Chapter
14 e asn1 utilities

The ASN.1 Utilities perform three main functionsin Telelogic Tau:

» They can translatean ASN.1 moduleto an SDL package. This
makes it possibleto use ASN.1 types and valuesin SDL .

» They makeit possible for the TTCN suiteto retrieve external
ASN.1ltypesand valuesthat areused in TTCN.

e They producetypeinformation for BER codersin SDL.

Note: ASN.1 support in the TTCN suite

TheTTCN to C compiler supportsonly alimited subset of
ASN.1. See* TTCN ASN.1BER Encoding/Decoding” on page56
in chapter 2, Release Notes, in the Release Guide for further de-
tailson therestrictionsthat apply.

Thischapter isthereference manual for the ASN.1 Utilities.

July 2003 Telelogic Tau 4.5 User’ sManual 695

Chapter 14 The ASN.1 Utilities

Introduction

696

Thischapter describesthe ASN.1 Utilities. It isassumed that the reader
isfamiliar with ASN.1.

Application Areas for the ASN.1 Utilities

The main foreseen applications of the ASN.1 Utilitiesare thefollowing:

e Aot of telecommunication protocol sand services are defined using
ASN.1. The ASN.1 Utilities make it easier to specify and imple-
ment these with SDL.

e The ASN.1 Utilities enable the SDL suite and the TTCN suite to
share common data types by specifying these in a separate ASN.1
module.

« The ASN.1 Utilities generate type information for BER encod-
ing/decoding for the SDL suite.

Overview of the ASN.1 Utilities

The ASN.1 Utilities support the following main functions:
1. Perform syntactic and semantic analysis of ASN.1 modules.
2. Generate SDL code from ASN.1 modules.

3. Extract the ASN.1 typesand valueswhich arereferred inthe TTCN
suite.

4. Generate type information for BER encoding and decoding for the
SDL suite.

For further information about BER encoding and decoding, see chapter
59, ASN.1 Encoding and De-coding in the SDL Suite, in the User’s
Manual.

In normal cases, the ASN.1 Utilities are completely hidden for the user
by the SDL Analyzer and the TTCN Analyzer.

From the user’ s point of view, an ASN.1 moduleisvery similar to an
SDL package: ASN.1 data types can be defined in amodule, and then
be used within SDL, using operators that are defined in ITU Recom-
mendation Z.105. When an SDL system containing ASN.1 modulesis

Telelogic Tau 4.5 User’s Manual July 2003

Using the ASN.1 Utilities

analyzed, the Analyzer will order the ASN.1 Utilitiesto translate these
modules into corresponding SDL packages.

Inthe TTCN suite, indirect use of the ASN.1 Utilitiesis made by the
ASN.1-by-reference table. When such atable is analyzed, the TTCN
suite orders the ASN.1 Utilities to extract the ASN.1 types and values
inaspecified ASN.1 module. For more information about this function-
ality, see“ASN.1 External Type/Vaue References’ on page 1188 in
chapter 27, Analyzing TTCN Documents (on UNIX).

Using the ASN.1 Utilities

The ASN.1 Utilities are implemented in the executable asn1util.
asnlutil can beused in two ways:

1. Stand-alone from the organizer (command-line interface).

2. Viathe PostMaster

Command-Line Interface

Usage: asnilutil [options] { <file> [options] }*

Option M eaning

-h display a help message

-v display version

-q be quiet, suppress some output messages

generate encode/decode type information for the
SDL Suite and asnl_cfg.h configuration file

-g generate coder information for TTCN suite
-B set BER as default encoding

-p set PER as default encoding

-N <name> set <name> as default encoding

-m include module name in encode/decode type

nodes and macros

July 2003

Telelogic Tau 4.5 User's Manual 697

Chapter 14 The ASN.1 Utilities

698

Option

M eaning

- <name>

use <name> for the name of the interface (*.ifc)
files

-S <config>

use <config> for type names configuration in
(*.ifc) files

-s <file>

generate SDL output in <file>

-a

append the output to an existing file instead of
creating anew file

generate SDL body only, i.e. do not generate
package headings (makes it possible to import
generated SDL with #iNCLUDE)

generate references (#SDTREF) to source file

generate al operators for the SDL enumerated
typeaslisted in Z.105. Default isto emit some of
the operatorsin Z.105

generate values for SDL Make operator with op-
tional and default support

-u <package>

add “ use <package>;" to all generated SDL pack-
ages

-J <name> <files>

Join all ASN.1 modules from <files> into one
SDL package <name> (see Example 29 on page
699)

-K <file> Perform substitution for keywords listed in
<file> (see “Keywords substitution” on page
701)

-i <file> generate TTCN output to <file>

-1 <file> take command line from <file>

-post wait for commands viathe PostMaster (see
“PostMaster Interface” on page 700)

-T<dir> put generated code in directory <dir>

Telelogic Tau 4.5 User’s Manual July 2003

Using the ASN.1 Utilities

July 2003

Example 27

asnlutil -r -s myfile.pr -c myfile.asn
(myfile.asn contains ASN.1 module MyModule)

The command in the example trand ates the module MyModule in file
myfile.asn to an SDL package MyModulein file 'myfile.pr’. The gener-
ated package will contain backward references to the source file 'my-
file.asn’. Encode/decode type nodes are generated in C-source file
'MyModule_asnlcoder.c’ and C-header file’'MyModule_asnlcoder.h'.
A configuration file “asnl_cfg.”* with compile switches for coder relat-
ed filesis generated.

Example 28

asnlutil AsnModulel.asn AsnModule2.asn

If no options are specified, then asnlutil only performs syntactic and
global semantic analysisfor AsnModulel.asn and AsnModule2.asn, no
output is generated.

If no input file is specified, then asnlutil does nothing except showing
help or version number if correspondent options are specified.

Example 29 Joining modules

asnlutil -J Join-Module -s my.pr myl.asn my2.asn

The ASN.1 modulesfrom the files my1.asn and my2.asn will bejoined
together in the SDL package Join_Module. Name clashes may occur if
the same name is available in different ASN.1 modules the filed are
joined. These problems are resol ved according to a set of name clash re-
solving rules, see “Joining modules’ on page 704.

Configuration file generation

For the -c option encode and decode type information is generated to
C-files. Also asnlutil performsthe analysis of ASN.1 types and some
features used in the specification and generatesfile asn1_cfg.h.

Thisfile contains compile switches that are referenced from inside the
coderscode. When asn1_cfg.hisused by the build processthe prepro-
cessor automatically throws away useless parts of the code from encod-

Telelogic Tau 4.5 User's Manual 699

Chapter 14 The ASN.1 Utilities

ing and decoding related files. Thishelpsto reducethe codesizeand im-
prove the performance of encoding and decoding procedures.

For example, if the ASN.1 file does not contain OCTET STRING and
SET OF typesin the module, the following definitions

#ifdef CODER AUTOMATIC CONFIG
#define CODER_NOUSE_OCTET_STRING
#define CODER NOUSE SET OF
#endif

will be included in the configuration file.

Thisfeature can be turned on by the CODER_AUTOMATIC CONFIG COM-
pile switch. For more information about available compile switchesfor
the configuration see Encoding configuration” on page 2820 in chapter
59, ASN.1 Encoding and De-coding in the SDL Suite.

