
July 2003 Telelo

Chapter
21 Basic Compiling Theory
This chapter gives the ground basis for basic compiling theory. It
will give an introduction to compiling theory as it is the corner-
stone on which TTCN Access is built upon. See chapter 22, TTCN
Access.

This chapter is intended to be read by developers of executable test
suites, translator developers and test result analyzers.

Note: UNIX only

TTCN Access is only available on UNIX.
gic Tau 4.5 User’s Manual ,um-st1 935

Chapter 21 Basic Compiling Theory
Basic Compiling Theory
A programming language can be defined by describing what its pro-
grams look like (the syntax of the language) and what its programs mean
(the semantics of the language).

For specifying the syntax of a language, such as TTCN, the widely used
notation called context-free grammar, or BNF (Backus-Naur Form) is
used. (A more precise definition of context-free grammar will be de-
fined in “Syntax Definition” on page 938).

To describe the semantics of a language is more difficult, as no appro-
priate notation for semantic description is available. Consequently,
when specifying the semantics of a language an informal description
technique has to be used. TTCN uses Semantic actions that, in natural
language, describes the actual semantic given a specific context.

Besides specifying the syntax of a language, a context-free grammar
can be used to help guide the translation of a programs. A grammar ori-
ented compiling technique, known as syntax-directed translation, is
very helpful for organizing a compiler front end.

The Compiler
Conceptually, a compiler operates in phases, each of which transforms
the source program from one representation to another. Often, some of
the phases may be grouped together and the intermediate representation
between the grouped phases need not be explicitly constructed.

The first three phases of a compiler, forming the bulk of the analysis
portion is often called front end. The front end consist of those phases
that depend primarily on the source language and are largely indepen-
dent of the target language. This front end normally includes lexical and
syntactic analysis, the creation of the symbol table, semantic analysis
and the generation of intermediate code.

The last phases of a compiler, the back end, include those portions of a
compiler that depend on the target language. In the back end, one will
find code optimization, code generation along with the necessary error
handling and symbol-table operation.
936 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Lexical Analyzer
This chapter will discuss and explain the concept of the front end thor-
oughly. The back end will be mentioned just for completeness. The rea-
son for this is quite obvious:

TTCN Access is the front end to a TTCN compiler.

Lexical Analyzer
The lexical analyze is the first phase of a compiler. Its main task is to
read input characters and produce as output a sequence of tokens that
the parser uses for the next phase, the syntax analysis.

Since the lexical analyzer is the part of a compiler that reads the source
text, it may also perform certain secondary tasks at the user interface.
One such task is stripping out comments and white space in the form of
blank, tab, and newline character. Another is correlating error messages
from the compiler with the source program. For example, the lexical an-
alyzer may keep track of the number of newline characters seen, so that
a line number can be associated with an error message.

In lexical analysis the stream of characters making up the program is
read from left-to-right and grouped into tokens that are sequences of
characters having a collective meaning.

Example 160 –––

For example, the characters in the assignment statement below:

position := initial + rate * 60

would be grouped into the following tokens:

1. The identifier position
2. The assignment symbol :=
3. The identifier initial
4. The plus sign
5. The identifier rate
6. The multiplicand sign
7. The number 60

––

The blanks separating the characters of these tokens would normally be
eliminated during lexical analysis.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 937

Chapter 21 Basic Compiling Theory
Syntax Definition
In this section, a notation called a context-free grammar (grammar for
short) is introduced. This notation is used for specifying the syntax of a
language.

A grammar naturally describes the hierarchical structure of many pro-
gramming language constructs. For example, an if-else statement in C
has the form as below.

if (expression) statement else statement

That is, the statement is the concatenation of the keyword if, an opening
parenthesis, an expression, a closing parenthesis, a statement, the key-
word else, and another statement. Using the variables expr to denote an
expression and the variables stmt, stmt1 and stmt2 to denote three
(possible different) statements, this structuring rules can be expressed
as

stmt -> if (expr) stmt1 else stmt2

in which the arrow may be read as “can have the form”. Such a rule is
called a production. In a production lexical elements like the keyword
if and the parentheses are called tokens. Variables like expr and
stmt2 represent sequence of tokens and are called nonterminals.

