Chapter

o/

July 2003

The Cadvanced/Cbhasic
L to C Compiler

The Cadvanced/Cbasic SDL to C Compiler translates your SDL
system into a C program that you can compile and link together
with aruntimelibrary to form an executable program such asa
simulator, a validator or, in the case of Cadvanced, an application.

Thischapter isareference manual to the Cadvanced/Chasic SDL
to C Compiler. Thereare also a number of other chaptersrelated
to code gener ation:

In chapter 50, The SDL Simulator, you will find areferenceto
thesimulation facilitiesin the SDL suite. In chapter 51, Simulat-
ing a System, you will find a user’s guide to the simulator.

In chapter 53, The SDL Validator, you will find areferencetothe
validation facilitiesin the SDL suite. In chapter 54, Validatinga
System, you will find a user’s guideto the validator.

In chapter 58, Building an Application, you may r ead about how
to generate applicationsfor host and target environments.

In chapter 62, The Master Library, you will find information
about how to customize your own librariesfor a specific pur-
pose, such as application generation for target computers. The
chapter alsodescribesthestructureof thegenerated C codeand
theinternal data structuresin the generated C code.

In chapter 63, The ADT Library, you will find areferencetothe
library of abstract data typesthat isdistributed with the SDL
suite and that you may usein your systemsdesigned in SDL.
Some examples of use are also available.

In chapter 64, The Performance Library, you may read about
how to generateand run simulator swhich ar e specially adapted
for the area of performance simulation.

Telelogic Tau 4.5 User’ sManual 2561

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Introduction

2562

Application Areas for the Cadvanced/Cbasic
SDL to C Compiler

There are anumber of application areasfor the Cadvanced/Cbasic SDL
to C Compiler, for example:

» Functional simulation and debugging of protocol specifications
» Debugging of system designs described in SDL

» Generation of applications, including embedded system applica-
tions with real time characteristics

* Performance simulations
» Simulation of the behavior behind a user interface prototype

Inthispart of the manual, the general behavior of the code generator and
its application for simulation and debugging are discussed. The possi-
bility to generate simulatorsis described in chapter 50, The SDL Simu-
lator.

Functional Simulation and Debugging

During the validation of a specification or design of an application ex-
pressedin ITU SDL, you can use the Cadvanced/Chasic SDL to C Com-
piler as atool for smulation to help you understand and debug the be-
havior of a system description. (See chapter 50, The SDL Smulator.)

Errors arising from two different areas have to be considered in the val-
idation process. In the language domain, errorsduetoillegal orillogical
usage of the language concepts might be introduced into the specifica
tion; while in the problem domain, logical errors might be introduced.

With traditional computer program development, most illegal uses of
language concepts are found by compilers or by run-time systems. Ex-
amples are syntax errors, missing declarations, division by zero, or in-
dexing an array out of its bounds.

In the problem domain, however, the only feasible ways of detecting
logical errorsin non-trivial programs are testing and proofreading.
When it comesto specificationsin SDL, language domain errors can be

Telelogic Tau 4.5 User's Manual July 2003

I ntroduction

July 2003

detected by using the SDL Analyzer, which can be seen as a compiler
without a code generation facility (see chapter 55, The SDL Analyzer).
Todetect problem domain errors, testing by simulating the specification
isthe main procedure available. Please see also chapter 53, The SDL
Validator.

The specification of a protocol in SDL, for instance, specifiesa signal
interface by giving ahypothetical implementation of the componentsin
the protocol. This strategy immediately brings up two different purpos-
es for simulating the behavior of a system specification: to understand
the external view and to understand the internal view.

Intheexternal view, thesignal interfaceisof concern, whiletheinterna
behavior of the system specification (the behavior of the processesin
the system) isof littleor no interest. Intheinterna view, theinternal be-
havior of the system specification is of concern, while the external sig-
nal interface is simply seen as part of the internal behavior.

A simulation of the internal behavior of a system specification consti-
tutes an important part of the validation of the specification, both asa
debugging tool and as a means to increase the understanding of the dy-
namic behavior of the specification. A designer of a system might use
thiskind of simulation to understand the specification better.

The ability to simulate and debug applications generated by the code
generator at an SDL level isavery important feature towards achieving
the correct overall behavior of the application. The debugging facilities
provided by the SDL suite have much in common with interactive de-
buggers for ordinary programming languages. The debugging is per-
formed on a host computer.

Another application of the code generator as asimul ator generator, is of
course in SDL education, where simulation, especialy of the internal
behavior of a system specification, can serve as apowerful way of clar-
ifying the semantics of SDL concepts.

Performance Simulation

The Cadvanced/Chasic SDL to C Compiler can be used for perfor-
mance simulations. Y ou describe the performance model of the actual
system using SDL. Thismodel can betranslated to asimulation and ex-
ecuted. By introducing measurements of interesting data, such as queue
lengths, delays, and so on, into the SDL model, it is possible to gather
statistical dataduring the execution of the simulation. In chapter 64, The

Telelogic Tau 4.5 User's Manual 2563

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2564

Performance Library, you can find a description of the performance
simulation facilities.

To simplify thiskind of simulation, anumber of SDL abstract datatypes
and their implementations have been developed, where, for example,
random number generation and handling of queues are supported.
Please see chapter 63, The ADT Library.

Validation

The SDL Validator uses the code produced by the Cadvanced/Chasic
SDL to C Compiler to form aprogram suitablefor validation of an SDL
system. The Validator uses state space exploration and can be used to:

e Find runtime errors
» Verify MSCs against the SDL system
* Verify user defined rules

The Vadidator is described in chapter 53, The SDL Validator.

Communicating Simulations

Y ou can specify that a generated C program should be able to commu-
nicate over the PostMaster, which is the mechanism used for communi-
cation between the SDL suite tools. Signals sent from the SDL system
(the generated program) to the environment and signals coming to the

SDL system from the environment can be handled. Thisfacility makes
it, for example, possible to develop simulation programs for two com-

municating systems, execute them using the SDL suite and obtain com-
munication between the systems.

Asagenerated C program does not know what it communicates with, it
can of course communicate with any type of application, aslong asthe
application is connected to the PostMaster (the communication medi-
um) and sends signal s according to the defined format. How to achieve
thisis described in chapter 13, Using the Telelogic Tau Public Inter-
face.

A very interesting group of such applications are user interfaces. By
connecting auser interface and an SDL simulation you can achieve sev-
eral things: Y ou can, for example, build well-designed application ori-
ented user interfaces that present what is going on in asimulation, or
you can in asimple way define the logic behavior behind a user inter-
face during its prototyping phase.

Telelogic Tau 4.5 User's Manual July 2003

I ntroduction

Overview of the Cadvanced/Cbasic SDL to C
Compiler

To facilitate the validation of SDL specifications or descriptions, the
SDL Analyzer contains an SDL parser, an SDL semantic checker, and
the Cadvanced/Cbasic SDL to C Compiler.

Creating a C Program

To obtain an executable program that behaves according to an SDL de-
scription, you enter the SDL description into the SDL Analyzer, which
containsthe Cadvanced/Chasic SDL to C Compiler. If the SDL descrip-
tionissyntactically and semantically correct, aC program is generated.
Y ou then compile this program using an ordinary C compiler and link
it with apredefined SDL run-time library to form an executable pro-
gram. See Figure 489.

Asindicated above, the C code generation facility contains two compo-
nents:

» The SDL to C Compiler, which can be seen as a back-end to the
SDL Analyzer. This component generates a C program.

» Predefined and precompiled C units, which implement an SDL
runtime library and the command line user interface of asimula-
tor, that is, amonitor system. The run-time library also includes a
communication mechanism which makes it possible to trace the
execution of SDL transitionsin the SDL Editor. There are severa
versions of thelibrary that are suitable to different application areas
for the generated C code, see “Libraries’ on page 2698 in chapter
58, Building an Application.

July 2003 Telelogic Tau 4.5 User's Manual 2565

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Generated Predefined
C runtime library

SDL
specification

[l

SDL
Analyzer
and
Code
Generator

and monitor

program system for SDL.

Executable
program

Figure 489: The production of an executable program

Executing a C Program as a Simulator

The generated C program uses an internal data representation of the
SDL objectsin the system, for example process instances and signal in-
stances. The process instances will execute transitions in a quasi-paral-
lel manner. During atransition, SDL actions such as tasks, decisions
and signal outputs are executed according to the semantics of SDL.

You interact, using SDL terminology, with the simulator through a

monitor system, which contains a number of commands to:

2566

Control the execution of transitions.

Examine the status of objectsin the system.

Turn log facilities on and off.

Affect the system by, for example, sending signal instancesfromthe

environment to the system.

Telelogic Tau 4.5 User's Manual

July 2003

I ntroduction

July 2003

Contents of This Chapter
Y ou can find more details on creating and executing a C programin the
following sections:

* In“Generating a C Program” on page 2568, the process of generat-
ing a C program is described.

* In“Abstract Data Types’ on page 2586, implementation aspects es-
pecially concerning abstract data types, are described.

* In‘“Directivesto the Cadvanced/Chasic SDL to C Compiler” on
page 2649, possibilities to give additional information to the Cad-
vanced/Cbasic SDL to C Compiler are discussed.

* Thesection “Using Cadvanced/Cbasic SDL to C Compiler to Gen-
erate C++" on page 2677, contains considerations on class defini-
tions as C++ code and the utilization of the classes as C++ codein
SDL tasks.

* In“Restrictions’ on page 2681, the Cadvanced/Chasic SDL to C
Compiler restrictions are covered.

Telelogic Tau 4.5 User's Manual 2567

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Generating a C Program

2568

A generated C program can be used for several things, for exampleasa
simulator, as avalidator, or as an application with the behavior defined
by the translated SDL system. The process of generation of simulators,

validators, or applications, see below, is started in the Organizer, in the
make dialog (see “Make” on page 119 in chapter 2, The Organizer) or

by the quick buttonsfor simulation and validation (see " Quick Buttons’

on page 176 in chapter 2, The Organizer).

The SDL Analyzer, which contains the C code generation facility, can
also be started as a stand-al one tool. For more information about this
possibility please see”“ The Analyzer Command-Line Ul” on page 2404
in chapter 55, The SDL Analyzer.

Process of Generating a C Program

There arefour steps that must be performed to start the execution of, for
example, asimulator:

1. The SDL Analyzer and its built-in Cadvanced/Cbasic SDL to C
Compiler create a program expressed in C source code.

2. Thegenerated C file (or files) is compiled.

3. Thecompiled file (or files) is linked together with a predefined li-
brary.

4. The executable program that is created in the link operation is start-
ed.

This process has been automated and requires no user knowledge about
compiling or linking of programs. The process isinitiated in the Orga-
nizer using the quick buttons for simulation and validation, or by using
the Make dialog.

A C program can only be generated for an SDL system. The C codethat
constitutes the program can, however, be generated on multiple files,
which meansthat alocal changein, for example, ablock diagram only
reguires aregeneration and recompilation of the code for that unit. The
object files, (the compiled versions of the C files) for the other un-
changed units can then be used in the link operation to form a new exe-
cutable program. Thisfeaturein automatically used by the makefacility
and the quick buttons, to minimize the amount of work and thus the
turn-around time, for the process from achangeinthe SDL systemtoa
new simulator (for example).

Telelogic Tau 4.5 User's Manual July 2003

Generating a C Program

July 2003

The separation of the C code for an SDL system can be decided by the
user. The Edit Separation command from the Generate menu isused for
that purpose, see " Edit Separation” on page 136 in chapter 2, The Orga-
nizer. The effect on the generated file structure and some guidelines of
how to use separation can be found in the section “ Selecting File Struc-
ture for Generated Code — Directive #SEPARATE" on page 2650.

Executing a C Program

The generated C programs can in principle be compiled as either asim-
ulator, avalidator, or an application. Generated applications have no
further connection with the SDL suite and are executed as any other ap-
plication.

A generated simulator or validator can however be started in two differ-
ent ways.

» Fromthe Smulator Graphical User Interface, whichis started from
the Organizer with the SDL > Smulator Ul command and provides
agraphical interface with buttons and menus and of course full con-
nection to other SDL suite tools. See “ Graphical User Interface”
on page 2130 in chapter 50, The SDL Simulator for more informa-
tion.

» Froman OS shell, just like any other executable program. The user
then invokes a command line monitor system. If the Organizer is
running when starting a simulator or validator, the program will
connect itself to the SDL suite. If the Organizer isnot running or the
simulator/validator is started with the program parameter -nosdt,
the program will not connect itself to the SDL suite.

The SDL Unit for Which Code is Generated

Thefirst time a C program is generated for a system, the complete sys-
tem will be selected for analysis and C code generation. After that only
the unit (system or block) that is changed will be selected. Note that the
lowest level of possible regeneration object is ablock. That block may
not be ablock type, or be part of ablock type or systemtype. Thereason
that a process cannot be generated without regenerating the enclosing
block, isthat internal process information about, for example, formal
parameters are used to generate code for other processes within the
same block.

» Only complete C filescan begenerated. I, for example, the user has
specified that a block and a sub-block should be generated on the

Telelogic Tau 4.5 User's Manual 2569

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

samefile, it is not possible to regenerate code only for the sub-
block.

» If thefilestructureis changed (by, for example, changesin the Edit
Separation command or in the #SEPARATE directives), then the
complete system is regenerated.

Errors During Code Generation

Errors that may occur during code generation are internal errors. That
is, errors dueto not yet implemented features of SDL, and errorsrelated
to problems with opened or closed operations of files.

An error message startswith an SDT references and isfollowed by ade-
scription of the error, including a error number. Example;

ERROR 884 Not implemented: Signal refinement

2570 Teldlogic Tau 4.5 User's Manual July 2003

Features

Features

July 2003

Partitioning

General Ideas

The partitioning concept isaway to divideone SDL system into several
applications. As aspecia case thismeansalso that it is possible to sim-
ulate and validate sel ected parts of asystem. Y ou should note the differ-
ence between partitioning and separation. The partitioning featureis a
way to select the parts of an SDL system which should be handled,
while the separation feature is away to select the file structure for the
generated files.

To select apartition (or aprogram) it is, in simple cases, possible to use
selectionsin the Organizer, and in more general cases possible to work
with build scripts, i.e. text files containing commands to the Analyzer
(the syntax used when running the Analyzer stand-alone). The restric-
tion in the Organizer view isthat only one selection can be handled and
that instantiation of OO types cannot be selected. In abuild script onthe
other hand, several component commands can be used to select several
parts of a system. Asthe component command takes an SDL qualifier
as a parameter, instantiations can also easily be selected.

Using Selections in the Organizer

To start with the simple case when one block or process should be sim-
ulated, thisis easy to perform directly from the Organizer: Select the
proper block or process and press the Simulate button (or go via Make
didog).

Note:

If you already have generated a simulation from the Organizer, and
want to generate a new one with other options or with another selec-
tion, you should perform a Full Make, as changesin options or se-
lection is not handled by the build process. Otherwise compilation
or link errors might be the result of the build process.

Only the system, ablock or a process can be selected for simulation.
Types, including procedures, are only definitionsand are not executable
objects, while services depend on its enclosing process and cannot be

Telelogic Tau 4.5 User's Manual 2571

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2572

simulated on its own because of these dependencies. Block and process
instantiations can be simulated, but only using build scripts, as such ob-
jects cannot be selected in the Organizer. The discussion above is of
course also valid for generation of validators and applications.

Unconnected Diagrams

Asanother special case, there might be unconnected diagramsin the Or-
ganizer, i.e. objects not bound to afile. If such an object isablock, pro-
cess, or a procedure, C code can anyhow be generated resulting in, for
example, a Simulator or Validator.

» If ablock is unconnected, thisis treated as an implicit partitioning
excluding this block.

» |f aprocessisunconnected, thisistreated asan implicit partitioning
excluding this process. If other processestry to “create” such apro-
cess, this will become a null-action just indicated in the textual
trace. Inan application, such acreateaction will cause acompilation
error.

« If aprocedureisunconnected, any call to thisprocedureisjust indi-
cated inthetextual trace. In an application such aprocedure call will
cause a compilation error.

Build Scripts

In general cases, build scripts should be used to specify the build pro-
cess. Using such afile there are a number of features that can be used.

» Itispossibleto generate code for several partitions, using indepen-
dent options and potentially different code generators for different
parts of the system, al in one build process.

» Each partition can consist of several objects, and objects might be
instantiations.

There aretwo Analyzer commands, see " Description of Analyzer Com-
mands’_on page 2406 in chapter 55, The SDL Analyzer, that are of ma-
jor interest for specifying a partition. First we have the Program com-
mand, which takes a name as parameter. Second we have the Compo-
nent command, which takes a qualifier as a parameter. The Program
command gives the start of a partitioning specification, while the Com-
ponent command is used to select an SDL component that should be

Telelogic Tau 4.5 User's Manual July 2003

Features

July 2003

part of the partitioning. A partition specification can of course contain
a number of components. The Component command is very similar to
a selection in the Organizer when running directly from the Organizer.

A program section in abuild script typically starts with a Program com-
mand and ends with a Generate command.

Example 336: Build script

program MyExample

component system example/block bl

component system example/block b2/process p22
target-directory /home/jk/example/target
set-env-header on

set-modularity user

generate-advanced-c

In Windows, the target-directory command could, for example, be:

target-directory c:\example\target

The example above means that a program containing the implementa-
tion of the complete block bl and the process p22 in block b2 is gener-
ated with the Cadvanced SDL to C Compiler. The modularity isuser de-
fined and a system header file (. 1fc file) will also be generated.

Code from the code generators will be placed in asubdirectory with the
name given in the Program command, to the directory given by target
directory. If this subdirectory does not exist it will be created.

Note:

Y ou should always include a target-directory command in a build
script, as otherwise the target directory will depend on where the
SDL suiteis started!

Inthe example abovethe generated C code can befound inthe directory
/home/jk/example/target /MyExample
(In Windows c:\example\target\MyExample).

In the example below three programs are generated for three different
partitionings, also using different code generators.

Telelogic Tau 4.5 User's Manual 2573

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Example 337: Build script with several programs
target-directory /home/jk/example/target

program MyExample

component system example/block bl

component system example/block b2/process p22
set-env-header on

set-modularity user

set-kernel SCTDEBCOM

generate-advanced-c

program MyExamplel
component system example/block b2/process p2l
generate-micro-c

program MyExample2

component system example/block b3
set-modularity no
generate-chipsy-chill

Analyzer commands that are of the type “set up an option” can be
placed outside of the Program commands. The options actually used at
the generate commands, are the options set up after executing al the
commands up to the generate command. All the possibilitiesin the
Make dialog and the Analyze dialog in the Organizer are also provided
as commands in the Analyzer. Please see “ The Analyzer Command-
LineUI” on page 2404 in chapter 55, The SDL Analyzer, for alist of all
commands.

Note:

When build scripts are used, all featuresin the Analyzer will have
its hard coded defaults, if it is not set in the build script. Preferences
and your settings in the Organizer are ignored. The default values
aregivenin “ The Analyzer Command-Line UI” on page 2404 in
chapter 55, The SDL Analyzer, or you can start a stand-alone ana-
lyzer (sdtsan) directly in an OS shell and issue the commands Show-
Analyze-Options and Show-Generate-Options.

Seealso“SDL Make” on page 120 in chapter 2, The Organizer, for han-
dling of build scriptsin the Organizer.

2574 Teldlogic Tau 4.5 User's Manual July 2003

Features

Behavior of Generated Partitioning

Thebasicideaisto redirect all channel going to objects not part of the
current partitioning to the environment. This operation is performed by
the code generator at code generation time. This meansthat al signals
sent between objects in the partitioning and objects outside the parti-
tioning, will be seen as signals to or from the environment. Thisistrue
everywhere, in simulations, validations, applications, in generated envi-
ronment header files (.ifc files), and in generated environment func-
tions.

Generation of Support Files

The Cadvanced/Chasic SDL to C Compiler can generate a number of
support files, together with the ordinary .c, .h, and makefiles. These
filesare

» System header file (. ifc)

» Skeleton to environment functions (_env.c)

e Signa number file (.hs)

» Coder/decoder framework files (_cod.c, cod.h)

The generation of these files can be selected in the Organizer Make di-
alog, or asan Analyzer command, depending on whichinterfaceis used.
The details on the system header files and the environment function can
be found in “The Environment Functions” on page 2702, while the sig-
nal number file can be used to assign numbersto al signalsin the sys-
tem. Signal number files are most used in connection with OS integra-
tions.

July 2003 Telelogic Tau 4.5 User's Manual 2575

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Implementation

2576

In this section some implementation details are presented, that can be
useful for understanding how a generated simulation or application be-
haves. Abstract data types are treated in the next section.

Time
A generated C program can be executed in two modes with respect to
the trestment of time:

e Smulated time
* Real time

Simulated Time

Using simulated time, which is the most useful mode for simulations,
means that the time in the simulation has no connection with the wall
clock. Instead the di screte event simulation techniqueisused. Thistech-
niqueis based on the idea that the current value for the simulation time
(Now in SDL) isequal to the time at which the currently executing
event is scheduled. After one event isfinished, the simulationtimeisin-
creased to the time when the next event is scheduled and thisevent is
started. Eventsin SDL will be process transitions, timer outputs, and
signals sent to the system from the environment. Asan example, the use
of the discrete event simulation technique means that if the next event
isatimer output scheduled one hour from now, and the next transition
isallowed to execute, the timer output will occur immediately. The sim-
ulation timewill beincreased by one hour, but the user does not haveto
wait one hour.

Real Time

If real timeis used, then therewill be a connection between theclock in
the executing program and thewall clock. In the example above the user
would have to wait one hour until the timer output took place. To im-
plement real time aclock function provided by the operating systemis
used. Not all systemsare suitableto simulatein thisway. Thetime scale
in the system ought to be seconds or maybe minutes, not milliseconds
and not hours.

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

At program start up the system time, SDL Now, is zero. The system
clock is stopped during the time the program spendsin the monitor sys-
tem.

Note:

The C standard function t ime used as real time clock returns the
timein seconds. It does not handle parts of seconds. Theimplemen-
tation of the clock can be changed by re-implementing the function
SDL_Clock in sctos.c.

Scheduling

The process instances in the simulated system will execute transitions
that consist of actions like tasks, decisions, outputs, procedure calls,
etc., according to therules of SDL. It isassumed that atransition takes
notimeand that asignal instanceisimmediately placed in theinput port
of the receiver when an output operation occurs.

A transition is always executed without any interrupts, if the user does
not manually rearrange the ready queue using an appropriate command
provided by the monitor system (Rearrange-Ready-Queue). It is possi-
ble to execute afew SDL symbolsin one transition and then to re-ar-
range the ready queue and execute another transition. The interrupted
transition can afterwards be executed to its end.

A quasi-parallel strategy for selecting transitions to be executed isthus
the basic scheduling mechanism. SDL does not in itself define an exe-
cution strategy so the selected strategy is therefore an alowed, but not
the only, possible strategy for execution.

Asaconsequence of the execution strategy, agenerated simulator is not
directly suited for simulation of “timing effects’, that is, situations
where thetime or order of actionsin different processinstancesis of vi-
tal importance.

