
July 2003 Telelogic Ta

Chapter
7 Cmicro Targeting

Tutorial
This tutorial takes you through the first steps of targeting. Current-
ly this tutorial is designed for using a Borland C or a Microsoft Vi-
sual C compiler in Windows, and gcc or cc on UNIX.
u 4.5 SDL Suite Getting Started gs-s1 269

Chapter 7 Cmicro Targeting Tutorial
Prerequisites / Abbreviations Used
Before you run this tutorial, you should be familiar with the SDL Suite
tools, especially the Organizer, the SDL Analyzer and the SDL Simula-
tor. If you have not already done so, you are recommended to go
through the previous tutorials in this volume.

The following notations and directories concern the rest of this tutorial:

• <TAUinstallation> denotes the Telelogic Tau installation direc-
tory, which is called
<systemdrive>:\Telelogic\SDL_TTCN_Suite4.5 in Windows
and $telelogic on UNIX.

• In this tutorial there is a mixed use of the path separation characters
‘/’ and ‘\’, as several steps in Windows and on UNIX only differ in
these.

• Although “directories” are sometimes called “folders” in Windows,
this tutorial always uses the expression “directory”.

You will find this tutorial placed in the directories:

<TAUinstallation>\sdt\examples\cmicrotutorial\wini386
<TAUinstallation>/sdt/examples/cmicrotutorial/sunos5
<TAUinstallation>/sdt/examples/cmicrotutorial/hppa

• The Cmicro Library can be found in the directories:

<TAUinstallation>\sdt\sdtdir\wini386\cmicro
<TAUinstallation>/sdt/sdtdir/sunos5sdtdir/cmicro
<TAUinstallation>/sdt/sdtdir/hppasdtdir/cmicro

For a description of the Cmicro Library please view chapter 67, The
Cmicro Library, in the User’s Manual.
270 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Introduction
Introduction

General
This tutorial is divided into three sections. In the first section you will
take a small SDL system and generate it with the SDL Analyzer. You
will learn about configuration possibilities using the Targeting Expert
and how to create environment functions. Finally, you will build the tar-
get application.

In the second section you will test it and learn something about how to
use the SDL Target Tester.

In the third section you will learn how to remove the Target Tester
source from the target application.

Integrations
Targeting may be implemented using the following methods:

• Bare integration:

The SDL system is running on a bare target, scheduled by the Cmi-
cro Kernel without any other operating system (OS).

• Light integration:

The SDL system (scheduled by the Cmicro Kernel) is running as
one task in an OS, possibly using functions of the OS.

• Tight integration:

All the SDL process instance sets (and other tasks) are scheduled by
the OS of the target.

In this tutorial you will be doing a light integration as the target appli-
cation is executed as an independent OS task, where the SDL processes
are scheduled by the Cmicro Kernel.

Target Tester Communication
The communication between the Target Tester and the target applica-
tion is done using sockets (localhost, port 9000 as default) in this tuto-
rial.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 271

Chapter 7 Cmicro Targeting Tutorial
Prerequisites to the Example

The Pager System
The SDL system that will be used for this tutorial is a pager system. A
pager is a small hand-held device used for contacting people. It contains
a radio receiver which is capable of receiving signals on a certain fre-
quency consisting of short messages and telephone numbers.

The pager has also a sort of databank with a limited capacity for storing
messages as well as a keypad and a display which serve as the interface
to the user. The user has the option of scrolling through, reading and de-
leting the messages that are displayed on the small screen.

The keypad consists of three buttons; one for scrolling to the right, one
for scrolling to the left and one for deleting. The pager emits a sound
when a new message has arrived and also when the user makes an error
or tries to do something which is not allowed. For example, trying to de-
lete a message when the databank is empty or scrolling too far in a cer-
tain direction would be instances of illegal actions. Naturally, the pager
can only hold a certain amount of messages and therefore at some point
eventually fills up.

When the pager has reached its capacity a warning message is given for
2 seconds before the received message is displayed.

The SDL Overview shows the pager system divided into blocks and
processes.
272 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Prerequisites to the Example
Delivered Files
The files needed for this tutorial can be found in the directory:

<TAUinstallation>/sdt/examples/cmicrotutorial/<platform>/pager

The project directory pager includes a sub directory called system.
The directory system contains the SDL/GR files of the Pager system.