PostMaster Interface

The ASN.1 Utilities can also be invoked via the PostM aster. An exam-
pleof thisiswhen an SDL system that usesASN.1 modulesisanalyzed.
The Analyzer will then order the ASN.1 Utilities, viathe PostM aster, to
perform atrandation of the ASN.1 modulesto SDL packages. For a
complete description of the PostMaster, see chapter 11, The PostMas-
ter.

On UNIX, the PostMaster communication may also beinvoked by start-
ing asnilutil with the -post command-line option. asniutil will
then wait for commands sent to it from the PostMaster.

Translation of ASN.1 to SDL

700

This section describesthe detailed tranglation rulesfrom ASN.1 to SDL
that are implemented in the ASN.1 Utilities. The trandation rules all
conform to Z.105, except for the cases described in “Restrictions to
Z.105” on page 31 in chapter 2, Release Notes, in the Release Guide.

General

e Case sensitivity is according to Z.105, i.e. ASN.1 names are con-
verted directly to SDL names. Thisimpliesthat in rare cases, correct
ASN.1 modules may cause name conflicts when used in SDL.

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Note:

Since named numbers, named bits, and integer values are al
mapped to integer synonyms, the same name should not be used
more than once, because this will lead to name conflictsin SDL.

e ‘-’ (dash) in ASN.1 namesistransformedto ‘' (underscore), e.g.
long-name in ASN.1l istransformed to 1ong name in SDL.

* Inaccordance with Z.105, tag information isignored in the transla-
tion to SDL.

* AsSDL doesnot have “in-line types’, one ASN.1 type may be
mapped to more than one SDL type. The generated in-line types get
dummy names.

» External type/value references are mapped to qualifiers. For exam-
plea.aismappedto <<package A>> a.Alsoauseclause(use a;)
is generated.

Keywords substitution

ASN.1 generators can be configured to be sensitive to a certain number
of identifiers. Thereis aspecial text file named ‘asnlutil_kwd.txt’ that
contains alist of identifiersand alist of their substitution during map-
ping. By default thisfileisused to configure target languages keywords
substitution. It can be edited to get another functionality or another set
of keywords to be replaced.

“asnlutil_kwd.txt’ should contain pairs of identifierswherethefirst one
istheidentifier from original ASN.1 specification that will be replaced
by the second identifier during generation. ‘asnlutil_kwd.txt’ should
conform to the following syntax:

Example 30 Configuration file syntax

<identifierls> <identifierl substitutions>
<identifier2> <identifier2 substitutions>
<identifierN> <identifierN substitutions>

ASN.1 Utility reads the first configuration file it finds. It searches for
the ‘asnlutil_kwd.txt’ filefirst in the current folder, then in the home
folder and finally in the installation. If a configuration file named

“asnlutil_kwd.txt’ is put in the home folder or in the current working

Telelogic Tau 4.5 User's Manual 701

Chapter 14 The ASN.1 Utilities

702

folder, it will override the default configuration file from the installa-
tion. The configuration file to be used can also be specified in the Ana-
lyze dialog or from the command line with the *-K’ option (see “ Com-
mand-Line Interface” on page 697).

Analyze SDL il

Analyze Block GameBlock UEalect E{Her(s)
[Include hidden symbols el
I tacro expansion
" Case sensitive SOL
v Syntactic analysis
Full Anal

v Semantic analysis Details &I
™ ABMN.1 encode/decode parameter

IOmet stting LI Set

ASN keyword substitution file:

— 2]
Errar limit 0 LI_I —’I
Log expressions] o | B

" Filter command Help

™ Echo Analyzer commands

[~ Terminate Analyzer when done

Figure 168: Keywords substitution

“asnlutil_kwd.txt’ is always present in the installation and it is config-
ured to replace keywords from SDL, TTCN, C and C++ languages: the
ASN.1 identifier name, that isakeyword in SDL, TTCN or C++, isre-
placed by name SDI._KEYWORD, name_TTCN KEYWORD OF

name CPP_KEYWORD to avoid syntax errorsin the target languages (see
“Appendix A: List of recognized keywords’ on page 755). If an original
ASN.1identifier has been modified, awarning messageisreported. See
“ERROR 2077 ASN.1 identifier #1 isakeyword, it will be replaced by

#2" on page 754).

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

Note: Keywords recognition

ASN.1in case-sensitivelanguage and target language keywords are
also recognized in case-sensitive mode. If generated SDL is ana-
lyzed in case-insensitive mode, there could still be keyword prob-
lems | eft. For example, ASN.1 contains the type named start and
it will not be recognized to be an SDL keyword, because the key-
word start will be compared, but in case-insensitive mode start
isstill akeyword in SDL, which will result in syntax errors.

Example 31 Keywords default substitution

For these ASN.1 definitions:

CASE ::= ENUMERATED { upper, lower }

T ::= SEQUENCE
int INTEGER,
explicit BOOLEAN,
case CASE,
signal INTEGER

int 5,
explicit TRUE,
case lower,
signal 27 }

With default keywords substitution file the following SDL is generated:

newtype CASE TTCN_ KEYWORD
literals upper, lower
operators
ordering;
endnewtype;

newtype T struct
int CPP_KEYWORD Integer;
explicit CPP_KEYWORD Boolean;
case CPP_KEYWORD CASE TTCN KEYWORD;
signal_ SDL_KEYWORD Integer;
endnewtype;

synonym valuel T = (. 5, true, lower, 27 .);

A configuration file allows the user to control the set of keywordsto be
replaced. Removing lineswith TTCN keywords, for example, will

July 2003 Telelogic Tau 4.5 User's Manual 703

Chapter 14 The ASN.1 Utilities

704

switch off TTCN keywords sensitivity. Providing an empty configura-
tion file will result in switching off keywords substitution completely.

Module

¢ AnASN.1 moduleistransated to an SDL package as specified in
Z.105. ThepefinitiveIdentifier (Object identifier after mod-
ule name) isignored. The tag default is also ignored.

e EXPORTS iSmapped to a corresponding interface-clause.

e IMPORTS iS mapped to a corresponding package reference clause.
TheassignedIdentifier (Object identifier after module name) is
ignored.

Note:

On UNIX, the -b option disables generation of package/endpackage,
interface and use clauses. Files that have been generated this way
canbeincludedin SDL withthe #lNCLUDE directive, see“ Includ-
ing PR Files” on page 2436 in chapter 55, The SDL Analyzer.

Example 32

MyModule DEFINITIONS ::= BEGIN

EXPORTS A, b, C;
IMPORTS X, Y, z FROM SomeModule { iso 3 0 8 }

END
is mapped to
package MyModule;
interface newtype A, synonym b, newtype C;

use SomeModule / newtype X, newtype Y, synonym z;

endpackage;

Joining modules

Mapping for ASN.1 original module structure can be changed by apply-
ing joining modul e functionality. Several ASN.1 modules can be gener-
ated into one SDL package, if ASN.1 modules are arranged into groups
in the Organizer. Joining modules can also be controlled from the com-
mand line (see “ Command-Line Interface” on page 697).

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

File Edit View Generate Tools Bookmarks ﬂelpl

S = N =N
DT rw fdeptfdevelopfhaisdisnmp-grisnmp-4.2.sdt I
re fdeptidevelop/baisdtfsnmp-gr!