A context-free grammar has four components:

• A set of tokens, known as terminal symbols.
• A set of nonterminals.
• A set of productions where each production consists of a nontermi-

nal, called the left side of the production, an arrow, and a sequence
of tokens and/or nonterminals, called the right side of the produc-
tion.

• A destination of one of the nonterminals as the start symbol.

Through this chapter, examples and pictures will be present in order to
clarify a topic or explain a specific concept. As TTCN, at this stage, has
a too large grammar definition to be included in this document, a lan-
guage called SMALL is defined that in this chapter will be used for ex-
amples and discussions.

SMALL will be defined as a language only consisting of digits and the
plus and minus signs, e.g., 9-5+2, 3-1 and 7. In the language SMALL,
a plus or minus sign must appear between two digits, and expressions
938 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Syntax Definition
as above will be referred to as “lists of digits separated by plus or minus
sign”.

The following grammar specifies the syntax of this language with list as
its start symbol:

1:list -> list + digit
2:list -> list - digit
3:list -> digit
4:digit -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

From production (3), a single digit by itself is a list. Productions (1) and
(2) express the fact that if one take any list and follow it by a plus or a
minus sign and then another digit one has a new list. For example, it is
possible to deduce that 9-5+2 is a list as follows:

a) 9 is a list by production (3), since 9 is a digit.

b) 9-5 is a list by production (2), since 9 is a list and 5 is a digit.

c) 9-5+2 is a list by production (1), since 9-5 is a list and 2 is a digit.

This reasoning is illustrated by the tree in the next figure. Each node in
the tree is labelled by a grammar symbol. An interior node and its chil-
dren correspond to a production; the interior node corresponds to the
left side of the production, the children to the right side. Such trees are
called parse trees and are discussed in the next chapter.

Figure 177: A parse tree for 9-5+2

list

list

list digit

digit

digit

9 - 5 + 2
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 939

Chapter 21 Basic Compiling Theory
Syntax Analyzer
Every programming language has rules that prescribe the syntactic
structure of well-formed programs. In Pascal, for example, a program is
made out of blocks, a block out of statement, a statement out of expres-
sions, an expression out of tokens, and so on. The syntax of program-
ming language constructs can be described by context-free grammars or
BNF notation. Grammars offer significant advantages to both language
designers and compiler writes:

• A grammar gives a precise, yet easy-to-understand, syntactic spec-
ification of a programming language.

• From certain classes of grammars it is possible to automatically
construct an efficient parser that determines if a source program is
syntactically well formed.

• A properly designed grammar imparts a structure to a programming
language that is useful for translation of source programs into cor-
rect object code and for the detection of errors.

• Languages evolve over a period of time, acquiring new constructs
and performing additional task. These new constructs can be added
to a language more easily when there is an existing implementation
based on a grammatical description of the language.

During syntax analysis the tokens of the source program are grouped
into grammatical phrases that are used by a compiler to synthesis the
output. Usually, the grammatical phrase of the source program is repre-
sented by a parse tree.

Figure 178: A syntax tree for the assign statement 9-5+2

+

-

9 5

2

940 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Parse Trees
Parse Trees
A parse tree pictorially shows how the start symbol of a grammar de-
rives a string in the language. If nonterminal A has a production as:

A -> X Y Z

then a parse tree may have an interior node labelled A with three chil-
dren labelled X, Y and Z, from left to right:

Formally, given a context-free grammar, a parse tree is a tree with the
following properties:

1. The root is labelled by the start symbol.

2. Each leaf is labelled by a token or empty.

3. Each interior node is labelled by a nonterminal.

4. If A is the nonterminal labelling some interior node, and X1, X2, ...,
Xn (where Xi are terminals or nonterminals) are the labels of the
children of that node, then
A -> X1 X2 ..., Xn
is a production in the grammar.

The leaves of a parse tree read from left to right form the yield of the
parse tree, which is the string generated or derived from the nontermi-
nal at the root of the parse tree. Any tree imparts a natural left-to-right
order to its leaves, based on the idea that if a and b are two children with
the same parent, and a is to the left of b, then all descendants of a are to
the left of descendants of b.