Furthermore, there is a directory prepared in parallel to the system
directory. Here you can find an environment file env.c which can be

Figure 186: An overview of the system Pager

Process Description

Database The process Database manages the array of
messages that makes up the pager’s memory. It
can store messages, retrieve them and delete
them while maintaining order in the databank.

PagerCtrl PagerCtrl basically handles all the input and
output of the system. It receives input from the
user via the keypad, messages from the radio re-
ceiver and information from the database re-
garding the status of saving and deleting.

Keypad The process Keypad converts the input from the
user into a signal and sends it to PagerCtrl.

Block Pager

System Pager SDL Overview

Keypad
(1,1)

 PagerCtrl

Database
(1,1)

 (1,1)
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 273

Chapter 7 Cmicro Targeting Tutorial
used if you are not interested in programming the environment on your
own.

Targeting

Preparations - File Structure
1. Create a new empty directory <cmicrotutorial> in your home

directory or on your local hard disk. This directory will be denoted
by <MyTutorial> in the following.

2. Copy the directory <TAUinstallation>/sdt/examples/cmi-
crotutorial/pager (including all files and subdirectories) to
your new <MyTutorial> directory and remove all write protec-
tions.

3. In the Organizer, open the Pager system (Pager.sdt) found in
<MyTutorial>/pager/system.

Using the Targeting Expert
1. Select the system symbol in the Organizer view.

2. Start the Targeting Expert from the Generate menu. The Targeting
Expert will generate a default partitioning diagram model (see “Par-
titioning Diagram Model File” on page 2896 in chapter 60, The Tar-
geting Expert) and will check the directory structure.

3. As the target directory specified in the Organizer does not exist yet,
you will be prompted if it should be created. Press the Yes button.

A sub-directory structure is added in the target directory afterwards by
the Targeting Expert. For further information see “Target Sub-Directo-
ry Structure” on page 2921 in chapter 60, The Targeting Expert.

The work flow of the Targeting Expert is divided into four steps.

Note:

If the Targeting Expert is started the very first time a welcome win-
dow is displayed. Just press the Close button and proceed. The wel-
come window will be shown any time you start the Targeting Expert
again until you select the “Do not show again at startup” check box.
274 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
• Step 1: Select the Desired Component
• Step 2: Select the Type of Integration
• Step 3: Configure the Build Process
• Step 4: Make the Component

The very first time you are using the Targeting Expert, an assistant is
automatically started showing you how to proceed. When you have
closed the assistant, you can always re-start it by choosing the menu op-
tion Help > Assistant.

The Help Viewer will be displayed and show the appropriate manual
page if you click on one of the numbered boxes.

Step 1: Select the Desired Component
• Click on the component in the partition diagram model.

The complete SDL system is (per default) generated into the com-
ponent “component”.

Hint:

The component can be given any name you like if the system is de-
ployed using the Deployment Editor. For more detailed information
on how to deploy a system, see chapter 41, The Deployment Editor,
in the User’s Manual.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 275

Chapter 7 Cmicro Targeting Tutorial
Background Information

• More details about partitioning diagram models can be found in
“Partitioning Diagram Model File” on page 2896 in chapter 60, The
Targeting Expert.

• For further information concerning the selectable entries in the par-
titioning diagram model, please see “Targeting Work Flow” on
page 2852 in chapter 60, The Targeting Expert.

Figure 187: The Targeting Expert’s main window
276 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
Step 2: Select the Type of Integration
1. Press the left most combo box in the integration tool bar of the main

window (or click the component entry in the partitioning diagram
model using the right mouse button). This is shown in Figure 188.

2. A tree structure containing all the pre-defined integrations is shown
in the popup menu displayed. Select Light Integrations > Applica-
tion TEST.

3. As there is no automatic configuration of the pager system available
so far, you are prompted to start the automatic configuration. Press
the Yes button in the dialog. The Targeting Expert then automatical-
ly starts the Cmicro SDL to C compiler to generate the file
sdl_cfg.h.

