1);

Import specification:

TRANSLATE {
 S<double, 5>
 func<unsigned int>
}

Resulting SDL declarations:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 tpl_func_unsigned_int /*#REFNAME ’func<unsigned
int >’*/ : unsigned_int -> unsigned_int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

NEWTYPE arr_5_double CArray(5, double);
ENDNEWTYPE arr_5_double;EXTERNAL ’C++’;

NEWTYPE ptr_tpl_S_double_5 Ref(tpl_S_double_5);
 OPERATORS
 ptr_tpl_S_double_5 : -> ptr_tpl_S_double_5;
 ptr_tpl_S_double_5 : ptr_tpl_S_double_5 ->
 ptr_tpl_S_double_5;
ENDNEWTYPE ptr_tpl_S_double_5;EXTERNAL ’C++’;

NEWTYPE tpl_S_double_5 /*#REFNAME ’S<double, 5 >’*/
 STRUCT
 arr arr_5_double;
 OPERATORS
 tpl_S_double_5 /*#REFNAME ’S’*/ : ->
 tpl_S_double_5;
 tpl_S_double_5 /*#REFNAME ’S’*/ : tpl_S_double_5
-> tpl_S_double_5;
ENDNEWTYPE tpl_S_double_5;EXTERNAL ’C++’;

––

Note that since class template instantiations define types, it is possible
to use type declarators for them.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 775

Chapter 15 The CPP2SDL Tool
Source and Error References
A source reference is a reference from a generated SDL declaration to
the corresponding original C/C++ declaration. Source references are
placed in the generated SDL/PR file.

An error reference is also a reference to a declaration in the input header
file, but is used to point out an error (or a warning) in that file. Error ref-
erences are therefore printed as messages to the standard error stream or
to the Organizer Log Window.

CPP2SDL uses the #SDTREF format both for source and error refer-
ences. See chapter 19, SDT References for more about #SDTREF.

Source References
When CPP2SDL is executed from the Organizer, or from the command-
line with the -ref option set, the generated SDL/PR file will contain
references to the input source files. Such a reference occurs just before
a generated SDL declaration, and is on the form

 /*#SDTREF(TEXT,filename,line)*/

where

• filename is the name of the input file where the corresponding
C/C++ declaration can be found.

• line is the line number in that input file where the C/C++ declara-
tion starts.

A source reference is shown in Example 85 below.

Example 85: Source references––––––––––––––––––––––––––––––––

/*#SDTREF(TEXT,input.h,226)*/
NEWTYPE S STRUCT
 a int;
OPERATORS
 get_a: S -> int;
ENDNEWTYPE S;EXTERNAL ‘C++’;

––
776 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Source and Error References
Error References
Error references have a similar format as source references but with a
column position added after the line number:

 /*#SDTREF(TEXT,filename,line,column)*/

CPP2SDL prints error references when errors or warnings are found
during the translation. They are output to the standard error stream
(stderr) or to the Organizer Log Window depending upon whether
CPP2SDL is executed from the command-line or from the PostMaster.

Problems with error references may arise because of the preprocessor.
Among other things, the preprocessor expands macros, and a typical
problem is illustrated in Example 86 below.

Example 86: Error References–––––––––––––––––––––––––––––––––

File def.h:

#define init InitializingFunction

void init(undefinedType *, int);

If CPP2SDL translates this file, the following error message will be
printed:

#SDTREF(TEXT,def.h,3,27)
ERROR 3200 Syntax error.

Here the syntax error occurs at position (3,11) in the source file, but be-
cause of the macro expansion of init to InitializingFunction,
CPP2SDL will report the error at position (3,27) instead. Thus the col-
umn position is several characters off the target in the original file.
When using the Organizer Log’s Show Error function (see “Show Er-
ror” on page 183 in chapter 2, The Organizer) to view the source of this
error message, the cursor will be placed at int instead of at
undefinedType. CPP2SDL calculates both source and error references
from the preprocessed source code, and this may lead to reference prob-
lems when macros are involved.

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 777

Chapter 15 The CPP2SDL Tool
C/C++ to SDL Translation Rules
The general idea behind the CPP2SDL tool is to take a set of C/C++
header files, preprocess them, and translate some or all of the declara-
tions in these headers into SDL/PR representations. This section de-
scribes the rules for this translation process.

Each C/C++ construct is described in a subsection of its own. First, a
general rule for the translation of the construct is presented. Then fol-
lows a description of exceptions to this rules, and rationals for these ex-
ceptions.

Before proceeding, it should be noted that the translation rules have
been designed to support both C and C++ target compilers. To a large
extent the translation rules are actually independent of whether a C or
C++ target compiler is used. However, there are some differences, so
when CPP2SDL executes in “C mode” (i.e. with the -c option set) a few
translation rules are slightly modified. These modifications are de-
scribed in “Special Translation Rules for C Compilers” on page 839.

Names
Rule: The name of a C/C++ identifier is the same in SDL.

The naming rules of identifiers in SDL and C/C++ are rather similar but
differs in two important aspects:

• SDL is a case-insensitive language, while C/C++ is case-sensitive.

• SDL has some restrictions for how underscores may be used in
names. C/C++ has no such restrictions.

To overcome these differences tool specific extensions have been made
in the supported SDL dialect. The Analyzer has an option to handle case
sensitive SDL (see “Set-Case-Sensitive” on page 2416 in chapter 55,
The SDL Analyzer), and most of the restrictions with underscores have
been removed. However, the rule that a name that ends with an under-
score should be concatenated with the following name, makes it neces-
sary to modify such names in the SDL mapping. This is done by ap-
pending a string suffix to such names. This string is by default “uscore”
but may be configured to an arbitrary string be means of the CPP2SDL
option
-suffix.
778 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Another case where a name in C/C++ cannot be retained in the SDL
translation is when the name is an SDL keyword. Such names are pre-
fixed with a user-configurable string that by default is keyword_. The
option -prefix can be used to configure this string.

Example 87 below gives some examples of the translation rules for
names.

Example 87: Translation of names –––––––––––––––––––––––––––––

C++:

int ABC, abc; // Case sensitivity
char u__sc, _w, x_; // Unrestricted use of
underscores
double signal; // SDL keyword

SDL:

DCL ABC int; EXTERNAL ’C++’;
DCL abc int; EXTERNAL ’C++’;
DCL u__sc char; EXTERNAL ’C++’;
DCL _w char; EXTERNAL ’C++’;
DCL x_uscore /*#REFNAME ’x_’*/ char; EXTERNAL ’C++’;
DCL keyword_signal /*#REFNAME ’signal’*/ double;
EXTERNAL ’C++’;

––

Note the #REFNAME directive that passes the original C/C++ name to
the Code Generator for names that are modified in the SDL translation.

Fundamental Types
Rule: A fundamental C/C++ type is mapped to an SDL sort with the
same name.

The SDL sorts that represent fundamental C/C++ types are not generat-
ed by CPP2SDL but are defined in special SDL/PR files that are includ-
ed if the -generatecpptypes option is set. The SDL sorts in these files
are normally syntypes of predefined SDL sorts. Refer to “SDL Library
for Fundamental C/C++ Types” on page 841 for more information.

The table below shows how the fundamental C/C++ types are translated
to SDL sorts, and what predefined SDL sort that correspond to these
SDL sorts.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 779

Chapter 15 The CPP2SDL Tool
Note that the wchar_t type has no counterpart in SDL, and thus is rep-
resented by a newtype rather than a syntype of a predefined sort.

C/C++ Fundamental Type SDL Sort Predefined SDL Sort

signed int
int

int Integer

unsigned int
unsigned

unsigned_int Integer

signed long int
signed long
long int
long

long_int Integer

unsigned long int
unsigned long

unsigned_long_int Integer

signed short int
signed short
short int
short

short_int Integer

unsigned short int
unsigned short

unsigned_short_int Integer

signed long long int
signed long long
long long int
long long

long_long_int Integer

unsigned long long int
unsigned long long

unsigned_long_long_int Integer

char char Character

signed char signed_char Character

unsigned char unsigned_char Octet

wchar_t wchar_t N/A

float float Real

double
long double

double Real

bool bool Boolean

void N/A N/A
780 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Also note that the special void type is not represented explicitly in
SDL. Instead this type is translated by omitting input and result argu-
ments to operators as described in “Functions” on page 786.

Type Declarators
There are two different type declarators in C; pointer (*), and array ([]).
C++ has one additional type declarator; reference (&).

Pointers

Rule: A type with a pointer declarator is translated by applying the Ref
generator on the SDL sort that corresponds to that type.

The name of the generated newtype for the pointer is prefixed with a
user-configurable string that by default is ptr_. The option -prefix
can be used to configure this string.

Untyped pointers (void*) are translated to a special SDL sort called
ptr_void. See “SDL Library for Fundamental C/C++ Types” on page
841 for more information about the Ref generator and the special
ptr_void sort.

Example 88: Translation of pointers––––––––––––––––––––––––––––

C++:

typedef int* p_int;
extern void* generalp;

SDL:

NEWTYPE ptr_int Ref(int);
 OPERATORS
 ptr_int : -> ptr_int;
 ptr_int : ptr_int -> ptr_int;
ENDNEWTYPE ptr_int;EXTERNAL ’C++’;
SYNTYPE p_int = ptr_int
ENDSYNTYPE p_int;EXTERNAL ’C++’;
DCL generalp ptr_void; EXTERNAL ’C++’;

––

Arrays

Rule: A type with an array declarator is translated by applying the
CArray generator on the SDL sort that corresponds to that type.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 781

Chapter 15 The CPP2SDL Tool
There is one important exception to this rule. Array declarators that do
not specify the size of the array are translated in the same way as point-
ers (see “Pointers” on page 781).

The name of the generated newtype for an array type with a specified
size is prefixed with a user-configurable string that by default is “arr_”.
The option -prefix can be used to configure this string. The name also
contains the size of the array, since the size is used in the CArray gen-
erator instantiation and thus is significant in SDL. This makes SDL ar-
ray sorts of different sizes type incompatible, but this is normally not a
big problem since the elements of the arrays are type compatible.

Example 89: Translation of arrays––––––––––––––––––––––––––––––

C++:

extern char c_arr1[20];
extern char c_arr2[];

SDL:

NEWTYPE arr_20_char CArray(20, char);
ENDNEWTYPE arr_20_char;EXTERNAL ’C++’;
DCL c_arr1 arr_20_char; EXTERNAL ’C++’;
NEWTYPE ptr_char Ref(char);
 OPERATORS
 ptr_char : -> ptr_char;
 ptr_char : ptr_char -> ptr_char;
ENDNEWTYPE ptr_char;EXTERNAL ’C++’;
DCL c_arr2 ptr_char; EXTERNAL ’C++’;

––

References

Rule: A type with a reference declarator is translated as normal, i.e. the
reference declarator is not translated to SDL.

A C++ reference can be looked upon as a constant pointer that is auto-
matically de-referenced each time it is used. This makes a reference an
alternative name for an object. Since no difference will be made be-
tween an object and a reference to an object in the SDL mapping, refer-
ences will appear to be objects in SDL.

Note:

SDL array sorts corresponding to C/C++ arrays with different sizes
are normally type incompatible.
782 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Example 90: Translation of references––––––––––––––––––––––––––

C++:

extern int i; /* i is initialized elsewhere */
extern int& r; /* r is initialized to i elsewhere

 (int& r =
i;), i.e. r and i refers to
 the same int. */

SDL:

DCL i int; EXTERNAL ’C++’;
DCL r int; EXTERNAL ’C++’;/* N.B. C++ reference! */

––

Note that if r in this example is assigned a value in SDL, it is in fact the
object that r refers to (i.e. i) that gets a new value. This could be con-
fusing if only the SDL translation of r is considered, and to avoid this a
comment is attached to the declaration of r that tells that it is a reference
in C++.

References could also appear as specifiers for formal function argu-
ments. Such arguments will be translated to operator arguments marked
with the IN/OUT keyword if they are non-constant (see “Argument
Passing and Return Value” on page 787).

Enumerated Types
Rule: An enumerated type is translated to a newtype with literals cor-
responding to the enum literals.

A special case is when the enumerated type has no literals. Such a type
can be treated as an integer in C/C++, and is consequently translated to
a syntype of int.

Example 91: Translation of enumerated types –––––––––––––––––––

C/C++:

enum {} v;
enum E2 {};
enum E1 {a, b, c=10};

SDL:

DCL v int; EXTERNAL ’C++’;
SYNTYPE E2 = int
ENDSYNTYPE E2;EXTERNAL ’C++’;
NEWTYPE E1
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 783

Chapter 15 The CPP2SDL Tool
 LITERALS a, b, c;
 OPERATORS
 IntToEnum /*#REFNAME ’(E1)’*/ : int -> E1;
 EnumToInt : E1 -> int; /*#OP(PY)*/
 ORDERING;
ENDNEWTYPE E1;EXTERNAL ’C++’;

––

By using the "type conversion" operators EnumToInt and IntToEnum
integer arithmetic and comparisons become available in SDL also for
enumerations. As can be seen from the #REFNAME directive in the ex-
ample above, the generated code for calls to the IntToEnum operator
will be a C style cast from int to enum. This explicit type conversion
should be acceptable by all target compilers. Also note that the
#OP(PY) directive means that there will be no generated code for calls
to the EnumToInt operator, which is desired since that type conversion
is implicit in C/C++.

If the enumerated type is incomplete, i.e. if the enum tag is missing, the
translation rule is slightly modified according to the translation rules for
incomplete types (see “Incomplete Types” on page 823). For enumera-
tions, these rules have the following impact:

· The name of the generated newtype follows the naming rules for in-
complete types described in “Incomplete Types” on page 823.

· The newtype will not be external, since it does not correspond to a
C/C++ type that may be referred to.

· The IntToEnum operator will not be generated for the same reason.

Typedef Declarations
Rule: A typedef declaration is translated to an SDL syntype declaration.

There are two exceptions to this rule:

• A typedef declaration of a tagged type1, where the typedef name is
the same as the name of the tag.

• A typedef declaration where the typedef name has been omitted.
This is a legal but not very common case.

In these cases the typedef declarations do not define new typenames,
and thus no syntypes need to be generated.

1. A tagged type is a class, struct, union or enum type with a tag.
784 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Another special case is when a synonym for void is introduced by
means of a typedef declaration. Such a typedef declaration is not trans-
lated, but the typedef name will be remembered. References to the ty-
pedef name will then be translated in the same way as void would have
been translated in that context.

