
July 2003 Telelo

Chapter
57 The Cadvanced/Cbasic

SDL to C Compiler
The Cadvanced/Cbasic SDL to C Compiler translates your SDL
system into a C program that you can compile and link together
with a runtime library to form an executable program such as a
simulator, a validator or, in the case of Cadvanced, an application.

This chapter is a reference manual to the Cadvanced/Cbasic SDL
to C Compiler. There are also a number of other chapters related
to code generation:

• In chapter 50, The SDL Simulator, you will find a reference to
the simulation facilities in the SDL suite. In chapter 51, Simulat-
ing a System, you will find a user’s guide to the simulator.

• In chapter 53, The SDL Validator, you will find a reference to the
validation facilities in the SDL suite. In chapter 54, Validating a
System, you will find a user’s guide to the validator.

• In chapter 58, Building an Application, you may read about how
to generate applications for host and target environments.

• In chapter 62, The Master Library, you will find information
about how to customize your own libraries for a specific pur-
pose, such as application generation for target computers. The
chapter also describes the structure of the generated C code and
the internal data structures in the generated C code.

• In chapter 63, The ADT Library, you will find a reference to the
library of abstract data types that is distributed with the SDL
suite and that you may use in your systems designed in SDL.
Some examples of use are also available.

• In chapter 64, The Performance Library, you may read about
how to generate and run simulators which are specially adapted
for the area of performance simulation.
gic Tau 4.5 User’s Manual ,um-st1 2561

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Introduction

Application Areas for the Cadvanced/Cbasic
SDL to C Compiler
There are a number of application areas for the Cadvanced/Cbasic SDL
to C Compiler, for example:

• Functional simulation and debugging of protocol specifications

• Debugging of system designs described in SDL

• Generation of applications, including embedded system applica-
tions with real time characteristics

• Performance simulations

• Simulation of the behavior behind a user interface prototype

In this part of the manual, the general behavior of the code generator and
its application for simulation and debugging are discussed. The possi-
bility to generate simulators is described in chapter 50, The SDL Simu-
lator.

Functional Simulation and Debugging

During the validation of a specification or design of an application ex-
pressed in ITU SDL, you can use the Cadvanced/Cbasic SDL to C Com-
piler as a tool for simulation to help you understand and debug the be-
havior of a system description. (See chapter 50, The SDL Simulator.)

Errors arising from two different areas have to be considered in the val-
idation process. In the language domain, errors due to illegal or illogical
usage of the language concepts might be introduced into the specifica-
tion; while in the problem domain, logical errors might be introduced.

With traditional computer program development, most illegal uses of
language concepts are found by compilers or by run-time systems. Ex-
amples are syntax errors, missing declarations, division by zero, or in-
dexing an array out of its bounds.

In the problem domain, however, the only feasible ways of detecting
logical errors in non-trivial programs are testing and proofreading.
When it comes to specifications in SDL, language domain errors can be
2562 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
detected by using the SDL Analyzer, which can be seen as a compiler
without a code generation facility (see chapter 55, The SDL Analyzer).
To detect problem domain errors, testing by simulating the specification
is the main procedure available. Please see also chapter 53, The SDL
Validator.

The specification of a protocol in SDL, for instance, specifies a signal
interface by giving a hypothetical implementation of the components in
the protocol. This strategy immediately brings up two different purpos-
es for simulating the behavior of a system specification: to understand
the external view and to understand the internal view.

In the external view, the signal interface is of concern, while the internal
behavior of the system specification (the behavior of the processes in
the system) is of little or no interest. In the internal view, the internal be-
havior of the system specification is of concern, while the external sig-
nal interface is simply seen as part of the internal behavior.

A simulation of the internal behavior of a system specification consti-
tutes an important part of the validation of the specification, both as a
debugging tool and as a means to increase the understanding of the dy-
namic behavior of the specification. A designer of a system might use
this kind of simulation to understand the specification better.

The ability to simulate and debug applications generated by the code
generator at an SDL level is a very important feature towards achieving
the correct overall behavior of the application. The debugging facilities
provided by the SDL suite have much in common with interactive de-
buggers for ordinary programming languages. The debugging is per-
formed on a host computer.

Another application of the code generator as a simulator generator, is of
course in SDL education, where simulation, especially of the internal
behavior of a system specification, can serve as a powerful way of clar-
ifying the semantics of SDL concepts.

Performance Simulation

The Cadvanced/Cbasic SDL to C Compiler can be used for perfor-
mance simulations. You describe the performance model of the actual
system using SDL. This model can be translated to a simulation and ex-
ecuted. By introducing measurements of interesting data, such as queue
lengths, delays, and so on, into the SDL model, it is possible to gather
statistical data during the execution of the simulation. In chapter 64, The
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2563

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Performance Library, you can find a description of the performance
simulation facilities.

To simplify this kind of simulation, a number of SDL abstract data types
and their implementations have been developed, where, for example,
random number generation and handling of queues are supported.
Please see chapter 63, The ADT Library.

Validation

The SDL Validator uses the code produced by the Cadvanced/Cbasic
SDL to C Compiler to form a program suitable for validation of an SDL
system. The Validator uses state space exploration and can be used to:

• Find run time errors
• Verify MSCs against the SDL system
• Verify user defined rules

The Validator is described in chapter 53, The SDL Validator.

Communicating Simulations

You can specify that a generated C program should be able to commu-
nicate over the PostMaster, which is the mechanism used for communi-
cation between the SDL suite tools. Signals sent from the SDL system
(the generated program) to the environment and signals coming to the
SDL system from the environment can be handled. This facility makes
it, for example, possible to develop simulation programs for two com-
municating systems, execute them using the SDL suite and obtain com-
munication between the systems.

As a generated C program does not know what it communicates with, it
can of course communicate with any type of application, as long as the
application is connected to the PostMaster (the communication medi-
um) and sends signals according to the defined format. How to achieve
this is described in chapter 13, Using the Telelogic Tau Public Inter-
face.

A very interesting group of such applications are user interfaces. By
connecting a user interface and an SDL simulation you can achieve sev-
eral things: You can, for example, build well-designed application ori-
ented user interfaces that present what is going on in a simulation, or
you can in a simple way define the logic behavior behind a user inter-
face during its prototyping phase.
2564 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
Overview of the Cadvanced/Cbasic SDL to C
Compiler
To facilitate the validation of SDL specifications or descriptions, the
SDL Analyzer contains an SDL parser, an SDL semantic checker, and
the Cadvanced/Cbasic SDL to C Compiler.

Creating a C Program

To obtain an executable program that behaves according to an SDL de-
scription, you enter the SDL description into the SDL Analyzer, which
contains the Cadvanced/Cbasic SDL to C Compiler. If the SDL descrip-
tion is syntactically and semantically correct, a C program is generated.
You then compile this program using an ordinary C compiler and link
it with a predefined SDL run-time library to form an executable pro-
gram. See Figure 489.

As indicated above, the C code generation facility contains two compo-
nents:

• The SDL to C Compiler, which can be seen as a back-end to the
SDL Analyzer. This component generates a C program.

• Predefined and precompiled C units, which implement an SDL
runtime library and the command line user interface of a simula-
tor, that is, a monitor system. The run-time library also includes a
communication mechanism which makes it possible to trace the
execution of SDL transitions in the SDL Editor. There are several
versions of the library that are suitable to different application areas
for the generated C code, see “Libraries” on page 2698 in chapter
58, Building an Application.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2565

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Executing a C Program as a Simulator

The generated C program uses an internal data representation of the
SDL objects in the system, for example process instances and signal in-
stances. The process instances will execute transitions in a quasi-paral-
lel manner. During a transition, SDL actions such as tasks, decisions
and signal outputs are executed according to the semantics of SDL.

You interact, using SDL terminology, with the simulator through a
monitor system, which contains a number of commands to:

• Control the execution of transitions.

• Examine the status of objects in the system.

• Turn log facilities on and off.

• Affect the system by, for example, sending signal instances from the
environment to the system.

Figure 489: The production of an executable program

SDL
Analyzer

and
Code

Generator

SDL
specification

Generated
C

program

Predefined
runtime library
and monitor

system for SDL.

C
system

Executable
program
2566 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
Contents of This Chapter

You can find more details on creating and executing a C program in the
following sections:

• In “Generating a C Program” on page 2568, the process of generat-
ing a C program is described.

• In “Abstract Data Types” on page 2586, implementation aspects es-
pecially concerning abstract data types, are described.

• In “Directives to the Cadvanced/Cbasic SDL to C Compiler” on
page 2649, possibilities to give additional information to the Cad-
vanced/Cbasic SDL to C Compiler are discussed.

• The section “Using Cadvanced/Cbasic SDL to C Compiler to Gen-
erate C++” on page 2677, contains considerations on class defini-
tions as C++ code and the utilization of the classes as C++ code in
SDL tasks.

• In “Restrictions” on page 2681, the Cadvanced/Cbasic SDL to C
Compiler restrictions are covered.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2567

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Generating a C Program
A generated C program can be used for several things, for example as a
simulator, as a validator, or as an application with the behavior defined
by the translated SDL system. The process of generation of simulators,
validators, or applications, see below, is started in the Organizer, in the
make dialog (see “Make” on page 119 in chapter 2, The Organizer) or
by the quick buttons for simulation and validation (see “Quick Buttons”
on page 176 in chapter 2, The Organizer).

The SDL Analyzer, which contains the C code generation facility, can
also be started as a stand-alone tool. For more information about this
possibility please see “The Analyzer Command-Line UI” on page 2404
in chapter 55, The SDL Analyzer.

Process of Generating a C Program
There are four steps that must be performed to start the execution of, for
example, a simulator:

1. The SDL Analyzer and its built-in Cadvanced/Cbasic SDL to C
Compiler create a program expressed in C source code.

2. The generated C file (or files) is compiled.

3. The compiled file (or files) is linked together with a predefined li-
brary.

4. The executable program that is created in the link operation is start-
ed.

This process has been automated and requires no user knowledge about
compiling or linking of programs. The process is initiated in the Orga-
nizer using the quick buttons for simulation and validation, or by using
the Make dialog.

A C program can only be generated for an SDL system. The C code that
constitutes the program can, however, be generated on multiple files,
which means that a local change in, for example, a block diagram only
requires a regeneration and recompilation of the code for that unit. The
object files, (the compiled versions of the C files) for the other un-
changed units can then be used in the link operation to form a new exe-
cutable program. This feature in automatically used by the make facility
and the quick buttons, to minimize the amount of work and thus the
turn-around time, for the process from a change in the SDL system to a
new simulator (for example).
2568 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Generating a C Program
The separation of the C code for an SDL system can be decided by the
user. The Edit Separation command from the Generate menu is used for
that purpose, see “Edit Separation” on page 136 in chapter 2, The Orga-
nizer. The effect on the generated file structure and some guidelines of
how to use separation can be found in the section “Selecting File Struc-
ture for Generated Code – Directive #SEPARATE” on page 2650.

Executing a C Program
The generated C programs can in principle be compiled as either a sim-
ulator, a validator, or an application. Generated applications have no
further connection with the SDL suite and are executed as any other ap-
plication.

A generated simulator or validator can however be started in two differ-
ent ways:

• From the Simulator Graphical User Interface, which is started from
the Organizer with the SDL > Simulator UI command and provides
a graphical interface with buttons and menus and of course full con-
nection to other SDL suite tools. See “Graphical User Interface”
on page 2130 in chapter 50, The SDL Simulator for more informa-
tion.

• From an OS shell, just like any other executable program. The user
then invokes a command line monitor system. If the Organizer is
running when starting a simulator or validator, the program will
connect itself to the SDL suite. If the Organizer is not running or the
simulator/validator is started with the program parameter -nosdt,
the program will not connect itself to the SDL suite.

The SDL Unit for Which Code is Generated
The first time a C program is generated for a system, the complete sys-
tem will be selected for analysis and C code generation. After that only
the unit (system or block) that is changed will be selected. Note that the
lowest level of possible regeneration object is a block. That block may
not be a block type, or be part of a block type or system type. The reason
that a process cannot be generated without regenerating the enclosing
block, is that internal process information about, for example, formal
parameters are used to generate code for other processes within the
same block.

• Only complete C files can be generated. If, for example, the user has
specified that a block and a sub-block should be generated on the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2569

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
same file, it is not possible to regenerate code only for the sub-
block.

• If the file structure is changed (by, for example, changes in the Edit
Separation command or in the #SEPARATE directives), then the
complete system is regenerated.

Errors During Code Generation
Errors that may occur during code generation are internal errors. That
is, errors due to not yet implemented features of SDL, and errors related
to problems with opened or closed operations of files.

An error message starts with an SDT references and is followed by a de-
scription of the error, including a error number. Example:

ERROR 884 Not implemented: Signal refinement
2570 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Features
Features

Partitioning

General Ideas

The partitioning concept is a way to divide one SDL system into several
applications. As a special case this means also that it is possible to sim-
ulate and validate selected parts of a system. You should note the differ-
ence between partitioning and separation. The partitioning feature is a
way to select the parts of an SDL system which should be handled,
while the separation feature is a way to select the file structure for the
generated files.

To select a partition (or a program) it is, in simple cases, possible to use
selections in the Organizer, and in more general cases possible to work
with build scripts, i.e. text files containing commands to the Analyzer
(the syntax used when running the Analyzer stand-alone). The restric-
tion in the Organizer view is that only one selection can be handled and
that instantiation of OO types cannot be selected. In a build script on the
other hand, several component commands can be used to select several
parts of a system. As the component command takes an SDL qualifier
as a parameter, instantiations can also easily be selected.

Using Selections in the Organizer

To start with the simple case when one block or process should be sim-
ulated, this is easy to perform directly from the Organizer: Select the
proper block or process and press the Simulate button (or go via Make
dialog).

Only the system, a block or a process can be selected for simulation.
Types, including procedures, are only definitions and are not executable
objects, while services depend on its enclosing process and cannot be

Note:

If you already have generated a simulation from the Organizer, and
want to generate a new one with other options or with another selec-
tion, you should perform a Full Make, as changes in options or se-
lection is not handled by the build process. Otherwise compilation
or link errors might be the result of the build process.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2571

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
simulated on its own because of these dependencies. Block and process
instantiations can be simulated, but only using build scripts, as such ob-
jects cannot be selected in the Organizer. The discussion above is of
course also valid for generation of validators and applications.

Unconnected Diagrams

As another special case, there might be unconnected diagrams in the Or-
ganizer, i.e. objects not bound to a file. If such an object is a block, pro-
cess, or a procedure, C code can anyhow be generated resulting in, for
example, a Simulator or Validator.

• If a block is unconnected, this is treated as an implicit partitioning
excluding this block.

• If a process is unconnected, this is treated as an implicit partitioning
excluding this process. If other processes try to “create” such a pro-
cess, this will become a null-action just indicated in the textual
trace. In an application, such a create action will cause a compilation
error.

• If a procedure is unconnected, any call to this procedure is just indi-
cated in the textual trace. In an application such a procedure call will
cause a compilation error.

Build Scripts

In general cases, build scripts should be used to specify the build pro-
cess. Using such a file there are a number of features that can be used.

• It is possible to generate code for several partitions, using indepen-
dent options and potentially different code generators for different
parts of the system, all in one build process.

• Each partition can consist of several objects, and objects might be
instantiations.

There are two Analyzer commands, see “Description of Analyzer Com-
mands” on page 2406 in chapter 55, The SDL Analyzer, that are of ma-
jor interest for specifying a partition. First we have the Program com-
mand, which takes a name as parameter. Second we have the Compo-
nent command, which takes a qualifier as a parameter. The Program
command gives the start of a partitioning specification, while the Com-
ponent command is used to select an SDL component that should be
2572 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Features
part of the partitioning. A partition specification can of course contain
a number of components. The Component command is very similar to
a selection in the Organizer when running directly from the Organizer.

A program section in a build script typically starts with a Program com-
mand and ends with a Generate command.

Example 336: Build script ––––––––––––––––––––––––––––––––––––

program MyExample
component system example/block b1
component system example/block b2/process p22
target-directory /home/jk/example/target
set-env-header on
set-modularity user
generate-advanced-c

In Windows, the target-directory command could, for example, be:

target-directory c:\example\target

––

The example above means that a program containing the implementa-
tion of the complete block b1 and the process p22 in block b2 is gener-
ated with the Cadvanced SDL to C Compiler. The modularity is user de-
fined and a system header file (.ifc file) will also be generated.

Code from the code generators will be placed in a subdirectory with the
name given in the Program command, to the directory given by target
directory. If this subdirectory does not exist it will be created.

In the example above the generated C code can be found in the directory
/home/jk/example/target/MyExample

(In Windows c:\example\target\MyExample).

In the example below three programs are generated for three different
partitionings, also using different code generators.

Note:

You should always include a target-directory command in a build
script, as otherwise the target directory will depend on where the
SDL suite is started!
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2573

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 337: Build script with several programs –––––––––––––––––

target-directory /home/jk/example/target

program MyExample
component system example/block b1
component system example/block b2/process p22
set-env-header on
set-modularity user
set-kernel SCTDEBCOM
generate-advanced-c

program MyExample1
component system example/block b2/process p21
generate-micro-c

program MyExample2
component system example/block b3
set-modularity no
generate-chipsy-chill

––

Analyzer commands that are of the type “set up an option” can be
placed outside of the Program commands. The options actually used at
the generate commands, are the options set up after executing all the
commands up to the generate command. All the possibilities in the
Make dialog and the Analyze dialog in the Organizer are also provided
as commands in the Analyzer. Please see “The Analyzer Command-
Line UI” on page 2404 in chapter 55, The SDL Analyzer, for a list of all
commands.

See also “SDL Make” on page 120 in chapter 2, The Organizer, for han-
dling of build scripts in the Organizer.

Note:

When build scripts are used, all features in the Analyzer will have
its hard coded defaults, if it is not set in the build script. Preferences
and your settings in the Organizer are ignored. The default values
are given in “The Analyzer Command-Line UI” on page 2404 in
chapter 55, The SDL Analyzer, or you can start a stand-alone ana-
lyzer (sdtsan) directly in an OS shell and issue the commands Show-
Analyze-Options and Show-Generate-Options.
2574 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Features
Behavior of Generated Partitioning

The basic idea is to redirect all channel going to objects not part of the
current partitioning to the environment. This operation is performed by
the code generator at code generation time. This means that all signals
sent between objects in the partitioning and objects outside the parti-
tioning, will be seen as signals to or from the environment. This is true
everywhere, in simulations, validations, applications, in generated envi-
ronment header files (.ifc files), and in generated environment func-
tions.

Generation of Support Files
The Cadvanced/Cbasic SDL to C Compiler can generate a number of
support files, together with the ordinary .c, .h, and makefiles. These
files are

• System header file (.ifc)

• Skeleton to environment functions (_env.c)

• Signal number file (.hs)

• Coder/decoder framework files (_cod.c, _cod.h)

The generation of these files can be selected in the Organizer Make di-
alog, or as an Analyzer command, depending on which interface is used.
The details on the system header files and the environment function can
be found in “The Environment Functions” on page 2702, while the sig-
nal number file can be used to assign numbers to all signals in the sys-
tem. Signal number files are most used in connection with OS integra-
tions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2575

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Implementation
In this section some implementation details are presented, that can be
useful for understanding how a generated simulation or application be-
haves. Abstract data types are treated in the next section.

Time
A generated C program can be executed in two modes with respect to
the treatment of time:

• Simulated time
• Real time

Simulated Time

Using simulated time, which is the most useful mode for simulations,
means that the time in the simulation has no connection with the wall
clock. Instead the discrete event simulation technique is used. This tech-
nique is based on the idea that the current value for the simulation time
(Now in SDL) is equal to the time at which the currently executing
event is scheduled. After one event is finished, the simulation time is in-
creased to the time when the next event is scheduled and this event is
started. Events in SDL will be process transitions, timer outputs, and
signals sent to the system from the environment. As an example, the use
of the discrete event simulation technique means that if the next event
is a timer output scheduled one hour from now, and the next transition
is allowed to execute, the timer output will occur immediately. The sim-
ulation time will be increased by one hour, but the user does not have to
wait one hour.

Real Time

If real time is used, then there will be a connection between the clock in
the executing program and the wall clock. In the example above the user
would have to wait one hour until the timer output took place. To im-
plement real time a clock function provided by the operating system is
used. Not all systems are suitable to simulate in this way. The time scale
in the system ought to be seconds or maybe minutes, not milliseconds
and not hours.
2576 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
At program start up the system time, SDL Now, is zero. The system
clock is stopped during the time the program spends in the monitor sys-
tem.

Scheduling
The process instances in the simulated system will execute transitions
that consist of actions like tasks, decisions, outputs, procedure calls,
etc., according to the rules of SDL. It is assumed that a transition takes
no time and that a signal instance is immediately placed in the input port
of the receiver when an output operation occurs.

A transition is always executed without any interrupts, if the user does
not manually rearrange the ready queue using an appropriate command
provided by the monitor system (Rearrange-Ready-Queue). It is possi-
ble to execute a few SDL symbols in one transition and then to re-ar-
range the ready queue and execute another transition. The interrupted
transition can afterwards be executed to its end.

A quasi-parallel strategy for selecting transitions to be executed is thus
the basic scheduling mechanism. SDL does not in itself define an exe-
cution strategy so the selected strategy is therefore an allowed, but not
the only, possible strategy for execution.

As a consequence of the execution strategy, a generated simulator is not
directly suited for simulation of “timing effects”, that is, situations
where the time or order of actions in different process instances is of vi-
tal importance.

Example 338: Scheduling ––––––––––––––––––––––––––––––––––––
An example of such a situation is: Suppose a process instance A outputs
two signal instances during the same transition, one to process instance
B and one to process instance C. During the corresponding transitions
of B and C, a signal instance is sent to process instance D.

If the behavior of the system is dependent on the order in which the sig-
nal instances are received in the input port of D, this is a hazard situation

Note:

The C standard function time used as real time clock returns the
time in seconds. It does not handle parts of seconds. The implemen-
tation of the clock can be changed by re-implementing the function
SDL_Clock in sctos.c.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2577

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
where the execution speed of process instances and the delay of signals
in channels will determine the behavior. The way to handle such a situ-
ation would be to manually decide the order in which transitions should
be executed.

––

As the Cadvanced SDL to C Compiler is also intended to generate ap-
plications, process priority has been introduced as an additional feature.
For more information about how to assign priorities to processes see
sub-section “Assigning Priorities – Directive #PRIO” on page 2667.