The SDL system is now checked for correctness and the automatic con-
figuration is done.

After the SDL to C compiler has finished, the Targeting Expert:

Figure 188: Popup menu in the Targeting Expert

Hint:

Although only the file sdl_cfg.h is needed the SDL to C compiler
generates the files: component.c, component.ifc,
component.sym and sdl_cfg.h. This is done because only the
SDL to C compiler knows all the used and unused features (OO con-
cept).
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 277

Chapter 7 Cmicro Targeting Tutorial
• generates the file env.c and lists all the SDL signals from and to the
environment (see event log). A manual adaptation is needed for
each signal before the generated files and the library files can be
compiled. This is necessary as the Targeting Expert only generates
a skeleton with the used signals.

How to edit the env.c, is described in “Edit the Environment File”
on page 279.

• generates default Target Tester options (file sdtmt.opt)

• generates a default manual configuration (file ml_mcf.h)

Background Information

If you want to do an integration not given in the Tau distribution, please
select the entry <user defined> in the integration popup menu. Then you
are able to do all settings needed for the used hardware. You are also
able to set up your own integration accessible in the integration popup
menu.

The contents of the files:

• component.c

Describes the SDL system’s behavior in C functions.

• component.ifc

The header file for the environment functions. E.g. it provides PIDs
and type definitions for signals.

• component.sym

Provides information on SDL symbols. Necessary for tracing the
SDL system with the SDL Target Tester.

• sdl_cfg.h

The automatic configuration file for the Cmicro Kernel. For in-

Hint:

After the integration has been selected the Targeting Expert auto-
matically sets the default compiler. The default compiler’s name is
taken from the Telelogic Tau Preferences.

If a different compiler is required than the one set as default in the
preferences, it is possible to change this in the integration tool bar’s
combo box.
278 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
stance, if you use a timer, the file contains a define, which turns the
timer implementation on.

Edit the Environment File

In this section you will learn how to fill in the environment functions in
the file env.c.

1. Select the menu Edit > Edit Environment File to open the file
env.c

2. Find the lines from the global section:

/* BEGIN User Code (global section)*/
/* It is possible to define some global variables here */

Hint:

There is also a prepared env.c. You can copy it from directory:
<MyTutorial>/pager/prepared into
<MyTutorial>/pager/target/pager._0/Application_TEST.

Do not forget to remove the write protection!

Note the differences between the prepared and generated file.

Note:

In the following the Targeting Expert starts a text editor. Per default
the built-in editor is used. This can be changed in the Tools > Cus-
tomize menu.

Caution!

In the file env.c, you should only edit code between the lines:

/* BEGIN User Code ... */
/* END User Code ... */

The reason is:

If the Targeting Expert needs to generate the file a second time, the
code in these sections will be read in and copied to the new file. Only
the code between the mentioned lines will be unchanged.

Do NOT edit lines with the text:

/* BEGIN User Code ... */
/* END User Code ... */
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 279

Chapter 7 Cmicro Targeting Tutorial
/* or to include other header files. */

This tutorial describes a console application. It will use the screen
and the keyboard to communicate with the user. It is necessary to
include the used header file(s).

For a better style some defines are used. Further some global vari-
ables and functions have to be implemented. The functions are
called, if there should be something simulated in the environment,
like a display. After the line
/* or to include other header files. */

 the following code needs to be inserted:

#if defined(BORLAND_C) || defined(MICROSOFT_C)
 #include <conio.h>
#else
 #include <stdio.h>
#endif

#define key_was_pressed 1
#define key_not_pressed 0

int KeySignalPresent = 0;
char LastKeyPressed;

xInitEnv()

3. We like to have a welcome message displayed when the system is
started. This can be done like this in the function xInitEnv()

printf("-------- Welcome to Pager system--------\n\n");
printf("get message : 0 to 4\n");
printf("scroll right: r\n");
printf("scroll left : l\n");
printf("delete : d\n\n");

 The code must be inserted between

/* BEGIN User Code (init section) */

 and

/* END User Code (init section) */

xInEnv()

4. Now you have to handle the data from the environment. In this tu-
torial it means you have to handle the input from the keyboard!
280 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
The possible handling of the data:

If a key has been pressed the digits 0-4 are recognized as a message
and the letters ’r’, ’l’ and ’d’ are the commands for scrolling and de-
leting.