Example 338: Scheduling
Anexampleof such asituationis: Suppose aprocessinstance A outputs
two signal instances during the same transition, one to processinstance
B and one to process instance C. During the corresponding transitions
of B and C, asignal instance is sent to process instance D.

If the behavior of the system is dependent on the order in which the sig-
nal instancesarereceived intheinput port of D, thisisahazard situation

Telelogic Tau 4.5 User's Manual 2577

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2578

where the execution speed of processinstances and the delay of signals
in channels will determine the behavior. The way to handle such asitu-
ation would be to manually decide the order in which transitions should
be executed.

Asthe Cadvanced SDL to C Compiler is aso intended to generate ap-
plications, process priority has been introduced as an additional feature.
For more information about how to assign priorities to processes see
sub-section “Assigning Priorities — Directive #PRIO” on page 2667.

The Ready Queue

Theready queueisaqueue containing all processinstanceswhich have
received a signal that can cause atransition, but which have not yet
completed that transition. The ready queue is ordered firstly according
to the priority and secondly according to insert time, that is a process
which will be inserted last among the processes with the same priority,
but before all processes with lower priority (high priority value = low
priority). A process will never be inserted before the process currently
executing, as pre-emptive scheduling is not used. In more detail:

» |f aprocessoutputs asignal to another process, which immediately
canreceivethesignal, thereceiving processwill beinserted into the
ready queue last among the processes with the same priority, but
never before the currently executing process.

» |If the processes currently executing a nextstate immediately can
continue to execute another transition, it will be inserted into the
ready queue last among the processes with the same priority. This
means that it can remain asfirst process in the ready queue, but it
can also be re-inserted somewhere else.

» |If thereceiving process at atimer output immediately can execute a
transition as response to the received signal, the process will be in-
serted into the ready queue last among the processes with the same
priority. This means that it can be inserted anywhere in the queue.

Enabling Conditions and Continuous Signals

Enabling conditions and continuous signals are additional conceptsin
SDL. The model for these concepts use repetitive signal sending, to
have the expressions recal cul ated repeatedly. Thismodel isnot suitable
during simulation, and definitely not acceptable in an application. We

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

have therefore used an implementation strategy closer to the described
behavior of the concepts, rather than the model used to define the con-

cepts.

Implementation Strategy

First we distinguish between those enabling conditions and continuous
signals that are dynamic and those that are static, that is containing ex-
pressionsthat can or cannot change their value when the corresponding
process is waiting in the state. The expression in a dynamic enabling
condition or continuous signal contains some part that can change its
value, even though the process does not execute any statements. Or, put
more precisely, it contains at least one import, view, or reference to
Now.

Static enabling conditions or continuous signals do not provide any
problems or any execution overhead, except that the corresponding ex-
pressions have to be calculated at nextstate operations. Dynamic en-
abling conditions or continuous signals, however, haveto repeatedly be
recalculated. The strategy selected for these expressionsis to recalcu-
late them after each transition or timer output performed by any process
(and additionally also before the monitor is entered within atransition).
In other words, each process waiting in astate containing adynamic en-
abling condition or continuous signal executes an implicit nextstate op-
eration between each transition or timer output performed by other pro-
Cesses.

Synonyms

Synonyms

An SDL synonym isimplemented either asa C macro (#define) or as
aCvariable. Tobetranslated to amacro the expression defining the val -
ue of the synonym must be:

» Of one of the predefined SDL sorts (Integer, Real etc.).

» Possibleto calculate at analyzetime, i.e. it may only contain literals
and operators defined in the predefined SDL sorts and other syn-
onyms which are possible to calculate at analyze time.

All other synonyms are implemented as variables given their values at
program start up.

Telelogic Tau 4.5 User's Manual 2579

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2580

The reason for raising this question is because it is relevant to the im-
plementation of arrays and powersets. There are two different imple-
mentations for each of these concepts, see “Array” on page 2601 and
“Powerset” on page 2602. An array in SDL can either be translated to
anarray inCortoalinkedlistin C. A powerset can either be translated
to abit array in C or to alinked list. The translation method is selected
by looking at the index type. If the index typeisasyntypewith onelim-
ited range, the array and bit array scheme is used, otherwise the linked
list is used.

If asynonym translated to avariableis used in arange condition of a
syntype and the syntypeis used as an index sort in an array or powerset
instantiation, the linked list scheme is used to implement the array or
powerset. The reason for thisisthat the length of the array cannot de-
pend on avariablein C.

External Synonyms

External synonyms can be used to parameterize an SDL system and
thereby a so agenerated program. The valuesthat should be used for the
external synonyms can either be read by the generated program during
start up, or included as macro definitions into the generated code. The
Cadvanced/Chbasic SDL to C Compiler can handle both these cases—it
is not necessary to select which way should be used for each synonym
until the program is compiled.

Using a Macro Definition

To use amacro definition in C to specify the value of an externa syn-
onym, perform the following steps:

1. Write the macro definitions on afile.

Example 339: Macro Definition

#define synonyml valuel
#define synonym2 value2

The synonym names are the SDL names (without any prefixes) and
with any character not in letters, digits or underscore removed.

2. Introduce the following #copk directive at the system level among
the SDL definitions of, for example, synonyms, sorts, and signals
but before any use of the synonymes.

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

Example 340: #CODE Directive

/ *#CODE
#TYPE
#include ”"filename”

*/

If this structure is used, the value of an external synonym can be
changed merely by changing the corresponding macro definition
and recompiling the system.

Note:

When an applicationiscreated, macro definitions should be used for
all external synonyms, as the function for reading synonym values
stored on fileis not available. (See below.)

Reading Values at Program Start up

The other way to supply the values of the external synonymsisto read
the values at program start up. If there are any external synonyms that
do not have a corresponding macro definition, it is possible to choose

between supplying the values of the remaining external synonymsfrom
the keyboard or to use afile containing the values.

When the application is started, the following prompt appears:

External synonym file :

* Press<returns toindicate that the values should be read from the
terminal.

» Or typethe name of afilethat contains the values and press
<Returns>.

If the user chooses to read the values from the terminal, he will be
prompted for each value. In the other case the user should have created
afile containing the external synonym names and their corresponding
value according the following example:

Example 341: Values at Program Startup

synonyml valuel
synonym2 value2

The synonyms may be defined in any order.

Telelogic Tau 4.5 User's Manual 2581

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2582

Import — Export

These concepts are not implemented with the full semantics according
to the model in the SDL recommendation. The model saysthat anim-
ported value should be obtained using asignal interchange between the
importer and exporter.

In the Cadvanced/Chbasic SDL to C Compiler we useamodel wherethe
imported value is directly obtained from the exporter, which of course
makestheimport operation much faster. However, the scheduling effect
of the signal interchange islost, aswell as the change of SENDER in
the involved processes. If these effects areimportant for an application,
remote procedure calls can be used instead, see below.

Remote Procedure Calls

Remote procedure calls (RPC) have much in common with import/ex-
port, except that instead of obtaining one vaue, RPCs give the opportu-
nity to execute a procedure in the exporting process. In the Cad-
vanced/Chasic SDL to C Compiler, the model described inthe SDL rec-
ommendation is used in detail to implement RPCs.

This means that aremote procedure call istranslated to:

output of pCALL signa with all parameters.
nextstate in pWAIT, i.e. aimplicit wait state.
input of pREPLY signal with all IN/OUT parameters.

In the exporting process there will be implicit transitions where the
pCALL signal can be handled.

input pCALL.

call remote procedure with parameters from pCALL.
output pREPLY with the IN/OUT parameters.
nextstate -

For more details about thismodel, please see the SDL recommendation.

Procedure Calls and Operator Calls

In SDL-92 value returning procedures (and remote procedures) are in-
troduced. Thismeansthat an SDL procedure can be called within an ex-
pression. In the Cadvanced/Cbasic SDL to C Compiler such procedure
calls are implemented according to the model in the SDL recommenda-
tion, that is by inserting an extra CALL just before the statement con-

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

July 2003

taining the value returning procedure call. The result from the call is
stored in an anonymous variable, which is then used in the expression.

Example 342: Procedure Call

TASK i := (call p(1)) + (call Q(i,k));

is translated to:

CALL p(1l, Templ);
CALL g(i, k , Temp2);
TASK 1 := Templ + Temp2;

Note:

The value returning procedure calls are transformed to ordinary
calls, by adding anew IN/OUT parameter for the procedure result,
last in the call.

Operators which are defined using operator diagrams, are according the
modelsin the SDL recommendation, treated exactly as value returning
procedure.

External Procedures And Operators

External proceduresis a extension to SDL introduced in SDL-96. An
external procedureis defined in atext symbol as a procedure heading:

procedure test; fpar a integer; returns integer;
external;

Instead of giving an implementation for the procedure the keyword ex-
ternal isinserted. The purpose of external proceduresin SDL are to
specify the existence of procedures without giving their implementa-
tion.

The Cadvanced/Chbasic SDL to C Compiler will generate no code for an
external procedure declaration and will translate a call to such a proce-
dureto an ordinary C function call. It isthen up to the user to provide

the C implementation of thisfunction. Note that the code generator will
in the generated function call use the name of the external procedure as
itis. No prefix isinserted in this case, just as for external synonyms.

External operators are handled in the same way as external procedures.
The name of the external operator isused in C just asit is. A quoted op-

Telelogic Tau 4.5 User's Manual 2583

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2584

erator will cause an infix operator to be generated, while operatorswith
ordinary names will cause C function callsto be generated.

Any
There are two different applications of any. It is possible to write

any (SortName)
within an expression, or to write just

any
in adecision. The second case, with any in adecision, isimplemented
in the following way:

e Simulator:

A question in the monitor giving the user a possibility to select the
path to follow.

* Vadlidator:

Thevalidator seesthis as an non-deterministic choice and selectsall
possible paths.

» Applications:
Should not be used!

Thefirst case, the any(SortName) within an expression, isimplemented
using arandom number generator to draw arandom number of thegiven

type.

Note:

any(Sort) where Sort isasyntypeisonly implemented if the syntype
contains at most one range condition which is of the form a:b, that
isone limited range. If it is asyntype of areal type, e.g. Real or
Time, with arange condition it is not implemented.

If any(SortName) is used for a sort violating the note above, there will
be a C compilation error on the symbol ANY _SortNameWithPrefix.
This means that a user can implement any for such sorts himself by de-
fining aC macro with this name, that implements any for the given sort.
Such amacro should beinserted in the#TY PE section of a#ADT direc-
tive in the syntype.

Telelogic Tau 4.5 User's Manual July 2003

| mplementation

Calculation of Receiver in Outputs

The Cadvanced/Chasic SDL to C Compiler contains an algorithm that
calculates the receiving process instance set, for outputs without TO,
considering channels, signal routes, connection points, and vialist.
There are however afew restrictions for the algorithm:

» Outputs in process types, or in processesin block types or system
types cannot be handled. The reason is that the same output might
lead to different receiversin different instantiation.

» Paths (channels - signal routes) that lead into other units that are
separate (see Edit Separation” on page 136 in chapter 2, The Orga-
nizer) cannot be followed by the algorithm, as that would violate
the separate generation scheme.

» Outputsin global procedures cannot be handled, asthe receiver de-
pends on the caller of the procedure.

This algorithm means that for an ordinary SDL-88 system, that is not
generated using separate units, no information about the channels and
signal routes are needed to direct signal to the correct receiver. For more
information about the possible optimizationsin applications, please see
the compilation switch XOPTCHAN and the ADT PidLit (“The Data
Type PldLit” on page 3180 in chapter 63, The ADT Library). Please
note that XOPTCHAN and PidLit is ailmost impossible to use if the
SDL system contains system types, block types, or process types.

July 2003 Telelogic Tau 4.5 User's Manual 2585

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Abstract Data Types

This section is areference to the abstract data types. The following top-
icswill be discussed:

2586

We will have alook at the implementation of the predefined data
typesin SDL, see” SDL Predefined Types’ on page 2588. We then
discuss how user-defined abstract data types are translated, see
“Trandlation of Sorts” on page 2595.

Next implementation of operators and the possibility to include
hand-coded C functions as implementation of the operatorsis pre-
sented, see “Implementation of User Defined Operators’ on page
2609.

Last, in “More about Abstract Data Types’ on page 2634, we dis-
cuss more details about operators and the possihilities to include a
hand-coded type definition in C to represent the SDL sort.

Removing un-used SDL Operators

When implementing an SDL system, you do not always use all avail-
able SDL operators. The Chasic/Cadvanced SDL to C Compiler re-
moves the declarations of unused operators, thus minimizing the code
size of the generated application. Unused operators that are removed

are:

operators in predefined data types, for example substring, concate-
nate, length in the newtype Charstring, etc.

operators defined in the predefined generators String, Array, Pow-
erset, Bag

special operators (and help functions) like assign, equal, default,
make, extract, modify, free

The Chasic/Cadvanced SDL to C Compiler performs the following
steps to optimize the code:

1

Every C function that implements an operator is surrounded by an
#ifndef definition.

Example 343 The #ifndef definition

#ifndef XNOUSE AND BIT STRING
/* function implementing the operator */

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

#endif

2. During the code generation, the usage of the operatorsin the trans-
lated SDL transitionsis recorded.

3. Theinterdependencies between different operators are updated. For
instance, an equal operator for a struct type may depend on equal
operators for all its component types.

4. For each operator that is found to be unused, a #define definition
is generated that removes the code for that operator. All the defines
are placed in afile called sdl_cfg.h.

Example 344 The #define command

#define XNOUSE AND BIT STRING

Note:

Even though the code size of the generated application is reduced,
the code size of the generated C code is increased.

Manual override

In order to handle cases where operators are used invisibly from the
Chasic/Cadvanced SDL to C Compiler, for example in inline C code,
you can manually override the automatic configuration of the unused
operators.

In the code generation process, the Targeting Expert always generatesa
manual configurationfilecalled sct_mcf .h. Inthisfileyou canlist the
unused operators that you have decided to include in the application.
Thisis done by un-defining the previous definitions made in the

sdl cfg.hfile

The sct_mcf . h can be edited directly from Targeting Expert. Select
Edit Configuration Header File from the Edit menu to open thefile.

Example 345 The #undef command in the sct_mcf.hfile
#ifdef XNOUSE_AND BIT STRING

#undef XNOUSE AND BIT STRING
#endif

Telelogic Tau 4.5 User's Manual 2587

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

One section of the sct_mcf . h file, is dedicated for the manual edits.
This section is marked with the text:

/* BEGIN User Code */
/* END User Code */

Themanual edits must beinserted between theseto lines otherwise they
will be deleted, asthe sct_mcf . h file isre-generated each timeyou
generate code. The information about the unused operators availablein
thesdl cfg.hfileisimportedtothesct mcf.nhfile. Thisalowsyou
to quickly see which operators that are unused.

SDL Predefined Types

Mapping Table

Below isatablewhich summarizesthe mapping rulesbetween SDL and
C, concerning the predefined typesin SDL and their operators. Note
that many of the operators are in C defined as macros, and expanded by
the C preprocessor to simple operatorsin C.

SDL name/oper ator C name/expr ession/oper ator

Boolean SDL_Boolean

False, True SDL_False, SDL_True

not xNot_ SDL_ Boolean

and xAnd_SDL_Boolean

or xOr_SDL_Boolean

xor xXor SDL_Boolean

=> xImpl SDL Boolean

=, /= yEQF_SDL_Boolean,
yNEgF_SDL_Boolean

2588 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

SDL name/oper ator C name/expression/oper ator

Character SDL_Character

NUL SDL_NUL

SOH SDL_SOH .
... (for al unprintable characters)

rar rar

’ b ’ ’ b ’ .
... (for all printable charactersexcept ' and
Y

Illll I\I I\lll I\\I

chr xChr_ SDL_Character

num xNum_SDL_Character

<, <=, >, >= xLT_SDL_Character,
xLE_SDL_Character,
xGT_SDL_Character,
XGE_SDL_Character

=, /= xEqQF_SDL_Character,
XNEgF_SDL_Character

Charstring SDL_Charstring

‘aa’ SDL_CHARSTRING LIT(“Laa”, “aa”)

mkstring xMkString SDL_Charstring

length xLength SDL Charstring

first xFirst SDL_Charstring

last xLast SDL Charstring

// xConcat SDL_ Charstring

substring xSubString SDL Charstring

=, /= yEgF SDL_Charstring,
yNEgF_SDL_ Charstring

Telelogic Tau 4.5 User's Manual 2589

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2590

SDL name/oper ator

C name/expr ession/oper ator

Integer

SDL_Integer

0, 1 e€tc.

SDL_INTEGER LIT(0),
SDL_INTEGER LIT (1) €fC.

+

xPlus_SDL_Integer

- (monodic, dyadic)

xMonMinus_SDL_Integer,
xMinus_SDL_Integer

xMult SDL_ Integer

/ xDiv_SDL_ Integer

mod xMod_SDL_Integer

rem xRem_SDL Integer

float xFloat_ SDL_ Integer

fix xFix SDL_ Integer

<, <=, >, >= xLT_SDL Integer,
xLE_SDL_Integer,
xGT_SDL Integer, XGE_SDL_ Integer

=, /= yEQF_SDL_Integer,
yNEgQF SDL_ Integer

Natural SDL_Natural

Real SDL_Real

12.45, SDL_REAL LIT(12.45, 12,

450000000)

- (monodic, dyadic)

xMonMinus_SDL_Real,
xMinus_SDL_Real

xPlus_SDL_Real

xMult SDL Real

xDiv_SDL_Real

xLT_SDL_Real, xLE SDL Real,
xGT_SDL_Real, xXGE_SDL Real

yEQF _SDL_Real, yNEQF_SDL Real

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

SDL name/oper ator

C name/expression/oper ator

pid SDI,_PId

Null SDL_NULL

=, /= yEQF_SDL_PId, yNEQF SDI_PId

Duration SDL_Duration

23.45 SDL_DURATION LIT(23.45, 23,
450000000)

+ xPlus_SDL_Duration

- (monodic) xMonMinus_SDL_Duration

- (dyadic) xMinus_SDL_Duration

* (Duration * Real)
* (Real * Duration)

xMult SDL Duration,
xMultRD_SDL Duration

/ xDiv_SDL Duration

<, <=, >, >= xLT_SDL_Duration,
xLE_SDL Duration,
xXGT_SDL Duration,
XGE_SDL Duration

=, /= yEQF_SDL Duration,
yNEgF_SDL Duration

Time SDL_Time

23.45 SDL_TIME LIT(23.45, 23,
450000000)

+ (Time + Duration) | xPlus_SDL Time,

+ (Duration + Time) | xPlusDT SDL_Time

- (result: Time) xMinusT SDL Time

(result: Duration)

xMinusD_SDL Time

<, <=, >, >= xLT SDL _Time, xLE_SDL Time,
XGT_SDL Time, xGE_SDL_ Time
=, /= yEQF_SDL_ Time,
yNEQF_SDL Time
IASString SDL_IAS5String
NumericString SDL_NumericString
VisibleString SDL_VisibleString
PrintableString SDL_PrintableString

Telelogic Tau 4.5 User’s Manual

2501

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

SDL name/oper ator

C name/expr ession/oper ator

Bit SDI, Bit

not xNot_ SDL_Bit

and xAnd_SDL_Bit

or xOr SDL Bit

xor xXor SDL_Bit

=> xImpl SDL Bit

=, /= yEq_SDL_Bit, yNEq SDL Bit

Bit string

SDL_Bit_ String

not xNot SDL Bit String

and xAnd_SDL_Bit_String

or xOr_SDL Bit_String

Xor xXor_SDL_Bit_String

=> xImpl SDL_Bit_ String
mkstring xMkString SDL_Bit_ String
length xLength SDL Bit_String
first xFirst SDL_Bit String
last xLast SDL Bit String

// xConcat SDL Bit String
substring xSubString SDL Bit String
bitstr xBitStr SDL Bit String
hexstr xHexStr SDL Bit String
=, /= yEg SDL_Bit_ String,

yNEq_SDL_Bit String

2592 Teldlogic Tau 4.5 User's Manual

July 2003

Abstract Data Types

July 2003

SDL name/oper ator

C name/expression/oper ator

Octet SDL_Octet

not xNot_SDL_Octet

and xAnd_SDL_Octet

or xOr_SDL_Octet

Xor xXor_ SDL Octet

=> xImpl SDL Octet

shiftl xShiftL SDL Octet

shiftr xShiftR_SDL Octet

+ xPlus_SDL _Octet

- xMinus_SDL_Octet

* xMult_ SDL_Octet

i2o xI20_SDL_Octet

o2i x02I_SDL_Octet

/ xDiv_SDL_Octet

mod xMod_SDL_Octet

rem xRem_SDL_ Octet

bitstr xBitStr SDL Octet

hexstr xHexStr SDL_Octet

<, <=, >, >= yLT SDL_Octet, yLE_SDL_Octet,
yGT_SDL_Octet, yGE_SDL Octet

=, /= yEq_SDL_Octet, yNEqg SDL_Octet

Telelogic Tau 4.5 User’s Manual

2593

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2594

SDL name/oper ator

C name/expr ession/oper ator

Octet_string

SDL_Octet String

mkstring xMkString SDL_Octet_ String
length xLength SDL Octet String
first xFirst SDL Octet String
last xLast_ SDL Octet String

// xConcat SDL Octet String
substring xSubString SDL Octet String
bitstr xBitStr SDL Octet String
hexstr xHexStr_ SDL Octet String

bit_string

xBit_String SDL Octet_String

hex string

xHex_ String SDL Octet_String

=, /=

yEg_SDL_Octet_String,
yNEg_SDL_Octet String

Object identifier

SDL_Object Identifier

mkstring xMkString SDL Object Identifier
length xLength SDL Object Identifier
first xFirst SDL Object_Identifier
last xLast_SDL_Object_Identifier

// xConcat_SDL Object_Identifier
substring xSubString SDL_Object_ Identifier
=, /= yEq_SDL Object_Identifier,

yNEg_ SDL_Object Identifier

NULL (sort)

SDL_Null

NULL (literal)

SDL_Nullvalue

=, /=

vyEg_SDL Null, yNEg SDL Null

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

C Definitions

We will here discuss the types and macros supplied by the runtime li-
brary in the Cadvanced/Cbasic SDL to C Compiler for the predefined
typesin SDL. These macros and extern definitions for functions can be
found inthefile sctpred.h, except for the Pid sort which ishandled in
thefile scttypes.h.

Note:

For more information about the Charstring sort, see the section
“Handling of the Charstring Sort” on page 2618.

Translation of Sorts
Thefollowing data types are handled by the Cadvanced/Chasic SDL to
C Compiler:

Predefined Types
Enumeration Type

@
SB[

Inheritance

Predefined Types

All the predefined data types (Integer, Natural, Boolean, Character,
Charstring, Real, Time, Duration, Pid, Bit, Bit_string, Octet,
Octet_string, Object_identifier, lA5String, NumericString, Printa-
bleString, and VisibleString) are completely handled. The name of
thesetypesin the generated C code will be SDL_Integer, SDL_Natural,
SDL_Boolean, and so on. Thetranslation rulesfor these types and their
operators are discussed in more detail in the “ SDL Predefined Types’

on page 2588.