Example 92: Translation of typedef declarations –––––––––––––––––

C++:

typedef int MyInt;
typedef struct r {

 int a;
} r; // Typedef name is the same as the tag name!
typedef struct s {
 MyInt a;
}; // Omitted typedef name - legal but rare!
typedef void myvoid;
typedef myvoid myvoid2;
myvoid f(myvoid2);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 f :;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
SYNTYPE MyInt = int
ENDSYNTYPE MyInt;EXTERNAL ’C++’;
NEWTYPE ptr_r Ref(r);
 OPERATORS
 ptr_r : -> ptr_r;
 ptr_r : ptr_r -> ptr_r;
ENDNEWTYPE ptr_r;EXTERNAL ’C++’;
NEWTYPE r
 STRUCT
 a int;
 OPERATORS
 r : -> r;
 r : r -> r;
ENDNEWTYPE r;EXTERNAL ’C++’;
NEWTYPE ptr_s Ref(s);
 OPERATORS
 ptr_s : -> ptr_s;
 ptr_s : ptr_s -> ptr_s;
ENDNEWTYPE ptr_s;EXTERNAL ’C++’;
NEWTYPE s
 STRUCT
 a MyInt;
 OPERATORS
 s : -> s;
 s : s -> s;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 785

Chapter 15 The CPP2SDL Tool
ENDNEWTYPE s;EXTERNAL ’C++’;

––

Functions
Rule: A function prototype is translated to an SDL operator signature.

This rule is valid both for member and non-member functions. Opera-
tors that result from functions that are members of a class will be placed
in the newtype that is the translation of that class. Operators that result
from non-member functions will be placed in a special newtype called
global_namespace1.

Member functions are described in “Members” on page 800, and the
rest of this section will focus on non-member functions.

Example 93: Translation of non-member functions –––––––––––––––

C++:

char myfunc1(char);
int myfunc1();
void myfunc2();
void myfunc2(int);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 myfunc1 : char -> char;
 myfunc1 : -> int;
 myfunc2 :;
 myfunc2 : int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

––

Note that functions without input arguments or return value, will be
translated to operators without input arguments or return value. Such
operators are not allowed according to the SDL96 standard, but are ac-
cepted by the SDL Analyzer as a tool specific language extension.

Note:

Typedefs of function types are not supported by CPP2SDL, and will
not be translated to SDL.

1. This name indicates that the newtype represents the global scope in C/C++. In
C++ terminology this scope is often called the global namespace.
786 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Overloaded Functions

Rule: Overloaded functions are translated to overloaded SDL opera-
tors.

The semantics of overloaded functions in C++ differs slightly from the
semantics of overloaded operators in SDL. For example, C++ allows
overloading on constant arguments which is not possible in SDL. A
C++ header file may therefore contain overloaded functions that cannot
be translated to SDL. Normally this is not a problem since the C++ com-
piler resolves generated calls to these functions correctly anyway.

Example 94: Translation of overloaded functions–––––––––––––––––

C++:

int f0();
int f0(double);
int f1(int&);
int f1(const int&);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 f0 : -> int;
 f0 : double -> int;
 f1 : int -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

––

Argument Passing and Return Value

Rule: Function arguments that are passed by reference are translated to
IN/OUT operator arguments in SDL.

There is one exception to this rule; arguments that are references to con-
stants do not translate to IN/OUT arguments since C++ allows these ar-
guments to take variables as well as constant values.

Example 95: Translation of function arguments and return value –––

C++:

int f1 (int p1, int &p2, const int &p3, const int
*p4, int *const p5);
int &f2();
const int &f3();

SDL:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 787

Chapter 15 The CPP2SDL Tool
NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 f1 : int, IN/OUT int, int, ptr_int, ptr_int ->
int;
 f2 : -> int;
 f3 : -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
NEWTYPE ptr_int Ref(int);
 OPERATORS
 ptr_int : -> ptr_int;
 ptr_int : ptr_int -> ptr_int;
ENDNEWTYPE ptr_int;EXTERNAL ’C++’;

––

The example shows that information about constant arguments is lost in
the SDL mapping. Also note that no difference will be made in SDL be-
tween functions that return data by value, data by reference, or constant
data by reference.

Finally note that IN/OUT arguments to operators is a tool specific SDL
extension.

Default Arguments

Rule: A function with default arguments are translated to several over-
loaded SDL operators.

This translation is reasonable given the fact that each C++ function with
default arguments may be rewritten to an equivalent set of overloaded
C++ functions.

Example 96: Translation of functions with default arguments–––––––

C++:

int func(int a, int b = 5, int c = 7);
int func(int a); // Ambiguous function!

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 func : int, int, int -> int;
 func : int, int -> int;
 func : int -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

––

In C++, ambiguities between overloaded functions are allowed provid-
ed that the functions are never called. SDL is, however, more strict, and
788 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
operator resolution is made from the declarations of the operators. The
second version of func in the example above is therefore not accessible
in the SDL mapping.

Unspecified Arguments

Rule: The translation of a function with unspecified arguments (a.k.a.
an ellipsis function) requires the usage of an import specification that
specifies the types of the unknown arguments.

See “Prototypes for Ellipsis Functions” on page 774 for information
about how an import specification can be used to “expand” ellipsis
functions.

Inline Functions

Rule: A function that is declared to be inline is translated as an ordinary
function.

This is natural since the inline keyword on functions can be seen as a
directive to the C++ compiler, which only affects the way that calls to
these functions are generated. This is of course nothing that needs to be
visible in SDL.

Example 97: Translation of inline functions –––––––––––––––––––––

C++:

inline int fac(int n){/*...*/};

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 fac : int -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

––

Function Pointers

Rule: A function pointer is translated to an untyped pointer in SDL, i.e.
to ptr_void.

This translation rule makes it possible to represent a function pointer in
SDL, but it is not possible to call the function that it points to, or to as-
sign the address of another function to it. That has to be done with inline
C/C++ code, for example by means of the #CODE operator.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 789

Chapter 15 The CPP2SDL Tool
Example 98: Translation of function pointers ––––––––––––––––––––

C++:

typedef int (*fp)(int, char);
fp g(double);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 g : double -> fp;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
SYNTYPE fp = ptr_void
ENDSYNTYPE fp;EXTERNAL ’C++’;

––

The special ptr_void sort is described in “SDL Library for Fundamen-
tal C/C++ Types” on page 841.

Scope Units
Rule: A C/C++ scope unit is translated to an SDL newtype.

Note that the global scope (known as the global namespace in C++) is
also translated to an SDL newtype. This newtype is called
global_namespace and is a container for all operators that are the
translation of non-member or global functions in the program. Other
global declarations are however placed directly in the SDL scope that is
the context of the translation.

Example 99: Translation of the global namespace ––––––––––––––––

C++:

int i;
void op(unsigned int);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 op : unsigned_int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
DCL i int; EXTERNAL ’C++’;

––

The most important scope units that may be found in a C/C++ header
file are:

• Namespaces
790 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
• Classes, structs and unions

• Template classes

In C++ these scope units may be nested to arbitrary depth, but since
nested newtypes are not allowed in SDL, the translation of a nested
scope unit will be a newtype that has a name that is prefixed with a
scope qualification prefix. This prefix consists of the names of all en-
closing scope units separated by underscores (“_”).

Example 100: Translation of nested scope units –––––––––––––––––

C++:

class C {
public:

 int ci;
 class CC {
 public:
 int op();
 };
};

SDL:

NEWTYPE ptr_C_CC Ref(C_CC);
 OPERATORS
 ptr_C_CC : -> ptr_C_CC;
 ptr_C_CC : ptr_C_CC -> ptr_C_CC;
ENDNEWTYPE ptr_C_CC;EXTERNAL ’C++’;
NEWTYPE C_CC /*#REFNAME ’C::CC’*/
 OPERATORS
 op : C_CC -> int;
 C_CC /*#REFNAME ’CC’*/ : -> C_CC;
 C_CC /*#REFNAME ’CC’*/ : C_CC -> C_CC;
ENDNEWTYPE C_CC;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 ci int;
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Compare the name ”C_CC” of the nested class CC in this example, with
the fully qualified name “C::CC” of this class in C++. The latter name
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 791

Chapter 15 The CPP2SDL Tool
is provided in a #REFNAME directive as information to the Code Gen-
erator.

Namespaces

Rule: A namespace is translated to a newtype that may not be instanti-
ated in SDL.

Classes, structs, unions and template classes not only define scope units,
but also types. They may thus be instantiated in for example variable
declarations. Namespaces, on the other hand, are plain scope units and
may not be instantiated. This is indicated in the SDL mapping by means
of a Code Generator directive called #NOTYPE. This directive enables
the Code Generator to catch attempts to instantiate newtypes that orig-
inates from namespaces.

Example 101: Translation of namespaces –––––––––––––––––––––––

C++:

namespace N {
 const int ci;

 class CC {
 public:
 int op();
 };
 int f(char);
}

SDL:

SYNONYM N_ci /*#REFNAME ’N::ci’*/ int = EXTERNAL
’C++’;
NEWTYPE ptr_N_CC Ref(N_CC);
 OPERATORS
 ptr_N_CC : -> ptr_N_CC;
 ptr_N_CC : ptr_N_CC -> ptr_N_CC;
ENDNEWTYPE ptr_N_CC;EXTERNAL ’C++’;
NEWTYPE N_CC /*#REFNAME ’N::CC’*/
 OPERATORS
 op : N_CC -> int;
 N_CC /*#REFNAME ’CC’*/ : -> N_CC;
 N_CC /*#REFNAME ’CC’*/ : N_CC -> N_CC;
ENDNEWTYPE N_CC;EXTERNAL ’C++’;
NEWTYPE N /*#NOTYPE*/
 OPERATORS
 N_f /*#REFNAME ’N::f’*/ : char -> int;
ENDNEWTYPE N;EXTERNAL ’C++’;

––
792 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Note that the newtype that corresponds to the namespace only contains
the operators that are the translation of the functions declared in that
namespace. This is analogous to how the global namespace is translated
(see Example 99). Other declarations in the namespace will appear out-
side the newtype. All SDL declarations that are generated from
namespace declarations will be prefixed with the name of the newtype
that is the translation of that namespace. Also, their fully qualified C++
name is given in #REFNAME directives.

Variables
Rule: A variable is translated to an external variable if it is a non-mem-
ber or global variable, or to a newtype field if it is a member variable.

Newtype fields that result from member variables of a class will be
placed in the newtype that is the translation of that class. Member vari-
ables are described in “Members” on page 800, and the rest of this sec-
tion will focus on non-member variables.

Example 102: Translation of non-member variables–––––––––––––––

C++:

int ivar, jvar;
class X {
 int j;
public:
 int Get() { return j;};
} xvar;

SDL:

DCL ivar int; EXTERNAL ’C++’;
DCL jvar int; EXTERNAL ’C++’;
NEWTYPE ptr_X Ref(X);
 OPERATORS
 ptr_X : -> ptr_X;
 ptr_X : ptr_X -> ptr_X;
ENDNEWTYPE ptr_X;EXTERNAL ’C++’;
NEWTYPE X
 OPERATORS
 Get : X -> int;
 X : -> X;
 X : X -> X;
ENDNEWTYPE X;EXTERNAL ’C++’;
DCL xvar X; EXTERNAL ’C++’;

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 793

Chapter 15 The CPP2SDL Tool
External variables are a tool-specific SDL extension that are similar to
external synonyms.

External variables may only be declared in a process, procedure, service
or operator diagram. Since CPP2SDL does not know the SDL context
where the translation takes place, it has a command-line option called
-novariables that tells whether external variables may be generated
or not. When CPP2SDL is executed from the Organizer, this option is
set automatically. If the option is set, and a C/C++ construct is found
that would map to an external variable, CPP2SDL will print a warning.

Constants
Rule: A constant is translated to an external synonym.

This rule applies for all true C/C++ constants, i.e. constants that have
been declared using the const type specifier. It is not uncommon, espe-
cially in older C API:s, to use macros to represent constants. Such con-
stants will not be directly accessible in SDL since the preprocessor ex-
pands them before CPP2SDL begins the translation. However, simple
macro constants may often be accessed by using inline target code, for
example by means of the #CODE operator. As an alternative external
synonyms could be declared to represent such macros.

Note: With the option -extsyn the translation of constants differs some.
For constants with numeric expressions that can be calculated during
translation, the default transformation rule is that also the constant value
is translated. If -extsyn is switched on, translation is always an external
synonym without its value.

Example 103Translation using -extsyn

C++:

const int FOO = 1;
const float ScoobieDoo = FOO/4;
const bool YOU;

SDL without -extsyn option (default behaviour):

SYNONYM FOO int = 1; EXTERNAL ’C++’;
SYNONYM ScoobieDoo float = 0.25; EXTERNAL ’C++’;
SYNONYM YOU bool = EXTERNAL ’C++’;

SDL with -extsyn option:

SYNONYM FOO int = EXTERNAL ’C++’;
794 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
SYNONYM ScoobieDoo float = EXTERNAL ’C++’;
SYNONYM YOU bool = EXTERNAL ’C++’;

Example 104: Translation of constants –––––––––––––––––––––––––

C++:

class MyClass;
const double pi = 3.1415;
const MyClass m(7, ’x’);

SDL:

SYNONYM pi double = 3.1415; EXTERNAL ’C++’;
NEWTYPE MyClass /*#NOTYPE*/
ENDNEWTYPE MyClass;EXTERNAL ’C++’;
SYNONYM m MyClass = EXTERNAL ’C++’;

––

Constant Expressions
Rule: Constant expressions are evaluated while translated to SDL.

Constant expressions may be encountered at a number of places in a
C/C++ header, for example as constant initializers, or as size specifiers
of array declarators or bitfields. If a constant expression has to be trans-
lated to SDL, CPP2SDL attempts to evaluate it during the translation in
order to simplify its representation in SDL.

Example 105: Translation of constant expressions –––––––––––––––

C++:

enum e {a, b, c=10};
const int i = (2+c)*b;
struct s{
 int f1 : (2+c)*b;
};
typedef int intarr[sizeof(int)+1];

SDL:

NEWTYPE e
 LITERALS a, b, c;
 OPERATORS
 IntToEnum /*#REFNAME ’(e)’*/ : int -> e;
 EnumToInt : e -> int; /*#OP(PY)*/
 ORDERING;
ENDNEWTYPE e;EXTERNAL ’C++’;
SYNONYM i int = EXTERNAL ’C++’;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 795

Chapter 15 The CPP2SDL Tool
NEWTYPE ptr_s Ref(s);
 OPERATORS
 ptr_s : -> ptr_s;
 ptr_s : ptr_s -> ptr_s;
ENDNEWTYPE ptr_s;EXTERNAL ’C++’;
NEWTYPE s
 STRUCT
 f1 int : 12;
 OPERATORS
 s : -> s;
 s : s -> s;
ENDNEWTYPE s;EXTERNAL ’C++’;
NEWTYPE arr_2_int CArray(2, int);
ENDNEWTYPE arr_2_int;EXTERNAL ’C++’;
SYNTYPE intarr = arr_2_int
ENDSYNTYPE intarr;EXTERNAL ’C++’;

––

Note that not all the constant expressions in this example are visible in
the SDL translation, and thus need not be evaluated by CPP2SDL.