Please go to the code position of the function xInEnv() with the
following lines:

/* BEGIN User Code (variable section)*/
/* It is possible to define some variables here */
/* or to insert a functionality which must be polled */

Below these lines insert the following code:

char my_inkey;

KeySignalPresent = key_not_pressed;

#if defined(XMK_UNIX)
 my_inkey = 0;
 if((my_inkey = getchar_unlocked()) != 0)
 {
 KeySignalPresent=key_was_pressed;
 }
#elif defined(BORLAND_C) || defined(MICROSOFT_C)
 if (kbhit())
 {
 my_inkey=_getch();
 KeySignalPresent=key_was_pressed;
 }
#endif

if (KeySignalPresent==key_was_pressed)
{
 if ((my_inkey == ’r’) ||
 (my_inkey == ’l’) ||
 (my_inkey == ’d’) ||
 ((my_inkey>=’0’)&&(my_inkey<=’4’)))
 LastKeyPressed = my_inkey;
 else
 LastKeyPressed=0;
}
else
 LastKeyPressed = 0;

5. Find the following lines of code in the function xInEnv()

Caution!

Do not use blocking functions in the environment file.

The environment is polled with every cycle of the Cmicro Kernel.
That is the reason why it is not allowed to use blocking functions
like getchar(). These kind of functions stop the kernel and so it
cannot process the SDL system.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 281

Chapter 7 Cmicro Targeting Tutorial
/* BEGIN User Code <ScrollRight>_1 */
 if (i_have_to_send_signal_ScrollRight)
/* END User Code <ScrollRight>_1 */

In step 2 we implemented the variable LastKeyPressed. In step 4
we assigned it the value of my_inkey which has the value of the last
key pressed. Modify the if() statement into:

if (LastKeyPressed == ’r’)

6. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ScrollRight,0));

The process type ID which should receive the signal ScrollRight
needs to be inserted. To get an overview of the process type IDs
look at the dialog window that has pop-ed up by the Targeting Ex-
pert. All the used process type IDs are given here.

Select the XPTID_Keypad entry in this dialog to copy it into the
clipboard. Then paste it into the env.c as shown below.

GLOBALPID(XPTID_Keypad,0));

The function returns, and the signal is treated.

7. Find the following lines in the function xInEnv()

/* BEGIN User Code <ScrollLeft>_1 */
 if (i_have_to_send_signal_ScrollLeft)
/* END User Code <ScrollLeft>_1 */

Figure 189: Process type ID dialog
282 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
Modify the if() statement to:

if (LastKeyPressed == ’l’)

8. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ScrollLeft,0));

Copy the XPTID_keypad as described in step 6.

GLOBALPID(XPTID_Keypad,0));

9. Find the following lines of code in the function xInEnv()

/* BEGIN User Code <Delete>_1 */
 if (i_have_to_send_signal_Delete)
/* END User Code <Delete>_1 */

Modify the if() statement to:

if (LastKeyPressed == ’d’)

10. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_Delete,0));

Copy the XPTID_keypad as described in step 6.

GLOBALPID(XPTID_Keypad,0));

11. Because we do not use a real target hardware, but simulate the Pager
system, we have to predefine some messages.
Find the following lines of code in the function xInEnv()

/* BEGIN User Code <ReceivedMsg>_1 */
if (i_have_to_send_signal_ReceivedMsg)
/* END User Code <ReceivedMsg>_1 */

Modify the if() statement to:

if ((LastKeyPressed>=’0’)&&(LastKeyPressed<=’4’))

This if-statement checks whether the key hit on the keyboard was
one of the defined keys or not.