Telelogic Tau 4.5 User's Manual 2595

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2596

Enumeration Type

A sort which isnot astruct and does not contain any inheritance or gen-
erator instantiation, but which contains aliteral list, is seen as an enu-
meration type. See the example below. Such atypeistranslated to int,
together with alist of defines wheretheliterals are defined as 0, 1, 2,
and so on. Asin al examplesin this sub-section, the prefixes, which are
added to names when they are trandated to C, are not shown. The pre-
fixes are added to make sure that no hame conflicts occur in the gener-
ated program. For more information about prefixes see “Names and
Prefixes in Generated Code” on page 2663.

Example 346: Enumeration Type

NEWTYPE EnumType
LITERALS Litl, Lit2, Lit3;
ENDNEWTYPE;

istrandlated to:

typedef XENUM TYPE EnumType;
#define Litl 0
#define Lit2 1
#define Lit3 2

Where the macro xenum_TYPE is defined in sctpred.c as:

#ifndef XENUM_TYPE
#define XENUM TYPE int
#endif

Thismeansthat all enum typeswill be int types, except if the macro
XENUM_TYPE isredefined by the user (to unsigned char for example).
An enum type with 256 or more values will always be of typeint and
will not be affected by the macro xeNuM_TYPE.

Struct

An SDL structistranslatedtoastructin C, ascan be seeninthe example
below.

Example 347: Struct

NEWTYPE Str STRUCT
a Integer;
b Boolean;
c Real;
ENDNEWTYPE;

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

istrandlated to:

typedef struct {
SDL_Integer a;
SDL_Boolean b;
SDL_Real c;

} str;

All the properties of astruct in SDL are preserved in the C code.

The predefined operators extract! and modify! areimplemented as com-
ponent selectionsin the struct in the sameway asin SDL, that is, if Sis
avariable of type Str, then Slain SDL istranslated to S.ain C.

The predefined operator make!, whichisaconstructor of astruct value,
isimplemented by generatingaMake functionin C. Thismeansthat the
expression “(. 12, true, 0.22 .)" in SDL isin principle translated to the
C function call Make(12, true, 0.22).

The components of a struct may be of any sort that the code generator
can handle. A component may, however, not directly or indirectly refer
to the struct sort itself. Asan example the sort Str above may not have
acomponent of sort Str. In such acasethetrandation toaC struct would
not any longer be valid.

There are some extensions to SDL that are handled by the code genera-
tor. Itispossibleto definebit fields, i.e, to define the size of components
(asin C) and to have optional components and components with initial
values (asin ASN.1). Examples are shown below.

Example 348: Struct with bit fields

NEWTYPE str STRUCT
a Integer : 4;
b Integer : 4;
¢ UnsignedInt : 2;
d Integer;
ENDNEWTYPE;

istrandlated to:

typedef struct str_ s {
SDL_Integer a : 4;
SDL_Integer b : 4;
int : 0;
UnsignedInt

c : 2;
SDL_Integer d;

July 2003 Telelogic Tau 4.5 User's Manual 2597

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2598

} str;

Notethat only Integer and Unsignedint should be used in bit field com-
ponents.

Example 349: Struct

NEWTYPE str STRUCT
a, b integer;

c Boolean OPTIONAL;
d str2 OPTIONAL;
e Charstring := ‘telelogic’;
f arr3 := (. 11 .);
ENDNEWTYPE;
istrandated to:

typedef struct str_ s {
SDL_Integer a;
SDL_Integer b;
SDL_Boolean c;
SDL_Boolean cPresent;
str2 d;
SDL_Boolean dPresent;
SDL_Charstring e;
SDL_Boolean ePresent;

arr3 f;
SDL_Boolean fPresent;
} str;

Both optional components and components with initial values have a
Present flag. Thisis according to ASN.1 and the translation of ASN.1
to SDL defined in Z.105. The present flag for a component with initial
valueistrueif the component contains its default value otherwise false
(the Present flag is used to determine code for some ASN.1 encoding
scheme). The present flag for an optional component is false until the
component isassigned avalue. In SDL the present flags can only be ac-
cessed through operators and cannot be changed.

Union
Please see a so the CHOI CE concept presented below, asit usually pro-
vides a better and more secure solution to the same kind of problems.

Using the directive #UNION (see example below) it is possible to tell
the Cadvanced/Chasic SDL to C Compiler to generate a union accord-
ing to the following example:

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Example 350: Union

NEWTYPE Str /*#UNION*/ STRUCT
tag integer;
a integer;
b Boolean;
c real;
ENDNEWTYPE ;

is translated to:

typedef struct {
SDL_Integer tag;
union {
SDL_Integer a;
SDL_Boolean b;
SDL_Real c;
} U;
} str;

Thefirst component in the struct is assumed to be atag value indicating
which of the union componentsthat are active. The tag should either be
integer or an enumeration type. Tag value O or first enumeration literal
isused to indicate that thefirst of the remaining components are active,
and so on. On the SDL level a#UNION struct should be handled just
likeany other struct. It isup to the code generator to generate the correct
codefor operations on the struct, like assignment, test for equality, com-

ponent selection, and so on.

Note:

It is completely up to the user to make certain that only valid com-
ponentsin a#UNION struct are accessed. During simulation, how-
ever, tests are inserted to ensure that only valid components are ac-

cessed.

UnionC

By using the directive #UNIONC according to the example below, it is
possibleto tell the Cadvanced/Cbasic SDL to C Compiler to generate a

true C union.

Example 351: UnionC

NEWTYPE Str /*#UNIONC*/ STRUCT
a integer;
b Boolean;
c real;

ENDNEWTYPE ;

Telelogic Tau 4.5 User’s Manual

2599

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2600

istrandated to:

typedef union {
SDL_Integer a;
SDL_Boolean b;
SDL_Real c¢;

} str;

Note:

The #UNIONC directive is not recommended for use as the Cad-
vanced/Chasic SDL to C Compiler cannot give any support for
checking the validity of component selection. Both the #UNION di-
rective and the CHOICE concept discussed below are much better.

Note also that pointer types, including Charstrings are not allowed in
#UNIONC structs, asit is not possible to know when to allocate and de-
alocate memory for such components.

Choice

Choice, which isan SDL extension originating from the needs when
translating ASN.1 to SDL and which isincluded in SDL-2000, can be
used to express a union with implicit tag.

Example 352: Choice

NEWTYPE Str CHOICE
a integer;
b Boolean;
c real;
ENDNEWTYPE;

istrandated to:

typedef enum {a, b, c} StrPresent;
typedef struct {
StrPresent Present;
union {
SDL_Integer a;
SDL_Boolean b;
SDL_Real c;
}U;
} str;

The component Present, which is the tag field, and itstype
(strpresent in the example above) are both availablein SDL. The
Present component can in SDL be accessed, but not changed, through:

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

e component selection, i.e. by variable!Present, i.€. itispossible
to for example test: vipresent = a

» the operators aPresent, bPresent, or cPresent, which returns true or
false depending on if the component is active or not.

The Present component isautomatically set by the code generator when
a component in the choiceis given avaue.

Note that during simulations and validations, it is automatically tested
that a component “is present” when an attempt is made to access the
component. A run-time error isissued if thisis not the case.

Array

Instantiations of the predefined generator array can be handled by the
code generator with the following restriction: The component and index
sort may be any sorts that the code generator can handle, but may not
directly or indirectly refer to the array typeitself (see also the previous
paragraph on struct).

If theindex sort isadiscrete sort, with one closed interval of values, that
is of the following sorts:

e Character
* Boolean
e Octet

* Bit

» A sort that is considered as an enumeration type

» Syntypes of integer, character, Boolean, Octet, Bit, and enumera-
tion types. The subtypes may only have one range condition that
specifies a closed interval of values,

thenthe SDL array istranslated to astruct containing an el ement which
isanarray in C.

If theindex sort isnot one of the sort in the enumeration above, the SDL
array istranglated to alinked list. Thelist head contains the default val-
ue for all possible indexes, while the list elements contain value pairs,
(index_value, component_value), for each index having a component
value not equal to the default value.

Example 353: Array

SYNTYPE Syn = integer
CONSTANTS 0:10

Telelogic Tau 4.5 User's Manual 2601

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2602

ENDSYNTYPE;

NEWTYPE Arr ARRAY (Syn, real)
ENDNEWTYPE;

istrandlated to:

typedef SDL_Integer Syn;
typedef struct {
SDL_Real A[11];

} Arr;

All the properties of an array in SDL are preserved in the C code.

The predefined operators extract! and modify! areimplemented as com-
ponent selection of thearray in Cinthesameway asin SDL, soif AVar
isavariable of type Arr, and Index isavalid index expression, then av-
ar (Index) in SDL istranslated to Avar . A [Index] in C. Inthe case of
alink list implementation of the array, component selection is made
through function calls.

The predefined operator make!, which isaconstructor of an array value,
isimplemented by generic Make functionin C.

String

Instantiations of the predefined generator string can be handled by the
code generator with the following restriction: The component sort may
be any sortsthat the code generator can handle, but may not directly or
indirectly refer to the string type itself.

There are two translation schemes for Strings. The directive #STRING
decide whether the string should be translated to linked list or to an ar-
ray. For the #STRING directive please see “ Alternative | mplementa-
tions of the String Generator — Directive #STRING” on page 2674.

Strings are tranglated to linked list containing one element for each ele-
ment in the string value. Operations and component selection in string
sorts are fully supported.

Powerset

Instantiations of the predefined generator powerset can be handled by
the code generator with the following restriction: The component sort
may be any sortsthat the code generator can handle, but may not direct-
ly or indirectly refer to the powerset type itself.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

There are two tranglation schemes for powersets. If the component sort
fulfills the conditions for index sorts mentioned in the subsection about
arrays above (“Array” on page 2601), an array of 32-bit integers are
used. Each bit will be used to represent a certain element whether it isa
member of the powerset or not. If thisis not the case, alinked list of all
elements that are member of the set, is used to represent the powerset.
All the available operations defined for Powersetsin SDL are supported.

Bag

The Bag generator, whichisintroduced in SDL in Z.105, i.e. in the map-
ping from ASN.1to SDL, issimilar to powerset. However, itispossible
to have severa elementswith the same valuein abag. A bagisaways
translated into alinked list, with one element for each value that isa
member of the bag. Each element contains the value and the number of
occurrences of thisvalue.

Ref, Own, Oref

These generators represent pointers with different properties. They are
al translated to pointersin C.

Syntypes

Syntypes may be defined for any sort that the code generator can han-
dle, giving anew namefor the sort and possibly a new default valuefor
variables of the sort. Range conditionsthat restrict the allowed range of
values are also allowed.

A syntypeistranslated to atype equal to the parent type using typedef.
The check that a variable of asyntypeisonly assigned legal valuesis
implemented in atest function that is generated together with the type
definition. An attempt to assign an illegal value to such a variable will
be reported as an SDL dynamic error. If the syntype is can be used as
index sort in an array and the generated type in C would become an ar-
ray, there will also be atest function that can be used to check that an
index value iswithin its range in an array component selection.

Example 354: Syntypes

SYNTYPE Syn = integer
CONSTANTS 0:10
ENDSYNTYPE;

SYNTYPE Syn2 = integer

Telelogic Tau 4.5 User's Manual 2603

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2604

CONSTANTS <0, =2, >=10
ENDSYNTYPE;

SYNTYPE Arrl = Arr
DEFAULT (. 2.0 .);

ENDSYNTYPE;

/* Arr defined above */

istrandlated to:

typedef SDL Integer Syn;
typedef SDL_Integer Syn2;
typedef Arr Arrl;

Inheritance

A typethat inherits another typeistrandated to atype equal to the par-
ent type using atypedef.

Default Values

Default values are fully supported for all sorts that the code generator
can handle, both if adefault valueisgiven in asort definition and if an
initial valueis given in avariable definition (DCL).

Default values will also be assigned to all variables and components
which do not have adefault value specified in SDL. Thereason for this
isto avoid handling undefined variablesin C, which might give serious
problems and unexpected behavior of an executing program. Thevalues
selected by the code generator in such a case can be found below.

Note:

Thisisadeviation from SDL-92. It means that the generated pro-
gram does not handle the value undefined for any type.

If no default valueis given in the sort and no start valueis given in the
data definition (DCL) for avariable, the variable will be set to 0 by us-
ing amemset to 0.

Operators

In SDL-92, it ispossibleto define the behavior of operatorsin ADTsdi-
rectly in SDL, using operator diagrams or operator implementationsin
SDL textual form. Such operators are trandated to C by the Cad-
vanced/Chasic SDL to C Compiler, and none of what issaid below is

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

valid for such an operator. It is also possible to specify that an operator
isexternal. In this case the code generator assumes that a C function
with the name used in SDL exists and translates callsto the external op-
erator directly to calls to the C function.

A user defined operator in an SDL sort definition, which is not defined
by an operator diagram, istranslated to a C function which asksthe user
for the result of the operation. At acall of an operator, the user is sup-
plied with information describing what the operator and the sort are
called, and given information about the parameter values. Y ou are then
reguested to answer with the result value. If you press <rReturns at the
prompt for the result, the default value of the actual result typeisre-
turned. If the operator does not have a result type, no question is asked.

Example 355: Operator

Operator Op in sort S is called.
Parameter 1: true

Parameter 2: 10

Enter value (integer) : 12

assuming that newtype S contains an operator

Op: Boolean, Integer -> Integer;

More about operator implementation, both parameter passing and how
to include implementations written in C can be found in the next two
sections.

Literals

In sortsthat are translated to enumeration typesin C, literals are obvi-
ously handled by the code generator. In sorts that are not enumeration
types, literals are treated as operators without parameters and are han-
dled in exactly the same way as user defined operators.

Note:

The Cadvanced/Cbasic SDL to C Compiler does not permit naming
of literals using name class literals or character strings.

Axioms and Literal Mappings

Axioms and literal mapping are allowed by the code generator in sorts,
but are completely ignored.

Telelogic Tau 4.5 User's Manual 2605

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Parameter Passing to Operators

For performance reasons the datatypesin SDL have been divideintwo
groups, ssimple, small types that are passed as values and structured,
larger types that are passed as references (addresses).

Types passed as addresses (structured types)

Bit_string

Octet_string

Object_identifier

Struct types (including #UNION, #UNIONC)

Choice types

Instantiations of generator Powerset

Instantiations of generator Bag

Instantiations of generator Array

Instantiations of generator String

Instantiations of generator Carray

Syntypes of atypein thislist

Typesthat inherit atypein thislist

Table 1: Types Passed as Addresses

2606 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Types

Types passed as values (simple types)

Integer
Real
Natural

Boolean

Character

Time

Duration

Pid

Charstring

Bit

Octet

IA5String

NumericString
PrintableString

VisibleString

NULL

Enumeration types
Instantiations of generator Ref, Own, ORef
Syntypes of atypein thislist

Typesthat inherit atypein thislist

Table 2: Types Passed as Values
Note:

For types represented as pointers (Charstring, including its syn-
types, Ref, Own, ORef), the pointers, not the addresses of the point-
ers, are passed as parameters.

July 2003 Telelogic Tau 4.5 User's Manual 2607

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2608

The parameter passing for operatorsimplementedin C works asfollows
(for Cmicro the mechanism described bel ow is also used for operator di-
agrams and procedures):

In parameters:

» Passedasavauein Cif thetypeisinthelist “Passed asvalue’. This
means that the parameter type in C isthe sametype asin SDL.

» Passed asan addressin Cif thetypeisin thelist “Passed as ad-
dress’. This meansthat the C parameter is (SDL_type*) if thetype
in SDL isSDL _type.

In/Out parameters:

Parameters are always passed as addresses, i.e the C parameter is
(SDL_type*) if thetypein SDL is SDL_type.

Operator result:

» |ftheresulttypeisinthelist “Passed asvalue’, the C function result
type will be the same asin SDL.

» |If theresult typeisin thelist “Passed as address’, two things are
changed. Firstly, the C result type will be (SDL_type *), i.ethere-
sult will be an address. Secondly, an extra parameter isinserted last
in the C function. This parameter is also of type (SDL_type *) and
isused asalocation to storetheresult of thefunction. At an operator
call, a“dummy” variable should be passed as the actual parameter.
The C function can then use this to store the result of the operator
and should return the variable again as result.

Example 356:
Assume that structl is a newtype struct in SDL.

operators
X : integer, in/out integer -> integer;
Y : structl, in/out structl -> structl;

The C prototypes for these operators are:

SDL_Integer X (SDL_Integer, SDL Integer *);
structl * Y (structl *, structl *, structl *);

The example implementations are:

SDL_Integer X
(SDL_Integer Paraml, SDL Integer *Param2)

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

{

*Param2 = *Param2+Paraml;
return *Param2;

}

structl * Y (structl *Paraml,
structl *Param2,
structl *Result)

/* implementation assuming structl to contain
two integers */

(*Param2) .compl = (*Param2) .compl+ (*Paraml) .compl;
(*Param2) .comp2 = (*Param2) .comp2+ (*Paraml) .comp2;
*Result = *Param2;

return Result;
/* always return the last, extra, parameter */

Note: VERY IMPORTANT

AsIN parameters are passed as addresses for structured types,
changing such aparameter inside the operator might have undesired
effects. A variable passed as actual parameter is then also changed.
If youwant to changetheformal parameter copy it first to aoperator
local variable.

For Cadvanced/Chasic thisrule appliesto operatorsimplementedin
C. For Cmicro thisrule also applies to operators and procedures de-

fined in SDL.

Implementation of User Defined Operators

Including Implementations of Operators

In aprevious subsection, the default behavior of the Cadvanced/Cbasic
SDL to C Compiler concerning operators (not defined in operator dia-
grams) and literals were described. If you do not specify otherwise in-
teractive functions are generated, which, in each case, will ask you for
the operator result or literal value. Thisisafast way of getting started,
but you will probably find it tedious in the long run, especialy if you

areusing abstract datatypes extensively. To cope with this problem and
to makeit possible to generate applications, the code generator offersa
possibility to include implementations written in C of the operator and

Telelogic Tau 4.5 User's Manual 2609

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2610

literal functions. This possibility can be used as an alternative to opera-
tor diagrams or operators defined using SDL textual form, where the
operator is defined directly in SDL.

When the choice between an implementation in SDL or in Cisto be
made there are a few things to consider:

— Thereisaways problems when mixing languages, for example
how are C names for SDL entities constructed.

— Checking of SDL isperformed by the SDL Analyzer, which will
find problems much earlier than the C compiler checking C
code. Also pointing to the error will be more accurate in SDL.

— SDL implementations will be more portable and might benefit
from future improvementsin the SDL Compiler.

— Therisk for backward compatibility problemsin future releases
of the SDL suite will be less for an SDL implementation.

— However, a C implementation might be more efficient or you
might already have a corresponding C function.

Soitisnot obviousif SDL or C implementations should be used. How-
ever, we recommend SDL if there are no specific reasons for using C.
Note a'so that the SDL extension described in “ Grammar for the Algo-
rithmic Extensions” on page 146 in chapter 3, Using SDL Extensions, in
the SDL Suite Methodology Guidelines could be very useful when writ-
ing implementationsin SDL.

Itispossibleto choose between two alternativesto implement operators
and literal functions:

e Q(question)
Thisisthedefault value and specifiesthat the code generator should
generate the interactive routines describe above.

» B (body)
This specifies that the code generator should generate the heading
of the operator and literal functions, while the user must supply the
bodies of the functions.

Note:

The Cfunctions are divided into afunction heading (extern or static
declaration) and a function body.

An example of afunction heading (extern declaration) is:

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Example 357: Implementing an Operator

extern SDL_Integer Max
(SDL_Integer Paral,
SDL_Integer Para2) ;

while the corresponding function body is:

SDL_Integer Max
(SDL_Integer Paral,
SDL_Integer Para2)

if (Paral > Para2)
return Paral;
return Para2;

The main reason for this division of functionsinto heading and body is
the separate compilation scheme used in C. If, for example, an abstract
datatypeisdefined in asystem and used in aprocessin the system, and
the processis generated on a separate file, then there hasto be amodule
interfacefile (a .nfile) for the system containing the external interface
(types, extern declarations of functions and so on). The interface file
should then be included in the file generated for the process.

Even if separate compilation is not used, the division of functionsinto
heading and body is useful. By having static declarations of the func-
tions, the order in which functions must be defined isrelaxed. If static
declarations were not used, afunction could only call the functions that
are defined textually before the actual function.

To select the way the Cadvanced/Cbasic SDL to C Compiler should
generate code for operators and literals, code generator directives are
used. A code generator directiveisan SDL comment with thefirst char-
acters equal to ‘#', followed by a sequence of lettersidentifying the di-
rective. Inthiscasethelettersare ADT (for Abstract Data Type) and OP
(for operator). An ADT directive and a OP directive should thus look
like:

/*#ADT */ /*#0OP */
The text is not case sensitive.

OP directives are recognized at two different positions in an abstract
datatype:

» Directly after the name of aliteral
« Directly after the semicolon ending the definition of an operator.

Telelogic Tau 4.5 User's Manual 2611

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2612

ADT directives are recognized immediately before the reserved word
ENDNEWTY PE (or ENDSYNTY PE).

Example 358: Implementing an Operator (#ADT)

NEWTYPE Str STRUCT
a integer;
b Boolean;
c real;
ADDING
LITERALS
Litl /*#0P */,
Lit2 /*#0P */;
OPERATORS
Opl :Str,integer -> Str; /*#0P */
Op2 :Str,Boolean -> Str; /*#0P */
/*#ADT */
ENDNEWTYPE;

At each of the positions after aliteral name or operator definition, there
isapossihility to specify how thisliteral or operator should be imple-
mented. In the directive immediately before ENDNEWTY PE the de-
fault implementation technique can be given. When the code generator
determines how to generate codefor aliteral or an operator, it first looks
for an OP directive after the literal name or operator definition. If no
such directiveisfound it looks for a directive immediately before
ENDNEWTYPE. If no ADT directive isfound here, the generation
technique Q (question) isassumed. For Cmicro, Q isnot used, so thede-
faultis B.

AnOPor ADT directive specifying a generation technique should have
the following structure:

/*#OP (B) */ /*#ADT (B) */
The letter between the parentheses should be either Q (question) or B
(body). Theinterpretation of Q and B was explained earlier. If B has
been specified for any operators or literals, then the C code for these
functions must be supplied by the user. This code should be placed in
the #BODY section inthe ADT directive, according to the following
example:

Example 359: Implementing an Operator (#ADT)

/*#ADT (B)
#BODY
C code, representing bodies of functions

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

*/

The section name, i.e #BODY, must be given on aline of its own and
must have the # character in thefirst position of theline. Upper case and
lower case letters are as usual considered to be equal. If the section is
empty, the section name can also be removed.

Note:

The Cadvanced/Cbasic SDL to C Compiler will not check the con-
sistency between the specification of implementation techniques
and the actual code included in the body section. This check is, to-
gether with checking the C code for syntactic and semantic errors,
left to the C compiler.

Unfortunately it isnot possibleto have C commentswithin the code that
isincluded in a#ADT directive, as SDL and C use the same symbols
for start and end of comments. If aC comment isincluded, the SDL An-
alyzer will consider the end of the C comment as the end of the SDL
comment. Instead aC macro called COMMENT can be used according
to the examples below. Note that there might be some compiler depen-
dent restriction of the character set allowed within the COMMENT
macro. For example, the character *;’ might not be allowed.