JoinMadule

-Eﬁ RFC1155_5MI rw 1fel158-smiasn
[aSky RFC1157_SNMP ree rfet1567—snmp.asn
[a5R) USE_SNMP "W USE-SNMp.asn

snmp "W SNMp.ssy
h rw b.sbk
P "W pspr
shmp MW shimp_join.ssy
h W hsbk
P W pspr

I System saved

Figure 169: Joining modules

Joining means throwing away all import/export clauses and module
headers and generating all module bodiesinto one big package with the
name specified in the Organizer or command line interface.

When joining definitions from several ASN.1 modules into one SDL
package, names in the resulting SDL package change according to the
following rules:

» Clashed names are prefixed by the original ASN.1 module name

» Package namesin the external references are replaced by thejoin
package name

Example 33

M1

DEFINITIONS ::=
BEGIN

IMPORTS S2 FROM M2;

T ::= SET OF SEQUENCE { a S2 }
S1 ::= IA5String

Telelogic Tau 4.5 User's Manual 705

Chapter 14 The ASN.1 Utilities

END

M2

DEFINITIONS ::=
BEGIN

T ::= SEQUENCE OF SEQUENCE OF M1l.S1
S2 ::= BOOLEAN

END

without joining applied ASN.1 modules M1 and M2 are mapped to

use M2/
newtype S2;
package M1l; /*#ASN.1l 'M1’*/

newtype T
Bag (T _INLINE O0)
endnewtype;
newtype T_INLINE_ O /*#SYNT*/ struct
a 8S2;
endnewtype;
syntype S1 = IA5String endsyntype;
endpackage M1;
package M2; /*#ASN.1 'M2’*/
newtype T
String (T_INLINE 0, emptystring)

endnewtype;

newtype T INLINE 0 /*#SYNT*/

String (<<package M1>>S1, emptystring)

endnewtype;
syntype S2 = Boolean endsyntype;

endpackage M2;

with joining to package Join-Package applied ASN.1 modules are

mapped to

package Join Package; /*#ASN.1l ’‘Join_ Package’*/

newtype M1 T
Bag (M1 T INLINE 0)
endnewtype;
newtype M1_T INLINE O /*#SYNT*/ struct

706 Teldlogic Tau 4.5 User's Manual

Trandslation of ASN.1to SDL

July 2003

a S82;
endnewtype;
syntype S1 = IA5String endsyntype;

newtype M2 T
String (M2 _T INLINE 0, emptystring)
endnewtype;
newtype M2 T INLINE 0 /*#SYNT*/
String (<<package Join Package>>S1l, emptystring)
endnewtype;
syntype S2 = Boolean endsyntype;

endpackage Join Package;

General Type and Value Assignment

A type assignment is mapped to a newtype or a syntype, depending on
thetypeontheright-hand sideof the* : : =". Tagsareignored. AnASN.1
value assignment is mapped to a synonym.

Example 34
Tl ::= INTEGER
T2 ::= [APPLICATION 28] T1
a BOOLEAN ::= TRUE
is mapped to
syntype T1 Integer endsyntype;

syntype T2 = Tl endsyntype;
synonym a Boolean = True;

Inline types naming

The ASN.1 language can use type definitions inside composite types,
which are called inline types. Inline types are not allowed in SDL. In
SDL, only named types can be used in acomposite type. Implicit names
areassigned to ASN.1 inlinetypesand they arereferenced by this name
in SDL.

Implicit names for generated SDL have the following syntax:
<parent_definition_name>_INLINE_<counter>, where
parent_definition_name is either the name of the parent type or the
name of the parent value, depending on if inline type existsin type or
value assignment construct in ASN.1.

Telelogic Tau 4.5 User's Manual 707

Chapter 14 The ASN.1 Utilities

Example 35

Tl ::= SEQUENCE {
a SET OF INTEGER,
b CHOICE { x BIT STRING,
y OCTET STRING },
c ENUMERATED { sat, sun }

For type T the following inline types will be
generated to SDL

newtype T1 struct
a T1 _INLINE O;
b T1 INLINE 1;
¢ T1 _INLINE 2;

endnewtype;

newtype T1 INLINE 0 /*#SYNT*/
Bag (Integer)
endnewtype;

newtype Tl INLINE 1 /*#SYNT*/ choice
x Bit_string;
y Octet_string;

endnewtype;

newtype T1 INLINE 2 /*#SYNT*/

literals sat, sun

operators
first: T1_INLINE 2 -> Tl INLINE 2;
last: T1_INLINE 2 -> T1 INLINE 2;
succ: T1_INLINE 2 -> Tl INLINE 2;
pred: T1 INLINE 2 -> Tl INLINE 2;
num: Tl _INLINE 2 -> Integer;
ordering;

<operator definitionss>

endnewtype;

Example 36

T2 SEQUENCE OF INTEGER ::= { {1,1} | {2,2} }

For T2 the following inline types will be generated
to SDL

newtype T2 /*#SYNT*/
String (Integer, emptystring)
constants ((. 1, 1 .)), ((. 2, 2 .))
endnewtype;

708 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Example 37

val BIT STRING (SIZE(3)) ::= ‘101’'B
synonym val val INLINE 0 = bitstr(’101');

syntype val_INLINE 0 = Bit_string constants size (3)
endsyntype;

Note:

SDL inline names can change if you change within the parent type
or value in the ASN.1 specification, the counter can differ. If these
names are used within an SDL system, then you must update the
SDL system.

Boolean, NULL, and Real

BOOLEAN, NULL and REAL are mapped to the corresponding SDL
types. Value notations for these types are mapped as follows

ASN.1type | ASN.1value Corresponding SDL value
ANY not supported (conform
Z.105)
BOOLEAN TRUE True
FALSE False
NULL NULL NULL
REAL 0 0.0
PLUS-INFINITY PLUS_INFINITY
MINUS-INFINITY MINUS INFINITY
{ mantissa 31416, |3.141%
base 10, exponent
-4 }

If a REAL value has an exponent bigger than 1000 and if the mantissa
isnot zero, then it is mapped to PLUS_INFINITY or
MINUS_INFINITY. If aREAL value has an exponent | ess than -1000,
then it is mapped to 0.

Telelogic Tau 4.5 User's Manual 709

Chapter 14 The ASN.1 Utilities

710

Bit String

BIT STRINGismappedtotheZ.105-specifictyperit string. Named
bits are mapped to integer synonyms. VValuesfor bit strings are mapped
to hexstr/bitstr EXPressions.

Example 38
B ::= BIT STRING { bit0(0), bit23(23) }
bl BIT STRING ::= ‘011 1110'B
b2 BIT STRING ::= ‘3AFC'H

ismapped to

syntype B = Bit string endsyntype;
synonym bit0 Integer = 0;
synonym bit23 Integer 23;

bitstr (‘0110 1110’);
hexstr ('3AFC’) ;

synonym bl Bit string
synonym b2 Bit string

Note:

Bit_string, asopposed to most other string typesin SDL, hasin-
dices starting with 0!

Typerit isaZ.105 specific typewith literals0 and 1, and with boolean
operators.