12. Go to the next empty “User Code” section and insert following lines:

char *p;
 xmk_var.Param1.MyText = (SDL_Charstring)NULL;

 switch(LastKeyPressed)
 {
 case ’0’:
 p = " Hello user";

 xmk_var.Param1.TelNumber = 12345;
 break;

 case ’1’:
 p = " How do you feel doing targeting?";
 xmk_var.Param1.TelNumber = 555555;
 break;

 case ’2’:
 p = " Targeting is all so easy!";
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 283

Chapter 7 Cmicro Targeting Tutorial
 xmk_var.Param1.TelNumber = 987654;
 break;

 case ’3’:
 p = " I only wanted to check if it works.";
 xmk_var.Param1.TelNumber = 45454;
 break;

 case ’4’:
 p = " ... and it works very fine!";
 xmk_var.Param1.TelNumber = 911911;
 break;

 default :
 break;
 }
 xAss_SDL_Charstring(&(xmk_var.Param1.MyText), p,
XASS_AC_ASS_FR);

In this part the messages to the equivalent numbers 0-4 are stored.
With the switch statement it is decided which one is handed over to
the environment.

The line xmk_var.Param1.MyText = (SDL_Charstring)NULL;

means that the element MyText of the parameter message which is a
parameter of the signal ReceivedMsg is set to null.

The Signal ReceivedMsg and the parameter message are declared in
the SDL system.

The line xAss_SDL_Charstring(&(xmk_var.Param1.MyText), p,
XASS_AC_ASS_FR); allocates memory for the pointer p.

13. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ReceivedMsg,0));

Modify the statement as showed below.

GLOBALPID(XPTID_PagerCtrl,0));

Note:

This way of “receiving” messages is of course just a helper function
because we do not use a real interface here!

Note:

If an SDL charstring is mapped to an array of char in C, the first
character in this array (index 0) is for internal use only, i.e. the text
message should start at index 1. This is done by having a space in
front of the text in the implementation shown above.
284 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
xOutEnv()

14. Find the following code section:

case CurrentMsg :
 {
 /* BEGIN User Code <CurrentMsg>_1 */
/* Use (yPDP_CurrentMsg)xmk_TmpDataPtr to access
the signal’s parameters */
/* ATTENTION: the data needs to be copied. Otherwise it */
/* will be lost when leaving xOutEnv */
 /* END User Code <CurrentMsg>_1 */

 /* BEGIN User Code <CurrentMsg>_2 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that
*/
 /* signal is consumed
*/
 /* END User Code <CurrentMsg>_2 */
 }

This code fragment handles the signal CurrentMsg. The chosen
message is displayed on the screen (telnumber, message, current
message position and the total number of messages). Insert the fol-
lowing code after: /* Do your environment actions here. */

printf("\r ");
printf("\rCurrentMessage: %6d %s (%d/%d)",
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.TelNumber,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText+1,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param1,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param2);
xFree(&(((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText));

The line
xFree(&(((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText));

frees the memory allocated in the kernel when sending the signal.

15. Find the following code in the function xOutEnv():

case ServiceMsg :
 {
 /* BEGIN User Code <ServiceMsg>_1 */
 /* Use (yPDef_Close*)xmk_TmpDataPtr to access
 the signal’s parameters */
 /* ATTENTION: the data needs to be copied.
 Otherwise it */

Caution!

The function xOutEnv() provides a pointer named:
xmk_TmpDataPtr. The data referenced by this pointer is valid only
as long as the function xOutEnv() is processed.

If you need to treat the data after leaving the function, copy it to vari-
ables defined by you.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 285

Chapter 7 Cmicro Targeting Tutorial
 /* will be lost when leaving xOutEnv */
 /* END User Code <ServiceMsg>_1 */

 /* BEGIN User Code <ServiceMsg>_2 */
 /* Do your environment actions here. */

 xmk_result = TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <ServiceMsg>_2 */
 }

The code fragment handles the signal ServiceMsg. The handling of
the data is same as in the step before. So insert the following code
after: /* Do your environment actions here. */

printf("\r ");
printf("\rServiveMessage: %s",
 ((yPDP_ServiceMsg)xmk_TmpDataPtr)->Param1+1);
xFree(&(((yPDP_ServiceMsg)xmk_TmpDataPtr)->Param1));

16. Find the following code section in the function xOutEnv():

case ShortBeep :
 {
 /* BEGIN User Code <ShortBeep>_1 */
 /* END User Code <ShortBeep>_1 */