Example 360: Comment in ADT

COMMENT (This is a comment)

COMMENT (These comments may not contain commas \
and should have a backslash at each \
line break)

COMMENT ((By having double parenthesis, any text

can be entered into the comments. Some
compilers might not allow everything.))

The function headings representing literals and operators are deter-
mined by their corresponding definition in SDL. The number of param-
eters, their types, the result type of the function and function name are
al defined in SDL. In the example above, where the struct Str is de-
fined, there are two literals (Lit1 and Lit2) and two operators

(Opl: Str, integer — Str; and Op2: Str, Boolean —> Str;). The type Str
will be passed as an address, so the parameter passing rules described
previously have to be applied. The function heading of the correspond-
ing C functions should be:

Telelogic Tau 4.5 User's Manual 2613

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2614

Example 361: Implementing an Operator

extern Str* Litl (Str¥);
extern Str* Lit2 (Str¥);
extern Str* Opl (Str*, SDL Integer, Str¥*);
extern Str* Op2 (Str*, SDL Boolean, Str¥);

The function bodies, which should be supplied by the user if B is spec-
ified in the OP or ADT directive, are ordinary C functions.

Example 362: Implementing an Operator

Str* Litl (Str* Result)
{
Result->a
Result->b false;
Result->c 10.0;
return Result;

2;

Str* Opl (Str* P1l, SDL_ Integer P2, Str* Result),

*Result = *P1;
Result->a = Pl->a + P2;
return Result;

}

Beforeit ispossibleto give acomplete example of an abstract datatype
with implementation of its operators supplied as C functions, it is nec-
essary to look at the problem of names. When aname of some object in
SDL istrandated to C, a suitable sequence of characters, aprefix, is
added to the SDL name, to make the name uniquein the C program, see
also “Names and Prefixesin Generated Code” on page 2663. This strat-
egy is selected in the Cadvanced/Chasic SDL to C Compiler to avoid
name conflictsin the generated code, but it makesit also impossible to
predict the full name of, for example, atype or afunction, in the gener-
ated program. To handle this problem the user can tell the code genera-
tor to translate anamein the C code in the same way as SDL names are
otherwise tranglated. Thisis specified by enclosing the SDL name be-
tween ‘#(’ and ')’ inthe C code. The two functionsin the previous ex-
ample and their headings would then become:

Example 363: Including SDL name in C Code

extern #(Str)* #(Litl) (
extern #(Str)* #(Opl) (# , SDL_Integer,
#

#(sStr)*);
(Str) *
(Str) *) ;

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

#(Str)* #(Litl) (#(Str)* Result)
Result->a 2;
Result->b false;
Result->c 10.0;
return Result;

#(Str)* Opl (#(Str)* P1l, SDL_ Integer P2,
#(Str)* Result),

*Result = *P1;
Result->a = Pl->a + P2;
return Result;

}

Thisfacility to accessan SDL namein C codeis described in more de-
tail inthe section “ Accessing SDL Namesin C Code— Directive#SDL"

on page 2654. A few observations concerning the exampl e above might
be appropriate:

1. The predefined sortsin SDL, that is for example integer, natural,
Boolean have the names SDL_Integer, SDL_Natural,
SDL_Boolean, and so on in the generated code. These types should
not be enclosed between ‘#(’ and *)’.

2. The component names of astruct are unchanged in the struct imple-
mentation in C, which means that struct components should not be
enclosed between ‘#(’ and ‘)’ either.

Two Examples of ADTs
We now give two complete examples of abstract data types.

Example 364: ADT Example

NEWTYPE Str STRUCT
a Integer;
b Boolean;
c Real;
ADDING LITERALS
Litl;
OPERATORS
Opl : Str, Integer -> Str;
Op2 : Str, Boolean -> Str;
/*#ADT (B)
#BODY
#(Str)* #(Litl) (#(Str)* Result)

Telelogic Tau 4.5 User's Manual 2615

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Result->a 2;
Result->b SDL_False;
Result->c 10.0;

return Result;

}

#(Str)* #(0Opl) (#(Str)* P1l, SDL Integer P2,
{ #(Str) * Result)

*Result = *P1;
Result->a = Pl->a + P2;
return Result;

}

#(str)* #(0Op2) (#(Str)* P1l, SDL Boolean P2,
#(Str)* Result)

if (P2)

*Result = *P1;
else

(void) #(Litl) (Result) ;
return Result;

*/
ENDNEWTYPE ;

The example above should be compared with the same example written
in SDL. Notethat theliteral in the previous exampleisreplaced with an
operator without parameters. The algorithmic extensions described in
“Grammar for the Algorithmic Extensions’ on page 146 in chapter 3,
Using SDL Extensions, inthe SDL Suite Methodology Guidelinesisalso
used as they provide a powerful way to write textual algorithms.

Example 365: ADT Example in pure SDL

NEWTYPE Str STRUCT
a Integer;
b Boolean;
c Real;
OPERATORS
Litl : -> Str;
Opl : Str, Integer -> Str;
Op2 : Str, Boolean -> Str;
OPERATOR Litl RETURNS Str

RETURN (. 2, false, 10.0 .);
OPERATOR Opl FPAR P1 Str, P2 Integer RETURNS Str

DCL Result Str;
Result := P1;

2616 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Result'!a := Pll!a + P2;
RETURN Result;

OPERATOR Op2 FPAR P1 Str, P2 Boolean RETURNS Str
IF (P2)
RETURN P1;
RETURN Litl;

ENDNEWTYPE ;

Example 366: ADT Example

SYNTYPE Index = Integer CONSTANTS 1:10
ENDSYNTYPE,

NEWTYPE A Array (Index, Integer)
ADDING LITERALS
Zero /*#OP (B) */;
OPERATORS
Add : A, A -> A; /*#0OP (B) */
Sum : A -> Integer;
/*#ADT ()
#BODY
#(A)* #(Zero) (#(A)* Result)

SDL_Integer i = 0;
GenericMakeArray (Result,

(tSDLTypeInfo *)&ySDL_#(A), &i);
return Result;

}
#{t(A)* #(Add) (#(A)* P1, #(A)* P2, #(A)* Result)

int I;
for (I = 1; I<=10; I++)

Result->A[I] = P1->A[I] + P2->A[I];
return Result;

*/
ENDNEWTYPE ;

Notethat no body is supplied for the operator Sum as the default imple-
mentation strategy for operators, which should be used for Sum, isQ
(question). The cenericMakearray function used to implement the lit-
erd isagenericfunction that constructsarray values. Thedetailsfor this
function will be described later in this section.

For more information about the functions and types (supplied by the
runtime library in the Cadvanced/Chasic SDL to C Compiler and con-

Telelogic Tau 4.5 User's Manual 2617

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2618

tained in generated code) that can be useful when implementing opera-
torsin C, see” SDL Predefined Types’ on page 2588, and last in “More
about Abstract Data Types’ on page 2634.

Error Situations in Operators

In the C function used to implement operators (and literals) itispossible
to define error situations and handle them as ordinary SDL run-time er-
rors. The C library function xSDL OpError, with the following proto-
type:

extern void xSDLOpError (

char *OpName,
char *ErrText)

can be used for this purpose.

Example 367: Error Handler in Operator
Example of use:

if (strlen(C) <= 1) {
#ifdef XECSOP
XSDLOpError (“First in sort Charstring”,
“Charstring length is zero.”);
#endif
return SDL NUL;
} else
return C[1];

Thisisasimplified version of the test in the function for the operator
First in the sort Charstring. Here the error situation iswhen wetry to ac-
cess the first character in a charstring of length 0. In this case the
xSDLOpError is caled and a default value isreturned (NUL). By in-
cluding thexSDL OpError call between #ifdef XECSOP - #endif the
function is only called to report the error if error checks are turned on.
The first parameter to xSDL OpError should identify the operator and
the sort, while the second parameter should describe the error.

Handling of the Charstring Sort
The SDL sort Charstring isimplemented as char * in C.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Note:

This means that the value NUL (ASCII character 0) cannot be part
of aCharstring, asthisvalueisused as string terminator in C (thisis
checked by the library functions for Charstring).

The code generator and the library functions for the Charstring opera-
torsuse thefirst character (index 0) in the C string to indicate the status
of the string. If the first character is:

° IVi
the string isassigned to an SDL variable and may not be changed in
any way.

e 'L’
the string isa C char * literal, and may of course not be changed.

e 'T
the string is atemporary result from afunction returning a Char-
string. This memory should either be assigned to an SDL variable
or returned to the pool of free memory.

All the library functions for Charstrings handle memory in an appropri-
ateway. A user only hasto take the extra character in to account, when
Charstrings are handled in C. Any Charstring function parameters hav-
inga‘'T" asfirst character must be handled according to the discussion
above. A function that returns a Charstring and that creates new tempo-
rary memory to store the result, should assign the value ‘T’ to the first
character in the Charstring.

As pointersand dynamic memory are used to implement Charstrings, it
is necessary to be careful when Charstrings are handled in C code,
which we show in two examples.

Example 368: Equal Test on Charstring Sort

If thec operator == isused to check if two charstrings are equal, then
the actual test that is performed isto seeif the two pointer valuesto the
data areas representing the charactersin the string are equal.

To check if the charactersin the charstrings are equal the equal function
should be used:

yEgF_ SDL_Charstring

Telelogic Tau 4.5 User's Manual 2619

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2620

Example 369: Assignment on Charstring Sort

If the C assignment operator, =, is used to assign the vaue of one char-
string variable (C1) to another charstring variable (C2), then two things
will go wrong:

1. The memory used to represent the old value of Clislost and can
never be reused.

2. Cland C2 now refer to the same memory area, which meansthat if
one of the variablesis changed the other will also be changed. This
leads to unpredictable behavior of the program.

The correct way to handle assignment of charstringsisto use the rou-
tine:

yAssF_SDL_Charstring

The problems mentioned above can of course also occur if a struct or
array containing charstring components (or subcomponents) is handled
carelesdly. It is, for example, necessary to use the generic equal and as-
sign functions to perform equal test and assignment.

To avoid problems one should be aware that Charstring isimplemented
aschar * in C and take the consequences thereof. There are anumber of
help functions (that implement the operators for the Charstring sort)
supplied in the runtime library that might be helpful when handling
Charstrings. See “SDL Predefined Types’ on page 2588).

Other Types Containing Pointers

The principal discussion about Charstrings in the previous section is
also relevant for all other types containing pointers. Such types are:

— Bit_string

— Octet_string

— Object_identifier

— Strings (not #STRING)

— General Arrays

— General Powersets

— Bags
All these types contain aboolean component, | SAssigned, that givesthe
status of the data area. 1A ssigned serves the same purpose as the first
extra character in a Charstring and has to be treated in asimilar way.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

» IsAssigned equal to false meansthat thisdataareais atemporary re-
sult from afunction returning the data type. This memory should ei-
ther be assigned to an SDL variable or returned to the pool of free
memory.

» IsAssigned equal to true meansthat this value is assigned to avari-
able and may not be changed in any way. It can also mean that the
valueis part of (i.e. isassigned to) alarger data structure.

External Properties

Asan dternativeto the #ADT directive, which is acomment, the exter-
nal properties clause in a newtype can be used as container for thisin-
formation. See the following example:

Example 370: External Properties in a Newtype

NEWTYPE Str STRUCT

a integer;

b Boolean;

c real;

ADDING LITERALS
Lit;

OPERATORS
Opl : Str, integer -> Str;
Op2 : Str, Boolean -> Str;

ALTERNATIVE C;
#ADT (B)
#BODY
some appropriate C code
ENDALTERNATIVE;

ENDNEWTYPE ;

The #ADT directive, without the /* */ can be placed between
ALTERNATIVE C; and ENDALTERNATIVE.

Note:

According to the syntax of SDL, if you have an external properties
clause (i.e. alternative - endalternative), you cannot, in the same
newtype, have operator diagrams, axioms, or literal mappings.

Telelogic Tau 4.5 User's Manual 2621

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2622

More about Operators

For an operator in an abstract data type, not only B (body) or Q (ques-
tion) may be specified. The following choices are available:

* Q(question)
Thisisthedefault value and specifiesthat the code generator should
generate the interactive routines describe above.

* B (body)
This specifies that the code generator should generate the heading
of the operator or literal function, while the user should supply the
body of the function.

* H (heading)
This specifies that the code generator should neither generate the
heading nor the body of the operator or literal function. The user is
assumed to supply the necessary code.

e S(standard)
Thisisused to indicate that a standard function or operator is avail-
ableinthetarget language, which should be used asimplementation
of the SDL operator (literal). No function heading or function body
is generated. In expressions where such an operator is used, no pre-
fix is added to the SDL name during the translation, but the SDL
nameisused asit is (if no #NAME directive is present).

o P (prefix) or
I (infix)
where Pisthe default value. These letters are used to indicateif the
operator should be used as a function or an operator:

— Asan operator: a+l a== -a

— Orasafunctioncal: sin(a) power(a, 3)
Note:
As C does not include the possibility to have user defined operators,
| (infix) is only adequate together with S (standard).

For each operator one of the letters B, Q, H, S and one of the letters P,
| should be supplied, either in a#OP directive, or in a#ADT directive,
or asthe defaults Q and P; for literals P and | have no meaning.

The purpose of Sisstraight forward and easy to understand, but H might
reguire some explanation. H means that the code generator will not gen-

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

erate any code for the operator, which leaves the user with a number of

possibilities:

« By not including any code for an operator, the user may skip the
code for an unused operator.

» There might already exist external declarations for a number of op-
eratorsina . h filethat should be used instead of the generated head-
ings.

Example 371: Using S (Standard Function or Operator)

Example of usage of S (standard)

"4m . integer, real -> real; /*#OP (SI) */
sin : real -> real; /*#OP (SP) */

An SDL expression using these operators:

sin(a + 7.0) will betranslated to: sin (zh723 a + 7.0)

These examples show how standard functionsin thetarget language can
be directly utilized in abstract datatypes. In C, it is often easiest to use
#OP(HP) for such special cases, and implement the operator in the
#HEADING section as a C macro transforming the call to the appropri-
ate syntax.

Generic Functions

Type Info Nodes

A genericfunction can perform acertain task for several different types.
To be able to write generic functions, type-specific information for the
types must be made available. Thistype of information could be, for in-
stance, size of the type, component types for structured types and com-
ponent offsets. Thisinformation is provided by the type info nodes.

A typeinfo node is a struct that contains information that defines the
type. Each type has acorresponding typeinfo node. Each typeinfo node
contains two sections. The first section contains a sequence of general
componentsthat isidentical for al type info nodes. The second section
isanindividual type-specific sequence of componentsthat defines each
unique type.

Telelogic Tau 4.5 User's Manual 2623

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2624

Every newtype or syntype introduced in SDL will be described by a
type info node in the generated C code. For the predefined data types
the following type info nodes can be found in sctpred.h and sct -

pred.c.

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo
tSDLTypeInfo

ySDL_SDL_Integer;
ySDL_SDL_Real;
ySDL_SDL_Natural;
ySDL_SDL_Boolean;
ySDL_SDL_Character;
ySDL_SDL_Time;
ySDL_SDL_Duration;
ySDL_SDL_PId;
ySDL_SDL_Charstring;
ySDL_SDL_Bit;
ySDL_SDL_Bit_ String;
ySDL_SDL_Octet;
ySDL_SDL_Octet String;
ySDL_SDL_IA5String;
ySDL_SDL_NumericString;
ySDL_SDL_PrintableString;
ySDL_SDL VisibleString;
ySDL SDL Null;

extern tSDLGenListInfo ySDL_SDL Object Identifier;

For a user-defined type the type info node will have the name

ySDL_# (TypeName)

Generic Assignment Functions

Eachtypein SDL hasaccessto an assignment macroyAssF typename.
Examples for type Boolean and for a user-defined type A:

#define yAssF _SDL Boolean(V,E,A) (V = E)

#define yAssF A(V,E,A) yAss A(&(V),E,RA)
#define yAss A (Addr, Expr,AssName) \

(void) GenericAssignSort (Addr, Expr, AssName,
(tSDLTypeInfo *)&ySDL_A)

This macro is used in the generated code (and in the kernel) at each lo-
cation where an assignment should take place. The three macro param-
etersare;

* V:thevariable on theleft hand side
» E: the expression on theright hand side
» A:aninteger giving the properties of the assignment

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Thismacro will either become an assignment statement in C or acall of
an assignment function. An assignment statement will be used if assign-
ment is allowed according to C for the current type and if it has the cor-
rect semantics comparing with assignment in SDL.

If assignment is not possibleto use, the assign macro will become acall
to an assignment function. The basic generic assignment function can
befoundinsctpred.candsctpred.m

extern void * GenericAssignSort (void *, void *,
int, tSDLTypeInfo *);

where:

e Thefirst parameter is the address of the variable on the left hand
side.

» The second parameter is the address of the expression on the right
hand side.

» Thethird parameter is the properties of the assignment

» Thefourth parameter is the type info node for the actual type.

GenericAssignSort returns the address passed as the first parameter.

The GenericAssignSort function performs three tasks:

1. Theold valueon theleft hand side variable isreleased, if that is
specified in properties of the assignment and if the value contains
any pointers.

2. Thevalueiscopied from the expression to the variable. If possible
thisis performed by the function memcpy, otherwise special code
depending on the kind of type is executed.

3. ThelsAssigned flags are set up for the variable according to the
properties of the assignment.

Special treatment of Charstring and instantiations of the Own generator
has made it necessary to introduce specific wrapper functions that in
their turn call GenericAssignSort for these types:

extern void xAss_SDL_Charstring (SDL_Charstring *,
SDL_Charstring, int);

extern void * GenOwn Assign (void *, void *, int,
tSDLTypelInfo *);

Telelogic Tau 4.5 User's Manual 2625

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2626

An GenericAssignSort function must consider the following questions
in order to handle the objects correctly.

How should one copy the object?

Thisisvery important because performing the wrong action will lead to
memory leaks or access errors. Three different possibilities exist:

» AC: aways copy the referenced object.
* AR: aways copy the pointer, i.e reusing the referenced object.

* MR: copy pointer if the object istemporary or copy object if not
temporary.

What should be the status of the new object?

Thisisapreparation for the next operation on this object so the correct
decision can be made according to thefirst question. Two different pos-
sibilities exists:

» ASS: an object should becomeassigned if itisassigned to avariable
and needs to be copied in future assignments, i.e correspondsto the
values‘'V' and ‘L’ for the first character in a C- string representing
the Charstring sort. A typical caseisanormal assignment statement
in SDL.

e TMP: anobject should becometemporary if it isnot assigned to any
persistent variable and therefore should not be copied in subsequent
assignments, i.e corresponds to the value ‘ T’ for the first character
in a C-string representing the Charstring sort. A typical caseisare-
sult value from an operator.

What should be done with the old value referenced by the left hand
side variable?

Normally free should be performed on the value, as otherwise there
would beamemory leak. However, when initializing avariable, no free
ought to be performed, as free might be called on a random address.
Two different possibilities exists:

— FR: freeold value.

— NF: do not free old value.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

The third assignment property parameter in the GenericAssignSort
function should be given a value according to the ideas given above,
preferably using the macros indicated.

#define XASS AC_ASS FR (int)25
#define XASS MR ASS FR (int)26
#define XASS AR ASS FR (int)28

#define XASS AC_TMP_FR (int)17
#define XASS MR TMP FR (int)18
#define XASS AR TMP_FR (int)20

#define XASS AC_ASS NF (int)9
#define XASS MR ASS NF (int)10
#define XASS AR ASS NF (int)12

#define XASS AC_TMP_NF (int)1

#define XASS MR TMP _NF (int)2

#define XASS AR TMP NF (int)4

The macro names aboveareall of theform XASS 1 2 3, wherethe ab-
breviations placed at 1, 2, and 3 should be read:

e 1=AC: awayscopy

* 1=MR: may reuse (take pointer if temporary object)
* 1=AR: always reuse (take pointer)

e 2=ASS: new object assigned to "variable"

e 2=TMP: new object temporary

» 3=FR: cal freefor old value referred to by variable
* 3=NF: donot call freefor old value

Thedistinction between all these assignment possibility isonly of inter-
est when handling types using or containing pointers.

Generic Equal Functions

Eachtypein SDL has accessto an equal macro yEqF_typename and an
not equal macro yNEqF _typename. Examplesfor type Boolean and for
a user-defined type A:

#define yEQF SDL Boolean (El,E2) ((E1) ==)
#define yNEQF_SDL_Boolean (E1l,E2) ((E1) !'= (E2))
#define yEQF_z3 A(Exprl,Expr2) yEqg z3 A(Exprl, Expr2)
#define yNEQF_z3_ A (Exprl,Expr2) (! yEq_z3_A(Exprl,Expr2))
#define yEg z3 A (Exprl,Expr2) \
GenericEqualSort ((void *)Exprl, (void *)Expr2, \
(tSDLTypeInfo *)&ySDL z3_A)

July 2003 Telelogic Tau 4.5 User's Manual 2627

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2628

These macros are used in the generated code (and in the kernel) at each
location where equality tests are needed. The parameters to the equal
and not equal macro are the two expressions that should be tested.

If C equal or not equal are not possible to use, the equal macroswill be-
come callsto an equal function. The basic generic equal function can be
found in sctpred.h and sctpred.h:

extern SDL Boolean GenericEqualSort (void *, void *,
tSDLTypeInfo *);

where:

» thefirst two parameters are the addresses to the two expressions to
be tested

» thethird parameter is the type info node for the actua type.

Special treatment of Charstring and instantiations of the Own generator
has made it necessary to introduce specific wrapper functions that in
turn calls GenericEqual Sort for these types:

extern SDL Boolean xEg SDL Charstring
(SDL_Charstring, SDL_Charstring) ;

extern SDL Boolean GenOwn Equal (void *, void *,
tSDLTypelInfo *);

Generic Free Functions

Each typein SDL that isimplemented as a pointer, or that contains a
pointer that referencesto memory that isautomatically handled (in prin-
cipleall pointers except Ref pointers), has access to a corresponding
yFree_typename function or macro. Inthe generic function model, this
is always a macro.

#define yFree SDL Charstring(P) xFree SDL_ Charstring (P)

#define xFree SDL Charstring(P) \
GenericFreeSort (P, (tSDLTypeInfo *)&ySDL_SDL_Charstring)

#define yFree A(P) \
GenericFreeSort (P, (tSDLTypelInfo *)&ySDL_A)

The yFree macro will always be translated to a call to the function Ge-
nericFreeSort.

extern void GenericFreeSort (void **, tSDLTypeInfo *);

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

This function takes the address of a variable and atype info node and
rel eases the dynamic memory used by this value contained in the vari-
able.

Generic Make Functions
Therearefour generic functions constructing val ues of structured types:

extern void * GenericMakeStruct (void *, tSDLTypeInfo *, ...);
extern void * GenericMakeChoice (void *, tSDLTypeInfo *,

int, void *);
extern void * GenericMakeOwnRef (tSDLTypeInfo *, void *);
extern void * GenericMakeArray (void *, tSDLTypeInfo *,

void *);

GenericM akeStruct: According to SDL, the Make operator is only
available for the struct type. However, in the SDL suite the Make oper-
ator, and thus the GenericMakeStruct function, is also available for the
Object_identifier type and the instantiations of the generators string,
powerset, and bag.

