Chapter
21 Basic Compiling Theory

This chapter givesthe ground basisfor basic compiling theory. It
will give an introduction to compiling theory asit isthe corner-
stone on which TTCN Accessis built upon. See chapter 22, TTCN
Access.

Thischapter isintended to beread by developer s of executabletest
suites, translator developersand test result analyzers.

Note: UNIX only
TTCN Accessisonly available on UNIX.

July 2003 Telelogic Tau 4.5 User’ sManual 935

Chapter 21 Basic Compiling Theory

Basic Compiling Theory

A programming language can be defined by describing what its pro-
gramslook like (the syntax of the language) and what its programs mean
(the semantics of the language).

For specifying the syntax of alanguage, suchas TTCN, thewidely used
notation called context-free grammar, or BNF (Backus-Naur Form) is
used. (A more precise definition of context-free grammar will be de-
fined in “ Syntax Definition” on page 938).

To describe the semantics of alanguage is more difficult, as no appro-
priate notation for semantic description is available. Consequently,
when specifying the semantics of alanguage an informal description
technique has to be used. TTCN uses Semantic actions that, in natural
language, describes the actual semantic given a specific context.

Besides specifying the syntax of alanguage, a context-free grammar
can be used to help guide the translation of a programs. A grammar ori-
ented compiling technique, known as syntax-directed transation, is
very helpful for organizing a compiler front end.

The Compiler

936

Conceptually, acompiler operatesin phases, each of which transforms
the source program from one representation to another. Often, some of
the phases may be grouped together and the intermediate representation
between the grouped phases need not be explicitly constructed.

The first three phases of a compiler, forming the bulk of the analysis
portion is often called front end. The front end consist of those phases
that depend primarily on the source language and are largely indepen-
dent of thetarget language. Thisfront end normally includeslexical and
syntactic analysis, the creation of the symbol table, semantic analysis
and the generation of intermediate code.

The last phases of acompiler, the back end, include those portions of a
compiler that depend on the target language. In the back end, one will
find code optimization, code generation along with the necessary error
handling and symbol-table operation.

Telelogic Tau 4.5 User's Manual July 2003

Lexical Analyzer

This chapter will discuss and explain the concept of the front end thor-
oughly. The back end will be mentioned just for completeness. The rea-
son for thisis quite obvious:

TTCN Accessisthefront end toa TTCN compiler.

Lexical Analyzer

July 2003

Thelexical analyze isthefirst phase of a compiler. Its main task isto
read input characters and produce as output a sequence of tokens that
the parser uses for the next phase, the syntax analysis.

Since the lexical analyzer isthe part of acompiler that reads the source
text, it may also perform certain secondary tasks at the user interface.
One such task is stripping out comments and white space in the form of
blank, tab, and newline character. Another is correl ating error messages
from the compiler with the source program. For example, thelexical an-
alyzer may keep track of the number of newline characters seen, so that
aline number can be associated with an error message.

Inlexical analysis the stream of characters making up the program is
read from |eft-to-right and grouped into tokens that are sequences of
characters having a collective meaning.

Example 160

For example, the characters in the assignment statement below:

position := initial + rate * 60

would be grouped into the following tokens:

Theidentifier position
The assignment symbol :=
Theidentifier initial
Theplussign
Theidentifier rate

The multiplicand sign
The number 60

NogA®WNE

The blanks separating the characters of these tokenswould normally be
eliminated during lexical analysis.

Telelogic Tau 4.5 User's Manual 937

Chapter 21 Basic Compiling Theory

Syntax Definition

938

In this section, a notation called a context-free grammar (grammar for
short) isintroduced. This notation is used for specifying the syntax of a
language.

A grammar naturally describes the hierarchical structure of many pro-
gramming language constructs. For example, an if-else statement in C
has the form as below.

if (expression) statement else statement
That is, the statement isthe concatenation of the keyword if, an opening
parenthesis, an expression, a closing parenthesis, a statement, the key-
word else, and another statement. Using the variables expr to denote an
expression and thevariables stmt, stmt1 and stmt2 todenotethree
(possible different) statements, this structuring rules can be expressed
as

stmt -> if (expr) stmtl else stmt2
in which the arrow may be read as “ can have the form”. Such aruleis
called a production. In aproduction lexical elements like the keyword
if and the parentheses are called tokens. Variableslike expr and
stmt2 represent sequence of tokens and are called nonterminals.