 /* BEGIN User Code <ShortBeep>_2 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <ShortBeep>_2 */
 }
 break ;

The code fragment handles the signal ShortBeep. A beep sounds
when the pager receives a message or you do something which is not
allowed. After the code /* BEGIN User Code <ShortBeep>_1 */
insert

putchar(07);

17. Find the following code section in the function xOutEnv():

case LongBeep :
 {
 /* BEGIN User Code <LongBeep>_1 */
 /* END User Code <LongBeep>_1 */

 /* BEGIN User Code <LongBeep>_2*/
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <LongBeep>_2*/
 }
 break ;

Insert the following code after
/* BEGIN User Code <LongBeep>_1 */

putchar(07);
286 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Targeting
putchar(07);

Closing the Environment

In this tutorial there is no need to close the environment. In other cases,
e.g. microprocessor hardware, it is probably necessary to do so.

Have a look in the file env.c, find code like this in the function xClo-
seEnv():

/* BEGIN User Code (close section) */
/* Do the actions here to close your environment */
/* END User Code (close section) */

Insert any code you need to have here.

Step 3: Configure the Build Process
1. Press the items below the Application TEST in the partitioning

diagram. If it is necessary to add or remove settings for your job,
you can edit the settings.

2. Click Save to close the dialog.

For this section of the tutorial there it is not necessary to modify any-
thing, though we will do some modifications later in section “Run Tar-
get EXE without Tester” on page 294.

Background Information

Short description of the different areas:

• Compiler / Linker / Make

In this area it is possible to configure all the settings used for the
Compiler, Linker and Make tools.

Something special regarding Additional Compiler. For example,
you have to use an ANSI C- compiler to compile the generated files,
and it is necessary to link the objects with the object from one file,
which needs to be compiled with a C++ compiler. In this instance
you could enter the regarding file and the used compiler in the sec-
tion Additional Compiler.

 For more information see: “Configure Compiler, Linker and Make”
on page 2856 in chapter 60, The Targeting Expert.

• Target Library
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 287

Chapter 7 Cmicro Targeting Tutorial
In this area it is possible to set defines and values to scale the target
library. For more information see “Configure and Scale the Target
Library” on page 2872 in chapter 60, The Targeting Expert.

All settings will be stored in the file ml_mcf.h.

• Target Tester

In this area it is possible to set defines and values to scale the func-
tionality of the tester. For more information see “Configure the SDL
Target Tester (Cmicro only)” on page 2873 in chapter 60, The Tar-
geting Expert.

All settings will be stored in the file ml_mcf.h.

• Host Connection

In this area it is possible to set the parameter of the connection to the
host. For example, it contains the description of the message coding
and the name of the executable, etc. The configuration of the Host
Connection is always stored in the file sdtmt.opt. This file is man-
datory for the SDL Target Tester. For more information see: “Con-
figure the Host (Cmicro only)” on page 2874 in chapter 60, The Tar-
geting Expert.

Step 4: Make the Component
1. In the dialog which is displayed by default (when the Application

TEST is selected) you have to select two check boxes. Analyze /
Generate Code and Environment functions.

2. Click on the button Full Make to start the code generation and make.

After the SDL to C compiler has finished the code generation, the Tar-
geting Expert will re-generate the env.c (and keep your modifications).
Afterwards it generates a makefile with the given settings and the code
will be compiled and linked.

The Targeting Expert then starts the SDL Target Tester.
288 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Use of the SDL Target Tester
Use of the SDL Target Tester

Differences between SDL Simulator and SDL
Target Tester
The difference compared to the SDL Simulator is that the generated
SDL system is running on a target hardware and is sending messages to
the host system on which the SDL Target Tester’s host part is running.

In this Cmicro tutorial, the SDL Target Tester’s host part is running on
the host as well as the generated SDL system (target).

Restrictions

In this Tutorial

It is possible to use all the features supported by Cmicro (e.g. signal pri-
orities, error checks, tester) except the preemptive Cmicro Kernel. This
is due to the concept behind Cmicro which is designed for small targets
on a stand-alone hardware (bare integration).