Most constant expressions can be evaluated by CPP2SDL, but not all.
In particular, expressions containing the sizeof() operator are diffi-
cult to evaluate since CPP2SDL has no information about what compil-
er that will be used to compile the generated C/C++ code. Some stan-
dard assumptions are therefore used when a sizeof() operator is en-
countered, and a warning will be issued to encourage manual inspection
of the translation.

Classes, Structs and Unions
Rule: A class, struct or union is translated to an SDL newtype.

This rule follows from the fact that classes, structs and unions are scope
units (see “Scope Units” on page 790).

This section mainly uses classes in the discussions and examples, but
since the translation rules make no difference between classes, structs
and unions, the same is valid for structs and unions. Example 106 shows
the translation of an empty class, struct and union.

Example 106: Translation of classes, structs and unions ––––––––––

C++:

class C {};
struct S {};
union U {};
796 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;
ENDNEWTYPE ptr_S;EXTERNAL ’C++’;
NEWTYPE S
 OPERATORS
 S : -> S;
 S : S -> S;
ENDNEWTYPE S;EXTERNAL ’C++’;
NEWTYPE ptr_U Ref(U);
 OPERATORS
 ptr_U : -> ptr_U;
 ptr_U : ptr_U -> ptr_U;
ENDNEWTYPE ptr_U;EXTERNAL ’C++’;
NEWTYPE U
 OPERATORS
 U : -> U;
 U : U -> U;
ENDNEWTYPE U;EXTERNAL ’C++’;

––

In the example above three C++ types translate to six SDL sorts. The
reason for this is that when CPP2SDL generates a newtype for a class,
it will also, by default, generate a newtype that represents a pointer type
for this class. This is convenient since pointers to a class often are need-
ed. If the class inherits other classes this pointer newtype is in fact nec-
essary, since it then holds cast operators to the base types of the class
(see “Type Compatibility between Pointers to Inherited Classes” on
page 817). If the command-line option -optclasspointers has been
set, CPP2SDL will not generate this extra newtype unless a pointer to
the class is explicitly present in the input code.

If the class, struct, or union has no tag, it is an incomplete type declara-
tion. The translation rules for incomplete types are described in “Incom-
plete Types” on page 823.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 797

Chapter 15 The CPP2SDL Tool
Anonymous Unions

Rule: An anonymous union is translated by making its members be-
come fields of the newtype that represents the enclosing scope unit.

This translation rule is natural since an anonymous union is no scope
unit.

Example 107: Translation of Anonymous Unions –––––––––––––––––

C++:

struct S {
 int i;
 union {
 int j;
 int k;
 };
};

SDL:

NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;
ENDNEWTYPE ptr_S;EXTERNAL ’C++’;
NEWTYPE S
 STRUCT
 j int;/* member of anonymous union */
 k int;/* member of anonymous union */
 i int;
 OPERATORS
 S : -> S;/* implicit parameter-less constructor
*/
 S : S -> S;/* implicit copy constructor */
ENDNEWTYPE S;EXTERNAL ’C++’;

––

Note that an anonymous union is not an incomplete type declaration, al-
though the syntax is similar. An anonymous union is not used to declare
a type nor a variable, and does not define a type at all. Consequently, the
translation rules for anonymous unions and incomplete types differ sig-
nificantly. Compare with “Incomplete Types” on page 823.

Constructors

Rule: A constructor for a class is translated to an operator with the same
name as the newtype that represents the class.
798 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
The return sort of the operator will be the sort defined by the newtype
for the class, and the operator will of course also be placed in that new-
type.

There are two different kinds of constructors in C++:

• User-defined constructors. These constructors are manually de-
clared and implemented.

• Implicit constructors. These constructors are implicitly declared
and are auto-generated by the C++ compiler, provided that they are
not already declared by the user.

While a class may contain an arbitrary number of user-defined con-
structors, it may at the most contain two auto-generated ones; a param-
eter-less (or default) constructor and a copy constructor. A parameter-
less constructor is available only if the class has no user-defined con-
structors, and a copy constructor is available only if no user-defined
copy constructor is declared.

CPP2SDL will generate operators both for user-defined and implicit
constructors. Example 108 below shows a class with three user-defined
constructors, and one implicit copy constructor.

Example 108: Translation of constructors–––––––––––––––––––––––

C++:

class C {
public:
 C();
 C(int i);
 C(char c);
 ~C();
};

SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 OPERATORS
 C : -> C;
 C : char -> C;
 C : int -> C;
 C : C -> C;/* implicit copy constructor */
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 799

Chapter 15 The CPP2SDL Tool
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Destructors

Rule: A destructor is not translated to SDL.

The reason why a class destructor is not made accessible in SDL, is that
it normally should not be called explicitly. Instead it will be called au-
tomatically when an object of the class goes out of scope or is deleted.
See Example 108 for an example of how a destructor disappears in the
SDL mapping.

Members

Rule: Member variables of a C++ class are translated to fields in the
newtype that is the translation of that class, and member functions are
translated to operators in the same newtype.

Other declarations than variables and functions in a class, for example
type declarations, are also sometimes called members of the class, but
they are not translated according to the translation rule above. Instead
they are considered to be declarations on their own, but defined in an
enclosing scope unit (i.e. the class). See “Scope Units” on page 790 for
more information.

Example 109: Translation of class members –––––––––––––––––––––

C++:

class C {
public:
 int mv1; // Member variable
 void mf1(long long p1); // Member function
 enum e {a,b,c}; // “Member” type declaration
};

SDL:

NEWTYPE C_e /*#REFNAME 'C::e'*/
 LITERALS a, b, c;
 OPERATORS
 IntToEnum /*#REFNAME '(C::e)'*/ : int -> C_e;
 EnumToInt : C_e -> int; /*#OP(PY)*/
 ORDERING;
ENDNEWTYPE C_e;EXTERNAL 'C++';
NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
800 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 mv1 int;
 OPERATORS
 mf1 : C, long_long_int;
 C : -> C;/* implicit parameter-less constructor
*/
 C : C -> C;/* implicit copy constructor */
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Note that the operator that represents a member function will have an
additional initial formal argument. This argument has the sort of the
newtype that represents the class where the member function is de-
clared. Member functions are called from SDL in a functional style,
where the first actual argument to the member function operator is the
class instance on which the member function is to be invoked.

Member Access Specifier

Rule: Only members with public access specifier are translated to SDL.

This rule follows from the fact that public members of a class are the
only members that are accessible from outside that class or its derived
classes.

Example 110: Translation of members with different access specifiers

C++:

class C {
private:
 int i;
protected:
 int j;
public:
 int k;
 int GetI();
 int GetJ();
 int Calc (int x, int y);
};

SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 801

Chapter 15 The CPP2SDL Tool
NEWTYPE C
 STRUCT
 k int;
 OPERATORS
 Calc : C, int, int -> int;
 GetI : C -> int;
 GetJ : C -> int;
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Virtual Member Functions

Rule: A virtual member function is translated in the same way as an or-
dinary member function.

In C++, virtual functions of a base class may be redefined in derived
classes. Although this means that there is only one version of a particu-
lar virtual function in a derived class, the version defined in the base
class may still be called by means of explicit qualification. Both ver-
sions of the function must thus be present in the SDL translation, exact-
ly as is the case for non-virtual functions. See “Inheritance” on page 807
for more about how C++ inheritance is represented in SDL.

Example 111: Translation of virtual member functions ––––––––––––

C++:

class CPen {
public:
 virtual void Draw(); // Virtual member function
 double GetRep(); // Non-virtual member function
};
class CPenD : public CPen {
public:
 virtual void Draw(); // Redefinition of
CPen::Draw()
};

SDL:

NEWTYPE ptr_CPen Ref(CPen);
 OPERATORS
 ptr_CPen : -> ptr_CPen;
 ptr_CPen : ptr_CPen -> ptr_CPen;
ENDNEWTYPE ptr_CPen;EXTERNAL ’C++’;
NEWTYPE CPen
 OPERATORS
 Draw : CPen;
 GetRep : CPen -> double;
802 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 CPen : -> CPen;
 CPen : CPen -> CPen;
ENDNEWTYPE CPen;EXTERNAL ’C++’;
NEWTYPE ptr_CPenD Ref(CPenD);
 OPERATORS
 cast : ptr_CPenD -> ptr_CPen; /*#OP(PY)*/
 ptr_CPenD : -> ptr_CPenD;
 ptr_CPenD : ptr_CPenD -> ptr_CPenD;
ENDNEWTYPE ptr_CPenD;EXTERNAL ’C++’;
NEWTYPE CPenD
 OPERATORS
 Draw : CPenD;
 CPen_Draw /*#REFNAME ’CPen::Draw’*/ : CPenD;/*
Inherited from CPen */
 GetRep : CPenD -> double;/* Inherited from CPen
*/
 CPenD : -> CPenD;/
 CPenD : CPenD -> CPenD;
ENDNEWTYPE CPenD;EXTERNAL ’C++’;

––

Pure Virtual Member Functions

Rule: A pure virtual member function is translated in the same way as
an ordinary member function.

Although “pure virtuality” does not affect the translation of the member
function itself, it will have impact on how the containing class, which is
an abstract class, is translated. The reason is that special translation
rules apply for abstract classes. See “Abstract Classes” on page 819 for
more information and an example on how pure virtual member func-
tions are translated.

Static Members

Rule: A static member is translated both as an ordinary member, and as
if it was declared in the global namespace.

There will thus be two representations in SDL of a static C++ member.
The additional representation is caused by the fact that a static member
is accessible without having an instance of the class where it is defined.

As shown in Example 112 below, a static member variable will be
translated both to a newtype field and an external variable (see “Vari-
ables” on page 793), while a static member function will result in both
an operator in the newtype for the class and an operator in the special
global_namespace newtype (see “Functions” on page 786).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 803

Chapter 15 The CPP2SDL Tool
Example 112: Translation of static members –––––––––––––––––––––

C++:

class C {
public:
 static int k;
 static void InitI(int);
};

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 C_InitI /*#REFNAME ’C::InitI’*/ : int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
DCL C_k /*#REFNAME ’C::k’*/ int; EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 k int;
 OPERATORS
 InitI : C, int;
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

If the resulting SDL declarations are to be inserted in an SDL context
where external variables are not allowed (i.e. if CPP2SDL executes
with the -novariables option set), static member variables cannot be
translated to external variables. In that case only the standard translation
of class members can be applied. Naturally, CPP2SDL will issue a
warning if this happens.

Constant Members

Rule: A constant member is translated as an ordinary member, but with
a #CONSTANT directive attached.

The semantics of a constant member variable is that it may not be writ-
ten to after its initialization, and a constant member function may not
change the state of its object. There is no way to express these restric-
tions in SDL, so the Analyzer will not be able to detect if they are vio-
lated. However, by attaching the #CONSTANT directive to SDL decla-
804 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
rations that result from constant members, the Code Generator can do
the necessary checks.

Example 113: Translation of constant members––––––––––––––––––

C++:

class C {
public:
 const int cm; // constant member
 C(int k) : cm(k) {};
 void Do(double);
 void Undo(double) const; //
constant member function
};

SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 cm /*#CONSTANT*/ int;
 OPERATORS
 C : int -> C;
 Do : C, double;
 Undo : C, double; /*#CONSTANT*/
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Member Constants

Rule: A member constant is translated both as an ordinary member with
a #CONSTANT directive attached, and as if it was declared in the glo-
bal namespace.

This translation rule is a combination of the translation rules for static
and constant members, which is natural since a member constant is de-
clared both to be constant and static in C++.

Example 114: Translation of member constants––––––––––––––––––

C++:

class X {
public:
 static const int i = 99; // member constant
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 805

Chapter 15 The CPP2SDL Tool
};
const int X::i; // definition of i

SDL:

SYNONYM X_i /*#REFNAME ’X::i’*/ int = EXTERNAL
’C++’;
NEWTYPE ptr_X Ref(X);
 OPERATORS
 ptr_X : -> ptr_X;
 ptr_X : ptr_X -> ptr_X;
ENDNEWTYPE ptr_X;EXTERNAL ’C++’;
NEWTYPE X
 STRUCT
 i /*#CONSTANT*/ int;
 OPERATORS
 X : -> X;
 X : X -> X;
ENDNEWTYPE X;EXTERNAL ’C++’;

––

Mutable Member Variables

Rule: A mutable member variable is translated as an ordinary member
variable.

The mutable keyword in C++ can be looked upon as some kind of com-
piler directive, and needs therefore not be visible in the SDL translation.

Bitfield Member Variables

Rule: A bitfield member variable is translated to an SDL bitfield.

This rule applies for all bitfields that have a name. Bitfields without
name are not translated to SDL.

It would have been possible to translate bitfields to ordinary newtype
fields. However, by including the bitfield size in the SDL translation,
the Analyzer is given a possibility to check that these fields are not as-
signed values that will not fit in the corresponding bitfield.

Example 115: Translation of bitfields –––––––––––––––––––––––––––

C++:

struct A {
 unsigned int i : 12;
 int : 3;
 bool dirty : 1;
};
806 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
SDL:

NEWTYPE ptr_A Ref(A);
 OPERATORS
 ptr_A : -> ptr_A;
 ptr_A : ptr_A -> ptr_A;
ENDNEWTYPE ptr_A;EXTERNAL ’C++’;
NEWTYPE A
 STRUCT
 dirty bool : 1;
 i unsigned_int : 12;
 OPERATORS
 A : -> A;
 A : A -> A;
ENDNEWTYPE A;EXTERNAL ’C++’;

––

Note that bitfields are a tool-specific SDL extension.

Friends

Rule: Friend declarations will not be translated to SDL.

Friendship between a class C and another declaration D only affects
what members of C that the implementation of D may access. It is there-
fore uninteresting to supply this information in the SDL translation of
the class C.

Inheritance

Rule: C++ inheritance is represented in SDL by adding the translation
of all public base class members to the newtype that represents a de-
rived class.

This rule simply means that the C++ inheritance hierarchy is flattened
in the SDL newtype representation. The reason for choosing this trans-
lation strategy, instead of using SDL inheritance between newtypes, is
that the semantics of C++ and SDL inheritance is quite different.

All public member variables and member functions (but not construc-
tors) of direct or indirect bases of a class will be generated in the new-
type that is the translation of that class. Such an inherited field or oper-
ator will normally have the same name in SDL as in C++, but in some
cases it is necessary to prefix the name with the name of the class from
which it is inherited1. This happens when the name of the inherited
member is the same as the name of one of the members in the derived

1. This naming rule is generalized in “Multiple Inheritance” on page 811.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 807

Chapter 15 The CPP2SDL Tool
class. Example 116 below shows how such ambiguities between inher-
ited members are handled.