The Ready Queue

The ready queue is a queue containing all process instances which have
received a signal that can cause a transition, but which have not yet
completed that transition. The ready queue is ordered firstly according
to the priority and secondly according to insert time, that is a process
which will be inserted last among the processes with the same priority,
but before all processes with lower priority (high priority value = low
priority). A process will never be inserted before the process currently
executing, as pre-emptive scheduling is not used. In more detail:

• If a process outputs a signal to another process, which immediately
can receive the signal, the receiving process will be inserted into the
ready queue last among the processes with the same priority, but
never before the currently executing process.

• If the processes currently executing a nextstate immediately can
continue to execute another transition, it will be inserted into the
ready queue last among the processes with the same priority. This
means that it can remain as first process in the ready queue, but it
can also be re-inserted somewhere else.

• If the receiving process at a timer output immediately can execute a
transition as response to the received signal, the process will be in-
serted into the ready queue last among the processes with the same
priority. This means that it can be inserted anywhere in the queue.

Enabling Conditions and Continuous Signals
Enabling conditions and continuous signals are additional concepts in
SDL. The model for these concepts use repetitive signal sending, to
have the expressions recalculated repeatedly. This model is not suitable
during simulation, and definitely not acceptable in an application. We
2578 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
have therefore used an implementation strategy closer to the described
behavior of the concepts, rather than the model used to define the con-
cepts.

Implementation Strategy

First we distinguish between those enabling conditions and continuous
signals that are dynamic and those that are static, that is containing ex-
pressions that can or cannot change their value when the corresponding
process is waiting in the state. The expression in a dynamic enabling
condition or continuous signal contains some part that can change its
value, even though the process does not execute any statements. Or, put
more precisely, it contains at least one import, view, or reference to
Now.

Static enabling conditions or continuous signals do not provide any
problems or any execution overhead, except that the corresponding ex-
pressions have to be calculated at nextstate operations. Dynamic en-
abling conditions or continuous signals, however, have to repeatedly be
recalculated. The strategy selected for these expressions is to recalcu-
late them after each transition or timer output performed by any process
(and additionally also before the monitor is entered within a transition).
In other words, each process waiting in a state containing a dynamic en-
abling condition or continuous signal executes an implicit nextstate op-
eration between each transition or timer output performed by other pro-
cesses.

Synonyms

Synonyms

An SDL synonym is implemented either as a C macro (#define) or as
a C variable. To be translated to a macro the expression defining the val-
ue of the synonym must be:

• Of one of the predefined SDL sorts (Integer, Real etc.).

• Possible to calculate at analyze time, i.e. it may only contain literals
and operators defined in the predefined SDL sorts and other syn-
onyms which are possible to calculate at analyze time.

All other synonyms are implemented as variables given their values at
program start up.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2579

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
The reason for raising this question is because it is relevant to the im-
plementation of arrays and powersets. There are two different imple-
mentations for each of these concepts, see “Array” on page 2601 and
“Powerset” on page 2602. An array in SDL can either be translated to
an array in C or to a linked list in C. A powerset can either be translated
to a bit array in C or to a linked list. The translation method is selected
by looking at the index type. If the index type is a syntype with one lim-
ited range, the array and bit array scheme is used, otherwise the linked
list is used.

If a synonym translated to a variable is used in a range condition of a
syntype and the syntype is used as an index sort in an array or powerset
instantiation, the linked list scheme is used to implement the array or
powerset. The reason for this is that the length of the array cannot de-
pend on a variable in C.

External Synonyms

External synonyms can be used to parameterize an SDL system and
thereby also a generated program. The values that should be used for the
external synonyms can either be read by the generated program during
start up, or included as macro definitions into the generated code. The
Cadvanced/Cbasic SDL to C Compiler can handle both these cases – it
is not necessary to select which way should be used for each synonym
until the program is compiled.

Using a Macro Definition

To use a macro definition in C to specify the value of an external syn-
onym, perform the following steps:

1. Write the macro definitions on a file.

Example 339: Macro Definition –––––––––––––––––––––––––––––

#define synonym1 value1
#define synonym2 value2

–––

The synonym names are the SDL names (without any prefixes) and
with any character not in letters, digits or underscore removed.

2. Introduce the following #CODE directive at the system level among
the SDL definitions of, for example, synonyms, sorts, and signals
but before any use of the synonyms.
2580 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
Example 340: #CODE Directive–––––––––––––––––––––––––––––

/*#CODE
#TYPE
#include ”filename”
*/

–––

If this structure is used, the value of an external synonym can be
changed merely by changing the corresponding macro definition
and recompiling the system.

Reading Values at Program Start up

The other way to supply the values of the external synonyms is to read
the values at program start up. If there are any external synonyms that
do not have a corresponding macro definition, it is possible to choose
between supplying the values of the remaining external synonyms from
the keyboard or to use a file containing the values.

When the application is started, the following prompt appears:

External synonym file :

• Press <Return> to indicate that the values should be read from the
terminal.

• Or type the name of a file that contains the values and press
<Return>.

If the user chooses to read the values from the terminal, he will be
prompted for each value. In the other case the user should have created
a file containing the external synonym names and their corresponding
value according the following example:

Example 341: Values at Program Startup––––––––––––––––––––––––

synonym1 value1
synonym2 value2

––

The synonyms may be defined in any order.

Note:

When an application is created, macro definitions should be used for
all external synonyms, as the function for reading synonym values
stored on file is not available. (See below.)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2581

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Import – Export
These concepts are not implemented with the full semantics according
to the model in the SDL recommendation. The model says that an im-
ported value should be obtained using a signal interchange between the
importer and exporter.

In the Cadvanced/Cbasic SDL to C Compiler we use a model where the
imported value is directly obtained from the exporter, which of course
makes the import operation much faster. However, the scheduling effect
of the signal interchange is lost, as well as the change of SENDER in
the involved processes. If these effects are important for an application,
remote procedure calls can be used instead, see below.

Remote Procedure Calls
Remote procedure calls (RPC) have much in common with import/ex-
port, except that instead of obtaining one value, RPCs give the opportu-
nity to execute a procedure in the exporting process. In the Cad-
vanced/Cbasic SDL to C Compiler, the model described in the SDL rec-
ommendation is used in detail to implement RPCs.

This means that a remote procedure call is translated to:

output of pCALL signal with all parameters.
nextstate in pWAIT, i.e. a implicit wait state.
input of pREPLY signal with all IN/OUT parameters.

In the exporting process there will be implicit transitions where the
pCALL signal can be handled.

input pCALL.
call remote procedure with parameters from pCALL.
output pREPLY with the IN/OUT parameters.
nextstate -

For more details about this model, please see the SDL recommendation.

Procedure Calls and Operator Calls
In SDL-92 value returning procedures (and remote procedures) are in-
troduced. This means that an SDL procedure can be called within an ex-
pression. In the Cadvanced/Cbasic SDL to C Compiler such procedure
calls are implemented according to the model in the SDL recommenda-
tion, that is by inserting an extra CALL just before the statement con-
2582 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
taining the value returning procedure call. The result from the call is
stored in an anonymous variable, which is then used in the expression.

Example 342: Procedure Call –––––––––––––––––––––––––––––––––

TASK i := (call p(1)) + (call Q(i,k));

is translated to:

CALL p(1, Temp1);
CALL q(i, k , Temp2);
TASK i := Temp1 + Temp2;

––

Operators which are defined using operator diagrams, are according the
models in the SDL recommendation, treated exactly as value returning
procedure.

External Procedures And Operators
External procedures is a extension to SDL introduced in SDL-96. An
external procedure is defined in a text symbol as a procedure heading:

procedure test; fpar a integer; returns integer;
external;

Instead of giving an implementation for the procedure the keyword ex-
ternal is inserted. The purpose of external procedures in SDL are to
specify the existence of procedures without giving their implementa-
tion.

The Cadvanced/Cbasic SDL to C Compiler will generate no code for an
external procedure declaration and will translate a call to such a proce-
dure to an ordinary C function call. It is then up to the user to provide
the C implementation of this function. Note that the code generator will
in the generated function call use the name of the external procedure as
it is. No prefix is inserted in this case, just as for external synonyms.

External operators are handled in the same way as external procedures.
The name of the external operator is used in C just as it is. A quoted op-

Note:

The value returning procedure calls are transformed to ordinary
calls, by adding a new IN/OUT parameter for the procedure result,
last in the call.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2583

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
erator will cause an infix operator to be generated, while operators with
ordinary names will cause C function calls to be generated.

Any
There are two different applications of any. It is possible to write

any(SortName)

within an expression, or to write just

any

in a decision. The second case, with any in a decision, is implemented
in the following way:

• Simulator:

A question in the monitor giving the user a possibility to select the
path to follow.

• Validator:

The validator sees this as an non-deterministic choice and selects all
possible paths.

• Applications:

Should not be used!

The first case, the any(SortName) within an expression, is implemented
using a random number generator to draw a random number of the given
type.

If any(SortName) is used for a sort violating the note above, there will
be a C compilation error on the symbol ANY_SortNameWithPrefix.
This means that a user can implement any for such sorts himself by de-
fining a C macro with this name, that implements any for the given sort.
Such a macro should be inserted in the #TYPE section of a #ADT direc-
tive in the syntype.

Note:

any(Sort) where Sort is a syntype is only implemented if the syntype
contains at most one range condition which is of the form a:b, that
is one limited range. If it is a syntype of a real type, e.g. Real or
Time, with a range condition it is not implemented.
2584 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Implementation
Calculation of Receiver in Outputs
The Cadvanced/Cbasic SDL to C Compiler contains an algorithm that
calculates the receiving process instance set, for outputs without TO,
considering channels, signal routes, connection points, and via list.
There are however a few restrictions for the algorithm:

• Outputs in process types, or in processes in block types or system
types cannot be handled. The reason is that the same output might
lead to different receivers in different instantiation.

• Paths (channels - signal routes) that lead into other units that are
separate (see “Edit Separation” on page 136 in chapter 2, The Orga-
nizer) cannot be followed by the algorithm, as that would violate
the separate generation scheme.

• Outputs in global procedures cannot be handled, as the receiver de-
pends on the caller of the procedure.

This algorithm means that for an ordinary SDL-88 system, that is not
generated using separate units, no information about the channels and
signal routes are needed to direct signal to the correct receiver. For more
information about the possible optimizations in applications, please see
the compilation switch XOPTCHAN and the ADT PidLit (“The Data
Type PIdLit” on page 3180 in chapter 63, The ADT Library). Please
note that XOPTCHAN and PidLit is almost impossible to use if the
SDL system contains system types, block types, or process types.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2585

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Abstract Data Types
This section is a reference to the abstract data types. The following top-
ics will be discussed:

• We will have a look at the implementation of the predefined data
types in SDL, see “SDL Predefined Types” on page 2588. We then
discuss how user-defined abstract data types are translated, see
“Translation of Sorts” on page 2595.

• Next implementation of operators and the possibility to include
hand-coded C functions as implementation of the operators is pre-
sented, see “Implementation of User Defined Operators” on page
2609.

• Last, in “More about Abstract Data Types” on page 2634, we dis-
cuss more details about operators and the possibilities to include a
hand-coded type definition in C to represent the SDL sort.

Removing un-used SDL Operators

When implementing an SDL system, you do not always use all avail-
able SDL operators. The Cbasic/Cadvanced SDL to C Compiler re-
moves the declarations of unused operators, thus minimizing the code
size of the generated application. Unused operators that are removed
are:

• operators in predefined data types, for example substring, concate-
nate, length in the newtype Charstring, etc.

• operators defined in the predefined generators String, Array, Pow-
erset, Bag

• special operators (and help functions) like assign, equal, default,
make, extract, modify, free

The Cbasic/Cadvanced SDL to C Compiler performs the following
steps to optimize the code:

1. Every C function that implements an operator is surrounded by an
#ifndef definition.

Example 343 The #ifndef definition –––––––––––––––––––––––

#ifndef XNOUSE_AND_BIT_STRING
 /* function implementing the operator */
2586 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
#endif

–––

2. During the code generation, the usage of the operators in the trans-
lated SDL transitions is recorded.

3. The interdependencies between different operators are updated. For
instance, an equal operator for a struct type may depend on equal
operators for all its component types.

4. For each operator that is found to be unused, a #define definition
is generated that removes the code for that operator. All the defines
are placed in a file called sdl_cfg.h.

Example 344 The #define command –––––––––––––––––––––––

#define XNOUSE_AND_BIT_STRING

–––

Manual override

In order to handle cases where operators are used invisibly from the
Cbasic/Cadvanced SDL to C Compiler, for example in inline C code,
you can manually override the automatic configuration of the unused
operators.

In the code generation process, the Targeting Expert always generates a
manual configuration file called sct_mcf.h. In this file you can list the
unused operators that you have decided to include in the application.
This is done by un-defining the previous definitions made in the
sdl_cfg.h file.

The sct_mcf.h can be edited directly from Targeting Expert. Select
Edit Configuration Header File from the Edit menu to open the file.

Example 345 The #undef command in the sct_mcf.h file ––––––––

#ifdef XNOUSE_AND_BIT_STRING
#undef XNOUSE_AND_BIT_STRING
#endif

––

Note:

Even though the code size of the generated application is reduced,
the code size of the generated C code is increased.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2587

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
One section of the sct_mcf.h file, is dedicated for the manual edits.
This section is marked with the text:

/* BEGIN User Code */
/* END User Code */

The manual edits must be inserted between these to lines otherwise they
will be deleted, as the sct_mcf.h file is re-generated each time you
generate code. The information about the unused operators available in
the sdl_cfg.h file is imported to the sct_mcf.h file. This allows you
to quickly see which operators that are unused.

SDL Predefined Types

Mapping Table

Below is a table which summarizes the mapping rules between SDL and
C, concerning the predefined types in SDL and their operators. Note
that many of the operators are in C defined as macros, and expanded by
the C preprocessor to simple operators in C.

SDL name/operator C name/expression/operator

Boolean SDL_Boolean

False, True SDL_False, SDL_True

not xNot_SDL_Boolean

and xAnd_SDL_Boolean

or xOr_SDL_Boolean

xor xXor_SDL_Boolean

=> xImpl_SDL_Boolean

=, /= yEqF_SDL_Boolean,
yNEqF_SDL_Boolean
2588 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Character SDL_Character

NUL
SOH
...

SDL_NUL
SDL_SOH
... (for all unprintable characters)

’a’
’b’
...

’a’
’b’
... (for all printable characters except ’ and
\)

’’’’, ’\’ ’\’’, ’\\’

chr xChr_SDL_Character

num xNum_SDL_Character

<, <=, >, >= xLT_SDL_Character,
xLE_SDL_Character,
xGT_SDL_Character,
xGE_SDL_Character

=, /= xEqF_SDL_Character,
xNEqF_SDL_Character

Charstring SDL_Charstring

’aa’ SDL_CHARSTRING_LIT(“Laa”,“aa”)

mkstring xMkString_SDL_Charstring

length xLength_SDL_Charstring

first xFirst_SDL_Charstring

last xLast_SDL_Charstring

// xConcat_SDL_Charstring

substring xSubString_SDL_Charstring

=, /= yEqF_SDL_Charstring,
yNEqF_SDL_Charstring

SDL name/operator C name/expression/operator
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2589

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Integer SDL_Integer

0, 1 etc. SDL_INTEGER_LIT(0),
SDL_INTEGER_LIT(1) etc.

+ xPlus_SDL_Integer

- (monodic, dyadic) xMonMinus_SDL_Integer,
xMinus_SDL_Integer

* xMult_SDL_Integer

/ xDiv_SDL_Integer

mod xMod_SDL_Integer

rem xRem_SDL_Integer

float xFloat_SDL_Integer

fix xFix_SDL_Integer

<, <=, >, >= xLT_SDL_Integer,
xLE_SDL_Integer,
xGT_SDL_Integer, xGE_SDL_Integer

=, /= yEqF_SDL_Integer,
yNEqF_SDL_Integer

Natural SDL_Natural

Real SDL_Real

12.45, ... SDL_REAL_LIT(12.45, 12,
450000000)

- (monodic, dyadic) xMonMinus_SDL_Real,
xMinus_SDL_Real

+ xPlus_SDL_Real

* xMult_SDL_Real

/ xDiv_SDL_Real

<, <=, >, >= xLT_SDL_Real, xLE_SDL_Real,
xGT_SDL_Real, xGE_SDL_Real

=, /= yEqF_SDL_Real, yNEqF_SDL_Real

SDL name/operator C name/expression/operator
2590 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Pid SDL_PId

Null SDL_NULL

=, /= yEqF_SDL_PId, yNEqF_SDL_PId

Duration SDL_Duration

23.45 SDL_DURATION_LIT(23.45, 23,
450000000)

+ xPlus_SDL_Duration

- (monodic) xMonMinus_SDL_Duration

- (dyadic) xMinus_SDL_Duration

* (Duration * Real)
* (Real * Duration)

xMult_SDL_Duration,
xMultRD_SDL_Duration

/ xDiv_SDL_Duration

<, <=, >, >= xLT_SDL_Duration,
xLE_SDL_Duration,
xGT_SDL_Duration,
xGE_SDL_Duration

=, /= yEqF_SDL_Duration,
yNEqF_SDL_Duration

Time SDL_Time

23.45 SDL_TIME_LIT(23.45, 23,
450000000)

+ (Time + Duration)
+ (Duration + Time)

xPlus_SDL_Time,
xPlusDT_SDL_Time

- (result: Time) xMinusT_SDL_Time

- (result: Duration) xMinusD_SDL_Time

<, <=, >, >= xLT_SDL_Time, xLE_SDL_Time,
xGT_SDL_Time, xGE_SDL_Time

=, /= yEqF_SDL_Time,
yNEqF_SDL_Time

IA5String SDL_IA5String

NumericString SDL_NumericString

VisibleString SDL_VisibleString

PrintableString SDL_PrintableString

SDL name/operator C name/expression/operator
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2591

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Bit SDL_Bit

not xNot_SDL_Bit

and xAnd_SDL_Bit

or xOr_SDL_Bit

xor xXor_SDL_Bit

=> xImpl_SDL_Bit

=, /= yEq_SDL_Bit, yNEq_SDL_Bit

Bit_string SDL_Bit_String

not xNot_SDL_Bit_String

and xAnd_SDL_Bit_String

or xOr_SDL_Bit_String

xor xXor_SDL_Bit_String

=> xImpl_SDL_Bit_String

mkstring xMkString_SDL_Bit_String

length xLength_SDL_Bit_String

first xFirst_SDL_Bit_String

last xLast_SDL_Bit_String

// xConcat_SDL_Bit_String

substring xSubString_SDL_Bit_String

bitstr xBitStr_SDL_Bit_String

hexstr xHexStr_SDL_Bit_String

=, /= yEq_SDL_Bit_String,
yNEq_SDL_Bit_String

SDL name/operator C name/expression/operator
2592 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Octet SDL_Octet

not xNot_SDL_Octet

and xAnd_SDL_Octet

or xOr_SDL_Octet

xor xXor_SDL_Octet

=> xImpl_SDL_Octet

shiftl xShiftL_SDL_Octet

shiftr xShiftR_SDL_Octet

+ xPlus_SDL_Octet

- xMinus_SDL_Octet

* xMult_SDL_Octet

i2o xI2O_SDL_Octet

o2i xO2I_SDL_Octet

/ xDiv_SDL_Octet

mod xMod_SDL_Octet

rem xRem_SDL_Octet

bitstr xBitStr_SDL_Octet

hexstr xHexStr_SDL_Octet

<, <=, >, >= yLT_SDL_Octet, yLE_SDL_Octet,
yGT_SDL_Octet, yGE_SDL_Octet

=, /= yEq_SDL_Octet, yNEq_SDL_Octet

SDL name/operator C name/expression/operator
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2593

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Octet_string SDL_Octet_String

mkstring xMkString_SDL_Octet_String

length xLength_SDL_Octet_String

first xFirst_SDL_Octet_String

last xLast_SDL_Octet_String

// xConcat_SDL_Octet_String

substring xSubString_SDL_Octet_String

bitstr xBitStr_SDL_Octet_String

hexstr xHexStr_SDL_Octet_String

bit_string xBit_String_SDL_Octet_String

hex_string xHex_String_SDL_Octet_String

=, /= yEq_SDL_Octet_String,
yNEq_SDL_Octet_String

Object_identifier SDL_Object_Identifier

mkstring xMkString_SDL_Object_Identifier

length xLength_SDL_Object_Identifier

first xFirst_SDL_Object_Identifier

last xLast_SDL_Object_Identifier

// xConcat_SDL_Object_Identifier

substring xSubString_SDL_Object_Identifier

=, /= yEq_SDL_Object_Identifier,
yNEq_SDL_Object_Identifier

NULL (sort) SDL_Null

NULL (literal) SDL_NullValue

=, /= yEq_SDL_Null, yNEq_SDL_Null

SDL name/operator C name/expression/operator
2594 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
C Definitions

We will here discuss the types and macros supplied by the runtime li-
brary in the Cadvanced/Cbasic SDL to C Compiler for the predefined
types in SDL. These macros and extern definitions for functions can be
found in the file sctpred.h, except for the Pid sort which is handled in
the file scttypes.h.

Translation of Sorts
The following data types are handled by the Cadvanced/Cbasic SDL to
C Compiler:

• Predefined Types
• Enumeration Type
• Struct
• Choice
• Array
• String
• Powerset
• Bag
• Ref, Own, Oref
• Syntypes
• Inheritance

Predefined Types

All the predefined data types (Integer, Natural, Boolean, Character,
Charstring, Real, Time, Duration, Pid, Bit, Bit_string, Octet,
Octet_string, Object_identifier, IA5String, NumericString, Printa-
bleString, and VisibleString) are completely handled. The name of
these types in the generated C code will be SDL_Integer, SDL_Natural,
SDL_Boolean, and so on. The translation rules for these types and their
operators are discussed in more detail in the “SDL Predefined Types”
on page 2588.

Note:

For more information about the Charstring sort, see the section
“Handling of the Charstring Sort” on page 2618.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2595

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Enumeration Type

A sort which is not a struct and does not contain any inheritance or gen-
erator instantiation, but which contains a literal list, is seen as an enu-
meration type. See the example below. Such a type is translated to int,
together with a list of defines where the literals are defined as 0, 1, 2,
and so on. As in all examples in this sub-section, the prefixes, which are
added to names when they are translated to C, are not shown. The pre-
fixes are added to make sure that no name conflicts occur in the gener-
ated program. For more information about prefixes see “Names and
Prefixes in Generated Code” on page 2663.