Another definition of a language generated by a grammar is as the set
of strings that can be generated by some parse tree. The process of find-
ing a parse tree for a given string of tokens is called parsing that string.

Figure 179: Parse tree

A

X ZY
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 941

Chapter 21 Basic Compiling Theory
Parsing
Parsing is the process of determining if a string of tokens can be gener-
ated by a grammar. In discussing this topic, it is helpful to think of a
parse tree being constructed, even though a compiler may not actually
construct such a tree. However, a parser must be capable of constructing
the tree, or else the translation cannot be guaranteed correct.

Intermediate Code
After syntax and semantic analysis, some compilers generate an explicit
intermediate representation of the source program. This intermediate
representation can be seen as a program for an abstract machine. In the
context of the TTCN suite and TTCN Access, the intermediate repre-
sentation is the actual parse tree generated by the Analyzer. For more
information see chapter 27, Analyzing TTCN Documents (on UNIX).

Code Generator
The final phase of a compiler is the generation of target code, that is
transforming the intermediate code into something useful such as an ex-
ecutable. As TTCN Access is an application programmers interface to-
wards the intermediate representation, the parse tree, it is the TTCN Ac-
cess application that will define the actual transformation of the inter-
mediate code. It can be an executable as well as a reporter, interpreter,
etc.

The Phases of a Compiler
Conceptually, a compiler operates in phases, each of which transforms
the source program from one representation to another. A typical de-
composition of a compiler is shown in the next picture. In practice,
some of the phases may be grouped together and the intermediate rep-
resentation between the grouped phases need not be explicitly con-
structed.
942 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Symbol Table Management
The first three phases, forming the bulk of the analysis portion of a com-
piler has previously been discussed. Two other activities, symbol-table
management and error handling, are shown interacting with the five
phases of lexical analysis, syntax analysis, semantic analysis, interme-
diate code generation and code generation. Informally, the symbol-table
management and the error handler are also called phases.

Symbol Table Management
An essential function of a compiler is to record the identifiers used in
the source program and collect information about various attributes of
each identifier. These attributes may provide information about the
identifier as its type, its scope (where in the source program it is valid)
and, in the case of procedure names, such things as the number and type
of its arguments, the method for passing each argument (e.g., by refer-
ence), and the type returned, if any.

A symbol table is a data structure containing a record for each identifier,
with fields for the attributes of the identifier. The data structure allows
us to find the record for a specific identifier quickly and to store or re-
trieve data from that record.

Figure 180: The phases of a compiler

Lexical
analyzer

Syntax
analyzer

Semantic
analyzer

Intermediate
code generator

Code
generator

Source program

Target output

Error
handler

Symboltable
management
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 943

Chapter 21 Basic Compiling Theory
When an identifier in the source program is detected by the lexical anal-
ysis, the identifier is entered into the symbol table. However, the at-
tributes of an identifier cannot normally be determined during lexical
analysis. The remaining phases enter information about identifiers into
the symbol table and then use this information in various ways. For ex-
ample, when doing semantic analysis, the compiler needs to know what
types the identifiers have, so it can be checked that the source program
uses them in a valid way.

Error Detection and Reporting
Each phase can encounter errors. However, after detecting an error, a
phase must somehow deal with that error, so that compilation can pro-
ceed, allowing further errors in the source program to be detected.

The syntax and semantic analysis phase usually handle a large fraction
of the errors detectable by the compiler. The lexical phase can detect er-
rors where the characters remaining in the input do not form any token
of the language. During semantic analysis the compiler tries to detect
constructs that have the right syntactic structure but no meaning to the
operations involved, e.g., when adding two identifiers, one of which is
the name of an array and the other is a name of a procedure.
944 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	21 Basic Compiling Theory
	Basic Compiling Theory
	The Compiler
	Lexical Analyzer
	Syntax Definition
	Syntax Analyzer
	Parse Trees
	Parsing
	Intermediate Code
	Code Generator
	The Phases of a Compiler
	Symbol Table Management
	Error Detection and Reporting