Example 116: Translation of inheritance ––––––––––––––––––––––––

C++:

class A {
public:
 int am;
 A(char);
};
class B : public A {
public:
 char bm;
 virtual void calc();
 void set();
};
class C : public B {
public:
 int am;
 double cm;
 void calc(); // Redefines B::calc()
 void set();
};

SDL:

NEWTYPE ptr_A Ref(A);
 OPERATORS
 ptr_A : -> ptr_A;
 ptr_A : ptr_A -> ptr_A;
ENDNEWTYPE ptr_A;EXTERNAL ’C++’;
NEWTYPE A
 STRUCT
 am int;
 OPERATORS
 A : char -> A;
 A : A -> A;
ENDNEWTYPE A;EXTERNAL ’C++’;
NEWTYPE ptr_B Ref(B);
 OPERATORS
 cast : ptr_B -> ptr_A; /*#OP(PY)*/
 ptr_B : -> ptr_B;
 ptr_B : ptr_B -> ptr_B;
ENDNEWTYPE ptr_B;EXTERNAL ’C++’;
NEWTYPE B
 STRUCT
 am int;/* Inherited from A */
 bm char;
 OPERATORS
 calc : B;
 keyword_set /*#REFNAME ’set’*/ : B;
 B : B -> B;
808 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
ENDNEWTYPE B;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 cast : ptr_C -> ptr_A; /*#OP(PY)*/
 cast : ptr_C -> ptr_B; /*#OP(PY)*/
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 am int;
 B_am /*#REFNAME ’B::am’*/ int;/* Inherited from
A */
 bm char;/* Inherited from B */
 cm double;
 OPERATORS
 calc : C;
 B_calc /*#REFNAME ’B::calc’*/ : C;/* Inherited
from B */
 keyword_set /*#REFNAME ’set’*/ : C;
 B_keyword_set /*#REFNAME ’B::keyword_set’*/ :
C;/* Inherited from B */
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

In C++, it is always possible to use a fully qualified name when access-
ing a class member, even if the name of the member is unambiguous
without qualification. In the example above, the member variable bm in
C that is inherited from B, may be referred to both as bm and B::bm. To
avoid getting too many fields and operators in the generated newtypes,
only the unqualified name can be used from SDL. This is natural since
qualification in C++ normally only is done when necessary to resolve
ambiguities.

There are more cases where C++ allows a member to be accessed by
more than one name, while the SDL translation only supplies one of
these possible names. For example, this applies for inherited types and
static members as shown in Example 117 below.

Example 117: Translation of inherited types and static members––––

C++:

class B {
public:
 static int mv;
 static char mf(double);
 struct s {
 int y;
 } ms;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 809

Chapter 15 The CPP2SDL Tool
};
class D : public B {
};

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 B_mf /*#REFNAME ’B::mf’*/ : double -> char;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
NEWTYPE ptr_B Ref(B);
 OPERATORS
 ptr_B : -> ptr_B;
 ptr_B : ptr_B -> ptr_B;
ENDNEWTYPE ptr_B;EXTERNAL ’C++’;
NEWTYPE B
 STRUCT
 ms B_s;
 mv int;
 OPERATORS
 mf : B, double -> char;
 B : -> B;
 B : B -> B;
ENDNEWTYPE B;EXTERNAL ’C++’;
DCL B_mv /*#REFNAME ’B::mv’*/ int; EXTERNAL ’C++’;
NEWTYPE ptr_B_s Ref(B_s);
 OPERATORS
 ptr_B_s : -> ptr_B_s;
 ptr_B_s : ptr_B_s -> ptr_B_s;
ENDNEWTYPE ptr_B_s;EXTERNAL ’C++’;
NEWTYPE B_s /*#REFNAME ’B::s’*/
 STRUCT
 y int;
 OPERATORS
 B_s /*#REFNAME ’s’*/ : -> B_s;
 B_s /*#REFNAME ’s’*/ : B_s -> B_s;
ENDNEWTYPE B_s;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 cast : ptr_D -> ptr_B; /*#OP(PY)*/
 ptr_D : -> ptr_D;
 ptr_D : ptr_D -> ptr_D;
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 STRUCT
 ms B_s;/* Inherited from B */
 mv int;/* Inherited from B */
 OPERATORS
 mf : D, double -> char;/* Inherited from B */
 D : -> D;
 D : D -> D;
ENDNEWTYPE D;EXTERNAL ’C++’;

––
810 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
The declarations B::mv, B::mf and B::s in this example may in C++
also be referred to by means of the names D::mv, D::mf and D::s. This
is not possible in the SDL translation, i.e. there are no declarations
called D_mv, D_mf or D_s. CPP2SDL will choose the first version of the
names since the members are declared in B.

Multiple Inheritance

The translation rule for C++ inheritance works also when a class inher-
its from more than one base class. However, the naming strategy de-
scribed in “Inheritance” on page 807 for handling ambiguous inherited
members have to be generalized to also cover the case when a class in-
herits the same base class more than once.

Example 118: Translation of multiple inheritance–––––––––––––––––

C++:

class A {
public:
 int m;
};
class B {
public:
 int m;
 int n;
};
class C: public A, public B {
};

SDL:

NEWTYPE ptr_A Ref(A);
 OPERATORS
 ptr_A : -> ptr_A;
 ptr_A : ptr_A -> ptr_A;
ENDNEWTYPE ptr_A;EXTERNAL ’C++’;
NEWTYPE A
 STRUCT
 m int;
 OPERATORS
 A : -> A;
 A : A -> A;
ENDNEWTYPE A;EXTERNAL ’C++’;
NEWTYPE ptr_B Ref(B);
 OPERATORS
 ptr_B : -> ptr_B;
 ptr_B : ptr_B -> ptr_B;
ENDNEWTYPE ptr_B;EXTERNAL ’C++’;
NEWTYPE B
 STRUCT
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 811

Chapter 15 The CPP2SDL Tool
 m int;
 n int;
 OPERATORS
 B : -> B;
 B : B -> B;
ENDNEWTYPE B;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 cast : ptr_C -> ptr_B; /*#OP(PY)*/
 cast : ptr_C -> ptr_A; /*#OP(PY)*/
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 STRUCT
 A_m /*#REFNAME ’A::m’*/ int;/* Inherited from A
*/
 B_m /*#REFNAME ’B::m’*/ int;/* Inherited from B
*/
 n int;/* Inherited from B */
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

The names of the generated fields and operators correspond to the qual-
ified names that must be used in C++ to access the members in question.
The rule is to qualify an ambiguous member with the most specialized
base class that makes the name of the member unique. In most cases this
base class is the class where the ambiguous member is declared, but
when the inheritance hierarchy forms a graph rather than a tree (see
Example 119) it might be necessary to qualify with the name of a class
further down on the inheritance path.

Note that in some extraordinary inheritance hierarchies, it is possible
that a member of a base class is inaccessible in a derived class. This hap-
pens when the inherited member cannot be unambiguously qualified ac-
cording to the naming rule described above. If this happens, CPP2SDL
will not translate the member to SDL, and a warning will be printed.

Virtual and Non-Virtual Inheritance

Rule: Virtual inheritance is translated in the same way as ordinary in-
heritance.

Virtual inheritance affects the way data is replicated when multiple in-
heritance is used. As shown in “Multiple Inheritance” on page 811
812 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
members that are inherited more than once from the same base class
need to be prefixed in SDL.

Since data from a base class is not replicated in derived classes that in-
herit from the base class with virtual inheritance, it would be possible to
avoid prefixing the name of the members that are virtually inherited
from the base class. However, since a virtually inherited member in
general may be accessed using many alternative prefixes (correspond-
ing to possible paths for reaching the member in the inheritance graph),
and none of these prefixes can be said to be more natural to use than the
others, all versions of the member’s name are included in the SDL trans-
lation. This is the reason why no difference is made between virtual and
non-virtual inheritance in SDL.

Example 119: Translation of virtual inheritance ––––––––––––––––––

C++:

class A {
public:
 int a;
};
class C : public A {
};
class D : public virtual A {
};
class E : public virtual A {
};
class G : public C, public D, public E {
};

SDL:

NEWTYPE ptr_A Ref(A);
 OPERATORS
 ptr_A : -> ptr_A;
 ptr_A : ptr_A -> ptr_A;
ENDNEWTYPE ptr_A;EXTERNAL ’C++’;
NEWTYPE A
 STRUCT
 a int;
 OPERATORS
 A : -> A;
 A : A -> A;
ENDNEWTYPE A;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 cast : ptr_C -> ptr_A; /*#OP(PY)*/
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 813

Chapter 15 The CPP2SDL Tool
NEWTYPE C
 STRUCT
 a int;/* Inherited from A */
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 cast : ptr_D -> ptr_A; /*#OP(PY)*/
 ptr_D : -> ptr_D;
 ptr_D : ptr_D -> ptr_D;
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 STRUCT
 a int;/* Inherited from A */
 OPERATORS
 D : -> D;
 D : D -> D;
ENDNEWTYPE D;EXTERNAL ’C++’;
NEWTYPE ptr_E Ref(E);
 OPERATORS
 cast : ptr_E -> ptr_A; /*#OP(PY)*/
 ptr_E : -> ptr_E;
 ptr_E : ptr_E -> ptr_E;
ENDNEWTYPE ptr_E;EXTERNAL ’C++’;
NEWTYPE E
 STRUCT
 a int;/* Inherited from A */
 OPERATORS
 E : -> E;
 E : E -> E;
ENDNEWTYPE E;EXTERNAL ’C++’;
NEWTYPE ptr_G Ref(G);
 OPERATORS
 cast : ptr_G -> ptr_E; /*#OP(PY)*/
 cast : ptr_G -> ptr_D; /*#OP(PY)*/
 cast : ptr_G -> ptr_C; /*#OP(PY)*/
 ptr_G : -> ptr_G;
 ptr_G : ptr_G -> ptr_G;
ENDNEWTYPE ptr_G;EXTERNAL ’C++’;
NEWTYPE G
 STRUCT
 C_a /*#REFNAME ’C::a’*/ int;/* Inherited from A
*/
 D_a /*#REFNAME ’D::a’*/ int;/* Inherited from A
*/
 E_a /*#REFNAME ’E::a’*/ int;/* Inherited from A
*/
 OPERATORS
 G : -> G;
 G : G -> G;
ENDNEWTYPE G;EXTERNAL ’C++’;

––
814 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Inheritance Access Specifier

Rule: Only members that are inherited using public inheritance are
translated to SDL.

When the inheritance is private or protected, the members of the base
class are not accessible from outside the class. It is therefore natural to
exclude members, that are inherited from private and protected bases,
in the newtype that represents the derived class.

Example 120: Translation of inheritance with different access
specifiers––

C++:

class X {
public:
 int a;
 void f();
};
class Y1 : public X {};
class Y2 : protected X {};
class Y3 : private X {};

SDL:

NEWTYPE ptr_X Ref(X);
 OPERATORS
 ptr_X : -> ptr_X;
 ptr_X : ptr_X -> ptr_X;
ENDNEWTYPE ptr_X;EXTERNAL ’C++’;
NEWTYPE X
 STRUCT
 a int;
 OPERATORS
 f : X;
 X : -> X;
 X : X -> X;
ENDNEWTYPE X;EXTERNAL ’C++’;
NEWTYPE ptr_Y1 Ref(Y1);
 OPERATORS
 cast : ptr_Y1 -> ptr_X; /*#OP(PY)*/
 ptr_Y1 : -> ptr_Y1;
 ptr_Y1 : ptr_Y1 -> ptr_Y1;
ENDNEWTYPE ptr_Y1;EXTERNAL ’C++’;
NEWTYPE Y1
 STRUCT
 a int;/* Inherited from X */
 OPERATORS
 f : Y1;/* Inherited from X */
 Y1 : -> Y1;
 Y1 : Y1 -> Y1;
ENDNEWTYPE Y1;EXTERNAL ’C++’;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 815

Chapter 15 The CPP2SDL Tool
NEWTYPE ptr_Y2 Ref(Y2);
 OPERATORS
 ptr_Y2 : -> ptr_Y2;
 ptr_Y2 : ptr_Y2 -> ptr_Y2;
ENDNEWTYPE ptr_Y2;EXTERNAL ’C++’;
NEWTYPE Y2
 OPERATORS
 Y2 : -> Y2;
 Y2 : Y2 -> Y2;
ENDNEWTYPE Y2;EXTERNAL ’C++’;
NEWTYPE ptr_Y3 Ref(Y3);
 OPERATORS
 ptr_Y3 : -> ptr_Y3;
 ptr_Y3 : ptr_Y3 -> ptr_Y3;
ENDNEWTYPE ptr_Y3;EXTERNAL ’C++’;
NEWTYPE Y3
 OPERATORS
 Y3 : -> Y3;
 Y3 : Y3 -> Y3;
ENDNEWTYPE Y3;EXTERNAL ’C++’;

––

The inheritance access specifier also affects how casting from the de-
rived type to the base type can be done. This is described in “Type Com-
patibility between Inherited Classes” on page 816 and in “Type Com-
patibility between Pointers to Inherited Classes” on page 817.

Type Compatibility between Inherited Classes

Rule: An object of a derived class may be assigned to an object of a
base class by using an explicit cast operator in SDL.

The above assignment (known as slicing) is type-compatible in C++
without the use of a cast operator. Since only the common members are
copied in the assignment, this operation is somewhat dangerous and is
not generally recommended. Therefore, the cast operators that are need-
ed in SDL to do slicing between objects, are only generated when the
-slicing option is set.

Example 121: Generation of operators for slicing –––––––––––––––––

C++:

class C {};
class D {};
class CD : public C, public D {};

SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
816 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 ptr_D : -> ptr_D;
 ptr_D : ptr_D -> ptr_D;
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 OPERATORS
 D : -> D;
 D : D -> D;
ENDNEWTYPE D;EXTERNAL ’C++’;
NEWTYPE ptr_CD Ref(CD);
 OPERATORS
 cast : ptr_CD -> ptr_D; /*#OP(PY)*/
 cast : ptr_CD -> ptr_C; /*#OP(PY)*/
 ptr_CD : -> ptr_CD;
 ptr_CD : ptr_CD -> ptr_CD;
ENDNEWTYPE ptr_CD;EXTERNAL ’C++’;
NEWTYPE CD
 OPERATORS
 cast : CD -> D; /*#OP(PY)*/
 cast : CD -> C; /*#OP(PY)*/
 CD : -> CD;
 CD : CD -> CD;
ENDNEWTYPE CD;EXTERNAL ’C++’;

––

Note that the inheritance access specifier affects how these cast opera-
tors are generated. A cast operator from a class D to a class B will only
be generated if B is a public unambiguous base of D. If it is private or
protected, or is an ambiguous base for D, it is not allowed to cast from D
to B.