Example 346: Enumeration Type–––––––––––––––––––––––––––––––

NEWTYPE EnumType
 LITERALS Lit1, Lit2, Lit3;
ENDNEWTYPE;

is translated to:

typedef XENUM_TYPE EnumType;
#define Lit1 0
#define Lit2 1
#define Lit3 2

––

Where the macro XENUM_TYPE is defined in sctpred.c as:

#ifndef XENUM_TYPE
#define XENUM_TYPE int
#endif

This means that all enum types will be int types, except if the macro
XENUM_TYPE is redefined by the user (to unsigned char for example).
An enum type with 256 or more values will always be of type int and
will not be affected by the macro XENUM_TYPE.

Struct

An SDL struct is translated to a struct in C, as can be seen in the example
below.

Example 347: Struct –––

NEWTYPE Str STRUCT
 a Integer;
 b Boolean;
 c Real;
ENDNEWTYPE;
2596 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
is translated to:

typedef struct {
 SDL_Integer a;
 SDL_Boolean b;
 SDL_Real c;
} Str;

––

All the properties of a struct in SDL are preserved in the C code.

The predefined operators extract! and modify! are implemented as com-
ponent selections in the struct in the same way as in SDL, that is, if S is
a variable of type Str, then S!a in SDL is translated to S.a in C.

The predefined operator make!, which is a constructor of a struct value,
is implemented by generating a Make function in C. This means that the
expression “(. 12, true, 0.22 .)” in SDL is in principle translated to the
C function call Make(12, true, 0.22).

The components of a struct may be of any sort that the code generator
can handle. A component may, however, not directly or indirectly refer
to the struct sort itself. As an example the sort Str above may not have
a component of sort Str. In such a case the translation to a C struct would
not any longer be valid.

There are some extensions to SDL that are handled by the code genera-
tor. It is possible to define bit fields, i.e, to define the size of components
(as in C) and to have optional components and components with initial
values (as in ASN.1). Examples are shown below.

Example 348: Struct with bit fields –––––––––––––––––––––––––––––

NEWTYPE str STRUCT
 a Integer : 4;
 b Integer : 4;
 : 0;
 c UnsignedInt : 2;
 d Integer;
ENDNEWTYPE;

is translated to:

typedef struct str_s {
 SDL_Integer a : 4;
 SDL_Integer b : 4;
 int : 0;
 UnsignedInt c : 2;
 SDL_Integer d;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2597

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
} str;

––

Note that only Integer and UnsignedInt should be used in bit field com-
ponents.

Example 349: Struct –––

NEWTYPE str STRUCT
 a, b integer;
 c Boolean OPTIONAL;
 d str2 OPTIONAL;
 e Charstring := ’telelogic’;
 f arr3 := (. 11 .);
ENDNEWTYPE;

is translated to:

typedef struct str_s {
 SDL_Integer a;
 SDL_Integer b;
 SDL_Boolean c;
 SDL_Boolean cPresent;
 str2 d;
 SDL_Boolean dPresent;
 SDL_Charstring e;
 SDL_Boolean ePresent;
 arr3 f;
 SDL_Boolean fPresent;
} str;

––

Both optional components and components with initial values have a
Present flag. This is according to ASN.1 and the translation of ASN.1
to SDL defined in Z.105. The present flag for a component with initial
value is true if the component contains its default value otherwise false
(the Present flag is used to determine code for some ASN.1 encoding
scheme). The present flag for an optional component is false until the
component is assigned a value. In SDL the present flags can only be ac-
cessed through operators and cannot be changed.

Union

Please see also the CHOICE concept presented below, as it usually pro-
vides a better and more secure solution to the same kind of problems.

Using the directive #UNION (see example below) it is possible to tell
the Cadvanced/Cbasic SDL to C Compiler to generate a union accord-
ing to the following example:
2598 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Example 350: Union –––

NEWTYPE Str /*#UNION*/ STRUCT
 tag integer;
 a integer;
 b Boolean;
 c real;
ENDNEWTYPE;

is translated to:

typedef struct {
 SDL_Integer tag;
 union {
 SDL_Integer a;
 SDL_Boolean b;
 SDL_Real c;
 } U;
} Str;

––

The first component in the struct is assumed to be a tag value indicating
which of the union components that are active. The tag should either be
integer or an enumeration type. Tag value 0 or first enumeration literal
is used to indicate that the first of the remaining components are active,
and so on. On the SDL level a #UNION struct should be handled just
like any other struct. It is up to the code generator to generate the correct
code for operations on the struct, like assignment, test for equality, com-
ponent selection, and so on.

UnionC

By using the directive #UNIONC according to the example below, it is
possible to tell the Cadvanced/Cbasic SDL to C Compiler to generate a
true C union.

Example 351: UnionC –––––––––––––––––––––––––––––––––––––––

NEWTYPE Str /*#UNIONC*/ STRUCT
 a integer;
 b Boolean;
 c real;
ENDNEWTYPE;

Note:

It is completely up to the user to make certain that only valid com-
ponents in a #UNION struct are accessed. During simulation, how-
ever, tests are inserted to ensure that only valid components are ac-
cessed.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2599

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
is translated to:

typedef union {
 SDL_Integer a;
 SDL_Boolean b;
 SDL_Real c;
} Str;

––
.

Note also that pointer types, including Charstrings are not allowed in
#UNIONC structs, as it is not possible to know when to allocate and de-
allocate memory for such components.

Choice

Choice, which is an SDL extension originating from the needs when
translating ASN.1 to SDL and which is included in SDL-2000, can be
used to express a union with implicit tag.

Example 352: Choice ––

NEWTYPE Str CHOICE
 a integer;
 b Boolean;
 c real;
ENDNEWTYPE;

is translated to:

typedef enum {a, b, c} StrPresent;
typedef struct {
 StrPresent Present;
 union {
 SDL_Integer a;
 SDL_Boolean b;
 SDL_Real c;
 } U;
} Str;

––

The component Present, which is the tag field, and its type
(StrPresent in the example above) are both available in SDL. The
Present component can in SDL be accessed, but not changed, through:

Note:

The #UNIONC directive is not recommended for use as the Cad-
vanced/Cbasic SDL to C Compiler cannot give any support for
checking the validity of component selection. Both the #UNION di-
rective and the CHOICE concept discussed below are much better.
2600 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
• component selection, i.e. by Variable!Present, i.e. it is possible
to for example test: V!Present = a

• the operators aPresent, bPresent, or cPresent, which returns true or
false depending on if the component is active or not.

The Present component is automatically set by the code generator when
a component in the choice is given a value.

Note that during simulations and validations, it is automatically tested
that a component “is present” when an attempt is made to access the
component. A run-time error is issued if this is not the case.

Array

Instantiations of the predefined generator array can be handled by the
code generator with the following restriction: The component and index
sort may be any sorts that the code generator can handle, but may not
directly or indirectly refer to the array type itself (see also the previous
paragraph on struct).

If the index sort is a discrete sort, with one closed interval of values, that
is of the following sorts:

• Character
• Boolean
• Octet
• Bit
• A sort that is considered as an enumeration type
• Syntypes of integer, character, Boolean, Octet, Bit, and enumera-

tion types. The subtypes may only have one range condition that
specifies a closed interval of values,

then the SDL array is translated to a struct containing an element which
is an array in C.

If the index sort is not one of the sort in the enumeration above, the SDL
array is translated to a linked list. The list head contains the default val-
ue for all possible indexes, while the list elements contain value pairs,
(index_value, component_value), for each index having a component
value not equal to the default value.

Example 353: Array –––

SYNTYPE Syn = integer
 CONSTANTS 0:10
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2601

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
ENDSYNTYPE;

NEWTYPE Arr ARRAY(Syn, real)
ENDNEWTYPE;

is translated to:

typedef SDL_Integer Syn;
typedef struct {
 SDL_Real A[11];
} Arr;

––

All the properties of an array in SDL are preserved in the C code.

The predefined operators extract! and modify! are implemented as com-
ponent selection of the array in C in the same way as in SDL, so if AVar
is a variable of type Arr, and Index is a valid index expression, then AV-
ar(Index) in SDL is translated to AVar.A[Index] in C. In the case of
a link list implementation of the array, component selection is made
through function calls.

The predefined operator make!, which is a constructor of an array value,
is implemented by generic Make function in C.

String

Instantiations of the predefined generator string can be handled by the
code generator with the following restriction: The component sort may
be any sorts that the code generator can handle, but may not directly or
indirectly refer to the string type itself.

There are two translation schemes for Strings. The directive #STRING
decide whether the string should be translated to linked list or to an ar-
ray. For the #STRING directive please see “Alternative Implementa-
tions of the String Generator – Directive #STRING” on page 2674.

Strings are translated to linked list containing one element for each ele-
ment in the string value. Operations and component selection in string
sorts are fully supported.

Powerset

Instantiations of the predefined generator powerset can be handled by
the code generator with the following restriction: The component sort
may be any sorts that the code generator can handle, but may not direct-
ly or indirectly refer to the powerset type itself.
2602 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
There are two translation schemes for powersets. If the component sort
fulfills the conditions for index sorts mentioned in the subsection about
arrays above (“Array” on page 2601), an array of 32-bit integers are
used. Each bit will be used to represent a certain element whether it is a
member of the powerset or not. If this is not the case, a linked list of all
elements that are member of the set, is used to represent the powerset.
All the available operations defined for Powersets in SDL are supported.

Bag

The Bag generator, which is introduced in SDL in Z.105, i.e. in the map-
ping from ASN.1 to SDL, is similar to powerset. However, it is possible
to have several elements with the same value in a bag. A bag is always
translated into a linked list, with one element for each value that is a
member of the bag. Each element contains the value and the number of
occurrences of this value.

Ref, Own, Oref

These generators represent pointers with different properties. They are
all translated to pointers in C.

Syntypes

Syntypes may be defined for any sort that the code generator can han-
dle, giving a new name for the sort and possibly a new default value for
variables of the sort. Range conditions that restrict the allowed range of
values are also allowed.

A syntype is translated to a type equal to the parent type using typedef.
The check that a variable of a syntype is only assigned legal values is
implemented in a test function that is generated together with the type
definition. An attempt to assign an illegal value to such a variable will
be reported as an SDL dynamic error. If the syntype is can be used as
index sort in an array and the generated type in C would become an ar-
ray, there will also be a test function that can be used to check that an
index value is within its range in an array component selection.

Example 354: Syntypes ––––––––––––––––––––––––––––––––––––––

SYNTYPE Syn = integer
 CONSTANTS 0:10
ENDSYNTYPE;

SYNTYPE Syn2 = integer
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2603

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
 CONSTANTS <0, =2, >=10
ENDSYNTYPE;

SYNTYPE Arr1 = Arr
 DEFAULT (. 2.0 .);
ENDSYNTYPE;
/* Arr defined above */

is translated to:

typedef SDL_Integer Syn;
typedef SDL_Integer Syn2;
typedef Arr Arr1;

––

Inheritance

A type that inherits another type is translated to a type equal to the par-
ent type using a typedef.

Default Values

Default values are fully supported for all sorts that the code generator
can handle, both if a default value is given in a sort definition and if an
initial value is given in a variable definition (DCL).

Default values will also be assigned to all variables and components
which do not have a default value specified in SDL. The reason for this
is to avoid handling undefined variables in C, which might give serious
problems and unexpected behavior of an executing program. The values
selected by the code generator in such a case can be found below.

If no default value is given in the sort and no start value is given in the
data definition (DCL) for a variable, the variable will be set to 0 by us-
ing a memset to 0.

Operators

In SDL-92, it is possible to define the behavior of operators in ADTs di-
rectly in SDL, using operator diagrams or operator implementations in
SDL textual form. Such operators are translated to C by the Cad-
vanced/Cbasic SDL to C Compiler, and none of what is said below is

Note:

This is a deviation from SDL-92. It means that the generated pro-
gram does not handle the value undefined for any type.
2604 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
valid for such an operator. It is also possible to specify that an operator
is external. In this case the code generator assumes that a C function
with the name used in SDL exists and translates calls to the external op-
erator directly to calls to the C function.

A user defined operator in an SDL sort definition, which is not defined
by an operator diagram, is translated to a C function which asks the user
for the result of the operation. At a call of an operator, the user is sup-
plied with information describing what the operator and the sort are
called, and given information about the parameter values. You are then
requested to answer with the result value. If you press <Return> at the
prompt for the result, the default value of the actual result type is re-
turned. If the operator does not have a result type, no question is asked.

Example 355: Operator–––––––––––––––––––––––––––––––––––––––

Operator Op in sort S is called.
Parameter 1: true
Parameter 2: 10
Enter value (integer) : 12

––

assuming that newtype S contains an operator

Op: Boolean, Integer -> Integer;

More about operator implementation, both parameter passing and how
to include implementations written in C can be found in the next two
sections.

Literals

In sorts that are translated to enumeration types in C, literals are obvi-
ously handled by the code generator. In sorts that are not enumeration
types, literals are treated as operators without parameters and are han-
dled in exactly the same way as user defined operators.

Axioms and Literal Mappings

Axioms and literal mapping are allowed by the code generator in sorts,
but are completely ignored.

Note:

The Cadvanced/Cbasic SDL to C Compiler does not permit naming
of literals using name class literals or character strings.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2605

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Parameter Passing to Operators
For performance reasons the data types in SDL have been divide in two
groups, simple, small types that are passed as values and structured,
larger types that are passed as references (addresses).

Table 1: Types Passed as Addresses

Types passed as addresses (structured types)

Bit_string

Octet_string

Object_identifier

Struct types (including #UNION, #UNIONC)

Choice types

Instantiations of generator Powerset

Instantiations of generator Bag

Instantiations of generator Array

Instantiations of generator String

Instantiations of generator Carray

Syntypes of a type in this list

Types that inherit a type in this list
2606 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Table 2: Types Passed as Values

Types passed as values (simple types)

Integer

Real

Natural

Boolean

Character

Time

Duration

PId

Charstring

Bit

Octet

IA5String

NumericString

PrintableString

VisibleString

NULL

Enumeration types

Instantiations of generator Ref, Own, ORef

Syntypes of a type in this list

Types that inherit a type in this list

Note:

For types represented as pointers (Charstring, including its syn-
types, Ref, Own, ORef), the pointers, not the addresses of the point-
ers, are passed as parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2607

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
The parameter passing for operators implemented in C works as follows
(for Cmicro the mechanism described below is also used for operator di-
agrams and procedures):

In parameters:

• Passed as a value in C if the type is in the list “Passed as value”. This
means that the parameter type in C is the same type as in SDL.

• Passed as an address in C if the type is in the list “Passed as ad-
dress”. This means that the C parameter is (SDL_type *) if the type
in SDL is SDL_type.

In/Out parameters:

Parameters are always passed as addresses, i.e the C parameter is
(SDL_type *) if the type in SDL is SDL_type.

Operator result:

• If the result type is in the list “Passed as value”, the C function result
type will be the same as in SDL.

• If the result type is in the list “Passed as address”, two things are
changed. Firstly, the C result type will be (SDL_type *), i.e the re-
sult will be an address. Secondly, an extra parameter is inserted last
in the C function. This parameter is also of type (SDL_type *) and
is used as a location to store the result of the function. At an operator
call, a “dummy” variable should be passed as the actual parameter.
The C function can then use this to store the result of the operator
and should return the variable again as result.

Example 356: –––

Assume that struct1 is a newtype struct in SDL.

operators
 X : integer, in/out integer -> integer;
 Y : struct1, in/out struct1 -> struct1;

The C prototypes for these operators are:

SDL_Integer X (SDL_Integer, SDL_Integer *);
struct1 * Y (struct1 *, struct1 *, struct1 *);

The example implementations are:

SDL_Integer X
 (SDL_Integer Param1, SDL_Integer *Param2)
2608 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
{
 *Param2 = *Param2+Param1;
 return *Param2;
}

struct1 * Y (struct1 *Param1,
 struct1 *Param2,
 struct1 *Result)
{
 /* implementation assuming struct1 to contain
 two integers */
 (*Param2).comp1 = (*Param2).comp1+(*Param1).comp1;
 (*Param2).comp2 = (*Param2).comp2+(*Param1).comp2;
 *Result = *Param2;
 return Result;
 /* always return the last, extra, parameter */
}

––

Implementation of User Defined Operators

Including Implementations of Operators

In a previous subsection, the default behavior of the Cadvanced/Cbasic
SDL to C Compiler concerning operators (not defined in operator dia-
grams) and literals were described. If you do not specify otherwise in-
teractive functions are generated, which, in each case, will ask you for
the operator result or literal value. This is a fast way of getting started,
but you will probably find it tedious in the long run, especially if you
are using abstract data types extensively. To cope with this problem and
to make it possible to generate applications, the code generator offers a
possibility to include implementations written in C of the operator and

Note: VERY IMPORTANT

As IN parameters are passed as addresses for structured types,
changing such a parameter inside the operator might have undesired
effects. A variable passed as actual parameter is then also changed.
If you want to change the formal parameter copy it first to a operator
local variable.

For Cadvanced/Cbasic this rule applies to operators implemented in
C. For Cmicro this rule also applies to operators and procedures de-
fined in SDL.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2609

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
literal functions. This possibility can be used as an alternative to opera-
tor diagrams or operators defined using SDL textual form, where the
operator is defined directly in SDL.

When the choice between an implementation in SDL or in C is to be
made there are a few things to consider:

– There is always problems when mixing languages, for example
how are C names for SDL entities constructed.

– Checking of SDL is performed by the SDL Analyzer, which will
find problems much earlier than the C compiler checking C
code. Also pointing to the error will be more accurate in SDL.

– SDL implementations will be more portable and might benefit
from future improvements in the SDL Compiler.

– The risk for backward compatibility problems in future releases
of the SDL suite will be less for an SDL implementation.

– However, a C implementation might be more efficient or you
might already have a corresponding C function.

So it is not obvious if SDL or C implementations should be used. How-
ever, we recommend SDL if there are no specific reasons for using C.
Note also that the SDL extension described in “Grammar for the Algo-
rithmic Extensions” on page 146 in chapter 3, Using SDL Extensions, in
the SDL Suite Methodology Guidelines could be very useful when writ-
ing implementations in SDL.

It is possible to choose between two alternatives to implement operators
and literal functions:

• Q (question)
This is the default value and specifies that the code generator should
generate the interactive routines describe above.

• B (body)
This specifies that the code generator should generate the heading
of the operator and literal functions, while the user must supply the
bodies of the functions.

An example of a function heading (extern declaration) is:

Note:

The C functions are divided into a function heading (extern or static
declaration) and a function body.
2610 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Example 357: Implementing an Operator––––––––––––––––––––––––

extern SDL_Integer Max
 (SDL_Integer Para1,
 SDL_Integer Para2);

while the corresponding function body is:

SDL_Integer Max
 (SDL_Integer Para1,
 SDL_Integer Para2)
{
 if (Para1 > Para2)
 return Para1;
 return Para2;
}

––

The main reason for this division of functions into heading and body is
the separate compilation scheme used in C. If, for example, an abstract
data type is defined in a system and used in a process in the system, and
the process is generated on a separate file, then there has to be a module
interface file (a .h file) for the system containing the external interface
(types, extern declarations of functions and so on). The interface file
should then be included in the file generated for the process.

Even if separate compilation is not used, the division of functions into
heading and body is useful. By having static declarations of the func-
tions, the order in which functions must be defined is relaxed. If static
declarations were not used, a function could only call the functions that
are defined textually before the actual function.

To select the way the Cadvanced/Cbasic SDL to C Compiler should
generate code for operators and literals, code generator directives are
used. A code generator directive is an SDL comment with the first char-
acters equal to ‘#’, followed by a sequence of letters identifying the di-
rective. In this case the letters are ADT (for Abstract Data Type) and OP
(for operator). An ADT directive and a OP directive should thus look
like:

/*#ADT */ /*#OP */

The text is not case sensitive.

OP directives are recognized at two different positions in an abstract
data type:

• Directly after the name of a literal

• Directly after the semicolon ending the definition of an operator.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2611

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
ADT directives are recognized immediately before the reserved word
ENDNEWTYPE (or ENDSYNTYPE).

Example 358: Implementing an Operator (#ADT) –––––––––––––––––

NEWTYPE Str STRUCT
 a integer;
 b Boolean;
 c real;
ADDING
LITERALS
 Lit1 /*#OP */,
 Lit2 /*#OP */;
OPERATORS
 Op1 :Str,integer -> Str; /*#OP */
 Op2 :Str,Boolean -> Str; /*#OP */
/*#ADT */
ENDNEWTYPE;

––

At each of the positions after a literal name or operator definition, there
is a possibility to specify how this literal or operator should be imple-
mented. In the directive immediately before ENDNEWTYPE the de-
fault implementation technique can be given. When the code generator
determines how to generate code for a literal or an operator, it first looks
for an OP directive after the literal name or operator definition. If no
such directive is found it looks for a directive immediately before
ENDNEWTYPE. If no ADT directive is found here, the generation
technique Q (question) is assumed. For Cmicro, Q is not used, so the de-
fault is B.

An OP or ADT directive specifying a generation technique should have
the following structure:

/*#OP (B) */ /*#ADT (B) */

The letter between the parentheses should be either Q (question) or B
(body). The interpretation of Q and B was explained earlier. If B has
been specified for any operators or literals, then the C code for these
functions must be supplied by the user. This code should be placed in
the #BODY section in the ADT directive, according to the following
example:

Example 359: Implementing an Operator (#ADT) –––––––––––––––––

/*#ADT (B)
#BODY
C code, representing bodies of functions
2612 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
*/
––

The section name, i.e #BODY, must be given on a line of its own and
must have the # character in the first position of the line. Upper case and
lower case letters are as usual considered to be equal. If the section is
empty, the section name can also be removed.

Unfortunately it is not possible to have C comments within the code that
is included in a #ADT directive, as SDL and C use the same symbols
for start and end of comments. If a C comment is included, the SDL An-
alyzer will consider the end of the C comment as the end of the SDL
comment. Instead a C macro called COMMENT can be used according
to the examples below. Note that there might be some compiler depen-
dent restriction of the character set allowed within the COMMENT
macro. For example, the character ‘;’ might not be allowed.

Example 360: Comment in ADT––––––––––––––––––––––––––––––––

COMMENT(This is a comment)
COMMENT(These comments may not contain commas \
 and should have a backslash at each \
 line break)
COMMENT((By having double parenthesis, any text
 can be entered into the comments. Some
 compilers might not allow everything.))