Thevoid * parameter is the address of a variable where the result
should be placed. This valueis also returned.

ThetSDLTypelnfo * parameter isthe address to the type info node
for the type to be created.

..." denotes alist of addresses to the values for the componentsin
the struct. All parameters must be passed as addresses (void *) re-
gardlessif the component type should be passed as an address or as
avalue. The only exceptions are the types represented as pointers
themselves (Charstring, Ref, Own, ORef, and syntypes of these
types), where the pointers are passed, not the addresses of the point-
ers. In case of an optional field or afield with aniinitializer,a‘0’ or
"1’ ispassed to indicate if avalue for the component is present or
not. If ‘1" is passed the value follows as next parameter. If ‘0" is
passed no valueis present in the actual parameter list.

GenericM akeChoice: Thisfunction is used for choice types.

Thefirst void * parameter is the address of a variable where the re-
sult should be placed. Thisvalueis aso returned.

ThetSDLTypelnfo * parameter isthe address to the type info node
for the type to be created.

The int parameter decides which choice component that is present.

Telelogic Tau 4.5 User's Manual 2629

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2630

e Thelast void * parameter is the address of the value.

GenericMakeOwnRef: Thisfunction is used for instantiations of gen-
erators Own and Ref.

e ThetSDLTypelnfo* parameter isthe addressto the type info node
for the type to be created.

» Thevoid* parameter is the address to the value that should be as-
signed to the memory allocated by this function.

GenericMakeArray: Thisfunction isused for instantiations of the gen-
erators Array, Carray, and GArray.

e Thefirst void * parameter isthe address of a variable where the re-
sult should be placed. Thisvalueis also returned.

e ThetSDLTypelnfo* parameter isthe addressto the type info node
for the type to be created.

» Thelast void * parameter is the address to the value that should be
assigned to all components of the array.

Generic Function for Operators in Pre-defined
Generators

The generic function for the operatorsin the pre-defined generatorsfol-
low the general rules for operators with afew exceptions:

» atypeinfonodeisneeded as aparameter, asthe C function can han-
dle al instantiations of a certain generator.

» parameters of generator parameter types (component and index
types for example) must in many cases be passed as addresses, as
the properties of these types are not known.

General array

extern void * GenGArray Extract (xGArray Type *, void *,
tSDLGArrayInfo *);

extern void * GenGArray Modify (xGArray Type *, void *,
tSDLGArrayInfo *);

e Parameter 1: The array
» Parameter 2: The index value passed as an address

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

e Parameter 3: The type info node

* Result: The address of the component

Powerset

Generic functions available for powersets with a simple component
type. The powerset is represented a sequences of bits (unsigned
char[Appropriate_Length]).

#define GenPow Empty (SDLInfo,Result) \
memset ((void *)Result,0, (SDLInfo)->SortSize)

extern SDL_Boolean GenPow In (int, xPowerset Type *,
tSDLPowersetInfo *);

extern void * GenPow_Incl (int, xPowerset Type *,
tSDLPowersetInfo *, xPowerset Type *);

extern void * GenPow_Del (int, xPowerset Type *,
tSDLPowersetInfo *, xPowerset Type *);

extern void GenPow_Incl2 (int, xPowerset_Type *,
tSDLPowersetInfo *);

extern void GenPow_Del2 (int, xPowerset_Type *,
tSDLPowersetInfo *);

extern SDL_Boolean GenPow LT (xPowerset_Type *,
xPowerset Type *, tSDLPowersetInfo *);

extern SDL_Boolean GenPow LE (xPowerset Type *,
xPowerset_Type *, tSDLPowersetInfo *);

extern void * GenPow_And (xPowerset Type *, xPowerset Type *,
tSDLPowersetInfo *, xPowerset Type *);

extern void * GenPow Or (xPowerset Type *, xPowerset Type *,
tSDLPowersetInfo *, xPowerset Type *);

extern SDL_Integer GenPow_Length (xPowerset_ Type *,
tSDLPowersetInfo *);

extern int GenPow_Take (xPowerset_ Type *, tSDLPowersetInfo *);

extern int GenPow_ Take2 (xPowerset Type *, SDL Integer,
tSDLPowersetInfo *);

e Parameter of typeint in GenPow_In, GenPow_Incl,
GenPow_Del, GenPow_Incl2, GenPow_Del2: A component val-
ue.

* Result of typeint in GenPow_Take, GenPow_Take2: A compo-
nent value.

« Parameters of typetSDL Power setInfo *: The type info node.

o Parametersof type xPowerset_Type* after thetypeinfo node:
The address where the result should be stored. This addressis re-
turned by the function.

e Other xPowerset_Type* parameters: Powerset in parameters.

Telelogic Tau 4.5 User's Manual 2631

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2632

Bag and General Powerset

The following generic functions are available for bags and powersets
with complex component type. These types are represented as linked
listsin C.

#define GenBag Empty (SDLInfo,Result) \
memset ((void *)Result,0, (SDLInfo)->SortSize)

extern void * GenBag Makebag (void *, tSDLGenListInfo *,
xBag Type *);

extern SDL_Boolean GenBag In (void *, xBag_Type *,
tSDLGenListInfo *);

extern void * GenBag Incl (void *, xBag Type *,
tSDLGenListInfo *, xBag Type *);

extern void * GenBag Del (void *, xBag_ Type *,
tSDLGenListInfo *, xBag Type *);

extern void GenBag Incl2 (void *, xBag_ Type *,
tSDLGenListInfo *);

extern void GenBag Del2 (void *, xBag Type *,
tSDLGenListInfo *);

extern SDL_Boolean GenBag_ LT (xBag_Type *, xBag Type *,
tSDLGenListInfo *);

extern SDL_Boolean GenBag_ LE (xBag_Type *, xBag Type *,
tSDLGenListInfo *);

extern void * GenBag And (xBag Type *, xBag Type *,
tSDLGenListInfo *, xBag Type *);

extern void * GenBag_ Or (xBag Type *, xBag Type *,
tSDLGenListInfo *, xBag Type *);

extern SDL Integer GenBag Length (xBag_ Type *,
tSDLGenListInfo *);

extern void * GenBag Take (xBag Type *, tSDLGenListInfo *,
void *);

extern void * GenBag Take2 (xBag Type *, SDL_Integer,
tSDLGenListInfo *, void *);

» Parameter of typeint in GenBag_Makebag, GenBag_In,
GenBag_Incl, GenBag_Del, GenBag_Incl2, GenBag_Del2: The
address of the component value.

* Result of typeint in GenBag_Take, GenBag_T ake2: The address
of the component value.

» Parametersof typetSDL GenListinfo *: The typeinfo node.

« Parametersof typexBag Type* after thetypeinfo node: The
address where the result should be stored. This addressis returned
by the function.

» Parametersof typevoid * after the typeinfo node: The address
where the result should be stored. This address is returned by the
function.

e Other xBag_Type* parameters: Bag/Powerset in parameters.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

String

Thefollowing Generic functions are available for String instantiations.
A String isimplemented as alinked list.

#define GenString Emptystring(SDLInfo,Result) \
memset ((void *)Result, 0, (SDLInfo)->SortSize)

extern void * GenString MkString (void *, tSDLGenListInfo *,
xString Type *);

extern SDL_Integer GenString Length (xString Type *,
tSDLGenListInfo *);

extern void * GenString First (xString Type *,
tSDLGenListInfo *, void *);

extern void * GenString Last (xString_ Type *,
tSDLGenListInfo *, void *);

extern void * GenString Concat (xString Type *,
xString Type *, tSDLGenListInfo *, xString Type *);

extern void * GenString SubString (xString Type *,
SDL_Integer, SDL_Integer, tSDLGenListInfo *,
xString Type *);

extern void GenString Append (xString Type *, void *,
tSDLGenListInfo *);

extern void * GenString Extract (xString Type *, SDL Integer,
tSDLGenListInfo *);

» Parameter of typevoid * in GenString_MkString,
GenString_Append: Address of component value.

» Parameter of typevoid * or xString_Type* after typeinfonode:
The address where the result should be stored. This addressis re-
turned by the function.

o Parametersof typetSDL GenListInfo *: The type info node.

» Other parameters: According to SDL definition of parameters.

Limited String

Generic functions available for limited strings, i.e. strings with
#STRING directive giving a max size of the string. These strings are
implemented asan array in C.

#define GenLString Emptystring(SDLInfo,Result) \
memset ((void *)Result,0, (SDLInfo)->SortSize)

extern void * GenLString MkString (void *, tSDLLStringInfo *,
xLString Type *);

#define GenLString Length(ST,SDLInfo) (ST)->Length

extern void * GenLString First (xLString Type *,
tSDLLStringInfo *, void *);

extern void * GenLString Last (xLString Type *,
tSDLLStringInfo *, void *);

extern void * GenLString Concat (xLString Type *,
xLString Type *, tSDLLStringInfo *, xLString Type *);

extern void * GenLString SubString (xLString Type *,
SDL_Integer, SDL_Integer, tSDLLStringInfo *,
xLString Type *);

extern void GenLString Append (xLString Type *, void *,

Telelogic Tau 4.5 User's Manual 2633

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2634

tSDLLStringInfo *);
extern void * GenLString Extract (xLString Type *,
SDL_Integer, tSDLLStringInfo *);

e Parameter of typevoid * in GenL String_MKkString,
GenString_Append: Address of component value.

» Parameter of typevoid * or xL String_Type* after typeinfo
node: The address where the result should be stored. Thisaddressis
returned by the function.

e Parametersof typetSDLL Stringlnfo *: The type info node.

e Other parameters. According to SDL definition of parameters.
More about Abstract Data Types

Including Type Definitions

Note:

Use the features presented in this section with care. The features
were developed early in the SDL suite history. Now in principle ev-
ery datatypein C can be expressed in SDL aswell. Therefore, the
recommended method is to write the typesin SDL or to trandate C
typesto SDL using the cpp2sdl tool.

History has also shown that it has been difficult to keep full back-
ward compatibility for these features and at the same time improve
the performance of the generated code. This of course comes from

that these features is highly dependent on the way code is generated.

In this subsection, the inclusion of atype definition in the target lan-
guage for an abstract data type will be described. When this facility is
used, it is necessary to specify how to perform assignment, test for
equal, assign default values, and so on, as it is not possible to generate
when the type definition is not known (not generated). All thisinforma-
tionisgiveninthe #ADT directive, which has the following structure:

/*#ADT
(T(x) A(x) E(x) F(x) K(x) X(x) M(x) W(x) R(x)
xy ‘file name’)

#TYPE

C code

#HEADING

C code

#BODY

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

C code

*/

where each x onthefirst line should be replaced by one of the characters
B, H, Q, S, or G. Replace y by Por |. The interpretation of these char-
actersis similar to the their interpretation for operators.

Body
Heading
Question
Standard
Generate
Prefix

I Infix

VO VO|IT|m

The reason why G (generate) is not allowed for operators or literasis
of course that it would mean to generate the implementation of the op-
eratorsfrom the axioms, which is, at least in the general case, animpos-
sibletask. For an operator defined in an operator diagram, G isassumed
independently of what the user specifies.

Thespecifications, givenin ADT directives, of how to generate codefor
type definition, assignment, test for equal, default values, and free func-
tion should be interpreted according to the table below.

Type Definition

First the actual type definition. The entry - should beinterpreted asif no
specification isgiven for T.

Type Interpretation
T(G) Generate type definition from SDL sort
T(B) Do not generate type definition. Assumethetype should

be “passed as value” to operators

T(BV) Do not generatetype definition. Assumethe type should
be “passed as address’ to operators

July 2003 Telelogic Tau 4.5 User's Manual 2635

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2636

Type I nter pretation

T Same as T(B)

- Same as T(G)
Assignment

Itis possibleto select how assignments should be performed for values
of the type. Note that al generated assignments will be of the form:

yAssF_# (SortName) (....);

TheyAssk_#(SortName) is amacro either implemented as assignment
or asacdl totheyAss #(SortName) function (if such function isto be
used), i.eas:

#define yAssF _#(S) (V,E,A) V = E
#define yAssF_#(S) (V,E,A) yAss #(S) (&(V),E,A)

Type Interpretation

A(B) Use and generate heading, but not body, of yAss #(S)
A(H) Use, but generate no code for yAss #(S)

A(G) » If thetype definition is generated:

— Use=if possible.
— Otherwise use the GenericAssignSort function
» If type definition is not generated (T, T(B)):

- Use-=
A(S) Use =
A Same asA(B)
- Same as A(G)

If you define your own assign function, it must be implemented asa
function, as the address of the function will be stored (in the type info
node for the data type) so GenericAssignSort can call it to handle sub-
components of thistype. An assign function has the following heading:

void yAss_# (SortName)
(# (SortName) *yVar,
(SortName) *yExpr,
int AssType)

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

It should assign the value passed as second parameter to the variable
passed as first parameter. If the type that is to be assigned contains any
pointers the assign function is a bit complicated to write in order to
avoid access errors and memory leaks. See the discussion about the As-
sType parameter to GenericAssignSort in “ Generic Assignment Func-
tions” on page 2624.

Equal Test

Itispossibleto select how test for equality should be performed for val-
ues of the type. Note that all generated equal tests will be of the form:

YEgF # (SortName) (....);

TheyEqF_#(SortName) isamacro either implemented as C equal or as
acall totheyEq_#(SortName) function (if such function isto be used),
i.eas

#define yEQF_#(S) (E1,E2) E1l == E2
#define yEQF #(S) (E1,E2) yEqg_#(S) (E1,E2)

The /= operator is represented by the macro

#define yNEQF #(S) (E1,E2) (! yEQF #(S) (E1,E2)).

Type | Method
E(B) Use and generate heading, but not body, of yEq #(S)

E(H) | Usebut generate no code for yEq # (S)

E(G) |- Ifthetypedefinitionisgenerated:

— Use-==if possible

— Otherwise use the GenericEqual Sort function.
» |If thetype definition is not generated

E(S |Use--

E(Q) Use and generate an equal function that asksfor the result of
the test (same as Q for operators).

E Same as E(B)
- Same as E(G)

Telelogic Tau 4.5 User's Manual 2637

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2638

If you define your own equal function, it must be implemented as a
function, as the address of the function will be stored (in the type info
node for the data type) so GenericEqual Sort can call it to handle sub-
components of thistype. An equal function has the following heading:

SDL_Boolean yEqg_# (SortName)
(# (SortName) *yExprl,
(SortName) *yExpr2) ;

It should return true or false depending on if the two values passed
as parameters are equal or not. If the parameters contain pointers it
might be necessary to free these values, please see the discussion on
general parameters to operators in“ Other Types Containing Pointers”

on page 2620.

Free of Dynamic Memory

This section describes how dynamic memory (if used for the type) will
be released for reuse when it is no longer needed.

Type Interpretation

F(B) Generate heading, but no body of the free function
yFree # (SortName) .

F(H) Generate neither heading nor body of the free function.

F(S) Use the function GenericFreeSort

F Same as F(B)

- Do not use free function.

If you define your own free function, it must be implemented as a func-
tion, as the address of the function will be stored (in the type info node
for the data type) so GenericFreeSort can call it to handle subcompo-

nents of thistype. A free function should have the following prototype

void yFree #(SortName) (void **yVar)

The function should take the address to a pointer, return the allocated
memory to the pool of available memory and assign O to the pointer.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Extract! and Modify!

Thisentry specifieshow component selection (struct components, array
components for example) should be performed. In SDL a component
can be selected in two ways:

Variable ! Component
Variable (Index)

An Extract operation can be generated in four ways:

Variable.Component used for struct and #UNIONC
Variable.U.Component used for #UNION and choice
Variable.A (Index) used for array

yExtr SortName (Variable, Expr)

The last version, the Extract function, isused for all other cases.

Type I nterpretation

X(B) Use Extract function

X(G) Use component selection according to table above.
X Same as X(B)

- Same as X(G)

A Modify operation can in the same way be generated in four ways:

Variable.Component used for struct and #UNIONC
Variable.U.Component used for #UNION and choice
Variable.A (Index) used for array

(* yAddr SortName ((&Variable), Expr))

The last version, the Addr function, is used for all other cases.

Type I nterpretation
M(B) Use Addr function
M(G) Use component sel ection according to table above.
M Same as M (B)
- Same as M(G)
Telelogic Tau 4.5 User's Manual 2639

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2640

Read and Write Function
The write function is used by the monitor system to write values of the
type.

Type | Interpretation

W(B) | Generate heading but not the body of awrite function.

W(H) | Generate neither heading nor body of awrite function, but
assume that the user has provided such afunction.

W(S) | Vauesof thistype areto be printed asa HEX string. No
write function is assumed to be present.

w Same as W(B)
- Same as W(S)

The read function is used by the monitor system to read values of the
type.

Type Interpretation

R(B) Generate heading but not the body of aread function.

R(H) Generate neither heading nor body of aread function, but
assume that the user has provided such afunction.

R(S) Valuesof thistypeareto beread asaHEX string. No read
function is assumed to be present.

R Same as R(B)
- Same as R(S)

In order to examine variable values for variables that are of a sort that
isimplemented in C, i.e. has#ADT(T) inits ADT directive, it is neces-
sary to implement awrite function. Otherwise the value can only be pre-
sented asaHEX string. Note that the run-time kernel can automatically
handle all SDL sortsfor which the code generator generates the C type
definition. A write function should look like:

extern char * yWri SortName (void * Value)

Given the address of avalue of the type SortName, this function should
return achar *, i.e. acharacter string, containing the value represented

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

inaprintableform. Thischaracter string isthe string that will be printed
by themonitor, when it needsto print avalue of thistype. Toimplement
the write function it is not uncommon that a static char array is needed.

Note:

The following two considerations when it comes to write and read
functions:

» Theread and write functions and any help variables and help func-
tions ought to be surrounded by
#ifdef XREADANDWRITEF
#endif

to be removed if read and write functions are not needed.

» Thestring format used to represent value of atype should be the
samein theread and the write function. Other wise communicating
simulationswill not work if thistype is passed as parameter be-
tween the systems.

The function xWriteSort, which is part of the run-time kernel can be
useful when implementing Write functions.

extern char * xWriteSort (
void *In Addr,
xSortIdNode SortNode) ;

The xWriteSort function takes the address of avalue to be printed, and
apointer to axSortldNode and returns the given value as a string. This
function istypically useful if the sort we areimplementing awrite func-
tion for contains one or several components of sorts defined in SDL.

Read Function

In order to assign new valuesto variablesthat are of asort that isimple-
mented in C, i.e. has#ADT(T) inits ADT directive, it is necessary to
implement a read function. Otherwise the value can only beread as a
HEX string. Note that the run-time kernel can automatically handle all
SDL sortsfor which the code generator generates the C type definition.
A read function should look like:

extern int yRead SortName (void * Result)

A read function is given an address to store the value that isread. It
should return 1 if the read operation was successful. Otherwise, 0
should be returned and result should be unchanged.

Telelogic Tau 4.5 User's Manual 2641

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2642

typedef enum {

xxId,

xxString,
xxSlash,
xxColon,
xxMinus,
xxPlus,

xxStar,
xxComma,
xxSemicolon,
xxArrowHead,
xxLPar,

XXRPar,
xxLParDot,
xxXRParDot,
xxLParColon,
xxRParColon,
xxDot,
xxLBracket,
xxRBracket,
xxLCurlyBracket,
xxRCurlyBracket,
XXAt,
XxQuaStart,
xxXQuaknd,

xxLT,

XXLE,

XxGT,

XXGE,

xxEQ,

XXNE,
xxQuestionMark,
xx2QuestionMark,
xxExclMark,
xxSystem,
xxPackage,
xxBlock,
xxProcess,
xxXProcedure,
xxOperator,
xxSubstructure,
xxChannel,
xxSignalroute,
xxType,

xxXNull,

xxEnv,

xxSelf,
xxParent,

numbers

There are some suitable functionsin the run-time kernel which can help
you when you are implementing aread function. Basically the function
xScanToken described below is atokenizer that transforms sequences
of charactersto tokens. This function returns tokens according to the

following enum type:

*/

SDL Charstring literal */

identifiers,
*/
*/
*/

+ x/

* */

;o */

i*/

Ay

(*/

) */

(. */

) */

(: */

) */

.ox/

[*/

{7
*

b ox/

@ *x/

<< */

>> %/

< */

<= */

> o/

>= %/

= */

/= */

? %/

2?7 %/

! */

system

package

block

process

procedure

operator

substructure

channel

signalroute

type

null

env

self

parent

Telelogic Tau 4.5 User's Manual

July 2003

Abstract Data Types

July 2003

xxOffspring, /* offspring */
xxSender, /* sender */
xxEoln, /* end of line */
xXEOF, /* end of file */
xxErrorToken /* used to indicate error */

} xxToken;

Function xScanToken
The function xScanToken:

extern xxToken xScanToken (char * strVar);

reads the next token from input (stdin or Simulator Ul) and returns the
type of the next token as function result. If the token isxxld or xxString
the strVar parameter will contain the identifier, number, or string. The
size of the char[] parameter passed as actual parameter should be large
enough to store the possible values. If some other token was found, no
information is stored in strvar.

xUngetToken

Sometimesit isnecessary to look-ahead to determine how to handlethe
current token. Using the function xUngetToken below it is possible re-
turn onetoken to theinput. Note that both parameters must have the val-
ues obtained from xScanToken.

extern void xUngetToken (
xxToken Token,
char * strVar) ;

The functions below can also be useful while implementing Read func-
tion. xPromptQuestionMark is suitable to obtain prompt in asimilar
way asfor SDL defined sorts, while xReadOneParameter can be used
to read element for element in alist, separated by commas and terminat-
ed either by “.)” or “]”. Thefunction xReadSort is similar to xWriteSort
and can be used to read a component in the treated sort.

xPromptQuestionMark
extern xxToken xPromptQuestionMark (
char * Prompt,
char * QuestionPrompt,
char * strVar) ;

Thefunction result and the parameter strVar behave in the sasmeway as
for the function xScanToken (see above). The parameter Prompt isthe
prompt that should be used. Thisstring hasto start witha“ *, i.e. aspace.
To conform with other built-in read function, the Prompt parameter

Telelogic Tau 4.5 User's Manual 2643

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2644

should be: “ (SortName) : ” (note the ending space colon space). The
QuestionPrompt parameter should either be identical to the Prompt pa-
rameter, or be null, i.e. (char *)0. If QuestionPrompt is null, the
xPromptQuestionMark function will return xxEoln if aend-of-lineis
found. If QuestionPrompt is not null, the xPromptQuestionMark func-
tion will print the QuestionPrompt, and continue to read. Normally
QuestionPrompt should be equal to Prompt in asimple datatype, while
it should be null in a structured data type.

Example 372: ADT Example, Byte Type

Thisexampleistaken fromthe ADT byte (see “ Abstract Data Type for
Byte” on page 3176 in chapter 63, The ADT Library). The bytetype
should be read and printed using HEX format.