Available operators:

bitstr : Charstring -> Bit_string;
/* converts a Charstring consisting of ‘0’ and
‘l’-s to a Bit_string */
hexstr : Charstring -> bit_ string;
/* converts a Charstring consisting of
hexadecimal characters to a bit string */

“not” : Bit string -> Bit_ string;

“and” : Bit_string, Bit_ string -> Bit_ string;

“or” : Bit_string, Bit_string -> Bit_string;

“xor” : Bit_string, Bit string -> Bit_ string;

“=>" Bit string, Bit_string -> Bit_ string;
/* blthse logical operators */

mkstring : Bit -> Bit_ string;

length : Bit_string -> Integer;

first : Bit_string -> Bit;

last : Bit_string -> Bit;

Ay : Bit string, Bit string -> Bit string;

extract : Bit_string, Integer -> Bit;

modify! : Bit_string, Integer, Bit-> Bit_ string;

substring : Bit_ string, Integer, Integer ->

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Bit_string;
/* normal String operators, except that index
starts with 0;
see also “Sequence of Types” on page 716 */

Character Strings

PrintableString, NumericString, VisibleString, and
1a558tring (i.e al ASN.1 character string typeswith character setsthat
are asubset of ASCII) are mapped to syntypes of SDL charstring.
Vauesfor these strings are mapped to corresponding charstring Syn-
onymsin SDL.

The same operators as for charstring are available for these types,
and values of these types can be assigned freely to each other without
need for conversion operators.

For example, in SDL an 1a5string value can be assigned to a
NumericString variable (given that the 1asstring only contains nu-
meric characters).

Choice Types

A cHoICE typeis mapped to the choice-construct that is described in
more detail in “Choice” on page 2600 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler.

Example 39

C ::= CHOICE {
a INTEGER,
b BOOLEAN}

c C ::= a:7
is mapped to
newtype C choice
a Integer;

b Boolean;
endnewtype;

synonym ¢ C = a:7

The operatorsthat are available for a cHo1cE type are (assuming that ¢
isdefined asin Example 39 above):

aextract! : C -> Integer;

Telelogic Tau 4.5 User's Manua 711

Chapter 14 The ASN.1 Utilities

/* e.g. cla returns 7 */

bextract! : C -> Boolean;

/* but c!b gives dynamic error! */
amake! : Integer -> C;
bmake! : Boolean -> C;

/* build choice value, e.g. in SDL
it is possible to write b:True */

amodify! : C, Integer -> C;
/* e.g. varla := -5 */

bmodify! : C, Boolean -> C;

presentextract! : C -> xXXX;

/* returns the selected field.
XXX 1s an anonymous type with values a and

E.g. c!present gives a */

Enumerated Types

An ENUMERATED type is mapped to a newtype with a set of literals plus
some operators. By default only ordering operators are generated, use
command line option -e to get the rest. Thelist of literals that is gener-
ated is reordered in accordance with the associated integer values.

Example 40

N ::= ENUMERATED { yellow(5), red(0), blue(6) }
is mapped to (only signature of operators shown)

newtype N
literals red, yellow, blue
/* note that the literals have been reordered! */

operators

ordering;

first: N -> N;

last: N -> N;

succ: N -> N;

pred: N -> N;

num: N -> Integer;
endnewtype,

The operatorsthat are available for an ENUMERATED type are (assuming
that v is defined asin Example 40 above):

num : N -> Integer;
/* num(yellow)=5, num(red)=0, num(blue)=6 */

“<“ : N, N -> Boolean;
“<=": N, N -> Boolean;
“>” : N, N -> Boolean;
“>=": N, N -> Boolean;

/* comparison based on num, i.e. red < yellow */

712 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

pred: N -> N;
succ: N -> N;

/* predecessor/successor based on num, i.e.
succ (red) =yellow, succ(yellow)=blue,
pred(red) gives a dynamic error */

first: N -> N;
last : N -> N;

/* first/last element based on num, i.e.

first (red)=red, last (red)=blue */

Integer

INTEGER iS mapped to the SDL 1nteger type, and ASN.1 integer val-
ues are mapped to corresponding SDL values.

Named numbers are mapped to synonyms.

Example 41

A ::= INTEGER { a(5), b(7) }
is mapped to
syntype A = Integer endsyntype;

synonym a Integer
synonym b Integer

7

7;

Object Identifier

OBJECT IDENTIFIER iSmapped to the Z.105-specific type

Object Identifier. The norma String operators are available for
Object Identifier, listed alsoin"“Sequence of Types’ on page 716.
Indices start as usual with 1.

Telelogic Tau 4.5 User's Manual 713

Chapter 14 The ASN.1 Utilities

714

Octet String

OCTET STRING iSmapped to the Z.105-specific typeoctet string.
Octet string isbased ontypeoctet. Thistypeisfurther described
in“SDL Predefined Types’ on page 2588 in chapter 57, The Cad-
vanced/Chasic SDL to C Compiler. The mapping for the octet string
value notationto SDL isidentical to bit strings, see“Bit String” on page

710.

Note:
Octet string, hasindices starting with 1.

Operators available:

bitstr : Charstring -> Octet_string;
hexstr : Charstring -> Octet_string;
/* conversion from Charstring to Octet string,
see also “Bit String” on page 710%*/
bit_string : Octet_string -> Bit_string;
octet string: Bit string -> Octet_string;
/* conversion operators
Octet string <-> Bit string */

mkstring : Octet -> Octet_string;

length : Octet_string -> Integer;

first : Octet_string -> Octet;

last : Octet_string -> Octet;

Ay : Octet string, Octet string -»>
Octet_string;

extract! : Octet_string, Integer -> Octet;

modify! : Octet_string, Integer, Octet ->
Octet_string;

substring : Octet_string, Integer, Integer ->

Octet_string;
/* normal String operators, see also
“Sequence of Types” on page 716 */

Sequence/Set Types

SEQUENCE and seT are both mapped to SDL struct. From an SDL point
of view thereis no difference between sequeNcE and SeT. In order to
support optional and default components, SDL has been extended with
corresponding concepts.

Note:

Optional and default fields in struct are both non-standardized ex-
tensionsto SDL.

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Vauesaremappedtothe“(.)” construct (= Make ! Operator). Vaues
for optional and default components are not supported. Instead, SDL
tasks should be used to assign optional and default components.

Example 42

S ::= SEQUENCE
a INTEGER OPTIONAL,
b BOOLEAN,
¢ IAS5String DEFAULT “xyz” }

s S ::= { b TRUE }
is mapped to

newtype S struct
a Integer optional;
b Boolean;

c IA5String := ‘xyz’;
endnewtype;
synonym s S = (. True .);

The operatorsthat are available for a SEQUENCE or SET type are (assum-
ing that s is defined asin Example 42 above):

make! : Boolean -> S;

/* builds a value for S */
aextract!: S -> Integer;
bextract!: S -> Boolean;

cextract!: S -> IAS5String;
/* Extract operators. Note that aextract! gives
dynamic error if the field has not been set */

amodify! : S, Integer -> S;
bmodify! : S, Boolean -> S;
cmodify! : S, IA5String -> S;

/* Modify operators change one component
in a Sequence/Set */

apresent : S -> Boolean;
/* gives True if component a has been assigned
a value, e.g. aPresent(s) = False */
Telelogic Tau 4.5 User's Manua 715

Chapter 14 The ASN.1 Utilities

Sequence of Types

SEQUENCE OF iS mapped to the st ring generator. Values are mapped
to corresponding synonyms.