A context-free grammar has four components:

* A set of tokens, known as terminal symbols.

* A setof nonterminals.

» A set of productions where each production consists of a nontermi-
nal, called the left side of the production, an arrow, and a sequence
of tokens and/or nonterminals, called the right side of the produc-
tion.

* A degtination of one of the nonterminals as the start symbol.

Through this chapter, examples and pictures will be present in order to
clarify atopic or explain aspecific concept. ASTTCN, at this stage, has
atoo large grammar definition to be included in this document, a lan-
guage called SMALL isdefined that in this chapter will be used for ex-
amples and discussions.

SMALL will be defined as alanguage only consisting of digits and the
plus and minus signs, e.g., 9-5+2, 3-1 and 7. In the language SMALL,
aplus or minus sign must appear between two digits, and expressions

Telelogic Tau 4.5 User's Manual July 2003

Syntax Definition

July 2003

asabovewill bereferred to as“lists of digits separated by plusor minus
sign”.

Thefollowing grammar specifiesthe syntax of thislanguagewithlist as
its start symbol:

l1:1ist -> list + digit

2:1ist -> list - digit

3:1list -> digit

4:digit -> 0 | 1 | 2 | 3 | 4| 5|6 | 7| 8] 9
From production (3), asingledigit by itself isalist. Productions (1) and
(2) expressthe fact that if onetake any list and follow it by aplusor a
minus sign and then another digit one has anew list. For example, it is
possible to deduce that 9-5+2 isalist asfollows:

a) 9isalist by production (3), since 9 is adigit.
b) 9-5isalist by production (2), since9isalist and 5 isadigit.
¢) 9-5+2isalist by production (1), since 9-5isalist and 2 isadigit.

Thisreasoning isillustrated by the treein the next figure. Each nodein
the tree islabelled by a grammar symbol. An interior node and its chil-
dren correspond to a production; the interior node corresponds to the
left side of the production, the children to the right side. Such trees are
called parse trees and are discussed in the next chapter.

list

list digit
list digit
|
digit
9 - 5 + 2

Figure 177: A parsetree for 9-5+2

Telelogic Tau 4.5 User's Manual 939

Chapter 21 Basic Compiling Theory

Syntax Analyzer

Every programming language has rules that prescribe the syntactic
structure of well-formed programs. In Pascal, for example, aprogramis
made out of blocks, ablock out of statement, a statement out of expres-
sions, an expression out of tokens, and so on. The syntax of program-
ming language constructs can be described by context-free grammars or
BNF notation. Grammars offer significant advantages to both language
designers and compiler writes:

940

A grammar gives a precise, yet easy-to-understand, syntactic spec-
ification of a programming language.

From certain classes of grammarsit is possible to automatically
construct an efficient parser that determinesif a source program is
syntactically well formed.

A properly designed grammar impartsastructure to aprogramming
language that is useful for trandation of source programs into cor-
rect object code and for the detection of errors.

Languages evolve over aperiod of time, acquiring new constructs
and performing additional task. These new constructs can be added
to alanguage more easily when there is an existing implementation
based on agrammatical description of the language.

During syntax analysis the tokens of the source program are grouped
into grammatical phrases that are used by a compiler to synthesis the
output. Usually, the grammatical phrase of the source program isrepre-
sented by a parse tree.

_/+\2
9/ \5

Figure 178: A syntax tree for the assign statement 9-5+2

Telelogic Tau 4.5 User's Manual July 2003

Parse Trees

Parse Trees

July 2003

A parse tree pictorially shows how the start symbol of a grammar de-
rives astring in the language. If nonterminal A has a production as:

A -> XY Z

then a parse tree may have an interior node labelled A with three chil-
dren labelled X, Y and Z, from l€ft to right:

A
|
X / Y\ VA
Figure 179: Parsetree

Formally, given a context-free grammar, a parsetree is atree with the
following properties:

1. Theroot islabelled by the start symbol.

2. Eachleaf islabelled by atoken or empty.

3. Eachinterior nodeislabelled by a nonterminal.
4

If A isthe nonterminal labelling someinterior node, and X1, X2, ...,
Xn (where Xi are terminals or nonterminals) are the labels of the
children of that node, then

A -> X1 X2 ..., Xn

isaproduction in the grammar.

The leaves of a parse tree read from left to right form the yield of the
parse tree, which is the string generated or derived from the nontermi-
nal at the root of the parse tree. Any tree imparts a natural left-to-right
order toitsleaves, based on theideathat if a and b are two children with
the same parent, and aisto the left of b, then all descendants of a areto
the left of descendants of b.