#ifdef XREADANDWRITEF
static char yCTmp[20];

extern int yRead byte(void *Result)

unsigned temp;
xxToken Token;

Token = xPromptQuestionMark(“ (byte) : v,
v (byte) : “, yCTmp) ;
if (Token==xxId && sscanf (yCTmp, “%X”, &temp)>=1) {
* (byte *)Result = (byte)temp;
return 1;

xPrintString(“*Illegal byte value\n”);
return O;

}

extern char *yWri byte(void * C)

{
sprintf (yCTmp, “%0.2X", *(byte *)C);
return yCTmp;

}

#endif

Example 373: ADT Example, Struct Write Functions

Thisisan example of how the read and write functions for astruct with
two components can look. The monitor system can handle reading of
writing of struct values automatically, so please see thisjust as an ex-
ample.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

newtype structl /*#NAME ‘structl’ */ struct
a,b Integer;

/*#ADT (W)

#BODY

#ifdef XREADANDWRITEF
static char CTemp [500] ;

char * yWri structl (void *In_ Addr)

strcpy (CTemp, “(. “);
strcat (CTemp, xWriteSort ((void *)
(& ((structl *)In Addr)->a), xSrtN_SDL Integer));
strcat (CTemp, “, “);
strcat (CTemp, xWriteSort ((void *)
(&((structl *)In Addr)->b), xSrtN_SDL Integer));
strcat (CTemp, “ .)”);
} return CTemp;
#endif
*/

endnewtype;

More about #ADT

When generate is specified for afunction, the code generator might de-
cide not to generate the heading of the function, asin some casesit is
not needed.

All code that is not generated is assumed to be included by the user in
the #TY PE, #HEADING and #BODY sectionsin the #ADT directive.

Another name for an assign function, equal function and so on may be
used, by including the desired name within quotes together with the
generation optionsin the #ADT directive.

If, for example, the name of a certain assign function should be AssX,
thiscan be obtained by specifying: A(B'AssX’) for theassign function.
Thisnamewill then be used throughout the generated code, both in gen-
erated declaration and at the places where the function is called. The
name should be last in the specification for the actual function.

An include statement may be generated together with or replacing the
type definition by giving afile name within quotes last in the specifica-
tion part of the #ADT directive, immediately before the first section
with code.

Telelogic Tau 4.5 User's Manual 2645

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2646

Example 374: Including a File in ADT
If the directive

/*#ADT (T(B) A(S) E(S) 'file name’) */
is used, the following include statement will be generated:

#include “file name”

Note:

Turning off the generation of the objects contained in the include
file must be performed by the user.

Directive #REF

Note:

Thisdirectiveis provided only for backward compatibility. The
SDL suite now supports in/out parameters for operators, which
serves exactly the same purpose. In/out parameter is an SDL-2000

extension and is supported also in operator diagrams.

The directive #REF can be used to specify that the addr ess, not theval-
ue, of avariable should be passed as parameter to an ADT operator, as
itisdefinedin SDL. This feature cannot be used for operators defined

in operator diagrams (the directive will be ignored for such operators).

The #REF directive is used as shown in the example below.

Example 375: Including a File in ADT

operators
eql : Integer, Integer -> Integer;
eq2 : Integer/*#REF*/, Integer/*#REF*/ -> Integer;

The headings for these two operator will becomein ANSI-C syntax (ig-
noring prefixes)

extern SDL Integer eqgl (SDL_Integer P1,
SDL_Integer P2);

extern SDL Integer eg2 (SDL_Integer *P1,
SDL_Integer *P2);

Thisfeature can be used to optimize parameter passing to operators. The
directive, however, also imposes the restriction that the actual parame-
tersmust be avariable or aformal parameter (see Example 376 below).

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Types

July 2003

Thisischecked by the code generator. A #REF directive doesnot in any
way effect the way a operator call should beimplementedin SDL. Itis
theresponsibility of the code generator to generate the proper actual pa-
rametersin C.

Example 376: Including a File in ADT

With the ADT in the previous example the following operator call is
valid:

eql(svar, (. 1, 2, 3, 4 .))
The same call of eq2 would not be valid as the second parameter is not
avariable or aformal parameter.

Generators

The Cadvanced/Chasic SDL to C Compiler handles al the predefined
generatorsin SDL, i.e. Array, String, Powerset, and Bag. It is also pos-
sible for a user to write his own generators and instantiate them in new-
types. However, the behavior of auser defined generator hasto be spec-
ified completely by theuser. Thisis performed in asomewhat extended
#ADT directive placed just before the endgenerator keyword. These ex-
tensions are described below.

There are three additional sectionsin the directive, apart from #TY PE,
#HEADING, and #BODY . These are #iINSTTY PE, #iNSTHEADING,
and #INSTBODY . Theinline C code in #TY PE, #HEADING, and
#BODY isplaced at the point of the generator, i.e. it is generated once.
The contents of #INSTTY PE, #iNSTHEADING, and #INSTBODY is
inserted at each instantiation of the generator, i.e. in each newtype de-
fined using the generator.

Inthe #INSTTY PE, #iINSTHEADING, and #iNSTBODY itispossible
to use # followed by a number to access the information given in the
generator instantiation:

#0 means the name of the newtype in the instantiation
#1 and ##1 isthe first actual generator parameter

#2 and ##2 is the second actual generator parameter
and so on.

#1 and ##1 are equal, except when the corresponding actual generator
parameter isastruct (or union). In that case, assuming the SDL struct:

Telelogic Tau 4.5 User's Manual 2647

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

newtype aaa struct
a, b integer;
endnewtype;

which will be generated as

typedef struct aaa s {
SDL_Integer a;
SDL_Integer b;

} aaa;

#1 will become struct aaa_s (Orunion aaa_s if aunion), while
##1 will become aaa.

Example 377: Example of User Defined Generator

GENERATOR Ref (TYPE Itemsort)
LITERALS
Null; /*#OP (S) */
OPERATORS
Ref2VStar : Ref -> VoidStar; /*#OP (HP) */
DEFAULT Null;
/*#ADT ()
#INSTTYPE
typedef #1 *#0;
#INSTHEADING
#define # (Null) () 0
#define # (Ref2VStar) (P) ((#(VoidStar))P)
*
/
ENDGENERATOR Ref;

Note the usage of #/INSTTY PE and #iINSTHEADING in the example
above. The code in these section will be inserted in each newtype de-
fined with this generator. For example, in a newtype:

NEWTYPE p Ref (Integer)
ENDNEWTYPE;

The #INSTTY PE section will become:

typedef SDL_ Integer *p;

2648 Teldlogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

Directives to the Cadvanced/Cbasic SDL
to C Compiler

Syntax of Directives

The Cadvanced/Chasic SDL to C Compiler recognizes anumber of di-
rectives given mainly in SDL comments. The #ADT, #OP, #UNION,
and #REF directives used in abstract data types are examples of such di-
rectives. The directives#ADT and #OP were described in the section
“Implementation of User Defined Operators’ on page 2609, “Union” on
page 2598, and “ Directive #REF” on page 2646, in connection with ab-
stract data types and are not further discussed here.

A directive has the general structure:
1. Thestart of comment character: /*
2. A'# character.

3. Thedirective name.

4

. Possible directive parameters given in free syntax. That is, spaces
and carriage returns are allowed here.

5. Theend of comment characters*/.

Upper and lower case letters are considered to be equal in directive
names.

Example 378: #OP Directive

Take as an example the directive:

/*#0P (B) */.
This comment will be recognized as adirective only if no other charac-
ter isinserted in the sequence / *#op. After thispart, spacesand carriage
returns may be inserted freely.

July 2003 Telelogic Tau 4.5 User's Manual 2649

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2650

Selecting File Structure for Generated Code
— Directive #SEPARATE

The purpose of the separate generation feature is to specify the file
structure of the generated program. Both the division of the system into
anumber of files and the actua file names can be specified. There are
two ways this information can be given.

* Normally thisinformation is set up in the Organizer, using the Edit
Separation command, see” Edit Separation” on page 136 in chapter
2, The Organizer. Herefile namesfor the generated files can also be
specified. Inthe Make dialog in the Organizer (see “Make” on page
119 in chapter 2, The Organizer) it is possibleto select full separate
generation, user-defined separate generation, or no separate gener-
ation.

* Foran SDL/PR filethat is used asinput when running the SDL An-
alyzer asastand-alonetool, the sameinformation can be entered by
#SEPARATE directives directly introduced in the SDL program.
Full separate generation, user-defined separate generation, or no
separate generation can be set up in the command interface of a
stand-alone Analyzer, see” Set-Modularity” on page 2421 in chap-
ter 55, The SDL Analyzer.

The Cadvanced/Cbasic SDL to C Compiler can generate a separatefile
for:

system (always separate)
package (always separate)
system type

block

block type

process

process type

service

service type

procedure

Note:

I nstanti ations cannot be separated, i.e. an instance of a block type
cannot be generated on afile of its own.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

If #SEPARATE directives are used, they should be placed directly after
thefirst semicolonin the system, block, process, or procedure heading;
see the following example.

Example 379: #SEPARATE Directive

system S; /*#SEPARATE 'filename’ */

block B; /*#SEPARATE */

process type Pl inherits PType; /*#SEPARATE */
process P2 (1,); /*#SEPARATE */

procedure Q; /*#SEPARATE */

In the example above the two versions of separate directive, with or
without file name, are shown. As can be seen afile name should be en-
closed between quotes. The code generator will append appropriate ex-
tensions to this name when it generates code.

If nofile nameis given in the directive, the name of the system, block,

process, or procedurewill be used to obtain afile name. In such casethe
file name becomes the name of the unit with the appropriate extension
(.c .n) depending on contents. The file name is stripped from charac-

tersthat are not |etters, digits or underscores.

The possibility to set up full, user-defined, or no separation in the Orga-
nizer’s Make dialog and in the user interface of a stand-alone Analyzer
(see” The Analyzer Command-Line UI” on page 2404 in chapter 55,

The SDL Analyzer), can be used, in ssmple manner, to select certain de-
fault separation schemes. This setting will be interpreted in the follow-

ing way:

» No separation.
The system and each package will be generated on a separatefile.

» User defined separation.
The system, each package, and each unit that the user has specified
as separate will become a separate file.

e Full separation.
The system, each package, each block, block type, process, process
type, service, and servicetypewill becomeaseparate file. Note that
even in this case a procedure is separate only if the user has speci-
fied it as separate.

Independently if No, User defined, or Full separation has be selected,
the code generator will use the file name specified in the Edit Separa-

Telelogic Tau 4.5 User's Manual 2651

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

tion dialog or the #SEPARATE directive, for afile that isto be gener-
ated.

An Example of the Usage of the Separate Feature

In the following example a system structure and the #SEPARATE di-
rectives are given. The same information can easily be set up in the Or-
ganizer aswell. This exampleis then used to show the generated file
structure depending on selected generation option.

Example 380: #SEPARATE Directive

system S; /*#SEPARATE ’'Sfile’ */
block Bl; /*#SEPARATE */
process P11; /*#SEPARATE 'Pllfile’ */
process P12;
block B2;
process P21;
process P22; /*#SEPARATE */

Note that #SEPARATE directives can only be used in SDL/PR
files. Normally thisinformation is given in the Organizer.

Applying Full Separate Generation

If Full separate generation is selected then the following files will be
generated:

Sfile.c Sfile.h

Bl.c Bl.h

Pllifile.c

Pl2.c

B2.c B2.h

P21.c

P22.c

The . c filescontain the C codefor the corresponding SDL unit and the
.h files contain the module interfaces.

2652 Teldlogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

Applying Separate Generation

If User defined separate generation is selected then the following files
will be generated:

sfile.c Sfile.h Contains code for units S, B2, P21
Bl.c Bl.h Contains code for units B1, P12
Plifile.c Contains code for unit P11

P22.c Contains code for unit P22

The user defined separate generation option thus makesit possible for a
user to completely decide the file structure for the generated code. The
comments on files and extensions given above are, of course, also valid
in this case.

Applying No Separate Generation

If the separation option No is selected, only the following file will be
generated:

sfile.c Contains code for all units

The comments on files and extensions earlier are valid even here.

Guidelines

Generally a system should be divided into manageabl e pieces of code.
That is, for alarge system full separate generation should be used,
whilefor asmall system no separ ate gener ation ought to be used. The
possibility to regenerate and recompile only parts of a system usually
compensate for the overhead in generating and compiling severd files
for alarge system.

Note:

A file name has to be specified, in the Organizer Edit Separation
command, see “ Edit Separation” on page 136 in chapter 2, The Or-
ganizer, or in the #SEPARATE directive, if two unitsin the system
have the same name in SDL and should both be generated on sepa-
rate files, otherwise the same file name will be used for both units.

July 2003 Telelogic Tau 4.5 User's Manual 2653

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Accessing SDL Names in C Code
— Directive #SDL

When writing C code that isto be included in agenerated programitis
often necessary to refer to names of objects defined in SDL. The name
of an SDL object is, however, transformed when itistranslated to C. A
prefix, which is a sequence of characters, is added to the SDL name to
make the C name unique in the C program. Furthermore, all characters
in SDL name which are not allowed in a C name are removed. The pre-
fixes are calculated by looking at the structure of definitionsin the ac-
tual scope and in all scopes above. This meansthat adding adeclaration
at the system level might change all prefixesin blocks and processes
contained in the system. As a consequence it is almost impossible to
know the prefix of an object in advance.

To beabletowrite C code and use the name of SDL objectsinthat code,
the Cadvanced/Chbasic SDL to C Compiler providesthe directive #SDL
whichisused in C codeto translate an SDL name to the corresponding
C name.

The syntax of the #SDL directiveis as follows:

#SDL (SDL name)
or

#SDL (SDL name, entity class name)
Thereis also a short form for the directive. No characters are allowed
between the # character and the | eft parentheses in this form:

(SDL name)
or

(SDL name, entity class name)
Replace spr. name with the name of an object inthe SDL definition and
entity class name by any of thefollowing identifiers (upper and
lower case letters are considered to be equal):

2654 Teldlogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

block operator signal
blockinst package signallist
blocksubst predef signalroute
blocktype procedure sort (= newtype)
channel process state
channelsubst processinst synonym
connect processtype syntype
formalpar remoteprd system

gate remotevar systemtype
generator service timer

label serviceinst variable
literal servicetype view
newtype

Thislist contains al entity classes, which means that not all of the en-
triesarerelevant for practical use. When a#SDL directiveisfound in
included C code, the code generator first identifies what SDL object is
referred to and then replaces the directive by the C name for that object.
The search for the SDL object startsin the current scope (the scope
wherethe C codeisincluded), and followsthe scope hierarchy outward
to the system definition, until an appropriate SDL object isfound. An
appropriate SDL nameis considered to be found if it has the specified
name and isin the specified entity class. If no entity classnameisgiven
the search is performed for all entity classes.

Note:

In types, especialy in block types, #SDL should be used with care.
The reason isthat some of the objectsin ablock type are generated
for each instantiation of the block. A #SDL directive on such an ob-
ject might lead to overloading of namesin C. Sensitive objects are
processes, process instantiations, signal routes, channels, remote
definitions.

Thetableinthesubsection“ SDL Predefined Types’ on page 2588 gives
the direct trandlation between an SDL name and the corresponding C
name or expression. For these namesthe #SDL. directive should not be
used.

July 2003 Telelogic Tau 4.5 User's Manual 2655

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2656

Including C Code in Task — Directive #CODE

The user’s own C code may be included in tasks by using the #CODE
directive. This directive has the following syntax:

/ *#CODE

C code that should
be included in
generated code */

Type the directive name on the first line and the C code on the follow-
ing lines up to the end of comment symbol. Note that text on the same
line as the #CODE directive are not handled.

A #CODE directive can be placed:
» Beforethefirst assignment statement or informal text

* Immediately preceding or just following the commathat separates
two assignment statements or informal texts

» After the last assignment statement or informal text

* Immediately after the ending semicolon (;) of atask (thispositionis
only availablein SDL/PR).

The C code in the directivesistextually included in the generated code
at the position of thedirective. If, for example, acode directiveisplaced
between two assignment statements, the codein the directiveisinserted
between the translated version of the assignment statements.

Note:

The Cadvanced/Chbasic SDL to C Compiler handlesthe C codein di-
rectives as text and performs no check that the codeisvalid C
code.

The code directive isincluded as afacility in the code generator to pro-
vide experienced users an escape possibility to the target language C.
This increases the application range of the code generator.

An example of apossible use of the code directiveis. An algorithm for
some computation, which in the SDL description isonly indicated asa
task with an informal text, could be implemented in C. In this case the
directive #SDL described in the previous subsection will probably be-

come useful to access variables and formal parameters defined in SDL.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Some general hints on how to write C code that can be included into a
simulation program, especially when charstrings or sorts containing
charstrings as components are used, can be found in the last part of the
section “Implementation of User Defined Operators’ on page 2609.

Unfortunately itisnot possibleto have C commentswithin the code that
isincluded in any directive, as SDL and C use the same symbols for
start and end of comments. See also Example 360 on page 2613 which
illustrates the possibility to use the C macro COMMENT.

#CODE directives in compound statements

#CODE directives are recognized after a semicolon that ends a state-
ment of one of the following kinds:

Output statement
Create statement
Set statement
Reset statement
Export statement
Return statement
Call statement
Assignment statement
Break statement
Continue statement
Empty statement

Example 381

/*#CODE
#(1) = #(1)+1; */
i := i+2; /*#CODE
#(1) = #(1)+3; */

This example contains first an empty statement followed by adirective
and then an assignment followed by a directive. The empty statement
can, as above, be used to insert #CODE directives at places that other-
wise would not be possible, like at the beginning of a compound state-
ment or directly after acompound statement.

Note that the codein the #CODE directiveis associated to the statement
just before the directive and is included in the scope of that statement.

Telelogic Tau 4.5 User's Manual 2657

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Example 382
{

if (true)
i := i+4;

; /*#CODE
#(1) = #(41

)+5; */

In this case the codein the directive isincluded in the “if-part” of theif
statement, just like the assignment it is associated with. Thiswill be

treated as:
if (true) f{
i := 1i+4;
i := 1+5;

1
To put the code directly after theif statement the following structure,
with an empty statement after the if statement, can be used:

{ if (true)
i := 1i+4;
; /*#CODE
| #(1) = #(1)+5; */

Including C Declarations — Directive #CODE

The #CODE directive can a so be used to include C declarations; for ex-
ample types, variables, functions, #define, and #include in the declara-
tion parts of the C program. This version of the code directive has the
following structure:

/ *#CODE

#TYPE

C code containing:

Types and variables

#HEADING

C code containing:

Extern or static declarations of functions
#BODY

C code containing:

Bodies of functions

*/

The separation of functions into HEADING and BoDY Sections servesthe
same purpose asin the #ADT directive, see “Implementation of User
Defined Operators’ on page 2609.

2658 Teldlogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Code directives to include C declarations may, generally speaking, be
placed immediately after a semicolon that ends a declaration in SDL.
More precisely it is alowed to place a#CODE directive after the semi-
colon that ends:

* A heading of asystem, block, substructure, process, procedure
e Theformal parameters of a process or procedure
» Thedefinition of ablock, process, procedure

» Thedefinition of achannel, signal route, signal, signal list, newtype,
syntype, synonym, generator, connection, valid input signal set,
variable, view, import, timer, remote variable, remote procedure

In the following small PR example the allowed positions are marked
with an * followed by a number.

Example 383: #CODE Directive

system s; *1
signal sl1l, s2(integer); *2
channel cl from env to bl
with sl1, s2; *3
newtype n

endnewtype n; *4
block bl; *5
signalroute srl from env to pl
with s1, s2; *6
connect ¢l with srl; *7
process pl (1,1); *8
signalset sl1, s2; *9
dcl a n; *10
start;

state ...;
endprocess pl; *11

endblock bl; *12
endsystem sl1;

A code directive is considered to belong to the unit where it is defined
and the declarationswithin the directive are thus placed among the other
C declaration for that unit. In the example above, directives at positions
1, 2, 3,4, 12 belong to system s, directives at positions 5,6,7,11 belong
to block b1, while directives at positions 8, 9, 10 belong to process p1.
Only one code directive may be placed at each available position.

Telelogic Tau 4.5 User's Manual 2659

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2660

Note:

A variable declared in a#CODE directive that belongsto a process
will be shared between the process instances of the processinstance
set. Such avariable should only be used to represent some common
property of all the processinstances. To have avariablethat islocal
to aprocess instance, the variable should be defined in SDL using
DCL.

In the generated code the type sections are included in the order of ap-
pearancein SDL. However, the type sections are also sensitive for their
relative position comparing with SDL sort definitions. This meansthat
the order of thetype definitionsin the system in the exampl e above will
be asfollows:

1. Typesectionsini, 2,3
2. Type generated for newtype n
3. Typesectionsin4, 12

As the Cadvanced/Cbasic SDL to C Compiler will generate the SDL
sortsin the correct order, definition before usage, in C, the full algo-
rithm is as follows.

» Stepthrough all definitionsin SDL in the order of appearance and
include:
— thetype section of #CODE directives and #ADT directives.
— generate typedef for a sort that have no reference to some other
not yet generated sort.

» Stepthrough all sortsthat have not been generated, checking wheth-
er each sort references some other sort that has not been generated.
If asort does not reference some other un-generated sort, it requires
typedef generation.

» Repeat the previous step until all sorts have been generated, or until
no more sorts can be generated. If sortsremain not generated at this
step arecursive dependency has been detected.

The heading sections are placed inthe order of their appearancein SDL.
This applies to the body sections as well. All body sections will be
placed after the sequence of heading sections and the heading section
will be placed after all the type definitions. The SDL declarations made
in the corresponding unit are availablein the code directives and can as
usual be reached using the #SDL directive. All declarations made in

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

code directives are of course availablein code directivesin tasksin the
corresponding unit or in its subunits.

The general hints on how to write C code that fitsinto a generated C
program given in the section “ Implementation of User Defined Opera-
tors’ on page 2609 and in the section * Accessing SDL Namesin C Code
—Directive #SDL” on page 2654 are also applicable here.

July 2003 Telelogic Tau 4.5 User's Manual 2661

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2662

Including C Code in SDL Expressions
— Operator #CODE

For each sort defined in an SDL system, both predefined and user de-
fined, the Cadvanced/Cbasic SDL to C Compiler includes an operator
#CODE with the following signature:

#CODE : Charstring -> S;
where Sisreplaced by the sort name. This operator or rather these op-
erators make it possible to access variables and functions defined in C
using the #CODE directive in SDL expressions and till have syntacti-
cally and semantically correct SDL expressions.

During code generation, the code generator will just copy the Charstring
parameter at the place of the #CODE operator.

Example 384: #CODE Directive

Suppose that x and y are SDL variables, which are translated to z72_x
and z73_vy, that a and b are C variables, and £ isa C function defined in
#CODE directives.

SDL expression C expression

X + #CODE('a’) z72_ x + a

X + #CODE(’a*b’) z72_xX + a*b
x*#CODE (' (a+b) ') *y z72_x* (a+b)* z73 y
#CODE (' f (a, #SDL (x)) ') f(a, z72_x)

Within the Charstring parameter of a#CODE operator the #SDL direc-
tiveisavailableinthe sameway asin other included C code. Thisisalso
shown in the last of the examples above.