Example 43

S ::= SEQUENCE OF INTEGER
sl S ::= 3, 2, 5 }
s2 S ::=

is mapped to
newtype S

String (Integer, Emptystring)
endnewtype;

synonym sl S
synonym s2 S

The normal String operators are available for Sequence types. Indices
start at 1.

The operatorsthat are available for a SEQUENCE OF type are (assuming
that s is defined asin Example 43 above):

mkstring : Integer -> S;
/* make a sequence of one item */
length : S -> Integer;
/* returns number of elements in sequence */
first : S -> Integer;
/* returns first element in sequence */
last : S -> Integer;
/* returns last element in sequence
NS/ : S, S -> S;
/* returns concatenation of two sequences */
extract! : S, Integer -> Integer;
/* returns the indexed element */
modify! : S, Integer, Integer -> S;

/* modify the indexed element */
substring : S, Integer, Integer -> S;
/* Substring(S, i, 1) returns substring of S
of length 1, starting at index i */

make! : * Integer -> S;
/* adds the included elements to the string,
* corresponds to (. .) */

append : in/out S, Integer;

/* appends one element to the string */

716 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Set of Types

SET OF ismapped to the Z.105 specific Bag generator. For amore com-
plete description of the Bag generator, see” Bag” on page 2603 in chap-
ter 57, The Cadvanced/Chasic SDL to C Compiler.

Example 44

S ::= SET OF INTEGER
sl S 2, 2, 5
s2 S

is mapped to

newtype S
Bag (Integer)
endnewtype;

synonym sl S
synonym s2 S

The operators that are available for aseT or type are (assuming that s
isdefined asin Example 44 above):

incl : Integer, S -> S;
/* add an element to the bag */
del : Integer, S -> S;
/* delete one element */
incl : Integer, in/out S;
del : Integer, in/out S;
length : S -> Integer;
/* returns number of elements */
take : S -> Integer;
/* return some element from the bag */
take : S, Integer -> Integer;
/* return the indexed element in the bag */
makebag : Integer -> S;
* build a bag of one element */
“in” : Integer, S -> Boolean;

/* gives true if the element is in the bag */

Wen : S, S -> Boolean;
> : S, S -> Boolean;
Ne=" : S, S -> Boolean;
“>=" : S, S -> Boolean;
/* subset/superset comparison operators */
“and” : S, S -> S;
“or” : S, S -> S;
/* intersection/union operators */
make! : * Integer -> S;
/* adds the included elements to the bag,
* corresponds to (. .) */

Telelogic Tau 4.5 User's Manua 717

Chapter 14 The ASN.1 Utilities

718

Useful Types

ThetypesceneralizedTime and uTcTime have been defined in terms
of ASN.1 as specified in X.680. It follows from their definition in
X.680, together with the information about thetranslation rulesgivenin
this chapter, which operators are available in SDL for these types.

Constrained Types

Constrained types are mapped to sdl syntypes of the associated parent
sort. Value constraints are mapped to sdl range condition.

When specifying ASN.1 value constraints, several constructs can be
used that are not supported in the SDL suite, suchas ALL EXCEPT,IN-
CLUDES <subtype> and value range with MIN or MAX endpoint. Pos-
sible values for such atype are computed and mapped to syntype with
range condition represented by a sequence of open and closed ranges.

Example 45

T = INTEGER ((1..10) EXCEPT 8)

Tl ::= INTEGER (INCLUDES T EXCEPT (3..<6))
ismapped to

syntype T = Integer
constants 9 : 10, 1 : 7
endsyntype;

syntype Tl = Integer
constants 9 : 10, 6 : 7, 1 : 2
endsyntype;

“COMPONENTS OF" and “WITH COMPONENT” constraints are
mapped by using extrainline types. If the present constraint is applied
to the parent type, then the new typeis generated excluding fields
marked as ABSENT and including fields marked as PRESENT.

Example 46
T = SEQUENCE ({
a INTEGER,
b IA5String
}
Tl ::= T (WITH COMPONENTS {

a (-5..5),

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

b (SIZE (7))
})
is mapped to

newtype T struct
a Integer;
b IA5String;
endnewtype;

newtype T1 struct
a T1_INLINE O;
b T1 INLINE 1;

endnewtype;

syntype Tl INLINE 0 = Integer constants

endsyntype;

syntype Tl INLINE 1 = IA5String constants size(7)

endsyntype;

-5

Example 47

T ::= SET OF BIT STRING

Tl ::= T (WITH COMPONENT (SIZE (5))

is mapped to

newtype T
Bag (Bit_string)
endnewtype;

syntype Tl = T1_INLINE 0 endsyntype;

newtype T1 INLINE O /*H#SYNT*/
Bag (T1_INLINE 1)
endnewtype;

syntype Tl INLINE 1 = Bit string
constants size (5)
endsyntype;

Example 48
T ::= SET {

a INTEGER OPTIONAL,
b REAL OPTIONAL

Telelogic Tau 4.5 User’s Manual

719

Chapter 14 The ASN.1 Utilities

720

Tl ::= T (WITH COMPONENTS {
a (0..<MAX) PRESENT,
b ABSENT
)
is mapped to

newtype T struct
a Integer optional;
b Real optional;
endnewtype;

newtype Tl struct
a T1_INLINE O;
endnewtype;

syntype Tl INLINE 0 = Integer constants >=0
endsyntype;

Note:

According to ASN.1, thetypes T and T1 are compatible, because
they are derived from each other. In SDL these are different types
and values of type T can not be assigned to type T1.

ASN.1 SET OF and SEQUENCE OF types with SIZE or single value
constraints are mapped to one SDL type with constraint without intro-
ducing any extrainline types.

Example 49
Tl ::= SEQUENCE SIZE (5..15) OF INTEGER
T2 ::= SEQUENCE ({ 1 } | {}) OF INTEGER
T3 ::= SET (SIZE (MIN .. <100)) OF BOOLEAN
T4 ::= SET (SIZE (15) | { ''B }) OF BIT STRING
ismapped to
newtype T1
String(Integer, emptystring)
constants size (5 : 15)
endnewtype;
newtype T2
String (Integer, emptystring)
constants ((. .)), ((. 1 .))
endnewtype;
newtype T3

Telelogic Tau 4.5 User’s Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Bag (Boolean)
constants size (<=99)

endnewtype;

newtype T4

Bag (Bit_string)

constants ((. bitstr(’’) .)), size

endnewtype;

(15)

Extensibility

Extensibility wasintroduced in X.680 (1997). In ASN.1 extensibility is
represented with extension markers and extension addition groups, that
can be specified inside SET, SEQUENCE, CHOICE, ENUMERATED
types and constraints.

Extension markersarenot visiblein SDL tranglations. All square brack-
etsareignored and all components from extension addition groups are
trandlated into SDL asindividual fields. All required components from
extension additions, individual or from extension addition groups are

mapped to optional ones.