––

The function headings representing literals and operators are deter-
mined by their corresponding definition in SDL. The number of param-
eters, their types, the result type of the function and function name are
all defined in SDL. In the example above, where the struct Str is de-
fined, there are two literals (Lit1 and Lit2) and two operators
(Op1: Str, integer –> Str; and Op2: Str, Boolean –> Str;). The type Str
will be passed as an address, so the parameter passing rules described
previously have to be applied. The function heading of the correspond-
ing C functions should be:

Note:

The Cadvanced/Cbasic SDL to C Compiler will not check the con-
sistency between the specification of implementation techniques
and the actual code included in the body section. This check is, to-
gether with checking the C code for syntactic and semantic errors,
left to the C compiler.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2613

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 361: Implementing an Operator ––––––––––––––––––––––––

extern Str* Lit1 (Str*);
extern Str* Lit2 (Str*);
extern Str* Op1 (Str*, SDL_Integer, Str*);
extern Str* Op2 (Str*, SDL_Boolean, Str*);

––

The function bodies, which should be supplied by the user if B is spec-
ified in the OP or ADT directive, are ordinary C functions.

Example 362: Implementing an Operator ––––––––––––––––––––––––

Str* Lit1 (Str* Result)
{
 Result->a = 2;
 Result->b = false;
 Result->c = 10.0;
 return Result;
}

Str* Op1 (Str* P1, SDL_Integer P2, Str* Result),
{
 *Result = *P1;
 Result->a = P1->a + P2;
 return Result;
}

––

Before it is possible to give a complete example of an abstract data type
with implementation of its operators supplied as C functions, it is nec-
essary to look at the problem of names. When a name of some object in
SDL is translated to C, a suitable sequence of characters, a prefix, is
added to the SDL name, to make the name unique in the C program, see
also “Names and Prefixes in Generated Code” on page 2663. This strat-
egy is selected in the Cadvanced/Cbasic SDL to C Compiler to avoid
name conflicts in the generated code, but it makes it also impossible to
predict the full name of, for example, a type or a function, in the gener-
ated program. To handle this problem the user can tell the code genera-
tor to translate a name in the C code in the same way as SDL names are
otherwise translated. This is specified by enclosing the SDL name be-
tween ‘#(’ and ‘)’ in the C code. The two functions in the previous ex-
ample and their headings would then become:

Example 363: Including SDL name in C Code ––––––––––––––––––––

extern #(Str)* #(Lit1) (#(Str)*);
extern #(Str)* #(Op1) (#(Str)*, SDL_Integer,
 #(Str)*);
2614 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
#(Str)* #(Lit1) (#(Str)* Result)
{
 Result->a = 2;
 Result->b = false;
 Result->c = 10.0;
 return Result;
}

#(Str)* Op1 (#(Str)* P1, SDL_Integer P2,
 #(Str)* Result),
{
 *Result = *P1;
 Result->a = P1->a + P2;
 return Result;
}

––

This facility to access an SDL name in C code is described in more de-
tail in the section “Accessing SDL Names in C Code – Directive #SDL”
on page 2654. A few observations concerning the example above might
be appropriate:

1. The predefined sorts in SDL, that is for example integer, natural,
Boolean have the names SDL_Integer, SDL_Natural,
SDL_Boolean, and so on in the generated code. These types should
not be enclosed between ‘#(’ and ‘)’.

2. The component names of a struct are unchanged in the struct imple-
mentation in C, which means that struct components should not be
enclosed between ‘#(’ and ‘)’ either.

Two Examples of ADTs

We now give two complete examples of abstract data types.

Example 364: ADT Example–––––––––––––––––––––––––––––––––––

NEWTYPE Str STRUCT
 a Integer;
 b Boolean;
 c Real;
 ADDING LITERALS
 Lit1;
 OPERATORS
 Op1 : Str, Integer -> Str;
 Op2 : Str, Boolean -> Str;
/*#ADT (B)
#BODY
#(Str)* #(Lit1) (#(Str)* Result)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2615

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
{
 Result->a = 2;
 Result->b = SDL_False;
 Result->c = 10.0;
 return Result;
}

#(Str)* #(Op1) (#(Str)* P1, SDL_Integer P2,
 #(Str)* Result)
{
 *Result = *P1;
 Result->a = P1->a + P2;
 return Result;
}

#(Str)* #(Op2) (#(Str)* P1, SDL_Boolean P2,
 #(Str)* Result)
{
 if (P2)
 *Result = *P1;
 else
 (void)#(Lit1)(Result);
 return Result;
}
*/
ENDNEWTYPE;

––

The example above should be compared with the same example written
in SDL. Note that the literal in the previous example is replaced with an
operator without parameters. The algorithmic extensions described in
“Grammar for the Algorithmic Extensions” on page 146 in chapter 3,
Using SDL Extensions, in the SDL Suite Methodology Guidelines is also
used as they provide a powerful way to write textual algorithms.

Example 365: ADT Example in pure SDL ––––––––––––––––––––––––

NEWTYPE Str STRUCT
 a Integer;
 b Boolean;
 c Real;
 OPERATORS
 Lit1 : -> Str;
 Op1 : Str, Integer -> Str;
 Op2 : Str, Boolean -> Str;
OPERATOR Lit1 RETURNS Str
{
 RETURN (. 2, false, 10.0 .);
}
OPERATOR Op1 FPAR P1 Str, P2 Integer RETURNS Str
{
 DCL Result Str;
 Result := P1;
2616 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
 Result!a := P1!a + P2;
 RETURN Result;
}
OPERATOR Op2 FPAR P1 Str, P2 Boolean RETURNS Str
{
 IF (P2)
 RETURN P1;
 RETURN Lit1;
}
ENDNEWTYPE;

––

Example 366: ADT Example–––––––––––––––––––––––––––––––––––

SYNTYPE Index = Integer CONSTANTS 1:10
ENDSYNTYPE,

NEWTYPE A Array(Index, Integer)
 ADDING LITERALS
 Zero /*#OP (B) */;
 OPERATORS
 Add : A, A -> A; /*#OP (B) */
 Sum : A -> Integer;
/*#ADT()
#BODY
#(A)* #(Zero) (#(A)* Result)
{
 SDL_Integer i = 0;
 GenericMakeArray(Result,
 (tSDLTypeInfo *)&ySDL_#(A), &i);
 return Result;
}

#(A)* #(Add) (#(A)* P1, #(A)* P2, #(A)* Result)
{
 int I;
 for (I = 1; I<=10; I++)
 Result->A[I] = P1->A[I] + P2->A[I];
 return Result;
}
*/
ENDNEWTYPE;

––

Note that no body is supplied for the operator Sum as the default imple-
mentation strategy for operators, which should be used for Sum, is Q
(question). The GenericMakeArray function used to implement the lit-
eral is a generic function that constructs array values. The details for this
function will be described later in this section.

For more information about the functions and types (supplied by the
runtime library in the Cadvanced/Cbasic SDL to C Compiler and con-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2617

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
tained in generated code) that can be useful when implementing opera-
tors in C, see “SDL Predefined Types” on page 2588, and last in “More
about Abstract Data Types” on page 2634.

Error Situations in Operators

In the C function used to implement operators (and literals) it is possible
to define error situations and handle them as ordinary SDL run-time er-
rors. The C library function xSDLOpError, with the following proto-
type:

extern void xSDLOpError(
 char *OpName,
 char *ErrText)

can be used for this purpose.

Example 367: Error Handler in Operator–––––––––––––––––––––––––

Example of use:

 if (strlen(C) <= 1) {
#ifdef XECSOP
 xSDLOpError(“First in sort Charstring”,
 “Charstring length is zero.”);
#endif
 return SDL_NUL;
 } else
 return C[1];

––

This is a simplified version of the test in the function for the operator
First in the sort Charstring. Here the error situation is when we try to ac-
cess the first character in a charstring of length 0. In this case the
xSDLOpError is called and a default value is returned (NUL). By in-
cluding the xSDLOpError call between #ifdef XECSOP - #endif the
function is only called to report the error if error checks are turned on.
The first parameter to xSDLOpError should identify the operator and
the sort, while the second parameter should describe the error.

Handling of the Charstring Sort

The SDL sort Charstring is implemented as char * in C.
2618 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
The code generator and the library functions for the Charstring opera-
tors use the first character (index 0) in the C string to indicate the status
of the string. If the first character is:

• ’V’
the string is assigned to an SDL variable and may not be changed in
any way.

• ’L’
the string is a C char * literal, and may of course not be changed.

• ’T’
the string is a temporary result from a function returning a Char-
string. This memory should either be assigned to an SDL variable
or returned to the pool of free memory.

All the library functions for Charstrings handle memory in an appropri-
ate way. A user only has to take the extra character in to account, when
Charstrings are handled in C. Any Charstring function parameters hav-
ing a ‘T’ as first character must be handled according to the discussion
above. A function that returns a Charstring and that creates new tempo-
rary memory to store the result, should assign the value ‘T’ to the first
character in the Charstring.

As pointers and dynamic memory are used to implement Charstrings, it
is necessary to be careful when Charstrings are handled in C code,
which we show in two examples.

Example 368: Equal Test on Charstring Sort–––––––––––––––––––––

If the C operator == is used to check if two charstrings are equal, then
the actual test that is performed is to see if the two pointer values to the
data areas representing the characters in the string are equal.

To check if the characters in the charstrings are equal the equal function
should be used:

 yEqF_SDL_Charstring

––

Note:

This means that the value NUL (ASCII character 0) cannot be part
of a Charstring, as this value is used as string terminator in C (this is
checked by the library functions for Charstring).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2619

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 369: Assignment on Charstring Sort––––––––––––––––––––

If the C assignment operator, =, is used to assign the value of one char-
string variable (C1) to another charstring variable (C2), then two things
will go wrong:

1. The memory used to represent the old value of C1 is lost and can
never be reused.

2. C1 and C2 now refer to the same memory area, which means that if
one of the variables is changed the other will also be changed. This
leads to unpredictable behavior of the program.

The correct way to handle assignment of charstrings is to use the rou-
tine:

yAssF_SDL_Charstring

––

The problems mentioned above can of course also occur if a struct or
array containing charstring components (or subcomponents) is handled
carelessly. It is, for example, necessary to use the generic equal and as-
sign functions to perform equal test and assignment.

To avoid problems one should be aware that Charstring is implemented
as char * in C and take the consequences thereof. There are a number of
help functions (that implement the operators for the Charstring sort)
supplied in the runtime library that might be helpful when handling
Charstrings. See “SDL Predefined Types” on page 2588).

Other Types Containing Pointers

The principal discussion about Charstrings in the previous section is
also relevant for all other types containing pointers. Such types are:

– Bit_string
– Octet_string
– Object_identifier
– Strings (not #STRING)
– General Arrays
– General Powersets
– Bags

All these types contain a boolean component, IsAssigned, that gives the
status of the data area. IsAssigned serves the same purpose as the first
extra character in a Charstring and has to be treated in a similar way.
2620 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
• IsAssigned equal to false means that this data area is a temporary re-
sult from a function returning the data type. This memory should ei-
ther be assigned to an SDL variable or returned to the pool of free
memory.

• IsAssigned equal to true means that this value is assigned to a vari-
able and may not be changed in any way. It can also mean that the
value is part of (i.e. is assigned to) a larger data structure.

External Properties

As an alternative to the #ADT directive, which is a comment, the exter-
nal properties clause in a newtype can be used as container for this in-
formation. See the following example:

Example 370: External Properties in a Newtype ––––––––––––––––––

NEWTYPE Str STRUCT
 a integer;
 b Boolean;
 c real;
 ADDING LITERALS
 Lit;
 OPERATORS
 Op1 : Str, integer -> Str;
 Op2 : Str, Boolean -> Str;

ALTERNATIVE C;
#ADT (B)
#BODY
 some appropriate C code
ENDALTERNATIVE;

ENDNEWTYPE;

––

The #ADT directive, without the /* */ can be placed between
ALTERNATIVE C; and ENDALTERNATIVE.

Note:

According to the syntax of SDL, if you have an external properties
clause (i.e. alternative - endalternative), you cannot, in the same
newtype, have operator diagrams, axioms, or literal mappings.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2621

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
More about Operators

For an operator in an abstract data type, not only B (body) or Q (ques-
tion) may be specified. The following choices are available:

• Q (question)
This is the default value and specifies that the code generator should
generate the interactive routines describe above.

• B (body)
This specifies that the code generator should generate the heading
of the operator or literal function, while the user should supply the
body of the function.

• H (heading)
This specifies that the code generator should neither generate the
heading nor the body of the operator or literal function. The user is
assumed to supply the necessary code.

• S (standard)
This is used to indicate that a standard function or operator is avail-
able in the target language, which should be used as implementation
of the SDL operator (literal). No function heading or function body
is generated. In expressions where such an operator is used, no pre-
fix is added to the SDL name during the translation, but the SDL
name is used as it is (if no #NAME directive is present).

• P (prefix) or
I (infix)
where P is the default value. These letters are used to indicate if the
operator should be used as a function or an operator:

– As an operator: a+1 a==4 -a
– Or as a function call: sin(a) power(a, 3)

For each operator one of the letters B, Q, H, S and one of the letters P,
I should be supplied, either in a #OP directive, or in a #ADT directive,
or as the defaults Q and P; for literals P and I have no meaning.

The purpose of S is straight forward and easy to understand, but H might
require some explanation. H means that the code generator will not gen-

Note:

As C does not include the possibility to have user defined operators,
I (infix) is only adequate together with S (standard).
2622 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
erate any code for the operator, which leaves the user with a number of
possibilities:

• By not including any code for an operator, the user may skip the
code for an unused operator.

• There might already exist external declarations for a number of op-
erators in a .h file that should be used instead of the generated head-
ings.

Example 371: Using S (Standard Function or Operator) –––––––––––

Example of usage of S (standard)

”+” : integer, real -> real; /*#OP (SI) */
sin : real -> real; /*#OP (SP) */

An SDL expression using these operators:

sin(a + 7.0) will be translated to: sin(zh723_a + 7.0)

––

These examples show how standard functions in the target language can
be directly utilized in abstract data types. In C, it is often easiest to use
#OP(HP) for such special cases, and implement the operator in the
#HEADING section as a C macro transforming the call to the appropri-
ate syntax.

Generic Functions

Type Info Nodes

A generic function can perform a certain task for several different types.
To be able to write generic functions, type-specific information for the
types must be made available. This type of information could be, for in-
stance, size of the type, component types for structured types and com-
ponent offsets. This information is provided by the type info nodes.

A type info node is a struct that contains information that defines the
type. Each type has a corresponding type info node. Each type info node
contains two sections. The first section contains a sequence of general
components that is identical for all type info nodes. The second section
is an individual type-specific sequence of components that defines each
unique type.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2623

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Every newtype or syntype introduced in SDL will be described by a
type info node in the generated C code. For the predefined data types
the following type info nodes can be found in sctpred.h and sct-
pred.c:

extern tSDLTypeInfo ySDL_SDL_Integer;
extern tSDLTypeInfo ySDL_SDL_Real;
extern tSDLTypeInfo ySDL_SDL_Natural;
extern tSDLTypeInfo ySDL_SDL_Boolean;
extern tSDLTypeInfo ySDL_SDL_Character;
extern tSDLTypeInfo ySDL_SDL_Time;
extern tSDLTypeInfo ySDL_SDL_Duration;
extern tSDLTypeInfo ySDL_SDL_PId;
extern tSDLTypeInfo ySDL_SDL_Charstring;
extern tSDLTypeInfo ySDL_SDL_Bit;
extern tSDLTypeInfo ySDL_SDL_Bit_String;
extern tSDLTypeInfo ySDL_SDL_Octet;
extern tSDLTypeInfo ySDL_SDL_Octet_String;
extern tSDLTypeInfo ySDL_SDL_IA5String;
extern tSDLTypeInfo ySDL_SDL_NumericString;
extern tSDLTypeInfo ySDL_SDL_PrintableString;
extern tSDLTypeInfo ySDL_SDL_VisibleString;
extern tSDLTypeInfo ySDL_SDL_Null;
extern tSDLGenListInfo ySDL_SDL_Object_Identifier;

For a user-defined type the type info node will have the name

ySDL_#(TypeName)

Generic Assignment Functions

Each type in SDL has access to an assignment macro yAssF_typename.
Examples for type Boolean and for a user-defined type A:

#define yAssF_SDL_Boolean(V,E,A) (V = E)

#define yAssF_A(V,E,A) yAss_A(&(V),E,A)
#define yAss_A(Addr,Expr,AssName) \

(void)GenericAssignSort(Addr,Expr,AssName,
 (tSDLTypeInfo *)&ySDL_A)

This macro is used in the generated code (and in the kernel) at each lo-
cation where an assignment should take place. The three macro param-
eters are:

• V: the variable on the left hand side

• E: the expression on the right hand side

• A: an integer giving the properties of the assignment
2624 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
This macro will either become an assignment statement in C or a call of
an assignment function. An assignment statement will be used if assign-
ment is allowed according to C for the current type and if it has the cor-
rect semantics comparing with assignment in SDL.

If assignment is not possible to use, the assign macro will become a call
to an assignment function. The basic generic assignment function can
be found in sctpred.c and sctpred.h:

extern void * GenericAssignSort(void *, void *,
 int, tSDLTypeInfo *);

where:

• The first parameter is the address of the variable on the left hand
side.

• The second parameter is the address of the expression on the right
hand side.

• The third parameter is the properties of the assignment

• The fourth parameter is the type info node for the actual type.

GenericAssignSort returns the address passed as the first parameter.

The GenericAssignSort function performs three tasks:

1. The old value on the left hand side variable is released, if that is
specified in properties of the assignment and if the value contains
any pointers.

2. The value is copied from the expression to the variable. If possible
this is performed by the function memcpy, otherwise special code
depending on the kind of type is executed.

3. The IsAssigned flags are set up for the variable according to the
properties of the assignment.

Special treatment of Charstring and instantiations of the Own generator
has made it necessary to introduce specific wrapper functions that in
their turn call GenericAssignSort for these types:

extern void xAss_SDL_Charstring (SDL_Charstring *,
 SDL_Charstring, int);
extern void * GenOwn_Assign (void *, void *, int,
 tSDLTypeInfo *);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2625

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
An GenericAssignSort function must consider the following questions
in order to handle the objects correctly.

How should one copy the object?

This is very important because performing the wrong action will lead to
memory leaks or access errors. Three different possibilities exist:

• AC: always copy the referenced object.

• AR: always copy the pointer, i.e reusing the referenced object.

• MR: copy pointer if the object is temporary or copy object if not
temporary.

What should be the status of the new object?

This is a preparation for the next operation on this object so the correct
decision can be made according to the first question. Two different pos-
sibilities exists:

• ASS: an object should become assigned if it is assigned to a variable
and needs to be copied in future assignments, i.e corresponds to the
values ‘V’ and ‘L’ for the first character in a C- string representing
the Charstring sort. A typical case is a normal assignment statement
in SDL.

• TMP: an object should become temporary if it is not assigned to any
persistent variable and therefore should not be copied in subsequent
assignments, i.e corresponds to the value ‘T’ for the first character
in a C-string representing the Charstring sort. A typical case is a re-
sult value from an operator.

What should be done with the old value referenced by the left hand
side variable?

Normally free should be performed on the value, as otherwise there
would be a memory leak. However, when initializing a variable, no free
ought to be performed, as free might be called on a random address.
Two different possibilities exists:

– FR: free old value.

– NF: do not free old value.
2626 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
The third assignment property parameter in the GenericAssignSort
function should be given a value according to the ideas given above,
preferably using the macros indicated.

#define XASS_AC_ASS_FR (int)25
#define XASS_MR_ASS_FR (int)26
#define XASS_AR_ASS_FR (int)28

#define XASS_AC_TMP_FR (int)17
#define XASS_MR_TMP_FR (int)18
#define XASS_AR_TMP_FR (int)20

#define XASS_AC_ASS_NF (int)9
#define XASS_MR_ASS_NF (int)10
#define XASS_AR_ASS_NF (int)12

#define XASS_AC_TMP_NF (int)1
#define XASS_MR_TMP_NF (int)2
#define XASS_AR_TMP_NF (int)4

The macro names above are all of the form XASS_1_2_3, where the ab-
breviations placed at 1, 2, and 3 should be read:

• 1 = AC: always copy
• 1 = MR: may reuse (take pointer if temporary object)
• 1 = AR: always reuse (take pointer)
• 2 = ASS: new object assigned to "variable"
• 2 = TMP: new object temporary
• 3 = FR: call free for old value referred to by variable
• 3 = NF: do not call free for old value

The distinction between all these assignment possibility is only of inter-
est when handling types using or containing pointers.

Generic Equal Functions

Each type in SDL has access to an equal macro yEqF_typename and an
not equal macro yNEqF_typename. Examples for type Boolean and for
a user-defined type A:

#define yEqF_SDL_Boolean(E1,E2) ((E1) == (E2))
#define yNEqF_SDL_Boolean(E1,E2) ((E1) != (E2))

#define yEqF_z3_A(Expr1,Expr2) yEq_z3_A(Expr1,Expr2)
#define yNEqF_z3_A(Expr1,Expr2) (! yEq_z3_A(Expr1,Expr2))
#define yEq_z3_A(Expr1,Expr2) \
 GenericEqualSort((void *)Expr1,(void *)Expr2, \
 (tSDLTypeInfo *)&ySDL_z3_A)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2627

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
These macros are used in the generated code (and in the kernel) at each
location where equality tests are needed. The parameters to the equal
and not equal macro are the two expressions that should be tested.

If C equal or not equal are not possible to use, the equal macros will be-
come calls to an equal function. The basic generic equal function can be
found in sctpred.h and sctpred.h:

extern SDL_Boolean GenericEqualSort(void *, void *,
 tSDLTypeInfo *);

where:

• the first two parameters are the addresses to the two expressions to
be tested

• the third parameter is the type info node for the actual type.

Special treatment of Charstring and instantiations of the Own generator
has made it necessary to introduce specific wrapper functions that in
turn calls GenericEqualSort for these types:

extern SDL_Boolean xEq_SDL_Charstring
 (SDL_Charstring, SDL_Charstring);
extern SDL_Boolean GenOwn_Equal (void *, void *,
 tSDLTypeInfo *);

Generic Free Functions

Each type in SDL that is implemented as a pointer, or that contains a
pointer that references to memory that is automatically handled (in prin-
ciple all pointers except Ref pointers), has access to a corresponding
yFree_typename function or macro. In the generic function model, this
is always a macro.

#define yFree_SDL_Charstring(P) xFree_SDL_Charstring(P)
#define xFree_SDL_Charstring(P) \
 GenericFreeSort(P,(tSDLTypeInfo *)&ySDL_SDL_Charstring)

#define yFree_A(P) \
 GenericFreeSort(P,(tSDLTypeInfo *)&ySDL_A)

The yFree macro will always be translated to a call to the function Ge-
nericFreeSort.

extern void GenericFreeSort (void **, tSDLTypeInfo *);
2628 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
This function takes the address of a variable and a type info node and
releases the dynamic memory used by this value contained in the vari-
able.