Type Compatibility between Pointers to Inherited Classes

Rule: A pointer to an object of a derived class may be assigned to a
pointer to an object of a base class by using an explicit cast operator in
SDL.

The above assignment is type-compatible in C++, i.e. “up-casts” in a
class hierarchy are implicit in C++. This is an important property of ob-
ject-oriented languages that support for example polymorphism. In
SDL, however, the newtypes for a base class and a derived class will be
unrelated and thus type incompatible. To support up-casting in SDL,
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 817

Chapter 15 The CPP2SDL Tool
explicit cast operators are generated in the newtype that represents the
pointer type to a derived class.

Example 122: Generation of cast operators for up-casting –––––––––

C++:

class C {};
class D {};
class CD : public C, public D {};

SDL:

NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 ptr_D : -> ptr_D;
 ptr_D : ptr_D -> ptr_D;
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 OPERATORS
 D : -> D;
 D : D -> D;
ENDNEWTYPE D;EXTERNAL ’C++’;
NEWTYPE ptr_CD Ref(CD);
 OPERATORS
 cast : ptr_CD -> ptr_D; /*#OP(PY)*/
 cast : ptr_CD -> ptr_C; /*#OP(PY)*/
 ptr_CD : -> ptr_CD;
 ptr_CD : ptr_CD -> ptr_CD;
ENDNEWTYPE ptr_CD;EXTERNAL ’C++’;
NEWTYPE CD
 OPERATORS
 CD : -> CD;
 CD : CD -> CD;
ENDNEWTYPE CD;EXTERNAL ’C++’;

––

Note that the inheritance access specifier is taken into consideration so
that a cast operator from Ref(D) to Ref(B) only will be generated if the
class B is a public unambiguous base of the class D.

Sometimes it is necessary to do down-casts, or even cross-casts, in a
class hierarchy. Such casts (known as dynamic casts) are explicit both
818 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
in C++ and SDL. See “Run-Time Type Information and Dynamic Cast”
on page 820 for more information.

Abstract Classes

Rule: An abstract class is translated to a newtype without constructor
operators.

This translation rule makes it possible to declare pointers to an abstract
class, but no objects of such a class may be allocated since there are no
constructor operators that can be used as argument to the new operator
(see “Dynamic Memory Management” on page 825).

Example 123: Translation of abstract classes––––––––––––––––––––

C++:

class C {
public:
 virtual int f(int) = 0; // pure virtual member
function
 C() {};
};
class D : public C {
};

SDL:

NEWTYPE ptr_C Ref(C);
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
 OPERATORS
 f : C, int -> int;
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 cast : ptr_D -> ptr_C; /*#OP(PY)*/
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 OPERATORS
 f : D, int -> int;/* Inherited from C */
ENDNEWTYPE D;EXTERNAL ’C++’;

––

Note from the example above that abstractness is inherited to a derived
class if not each pure virtual member function of all its base classes are
redefined in the derived class.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 819

Chapter 15 The CPP2SDL Tool
Run-Time Type Information and Dynamic Cast

Rule: A pointer to an object of a base class may be assigned to a pointer
to an object of a derived class, or to a pointer to an object of a base class
of such a derived class, by using an explicit cast operator in SDL.

The above assignments require a dynamic cast in C++, which is done
with an explicit cast operator that supports down-casts and cross-casts
in an inheritance hierarchy. Since these casts require run-time type in-
formation (RTTI) about the dynamic type of an object, most C++ com-
pilers have an option that must be set to safely support dynamic casts.
For the same reason, CPP2SDL also has such an option called -rtti.
If it is set, cast operators will be generated that enable the type conver-
sions that are possible in C++ using dynamic casts.

The source type of a dynamic cast must be polymorphic, i.e. contain one
or more virtual member functions, possibly inherited ones. For each
such polymorphic class X, cast operators will be generated that convert
from Ref(X) to Ref(Y), for each class Y that either inherits from X
(down-casts), or is a public base class of a class that inherits from X
(cross-casts).

Example 124 below illustrates this translation rule. It is assumed that all
classes in the example contain virtual functions and thus are polymor-
phic.

Example 124: Generation of cast operators for dynamic casting ––––

C++:

class A {};
class B: public A {};
class E {};
class D: protected E {};
class C: public B, public D {};

SDL:

NEWTYPE ptr_A Ref(A);
 OPERATORS
 ptr_A : -> ptr_A;
 ptr_A : ptr_A -> ptr_A;
ENDNEWTYPE ptr_A;EXTERNAL ’C++’;
NEWTYPE A
 OPERATORS
 A : -> A;
 A : A -> A;
ENDNEWTYPE A;EXTERNAL ’C++’;
NEWTYPE ptr_B Ref(B);
820 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 OPERATORS
 cast /*#REFNAME ’dynamic_cast<B*>’*/ : ptr_A ->
ptr_B;
 cast : ptr_B -> ptr_A; /*#OP(PY)*/
 ptr_B : -> ptr_B;
 ptr_B : ptr_B -> ptr_B;
ENDNEWTYPE ptr_B;EXTERNAL ’C++’;
NEWTYPE B
 OPERATORS
 B : -> B;
 B : B -> B;
ENDNEWTYPE B;EXTERNAL ’C++’;
NEWTYPE ptr_E Ref(E);
 OPERATORS
 ptr_E : -> ptr_E;
 ptr_E : ptr_E -> ptr_E;
ENDNEWTYPE ptr_E;EXTERNAL ’C++’;
NEWTYPE E
 OPERATORS
 E : -> E;
 E : E -> E;
ENDNEWTYPE E;EXTERNAL ’C++’;
NEWTYPE ptr_D Ref(D);
 OPERATORS
 ptr_D : -> ptr_D;
 ptr_D : ptr_D -> ptr_D;
ENDNEWTYPE ptr_D;EXTERNAL ’C++’;
NEWTYPE D
 OPERATORS
 D : -> D;
 D : D -> D;
ENDNEWTYPE D;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 cast /*#REFNAME ’dynamic_cast<A*>’*/ : ptr_D ->
ptr_A;
 cast /*#REFNAME ’dynamic_cast<B*>’*/ : ptr_D ->
ptr_B;
 cast /*#REFNAME ’dynamic_cast<D*>’*/ : ptr_A ->
ptr_D;
 cast /*#REFNAME ’dynamic_cast<D*>’*/ : ptr_B ->
ptr_D;
 cast /*#REFNAME ’dynamic_cast<C*>’*/ : ptr_D ->
ptr_C;
 cast : ptr_C -> ptr_D; /*#OP(PY)*/
 cast /*#REFNAME ’dynamic_cast<C*>’*/ : ptr_A ->
ptr_C;
 cast : ptr_C -> ptr_A; /*#OP(PY)*/
 cast /*#REFNAME ’dynamic_cast<C*>’*/ : ptr_B ->
ptr_C;
 cast : ptr_C -> ptr_B; /*#OP(PY)*/
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
NEWTYPE C
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 821

Chapter 15 The CPP2SDL Tool
 OPERATORS
 C : -> C;
 C : C -> C;
ENDNEWTYPE C;EXTERNAL ’C++’;

––

Note that no cast operators are generated that cast to ptr_E since E is a
protected base of D. But in fact there are no cast operators that cast from
ptr_E neither. The somewhat subtle reason for this is that those opera-
tors cannot be used in practice, since the protected inheritance makes it
impossible to have a variable with ptr_E as static type and ptr_C as dy-
namic type. CPP2SDL will therefore not generate these cast operators.

In C++ dynamic casts work both for pointers and references to objects.
In SDL, however, it is only possible to do dynamic casts between point-
ers, since references are not explicitly represented in the translation (see
“References” on page 782).

Forward Declarations
Rule: A forward declaration is not translated to SDL.

This rule is valid for all forward declarations for which there are defini-
tions later on in the header file. This is the most common case, and the
purpose of such forward declarations is simply to make an identifier
known to the C/C++ compiler so that it may be used before it is defined.

However, it is possible to make a forward declaration for which no def-
inition exists in the header file. In that case CPP2SDL must generate an
extra newtype to represent the missing definition. Since this extra new-
type does not correspond to a real C/C++ type, it is marked with a
#NOTYPE directive.

Example 125 below contains two forward declarations, one of which
has no corresponding definition (class C).

Example 125: Translation of forward declarations ––––––––––––––––

C++:

typedef struct S *fwdS;
class C *fwdC;
struct S {
 int a;
};

SDL:
822 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
SYNTYPE fwdS = ptr_S
ENDSYNTYPE fwdS;EXTERNAL ’C++’;
NEWTYPE C /*#NOTYPE*/
ENDNEWTYPE C;EXTERNAL ’C++’;
NEWTYPE ptr_C Ref(C);
 OPERATORS
 ptr_C : -> ptr_C;
 ptr_C : ptr_C -> ptr_C;
ENDNEWTYPE ptr_C;EXTERNAL ’C++’;
DCL fwdC ptr_C; EXTERNAL ’C++’;
NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;
ENDNEWTYPE ptr_S;EXTERNAL ’C++’;
NEWTYPE S
 STRUCT
 a int;
 OPERATORS
 S : -> S;
 S : S -> S;
ENDNEWTYPE S;EXTERNAL ’C++’;

––

Incomplete Types
Rule: An incomplete type declaration is translated to a newtype that
may not be instantiated in SDL. This rule applies to all incomplete types
even if they are declared within complete types. For example a tagless
type within a container type will not be correctly instantiated in SDL.

Compare this translation rule with the one for namespaces (see
“Namespaces” on page 792). While a namespace does not define a type
at all, an incomplete type declaration defines an incomplete type that
may not be referred to. That is the reason why such a newtype must not
be instantiated in SDL.

C/C++ allows declarations of incomplete classes, structs, unions and
enums, i.e. all types having a tag. Incomplete types are therefore also
called tag-less types.

Incomplete types can be used in

• data declarations (i.e. variables, constants etc.)

• type declarations (i.e. typedefs)

• “useless” declarations (i.e. without declaring data or type)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 823

Chapter 15 The CPP2SDL Tool
Example 126: Translation of incomplete types –––––––––––––––––––

C++:

struct S {
 int i;
 struct {
 int j;
 } ss1, *ss2, ss3[2]; // Data declarations
};
typedef enum {
 a, b, c
} ss1, *ss2, ss3[2]; // Type declarations
typedef struct {
 int i;
}; // Missing type name - “useless” declaration
struct {
 int i;
}; // Missing variable name - “useless” declaration

SDL:

NEWTYPE S_incomplete_ss3
 STRUCT
 j int;
ENDNEWTYPE S_incomplete_ss3;
NEWTYPE ptr_S_incomplete_ss3 Ref(S_incomplete_ss3);
 OPERATORS
 ptr_S_incomplete_ss3 : -> ptr_S_incomplete_ss3;
 ptr_S_incomplete_ss3 : ptr_S_incomplete_ss3 ->
 ptr_S_incomplete_ss3;
ENDNEWTYPE ptr_S_incomplete_ss3;EXTERNAL 'C++';
NEWTYPE arr_2_S_incomplete_ss3 CArray(2,
S_incomplete_ss3);
ENDNEWTYPE arr_2_S_incomplete_ss3;EXTERNAL 'C++';
NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;
ENDNEWTYPE ptr_S;EXTERNAL 'C++';
NEWTYPE S
 STRUCT
 i int;
 ss1 S_incomplete_ss3;
 ss2 ptr_S_incomplete_ss3;
 ss3 arr_2_S_incomplete_ss3;
 OPERATORS
 S : -> S;
 S : S -> S;
ENDNEWTYPE S;EXTERNAL 'C++';
NEWTYPE incomplete_ss3
 LITERALS a, b, c;
 OPERATORS
 EnumToInt : incomplete_ss3 -> int; /*#OP(PY)*/
 ORDERING;
824 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
ENDNEWTYPE incomplete_ss3;
SYNTYPE ss1 = incomplete_ss3
ENDSYNTYPE ss1;EXTERNAL ’C++’;
NEWTYPE ptr_incomplete_ss3 Ref(incomplete_ss3);
 OPERATORS
 ptr_incomplete_ss3 : -> ptr_incomplete_ss3;
 ptr_incomplete_ss3 : ptr_incomplete_ss3 ->
 ptr_incomplete_ss3;

ENDNEWTYPE ptr_incomplete_ss3;EXTERNAL ’C++’;
SYNTYPE ss2 = ptr_incomplete_ss3
ENDSYNTYPE ss2;EXTERNAL ’C++’;
NEWTYPE arr_2_incomplete_ss3 CArray(2,
incomplete_ss3);
ENDNEWTYPE arr_2_incomplete_ss3;EXTERNAL ’C++’;
SYNTYPE ss3 = arr_2_incomplete_ss3
ENDSYNTYPE ss3;EXTERNAL ’C++’;

––

As can be seen in the example, incomplete types that are used in data or
type declarations will have the name of the last declared variable or
type, prefixed with a user-configurable string that by default is
“incomplete_”. The option -prefix can be used to configure this
string.

Incomplete types in “useless” declarations will not be translated to
SDL, and CPP2SDL will issue warnings that the declarations were ig-
nored.

Note that the translation of incomplete enum declarations differs from
the normal translation rule of an enum declaration. The differences are
listed in “Enumerated Types” on page 783.

Finally note that incomplete classes, structs and unions define scope
units although they are incomplete. Their names thus follows the rules
for naming of scope units described in “Scope Units” on page 790.

Dynamic Memory Management
Rule: The C/C++ primitives for dynamic memory management is rep-
resented in SDL by means of special operators.

Dynamic memory management is done differently in C and C++. How
C or C++ data is dynamically allocated and deallocated in SDL there-
fore depends on whether CPP2SDL executes in C or C++ mode (con-
trolled by the option -c). In both cases dynamic memory management
is done by means of special SDL operators that are defined in the Ref
generator. However, the definition of the Ref generator is different in C
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 825

Chapter 15 The CPP2SDL Tool
and C++ mode (see “SDL Library for Fundamental C/C++ Types” on
page 841).

C Mode

The following operators are used to support dynamic memory manage-
ment of C data from SDL:

• Make!

Enables dynamic allocation of simple C data.

• free

Enables dynamic deallocation of data that was allocated by the
Make! operator.