Example 50

S1

}

:= SET

x [100] INTEGER,

’

[0
grll REAL

17,

t BIT STRING,

[0
gr21 BOOLEAN OPTIONAL,
gr22 SET OF INTEGER

11,

y INTEGER

is mapped to SDL

newtype S1 struct

x Integer;

grll Real optional;

t Bit_string optional;

gr21 Boolean optional;
gr22 S1_INLINE 1 optional;
y Integer;

Telelogic Tau 4.5 User’s Manual

721

Chapter 14 The ASN.1 Utilities

endnewtype;

newtype S1 INLINE 1 /*#SYNT*/
Bag (Integer)
endnewtype;

Note:

SDL translation removes the borders of additional groups and
makes all required components optional. The semantics for assign-
ing values to types with additional groups are: either the whole ad-
dition group ([[....]]) isabsent, or itisall present unless compo-
nentsinside the group are optional. Thisisnot checked in SDL tools
but inconsistency will cause errorsin ASN.1 encoding.

Extension markersareignored in constraints. If both root and additional
congtraints are present, they are trandated to the union constraint.

Example 51

A

Tl ::= INTEGER (1..10 2..20, ... , 12)
is mapped to SDL

syntype Tl = Integer constants 12, 2 : 10
endsyntype;

T2 ::= INTEGER (1 | 3, ...)
is mapped to SDL

syntype T2 = Integer constants 3, 1 endsyntype;

Information from Object Classes, Objects and
Object Sets

Object classes, object and objects sets are not translated to SDL. Only
typesand valuesaretranslated to SDL, butitispossiblein ASN.1to use

information from object classes, objects and object sets when specify-
ing types and values. Thisinformation istranslated into SDL.

722 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

ObjectClassFieldType

ObjectClassFieldTypeis areference to object class and afield in that
class. The translation to SDL depends on the kind of field name used.

An open typeis defined if the field name references atype field, a vari-
able type vauefield or variable type value set field. An open type can
be any ASN.1 type. Open types are trandated to Octet_string typesin
SDL.

Example 52
OPERATION ::= CLASS
&ArgumentType,

&arg &ArgumentType

Tl ::= SEQUENCE { a OPERATION.&ArgumentType }

istranslated to SDL
newtype Tl struct
a T1_INLINE O;
endnewtype;

syntype Tl INLINE 0 = Octet string endsyntype;

T2 ::= OPERATION. &arg
istranslated to SDL

syntype T2 = Octet_ string endsyntype;

If the field namein the class references afixed type value or fixed type
value set fields, then the fixed type is used when translated to SDL.

Example 53

OPERATION ::= CLASS {
&ValueSet INTEGER

T ::= OPERATION.&ValueSet
istranslated to SDL

syntype T = Integer endsyntype;

Telelogic Tau 4.5 User's Manual 723

Chapter 14 The ASN.1 Utilities

ObjectClassFieldType with table constraint (object set
constraint)

Table constraint applied to ObjectClassFieldType restricts the set of
possible types or values to those specified in a column of the table. A
table correspondsto an object set. The columns of the table correspond
to the object class fields and the rows correspond to the objects in the
Set.

If the field name in ObjectClassFieldTypeis atype field and con-
strained with atable, then it istranslated to a CHOICE type with fields
of the types specified in the table column. The names of thefieldsin the
choice are the same as the names of the typesin the column but the first
letter is changed from upper case to lower case.

Note: Field names

If the typein thefield isinline then the namein the field will be an
implicitly generated inline name, liket INLINE_4.

If the field name in ObjectClassFieldTypeis afixed typevalueor a
fixed type value set, then this is translated to a constrained type where
only values that are specified in the table column are permitted.

If the field name in ObjectClassFieldTypeis avariable type value or
variable type value set field, then thisis translated to a CHOICE type
with types, that are constrained to have values specified in the corre-
sponding cell in the same row of the table.

Example 54

OPERATION ::= CLASS {
&ArgumentType,
&operationCode INTEGER UNIQUE,
&ValueSet INTEGER,
&ArgSet &ArgumentType

The My-Operations object set

Object & Argu- & opera- & ValueSet | & ArgSet
name mentType | tionCode
operationA | INTEGER | 1 {112]5..8) |{ 111.444)

724 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

Object &Argu- & opera- &ValueSet | & ArgSet
name mentType | tionCode
operationB | SET OF IN- | 2 {2.8} ({123} |
TEGER {8881}
Cl ::= OPERATION.&ArgumentType ({My-Operations})
istranslated to SDL
newtype Cl choice
integer Integer;
cl INLINE 2 C1 INLINE 1;
endnewtype;

newtype Cl_INLINE 1 /*H#SYNT*/
Bag (Integer)

endnewtype;

C2 ::=

istranslated to SDL

syntype C2 =

C3 ::=

istranslated to SDL

syntype C3 =
endsyntype;

C4 ::=

istranslated to SDL

Integer constants 2,

newtype C4 choice

c4 INLINE 1
c4 INLINE 1

C4 INLINE 1;
C4_INLINE 2;

Integer constants 2 : 8, 1,

OPERATION. &operationCode ({My-Operations})

1 endsyntype;

OPERATION.&ValueSet ({My-Operations})

5:8, 2

OPERATION.&ArgSet ({My-Operations})

endnewtype;
syntype C4 INLINE 1 = Integer constants 111 444
endsyntype;
syntype C4 INLINE 2 /*#SYNT*/

Bag (Integer)

constants ((. 888 .)), ((. 1, 2, 3 .))
endsyntype;

Telelogic Tau 4.5 User’'s Manual 725

Chapter 14 The ASN.1 Utilities

If an open typeisconstrained by thetable for which al type settings are
omitted, then it istranslated to SDL Octet_string instead of an empty
CHOICE type.

Example 55
MY-CLASS ::= CLASS ({

&id INTEGER,
&OpenType OPTIONAL

The My-Set object set:

Object name | &id | & OpenType

objectl 1 -
object2 2 -
S ::= SEQUENCE ({

id MY-CLASS.&id({My-Set}),
val MY-CLASS.&OpenType ({My-Set}{@id})

1
istrandlated to SDL

newtype S struct
id S_INLINE O;
val S_INLINE 2;

endnewtype;

syntype S_INLINE 0 = Integer constants 2, 1
endsyntype;

syntype S _INLINE 2 = Octet string endsyntype;

TypeFromObject

TypeFromObject is a reference to an object and atype field in that ob-
ject. Thisissimply translated to that typein SDL. If thefield is optional
in the class and not set in the object, then TypeFromObject cannot be
trand ated.

Example 56

OPERATION ::= CLASS ({
&ArgumentType,

726 Teldlogic Tau 4.5 User's Manual July 2003

Trandslation of ASN.1to SDL

July 2003

&ResultType

}

operationA OPERATION ::= {
&ArgumentType INTEGER,
&ResultType BOOLEAN

01 ::= operationA.&ArgumentType
istranslated to SDL
syntype 01 = Integer endsyntype;

02 ::= operationA.&ResultType
istranslated to SDL

syntype 02 = Boolean endsyntype;

ValueSetFromObject

VaueSetFromObject isareference to an object and afield with a set of
valuesin that object. Thisistranslated to aconstrained typein SDL, al-
lowing only values from the value set.