Asthereis one #CODE operator for each sort in the system, it is some-
times necessary to qualify the operator with a sort name to make it pos-
siblefor the SDL Analyzer to resol ve which operator that has been used.
If, for example, the question and all answersin adecision are given as
applications of #CODE operators, then it is not possible to determine
the type for the decision. One of the #CODE operators should then be
qualified with a sort name to resolve the conflict.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Example 385: Code Directive

DECISION #CODE(’a’) ;

(#CODE(’1")) : TASK ...;
(#CODE ('2')) : TASK ...;
ENDDECISION;

Inthiscasethe sort of the decision cannot beresolved. To overcomethis
problem the question could be written as

DECISION TYPE integer #CODE('a’) ;

Names and Prefixes in Generated Code

When an SDL name istranslated to an identifier in C, aprefix is nor-
mally added to the name given in SDL. This prefix is used to prevent
name conflictsin the generated code, as SDL has other scope rulesthan
C and a'so allow different objects defined in the same scope to have the
same name, if the objects are of different entity classes. It is, for exam-
ple, allowed in SDL to have a sort, avariable and a procedure with the
same name defined in a process. So the purpose of the prefixesisto
make each translated SDL name to a unique hame in the C program.

A generated namefor an SDL object containsfour partsin thefollowing
order:

1. Thecharacter “z”

2. A sequence of charactersthat makethe name unique. If theobjectis
part of a package, the package name will appear in this sequence.

3. Anunderscore”_”

4. The SDL name stripped from characters not allowed in C identifiers

Sequence of Characters

A Cidentifier may contain letters, digits, and underscore
start with aletter.

and must

The sequence of charactersthat make the name unique is determined by
the position of the declaration in structure of declarationsin the system:

* Eachdeclarationonalevel isgivenanumber: 0,1, 2,..,9,a,b, ..,z

Telelogic Tau 4.5 User's Manual 2663

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2664

« If the number of declaration on alevel is greater than 36, the se-
guenceis: 00, 10, 20, .., 90, &0, .., z0,01, 11, 21, .., 91, &1, .., z1,,
0z, 1z, 2z, .., 9z, az, .., zz.

» |f thenumber of declarationsisgreater than 36 * 36 then three char-
acter sequences are used, and so on.

The total sequence making a name unigque is now constructed from the
“declaration numbers’ for the unit and its parents, that is the unitsin
which it is defined, starting from the top.

If, for example, asort is defined as the 5th declaration in ablock that in
turnisthe 12th declaration in the system, then the total sequencewill be
b4 (if not more than 36 declarations are present on any of the two lev-
els).

Example 386: Generated Names in Code

Examples of generated names:

SPL | position of the Declaration Generated
Name Name
S1 10th declaration in the system 29 Sl

Var2 3rd declarationinthe process, whichisthe | ze42 Var2
5th declaration in the block,
which is the 15th declaration is system

There will aso be other generated names using the prefixes. If, for ex-
ample, asort MySort istrandated to za2c_MySort, then the equal func-
tion connected to thistype (if it exists) will be called

yEq za2c_MySort.

Prefixes
Note:

If the OO diagram typesin SDL-92 are used (system type, block
type, processtype), full prefix should always be used, as the OO
conceptsin itself most likely mean the name conflicts will be intro-
ducedin C.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

This strategy for naming objects in the generated code should be used
in al normal situations, as it guarantees that no name conflicts occur.
The Cadvanced/Chasic SDL to C Compiler offers, however, possibili-
ties to change this strategy. In the Make dialog in the Organizer (see
“Make” on page 119 in chapter 2, The Organizer) and in the user inter-
face an Analyzer running stand-alone (see “ The Analyzer Command-
LineUl” on page 2404 in chapter 55, The SDL Analyzer), it ispossible
to select one of the following strategies: full prefix, entity class prefix,
no prefix, or special prefix. Full prefix is default and is the strategy de-
scribed above.

Entity Class Prefix
If entity class prefix is sel ected, then the prefix that is concatenated with

the SDL name will be in accordance with the table below and depends
only of the entity class of the object.

Entity class Prefix | Entity class Prefix
Block, block type, blo Process, Processtype, | prs
block instance Process instance
Block substructure bls Remote procedure rpc
Channel cha Remote variable imp
Channel substructure | chs Service, Servicetype, | ser
Service instance
Connection con Signal sig
Formal parameter for Signal list sil
Gate gat Signal route sir
Generator gen Sort = Newtype sor
Import imp State sta
Label lab Syntype syt
Literal lit Synonym syo
Operator ope System, System type | sys
Package pac Timer tim
Predef pre Variable var
Procedure prd View vie

July 2003 Telelogic Tau 4.5 User's Manual 2665

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2666

Using entity class prefix means that the user must guarantee that no
name conflict occurs. It also means, however, that the generated names
arepredictableand thussimplifieswriting C code wherethe SDL names
are used. It is only necessary to look for name conflicts within entity
classes, for example not having two sorts with the same name. The en-
tity class prefixes handle the case when two objects of different entity
class have the same name. Note that the table above contains al entity
classes. Not al of theitems are actually used by the code generator.

No Prefix

The third alternative, no prefix, means of course that no prefixes are
added to the SDL name. The namein the C program will then be the
SDL name stripped form charactersthat are not allowed in C identifiers
(everything except letters, digits, and underscore). In this case, the user
must guarantee that no name conflict occurs and that the stripped name
isalowed asaC identifier, that is, that it begins with aletter.

Special Prefix

In the fourth alternative, special prefix, full prefixes are used for al en-
tity classes except variable, formal parameter, sort, and syntype. For
these entity classes no prefix is used.

Conclusion

Aswas said in the beginning of this subsection, the user should have a
good reason for selecting anything but thefull prefix, asit could be very
difficult to spot name conflicts. The C compiler will in some cases find
aconflict, but may in other cases consider the program aslegal and gen-
erate an executable program with a possibly unwanted behavior. The

note above about OO conceptsis also a strong argument for full prefix.

Case Sensitivity

Another aspect concerning identifiersisthat SDL is case insensitive,
while C is case sensitive. The Cadvanced/Chasic SDL to C Compiler
has two translation schemes for identifiers, one is to use the capitaliza-
tion used in the declaration of the object of concern (default), and one
isto uselower caseidentifiers. Thetranslation schemeisselected inthe
Make dialoginthe Organizer (see“Make” on page 119 in chapter 2, The
Organizer) or inthe user interface of the Analyzer, when it is executed
stand-alone (“ The Analyzer Command-Line UI”_on page 2404 in chap-
ter 55, The SDL Analyzer).

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Specifying Names in Generated Code
— Directive #NAME

If you wish to decide the name of an object in generated code yourself
you can use the #{NAME directive. Place the directive directly after the
name in the declaration of the object. It should contain the desired name
to be used in the generated code within quotes.

Example 387: #NAME Directive

NEWTYPE S /*#NAME 'S’ */ STRUCT
a integer;
b Boolean;
ADDING OPERATORS
Op /*#NAME ’'OtherName’ */ :
S, S -> Boolean;
ENDNEWTYPE ;

The name defined in a#NAME directive will be used everywhere that
the SDL nameisused in the generated code, with two exceptions:

* Inthe monitor system the SDL nameswill be used in the communi-
cation with the user.

» The name of the files for generated code are not affected by the us-
age of #ANAME directives.

There are, however, some restrictions on where #NAME directives can
be placed. Some objectsin, for example, a block type are generated in
each instantiation of the block type. If anamedirectiveisplaced at such
an object, the name will probably be overloaded in C, resultinginaC
compilation error. The sensitive objects are processes, process instanti-
ations, signal routes, channels, remote variables, and remote proce-
dures.

Assigning Priorities — Directive #PRIO

Priorities can be assigned to processes and process instantiations using
the directive #PRIO. The process prioritieswill affect the scheduling of
processes in the ready queue, see “Time” on page 2576. A priority isa
positiveinteger, wherelow value meanshigh priority. #PRI O directives
can be placed directly after the process heading in the definition of the
actual processor last in the reference symbol (in SDL/GR).

Telelogic Tau 4.5 User's Manual 2667

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2668

Example 388: #PRIO Directive in process headings

Process Pl; /*#PRIO 3 */
Process P2(1,1); /*#PRIO 5 */

Process P3 : P3Type; /*#PRIO 3 */
Process P4(1,1) : P4Type; /*#PRIO 5 */

Processes that do not contain any priority directivewill have the default
priority 100.

Initialization — Directive #MAIN

The #MAIN directive is used to include initialization code that should
be executed before any process transitions are started. The directive
should be placed in the system definition directly after the system head-

ing.

Example 389: #MAIN Directive

System S;
/*#MAIN
C code for initialization */

The #MAIN directive has exactly the same structure as the #CODE di-
rective for including codein tasks. Theincluded code will, however, be
placed last in the yInit function, after the initiaization of the internal
structure, but before any transitions are executed.

Modifying Outputs — Directive #EXTSIG, #ALT,
#TRANSFER

The purpose of these directivesisto modify the standard behavior of an
SDL output. The #EXTSIG directive can be used to build applications
with the SDL suite run-time library. The directives#ALT and
#TRANSFER are only useful together with other real-time operating
systems.

The directive #EXTSIG is used to replace the code for an SDL output
with any appropriate in-line C code. Thisis an optimization and an al-
ternative to the OutEnv function (see chapter 58, Building an Applica-
tion). The #EXTSIG directive can be specified:

e Lastinan output symbol (in PR just beforethe‘;").

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

« Just beforethe*,” or ‘;" ending the definition of asignal.

Inthefirst casethe #EXTSIG isvalid for the signal (s) sent in the output
symbol, and in the second case for all outputs of the defined signal.

Example 390: #EXTSIG Directive

signal
Signall /*#EXTSIG */,
Signal2 (integer) /*#EXTSIG */;

output Signal3 To Sender /*#EXTSIG */;

For each output of asignal with a#EXTSIG directive (in either way de-
scribed above) the following code is generated:

#ifndef EXT SignalName
“the normal implementation of an output”
#else
EXT_ SignalName (
SignalName, ySigN_ SignalNameWithPrefix,
ToExpression, SignalParameters)
#endif

where SignalName is the name of the signal in SDL. The parameter
ToExpression isatranslated version of the SDL expression after TO in
the output. If no TO expression is given in the output, this parameter
will bexNotDefPld. Theentry Signal Parameterswill be replaced by the
list of signal parameter values given in the output.

The intention of this codeisto give the user the possibility of introduc-
ing amacro with the same nameasthe signal, wheretheimplementation
of the output is expanded to in-line code. By just having a compilation
switch which selectsif this macro is visible or not, the same generated
code can be used both for simulation and for highly optimized applica-
tions. An appropriate switch is probably XENV, which governsthe nor-
mal way of connecting an SDL system to the environment.

July 2003 Telelogic Tau 4.5 User's Manual 2669

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2670

Example 391: #CODE Directive

Thefollowing #CODE directive can beincluded in atext symbol inthe
system diagram (assuming a signal called SigName with one parame-
ter).

/ *#CODE

#TYPE

#ifdef XENV

#define EXT_SigName (Name, IdNode, ToExpr, Paraml) \
suitable macro code

#endif

*/

Theother two directives, #AL T and #TRANSFER, can be used together
with appropriate real-time operating systems, to have two different in-
terpretations of an output (internal or external output for example) and
to specify that areceived signal should be immediately retransmitted
(#HTRANSFER). Thesekinds of featuresare not uncommonin real-time
operating systems, and can be modeled and simulated by the Cad-
vanced/Chasic SDL to C Compiler using these directives. Both these di-
rectives should be placed last in the output symbol.

The presence of an #ALT directive will be reflected in the generated
code in the way described below.

» If nodirectiveis used, the following macros will be present in gen-
erated code for sending asignal:

— SDL_20UTPUT: used when the receiver is known.

— SDL_20UTPUT_NO_TO: used when the receiver has to be
calculated during runtime.

— SDL_20UTPUT_COMPUTED_TO: used whenthereceiver is
calculated during code generation.

o If an#ALT directiveis given these macros are replaced by:
— SDL_ALT20UTPUT

— SDL_ALT20UTPUT_NO_TO
— SDL_ALT20UTPUT_COMPUTED_TO

In the Master Library, the macros with and without AL T are expanded
identically. In an OS integration they might be handled differently to
implement two classes of signa sending.

The presence of a#TRANSFER directive indicatesthat asignal should
be directly retransmitted to some other receiver. This can of course be

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

performed in SDL by an input-output, but then it is necessary to create
anew signal and copy the contents of the received signal to the new sig-
nal. Using the #TRANSFER directive this copying can be avoided.

In generated code the macros

« ALLOC_SIGNAL
« ALLOC SIGNAL_PAR

are generated to allocate the data area for anew signal. If a#TRANS-
FER directiveis present in the output statement, these macros are re-
placed by:

» TRANSFER_SIGNAL
» TRANSFER_SIGNAL_PAR

Note:

In the master library #TRANSFER will still be implemented as a
signal copy. It may be possible in an OS integration to avoid the
copying if the OS supports such actions.

Normally the #TRANSFER directive should be used in the following
way:

INPUT signall(,,,);

OUTPUT signall(,,,) /*#TRANSFER*/;
That is, receive none of the signal parametersin theinput and retransmit
the signal unchanged. If you want to receive, for example, the second
parameter (in variable Varl) and retransmit the signal unchanged ex-
cept for parameter 3, that should have anew value (73), the following
code can be used:

INPUT signall(,Varl,,);
OUTPUT signall(,,73,) /*#TRANSFER*/;

Telelogic Tau 4.5 User's Manual 2671

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2672

Linking with Other Object Files
— Directive #WITH

Note:

Thisfeatureisonly valid for SDL/PR asinput, when the Analyzer
is executed stand-alone. Similar features are available in the Orga-
nizer's Make dialog among the Generate makefile options, see
“Generate makefile” on page 122 in chapter 2, The Organizer.

Y ou can tell the Cadvanced/Cbasic SDL to C Compiler that a number
of user defined and precompiled units should be linked together with a
generated simulation program. Y ou do thisin a#WITH directive that
should be placed in the system definition directly after the system head-

ing.

Example 392: #WITH Directive

System S; /*#WITH 'filel.o’ 'file2.o’ */

Within the #WITH directivethe object filesthat areto be part in thelink
operation should be given between quotes, as in the example above.
Thesefileswill beincluded in the definition of thelink operationin the
generated .m file.

The make file will, however, not include any definition of how to com-
pile the corresponding source files, asit isimpossible for the code gen-
erator to know the compilation options or even what compiler the user
wants. A user that knows how to interface routines in other languages
in aC program, can with this knowledge and the #WITH directive link
modules written in another language together with the generated pro-
gram.

Note:

The#WITH directivewill only affect the generated makefile. There
will be no change in the generated C code when a#WITH directive
isintroduced.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Naming Tasks in Trace Output — Directive #ID

To simplify the identification of a TASK in atrace printout, the Cad-
vanced/Chasic SDL to C Compiler uses the variable on the left hand
side of thefirst assignment statement or thefirst informal text in thetask
symbol. A user that is not satisfied with this can hame the tasks using
#ID directives. An ID directive should contain the character string that
isto be used asidentification in trace printouts.

Example 393: #ID Directive

/*#ID 'Identification of task’ */

The code generator will usethefirst ID directiveit findsina TASK (if
any). An 1D directive may be placed:

» Firstinthetask (in PR that isjust after the keyword TASK)

» Immediately before or just after acomma separating two assign-
ments or two informal texts

e Lastinatask (in PR that isjust before the semicolon)

» Directly after the semicolon (this position is only availablein
SDL/PR).

Directive #C, #SYNT, #SYNTNN, #ASN1

These directives are used to pass information from the tools generating
SDL from other languages, for examplefor C (a .n file) or ASN.1.

The #C and the #ASN. 1 directive will be inserted after the semicolon
ending the package definition or after the package name.

package asnl module; /*#ASN.l1 ‘Module Name’ */
package asnl _module /*#ASN.1 ‘Module Name’ */;

The #ASN.1 directive contains the ASN.1 module name and the #C di-
rective contains the name of the originating .n file.

The#SYNT directive and its special form the #SYNTNN directive are
used in apackage generated from C, to indicate which SDL sorts that
are synthesized, i.e. which sorts that where needed in SDL but do not
have aname and definition in C. Astheoriginating .h fileisincluded
inthe generated code (with a#include), no typedefs should be generated
for the non-#SYNT sorts, while typedefs have to be generated for the
synthesized sorts. The #SYNT directive isinserted directly after the
name of the newtype or syntype.

Telelogic Tau 4.5 User's Manual 2673

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2674

Alternative Implementations of the String
Generator — Directive #STRING

An instantiation of the string generator can be translated to either a
linked list or an array when implemented in C. The #STRING directive
is used to determine which tranglation method to select. The directive
should beinserted in aNEWTY PE definition, directly after the string
name, when defining a new string data type.

If the #STRING directive is not included in the NEWTY PE definition,
the string isimplemented as alinked list. Thisisthe default translation
method. However, just adding the directive to the NEWTY PE defini-
tion is not enough to implement the string as an array. The length of the
array must also be defined. This can be done either by using a directive
parameter or by using asize constraint in the NEWTY PE definition of
the string generator. How thisis done is presented in the examples be-
low.

Linked List Implementations

The following examples show how to translate an instantiation of the
string generator to alinked list.

Example 394: No #STRING Directive

NEWTYPE Example String
string(integer, empty)
constants size (0:10)

ENDNEWTYPE;

If the #STRING directive is missing from the NEWTY PE definition,
the string will be implemented as alinked list. The length of thelist is
unlimited, unless asize constraints is defined. In this case the length of
the string is within the range of 0 and 10.

Example 395: #STRING Directive without Limited String Size

NEWTYPE Example String /*#STRING */
string(integer, empty)
ENDNEWTYPE;
In this example the string is also implemented as alinked list. The rea-

son for thisisthat we have not defined a maximum length of the string.

Telelogic Tau 4.5 User's Manual July 2003

Directivesto the Cadvanced/Cbasic SDL to C Compiler

July 2003

Example 396: #STRING Directive with Parameter Value 0

NEWTYPE Example String /*#STRING 0*/
string(integer, empty)
constants size (0:10)
ENDNEWTYPE;

If the parameter value of the #STRING directiveis 0, thedirectiveisig-
nored. Thereforethestring will beimplemented asalinked list. Thesize
constant will still decide the length of the string.

This example, however, shows how to gradually migrate from alinked
list implementation to an array implementation. By just changing the
parameter value to anything larger than 0, this NEWTY PE definition
creates an array implementation.

Array Implementations

The following examples show how to translate an instantiation of the
string generator to an array.

Example 397: #STRING Directive with Limited String Size

NEWTYPE Example String /*#STRING */
string(integer, empty)
constants size (0:10)

ENDNEWTYPE ;

In this case the string is implemented as an array with the maximum
length of 10.

Example 398: #STRING Directive with Parameter Value

NEWTYPE Example String /*#STRING 100*/
string(integer, empty)
constants size (0:10)

ENDNEWTYPE;

In this example the string will be implemented as an array with the

length of 100. The parameter valuein the #STRING directive overrides
the size constant, which in this case is redundant.

Telelogic Tau 4.5 User's Manual 2675

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2676

Size constraint

The size constraint is decided by adding a constant in the NEWTY PE
definition. The following declarations are valid when defining a maxi-
mum size of the string:

constants size (
constants size (
constants size (
constants size (
constants size (

Differences between the Implementations Methods

The different implementation methods affect the behavior and perfor-
mance of the generated code. Thefollowing general statementsapply to
the methods:

» The performance of the array implementation is usually better than
that of the linked list implementation.

» |f the number of string values are equal to or close to the maximum
string length, the array implementation is smaller.

e If the number of string values are substantially smaller than the
maximum string length, the linked list requires less memory.

* Thelinkedlist requires memory allocation, whilethe array doesnot.

Selecting implementation Methods

It is of course hard to advice which method to select, but the following
recommendations apply:

« If thestring size is not known, use the linked list.

e If thenumber of string valuesis substantialy smaller than the max-
imum string length, usethelinked list if speed is not very important.

» |f the maximum length is not large or the number of string values
are almost equal to the maximum length, use the array.

Telelogic Tau 4.5 User's Manual July 2003

Using Cadvanced/Cbasic SDL to C Compiler to Generate C++

Using Cadvanced/Cbasic SDL to C
Compiler to Generate C++

July 2003

General

The C codein the Master Library and the C code generated by the Cad-
vanced/Chasic SDL to C Compiler isin the common subset of C and
C++, and will thus compile both asa C program and asa C++ program.
Thereisone special feature in the code generator concerning C++ when
it comesto abstract data types and the possibility to match a C++ class
and an SDL datatype. Otherwise all the features for including C code,
directive #ADT, directive #CODE (see“Abstract Data Types’ on page
2586 and “Accessing SDL Namesin C Code — Directive #SDL” on
page 2654), and so on, are directly applicable for C++ aswell. The
#CODE directives make it possible to include class definitions as C++
code and the utilization of the classes as C++ code in SDL tasks.

Example 399: Using C++ Classes

CODE directive containing declarations (see“Including C Declarations
—Directive #CODE” on page 2658) which should be placed among the
SDL declarations:

/ *#CODE
#HEADING
class TEST ({
public:
void putvar (int avar, int bvar)
{a = avar; b = bvar;}
int getal()
{return a;}
int getb()
{return b;}
private:
int a,b;
} TESTvar;
*/
Example of usage of the classin a CODE directiveinaTASK (see‘In-
cluding C Codein Task — Directive #CODE” on page 2656).

TASK '’ /*#CODE
TESTvar.putvar (#(I), #(I)+10); */;

Example of usage of the classin a CODE operatorsin expressions (see
“Including C Codein SDL Expressions— Operator #CODE” on page
2662).

Telelogic Tau 4.5 User's Manual 2677

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2678

OUTPUT Score (
#CODE (' TESTvar.geta() '),
#CODE (' TESTvar.getb() '),
#CODE (' # (TClass) ->getVar () ')
)i

Connection Between C++ Classes and SDL

To obtain a close connection between a C++ classand SDL, an abstract
datatypein SDL can be used; see below.

If you have a C++ class (from aclasslibrary or devel oped specifically
for the project), then the following correspondence rules can be used to
map the class on an abstract data type.