Generic Make Functions

There are four generic functions constructing values of structured types:

extern void * GenericMakeStruct (void *, tSDLTypeInfo *, ...);
extern void * GenericMakeChoice (void *, tSDLTypeInfo *,
 int, void *);
extern void * GenericMakeOwnRef (tSDLTypeInfo *, void *);
extern void * GenericMakeArray (void *, tSDLTypeInfo *,
 void *);

GenericMakeStruct: According to SDL, the Make operator is only
available for the struct type. However, in the SDL suite the Make oper-
ator, and thus the GenericMakeStruct function, is also available for the
Object_identifier type and the instantiations of the generators string,
powerset, and bag.

• The void * parameter is the address of a variable where the result
should be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node
for the type to be created.

• “...” denotes a list of addresses to the values for the components in
the struct. All parameters must be passed as addresses (void *) re-
gardless if the component type should be passed as an address or as
a value. The only exceptions are the types represented as pointers
themselves (Charstring, Ref, Own, ORef, and syntypes of these
types), where the pointers are passed, not the addresses of the point-
ers. In case of an optional field or a field with an initializer, a ‘0’ or
’1’ is passed to indicate if a value for the component is present or
not. If ‘1’ is passed the value follows as next parameter. If ‘0’ is
passed no value is present in the actual parameter list.

GenericMakeChoice: This function is used for choice types.

• The first void * parameter is the address of a variable where the re-
sult should be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node
for the type to be created.

• The int parameter decides which choice component that is present.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2629

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
• The last void * parameter is the address of the value.

GenericMakeOwnRef: This function is used for instantiations of gen-
erators Own and Ref.

• The tSDLTypeInfo * parameter is the address to the type info node
for the type to be created.

• The void * parameter is the address to the value that should be as-
signed to the memory allocated by this function.

GenericMakeArray: This function is used for instantiations of the gen-
erators Array, Carray, and GArray.

• The first void * parameter is the address of a variable where the re-
sult should be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node
for the type to be created.

• The last void * parameter is the address to the value that should be
assigned to all components of the array.

Generic Function for Operators in Pre-defined
Generators
The generic function for the operators in the pre-defined generators fol-
low the general rules for operators with a few exceptions:

• a type info node is needed as a parameter, as the C function can han-
dle all instantiations of a certain generator.

• parameters of generator parameter types (component and index
types for example) must in many cases be passed as addresses, as
the properties of these types are not known.

General array

extern void * GenGArray_Extract (xGArray_Type *, void *,
 tSDLGArrayInfo *);
extern void * GenGArray_Modify (xGArray_Type *, void *,
 tSDLGArrayInfo *);

• Parameter 1: The array

• Parameter 2: The index value passed as an address
2630 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
• Parameter 3: The type info node

• Result: The address of the component

Powerset

Generic functions available for powersets with a simple component
type. The powerset is represented a sequences of bits (unsigned
char[Appropriate_Length]).

#define GenPow_Empty(SDLInfo,Result) \
 memset((void *)Result,0,(SDLInfo)->SortSize)
extern SDL_Boolean GenPow_In (int, xPowerset_Type *,
 tSDLPowersetInfo *);
extern void * GenPow_Incl (int, xPowerset_Type *,
 tSDLPowersetInfo *, xPowerset_Type *);
extern void * GenPow_Del (int, xPowerset_Type *,
 tSDLPowersetInfo *, xPowerset_Type *);
extern void GenPow_Incl2 (int, xPowerset_Type *,
 tSDLPowersetInfo *);
extern void GenPow_Del2 (int, xPowerset_Type *,
 tSDLPowersetInfo *);
extern SDL_Boolean GenPow_LT (xPowerset_Type *,
 xPowerset_Type *, tSDLPowersetInfo *);
extern SDL_Boolean GenPow_LE (xPowerset_Type *,
 xPowerset_Type *, tSDLPowersetInfo *);
extern void * GenPow_And (xPowerset_Type *, xPowerset_Type *,
 tSDLPowersetInfo *, xPowerset_Type *);
extern void * GenPow_Or (xPowerset_Type *, xPowerset_Type *,
 tSDLPowersetInfo *, xPowerset_Type *);
extern SDL_Integer GenPow_Length (xPowerset_Type *,
 tSDLPowersetInfo *);
extern int GenPow_Take (xPowerset_Type *, tSDLPowersetInfo *);
extern int GenPow_Take2 (xPowerset_Type *, SDL_Integer,
 tSDLPowersetInfo *);

• Parameter of type int in GenPow_In, GenPow_Incl,
GenPow_Del, GenPow_Incl2, GenPow_Del2: A component val-
ue.

• Result of type int in GenPow_Take, GenPow_Take2: A compo-
nent value.

• Parameters of type tSDLPowersetInfo *: The type info node.

• Parameters of type xPowerset_Type * after the type info node:
The address where the result should be stored. This address is re-
turned by the function.

• Other xPowerset_Type * parameters: Powerset in parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2631

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Bag and General Powerset

The following generic functions are available for bags and powersets
with complex component type. These types are represented as linked
lists in C.

#define GenBag_Empty(SDLInfo,Result) \
 memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenBag_Makebag (void *, tSDLGenListInfo *,
 xBag_Type *);
extern SDL_Boolean GenBag_In (void *, xBag_Type *,
 tSDLGenListInfo *);
extern void * GenBag_Incl (void *, xBag_Type *,
 tSDLGenListInfo *, xBag_Type *);
extern void * GenBag_Del (void *, xBag_Type *,
 tSDLGenListInfo *, xBag_Type *);
extern void GenBag_Incl2 (void *, xBag_Type *,
 tSDLGenListInfo *);
extern void GenBag_Del2 (void *, xBag_Type *,
 tSDLGenListInfo *);
extern SDL_Boolean GenBag_LT (xBag_Type *, xBag_Type *,
 tSDLGenListInfo *);
extern SDL_Boolean GenBag_LE (xBag_Type *, xBag_Type *,
 tSDLGenListInfo *);
extern void * GenBag_And (xBag_Type *, xBag_Type *,
 tSDLGenListInfo *, xBag_Type *);
extern void * GenBag_Or(xBag_Type *, xBag_Type *,
 tSDLGenListInfo *, xBag_Type *);
extern SDL_Integer GenBag_Length (xBag_Type *,
 tSDLGenListInfo *);
extern void * GenBag_Take (xBag_Type *, tSDLGenListInfo *,
 void *);
extern void * GenBag_Take2 (xBag_Type *, SDL_Integer,
 tSDLGenListInfo *, void *);

• Parameter of type int in GenBag_Makebag, GenBag_In,
GenBag_Incl, GenBag_Del, GenBag_Incl2, GenBag_Del2: The
address of the component value.

• Result of type int in GenBag_Take, GenBag_Take2: The address
of the component value.

• Parameters of type tSDLGenListInfo *: The type info node.

• Parameters of type xBag_Type * after the type info node: The
address where the result should be stored. This address is returned
by the function.

• Parameters of type void * after the type info node: The address
where the result should be stored. This address is returned by the
function.

• Other xBag_Type * parameters: Bag/Powerset in parameters.
2632 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
String

The following Generic functions are available for String instantiations.
A String is implemented as a linked list.

#define GenString_Emptystring(SDLInfo,Result) \
 memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenString_MkString (void *, tSDLGenListInfo *,
 xString_Type *);
extern SDL_Integer GenString_Length (xString_Type *,
 tSDLGenListInfo *);
extern void * GenString_First (xString_Type *,
 tSDLGenListInfo *, void *);
extern void * GenString_Last (xString_Type *,
 tSDLGenListInfo *, void *);
extern void * GenString_Concat (xString_Type *,
 xString_Type *, tSDLGenListInfo *, xString_Type *);
extern void * GenString_SubString (xString_Type *,
 SDL_Integer, SDL_Integer, tSDLGenListInfo *,
 xString_Type *);
extern void GenString_Append (xString_Type *, void *,
 tSDLGenListInfo *);
extern void * GenString_Extract (xString_Type *, SDL_Integer,
 tSDLGenListInfo *);

• Parameter of type void * in GenString_MkString,
GenString_Append: Address of component value.

• Parameter of type void * or xString_Type * after type info node:
The address where the result should be stored. This address is re-
turned by the function.

• Parameters of type tSDLGenListInfo *: The type info node.

• Other parameters: According to SDL definition of parameters.

Limited String

Generic functions available for limited strings, i.e. strings with
#STRING directive giving a max size of the string. These strings are
implemented as an array in C.

#define GenLString_Emptystring(SDLInfo,Result) \
 memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenLString_MkString (void *, tSDLLStringInfo *,
 xLString_Type *);
#define GenLString_Length(ST,SDLInfo) (ST)->Length
extern void * GenLString_First (xLString_Type *,
 tSDLLStringInfo *, void *);
extern void * GenLString_Last (xLString_Type *,
 tSDLLStringInfo *, void *);
extern void * GenLString_Concat (xLString_Type *,
 xLString_Type *, tSDLLStringInfo *, xLString_Type *);
extern void * GenLString_SubString (xLString_Type *,
 SDL_Integer, SDL_Integer, tSDLLStringInfo *,
 xLString_Type *);
extern void GenLString_Append (xLString_Type *, void *,
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2633

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
 tSDLLStringInfo *);
extern void * GenLString_Extract (xLString_Type *,
 SDL_Integer, tSDLLStringInfo *);

• Parameter of type void * in GenLString_MkString,
GenString_Append: Address of component value.

• Parameter of type void * or xLString_Type * after type info
node: The address where the result should be stored. This address is
returned by the function.

• Parameters of type tSDLLStringInfo *: The type info node.

• Other parameters: According to SDL definition of parameters.

More about Abstract Data Types

Including Type Definitions

In this subsection, the inclusion of a type definition in the target lan-
guage for an abstract data type will be described. When this facility is
used, it is necessary to specify how to perform assignment, test for
equal, assign default values, and so on, as it is not possible to generate
when the type definition is not known (not generated). All this informa-
tion is given in the #ADT directive, which has the following structure:

/*#ADT
 (T(x) A(x) E(x) F(x) K(x) X(x) M(x) W(x) R(x)
 xy ’file name’)
#TYPE
C code
#HEADING
C code
#BODY

Note:

Use the features presented in this section with care. The features
were developed early in the SDL suite history. Now in principle ev-
ery data type in C can be expressed in SDL as well. Therefore, the
recommended method is to write the types in SDL or to translate C
types to SDL using the cpp2sdl tool.

History has also shown that it has been difficult to keep full back-
ward compatibility for these features and at the same time improve
the performance of the generated code. This of course comes from
that these features is highly dependent on the way code is generated.
2634 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
C code
*/

where each x on the first line should be replaced by one of the characters
B, H, Q, S, or G. Replace y by P or I. The interpretation of these char-
acters is similar to the their interpretation for operators.

The reason why G (generate) is not allowed for operators or literals is
of course that it would mean to generate the implementation of the op-
erators from the axioms, which is, at least in the general case, an impos-
sible task. For an operator defined in an operator diagram, G is assumed
independently of what the user specifies.

The specifications, given in ADT directives, of how to generate code for
type definition, assignment, test for equal, default values, and free func-
tion should be interpreted according to the table below.

Type Definition

First the actual type definition. The entry - should be interpreted as if no
specification is given for T.

B Body

H Heading

Q Question

S Standard

G Generate

P Prefix

I Infix

Type Interpretation

T(G) Generate type definition from SDL sort

T(B) Do not generate type definition. Assume the type should
be “passed as value” to operators

T(BV) Do not generate type definition. Assume the type should
be “passed as address” to operators
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2635

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Assignment

It is possible to select how assignments should be performed for values
of the type. Note that all generated assignments will be of the form:

yAssF_#(SortName)(....);

The yAssF_#(SortName) is a macro either implemented as assignment
or as a call to the yAss_#(SortName) function (if such function is to be
used), i.e as:

#define yAssF_#(S)(V,E,A) V = E
#define yAssF_#(S)(V,E,A) yAss_#(S)(&(V),E,A)

If you define your own assign function, it must be implemented as a
function, as the address of the function will be stored (in the type info
node for the data type) so GenericAssignSort can call it to handle sub-
components of this type. An assign function has the following heading:

void yAss_#(SortName)
 (#(SortName) *yVar,
 #(SortName) *yExpr,
 int AssType)

T Same as T(B)

- Same as T(G)

Type Interpretation

A(B) Use and generate heading, but not body, of yAss_#(S)

A(H) Use, but generate no code for yAss_#(S)

A(G) • If the type definition is generated:
– Use = if possible.
– Otherwise use the GenericAssignSort function

• If type definition is not generated (T, T(B)):
– Use =

A(S) Use =

A Same as A(B)

- Same as A(G)

Type Interpretation
2636 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
It should assign the value passed as second parameter to the variable
passed as first parameter. If the type that is to be assigned contains any
pointers the assign function is a bit complicated to write in order to
avoid access errors and memory leaks. See the discussion about the As-
sType parameter to GenericAssignSort in “Generic Assignment Func-
tions” on page 2624.

Equal Test

It is possible to select how test for equality should be performed for val-
ues of the type. Note that all generated equal tests will be of the form:

yEqF_#(SortName)(....);

The yEqF_#(SortName) is a macro either implemented as C equal or as
a call to the yEq_#(SortName) function (if such function is to be used),
i.e as:

#define yEqF_#(S)(E1,E2) E1 == E2
#define yEqF_#(S)(E1,E2) yEq_#(S)(E1,E2)

The /= operator is represented by the macro

#define yNEqF_#(S)(E1,E2) (! yEqF_#(S)(E1,E2)).

Type Method

E(B) Use and generate heading, but not body, of yEq_#(S)

E(H) Use but generate no code for yEq_#(S)

E(G) • If the type definition is generated:
– Use == if possible
– Otherwise use the GenericEqualSort function.

• If the type definition is not generated
– Use ==

E(S) Use ==

E(Q) Use and generate an equal function that asks for the result of
the test (same as Q for operators).

E Same as E(B)

- Same as E(G)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2637

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
If you define your own equal function, it must be implemented as a
function, as the address of the function will be stored (in the type info
node for the data type) so GenericEqualSort can call it to handle sub-
components of this type. An equal function has the following heading:

SDL_Boolean yEq_#(SortName)
 (#(SortName) *yExpr1,
 #(SortName) *yExpr2);

It should return true or false depending on if the two values passed
as parameters are equal or not. If the parameters contain pointers it
might be necessary to free these values, please see the discussion on
general parameters to operators in“Other Types Containing Pointers”
on page 2620.

Free of Dynamic Memory

This section describes how dynamic memory (if used for the type) will
be released for reuse when it is no longer needed.

If you define your own free function, it must be implemented as a func-
tion, as the address of the function will be stored (in the type info node
for the data type) so GenericFreeSort can call it to handle subcompo-
nents of this type. A free function should have the following prototype

void yFree_#(SortName) (void **yVar)

The function should take the address to a pointer, return the allocated
memory to the pool of available memory and assign 0 to the pointer.

Type Interpretation

F(B) Generate heading, but no body of the free function
yFree_#(SortName).

F(H) Generate neither heading nor body of the free function.

F(S) Use the function GenericFreeSort

F Same as F(B)

- Do not use free function.
2638 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
Extract! and Modify!

This entry specifies how component selection (struct components, array
components for example) should be performed. In SDL a component
can be selected in two ways:

Variable ! Component
Variable (Index)

An Extract operation can be generated in four ways:

Variable.Component used for struct and #UNIONC
Variable.U.Component used for #UNION and choice
Variable.A(Index) used for array
yExtr_SortName(Variable,Expr)

The last version, the Extract function, is used for all other cases.

A Modify operation can in the same way be generated in four ways:

Variable.Component used for struct and #UNIONC
Variable.U.Component used for #UNION and choice
Variable.A(Index) used for array
(* yAddr_SortName((&Variable), Expr))

The last version, the Addr function, is used for all other cases.

Type Interpretation

X(B) Use Extract function

X(G) Use component selection according to table above.

X Same as X(B)

- Same as X(G)

Type Interpretation

M(B) Use Addr function

M(G) Use component selection according to table above.

M Same as M(B)

- Same as M(G)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2639

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Read and Write Function

The write function is used by the monitor system to write values of the
type.

The read function is used by the monitor system to read values of the
type.

In order to examine variable values for variables that are of a sort that
is implemented in C, i.e. has #ADT(T) in its ADT directive, it is neces-
sary to implement a write function. Otherwise the value can only be pre-
sented as a HEX string. Note that the run-time kernel can automatically
handle all SDL sorts for which the code generator generates the C type
definition. A write function should look like:

extern char * yWri_SortName (void * Value)

Given the address of a value of the type SortName, this function should
return a char *, i.e. a character string, containing the value represented

Type Interpretation

W(B) Generate heading but not the body of a write function.

W(H) Generate neither heading nor body of a write function, but
assume that the user has provided such a function.

W(S) Values of this type are to be printed as a HEX string. No
write function is assumed to be present.

W Same as W(B)

- Same as W(S)

Type Interpretation

R(B) Generate heading but not the body of a read function.

R(H) Generate neither heading nor body of a read function, but
assume that the user has provided such a function.

R(S) Values of this type are to be read as a HEX string. No read
function is assumed to be present.

R Same as R(B)

- Same as R(S)
2640 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
in a printable form. This character string is the string that will be printed
by the monitor, when it needs to print a value of this type. To implement
the write function it is not uncommon that a static char array is needed.

• The read and write functions and any help variables and help func-
tions ought to be surrounded by

#ifdef XREADANDWRITEF
#endif

to be removed if read and write functions are not needed.

• The string format used to represent value of a type should be the
same in the read and the write function. Otherwise communicating
simulations will not work if this type is passed as parameter be-
tween the systems.

The function xWriteSort, which is part of the run-time kernel can be
useful when implementing Write functions.

extern char * xWriteSort (
 void *In_Addr,
 xSortIdNode SortNode);

The xWriteSort function takes the address of a value to be printed, and
a pointer to a xSortIdNode and returns the given value as a string. This
function is typically useful if the sort we are implementing a write func-
tion for contains one or several components of sorts defined in SDL.

Read Function

In order to assign new values to variables that are of a sort that is imple-
mented in C, i.e. has #ADT(T) in its ADT directive, it is necessary to
implement a read function. Otherwise the value can only be read as a
HEX string. Note that the run-time kernel can automatically handle all
SDL sorts for which the code generator generates the C type definition.
A read function should look like:

extern int yRead_SortName (void * Result)

A read function is given an address to store the value that is read. It
should return 1 if the read operation was successful. Otherwise, 0
should be returned and Result should be unchanged.

Note:

The following two considerations when it comes to write and read
functions:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2641

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
There are some suitable functions in the run-time kernel which can help
you when you are implementing a read function. Basically the function
xScanToken described below is a tokenizer that transforms sequences
of characters to tokens. This function returns tokens according to the
following enum type:

typedef enum {
 xxId, /* identifiers, numbers */
 xxString, /* SDL Charstring literal */
 xxSlash, /* / */
 xxColon, /* : */
 xxMinus, /* - */
 xxPlus, /* + */
 xxStar, /* * */
 xxComma, /* , */
 xxSemicolon, /* ; */
 xxArrowHead, /* ^ */
 xxLPar, /* (*/
 xxRPar, /*) */
 xxLParDot, /* (. */
 xxRParDot, /* .) */
 xxLParColon, /* (: */
 xxRParColon, /* :) */
 xxDot, /* . */
 xxLBracket, /* [*/
 xxRBracket, /*] */
 xxLCurlyBracket, /* { */
 xxRCurlyBracket, /* } */
 xxAt, /* @ */
 xxQuaStart, /* << */
 xxQuaEnd, /* >> */
 xxLT, /* < */
 xxLE, /* <= */
 xxGT, /* > */
 xxGE, /* >= */
 xxEQ, /* = */
 xxNE, /* /= */
 xxQuestionMark, /* ? */
 xx2QuestionMark, /* ?? */
 xxExclMark, /* ! */
 xxSystem, /* system */
 xxPackage, /* package */
 xxBlock, /* block */
 xxProcess, /* process */
 xxProcedure, /* procedure */
 xxOperator, /* operator */
 xxSubstructure, /* substructure */
 xxChannel, /* channel */
 xxSignalroute, /* signalroute */
 xxType, /* type */
 xxNull, /* null */
 xxEnv, /* env */
 xxSelf, /* self */
 xxParent, /* parent */
2642 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
 xxOffspring, /* offspring */
 xxSender, /* sender */
 xxEoln, /* end of line */
 xxEOF, /* end of file */
 xxErrorToken /* used to indicate error */
} xxToken;

Function xScanToken

The function xScanToken:

extern xxToken xScanToken (char * strVar);

reads the next token from input (stdin or Simulator UI) and returns the
type of the next token as function result. If the token is xxId or xxString
the strVar parameter will contain the identifier, number, or string. The
size of the char[] parameter passed as actual parameter should be large
enough to store the possible values. If some other token was found, no
information is stored in strVar.

xUngetToken

Sometimes it is necessary to look-ahead to determine how to handle the
current token. Using the function xUngetToken below it is possible re-
turn one token to the input. Note that both parameters must have the val-
ues obtained from xScanToken.

extern void xUngetToken (
 xxToken Token,
 char * strVar);

The functions below can also be useful while implementing Read func-
tion. xPromptQuestionMark is suitable to obtain prompt in a similar
way as for SDL defined sorts, while xReadOneParameter can be used
to read element for element in a list, separated by commas and terminat-
ed either by “.)” or “]”. The function xReadSort is similar to xWriteSort
and can be used to read a component in the treated sort.

xPromptQuestionMark
extern xxToken xPromptQuestionMark (
 char * Prompt,
 char * QuestionPrompt,
 char * strVar);

The function result and the parameter strVar behave in the same way as
for the function xScanToken (see above). The parameter Prompt is the
prompt that should be used. This string has to start with a ‘ ‘, i.e. a space.
To conform with other built-in read function, the Prompt parameter
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2643

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
should be: “ (SortName) : ” (note the ending space colon space). The
QuestionPrompt parameter should either be identical to the Prompt pa-
rameter, or be null, i.e. (char *)0. If QuestionPrompt is null, the
xPromptQuestionMark function will return xxEoln if a end-of-line is
found. If QuestionPrompt is not null, the xPromptQuestionMark func-
tion will print the QuestionPrompt, and continue to read. Normally
QuestionPrompt should be equal to Prompt in a simple data type, while
it should be null in a structured data type.

Example 372: ADT Example, Byte Type –––––––––––––––––––––––––

This example is taken from the ADT byte (see “Abstract Data Type for
Byte” on page 3176 in chapter 63, The ADT Library). The byte type
should be read and printed using HEX format.