Example 57

OPERATION ::= CLASS
&ValueSet INTEGER

operationA OPERATION ::=
&ValueSet { 1 | 2 | 5..8 }

V1 ::= operationA.&ValueSet

istranslated to SDL

syntype V1 = Integer constants 2, 5 : 8, 1
endsyntype;

ValueFromObject

ValueFromObject is areference to an object and afield with avaluein
that object. Thisistranslated to the same valuein SDL.

Telelogic Tau 4.5 User's Manual 727

Chapter 14 The ASN.1 Utilities

Example 58

OPERATION ::= CLASS {
&operationCode INTEGER UNIQUE

operationA OPERATION ::= { &operationCode 1 }
val2 INTEGER ::= operationA.&operationCode

is mapped to SDL
synonym val2 Integer = 1;

CONSTRAINED BY notation

CONSTRAINED BY istreated like acomment and is not translated to
SDL.

Parameterization

Wherever a parameterized type or valueis used, it istranslated to SDL
after all dummy references are replaced by the actual parameters. A pa-
rameterized value is also translated after all dummy references are re-
placed by the actual parameters.

Parameterized assignments are ignored when translating to SDL.

Example 59

Container { ElemType, INTEGER : maxelements } ::=
SET SIZE (0..maxelements) OF ElemType

Intcontainer ::= Container {INTEGER, 25}
isfirst internally mapped to

Intcontainer ::= SET SIZE(0..25) OF INTEGER
and then translated to SDL. Container is not translated to SDL.

728 Teldlogic Tau 4.5 User's Manual July 2003

Support for External ASN.1in the TTCN Suite

Support for External ASN.1in the TTCN

Suite

July 2003

The ASN.1 Utilities are also used by the TTCN suiteif aTTCN test
suite contains data types and constraints that are defined in the tables
“ASN.1 Type Definitions By Reference” and “ASN.1 Constraints By
Reference”. For more information, see “ASN.1 External Type/Value
References’ on page 1188 in chapter 27, Analyzing TTCN Documents

(on UNIX).

Since TTCN is based on the older X.228 standard, while the ASN.1
Utilities are based on the new X.680 standard, users should be careful
to use the common subset of X.680 and X.228 if an ASN.1 moduleisto
be used in TTCN. In particular there are a number of differences:

In ENUMERATED types, avalue must be supplied for al values. For
example:

E ::= ENUMERATED { a, b }
should be replaced by
E ::= ENUMERATED { a(0), b(1) }

X.680 offers more possihilities for specifying constraints than
X.228 does. X.228 does not have the keywords ALL, EXCEPT,
UNION, and INTERSECTION.

For ASN.1 types that have components (e.g. SET Or SEQUENCE), an
identifier must be provided for every component (according to
X.680), whilein X.228 identifiers can be omitted. For example:

S ::= SEQUENCE { INTEGER } -- valid X.228

Thisisinvalid according to X.680. The following should be used in-
stead:

S ::= SEQUENCE { fieldl INTEGER }

General

‘-’ (dash) in ASN.1 namesistransformedto ‘' (underscore), e.g.
long-name in ASN.1l istransformed to 1ong name in TTCN.

In general ASN.1to TTCN translation look like pretty printing of
ASN.1modulesinto TTCN tablesfor most of the constructs, but not

Telelogic Tau 4.5 User's Manual 729

Chapter 14 The ASN.1 Utilities

730

al of them. Some ASN.1 concepts are not supported in TTCN suite,
they have to be modified during TTCN generation:

— Conceptsdefined in X.681, X.682 and X.683 (see” Information
from Object Classes, Objects and Object Sets’ on page 736,
“CONSTRAINED BY notation” on page 741 and “Parameter-
ization” on page 741)

— automatic tagging (see “Keywords substitution” on page 730)

— COMPONENTS OF Type notation (see *COMPONENTS OF
Type notation” on page 733)

— selection types (see “ Selection types’ on page 734)

— enumerated types without numbers for enum identifiers (see
* Enumerated types” on page 734)

— extensibility (see“Extensibility” on page 721)

Keywords substitution

ASN.1 generators can be configured to be sensitive to acertain number
of identifiers. Thereisaspecial text file named ‘asnlutil_kwd.txt’ that
contains alist of identifiers and alist of their substitution during map-
ping. By default thisfileisused to configure target languages keywords
substitution. It can be edited to get another functionality or another set
of keywords to be replaced.

“asnlutil_kwd.txt’ should contain pairs of identifierswherethefirst one
istheidentifier from the original ASN.1 specification that will be re-
placed by the second identifier during generation. ‘asnlutil_kwd.txt’
should conform to the following syntax:

Example 60 Configuration file syntax

<identifierls> <identifierl substitutions>
<identifier2s> <identifier2 substitutions>
<identifierNs> <identifierN substitutions

ASN.1 Utility reads the first configuration file it finds. It searches for
‘asnlutil_kwd.txt’ filefirstinthecurrent folder, theninthe homefolder
and finally in theinstallation. If a configuration file named
‘asnlutil_kwd.txt' is put in the home folder or in the current working

Telelogic Tau 4.5 User’s Manual July 2003

Support for External ASN.1in the TTCN Suite

July 2003

folder, it will override the default configuration file from the installa-
tion. The configuration file to be used can also be specified in the com-
mand linewiththe‘-K’ option (see” Command-Line Interface’ on page
697), for example,

Example 61 Configuration file specification

asnlutil -K my config.txt -i File.ttcn File.asn

“asnlutil_kwd.txt’ is always present in the installation and it is config-
ured to replace keywords from the SDL, TTCN, C and C++ languages:
the ASN.1 identifier name, that isakeyword in SDL, TTCN or C++, is
replaced by name_SDI, KEYWORD, name TTCN KEYWORD Of

name CPP KEYWORD to avoid syntax errorsin the target languages (see
“Appendix A: List of recognized keywords’ on page 755). If an original
ASN.1lidentifier hasbeen modified, awarning messageisreported. See
“ERROR 2077 ASN.1 identifier #1 isakeyword, it will be replaced by

#2" on page 754).

Example 62 Keywords default substitution

For these ASN.1 definitions:

CASE ::= ENUMERATED { upper, lower }

T ::= SEQUENCE
int INTEGER,
explicit BOOLEAN,
case CASE,
signal INTEGER

int 5,
explicit TRUE,
case lower,
signal 27 }

With default keywords substitution file the following TTCN is generat-
ed:

CASE_TTCN KEYWORD ::=
ENUMERATED {upper (0), lower (1)}

T ::= SEQUENCE

int CPP_KEYWORD INTEGER,
explicit CPP_KEYWORD BOOLEAN,

Telelogic Tau 4.5 User's Manual 731

Chapter 14 The ASN.1 Utilities

732

case CPP_KEYWORD CASE_TTCN KEYWORD,
signal SDL_KEYWORD INTEGER

}

valuel T ::= {
int_ CPP_KEYWORD 5,
explicit_CPP_KEYWORD TRUE,
case_CPP_KEYWORD lower,
signal_SDL_KEYWORD 27

A configuration file allows user to control the set of keywordsto be re-
placed. Removing lines with SDL keywords, for example, will switch
off SDL keywords sensitivity. Providing an empty configuration file
will result in switching off keywords substitution completely.