Example 127: Dynamic memory management of C data from SDL –––

C:

struct S {
 int i;
 double j;
};

SDL:

NEWTYPE ptr_S Ref(S);
ENDNEWTYPE ptr_S;EXTERNAL ’C’;
NEWTYPE S /*#REFNAME ’struct S’*/
 STRUCT
 i int;
 j double;
ENDNEWTYPE S;EXTERNAL ’C’;

SDL Usage:

dcl var s, ptrs ptr_s;
task {
 ptrs := (. var .);
 ptrs*>!i := 4;
 free(ptrs);
};

––
826 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
C++ Mode

The following operators are used to support dynamic memory manage-
ment of C++ data from SDL:

• new1

Enables dynamic allocation of scalar C++ data of, for example,
class type, fundamental type, or pointer type. It corresponds to the
C++ operator with the same name.

• delete

Enables dynamic deallocation of data that was allocated by the new
operator. It corresponds to the C++ operator with the same name.

• new_array

Enables dynamic allocation of arrays of C++ data of, for example,
class type, fundamental type, or pointer type. It corresponds to the
C++ operator new[].

• delete_array

Enables dynamic deallocation of data that was allocated by the
new_array operator. It corresponds to the C++ operator delete[].

Example 128: Dynamic memory management of C++ data from SDL–

C++:

struct S {
 int i;
 double j;
};

Import Specification:

TRANSLATE {
 S**
 int*
}

SDL:

NEWTYPE ptr_int Ref(int);
 OPERATORS
 ptr_int : -> ptr_int;
 ptr_int : ptr_int -> ptr_int;
ENDNEWTYPE ptr_int;EXTERNAL ’C++’;
NEWTYPE ptr_ptr_S Ref(ptr_S);

1. In fact the Make! operator can also be used in C++ mode. In that case it behaves
exactly like the new operator.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 827

Chapter 15 The CPP2SDL Tool
 OPERATORS
 ptr_ptr_S : -> ptr_ptr_S;
 ptr_ptr_S : ptr_ptr_S -> ptr_ptr_S;
ENDNEWTYPE ptr_ptr_S;EXTERNAL ’C++’;
NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;’
ENDNEWTYPE ptr_S;EXTERNAL 'C++';
NEWTYPE S
 STRUCT
 i int;
 j double;
 OPERATORS
 S : -> S;
 S : S -> S;
ENDNEWTYPE S;EXTERNAL 'C++';

SDL Usage:

dcl ptrs ptr_s, ptrptrs ptr_ptr_s, ptri ptr_int;
task {
 ptrs := new(s);
 ptrs*>!i := 4;
 ptrptrs := new(ptr_s);
 ptri := new(int);
 delete(ptrs);
 delete(ptrptrs);
 delete(ptri);
 ptri := newArray(int, 5);
 deleteArray(ptri);
};

––

The input to the new and new_array operators must be an operator that
corresponds to a constructor in C++. To enable dynamic allocation of
data with non-class types, there must thus exist constructor operators for
these types. These operators correspond to the implicit parameter-less
and copy constructors, which exist for each C++ type. The definition of
these constructor operators are part of the non-generated SDL declara-
tions that are included when the -generatecpptypes option is set (see
“SDL Library for Fundamental C/C++ Types” on page 841).

Overloaded Operators
Rule: An overloaded C++ operator is translated to a corresponding
overloaded SDL operator.

Since the sets of operators that may be overloaded are different in C++
and SDL, not all overloaded C++ operators can be translated to SDL.
828 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
The table below shows which C++ operators that can be translated to
SDL

:

Note that even if there is a corresponding SDL operator to translate to,
a C++ operator could be declared in a way that would make it necessary
to qualify its SDL name, which is not possible. This happens for exam-
ple if the operator is declared to be static, or declared inside a
namespace (see “Scope Units” on page 790 for more about scope name
qualifications). It may also happen due to name qualification rules for
inherited members (see “Multiple Inheritance” on page 811). CPP2SDL
will issue a warning if it encounters an overloaded operator that cannot
be translated.

C++ operator Description SDL operator

+ (binary) Addition +

- (binary) Subtraction -

* (binary) Multiplication *

* (unary prefix) Dereference *>

/ (binary) Division /

% (binary) Modulo rem

! (unary prefix) Not not

< (binary) Less <

> (binary) Greater >

<< (binary) Left Shift <

>> (binary) Right Shift >

== (binary) Equal =

!= (binary) Not Equal /=

<= (binary) Less Equal <=

>= (binary) Greater Equal >=

&& (binary) And and

|| (binary) Or or
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 829

Chapter 15 The CPP2SDL Tool
The table above shows that the translation of the less and greater oper-
ators (<, >) is the same as the translation of the shift operators (<<, >>).
Obviously, this may lead to ambiguities if both these operator pairs are
overloaded in a class. In that case, the less and greater operators will
have precedence, and CPP2SDL will issue a warning that the overload-
ed shift operators cannot be translated to SDL.

Example 129: Translation of overloaded operators––––––––––––––––

C++:

class ostream {
public:
 ostream& operator<(const char* p1);
 ostream& operator<<(const char* p1);
 ostream& operator>>(const char* p1);
 static int operator%(int p1);
 bool operator!();
};

SDL:

NEWTYPE ptr_char Ref(char);
 OPERATORS
 ptr_char : -> ptr_char;
 ptr_char : ptr_char -> ptr_char;
ENDNEWTYPE ptr_char;EXTERNAL ’C++’;
NEWTYPE ptr_ostream Ref(ostream);
 OPERATORS
 ptr_ostream : -> ptr_ostream;
 ptr_ostream : ptr_ostream -> ptr_ostream;
ENDNEWTYPE ptr_ostream;EXTERNAL ’C++’;
NEWTYPE ostream
 OPERATORS
 "not" /*#REFNAME ’operator!’*/ : ostream ->
bool;
 "rem" /*#REFNAME ’operator%’*/ : ostream, int ->
int;
 "<" /*#REFNAME ’operator<’*/ : ostream, ptr_char
-> ostream;
 ostream : -> ostream;
 ostream : ostream -> ostream;
ENDNEWTYPE ostream;EXTERNAL ’C++’;

––

Conversion Operators

Rule: A conversion operator is translated to a special conv operator in
SDL.
830 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
In C++, a conversion operator is implicitly called by the compiler when
a matching type conversion is needed. The conv operator, however,
must be called explicitly in SDL.

Example 130: Translation of conversion operators –––––––––––––––

C++:

class Tiny {
public:
 operator int(); // Implicit conversion from Tiny
to int
};

SDL:

NEWTYPE ptr_Tiny Ref(Tiny);
 OPERATORS
 ptr_Tiny : -> ptr_Tiny;
 ptr_Tiny : ptr_Tiny -> ptr_Tiny;
ENDNEWTYPE ptr_Tiny;EXTERNAL ’C++’;
NEWTYPE Tiny
 OPERATORS
 conv : Tiny -> int; /*#OP(PY)*/
 Tiny : -> Tiny;
 Tiny : Tiny -> Tiny;
ENDNEWTYPE Tiny;EXTERNAL ’C++’;

––

Note that the conv operator returns the target type of the type conver-
sion specified by the conversion operator. The #OP(PY) directive tells
the Code Generator that the operator is implicitly called in C++.

Templates
Rule: A template declaration is translated to SDL by instantiating it.

A template declaration as such cannot be translated to SDL. Only spec-
ified instantiations of the template can be translated. CPP2SDL will
print a warning about this when a template declaration is encountered.

A template instantiation may of course be present in the input headers.
In that case CPP2SDL will translate the template instantiation by sub-
stituting all formal template arguments in the template declaration with
the actual template arguments used in the template instantiation. If the
input headers contain no suitable instantiation of a certain template, an
import specification may be used to provide such an instantiation. See
“Template Instantiations” on page 774 to learn more about that.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 831

Chapter 15 The CPP2SDL Tool
There are two main kinds of template declarations in C++; class tem-
plates and function templates.

Class Templates

Rule: An instantiation of a class template is translated in the same way
as the non-template class that is obtained if all formal arguments of the
class template declaration are substituted with the actual arguments of
the class template instantiation.

This translation rule implies that class template instantiations will be-
come newtypes in SDL. The name of such a newtype will consist of the
name of the template class, followed by the names of all actual template
arguments of the template instantiation. The name will also be prefixed
with a string that by default is "tpl_". The option -prefix can be used
to configure this string.

Example 131: Translation of class template instantiations –––––––––

C++:

template <class T> class C {
public:
 T t;
 T f();
 C(T v);
};
typedef C<int> mytype; // Class template
instantiation

SDL:

NEWTYPE ptr_tpl_C_int Ref(tpl_C_int);
 OPERATORS
 ptr_tpl_C_int : -> ptr_tpl_C_int;
 ptr_tpl_C_int : ptr_tpl_C_int -> ptr_tpl_C_int;
ENDNEWTYPE ptr_tpl_C_int;EXTERNAL ’C++’;
NEWTYPE tpl_C_int /*#REFNAME ’C<int >’*/
 STRUCT
 t int;
 OPERATORS
 tpl_C_int /*#REFNAME ’C’*/ : int -> tpl_C_int;
 f : tpl_C_int -> int;
 tpl_C_int /*#REFNAME ’C’*/ : tpl_C_int ->
tpl_C_int;
ENDNEWTYPE tpl_C_int;EXTERNAL ’C++’;
SYNTYPE mytype = tpl_C_int
ENDSYNTYPE mytype;EXTERNAL ’C++’;

––
832 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
Note that a #REFNAME directive passes the C++ name of the class
template instantiation to the Code Generator.

Function Templates

Rule: An instantiation of a function template is translated in the same
way as the non-template function that is obtained if all formal argu-
ments of the function template declaration are substituted with the actu-
al arguments of the function template instantiation.

This translation rule implies that function template instantiations will
become operators in SDL. The name of such an operator will consist of
the name of the template function, followed by the names of all actual
template arguments of the template instantiation. The name will also be
prefixed with a string that by default is "tpl_". The option -prefix can
be used to configure this string.

Since a function template is instantiated when called, a C++ header file
will normally not contain any function template instantiations. Instead
an import specification should be used to provide the necessary instan-
tiations (see “Template Instantiations” on page 774). In Example 132
below an import specification is used to instantiate the template func-
tion with the type int*.

Example 132: Translation of function template instantiations–––––––

C++:

template <class T> T func(T t);

Import Specification:

TRANSLATE {
 func<int*>
}

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 tpl_func_ptr_int /*#REFNAME ’func<int* >’*/ :
ptr_int
-> ptr_int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
NEWTYPE ptr_int Ref(int);
 OPERATORS
 ptr_int : -> ptr_int;
 ptr_int : ptr_int -> ptr_int;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 833

Chapter 15 The CPP2SDL Tool
ENDNEWTYPE ptr_int;EXTERNAL ’C++’;

––

As can be seen from the translation of the example above, the
#REFNAME directive contains the C++ name of the template instanti-
ation written on the so called explicit form1. This makes the Code Gen-
erator use this explicit form when the template function is called from
SDL.

Default Template Arguments

Rule: An instantiation of a template declaration with default arguments
is translated in the same way as an ordinary template instantiation,
where omitted actual arguments in the instantiation are substituted with
the specified default types or values.

This translation rule is very similar to the one used for functions with
default arguments (see “Default Arguments” on page 788).

Example 133: Translation of templates with default arguments –––––

C++:

template <class T, class U = char, int i = 5> class
C {
public:
 T t[i];
 T f();
 C(U p1);
};
C<int> var1; // Using all the default values
C<int, bool> var2; // Using the default value for i
C<int, bool, 5> var3; // Not using any default value

SDL:

NEWTYPE ptr_tpl_C_int_char_5 Ref(tpl_C_int_char_5);
 OPERATORS

1. In the explicit form of a function template instantiation, all actual template
arguments are provided explicitly in the instantiation rather than being de-
duced from the types of the actual arguments in a call to the function tem-
plate.

Note:

Calling a function template from SDL requires that the target C++
compiler can handle calls using the explicit form of the function
template instantiation.
834 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 ptr_tpl_C_int_char_5 : -> ptr_tpl_C_int_char_5;
 ptr_tpl_C_int_char_5 : ptr_tpl_C_int_char_5 ->
 ptr_tpl_C_int_char_5;
ENDNEWTYPE ptr_tpl_C_int_char_5;EXTERNAL ’C++’;
NEWTYPE tpl_C_int_char_5 /*#REFNAME ’C<int, char, 5
>’*/
 STRUCT
 t arr_5_int;
 OPERATORS
 tpl_C_int_char_5 /*#REFNAME ’C’*/ : char ->
tpl_C_int_char_5;
 f : tpl_C_int_char_5 -> int;
 tpl_C_int_char_5 /*#REFNAME ’C’*/ :
tpl_C_int_char_5
-> tpl_C_int_char_5;
ENDNEWTYPE tpl_C_int_char_5;EXTERNAL ’C++’;
DCL var1 tpl_C_int_char_5; EXTERNAL ’C++’;
DCL var2 tpl_C_int_bool_5; EXTERNAL ’C++’;
NEWTYPE arr_5_int CArray(5, int);
ENDNEWTYPE arr_5_int;EXTERNAL ’C++’;
NEWTYPE ptr_tpl_C_int_bool_5 Ref(tpl_C_int_bool_5);
 OPERATORS
 ptr_tpl_C_int_bool_5 : -> ptr_tpl_C_int_bool_5;
 ptr_tpl_C_int_bool_5 : ptr_tpl_C_int_bool_5 ->
 ptr_tpl_C_int_bool_5;
ENDNEWTYPE ptr_tpl_C_int_bool_5;EXTERNAL ’C++’;
NEWTYPE tpl_C_int_bool_5 /*#REFNAME ’C<int, bool, 5
>’*/
 STRUCT
 t arr_5_int;
 OPERATORS
 tpl_C_int_bool_5 /*#REFNAME ’C’*/ : bool ->
tpl_C_int_bool_5;
 f : tpl_C_int_bool_5 -> int;
-> tpl_C_int_bool_5;
ENDNEWTYPE tpl_C_int_bool_5;EXTERNAL ’C++’;
DCL var3 tpl_C_int_bool_5; EXTERNAL ’C++’;

––

Note that although the template instantiations of var2 and var3 in the
example above look different, they evaluate to the same template type
both in C++ and in the SDL translation.

Miscellaneous
This section covers some miscellaneous issues that have not been dis-
cussed so far. They are divided into constructs that are part of the C or
C++ languages, and constructs that are not part of the languages as such,
but that nevertheless may be found in an input C/C++ header file.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 835

Chapter 15 The CPP2SDL Tool
Language Constructs

Volatile

Rule: A volatile declaration is translated in the same way as an ordinary
declaration.

The volatile specifier can be looked upon as some kind of compiler
directive, and needs therefore not be visible in the SDL translation.

Linkage

Rule: The linkage of a C/C++ identifier is not visible in the SDL trans-
lation of the identifier.

There is one important exception to this rule; static linkage of class
members affects their translation as described in “Static Members” on
page 803.