Figure 190: Communication links between the processes

UI

sdtmtFile

process 1 process 2 process 3

Cmicro Library with Kernel

Cmicro Tester
Target Library

target executable

other trace

HOST

Socket Interface
Socket

Gateway

like MSC trace
or SDL trace
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 289

Chapter 7 Cmicro Targeting Tutorial
Background Information

• To get information on how it works with a real target hardware, see
chapter 67, The Cmicro Library, in the User’s Manual.

• If you want to edit the makefile, or have a look into it, please use the
menu Edit > Makefile in the Targeting Expert. For more informa-
tion please view chapter 60, The Targeting Expert, in the User’s
Manual.

Testing the Pager System

Running the SDL Target Tester

The SDL Target Tester could be started automatically from the Target-
ing Expert or by:

• selecting Tools > SDL > SDL Target Tester in the menu of the Tar-
geting Expert.

• pressing the quick button in the quick button bar.

After it has been started the following steps have to be done (in the giv-
en order)

1. Start the communication with the executable by pushing the button
StartGateway in the Communication group or with the menu Exe-
cute > StartGateway.

2. Go back to the Targeting Expert and select the menu entry
Tutorial > Start target (Windows) or respectively
Tutorial > Start target (UNIX)

Hint:

The menu Tutorial is a configurable menu not available if working
on other SDL systems. Please refer to “Configurable Menus” on
page 2831 in chapter 60, The Targeting Expert, in the User’s Man-
ual for more information on how to create your own menu entries.

Note:

In Windows the target application is started in a separate command
prompt window.

On UNIX the target application is started in a separate xterm.
290 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Use of the SDL Target Tester
3. Now the communication between SDL Target Tester and target is
established. The SDL Target Tester displays the message Start
with “Go Forever”. The corresponding button is located in the
Execute group. Press the button.

All messages of the target application are displayed in the UNIX
shell or DOS command prompt where it was started. The pager will
display its start-up message which was implemented in “xInitEnv()”
on page 280.

4. You can “receive” messages by pressing the keys 0, 1, 2, 3, 4 and
scroll with the keys r and l. To delete a message press d.
See “xInEnv()” on page 280 on how the environment was imple-
mented.

5. The pager displays the last received message, the number of the cur-
rent message and the total number of received messages. Now you
can scroll, delete and receive new messages. If you receive a new
message while the maximum amount of messages(3) is reached, the
pager saves the message temporary and displays the warning:
Memory full, please free memory to get new messages
for about 2 seconds.

6. Press the d key on your keyboard, the last message is then deleted
and the received message is displayed.

SDL Target Tester Commands

The SDL Target Tester has button groups. Each button represents a
Tester command. You can use the buttons or the command line at the
bottom of the Tester to enter a command. If you enter help in the com-
mand line you will see a list of SDL Target Tester commands.

In the following some Tester commands are explained briefly. For more
information, see chapter 68, The SDL Target Tester.

Tracing the SDL System -> MSC Editor

Similar to the SDL Simulator GUI it is possible to generate MSC traces
while testing the system with the SDL Target Tester.

Note:

To exit the target application press CTRL+C on the keyboard.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 291

Chapter 7 Cmicro Targeting Tutorial
• In the Trace group you can select the Start MSC button, for exam-
ple, to start the MSC trace.

• Now you can select between output via display or output to a file.

Tracing the SDL System -> SDL Editor

It is possible to trace the target system with the SDL Editor.

• You can start the trace with the command line of the SDL Target
Tester by typing start-sdle, or by using the button Start SDLE.

The MSC trace and SDL trace functions are powerful tools for under-
standing the system.

Target Information

To get more information about target configuration, you must open the
Configuration Group in the button area of the SDL Target Tester and
press Target to get the current target configuration.

To get information about the kernel, you have to open the Examine
Group. If you press Queue you will get information about the current
state of the internal queue of your system. You will see the peak hold
and the amount of signals of your current system. By pressing the other
buttons in the Examine Group, you will get more information of the run-
ning system.

Memory

With the ?memory command you can see how the current memory state
is.

1. Start the Pager system as described in “Running the SDL Target
Tester” on page 290.

2. Type ?memory (the short command ?m can also be used) on the
command line. You can check the memory pool size, the current
memory fill and so on.