#ifdef XREADANDWRITEF
static char yCTmp[20];

extern int yRead_byte(void *Result)
{
 unsigned temp;
 xxToken Token;

 Token = xPromptQuestionMark(“ (byte) : “,
 “ (byte) : “, yCTmp);

 if (Token==xxId && sscanf(yCTmp, “%X”, &temp)>=1) {
 *(byte *)Result = (byte)temp;
 return 1;
 }
 xPrintString(“Illegal byte value\n”);
 return 0;
}

extern char *yWri_byte(void * C)
{
 sprintf(yCTmp, “%0.2X”, *(byte *)C);
 return yCTmp;
}
#endif

––

Example 373: ADT Example, Struct Write Functions ––––––––––––––

This is an example of how the read and write functions for a struct with
two components can look. The monitor system can handle reading of
writing of struct values automatically, so please see this just as an ex-
ample.
2644 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
newtype struct1 /*#NAME ‘struct1’ */ struct
 a,b Integer;

/*#ADT(W)
#BODY
#ifdef XREADANDWRITEF
static char CTemp[500];

char * yWri_struct1 (void *In_Addr)
{
 strcpy(CTemp, “(. “);
 strcat(CTemp, xWriteSort((void *)
 (&((struct1 *)In_Addr)->a), xSrtN_SDL_Integer));
 strcat(CTemp, “, “);
 strcat(CTemp, xWriteSort((void *)
 (&((struct1 *)In_Addr)->b), xSrtN_SDL_Integer));
 strcat(CTemp, “ .)”);
 return CTemp;
}
#endif
*/
endnewtype;

––

More about #ADT

When generate is specified for a function, the code generator might de-
cide not to generate the heading of the function, as in some cases it is
not needed.

All code that is not generated is assumed to be included by the user in
the #TYPE, #HEADING and #BODY sections in the #ADT directive.

Another name for an assign function, equal function and so on may be
used, by including the desired name within quotes together with the
generation options in the #ADT directive.

If, for example, the name of a certain assign function should be AssX,
this can be obtained by specifying: A(B ’AssX’) for the assign function.
This name will then be used throughout the generated code, both in gen-
erated declaration and at the places where the function is called. The
name should be last in the specification for the actual function.

An include statement may be generated together with or replacing the
type definition by giving a file name within quotes last in the specifica-
tion part of the #ADT directive, immediately before the first section
with code.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2645

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 374: Including a File in ADT –––––––––––––––––––––––––––

If the directive

/*#ADT (T(B) A(S) E(S) ’file name’) */

is used, the following include statement will be generated:

#include “file name”

––

Directive #REF

The directive #REF can be used to specify that the address, not the val-
ue, of a variable should be passed as parameter to an ADT operator, as
it is defined in SDL. This feature cannot be used for operators defined
in operator diagrams (the directive will be ignored for such operators).

The #REF directive is used as shown in the example below.

Example 375: Including a File in ADT –––––––––––––––––––––––––––

operators
 eq1 : Integer, Integer -> Integer;
 eq2 : Integer/*#REF*/, Integer/*#REF*/ -> Integer;

The headings for these two operator will become in ANSI-C syntax (ig-
noring prefixes)

extern SDL_Integer eq1 (SDL_Integer P1,
 SDL_Integer P2);
extern SDL_Integer eq2 (SDL_Integer *P1,
 SDL_Integer *P2);

––

This feature can be used to optimize parameter passing to operators. The
directive, however, also imposes the restriction that the actual parame-
ters must be a variable or a formal parameter (see Example 376 below).

Note:

Turning off the generation of the objects contained in the include
file must be performed by the user.

Note:

This directive is provided only for backward compatibility. The
SDL suite now supports in/out parameters for operators, which
serves exactly the same purpose. In/out parameter is an SDL-2000
extension and is supported also in operator diagrams.
2646 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types
This is checked by the code generator. A #REF directive does not in any
way effect the way a operator call should be implemented in SDL. It is
the responsibility of the code generator to generate the proper actual pa-
rameters in C.

Example 376: Including a File in ADT–––––––––––––––––––––––––––

With the ADT in the previous example the following operator call is
valid:

eq1(sVar, (. 1, 2, 3, 4 .))

The same call of eq2 would not be valid as the second parameter is not
a variable or a formal parameter.

––

Generators
The Cadvanced/Cbasic SDL to C Compiler handles all the predefined
generators in SDL, i.e. Array, String, Powerset, and Bag. It is also pos-
sible for a user to write his own generators and instantiate them in new-
types. However, the behavior of a user defined generator has to be spec-
ified completely by the user. This is performed in a somewhat extended
#ADT directive placed just before the endgenerator keyword. These ex-
tensions are described below.

There are three additional sections in the directive, apart from #TYPE,
#HEADING, and #BODY. These are #INSTTYPE, #INSTHEADING,
and #INSTBODY. The inline C code in #TYPE, #HEADING, and
#BODY is placed at the point of the generator, i.e. it is generated once.
The contents of #INSTTYPE, #INSTHEADING, and #INSTBODY is
inserted at each instantiation of the generator, i.e. in each newtype de-
fined using the generator.

In the #INSTTYPE, #INSTHEADING, and #INSTBODY it is possible
to use # followed by a number to access the information given in the
generator instantiation:

• #0 means the name of the newtype in the instantiation
• #1 and ##1 is the first actual generator parameter
• #2 and ##2 is the second actual generator parameter
• and so on.

#1 and ##1 are equal, except when the corresponding actual generator
parameter is a struct (or union). In that case, assuming the SDL struct:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2647

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
newtype aaa struct
 a, b integer;
endnewtype;

which will be generated as

typedef struct aaa_s {
 SDL_Integer a;
 SDL_Integer b;
} aaa;

#1 will become struct aaa_s (or union aaa_s if a union), while
##1 will become aaa.

Example 377: Example of User Defined Generator ––––––––––––––––

GENERATOR Ref (TYPE Itemsort)
 LITERALS
 Null; /*#OP(S)*/
 OPERATORS
 Ref2VStar : Ref -> VoidStar; /*#OP(HP)*/
 DEFAULT Null;
/*#ADT()
#INSTTYPE
typedef #1 *#0;
#INSTHEADING
#define #(Null)() 0
#define #(Ref2VStar)(P) ((#(VoidStar))P)
*/
ENDGENERATOR Ref;

––

Note the usage of #INSTTYPE and #INSTHEADING in the example
above. The code in these section will be inserted in each newtype de-
fined with this generator. For example, in a newtype:

NEWTYPE p Ref(Integer)
ENDNEWTYPE;

The #INSTTYPE section will become:

typedef SDL_Integer *p;
2648 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Directives to the Cadvanced/Cbasic SDL
to C Compiler

Syntax of Directives
The Cadvanced/Cbasic SDL to C Compiler recognizes a number of di-
rectives given mainly in SDL comments. The #ADT, #OP, #UNION,
and #REF directives used in abstract data types are examples of such di-
rectives. The directives #ADT and #OP were described in the section
“Implementation of User Defined Operators” on page 2609, “Union” on
page 2598, and “Directive #REF” on page 2646, in connection with ab-
stract data types and are not further discussed here.

A directive has the general structure:

1. The start of comment character: /*

2. A ‘#’ character.

3. The directive name.

4. Possible directive parameters given in free syntax. That is, spaces
and carriage returns are allowed here.

5. The end of comment characters */.

Upper and lower case letters are considered to be equal in directive
names.

Example 378: #OP Directive ––––––––––––––––––––––––––––––––––

Take as an example the directive:

 /*#OP (B) */.

This comment will be recognized as a directive only if no other charac-
ter is inserted in the sequence /*#OP. After this part, spaces and carriage
returns may be inserted freely.

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2649

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Selecting File Structure for Generated Code
– Directive #SEPARATE
The purpose of the separate generation feature is to specify the file
structure of the generated program. Both the division of the system into
a number of files and the actual file names can be specified. There are
two ways this information can be given.

• Normally this information is set up in the Organizer, using the Edit
Separation command, see “Edit Separation” on page 136 in chapter
2, The Organizer. Here file names for the generated files can also be
specified. In the Make dialog in the Organizer (see “Make” on page
119 in chapter 2, The Organizer) it is possible to select full separate
generation, user-defined separate generation, or no separate gener-
ation.

• For an SDL/PR file that is used as input when running the SDL An-
alyzer as a stand-alone tool, the same information can be entered by
#SEPARATE directives directly introduced in the SDL program.
Full separate generation, user-defined separate generation, or no
separate generation can be set up in the command interface of a
stand-alone Analyzer, see “Set-Modularity” on page 2421 in chap-
ter 55, The SDL Analyzer.

The Cadvanced/Cbasic SDL to C Compiler can generate a separate file
for:

• system (always separate)
• package (always separate)
• system type
• block
• block type
• process
• process type
• service
• service type
• procedure

Note:

Instantiations cannot be separated, i.e. an instance of a block type
cannot be generated on a file of its own.
2650 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
If #SEPARATE directives are used, they should be placed directly after
the first semicolon in the system, block, process, or procedure heading;
see the following example.

Example 379: #SEPARATE Directive –––––––––––––––––––––––––––

system S; /*#SEPARATE ’filename’ */
block B; /*#SEPARATE */
process type P1 inherits PType; /*#SEPARATE */
process P2 (1,); /*#SEPARATE */
procedure Q; /*#SEPARATE */

––

In the example above the two versions of separate directive, with or
without file name, are shown. As can be seen a file name should be en-
closed between quotes. The code generator will append appropriate ex-
tensions to this name when it generates code.

If no file name is given in the directive, the name of the system, block,
process, or procedure will be used to obtain a file name. In such case the
file name becomes the name of the unit with the appropriate extension
(.c .h) depending on contents. The file name is stripped from charac-
ters that are not letters, digits or underscores.

The possibility to set up full, user-defined, or no separation in the Orga-
nizer’s Make dialog and in the user interface of a stand-alone Analyzer
(see “The Analyzer Command-Line UI” on page 2404 in chapter 55,
The SDL Analyzer), can be used, in simple manner, to select certain de-
fault separation schemes. This setting will be interpreted in the follow-
ing way:

• No separation.
The system and each package will be generated on a separate file.

• User defined separation.
The system, each package, and each unit that the user has specified
as separate will become a separate file.

• Full separation.
The system, each package, each block, block type, process, process
type, service, and service type will become a separate file. Note that
even in this case a procedure is separate only if the user has speci-
fied it as separate.

Independently if No, User defined, or Full separation has be selected,
the code generator will use the file name specified in the Edit Separa-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2651

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
tion dialog or the #SEPARATE directive, for a file that is to be gener-
ated.

An Example of the Usage of the Separate Feature

In the following example a system structure and the #SEPARATE di-
rectives are given. The same information can easily be set up in the Or-
ganizer as well. This example is then used to show the generated file
structure depending on selected generation option.

Example 380: #SEPARATE Directive –––––––––––––––––––––––––––

system S; /*#SEPARATE ’Sfile’ */
 block B1; /*#SEPARATE */
 process P11; /*#SEPARATE ’P11file’ */
 process P12;
 block B2;
 process P21;
 process P22; /*#SEPARATE */

Note that #SEPARATE directives can only be used in SDL/PR
files. Normally this information is given in the Organizer.

––

Applying Full Separate Generation

If Full separate generation is selected then the following files will be
generated:

The .c files contain the C code for the corresponding SDL unit and the
.h files contain the module interfaces.

Sfile.c Sfile.h

B1.c B1.h

P11file.c

P12.c

B2.c B2.h

P21.c

P22.c
2652 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Applying Separate Generation

If User defined separate generation is selected then the following files
will be generated:

The user defined separate generation option thus makes it possible for a
user to completely decide the file structure for the generated code. The
comments on files and extensions given above are, of course, also valid
in this case.

Applying No Separate Generation

If the separation option No is selected, only the following file will be
generated:

The comments on files and extensions earlier are valid even here.

Guidelines

Generally a system should be divided into manageable pieces of code.
That is, for a large system full separate generation should be used,
while for a small system no separate generation ought to be used. The
possibility to regenerate and recompile only parts of a system usually
compensate for the overhead in generating and compiling several files
for a large system.

Sfile.c Sfile.h Contains code for units S, B2, P21

B1.c B1.h Contains code for units B1, P12

P11file.c Contains code for unit P11

P22.c Contains code for unit P22

Sfile.c Contains code for all units

Note:

A file name has to be specified, in the Organizer Edit Separation
command, see “Edit Separation” on page 136 in chapter 2, The Or-
ganizer, or in the #SEPARATE directive, if two units in the system
have the same name in SDL and should both be generated on sepa-
rate files, otherwise the same file name will be used for both units.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2653

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Accessing SDL Names in C Code
– Directive #SDL
When writing C code that is to be included in a generated program it is
often necessary to refer to names of objects defined in SDL. The name
of an SDL object is, however, transformed when it is translated to C. A
prefix, which is a sequence of characters, is added to the SDL name to
make the C name unique in the C program. Furthermore, all characters
in SDL name which are not allowed in a C name are removed. The pre-
fixes are calculated by looking at the structure of definitions in the ac-
tual scope and in all scopes above. This means that adding a declaration
at the system level might change all prefixes in blocks and processes
contained in the system. As a consequence it is almost impossible to
know the prefix of an object in advance.

To be able to write C code and use the name of SDL objects in that code,
the Cadvanced/Cbasic SDL to C Compiler provides the directive #SDL
which is used in C code to translate an SDL name to the corresponding
C name.

The syntax of the #SDL directive is as follows:

#SDL (SDL name)

 or

#SDL (SDL name, entity class name)

There is also a short form for the directive. No characters are allowed
between the # character and the left parentheses in this form:

#(SDL name)

or

#(SDL name, entity class name)

Replace SDL name with the name of an object in the SDL definition and
entity class name by any of the following identifiers (upper and
lower case letters are considered to be equal):
2654 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
This list contains all entity classes, which means that not all of the en-
tries are relevant for practical use. When a #SDL directive is found in
included C code, the code generator first identifies what SDL object is
referred to and then replaces the directive by the C name for that object.
The search for the SDL object starts in the current scope (the scope
where the C code is included), and follows the scope hierarchy outward
to the system definition, until an appropriate SDL object is found. An
appropriate SDL name is considered to be found if it has the specified
name and is in the specified entity class. If no entity class name is given
the search is performed for all entity classes.

The table in the subsection “SDL Predefined Types” on page 2588 gives
the direct translation between an SDL name and the corresponding C
name or expression. For these names the #SDL directive should not be
used.

block
blockinst
blocksubst
blocktype
channel
channelsubst
connect
formalpar
gate
generator
label
literal
newtype

operator
package
predef
procedure
process
processinst
processtype
remoteprd
remotevar
service
serviceinst
servicetype

signal
signallist
signalroute
sort (= newtype)
state
synonym
syntype
system
systemtype
timer
variable
view

Note:

In types, especially in block types, #SDL should be used with care.
The reason is that some of the objects in a block type are generated
for each instantiation of the block. A #SDL directive on such an ob-
ject might lead to overloading of names in C. Sensitive objects are
processes, process instantiations, signal routes, channels, remote
definitions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2655

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Including C Code in Task – Directive #CODE
The user’s own C code may be included in tasks by using the #CODE
directive. This directive has the following syntax:

/*#CODE
C code that should
be included in
generated code */

Type the directive name on the first line and the C code on the follow-
ing lines up to the end of comment symbol. Note that text on the same
line as the #CODE directive are not handled.

A #CODE directive can be placed:

• Before the first assignment statement or informal text

• Immediately preceding or just following the comma that separates
two assignment statements or informal texts

• After the last assignment statement or informal text

• Immediately after the ending semicolon (;) of a task (this position is
only available in SDL/PR).

The C code in the directives is textually included in the generated code
at the position of the directive. If, for example, a code directive is placed
between two assignment statements, the code in the directive is inserted
between the translated version of the assignment statements.

The code directive is included as a facility in the code generator to pro-
vide experienced users an escape possibility to the target language C.
This increases the application range of the code generator.

An example of a possible use of the code directive is: An algorithm for
some computation, which in the SDL description is only indicated as a
task with an informal text, could be implemented in C. In this case the
directive #SDL described in the previous subsection will probably be-
come useful to access variables and formal parameters defined in SDL.

Note:

The Cadvanced/Cbasic SDL to C Compiler handles the C code in di-
rectives as text and performs no check that the code is valid C
code.
2656 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Some general hints on how to write C code that can be included into a
simulation program, especially when charstrings or sorts containing
charstrings as components are used, can be found in the last part of the
section “Implementation of User Defined Operators” on page 2609.

Unfortunately it is not possible to have C comments within the code that
is included in any directive, as SDL and C use the same symbols for
start and end of comments. See also Example 360 on page 2613 which
illustrates the possibility to use the C macro COMMENT.

#CODE directives in compound statements

#CODE directives are recognized after a semicolon that ends a state-
ment of one of the following kinds:

• Output statement
• Create statement
• Set statement
• Reset statement
• Export statement
• Return statement
• Call statement
• Assignment statement
• Break statement
• Continue statement
• Empty statement

Example 381 –––

{
 ; /*#CODE
 #(i) = #(i)+1; */
 i := i+2; /*#CODE
 #(i) = #(i)+3; */
}

––

This example contains first an empty statement followed by a directive
and then an assignment followed by a directive. The empty statement
can, as above, be used to insert #CODE directives at places that other-
wise would not be possible, like at the beginning of a compound state-
ment or directly after a compound statement.

Note that the code in the #CODE directive is associated to the statement
just before the directive and is included in the scope of that statement.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2657

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 382 –––

{
 if (true)
 i := i+4; /*#CODE
 #(i) = #(i)+5; */
}

––

In this case the code in the directive is included in the “if-part” of the if
statement, just like the assignment it is associated with. This will be
treated as:

 if (true) {
 i := i+4;
 i := i+5;
 }

To put the code directly after the if statement the following structure,
with an empty statement after the if statement, can be used:

{
 if (true)
 i := i+4;
 ; /*#CODE
 #(i) = #(i)+5; */
}

Including C Declarations – Directive #CODE
The #CODE directive can also be used to include C declarations; for ex-
ample types, variables, functions, #define, and #include in the declara-
tion parts of the C program. This version of the code directive has the
following structure:

/*#CODE
#TYPE
C code containing:
Types and variables
#HEADING
C code containing:
Extern or static declarations of functions
#BODY
C code containing:
Bodies of functions
*/

The separation of functions into HEADING and BODY sections serves the
same purpose as in the #ADT directive, see “Implementation of User
Defined Operators” on page 2609.
2658 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Code directives to include C declarations may, generally speaking, be
placed immediately after a semicolon that ends a declaration in SDL.
More precisely it is allowed to place a #CODE directive after the semi-
colon that ends:

• A heading of a system, block, substructure, process, procedure

• The formal parameters of a process or procedure

• The definition of a block, process, procedure

• The definition of a channel, signal route, signal, signal list, newtype,
syntype, synonym, generator, connection, valid input signal set,
variable, view, import, timer, remote variable, remote procedure

In the following small PR example the allowed positions are marked
with an * followed by a number.

Example 383: #CODE Directive ––––––––––––––––––––––––––––––––

system s; *1
 signal s1, s2(integer); *2
 channel c1 from env to b1
 with s1, s2; *3
 newtype n
 ...
 endnewtype n; *4
 block b1; *5
 signalroute sr1 from env to p1
 with s1, s2; *6
 connect c1 with sr1; *7
 process p1 (1,1); *8
 signalset s1, s2; *9
 dcl a n; *10
 start;
 ...
 state ...;
 ...
 endprocess p1; *11
 endblock b1; *12
endsystem s1;

––

A code directive is considered to belong to the unit where it is defined
and the declarations within the directive are thus placed among the other
C declaration for that unit. In the example above, directives at positions
1, 2, 3, 4, 12 belong to system s, directives at positions 5,6,7,11 belong
to block b1, while directives at positions 8, 9, 10 belong to process p1.
Only one code directive may be placed at each available position.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2659

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
In the generated code the type sections are included in the order of ap-
pearance in SDL. However, the type sections are also sensitive for their
relative position comparing with SDL sort definitions. This means that
the order of the type definitions in the system in the example above will
be as follows:

1. Type sections in 1, 2, 3
2. Type generated for newtype n
3. Type sections in 4, 12

As the Cadvanced/Cbasic SDL to C Compiler will generate the SDL
sorts in the correct order, definition before usage, in C, the full algo-
rithm is as follows.

• Step through all definitions in SDL in the order of appearance and
include:
– the type section of #CODE directives and #ADT directives.
– generate typedef for a sort that have no reference to some other

not yet generated sort.

• Step through all sorts that have not been generated, checking wheth-
er each sort references some other sort that has not been generated.
If a sort does not reference some other un-generated sort, it requires
typedef generation.

• Repeat the previous step until all sorts have been generated, or until
no more sorts can be generated. If sorts remain not generated at this
step a recursive dependency has been detected.

The heading sections are placed in the order of their appearance in SDL.
This applies to the body sections as well. All body sections will be
placed after the sequence of heading sections and the heading section
will be placed after all the type definitions. The SDL declarations made
in the corresponding unit are available in the code directives and can as
usual be reached using the #SDL directive. All declarations made in

Note:

A variable declared in a #CODE directive that belongs to a process
will be shared between the process instances of the process instance
set. Such a variable should only be used to represent some common
property of all the process instances. To have a variable that is local
to a process instance, the variable should be defined in SDL using
DCL.
2660 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
code directives are of course available in code directives in tasks in the
corresponding unit or in its subunits.

The general hints on how to write C code that fits into a generated C
program given in the section “Implementation of User Defined Opera-
tors” on page 2609 and in the section “Accessing SDL Names in C Code
– Directive #SDL” on page 2654 are also applicable here.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2661

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Including C Code in SDL Expressions
– Operator #CODE
For each sort defined in an SDL system, both predefined and user de-
fined, the Cadvanced/Cbasic SDL to C Compiler includes an operator
#CODE with the following signature:

#CODE : Charstring -> S;

where S is replaced by the sort name. This operator or rather these op-
erators make it possible to access variables and functions defined in C
using the #CODE directive in SDL expressions and still have syntacti-
cally and semantically correct SDL expressions.

During code generation, the code generator will just copy the Charstring
parameter at the place of the #CODE operator.

Example 384: #CODE Directive ––––––––––––––––––––––––––––––––

Suppose that x and y are SDL variables, which are translated to z72_x
and z73_y, that a and b are C variables, and f is a C function defined in
#CODE directives.

––

Within the Charstring parameter of a #CODE operator the #SDL direc-
tive is available in the same way as in other included C code. This is also
shown in the last of the examples above.