In general, the linkage of a C/C++ identifier can be specified to be in-
ternal or external using the keywords static or extern (although the
former is a deprecated feature in C++ for all declarations but class mem-
bers). In C++ it is also possible to use the extern keyword to specify
that a set of declarations have C linkage, i.e. belong to a translation unit
that is compiled with a C compiler.

Example 134: Translation of identifiers with different linkage –––––––

C++:

extern int a; // Declaration of a
extern int a; // Legal redeclaration of a
int a; // Definition of a
extern "C" {
 struct S {
 int x;
 };
}

SDL:

DCL a int; EXTERNAL ’C++’;
NEWTYPE ptr_S Ref(S);
 OPERATORS
 ptr_S : -> ptr_S;
 ptr_S : ptr_S -> ptr_S;
ENDNEWTYPE ptr_S;EXTERNAL ’C++’;
NEWTYPE S
 STRUCT
 x int;
836 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 C/C++ to SDL Translation Rules
 OPERATORS
 S : -> S;
 S : S -> S;
ENDNEWTYPE S;EXTERNAL ’C++’;

––

Note that the extern "C" directive in this example does not affect the
mapping of S at all. For example, it will be possible to instantiate S us-
ing the new operator.

Non-Language Constructs

Macros

Rule: Macros are not translated to SDL.

The reason for not translating macros is that they are not part of the C
or C++ languages. Macros are expanded and removed by the preproces-
sor before CPP2SDL performs the translation.

Some header files (especially C headers) contain numerous macros that
could be useful or even essential to access in SDL. Fortunately most
macros can actually be accessed from SDL, although they are not trans-
lated by CPP2SDL. Refer to “Constants” on page 794 for more infor-
mation.

SDL Sorts in C/C++

Rule: A C/C++ type called “SDL_<sort>”, where <sort> is a pre-
defined SDL sort, is translated to that SDL sort.

Since this translation rule restricts the way ordinary C/C++ types may
be named, it is only respected by CPP2SDL if the -sdlsorts option is
set.

Example 135: Translation of types referring to SDL sorts ––––––––––

C++:

SDL_Real func(SDL_Integer, int);

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 func : Integer, int -> Real;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 837

Chapter 15 The CPP2SDL Tool
The feature of referring to SDL sorts from a C/C++ header file may be
useful if the header has been designed to be used from SDL exclusively.
838 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Special Translation Rules for C Compilers
Special Translation Rules for C Compilers
CPP2SDL by default assumes that its input is C++ code, and that the
target compiler is a C++ compiler. In order to also support C code and
C target compilers, the translation rules have to be slightly modified.
CPP2SDL does this if the -c option is set. The tool then executes in “C
mode”.

A general difference is how the external specifier for all SDL declara-
tions will be generated. Normally this specifier is followed by the string
‘C++’ to tell the Code Generator that the declaration was translated
from a C++ declaration. In C mode the string will instead be ‘C’.

Example 136: Different external specifier in C mode ––––––––––––––

C++:
const int a;

SDL:
SYNONYM a int = EXTERNAL ’C’;

––

In C, a struct or a union is not a scope unit, which means that declara-
tions inside a struct or a union should be treated as ordinary declara-
tions. This means that the #REFNAME directive that normally is used
for specifying the qualified name of for example a nested struct decla-
ration, will not be printed in C mode.

Instead, a #REFNAME directive will be inserted after the name of new-
types that represent tagged types (i.e. structs, unions and enums). The
reason is that C, contrary to C++, does not allow such types to be refer-
enced only with the name of the tag. Another place where the "full" type
name is required in C mode is in the C style cast that is generated by
means of a #REFNAME directive for IntToEnum operators (see “Enu-
merated Types” on page 783).

Example 137: Differences in translation of structs, unions and enums

C++:
struct S {
 int a;
 struct SS {
 int b;
 };
};
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 839

Chapter 15 The CPP2SDL Tool
typedef enum E {e1, e2, e3} Etype;

SDL:
NEWTYPE ptr_SS Ref(SS);
ENDNEWTYPE ptr_SS;EXTERNAL ’C’;
NEWTYPE SS /*#REFNAME ’struct SS’*/
 STRUCT
 b int;
ENDNEWTYPE SS;EXTERNAL ’C’;
NEWTYPE ptr_S Ref(S);
ENDNEWTYPE ptr_S;EXTERNAL ’C’;
NEWTYPE S /*#REFNAME ’struct S’*/
 STRUCT
 a int;
ENDNEWTYPE S;EXTERNAL ’C’;
NEWTYPE E /*#REFNAME ’enum E’*/
 LITERALS e1, e2, e3;
 OPERATORS
 IntToEnum /*#REFNAME ’(enum E)’*/ : int -> E;
 EnumToInt : E -> int; /*#OP(PY)*/
 ORDERING;
ENDNEWTYPE E;EXTERNAL ’C’;
SYNTYPE Etype = E
ENDSYNTYPE Etype;EXTERNAL ’C’;

––

Finally, note that memory allocation is done differently in C and C++.
This is reflected in SDL by using a different definition of the Ref gen-
erator when CPP2SDL executes in C mode, where for example the new,
delete, new_array, and delete_array operators are not present. See
“Dynamic Memory Management” on page 825 and “SDL Library for
Fundamental C/C++ Types” on page 841 for more information.
840 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL Library for Fundamental C/C++ Types
SDL Library for Fundamental C/C++ Types
The SDL declarations that are generated by CPP2SDL will normally
not be semantically correct on their own. They typically contain several
references to SDL sorts that represent fundamental C/C++ types, for ex-
ample int, char and bool, and type declarators such as pointers (*)
and arrays ([]). The SDL representations of all fundamental C/C++
types and type declarators are defined in a library consisting of a few
SDL/PR files. The table below lists these files and their contents.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 841

Chapter 15 The CPP2SDL Tool
SDL/PR file Contents

BasicCTypes.pr

Contains SDL rep-
resentations of
fundamental C
types. Also con-
tains representa-
tions for an un-
typed pointer
(void*) and the
array type de-
clarator ([]).

SYNTYPE int = Integer
ENDSYNTYPE int;

SYNTYPE unsigned_int = Integer
ENDSYNTYPE unsigned_int;

SYNTYPE long_int = Integer
ENDSYNTYPE long_int;

SYNTYPE unsigned_long_int = Integer
ENDSYNTYPE unsigned_long_int;

SYNTYPE short_int = Integer
ENDSYNTYPE short_int;

SYNTYPE unsigned_short_int = Integer
ENDSYNTYPE unsigned_short_int;

SYNTYPE char = Character
ENDSYNTYPE char;

SYNTYPE signed_char = Character
ENDSYNTYPE signed_char;

SYNTYPE unsigned_char = Octet
ENDSYNTYPE unsigned_char;

SYNTYPE float = Real
ENDSYNTYPE float;

SYNTYPE double = Real
ENDSYNTYPE double;

NEWTYPE ptr_void
LITERALS Null;
DEFAULT Null;
ENDNEWTYPE ptr_void;

GENERATOR CArray (CONSTANT Length, TYPE
Itemsort)
OPERATORS
 modify!: CArray, Integer, Itemsort -> CArray;
 extract!: CArray, Integer -> Itemsort;
ENDGENERATOR CArray;
842 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL Library for Fundamental C/C++ Types
BasicC++Types.pr

Contains SDL rep-
resentations of
fundamental C++
types. Also con-
tains operators
representing im-
plicit construc-
tors for funda-
mental types.

Note that this
file includes the
files Basic-
Ctypes.pr and Ex-
traCTypes.pr.

/*#INCLUDE ’BasicCTypes.pr’*/
/*#INCLUDE ’ExtraCTypes.pr’*/

SYNTYPE bool = Boolean
ENDSYNTYPE bool;

NEWTYPE wchar_t
ENDNEWTYPE wchar_t;

NEWTYPE __ConstructorOperators /*#NOTYPE*/
OPERATORS
 int: -> int;
 int: int -> int;
 unsigned_int: -> unsigned_int;
 unsigned_int: unsigned_int -> unsigned_int;
 long_int: -> long_int;
 long_int: long_int -> long_int;
 unsigned_long_int: -> unsigned_long_int;
 unsigned_long_int: unsigned_long_int ->
unsigned_long_int;
 short_int: -> short_int;
 short_int: short_int -> short_int;
 unsigned_short_int: -> unsigned_short_int;
 unsigned_short_int: unsigned_short_int ->
unsigned_short_int;
 char: -> char;
 char: char -> char;
 signed_char: -> signed_char;
 signed_char: signed_char -> signed_char;
 unsigned_char: -> unsigned_char;
 unsigned_char: unsigned_char -> unsigned_char;
 float: -> float;
 float: float -> float;
 double: -> double;
 double: double -> double;
 ptr_void: -> ptr_void;
 ptr_void: ptr_void -> ptr_void;
 bool: -> bool;
 bool: bool -> bool;
 wchar_t: -> wchar_t;
 wchar_t: wchar_t -> wchar_t;
ENDNEWTYPE __ConstructorOperators;EXTERNAL ’C++’;

SDL/PR file Contents
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 843

Chapter 15 The CPP2SDL Tool
ExtraCTypes.pr

Contains SDL rep-
resentations of
additional funda-
mental C types.

SYNTYPE long_long_int = Integer
ENDSYNTYPE long_long_int;

SYNTYPE unsigned_long_long_int = Integer
ENDSYNTYPE unsigned_long_long_int;

ExtraC++Types.pr

Contains SDL rep-
resentations of
additional funda-
mental C++ types.

NEWTYPE__ExtraConstructorOperators
long_long_int : -> long_long_int;
long_long_int : long_long_int -> long_long_int;
unsigned_long_long_int : ->
unsigned_long_long_int;
unsigned_long_long_int : unsigned_long_long_int -
> unsigned_long_long_int
ENDNEWTYPE__ExtraConstructorOperators

CPointer.pr

Contains SDL rep-
resentation of
the C pointer
type declarator
(*).

GENERATOR Ref (TYPE Itemsort)
LITERALS Null, Alloc;
OPERATORS
 modify! : Ref, Integer, Itemsort -> Ref;
 extract! : Ref, Integer -> Itemsort;
 "*>" : Ref, Itemsort -> Ref;
 "*>" : Ref -> Itemsort;
 "&" : Itemsort -> Ref;
 make! : Itemsort -> Ref;
 free : in/out Ref;
 "+" : Ref, Integer -> Ref;
 "-" : Ref, Integer -> Ref;
 cast : Ref -> ptr_void;
 cast : ptr_void -> Ref;
DEFAULT Null;
ENDGENERATOR Ref;

SDL/PR file Contents
844 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 SDL Library for Fundamental C/C++ Types
If the option -generatecpptypes is set, CPP2SDL will include some
of the files from the table above in the SDL translation. Which files that
are included depends on if CPP2SDL executes in C or C++ mode (con-
trolled by the -c option).

The following files will be included in C mode:

• BasicCTypes.pr

• CPointer.pr

The following files will be included in C++ mode:

• BasicC++Types.pr

• C++Pointer

The reason for breaking out the types long long int and unsigned
long long int into separate files, is that not all compilers support
these types. These files must be manually included if these types are
present in the input headers.

C++Pointer.pr

Contains SDL rep-
resentation of
the C++ pointer
type declarator
(*).

GENERATOR Ref (TYPE Itemsort)
LITERALS Null;
OPERATORS
 modify! : Ref, Integer, Itemsort -> Ref;
 extract! : Ref, Integer -> Itemsort;
 "*>" : Ref, Itemsort -> Ref;
 "*>" : Ref -> Itemsort;
 "&" : Itemsort -> Ref;
 new : Itemsort -> Ref;
 delete : Ref;
 new_array : Itemsort, Integer -> Ref;
 delete_array : Ref;
 "+" : Ref, Integer -> Ref;
 "-" : Ref, Integer -> Ref;
 cast : Ref -> ptr_void;
 cast : ptr_void -> Ref;
DEFAULT Null;
ENDGENERATOR Ref;

SDL/PR file Contents
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 845

Chapter 15 The CPP2SDL Tool
Example usage of some C/C++
functionality

Overloaded Operators
This example illustrates how to call an operator which has been made
accessible by CPP2SDL. There are two operators defined and used, the
first being a member operator, and the second a non-member operator.
Also see “Overloaded Operators” on page 846.

C++:

class CInt {
 int val;

public:
 CInt() : val(0) {};
 CInt(int i) : val(i) {};
 int value() const { return val; };

 int operator+(const int& i){val+= i; return val;};
};

int operator+(const int& left, const CInt& right)
{return right.value()+left;};

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 "+" /*#REFNAME ’operator+’*/ : int, CInt -> int;
ENDNEWTYPE global_namespace;EXTERNAL ’C++’;
/*#SDTREF(TEXT,header_CPP2SDL.i,16,7)*/
NEWTYPE ptr_CInt Ref(CInt);
 OPERATORS
 ptr_CInt : -> ptr_CInt;/* implicit parameter-
less constructor */
 ptr_CInt : ptr_CInt -> ptr_CInt;/* implicit copy
constructor */
ENDNEWTYPE ptr_CInt;EXTERNAL ’C++’;
/*#SDTREF(TEXT,header_CPP2SDL.i,16,7)*/
NEWTYPE CInt

Hint:

The syntype definitions of the SDL sorts that represent fundamental
C/C++ types can easily be changed. For example, the definitions of
the SDL sorts ‘char’ and ‘unsigned char’ could be swapped if the
target platform specifies that a simple ‘char’ is unsigned rather than
signed.
846 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example usage of some C/C++ functionality
 OPERATORS
 "+" /*#REFNAME ’operator+’*/ : CInt, int -> int;
 CInt : -> CInt;
 CInt : int -> CInt;
 value : CInt -> int; /*#CONSTANT*/
 CInt : CInt -> CInt;/* implicit copy constructor
*/
ENDNEWTYPE CInt;EXTERNAL ’C++’;

Use in SDL:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 847

Chapter 15 The CPP2SDL Tool
String handling
It is possible to do C-style string handling in SDL, by using the standard
C header string.h. By including ‘string.h’ and ‘stdio.h’ we are
given access to the functions defined within them in SDL. You may no-
tice that strcpy is defined in the hand written header as well as in
‘string.h’. The former definition allows us to assign the string “good-
bye” to empty, without using the return value of strcpy, and importing
it to SDL. Also needed is an allocate and deallocate function. An exam-
ple allocate function has been defined in the header, a deallocate func-
tion should also be done in the practice to avoid memory leaks.