C++ SDL

Class definition Abstract data type definition
Class instance pointer Process variable

Member functions Operators

new, delete Operators

Example 400: SDL and C++ Class

Suppose we have a C++ class with the following interface (. h file):

class TestClass ({
public :
TestClass (int) ;
TestClass () ;
~TestClass () ;
int updateVar (int) ;
int getVar();
private :
int v;
Vi
then the following abstract data type can be used to represent the class
(in the example the NAME directive, see “ Specifying Names in Gener-
ated Code — Directive #NAME”" on page 2667, is used to instruct the
Cadvanced/Cbasic SDL to C Compiler which nameto usein C for par-

ticular SDL objects):

NEWTYPE TestClass /*#NAME ’'TestClassPtr’ */

LITERALS

Telelogic Tau 4.5 User's Manual July 2003

Using Cadvanced/Cbasic SDL to C Compiler to Generate C++

newTestClass /*#NAME ’‘newlTestClass’ */
OPERATORS
newTestClass /*#NAME ’‘new2TestClass’ */

integer -> TestClass;

deleteTestClass /*#NAME ’‘deleteTestClass’ */
TestClass -> TestClass;

updateVar /*#NAME ’‘updateVar’ */
TestClass, integer -> integer; /*#OP(HC) */
getvar /*#NAME ’'getVar’ */
TestClass -> integer; /*#OP (HC) */

/*#ADT (T A(S) E(S) D(H) H P)

#TYPE

#include “TestClass.h”

typedef TestClass * TestClassPtr;

COMMENT ((NOTE! SDL data type TestClass is
pointer to C++ class TestClass))

#HEADING
#define yDef TestClassPtr (p) *(p) =0
#define newlTestClass () new TestClass (

)
#define new2TestClass(P) new TestClass (P)

extern TestClassPtr deleteTestClass
(TestClassPtr) ;

#BODY
extern TestClassPtr deleteTestClass
(TestClassPtr P)

delete P;
return (TestClassPtr)O0;

}
*/
ENDNEWTYPE ;
Note that the #ADT specification means that no code will be generated

for the abstract data type. The abstract data type can utilized in the fol-

lowing way:

DCL

TClass TestClass,

I Integer;
TASK TClass := newTestClass;
TASK TClass := newTestClass(2);
TASK I := updateVar (TClass, I);
TASK I := getVar(TClass) ;

July 2003 Telelogic Tau 4.5 User's Manual 2679

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

TASK TClass := deleteTestClass (TClass) ;

The only feature that is not described beforeis the C option in the #OP
directive. C (class) isan aternativeto | (infix) and P (prefix), and spec-
ifiesthat the operator call should betranslated to amember function call

of a C++ member function. #OP(C) means that an operator call

F(a, b, <)
istrandated to
a->F (b, <¢)

Note:

This means that each operator mapped on class member function
should have the class instance pointer as first parameter.

2680 Teldlogic Tau 4.5 User's Manual July 2003

Restrictions

Restrictions

July 2003

SDL Restrictions

The Cadvanced/Chasic SDL to C Compiler handles the mgjority of
SDL concepts according to the definition of SDL-92. There are howev-
er anumber of restrictions that are discussed in this section.

Analyzer Restrictions

Therestrictionsin the SDL Analyzer are, of course, also validin the
Cadvanced/Chasic SDL to C Compiler. For moreinformation see” SDL
Analyzer” on page 37 in chapter 2, Release Notes, in the Release Guide.

Cadvanced/Cbasic SDL to C Compiler Restrictions

The Cadvanced/Chasic SDL to C Compiler introduces more severe re-
strictions on the allowed set of SDL concepts than the Analyzer. For
more information, see " SDL to C Compiler” on page 40 in chapter 2,
Release Notes, in the Release Guide.

Telelogic Tau 4.5 User's Manual 2681

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

Migration Guide for Generic Functions

2682

General

This section provides help to migrate a system using ol d-style code gen-
eration for operators to the new Generic Function style.

Introduction

The basic idea of the generic function approach is to decrease the num-
ber of generated help functions and functions for operatorsin pre-
defined generators. This is accomplished by generating generic func-
tions that can be re-used by different types.

This means, for instance, that only one assignment function is created.
Thisfunction, however, can be used by al types. In the old-style meth-
od, one assignment function was created for each type. For operatorsin
predefined generators, thereis now one single length function calculat-
ing the length of all string generator instantiations.

In order to implement the generic functions, the parameter passing
mechani sms have been changed. In principle, ageneric function cannot
take avalue as parameter, it must receive a pointer to the value. Thisap-
proach has a positive effect on the performance. However, the generic
function approach introduces incompatibility problemsif your existing
system calls generated functions from inline C-code. If thisisthe case,
the function calls must be changed.

If you need to migrate an SDL system created with the old-style code
generation, you must solve the incompatibility issue.

References to Information

Generic Functions

The major source of information regarding generic functionsis“Ab-
stract Data Types’ on page 2586, which contains a number of sections
discussing different aspects of data types and operators:

* “Translation of Sorts’ on page 2595 describes how different SDL
types are translated to C.

Telelogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

» “Parameter Passing to Operators’ on page 2606 discusses the gen-
eral parameter passing principlesfor operatorsand literal functions.
This section aso lists which types that are passed as values and
which types that are passed as addresses.

* “Implementation of User Defined Operators’ on page 2609 de-
scribes how to include your own implementation in C for an opera-
tor.

* “Generic Functions’ on page 2623 introduces you to the type info
node concept and describesthe general operatorsassign, equal, free,
etc.

» “Generic Function for Operators in Pre-defined Generators” on
page 2630 describes the operators in the predefined generators.

* “More about Abstract Data Types’ on page 2634 comprisesinfor-
mation on how to change the implementation of a data type.

SDL Data Types

Information on SDL datatypes and operators, seen from the SDL point
of view, isavailablein “Using SDL Data Types’ on page 42 in chapter
2, Data Types, inthe SDL Suite Methodology Guidelines. Although this
section does not discuss the use of generic functions, it provides the
framework for SDL data types and operators. In some circumstancesiit
might be better to rewrite adatatype or operator in SDL, than to fix the
problemsin C. A number of extensions and improvements have been
included in the support for data types.

Type Info Nodes

For more information on the contents of the type info nodes, please see
“Type Info Nodes” on page 2979 in chapter 62, The Master Library, in
the User’s Manual. This section does not cover migration aspects, but
provides implementation details for an interested reader.

Migrating Strategy

Overview

The common problems that might occur when migrating a system from
the ol d-style operator implementation to the generic functionsimple-
mentation can be divided into two groups:

Telelogic Tau 4.5 User's Manual 2683

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

» Some user-defined SDL operators have changed their prototypesin
C. This means that user-provided implementations of the operators
have to be changed and that calls to such operators directly from C
have to be changed.

» Predefined operators like assignment, equal test, make, and so on,
aswell as operators in predefined generators might have changed
their prototypesin C, which means that calls to such operators di-
rectly in C have to be changed. Also types where the implementa-
tion of assignment, equal and similar operators are changed by a
#ADT directive, might have to be updated.

Thefirst of these problemsisfairly straight forward to fix, while the
second might be more complex.

Step 1: Identifying Migration Problems

Before continuing with the migration instructions, check if your SDL
systems are affected by any incompatibility problems.

1. Find an SDL system that compiles without errorsin a previous ver-
sion of the SDL suite (with the old-style operator implementations)

2. Openitinthe4.5 version of Telelogic Tau.
3. Compileit and seeif you get any compilations errors.

If your compilation errors are similar to the errors in Example 401 on
page 2684 you can assume that you have a migration problem.

Example 401: Compilation Errors

The compilation error in this exampl e originates from the GNU compil-
er, gcc. It givesafairly good feeling of what kind of errors you can ex-

pect.
file.c:50825: conflicting types for ‘yAss example’
file.c:50844: conflicting types for ‘yEqg example’
file.c:51496: conflicting types for ‘opl’
file.c:211376: too many arguments to function ‘opl’
file.c:211376: cannot convert to a pointer type

file.c:6042: incompatible type for argument 2 of
‘GenericAssignSort’

file.c:6081: incompatible type for argument 2 of
\Opll

2684 Teldlogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

Step 2: Locating the Compatibility Problems

Note:

Beforeyou try to investigate and correct any error from thelist of C
compilation errors, you should perform this step. The reason is that
many of the errorswill point at the wrong place so correcting them
might introduce errors rather than correcting anything.

The Cadvanced, Chasic, and Cmicro SDL to C compilersallowsyou to
find the operators and literals that should be updated. By setting the en-
vironment variable spT_comp waARN the code generatorswill produce a
filecalled compatibility.warn inthetarget directory, while generat-
ing code for the system. In the first section of thisfile all operators and
literals that might have to be changed are listed.

Example 402: Contents of compatibility.warn

LITERAL NewDb C-name: z0VO_NewDb
<<SYSTEM accesscontrolooas>>
#SDTREF (TEXT, file.sdl, 57, 12)
Literal function result passed as address

OPERATOR ValidateCard C-name: z0V1l ValidateCard
<<SYSTEM accesscontrolooa/TYPE CardDbTypes>>
#SDTREF (TEXT, file.sdl,59,5)

Parameter 2 passed as address
Used in DIRECTIVE at #SDTREF (TEXT,file.sdl,62)
Used in DIRECTIVE at #SDTREF (TEXT,file.sdl,62)

This example shows one literal and one operator that have to be updat-
ed:

» Thefirst line contains the name of the operator/literal in SDL and in
C.

» Thesecond line contains an appropriate qualifier, that givesinfor-
mation on where in the system the item is defined.

e Thethird lineisthe SDT reference to the operator/literal. This can
be used in the Organizer's Goto Source feature to show where the
SDL sourceis located.

» Thefollowing lines indicate where changes are needed. Each line
states that the result or a parameter is passed as an address. This
means that previously this item was passed as a value, but now it

Telelogic Tau 4.5 User's Manual 2685

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2686

should be passed as an address. A complete list of types that must
be changed can be found in “Mapping Table” on page 2588.

e Last, anumber of cross references might be found. These show
places where the operator is called from inline C using an #SDL di-
rective. These calls might have to be updated.

Step 3: Updating Operators and Literals

For each operator or literal that islisted in the file compatibili-
ty.warn, perform the instructions presented in this section.

Note:
Literals should be treated as operators without parameters.

Updating the Headers

The headers of the corresponding C functions must be updated. If you
have specified #OP(B), the header i s generated and thus already correct,
but if you have specified #OP(H), you have included the header in C
probably inthe #HEADING section in the #ADT directive for the type.

1. For each parameter that should be passed asan address, add a“*’ af-
ter the corresponding type namein C.

2. If theresult should be passed asan address, add a‘*’ after the result
typein C, and add an extra parameter with the same C type as the
updated function result, last among the parameters.

When this step has been performed for all types, the C compilation er-
rorswill bereliable again.

Example 403: Headers

extern str litl (void);
extern str opl (str, SDL_Integer);

Assume str isthetypethat should be passed as an address. The results
of both functions and the first parameter of op1 are mentioned in the
compatibility.warn file. The heading should be updated to:

extern str* 1litl (str¥);
extern str* opl (str*, SDL Integer, str¥*);

Telelogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

Updating Parameter Specifications

The parameter specification and result in the function implementation

must be updated to match the heading. The function implementation is

probably in the #BODY section in the #ADT directive of the type.

Example 404: Parameter Specifications (continued from Example 403)
str 1litl (void)

str opl (str P1, SDL_Integer P2)

should be changed to:
str* 1litl (str* Result)

str* opl (str* P1l, SDL_Integer P2, str* Result);

Updating Operator/Literal Functions

Theimplementation of the operator/literal functions must be updated to
reflect the change in parameters.

Example 405: Operator/Literal Functions (continued from
Example 404)

In the function op1 every occurrence of:

p1 should bereplaced by (*p1)

Specia cases where other changes might be more appropriate:

&P1 should bereplaced by p1
p1.abc should bereplaced by pi1->abc

The new Result parameter must be assigned the result value of the func-
tion and the function must end with a return statement.

Example 406: Return Parameter

return Result;

Telelogic Tau 4.5 User's Manual 2687

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2688

It is not unusual that the function contains alocal variable used for cal-
culating the result. Normally this variable is no longer needed.

While updating the implementation of the function, information from
the next section on, for example, assign and equal function might be
valuable.

Note:

Check that parameters that are passed as addresses are NOT
CHANGED within thefunction. If that isthe case, copy thevaueto
alocal variablefirst, and work with that variable.

Update Calls to Functions

The calls to the changed functions must be updated. Calls made from
SDL cause no problems asthe SDL compilers producethe correct code.
Only calls made directly from inline C code may have to be updated.
The operator listinthefile compatibility.warn contains cross-refer-
encesto theinline C code where the operator is called using an #spr di-
rective.

Note:

Operator callsin C without the #spL directive, are not listed in com-
patibility.warn. These calls can only befound viathe compiler
error list.

For parameters that has changed parameter passing mechanism from
passasvalueto pass as addressyou should perform one of the following
tasks:

» |If the actual parameter is avariable (or something it is possible to
take the address of), add a‘ &’ before the variable.

« If theactual parameter isacall to afunction, then probably this
function has changed its prototype so that it now returns an address.
In that case nothing needs to be performed. In other cases proceed
to the next possibility.

« If none of the situation above is appropriate, insert a new function
local variable of the parameter type, assign the value of the actua
parameter to this variable, and insert the address of the variable as
actual parameter.

Telelogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

Implementation Hint
Note:

The following information is not required for the migration of the
system, but can be used to improve the performance of the system.

When updating the operators, it might be worth investigating the avail-
ablefeaturesinthe SDL suite, including extensionsfor operators, in/out
parameters, no parameters, no result, etc.

One not too uncommon situation iswhen avalueis passed asan in pa-
rameter, then changed by the operator and returned as result value. In
every operator call, the same variable is used as both the actual param-
eter and the receiver of the result. To improve speed of the application,
the operator, could be changed to an operator without result and using
infout parameters.

If you perform a change like this, remember to use the cross-reference
tool to find all places where the operator is used.

Step 4: Updating typedefs

Overview

Another area where backward incompatibility problems might be
present iswhenthe typedef ischanged in an #ADT directive, especial-
ly if the assign, equal, or free functions are changed as well. In the sec-
ond section of thefile compatibility.warn al typeschanging thety-
pedef and at least one of assign, equal, or free functions are listed.

Example 407: Typedef Change

NEWTYPE example C-name:zDZ example
<<SYSTEM mysystem>>
#SDTREF (TEXT, file.sdl,3096,9)
Pass as Value #ADT(T(B)A(B)E(B)F(B))

The example should be interpreted like this:
« Thefirst line contains the name of the newtypein SDL and in C.

» Thesecond line contains an appropriate qualifier that gives infor-
mation on where in the system the newtype is defined.

Telelogic Tau 4.5 User's Manual 2689

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2690

e Thethirdlineisthe SDT referenceto the newtype. This can be used
in the Organizer’s “ goto source” feature to locate the SDL source
code.

» Thefourth line contains either “Pass as Value’ or “Pass as Ad-
dress’, depending on the property of the newtype, followed by the
interpretation of the #ADT directive.

Asthe#ADT directive can be used in many different ways, it isimpos-
sible to describe a general method how to correct any problems. The
typelistinthe compatibility.warn fileindicateswhat newtypesthat
have highest probability to cause problems. It is recommended that you
go through the listed newtypes and review them given the information
in the following sections.

You also have to find and in some cases correct the places where the
functions discussed below are called. The compiler error lististhemain
source of information for thistask. Please see “L ocating Source Code”

on page 2693 if you have problems locating the corresponding SDL
source listed in a C compilation error message.

Assignment Functions

For all types passed as addresses, the differences between the old-style,
and the new generic assignment functions are:

« Theoldfunctions passthevalue of theright-hand side expression as
the second parameter, while the new pass the address of the right-
hand side expression.

» Theold functions returns void, but the generic functions return the
first parameter, i.e. the address of variable.

* Itisnow required that the assignment function must be a function
(it cannot be amacro), asthe address of the function is stored in the
type info node for the newtype.

Example 408: The Assignment Function

The prototype for an old assign function would be:

void yAss_typename (typename*, typename, int)
The prototype for a new assign function should be:

typename* yAss typename (typename*, typename*, int)

Telelogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

The body of the assignment function must be updated for these changes.

If assignment for atype passed as an addressis used in inline C code,
one of the following tasks must be performed:

» |If theexpression parameter isavariable, a‘&’, should be added be-
forethe variable.

» |f the expression isan SDL operator call, achange is normally not
needed, asthe operator in the generic function model will returnthe
address of avalue, not the value itself (for types passed as address).

* Youmight want to add (void) before the yAss call to tell the com-
piler that you want to ignore the result.

For more information please see “ Generic Assignment Functions’ on
page 2624.

Equal Functions

For all types passed as addresses, the differences between the old and
the new generic equa functions are:

» Theold functions pass the values of the two expression, while the
new generic equal functions pass the addresses of the expressions.

e Itisnow required that the equal function must be afunction (it can-
not be a macro), as the address of the function is stored in the type
info node for the newtype.

Example 409: The Equal Function
The prototype for an old equal function would be;

SDL_Boolean yEg typename (typename, typename)
The prototype for anew equal function should be:

SDL_Boolean yEg typename (typename*, typename*)
The body of the equal function must be updated for these changes.

If equal for atype passed asan addressisused ininline C code, perform
the same tasks as presented for the assignment function.

Telelogic Tau 4.5 User's Manual 2691

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2692

For more information please see “Generic Equal Functions” on page
2627.

Free Functions

TheyFree typename function isbackward compatible. However, itis
now required that the equal function must be a function (it cannot be a
macro), as the address of the function is stored in the typeinfo node for
the newtype.

For more information please see “ Generic Free Functions” on page
2628.

Default Functions

The ybef typename macro or function from the non-generic modeis
no longer used or generated. Initiaization of SDL variables are per-
formed as follows:

» if thevariable has aninitial value given in the declaration, the vari-
able is assigned this value, using an assignment statement.

» €eseif thetype of the variable has a default value, the variables are
assigned this value, using an assignment statement.

* elsethevariableis set to 0 using memset. If O is not an appropriate
initial value, the function GenericDefault is called to initialize the
variable. Examples of typeswhere 0 is not an appropriate value are
structs with components with initial values, Object_identifiers,
Strings, general Powersets, Bags and general Arrays.

AsyDef functions/macros do not exist in Generic mode, all usagein in-
line C code must be changed. There are several possibilities. First, de-
cideif assigning adefault value isreally necessary. If it is necessary,
then some of the following principle solutions might be used:

e memsetto0

® GenericDhefault (&variable,
(tSDLTypeInfo *)&ySDL_typename)

* yAss_typename (variable, expression,
XASS_MR_ASS_NF)

o direct C assignment, if possible

Telelogic Tau 4.5 User's Manual July 2003

Migration Guide for Generic Functions

July 2003

Make Functions

TheyMake typename functionfrom the non-generic modeisno longer
used or generated. All callsin inline code to yMake functions must be
replaced by calls to proper GenericM ake functions as described in “ Ge-
neric Make Functions’ on page 2629.

Note:

yMake functions pass component values as values, while Generic-
Make functions pass component val ues as addresses

Operators in Predefined Generators

The operatorsin predefined generators have got new generic implemen-
tations. All the available generic implementationsarelisted in “ Generic
Function for Operators in Pre-defined Generators’ on page 2630. Mac-
rosthat support the old operators names and transl ate them to the gener-
ic functions are generated. If you get compilation errorsin such a call
you should comparethe call with the macro and the generic function, to
seeif there are any differences in the parameter passing principle.

Locating Source Code

A typical error message from aC compiler listsafile name, aline num-
ber, and a description of the error. To locate the corresponding SDL
source code perform the following:

1. Inatext editor, open thefilethat islisted in the error message
2. Gotothe given line number.

3. Search upwardsfor an SDT reference, that is, a C comment starting
with:

/*#SDTREF (

Copy the SDT reference and pasteit into the Goto Source featurein the
Organizer. The Organizer will show you where the C code originated
from.

Telelogic Tau 4.5 User's Manual 2693

Chapter 57 The Cadvanced/Cbasic SDL to C Compiler

2694 Teldlogic Tau 4.5 User's Manual July 2003

	57 The Cadvanced/Cbasic SDL to C Compiler
	Introduction
	Application Areas for the Cadvanced/Cbasic SDL to C Compiler
	Functional Simulation and Debugging
	Performance Simulation
	Validation
	Communicating Simulations

	Overview of the Cadvanced/Cbasic SDL to C Compiler
	Creating a C Program
	Executing a C Program as a Simulator
	Contents of This Chapter

	Generating a C Program
	Process of Generating a C Program
	Executing a C Program
	The SDL Unit for Which Code is Generated
	Errors During Code Generation

	Features
	Partitioning
	General Ideas
	Using Selections in the Organizer
	Unconnected Diagrams
	Build Scripts
	Behavior of Generated Partitioning

	Generation of Support Files

	Implementation
	Time
	Simulated Time
	Real Time

	Scheduling
	The Ready Queue

	Enabling Conditions and Continuous Signals
	Implementation Strategy

	Synonyms
	Synonyms
	External Synonyms

	Import – Export
	Remote Procedure Calls
	Procedure Calls and Operator Calls
	External Procedures And Operators
	Any
	Calculation of Receiver in Outputs

	Abstract Data Types
	Removing un-used SDL Operators
	SDL Predefined Types
	Mapping Table
	C Definitions

	Translation of Sorts
	Predefined Types
	Enumeration Type
	Struct
	UnionC
	Choice
	Array
	String
	Powerset
	Bag
	Ref, Own, Oref
	Syntypes
	Inheritance
	Default Values
	Operators
	Literals
	Axioms and Literal Mappings

	Parameter Passing to Operators
	Implementation of User Defined Operators
	Including Implementations of Operators
	Two Examples of ADTs
	Error Situations in Operators
	Handling of the Charstring Sort
	Other Types Containing Pointers
	External Properties
	More about Operators

	Generic Functions
	Type Info Nodes
	Generic Assignment Functions
	Generic Equal Functions
	Generic Free Functions
	Generic Make Functions

	Generic Function for Operators in Pre-defined Generators
	General array
	Powerset
	Bag and General Powerset
	String
	Limited String

	More about Abstract Data Types
	Including Type Definitions
	More about #ADT
	Directive #REF

	Generators

	Directives to the Cadvanced/Cbasic SDL to C Compiler
	Syntax of Directives
	Selecting File Structure for Generated Code – Directive #SEPARATE
	An Example of the Usage of the Separate Feature

	Accessing SDL Names in C Code – Directive #SDL
	Including C Code in Task – Directive #CODE
	#CODE directives in compound statements

	Including C Declarations – Directive #CODE
	Including C Code in SDL Expressions – Operator #CODE
	Names and Prefixes in Generated Code
	Sequence of Characters
	Prefixes
	Case Sensitivity

	Specifying Names in Generated Code – Directive #NAME
	Assigning Priorities�–�Directive #PRIO
	Initialization – Directive #MAIN
	Modifying Outputs – Directive #EXTSIG, #ALT, #TRANSFER
	Linking with Other Object Files – Directive #WITH
	Naming Tasks in Trace Output – Directive #ID
	Directive #C, #SYNT, #SYNTNN, #ASN1
	Alternative Implementations of the String Generator – Directive #STRING
	Linked List Implementations
	Array Implementations
	Size constraint
	Differences between the Implementations Methods
	Selecting implementation Methods

	Using Cadvanced/Cbasic SDL to C Compiler to Generate C++
	General
	Connection Between C++ Classes and SDL

	Restrictions
	SDL Restrictions
	Analyzer Restrictions
	Cadvanced/Cbasic SDL to C Compiler Restrictions

	Migration Guide for Generic Functions
	General
	Introduction
	References to Information
	Generic Functions
	SDL Data Types
	Type Info Nodes

	Migrating Strategy
	Overview
	Step 1: Identifying Migration Problems
	Step 2: Locating the Compatibility Problems
	Step 3: Updating Operators and Literals
	Step 4: Updating typedefs

	Locating Source Code