As there is one #CODE operator for each sort in the system, it is some-
times necessary to qualify the operator with a sort name to make it pos-
sible for the SDL Analyzer to resolve which operator that has been used.
If, for example, the question and all answers in a decision are given as
applications of #CODE operators, then it is not possible to determine
the type for the decision. One of the #CODE operators should then be
qualified with a sort name to resolve the conflict.

SDL expression C expression

x + #CODE(’a’) z72_x + a

x + #CODE(’a*b’) z72_x + a*b

x*#CODE(’(a+b)’)*y z72_x*(a+b)* z73_y

#CODE(’f(a,#SDL(x))’) f(a, z72_x)
2662 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Example 385: Code Directive––––––––––––––––––––––––––––––––––

DECISION #CODE(’a’);
 (#CODE(’1’)) : TASK ...;
 (#CODE(’2’)) : TASK ...;
ENDDECISION;

In this case the sort of the decision cannot be resolved. To overcome this
problem the question could be written as

DECISION TYPE integer #CODE(’a’);

––

Names and Prefixes in Generated Code
When an SDL name is translated to an identifier in C, a prefix is nor-
mally added to the name given in SDL. This prefix is used to prevent
name conflicts in the generated code, as SDL has other scope rules than
C and also allow different objects defined in the same scope to have the
same name, if the objects are of different entity classes. It is, for exam-
ple, allowed in SDL to have a sort, a variable and a procedure with the
same name defined in a process. So the purpose of the prefixes is to
make each translated SDL name to a unique name in the C program.

A generated name for an SDL object contains four parts in the following
order:

1. The character “z”

2. A sequence of characters that make the name unique. If the object is
part of a package, the package name will appear in this sequence.

3. An underscore “_”

4. The SDL name stripped from characters not allowed in C identifiers

Sequence of Characters

A C identifier may contain letters, digits, and underscore “_” and must
start with a letter.

The sequence of characters that make the name unique is determined by
the position of the declaration in structure of declarations in the system:

• Each declaration on a level is given a number: 0, 1, 2, .., 9, a, b, .., z.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2663

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
• If the number of declaration on a level is greater than 36, the se-
quence is: 00, 10, 20, .., 90, a0, .., z0, 01, 11, 21, .., 91, a1, .., z1,,
0z, 1z, 2z, .., 9z, az, .., zz.

• If the number of declarations is greater than 36 * 36 then three char-
acter sequences are used, and so on.

The total sequence making a name unique is now constructed from the
“declaration numbers” for the unit and its parents, that is the units in
which it is defined, starting from the top.

If, for example, a sort is defined as the 5th declaration in a block that in
turn is the 12th declaration in the system, then the total sequence will be
b4 (if not more than 36 declarations are present on any of the two lev-
els).

Example 386: Generated Names in Code ––––––––––––––––––––––––

Examples of generated names:

––

There will also be other generated names using the prefixes. If, for ex-
ample, a sort MySort is translated to za2c_MySort, then the equal func-
tion connected to this type (if it exists) will be called
yEq_za2c_MySort.

Prefixes

SDL
Name Position of the Declaration Generated

Name

S1 10th declaration in the system z9_S1

Var2 3rd declaration in the process, which is the
5th declaration in the block,
which is the 15th declaration is system

ze42_Var2

Note:

If the OO diagram types in SDL-92 are used (system type, block
type, process type), full prefix should always be used, as the OO
concepts in itself most likely mean the name conflicts will be intro-
duced in C.
2664 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
This strategy for naming objects in the generated code should be used
in all normal situations, as it guarantees that no name conflicts occur.
The Cadvanced/Cbasic SDL to C Compiler offers, however, possibili-
ties to change this strategy. In the Make dialog in the Organizer (see
“Make” on page 119 in chapter 2, The Organizer) and in the user inter-
face an Analyzer running stand-alone (see “The Analyzer Command-
Line UI” on page 2404 in chapter 55, The SDL Analyzer), it is possible
to select one of the following strategies: full prefix, entity class prefix,
no prefix, or special prefix. Full prefix is default and is the strategy de-
scribed above.

Entity Class Prefix

If entity class prefix is selected, then the prefix that is concatenated with
the SDL name will be in accordance with the table below and depends
only of the entity class of the object.

Entity class Prefix Entity class Prefix

Block, block type,
block instance

blo Process, Process type,
Process instance

prs

Block substructure bls Remote procedure rpc

Channel cha Remote variable imp

Channel substructure chs Service, Service type,
Service instance

ser

Connection con Signal sig

Formal parameter for Signal list sil

Gate gat Signal route sir

Generator gen Sort = Newtype sor

Import imp State sta

Label lab Syntype syt

Literal lit Synonym syo

Operator ope System, System type sys

Package pac Timer tim

Predef pre Variable var

Procedure prd View vie
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2665

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Using entity class prefix means that the user must guarantee that no
name conflict occurs. It also means, however, that the generated names
are predictable and thus simplifies writing C code where the SDL names
are used. It is only necessary to look for name conflicts within entity
classes, for example not having two sorts with the same name. The en-
tity class prefixes handle the case when two objects of different entity
class have the same name. Note that the table above contains all entity
classes. Not all of the items are actually used by the code generator.

No Prefix

The third alternative, no prefix, means of course that no prefixes are
added to the SDL name. The name in the C program will then be the
SDL name stripped form characters that are not allowed in C identifiers
(everything except letters, digits, and underscore). In this case, the user
must guarantee that no name conflict occurs and that the stripped name
is allowed as a C identifier, that is, that it begins with a letter.

Special Prefix

In the fourth alternative, special prefix, full prefixes are used for all en-
tity classes except variable, formal parameter, sort, and syntype. For
these entity classes no prefix is used.

Conclusion

As was said in the beginning of this subsection, the user should have a
good reason for selecting anything but the full prefix, as it could be very
difficult to spot name conflicts. The C compiler will in some cases find
a conflict, but may in other cases consider the program as legal and gen-
erate an executable program with a possibly unwanted behavior. The
note above about OO concepts is also a strong argument for full prefix.

Case Sensitivity

Another aspect concerning identifiers is that SDL is case insensitive,
while C is case sensitive. The Cadvanced/Cbasic SDL to C Compiler
has two translation schemes for identifiers, one is to use the capitaliza-
tion used in the declaration of the object of concern (default), and one
is to use lower case identifiers. The translation scheme is selected in the
Make dialog in the Organizer (see “Make” on page 119 in chapter 2, The
Organizer) or in the user interface of the Analyzer, when it is executed
stand-alone (“The Analyzer Command-Line UI” on page 2404 in chap-
ter 55, The SDL Analyzer).
2666 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Specifying Names in Generated Code
– Directive #NAME
If you wish to decide the name of an object in generated code yourself
you can use the #NAME directive. Place the directive directly after the
name in the declaration of the object. It should contain the desired name
to be used in the generated code within quotes.

Example 387: #NAME Directive––––––––––––––––––––––––––––––––

NEWTYPE S /*#NAME ’S’ */ STRUCT
 a integer;
 b Boolean;
 ADDING OPERATORS
 Op /*#NAME ’OtherName’ */ :
 S, S -> Boolean;
ENDNEWTYPE;

––

The name defined in a #NAME directive will be used everywhere that
the SDL name is used in the generated code, with two exceptions:

• In the monitor system the SDL names will be used in the communi-
cation with the user.

• The name of the files for generated code are not affected by the us-
age of #NAME directives.

There are, however, some restrictions on where #NAME directives can
be placed. Some objects in, for example, a block type are generated in
each instantiation of the block type. If a name directive is placed at such
an object, the name will probably be overloaded in C, resulting in a C
compilation error. The sensitive objects are processes, process instanti-
ations, signal routes, channels, remote variables, and remote proce-
dures.

Assigning Priorities – Directive #PRIO
Priorities can be assigned to processes and process instantiations using
the directive #PRIO. The process priorities will affect the scheduling of
processes in the ready queue, see “Time” on page 2576. A priority is a
positive integer, where low value means high priority. #PRIO directives
can be placed directly after the process heading in the definition of the
actual process or last in the reference symbol (in SDL/GR).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2667

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 388: #PRIO Directive in process headings –––––––––––––– .

Process P1; /*#PRIO 3 */
Process P2(1,1); /*#PRIO 5 */

Process P3 : P3Type; /*#PRIO 3 */
Process P4(1,1) : P4Type; /*#PRIO 5 */

––

Processes that do not contain any priority directive will have the default
priority 100.

Initialization – Directive #MAIN
The #MAIN directive is used to include initialization code that should
be executed before any process transitions are started. The directive
should be placed in the system definition directly after the system head-
ing.

Example 389: #MAIN Directive–––––––––––––––––––––––––––––––––

System S;
/*#MAIN
C code for initialization */

––

The #MAIN directive has exactly the same structure as the #CODE di-
rective for including code in tasks. The included code will, however, be
placed last in the yInit function, after the initialization of the internal
structure, but before any transitions are executed.

Modifying Outputs – Directive #EXTSIG, #ALT,
#TRANSFER
The purpose of these directives is to modify the standard behavior of an
SDL output. The #EXTSIG directive can be used to build applications
with the SDL suite run-time library. The directives #ALT and
#TRANSFER are only useful together with other real-time operating
systems.

The directive #EXTSIG is used to replace the code for an SDL output
with any appropriate in-line C code. This is an optimization and an al-
ternative to the OutEnv function (see chapter 58, Building an Applica-
tion). The #EXTSIG directive can be specified:

• Last in an output symbol (in PR just before the ‘;’).
2668 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
• Just before the ‘,’ or ‘;’ ending the definition of a signal.

In the first case the #EXTSIG is valid for the signal(s) sent in the output
symbol, and in the second case for all outputs of the defined signal.

Example 390: #EXTSIG Directive ––––––––––––––––––––––––––––––

signal
 Signal1 /*#EXTSIG */,
 Signal2(integer) /*#EXTSIG */;

output Signal3 To Sender /*#EXTSIG */;

––

For each output of a signal with a #EXTSIG directive (in either way de-
scribed above) the following code is generated:

#ifndef EXT_SignalName
 “the normal implementation of an output”
#else
 EXT_SignalName(
 SignalName, ySigN_SignalNameWithPrefix,
 ToExpression, SignalParameters)
#endif

where SignalName is the name of the signal in SDL. The parameter
ToExpression is a translated version of the SDL expression after TO in
the output. If no TO expression is given in the output, this parameter
will be xNotDefPId. The entry SignalParameters will be replaced by the
list of signal parameter values given in the output.

The intention of this code is to give the user the possibility of introduc-
ing a macro with the same name as the signal, where the implementation
of the output is expanded to in-line code. By just having a compilation
switch which selects if this macro is visible or not, the same generated
code can be used both for simulation and for highly optimized applica-
tions. An appropriate switch is probably XENV, which governs the nor-
mal way of connecting an SDL system to the environment.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2669

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Example 391: #CODE Directive ––––––––––––––––––––––––––––––––

The following #CODE directive can be included in a text symbol in the
system diagram (assuming a signal called SigName with one parame-
ter).

/*#CODE
#TYPE
#ifdef XENV
#define EXT_SigName(Name, IdNode, ToExpr, Param1) \
 suitable macro code
#endif
*/

––

The other two directives, #ALT and #TRANSFER, can be used together
with appropriate real-time operating systems, to have two different in-
terpretations of an output (internal or external output for example) and
to specify that a received signal should be immediately retransmitted
(#TRANSFER). These kinds of features are not uncommon in real-time
operating systems, and can be modeled and simulated by the Cad-
vanced/Cbasic SDL to C Compiler using these directives. Both these di-
rectives should be placed last in the output symbol.

The presence of an #ALT directive will be reflected in the generated
code in the way described below.

• If no directive is used, the following macros will be present in gen-
erated code for sending a signal:

– SDL_2OUTPUT: used when the receiver is known.
– SDL_2OUTPUT_NO_TO: used when the receiver has to be

calculated during runtime.
– SDL_2OUTPUT_COMPUTED_TO: used when the receiver is

calculated during code generation.

• If an #ALT directive is given these macros are replaced by:

– SDL_ALT2OUTPUT
– SDL_ALT2OUTPUT_NO_TO
– SDL_ALT2OUTPUT_COMPUTED_TO

In the Master Library, the macros with and without ALT are expanded
identically. In an OS integration they might be handled differently to
implement two classes of signal sending.

The presence of a #TRANSFER directive indicates that a signal should
be directly retransmitted to some other receiver. This can of course be
2670 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
performed in SDL by an input-output, but then it is necessary to create
a new signal and copy the contents of the received signal to the new sig-
nal. Using the #TRANSFER directive this copying can be avoided.

In generated code the macros

• ALLOC_SIGNAL
• ALLOC_SIGNAL_PAR

are generated to allocate the data area for a new signal. If a #TRANS-
FER directive is present in the output statement, these macros are re-
placed by:

• TRANSFER_SIGNAL
• TRANSFER_SIGNAL_PAR

Normally the #TRANSFER directive should be used in the following
way:

INPUT signal1(,,,);
OUTPUT signal1(,,,) /*#TRANSFER*/;

That is, receive none of the signal parameters in the input and retransmit
the signal unchanged. If you want to receive, for example, the second
parameter (in variable Var1) and retransmit the signal unchanged ex-
cept for parameter 3, that should have a new value (73), the following
code can be used:

INPUT signal1(,Var1,,);
OUTPUT signal1(,,73,) /*#TRANSFER*/;

Note:

In the master library #TRANSFER will still be implemented as a
signal copy. It may be possible in an OS integration to avoid the
copying if the OS supports such actions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2671

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Linking with Other Object Files
– Directive #WITH

You can tell the Cadvanced/Cbasic SDL to C Compiler that a number
of user defined and precompiled units should be linked together with a
generated simulation program. You do this in a #WITH directive that
should be placed in the system definition directly after the system head-
ing.

Example 392: #WITH Directive–––––––––––––––––––––––––––––––––

System S; /*#WITH ’file1.o’ ’file2.o’ */

––

Within the #WITH directive the object files that are to be part in the link
operation should be given between quotes, as in the example above.
These files will be included in the definition of the link operation in the
generated .m file.

The make file will, however, not include any definition of how to com-
pile the corresponding source files, as it is impossible for the code gen-
erator to know the compilation options or even what compiler the user
wants. A user that knows how to interface routines in other languages
in a C program, can with this knowledge and the #WITH directive link
modules written in another language together with the generated pro-
gram.

Note:

This feature is only valid for SDL/PR as input, when the Analyzer
is executed stand-alone. Similar features are available in the Orga-
nizer’s Make dialog among the Generate makefile options, see
“Generate makefile” on page 122 in chapter 2, The Organizer.

Note:

The #WITH directive will only affect the generated make file. There
will be no change in the generated C code when a #WITH directive
is introduced.
2672 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Naming Tasks in Trace Output – Directive #ID
To simplify the identification of a TASK in a trace printout, the Cad-
vanced/Cbasic SDL to C Compiler uses the variable on the left hand
side of the first assignment statement or the first informal text in the task
symbol. A user that is not satisfied with this can name the tasks using
#ID directives. An ID directive should contain the character string that
is to be used as identification in trace printouts.

Example 393: #ID Directive –––––––––––––––––––––––––––––––––––

/*#ID ’Identification of task’ */

––

The code generator will use the first ID directive it finds in a TASK (if
any). An ID directive may be placed:

• First in the task (in PR that is just after the keyword TASK)

• Immediately before or just after a comma separating two assign-
ments or two informal texts

• Last in a task (in PR that is just before the semicolon)

• Directly after the semicolon (this position is only available in
SDL/PR).

Directive #C, #SYNT, #SYNTNN, #ASN1
These directives are used to pass information from the tools generating
SDL from other languages, for example for C (a .h file) or ASN.1.

The #C and the #ASN.1 directive will be inserted after the semicolon
ending the package definition or after the package name.

package asn1_module; /*#ASN.1 ‘Module_Name’ */
package asn1_module /*#ASN.1 ‘Module_Name’ */;

The #ASN.1 directive contains the ASN.1 module name and the #C di-
rective contains the name of the originating .h file.

The #SYNT directive and its special form the #SYNTNN directive are
used in a package generated from C, to indicate which SDL sorts that
are synthesized, i.e. which sorts that where needed in SDL but do not
have a name and definition in C. As the originating .h file is included
in the generated code (with a #include), no typedefs should be generated
for the non-#SYNT sorts, while typedefs have to be generated for the
synthesized sorts. The #SYNT directive is inserted directly after the
name of the newtype or syntype.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2673

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Alternative Implementations of the String
Generator – Directive #STRING
An instantiation of the string generator can be translated to either a
linked list or an array when implemented in C. The #STRING directive
is used to determine which translation method to select. The directive
should be inserted in a NEWTYPE definition, directly after the string
name, when defining a new string data type.

If the #STRING directive is not included in the NEWTYPE definition,
the string is implemented as a linked list. This is the default translation
method. However, just adding the directive to the NEWTYPE defini-
tion is not enough to implement the string as an array. The length of the
array must also be defined. This can be done either by using a directive
parameter or by using a size constraint in the NEWTYPE definition of
the string generator. How this is done is presented in the examples be-
low.

Linked List Implementations

The following examples show how to translate an instantiation of the
string generator to a linked list.

Example 394: No #STRING Directive––––––––––––––––––––––––––––

NEWTYPE Example_String
 string(integer, empty)
 constants size (0:10)
ENDNEWTYPE;

If the #STRING directive is missing from the NEWTYPE definition,
the string will be implemented as a linked list. The length of the list is
unlimited, unless a size constraints is defined. In this case the length of
the string is within the range of 0 and 10.

––

Example 395: #STRING Directive without Limited String Size ––––––

NEWTYPE Example_String /*#STRING */
 string(integer, empty)
ENDNEWTYPE;

In this example the string is also implemented as a linked list. The rea-
son for this is that we have not defined a maximum length of the string.

––
2674 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Directives to the Cadvanced/Cbasic SDL to C Compiler
Example 396: #STRING Directive with Parameter Value 0 ––––––––––

NEWTYPE Example_String /*#STRING 0*/
 string(integer, empty)
 constants size (0:10)
ENDNEWTYPE;

If the parameter value of the #STRING directive is 0, the directive is ig-
nored. Therefore the string will be implemented as a linked list. The size
constant will still decide the length of the string.

This example, however, shows how to gradually migrate from a linked
list implementation to an array implementation. By just changing the
parameter value to anything larger than 0, this NEWTYPE definition
creates an array implementation.

––

Array Implementations

The following examples show how to translate an instantiation of the
string generator to an array.

Example 397: #STRING Directive with Limited String Size –––––––––

NEWTYPE Example_String /*#STRING */
 string(integer, empty)
 constants size (0:10)
ENDNEWTYPE;

In this case the string is implemented as an array with the maximum
length of 10.

––

Example 398: #STRING Directive with Parameter Value –––––––––––

NEWTYPE Example_String /*#STRING 100*/
 string(integer, empty)
 constants size (0:10)
ENDNEWTYPE;

In this example the string will be implemented as an array with the
length of 100. The parameter value in the #STRING directive overrides
the size constant, which in this case is redundant.

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2675

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Size constraint

The size constraint is decided by adding a constant in the NEWTYPE
definition. The following declarations are valid when defining a maxi-
mum size of the string:

constants size (a:b)
constants size (a)
constants size (=a)
constants size (<a)
constants size (<=a)

Differences between the Implementations Methods

The different implementation methods affect the behavior and perfor-
mance of the generated code. The following general statements apply to
the methods:

• The performance of the array implementation is usually better than
that of the linked list implementation.

• If the number of string values are equal to or close to the maximum
string length, the array implementation is smaller.

• If the number of string values are substantially smaller than the
maximum string length, the linked list requires less memory.

• The linked list requires memory allocation, while the array does not.

Selecting implementation Methods

It is of course hard to advice which method to select, but the following
recommendations apply:

• If the string size is not known, use the linked list.

• If the number of string values is substantially smaller than the max-
imum string length, use the linked list if speed is not very important.

• If the maximum length is not large or the number of string values
are almost equal to the maximum length, use the array.
2676 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Cadvanced/Cbasic SDL to C Compiler to Generate C++
Using Cadvanced/Cbasic SDL to C
Compiler to Generate C++

General
The C code in the Master Library and the C code generated by the Cad-
vanced/Cbasic SDL to C Compiler is in the common subset of C and
C++, and will thus compile both as a C program and as a C++ program.
There is one special feature in the code generator concerning C++ when
it comes to abstract data types and the possibility to match a C++ class
and an SDL data type. Otherwise all the features for including C code,
directive #ADT, directive #CODE (see “Abstract Data Types” on page
2586 and “Accessing SDL Names in C Code – Directive #SDL” on
page 2654), and so on, are directly applicable for C++ as well. The
#CODE directives make it possible to include class definitions as C++
code and the utilization of the classes as C++ code in SDL tasks.

Example 399: Using C++ Classes ––––––––––––––––––––––––––––––

CODE directive containing declarations (see “Including C Declarations
– Directive #CODE” on page 2658) which should be placed among the
SDL declarations:

/*#CODE
#HEADING
class TEST {
public:
 void putvar(int avar, int bvar)
 {a = avar; b = bvar;}
 int geta()
 {return a;}
 int getb()
 {return b;}
private:
 int a,b;
} TESTvar;
*/

Example of usage of the class in a CODE directive in a TASK (see “In-
cluding C Code in Task – Directive #CODE” on page 2656).

TASK ’’ /*#CODE
 TESTvar.putvar(#(I), #(I)+10); */;

Example of usage of the class in a CODE operators in expressions (see
“Including C Code in SDL Expressions – Operator #CODE” on page
2662).
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2677

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
OUTPUT Score(
 #CODE(’TESTvar.geta()’),
 #CODE(’TESTvar.getb()’),
 #CODE(’#(TClass)->getVar()’)
);

––

Connection Between C++ Classes and SDL
To obtain a close connection between a C++ class and SDL, an abstract
data type in SDL can be used; see below.

If you have a C++ class (from a class library or developed specifically
for the project), then the following correspondence rules can be used to
map the class on an abstract data type.