C:

#include<string.h>
#include<stdio.h>

#ifdef __CPP2SDL__
void strcpy(char*,char*);
#endif

typedef char* string;
char ara[10];
string hello= "hello";
string empty;

char* allocateString(int length) {
 return (char*) calloc(length,sizeof(char));
}

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 memcpy : ptr_void, ptr_void, size_t -> ptr_void;
 memcmp : ptr_void, ptr_void, size_t -> int;
 memset : ptr_void, int, size_t -> ptr_void;
 _strset : ptr_char, int -> ptr_char;
 strcpy : ptr_char, ptr_char -> ptr_char;
 strcat : ptr_char, ptr_char -> ptr_char;
 strcmp : ptr_char, ptr_char -> int;
 strlen : ptr_char -> size_t;

 unlink : ptr_char -> int;
 strcpy : ptr_char, ptr_char;
 allocateString : int -> ptr_char;
ENDNEWTYPE global_namespace;EXTERNAL ’C’;
...
SYNTYPE string = ptr_char
ENDSYNTYPE string;EXTERNAL ’C’;
/*#SDTREF(TEXT,header_CPP2SDL.i,728,6)*/
NEWTYPE arr_10_char CArray(10, char);
848 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example usage of some C/C++ functionality
ENDNEWTYPE arr_10_char;EXTERNAL ’C’;
/*#SDTREF(TEXT,header_CPP2SDL.i,728,6)*/
DCL ara arr_10_char; EXTERNAL ’C’;
/*#SDTREF(TEXT,header_CPP2SDL.i,729,8)*/
DCL hello string; EXTERNAL ’C’;
/*#SDTREF(TEXT,header_CPP2SDL.i,730,8)*/
DCL empty string; EXTERNAL ’C’;

Use in SDL:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 849

Chapter 15 The CPP2SDL Tool
850 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example usage of some C/C++ functionality
Type conversion
Some type conversions are easier in C/C++ than in SDL, in particular
those that are implicit. An implicit type conversion must often be ex-
plicit in SDL, by introducing a simple cast operator that performs the
conversion. For example, by using the mapping of SDL sorts between
unsigned_char and char we can create a cast operator in SDL that con-
verts a char to an Octet. (See “Fundamental Types” on page 779 for
more information). This corresponds to the implicit conversion in
C/C++ between char and unsigned char.

Use in SDL:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 851

Chapter 15 The CPP2SDL Tool
Error Handling
The input headers to CPP2SDL have in many cases been compiled with
a C/C++ compiler previously, and it should then be relatively uncom-
mon that CPP2SDL will have to issue any error messages. However,
differences in language support, and inappropriate preprocessor set-
tings, are common sources for error reports also from input files that
otherwise are perfectly correct.

If CPP2SDL finds an error in the input, a message will be printed that
briefly describes the reason for the error.

The format of printed error messages are described in “Source and Error
References” on page 776.

CPP2SDL performs a complete syntactic analysis of the input C/C++
code, and syntax errors are reported as shown in Example 138 below.

Example 138: Syntax errors –––––––––––––––––––––––––––––––––––

File syn.h:

int f(};
conts int i = 7;

Command Prompt:

% cpp2sdl syn.h
Parsing C/C++ input...
Syntax errors found. Cannot perform SDL translation.
#SDTREF(TEXT,syn.h,1,7)
ERROR 3200 Syntax error.
#SDTREF(TEXT,syn.h,2,7)
ERROR 3200 Syntax error.
2 errors and 0 warnings.

––

CPP2SDL will proceed with semantic analysis only if no errors were
found during the syntactic analysis. The semantic analysis that is done

Note:

The error messages produced by CPP2SDL are often less descrip-
tive than the corresponding error messages from a C/C++ compiler.
If CPP2SDL reports errors in a header file, it is therefore a good idea
to run a C/C++ compiler on the same header file to get more infor-
mation about the reason for the error.
852 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error Handling
by CPP2SDL is not complete according to the C/C++ standards, but
only a limited number of semantic tests are performed:

• The type of variables, constants, typedefs, functions, function argu-
ments, actual template arguments, and base classes are checked. If
a type is undeclared, or if it depends on an undeclared type1, an error
message will be issued.

• The actual arguments of a template instantiation are checked against
the formal arguments of the template definition. If there are too few
or too many actual arguments, or if there are type mismatches be-
tween actual and formal arguments, an error message will be issued.

Example 139: Semantic errors ––––––––––––––––––––––––––––––––

File sem.h:

template <class U, int d> class S {
public:
 U arr[d];
};
typedef unknown T; // T depends on undeclared type
const unknown a = 3;
T f(int, char);
S<T, 3> var;
typedef S<> t1; // Too few actual arguments
typedef S<char, 5, 5> t2; // Too many actual
arguments
typedef S<int, int> t3; // Argument type mismatch

Command Prompt:

% cpp2sdl -errorlimit 10 sem.h
Parsing C/C++ input...
Translating C/C++ to SDL...
Generating SDL...
#SDTREF(TEXT,sem.h,11,9)
ERROR 3263 Illegal instantiation of template ’S’.
#SDTREF(TEXT,sem.h,10,9)
ERROR 3263 Illegal instantiation of template ’S’.
#SDTREF(TEXT,sem.h,9,9)
ERROR 3263 Illegal instantiation of template ’S’.
#SDTREF(TEXT,sem.h,8,3)
ERROR 3261 The type ’T’ is undeclared, or is
depending on an undeclared type.
#SDTREF(TEXT,sem.h,7,3)
ERROR 3261 The type ’T’ is undeclared, or is

1. One example of such a type dependency is when the source type of a typedef type
is undeclared. Usages of the typedef type will then be considered to be unde-
clared.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 853

Chapter 15 The CPP2SDL Tool
depending on an undeclared type.
#SDTREF(TEXT,sem.h,6,15)
ERROR 3261 The type ’unknown’ is undeclared, or is
depending on an undeclared type.
#SDTREF(TEXT,sem.h,5,17)
ERROR 3261 The type ’unknown’ is undeclared, or is
depending on an undeclared type.
#SDTREF(TEXT,sem.h,1,33)
WARNING 3211 Cannot translate template declaration.
The declaration will be ignored.
7 errors and 1 warnings.

––

Note that the command-line option -errorlimit can be used to set a
limit for the number of errors to report before terminating a translation.
854 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 CPP2SDL Messages
CPP2SDL Messages
CPP2SDL may produce three kinds of messages during the translation
of a set of header files.

• Error messages are printed if CPP2SDL finds any syntactic or se-
mantic errors in the input header files. See “Example usage of some
C/C++ functionality” on page 846 for more information about how
CPP2SDL handles errors in the input.

• Warnings are given if CPP2SDL finds language constructs that for
some reason cannot be fully translated. The tool also prints warn-
ings if it has to make assumptions about a construct that not neces-
sarily are valid.

• Information messages are all other messages that are printed.

The rest of this section lists and explains all errors and warnings that
may be issued by CPP2SDL.

Errors
ERROR 3200 Syntax error.

An error was found during the syntactic analysis of the input. CPP2SDL
will not continue with semantic analysis and translation to SDL, since
the program is not correct.

ERROR 3260 The identifier <identifier name> is unde-
clared.

An identifier is undeclared, i.e. the program is not semantically correct
and will therefore not be translated to SDL.

ERROR 3261 The type <type name> is undeclared, or is de-
pending on an undeclared type.

A type is undeclared, or depends on a type that is undeclared. A type de-
fined by a typedef of an undeclared type is an example of a type that de-
pends on a undeclared type. Since the program is not semantically cor-
rect, it will not be translated to SDL.

Note:

If this error message is printed for a program that is accepted by a
C/C++ compiler, make sure that the correct language dialect has
been set to CPP2SDL by means of the -dialect option.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 855

Chapter 15 The CPP2SDL Tool
ERROR 3262 The base <base class name> is undeclared.

A class inherits from a base class that is undeclared. This is a semantic
error, and the program will thus not be translated to SDL.

ERROR 3263 Illegal instantiation of template <template
name>.

A template instantiation is semantically incorrect. Make sure that the
number of actual arguments in the template instantiation matches the
number of formal arguments in the template declaration, and that the
kinds of the arguments are correct. Since the program is not semantical-
ly correct, it will not be translated to SDL.

Warnings
WARNING 3201 Static member variable <variable name> will
not be globally accessible since no SDL variables are al-
lowed.

A static member variable cannot be fully translated, since no external
variables are allowed in the context where the generated SDL declara-
tions are to be injected. The static variable will still be accessible as an
ordinary member variable, but not as a globally accessible variable. Un-
set the option -novariables to allow generation of external SDL vari-
ables.

WARNING 3202 Static overloaded operator <operator name>
will not be globally accessible.

A static overloaded operator cannot be fully translated, since it is not
possible to qualify the name of an overloaded operator in SDL which
otherwise would be required. The static operator will still be accessible
as an ordinary member overloaded operator, but not as a globally acces-
sible overloaded operator. Refer to “Overloaded Operators” on page
828.

WARNING 3203 Cannot translate incomplete type declara-
tion without declared objects. The declaration will be
ignored.

An incomplete type declaration that is not used as the type of at least one
object (e.g. variable, constant, or type) is a useless declaration that will
not be translated to SDL. See “Incomplete Types” on page 823 for more
about useless incomplete type declarations.
856 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 CPP2SDL Messages
WARNING 3204 Cannot translate overloaded operator, since
it is declared in a namespace.

An overloaded operator declared in a namespace cannot be translated to
SDL, since it is not possible to qualify the name of an overloaded oper-
ator in SDL which otherwise would be required. Refer to “Overloaded
Operators” on page 828.

WARNING 3205 Cannot translate overloaded shift operator,
since the ’<’ or ’>’ operator also is overloaded in this
scope.

The translation rule for overloaded operators only supports translation
of either the < and > operators or the << and >> operators. This warning
is given if an operator from both these operator pairs are overloaded in
a certain scope. See “Overloaded Operators” on page 828 for more in-
formation.

WARNING 3206 Cannot translate overloaded operator, since
no corresponding SDL operator exists.

An overloaded operator cannot be translated to SDL, since no appropri-
ate SDL operator exists that could represent it. The table in “Overloaded
Operators” on page 828 shows what overloaded C++ operators that may
be represented in SDL.

WARNING 3207 Unable to evaluate sizeof expression prop-
erly.

A constant expression contains a usage of the sizeof() operator, and
could therefore not be safely evaluated by CPP2SDL. The translation of
the constant expression may thus be incorrect, and should be manually
reviewed. See “Constant Expressions” on page 795 for more informa-
tion about constant expressions.

WARNING 3208 The member <member name> of <class name> in-
herited via <base class names> is inaccessible and will
not be translated.

An inherited class member cannot be accessed in C++ due to a combi-
nation of multiple inheritance and base classes with members having
the same name. The member will thus not be translated to SDL.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 857

Chapter 15 The CPP2SDL Tool
WARNING 3209 Cannot translate function pointer type. It
will be represented by ptr_void.

This warning is given when a function pointer type is encountered in the
input. The support for function pointers is limited (see “Function Point-
ers” on page 789), and they will be represented as untyped pointers in
SDL (i.e. ptr_void).

WARNING 3210 Cannot translate typedef of function type.
The declaration will be ignored.

A typedef declaration where the source type is a function type cannot be
translated to SDL, since there is no translation rule for function types.

WARNING 3211 Cannot translate template declaration. The
declaration will be ignored.

A template declaration cannot be translated to SDL. Only instantiations
of a template declaration can be translated. Note that this warning is giv-
en also when a template instantiation has been specified in an import
specification (see “Template Instantiations” on page 774). In that case
the warning could be ignored.

WARNING 3212 Cannot fully translate ellipsis function.
Unspecified function arguments will be ignored.

A function with unspecified arguments (a.k.a. an ellipsis function) can-
not be fully translated to SDL, since no information has been provided
about the unspecified arguments. The function will be translated, but
without taking the unspecified arguments into consideration. See “Pro-
totypes for Ellipsis Functions” on page 774 to learn how to use an im-
port specification to provide CPP2SDL with actual arguments for un-
specified formal arguments of ellipsis functions.

WARNING 3213 The typedef name <name> conflicts with the

name of another non-compatible type. The declaration

will be ignored.

A typedef declaration cannot be translated to SDL, since the typedef
name is the same as another type that is not type compatible with the
type defined by the typedef itself. This warning may be given for type-
defs of pointers or arrays of tagged types. For example:

typedef struct T {
 int i;
} *T;
858 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 CPP2SDL Messages
This declaration, which is illegal in C++ but legal in C, contains two
types called T that are type incompatible. CPP2SDL will make the type
struct T available in SDL (called T there), while the type T will not be
translated.

It is recommended to change the name of either the typedef name or the
type tag to enable CPP2SDL to translate both types, and thus avoid get-
ting this warning.

WARNING 3290 The identifier <identifier name> does not
refer to a declared object. It will be ignored.

This warning is given if CPP2SDL finds an identifier in an import spec-
ification that does not exist in the input program. The identifier will be
ignored.

WARNING 3291 Cannot translate the identifier <identifier
name>, since it is a class member.

This warning is given if CPP2SDL finds an identifier in an import spec-
ification that refers to a class member in the input program. The identi-
fier will not be translated, since only declarations in namespaces may be
translated (see “Import Specifications” on page 771).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 859

Chapter 15 The CPP2SDL Tool
860 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	15 The CPP2SDL Tool
	Introduction
	Executing CPP2SDL
	Execution from the Organizer
	Adding Import Specifications to the Organizer view
	Setting CPP2SDL Options in the Organizer

	Execution from the Command-Line
	Command-Line Options

	Execution from the PostMaster

	Import Specifications
	Advanced Import Specifications
	Type Declarators
	Prototypes for Ellipsis Functions
	Template Instantiations

	Source and Error References
	Source References
	Error References

	C/C++ to SDL Translation Rules
	Names
	Fundamental Types
	Type Declarators
	Pointers
	Arrays
	References

	Enumerated Types
	Typedef Declarations
	Functions
	Argument Passing and Return Value
	Default Arguments
	Unspecified Arguments
	Inline Functions
	Function Pointers

	Scope Units
	Namespaces

	Variables
	Constants
	Constant Expressions
	Classes, Structs and Unions
	Anonymous Unions
	Constructors
	Destructors
	Members
	Friends
	Inheritance
	Abstract Classes
	Run-Time Type Information and Dynamic Cast

	Forward Declarations
	Incomplete Types
	Dynamic Memory Management
	C Mode
	C++ Mode

	Overloaded Operators
	Templates
	Class Templates
	Function Templates
	Default Template Arguments

	Miscellaneous
	Language Constructs
	Non-Language Constructs

	Special Translation Rules for C Compilers
	SDL Library for Fundamental C/C++ Types
	Example usage of some C/C++ functionality
	Overloaded Operators
	String handling
	Type conversion

	Error Handling
	CPP2SDL Messages
	Errors
	Warnings