Now we will see how the memory is handled in the Pager system. No-
tice that the current amount of blocks in pool is four and the peak hold
is five.

3. Switch to the target application and press a key (1-4) to get a mes-
sage.
292 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Use of the SDL Target Tester
4. Go back to the Target Tester and execute the ?m command again.
This time you can see that two more blocks are allocated. If you de-
lete the last message the memory should be freed again and show
four blocks.

Breakpoints and Queues

To debug the system you can use the Breakpoints button group. You can
set a breakpoint on a signal input or a process state. If a breakpoint was
reached you can continue the system with the button Continue.

1. Restart the target as described in “Running the SDL Target Tester”
on page 290.

2. Expand the Breakpoints group and select Break input.

3. Now you can choose a process ID. In this example we take the Key-
pad ID.

4. A signal ID list is shown afterwards, select the delete signal.

5. Breakpoint on input is set is shown in the text area now,
switch to the target application window and insert some messages
first, then press d. Nothing happens.

6. Switch to the Tester again. Now you can use the ?memory com-
mand or look how the Queue looks like (?queue).

7. Press Continue after you have examined the system state.

As the system will be halted every time the signal delete is to be con-
sumed in process Keypad, it is probably useful to delete the break-
point(s) by entering the command BA.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 293

Chapter 7 Cmicro Targeting Tutorial
Run Target EXE without Tester
It is also possible to run the target executable without starting the Target
Tester. Following has to be done first:

1. Exit the target application and the Target Tester if not already done.

2. Switch back to the Targeting Expert.

In the following there is a description what has to be done to remove the
Target Tester source code form the target application.

1. Press the entry Target Tester below Application TEST in the
Partitioning Diagram Model. As you can see all the selected Target
Tester flags are disabled, i.e. it is not possible to switch them off be-
cause the pre-defined integration selected prevents doing so.

To get access to these flags, the Targeting Expert provides a so
called “Advanced Mode”. (For details see “Advanced Mode” on
page 2850 in chapter 60, The Targeting Expert, in the User’s Man-
ual.

2. Select the menu entry Tools > Customize and a dialog pops up. Se-
lect the check box Advanced Mode and press the dialog’s OK but-
ton.

3. In the dialog displayed when the Application TEST entry is se-
lected in the Partitioning Diagram Model, you have to select the Ex-
ecution tab. Press the None radio button in the Test application
group box.
This is done to disable the execution of the Target Tester after the
target application has been successfully build.

4. Select Target Tester in the Partitioning Diagram Model and de-
select the Use the Target Tester check box. Press OK in all fol-
lowing windows. (Depending flags are switched off). After the last

Caution!

The Advanced Mode is now switched on each time you enter the
Targeting Expert again. Make sure you switch off the Advanced
Mode to take advantage of the restrictions given with all the other
pre-defined integration settings.
294 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Run Target EXE without Tester
dialog has been executed, all check boxes on the Tester tab should
be un-selected now.

5. Press the Save button below the dialog.

6. Now press the Make button. (All the files are compiled again be-
cause the ml_mcf.h has been modified.)

When compile and link is completed, the target can be started via the
menu Tutorial > Start target and can be used now without SDL Target
Tester.

Hint:

A new manual configuration file ml_mcf.h is generated with all
the Target Tester flags undefined.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 295

Chapter 7 Cmicro Targeting Tutorial
296 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

	7 Cmicro Targeting Tutorial
	Prerequisites / Abbreviations Used
	Introduction
	General
	Integrations
	Target Tester Communication

	Prerequisites to the Example
	The Pager System
	Delivered Files

	Targeting
	Preparations - File Structure
	Using the Targeting Expert
	Step 1: Select the Desired Component
	Background Information

	Step 2: Select the Type of Integration
	Background Information
	Edit the Environment File
	Closing the Environment

	Step 3: Configure the Build Process
	Background Information

	Step 4: Make the Component

	Use of the SDL Target Tester
	Differences between SDL Simulator and SDL Target Tester
	Restrictions
	In this Tutorial
	Background Information

	Testing the Pager System
	Running the SDL Target Tester
	SDL Target Tester Commands

	Run Target EXE without Tester