Example 400: SDL and C++ Class ––––––––––––––––––––––––––––––

Suppose we have a C++ class with the following interface (.h file):

class TestClass {
public :
 TestClass (int);
 TestClass ();
 ~TestClass ();
 int updateVar(int);
 int getVar();
private :
 int v;
};

then the following abstract data type can be used to represent the class
(in the example the NAME directive, see “Specifying Names in Gener-
ated Code – Directive #NAME” on page 2667, is used to instruct the
Cadvanced/Cbasic SDL to C Compiler which name to use in C for par-
ticular SDL objects):

NEWTYPE TestClass /*#NAME ’TestClassPtr’ */

 LITERALS

C++ SDL

Class definition Abstract data type definition

Class instance pointer Process variable

Member functions Operators

new, delete Operators
2678 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using Cadvanced/Cbasic SDL to C Compiler to Generate C++
 newTestClass /*#NAME ’new1TestClass’ */
 ;

 OPERATORS
 newTestClass /*#NAME ’new2TestClass’ */
 : integer -> TestClass;

 deleteTestClass /*#NAME ’deleteTestClass’ */
 : TestClass -> TestClass;

 updateVar /*#NAME ’updateVar’ */
 : TestClass, integer -> integer; /*#OP(HC) */

 getVar /*#NAME ’getVar’ */
 : TestClass -> integer; /*#OP(HC) */

/*#ADT(T A(S) E(S) D(H) H P)

#TYPE
#include “TestClass.h”
typedef TestClass * TestClassPtr;
COMMENT((NOTE! SDL data type TestClass is
 pointer to C++ class TestClass))

#HEADING
#define yDef_TestClassPtr(p) *(p) = 0
#define new1TestClass() new TestClass()
#define new2TestClass(P) new TestClass(P)

extern TestClassPtr deleteTestClass
 (TestClassPtr);

#BODY
extern TestClassPtr deleteTestClass
 (TestClassPtr P)
{
 delete P;
 return (TestClassPtr)0;
}
*/
ENDNEWTYPE;

Note that the #ADT specification means that no code will be generated
for the abstract data type. The abstract data type can utilized in the fol-
lowing way:

DCL
 TClass TestClass,
 I Integer;

TASK TClass := newTestClass;
TASK TClass := newTestClass(2);
TASK I := updateVar(TClass, I);
TASK I := getVar(TClass);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2679

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
TASK TClass := deleteTestClass(TClass);

––

The only feature that is not described before is the C option in the #OP
directive. C (class) is an alternative to I (infix) and P (prefix), and spec-
ifies that the operator call should be translated to a member function call
of a C++ member function. #OP(C) means that an operator call

F(a, b, c)

is translated to

a->F(b, c)

Note:

This means that each operator mapped on class member function
should have the class instance pointer as first parameter.
2680 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Restrictions
Restrictions

SDL Restrictions
The Cadvanced/Cbasic SDL to C Compiler handles the majority of
SDL concepts according to the definition of SDL-92. There are howev-
er a number of restrictions that are discussed in this section.

Analyzer Restrictions

The restrictions in the SDL Analyzer are, of course, also valid in the
Cadvanced/Cbasic SDL to C Compiler. For more information see “SDL
Analyzer” on page 37 in chapter 2, Release Notes, in the Release Guide.

Cadvanced/Cbasic SDL to C Compiler Restrictions

The Cadvanced/Cbasic SDL to C Compiler introduces more severe re-
strictions on the allowed set of SDL concepts than the Analyzer. For
more information, see “SDL to C Compiler” on page 40 in chapter 2,
Release Notes, in the Release Guide.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2681

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
Migration Guide for Generic Functions

General
This section provides help to migrate a system using old-style code gen-
eration for operators to the new Generic Function style.

Introduction
The basic idea of the generic function approach is to decrease the num-
ber of generated help functions and functions for operators in pre-
defined generators. This is accomplished by generating generic func-
tions that can be re-used by different types.

This means, for instance, that only one assignment function is created.
This function, however, can be used by all types. In the old-style meth-
od, one assignment function was created for each type. For operators in
predefined generators, there is now one single length function calculat-
ing the length of all string generator instantiations.

In order to implement the generic functions, the parameter passing
mechanisms have been changed. In principle, a generic function cannot
take a value as parameter, it must receive a pointer to the value. This ap-
proach has a positive effect on the performance. However, the generic
function approach introduces incompatibility problems if your existing
system calls generated functions from inline C-code. If this is the case,
the function calls must be changed.

If you need to migrate an SDL system created with the old-style code
generation, you must solve the incompatibility issue.

References to Information

Generic Functions

The major source of information regarding generic functions is “Ab-
stract Data Types” on page 2586, which contains a number of sections
discussing different aspects of data types and operators:

• “Translation of Sorts” on page 2595 describes how different SDL
types are translated to C.
2682 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
• “Parameter Passing to Operators” on page 2606 discusses the gen-
eral parameter passing principles for operators and literal functions.
This section also lists which types that are passed as values and
which types that are passed as addresses.

• “Implementation of User Defined Operators” on page 2609 de-
scribes how to include your own implementation in C for an opera-
tor.

• “Generic Functions” on page 2623 introduces you to the type info
node concept and describes the general operators assign, equal, free,
etc.

• “Generic Function for Operators in Pre-defined Generators” on
page 2630 describes the operators in the predefined generators.

• “More about Abstract Data Types” on page 2634 comprises infor-
mation on how to change the implementation of a data type.

SDL Data Types

Information on SDL data types and operators, seen from the SDL point
of view, is available in “Using SDL Data Types” on page 42 in chapter
2, Data Types, in the SDL Suite Methodology Guidelines. Although this
section does not discuss the use of generic functions, it provides the
framework for SDL data types and operators. In some circumstances it
might be better to rewrite a data type or operator in SDL, than to fix the
problems in C. A number of extensions and improvements have been
included in the support for data types.

Type Info Nodes

For more information on the contents of the type info nodes, please see
“Type Info Nodes” on page 2979 in chapter 62, The Master Library, in
the User’s Manual. This section does not cover migration aspects, but
provides implementation details for an interested reader.

Migrating Strategy

Overview

The common problems that might occur when migrating a system from
the old-style operator implementation to the generic functions imple-
mentation can be divided into two groups:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2683

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
• Some user-defined SDL operators have changed their prototypes in
C. This means that user-provided implementations of the operators
have to be changed and that calls to such operators directly from C
have to be changed.

• Predefined operators like assignment, equal test, make, and so on,
as well as operators in predefined generators might have changed
their prototypes in C, which means that calls to such operators di-
rectly in C have to be changed. Also types where the implementa-
tion of assignment, equal and similar operators are changed by a
#ADT directive, might have to be updated.

The first of these problems is fairly straight forward to fix, while the
second might be more complex.

Step 1: Identifying Migration Problems

Before continuing with the migration instructions, check if your SDL
systems are affected by any incompatibility problems.

1. Find an SDL system that compiles without errors in a previous ver-
sion of the SDL suite (with the old-style operator implementations)

2. Open it in the 4.5 version of Telelogic Tau.

3. Compile it and see if you get any compilations errors.

If your compilation errors are similar to the errors in Example 401 on
page 2684 you can assume that you have a migration problem.

Example 401: Compilation Errors ––––––––––––––––––––––––––––––

The compilation error in this example originates from the GNU compil-
er, gcc. It gives a fairly good feeling of what kind of errors you can ex-
pect.

file.c:50825: conflicting types for ‘yAss_example’
file.c:50844: conflicting types for ‘yEq_example’
file.c:51496: conflicting types for ‘op1’
file.c:211376: too many arguments to function ‘op1’
file.c:211376: cannot convert to a pointer type
file.c:6042: incompatible type for argument 2 of
‘GenericAssignSort’
file.c:6081: incompatible type for argument 2 of
‘op1’

––
2684 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
Step 2: Locating the Compatibility Problems

The Cadvanced, Cbasic, and Cmicro SDL to C compilers allows you to
find the operators and literals that should be updated. By setting the en-
vironment variable SDT_COMP_WARN the code generators will produce a
file called compatibility.warn in the target directory, while generat-
ing code for the system. In the first section of this file all operators and
literals that might have to be changed are listed.

Example 402: Contents of compatibility.warn ––––––––––––––––

LITERAL NewDb C-name: z0V0_NewDb
 <<SYSTEM accesscontrolooa>>
 #SDTREF(TEXT,file.sdl,57,12)
 Literal function result passed as address

OPERATOR ValidateCard C-name: z0V1_ValidateCard
 <<SYSTEM accesscontrolooa/TYPE CardDbType>>
 #SDTREF(TEXT,file.sdl,59,5)
 Parameter 2 passed as address
 Used in DIRECTIVE at #SDTREF(TEXT,file.sdl,62)
 Used in DIRECTIVE at #SDTREF(TEXT,file.sdl,62)

––

This example shows one literal and one operator that have to be updat-
ed:

• The first line contains the name of the operator/literal in SDL and in
C.

• The second line contains an appropriate qualifier, that gives infor-
mation on where in the system the item is defined.

• The third line is the SDT reference to the operator/literal. This can
be used in the Organizer’s Goto Source feature to show where the
SDL source is located.

• The following lines indicate where changes are needed. Each line
states that the result or a parameter is passed as an address. This
means that previously this item was passed as a value, but now it

Note:

Before you try to investigate and correct any error from the list of C
compilation errors, you should perform this step. The reason is that
many of the errors will point at the wrong place so correcting them
might introduce errors rather than correcting anything.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2685

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
should be passed as an address. A complete list of types that must
be changed can be found in “Mapping Table” on page 2588.

• Last, a number of cross references might be found. These show
places where the operator is called from inline C using an #SDL di-
rective. These calls might have to be updated.

Step 3: Updating Operators and Literals

For each operator or literal that is listed in the file compatibili-
ty.warn, perform the instructions presented in this section.

Updating the Headers

The headers of the corresponding C functions must be updated. If you
have specified #OP(B), the header is generated and thus already correct,
but if you have specified #OP(H), you have included the header in C
probably in the #HEADING section in the #ADT directive for the type.

1. For each parameter that should be passed as an address, add a ‘*’ af-
ter the corresponding type name in C.

2. If the result should be passed as an address, add a ‘*’ after the result
type in C, and add an extra parameter with the same C type as the
updated function result, last among the parameters.

When this step has been performed for all types, the C compilation er-
rors will be reliable again.

Example 403: Headers –––––––––––––––––––––––––––––––––––––––

extern str lit1 (void);
extern str op1 (str, SDL_Integer);

Assume str is the type that should be passed as an address. The results
of both functions and the first parameter of op1 are mentioned in the
compatibility.warn file. The heading should be updated to:

extern str* lit1 (str*);
extern str* op1 (str*, SDL_Integer, str*);

––

Note:

Literals should be treated as operators without parameters.
2686 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
Updating Parameter Specifications

The parameter specification and result in the function implementation
must be updated to match the heading. The function implementation is
probably in the #BODY section in the #ADT directive of the type.

Example 404: Parameter Specifications (continued from Example 403)

str lit1 (void)
{ }
str op1 (str P1, SDL_Integer P2)
{ }

should be changed to:

str* lit1 (str* Result)
{ }
str* op1 (str* P1, SDL_Integer P2, str* Result);
{ }

––

Updating Operator/Literal Functions

The implementation of the operator/literal functions must be updated to
reflect the change in parameters.

Example 405: Operator/Literal Functions (continued from
Example 404) ––

In the function op1 every occurrence of:

P1 should be replaced by (*P1)

Special cases where other changes might be more appropriate:

&P1 should be replaced by P1
P1.abc should be replaced by P1->abc

––

The new Result parameter must be assigned the result value of the func-
tion and the function must end with a return statement.

Example 406: Return Parameter –––––––––––––––––––––––––––––––

return Result;

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2687

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
It is not unusual that the function contains a local variable used for cal-
culating the result. Normally this variable is no longer needed.

While updating the implementation of the function, information from
the next section on, for example, assign and equal function might be
valuable.

Update Calls to Functions

The calls to the changed functions must be updated. Calls made from
SDL cause no problems as the SDL compilers produce the correct code.
Only calls made directly from inline C code may have to be updated.
The operator list in the file compatibility.warn contains cross-refer-
ences to the inline C code where the operator is called using an #SDL di-
rective.

For parameters that has changed parameter passing mechanism from
pass as value to pass as address you should perform one of the following
tasks:

• If the actual parameter is a variable (or something it is possible to
take the address of), add a ‘&’, before the variable.

• If the actual parameter is a call to a function, then probably this
function has changed its prototype so that it now returns an address.
In that case nothing needs to be performed. In other cases proceed
to the next possibility.

• If none of the situation above is appropriate, insert a new function
local variable of the parameter type, assign the value of the actual
parameter to this variable, and insert the address of the variable as
actual parameter.

Note:

Check that parameters that are passed as addresses are NOT
CHANGED within the function. If that is the case, copy the value to
a local variable first, and work with that variable.

Note:

Operator calls in C without the #SDL directive, are not listed in com-
patibility.warn. These calls can only be found via the compiler
error list.
2688 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
Implementation Hint

When updating the operators, it might be worth investigating the avail-
able features in the SDL suite, including extensions for operators, in/out
parameters, no parameters, no result, etc.

One not too uncommon situation is when a value is passed as an in pa-
rameter, then changed by the operator and returned as result value. In
every operator call, the same variable is used as both the actual param-
eter and the receiver of the result. To improve speed of the application,
the operator, could be changed to an operator without result and using
in/out parameters.

If you perform a change like this, remember to use the cross-reference
tool to find all places where the operator is used.

Step 4: Updating typedefs

Overview

Another area where backward incompatibility problems might be
present is when the typedef is changed in an #ADT directive, especial-
ly if the assign, equal, or free functions are changed as well. In the sec-
ond section of the file compatibility.warn all types changing the ty-
pedef and at least one of assign, equal, or free functions are listed.

Example 407: Typedef Change ––––––––––––––––––––––––––––––––

NEWTYPE example C-name:zDZ_example
 <<SYSTEM mysystem>>
 #SDTREF(TEXT,file.sdl,3096,9)
 Pass as Value #ADT(T(B)A(B)E(B)F(B))

––

The example should be interpreted like this:

• The first line contains the name of the newtype in SDL and in C.

• The second line contains an appropriate qualifier that gives infor-
mation on where in the system the newtype is defined.

Note:

The following information is not required for the migration of the
system, but can be used to improve the performance of the system.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2689

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
• The third line is the SDT reference to the newtype. This can be used
in the Organizer’s “goto source” feature to locate the SDL source
code.

• The fourth line contains either “Pass as Value” or “Pass as Ad-
dress”, depending on the property of the newtype, followed by the
interpretation of the #ADT directive.

As the #ADT directive can be used in many different ways, it is impos-
sible to describe a general method how to correct any problems. The
type list in the compatibility.warn file indicates what newtypes that
have highest probability to cause problems. It is recommended that you
go through the listed newtypes and review them given the information
in the following sections.

You also have to find and in some cases correct the places where the
functions discussed below are called. The compiler error list is the main
source of information for this task. Please see “Locating Source Code”
on page 2693 if you have problems locating the corresponding SDL
source listed in a C compilation error message.

Assignment Functions

For all types passed as addresses, the differences between the old-style,
and the new generic assignment functions are:

• The old functions pass the value of the right-hand side expression as
the second parameter, while the new pass the address of the right-
hand side expression.

• The old functions returns void, but the generic functions return the
first parameter, i.e. the address of variable.

• It is now required that the assignment function must be a function
(it cannot be a macro), as the address of the function is stored in the
type info node for the newtype.

Example 408: The Assignment Function ––––––––––––––––––––––––

The prototype for an old assign function would be:

void yAss_typename (typename*, typename, int)

The prototype for a new assign function should be:

typename* yAss_typename (typename*, typename*, int)
2690 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
The body of the assignment function must be updated for these changes.

––

If assignment for a type passed as an address is used in inline C code,
one of the following tasks must be performed:

• If the expression parameter is a variable, a ‘&’, should be added be-
fore the variable.

• If the expression is an SDL operator call, a change is normally not
needed, as the operator in the generic function model will return the
address of a value, not the value itself (for types passed as address).

• You might want to add (void) before the yAss call to tell the com-
piler that you want to ignore the result.

For more information please see “Generic Assignment Functions” on
page 2624.

Equal Functions

For all types passed as addresses, the differences between the old and
the new generic equal functions are:

• The old functions pass the values of the two expression, while the
new generic equal functions pass the addresses of the expressions.

• It is now required that the equal function must be a function (it can-
not be a macro), as the address of the function is stored in the type
info node for the newtype.

Example 409: The Equal Function –––––––––––––––––––––––––––––

The prototype for an old equal function would be:

SDL_Boolean yEq_typename (typename, typename)

The prototype for a new equal function should be:

SDL_Boolean yEq_typename (typename*, typename*)

The body of the equal function must be updated for these changes.

––

If equal for a type passed as an address is used in inline C code, perform
the same tasks as presented for the assignment function.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2691

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
For more information please see “Generic Equal Functions” on page
2627.

Free Functions

The yFree_typename function is backward compatible. However, it is
now required that the equal function must be a function (it cannot be a
macro), as the address of the function is stored in the type info node for
the newtype.

For more information please see “Generic Free Functions” on page
2628.

Default Functions

The yDef_typename macro or function from the non-generic mode is
no longer used or generated. Initialization of SDL variables are per-
formed as follows:

• if the variable has an initial value given in the declaration, the vari-
able is assigned this value, using an assignment statement.

• else if the type of the variable has a default value, the variables are
assigned this value, using an assignment statement.

• else the variable is set to 0 using memset. If 0 is not an appropriate
initial value, the function GenericDefault is called to initialize the
variable. Examples of types where 0 is not an appropriate value are
structs with components with initial values, Object_identifiers,
Strings, general Powersets, Bags and general Arrays.

As yDef functions/macros do not exist in Generic mode, all usage in in-
line C code must be changed. There are several possibilities. First, de-
cide if assigning a default value is really necessary. If it is necessary,
then some of the following principle solutions might be used:

• memset to 0

• GenericDefault(&variable,

 (tSDLTypeInfo *)&ySDL_typename)

• yAss_typename(variable, expression,

 XASS_MR_ASS_NF)

• direct C assignment, if possible
2692 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Migration Guide for Generic Functions
Make Functions

The yMake_typename function from the non-generic mode is no longer
used or generated. All calls in inline code to yMake functions must be
replaced by calls to proper GenericMake functions as described in “Ge-
neric Make Functions” on page 2629.

Operators in Predefined Generators

The operators in predefined generators have got new generic implemen-
tations. All the available generic implementations are listed in “Generic
Function for Operators in Pre-defined Generators” on page 2630. Mac-
ros that support the old operators names and translate them to the gener-
ic functions are generated. If you get compilation errors in such a call
you should compare the call with the macro and the generic function, to
see if there are any differences in the parameter passing principle.

Locating Source Code
A typical error message from a C compiler lists a file name, a line num-
ber, and a description of the error. To locate the corresponding SDL
source code perform the following:

1. In a text editor, open the file that is listed in the error message

2. Go to the given line number.

3. Search upwards for an SDT reference, that is, a C comment starting
with:

/*#SDTREF(

Copy the SDT reference and paste it into the Goto Source feature in the
Organizer. The Organizer will show you where the C code originated
from.

Note:

yMake functions pass component values as values, while Generic-
Make functions pass component values as addresses
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2693

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler
2694 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	57 The Cadvanced/Cbasic SDL to C Compiler
	Introduction
	Application Areas for the Cadvanced/Cbasic SDL to C Compiler
	Functional Simulation and Debugging
	Performance Simulation
	Validation
	Communicating Simulations

	Overview of the Cadvanced/Cbasic SDL to C Compiler
	Creating a C Program
	Executing a C Program as a Simulator
	Contents of This Chapter

	Generating a C Program
	Process of Generating a C Program
	Executing a C Program
	The SDL Unit for Which Code is Generated
	Errors During Code Generation

	Features
	Partitioning
	General Ideas
	Using Selections in the Organizer
	Unconnected Diagrams
	Build Scripts
	Behavior of Generated Partitioning

	Generation of Support Files

	Implementation
	Time
	Simulated Time
	Real Time

	Scheduling
	The Ready Queue

	Enabling Conditions and Continuous Signals
	Implementation Strategy

	Synonyms
	Synonyms
	External Synonyms

	Import – Export
	Remote Procedure Calls
	Procedure Calls and Operator Calls
	External Procedures And Operators
	Any
	Calculation of Receiver in Outputs

	Abstract Data Types
	Removing un-used SDL Operators
	SDL Predefined Types
	Mapping Table
	C Definitions

	Translation of Sorts
	Predefined Types
	Enumeration Type
	Struct
	UnionC
	Choice
	Array
	String
	Powerset
	Bag
	Ref, Own, Oref
	Syntypes
	Inheritance
	Default Values
	Operators
	Literals
	Axioms and Literal Mappings

	Parameter Passing to Operators
	Implementation of User Defined Operators
	Including Implementations of Operators
	Two Examples of ADTs
	Error Situations in Operators
	Handling of the Charstring Sort
	Other Types Containing Pointers
	External Properties
	More about Operators

	Generic Functions
	Type Info Nodes
	Generic Assignment Functions
	Generic Equal Functions
	Generic Free Functions
	Generic Make Functions

	Generic Function for Operators in Pre-defined Generators
	General array
	Powerset
	Bag and General Powerset
	String
	Limited String

	More about Abstract Data Types
	Including Type Definitions
	More about #ADT
	Directive #REF

	Generators

	Directives to the Cadvanced/Cbasic SDL to C Compiler
	Syntax of Directives
	Selecting File Structure for Generated Code – Directive #SEPARATE
	An Example of the Usage of the Separate Feature

	Accessing SDL Names in C Code – Directive #SDL
	Including C Code in Task – Directive #CODE
	#CODE directives in compound statements

	Including C Declarations – Directive #CODE
	Including C Code in SDL Expressions – Operator #CODE
	Names and Prefixes in Generated Code
	Sequence of Characters
	Prefixes
	Case Sensitivity

	Specifying Names in Generated Code – Directive #NAME
	Assigning Priorities�–�Directive #PRIO
	Initialization – Directive #MAIN
	Modifying Outputs – Directive #EXTSIG, #ALT, #TRANSFER
	Linking with Other Object Files – Directive #WITH
	Naming Tasks in Trace Output – Directive #ID
	Directive #C, #SYNT, #SYNTNN, #ASN1
	Alternative Implementations of the String Generator – Directive #STRING
	Linked List Implementations
	Array Implementations
	Size constraint
	Differences between the Implementations Methods
	Selecting implementation Methods

	Using Cadvanced/Cbasic SDL to C Compiler to Generate C++
	General
	Connection Between C++ Classes and SDL

	Restrictions
	SDL Restrictions
	Analyzer Restrictions
	Cadvanced/Cbasic SDL to C Compiler Restrictions

	Migration Guide for Generic Functions
	General
	Introduction
	References to Information
	Generic Functions
	SDL Data Types
	Type Info Nodes

	Migrating Strategy
	Overview
	Step 1: Identifying Migration Problems
	Step 2: Locating the Compatibility Problems
	Step 3: Updating Operators and Literals
	Step 4: Updating typedefs

	Locating Source Code