Another definition of alanguage generated by a grammar is as the set
of stringsthat can be generated by some parse tree. The process of find-
ing aparse tree for agiven string of tokensis called parsing that string.

Telelogic Tau 4.5 User's Manual 941

Chapter 21 Basic Compiling Theory

Parsing

Parsing isthe process of determining if a string of tokens can be gener-
ated by agrammar. In discussing thistopic, it is helpful to think of a
parse tree being constructed, even though a compiler may not actually
construct such atree. However, aparser must be capable of constructing
the tree, or else the translation cannot be guaranteed correct.

Intermediate Code

After syntax and semantic analysis, some compilersgenerate an explicit
intermediate representation of the source program. Thisintermediate
representation can be seen as a program for an abstract machine. Inthe
context of the TTCN suite and TTCN Access, the intermediate repre-
sentation is the actual parse tree generated by the Analyzer. For more
information see chapter 27, Analyzing TTCN Documents (on UNIX).

Code Generator

The final phase of acompiler isthe generation of target code, that is
transforming the intermediate code into something useful such asan ex-
ecutable. As TTCN Accessis an application programmers interface to-
wards the intermediate representation, the parsetree, itisthe TTCN Ac-
cess application that will define the actua transformation of the inter-
mediate code. It can be an executable as well as areporter, interpreter,
€tc.

The Phases of a Compiler

942

Conceptually, a compiler operates in phases, each of which transforms
the source program from one representation to another. A typical de-
composition of acompiler is shown in the next picture. In practice,
some of the phases may be grouped together and the intermediate rep-
resentation between the grouped phases need not be explicitly con-
structed.

Telelogic Tau 4.5 User's Manual July 2003

Symbol Table Management

Source program
Lexical
analyzer
Syntax
analyzer
Semantic
analyzer
Intermediate
code generator
Code
generator

Target output

Symboltable
management,

Error
handler

Figure 180: The phases of a compiler

Thefirst three phases, forming the bulk of the analysis portion of acom-
piler has previously been discussed. Two other activities, symbol-table
management and error handling, are shown interacting with the five
phases of lexical analysis, syntax analysis, semantic analysis, interme-
diate code generation and code generation. Informally, the symbol-table
management and the error handler are also called phases.

Symbol Table Management

July 2003

An essential function of a compiler isto record the identifiers used in
the source program and collect information about various attributes of
each identifier. These attributes may provide information about the
identifier asitstype, its scope (where in the source program it is valid)
and, in the case of procedure names, such things asthe number and type
of its arguments, the method for passing each argument (e.g., by refer-
ence), and the type returned, if any.

A symbol tableisadatastructure containing arecord for each identifier,
with fields for the attributes of the identifier. The data structure allows
us to find the record for a specific identifier quickly and to store or re-
trieve data from that record.

Telelogic Tau 4.5 User's Manual 943

Chapter 21 Basic Compiling Theory

When an identifier in the source program is detected by the lexical anal-
ysis, theidentifier is entered into the symbol table. However, the at-
tributes of an identifier cannot normally be determined during lexical
anaysis. The remaining phases enter information about identifiersinto
the symbol table and then use thisinformation in various ways. For ex-
ample, when doing semantic analysis, the compiler needsto know what
typestheidentifiers have, so it can be checked that the source program
usesthemin avalid way.

Error Detection and Reporting

944

Each phase can encounter errors. However, after detecting an error, a
phase must somehow deal with that error, so that compilation can pro-
ceed, alowing further errors in the source program to be detected.

The syntax and semantic analysis phase usually handle alarge fraction
of the errors detectabl e by the compiler. Thelexical phase can detect er-
rors where the characters remaining in the input do not form any token
of the language. During semantic analysis the compiler tries to detect
constructs that have the right syntactic structure but no meaning to the
operations involved, e.g., when adding two identifiers, one of whichis
the name of an array and the other is a name of a procedure.

Telelogic Tau 4.5 User's Manual July 2003

	21 Basic Compiling Theory
	Basic Compiling Theory
	The Compiler
	Lexical Analyzer
	Syntax Definition
	Syntax Analyzer
	Parse Trees
	Parsing
	Intermediate Code
	Code Generator
	The Phases of a Compiler
	Symbol Table Management
	Error Detection and Reporting