Automatic tagging

If'AUTOMATIC TAGS' iswritten in the header of an external ASN.1
module, then implicit tags are inserted into SET, SEQUENCE and
CHOICE types. During the TTCN generation they are inserted in the
type definitions explicitly.

Example 63

M1

DEFINITIONS AUTOMATIC TAGS ::
BEGIN

T ::= SEQUENCE

a INTEGER OPTIONAL,
b INTEGER DEFAULT 5

C ::= CHOICE
x INTEGER,
y BOOLEAN,
z REAL
END

is translated to TTCN
SEQUENCE

a [0] INTEGER OPTIONAL,
b [1] INTEGER DEFAULT 5

Telelogic Tau 4.5 User’s Manual July 2003

Support for External ASN.1in the TTCN Suite

CHOICE

x [0] INTEGER,
y [1] BOOLEAN,
z [2] REAL

COMPONENTS OF Type notation

COMPONENTS OF Type can appear in SET or SEQUENCE field
types. Instead of COMPONENTS OF Type alist of components of the
referenced typeisincluded, except extension addition components.

Example 64
S1 ::= SEQUENCE

x INTEGER,
g NULL,
[[

y BOOLEAN,

z BIT STRING
11,

[l
c IA5String
11,
d SET OF
INTEGER OPTIONAL,

f REAL
S2 ::= SEQUENCE

a IA5String,

COMPONENTS OF S1,

b OCTET STRING
Type S2 is translated to TTCN
SEQUENCE
IASString,
INTEGER,
NULL,

REAL,
OCTET STRING

o rhQ X o

July 2003 Telelogic Tau 4.5 User's Manual 733

Chapter 14 The ASN.1 Utilities

734

Example 65

Selection types
A selection typeis mapped to the type it denotes.

C ::= CHOICE
a INTEGER,
b BOOLEAN
Tl ::= a < C
Tl is translated to TTCN
INTEGER
T2 ::= b < C
T2 is translated to TTCN

BOOLEAN

Example 66

Enumerated types

Enumerated items can be defined using “identifier” notation or “identi-
fier and number” notation. For “identifier” notations, implicit numbers
are assigned to the identifiers according to the rules described in X.680
(1997), 19.

Extension markers are ignored.

For TTCN, all enumeration items are generated with their correspond-
ing numbers using “identifier and number” notation, and they are ar-

ranged according to their number values in ascending order in the gen-
erated enumeration.

A ::= ENUMERATED { a, b, c(0), d, e(2)

is translated to TTCN

ENUMERATED { c(0), a(l), e(2), b(3), d(4)

B ::= ENUMERATED { a, b(3), ... , c(1)

is translated to TTCN

Telelogic Tau 4.5 User’s Manual

}

}

}

July 2003

Support for External ASN.1in the TTCN Suite

July 2003

ENUMERATED { a(0), c(1), b(3) }

Extensibility

Extensibility wasintroduced in X.680 (1997). In ASN.1 extensibility is
represented with extension markers and extension addition groups, that
can be specified inside SET, SEQUENCE, CHOICE, ENUMERATED
types and constraints.

Extension markers are not visiblein TTCN trandation. All square
bracketsareignored and all componentsfrom extension addition groups
aretrandated into TTCN asindividua fields. All required components
from extension additions, individual or from extension addition groups,
are mapped to optional ones.

Example 67
Sl ::= SET

x [100] INTEGER,

’

I

grll REAL
11,
t BIT STRING,

[l
gr21 BOOLEAN OPTIONAL,
gr22 SET OF INTEGER

11,
y INTEGER
is translated to TTCN

SET

x [100] INTEGER,

grll REAL OPTIONAL,

t BIT STRING OPTIONAL,

gr21 BOOLEAN OPTIONAL,

gr22 SET OF INTEGER OPTIONAL,
y INTEGER

Telelogic Tau 4.5 User's Manual 735

Chapter 14 The ASN.1 Utilities

736

Note:

TTCN translation removes the borders of additional groups and

makes all required components optional. The semantics for assign-
ing vaues to types with additional groupsis: either the whole addi-
tiongroup ([[....]]) isabsent, oritisall present unless components
insidethe group are optional. Thisisnot checked in TTCN tools but

inconsistency will cause errorsin ASN.1 encoding.

Extension markers are ignored in constraints. If
both root and additional constraints are present,
they are translated to the union constraint.

Example 68
Tl ::= INTEGER (1..10 *~ 2..20, ... , 12)
is translated to TTCN
INTEGER ((1..10 * 2..20) | (12))

T2 ::= INTEGER (1 | 3, ...)
is translated to TTCN

INTEGER (1 | 3)

Information from Object Classes, Objects and
Object Sets

Object classes, object and objects setsare not translated to TTCN. Only
types and values are translated to TTCN, but it is possiblein ASN.1 to
use information from object classes, objects and object sets when spec-
ifying types and values. Thisinformation istranslated into TTCN.

ObjectClassFieldType

ObjectClassFieldTypeisareferenceto an object classand afield in that
class. Thetranglation to TTCN depends on the kind of field name used.

An open type is defined if the field name references atypefield, avari-
abletype value field or variable type value set field. An open type can
beany ASN.1type. Opentypesaretranslated to OCTET STRING types
in TTCN.

Telelogic Tau 4.5 User’s Manual July 2003

Support for External ASN.1in the TTCN Suite

Example 69
OPERATION ::= CLASS {
&ArgumentType,

&arg &ArgumentType

Tl ::= SEQUENCE { a OPERATION.&ArgumentType }
istranslated to TTCN

SEQUENCE { a OCTET STRING }

T2 ::= OPERATION. &arg
istranslated to TTCN

OCTET STRING

If the field namein the class references afixed type value or fixed type
value set fields, then the fixed type is used when translated to TTCN.

Example 70

OPERATION ::= CLASS
&ValueSet INTEGER

T ::= OPERATION.&ValueSet
istranslated to TTCN

INTEGER

ObjectClassFieldType with table constraint (object set
constraint)

A table constraint applied to ObjectClassFieldType restricts the set of
possible types or values to those specified in a column of the table. A
table corresponds to an object set. The columns of the table correspond
to the object class fields and the rows correspond to the objectsin the
Set.

If the field name in ObjectClassFieldTypeis atypefield and con-
strained with atable, then it istranslated to a CHOICE type with fields
of the types specified in thetable column. The names of thefieldsin the
choice are the same as the names of the typesin the column but the first
letter is changed from upper case to lower case.

July 2003 Telelogic Tau 4.5 User's Manual 737

Chapter 14 The ASN.1 Utilities

738

Note:

If the typein thefield isinline then the namein the field will be an
implicitly generated inline name, liket INLINE_4.

If the field name in ObjectClassFieldTypeis afixed typevalueor a
fixed type value set, then this is translated to a constrained type where
only values that are specified in the table column are permitted.

If the field name in ObjectClassFieldTypeis avariable type value or
variable type value set field, then thisis translated to a CHOICE type
with types, that are constrained to have values specified in the corre-
sponding cell in the same row of the table.

Example 71

OPERATION ::=

CLASS {
&ArgumentType,

&operationCode INTEGER UNIQUE,

&ValueSet INTEGER,
&ArgSet &ArgumentType

The My-Operations object set:

Object &Argu- - j&opera- | o\ eset | & ArgSet
name mentType | tionCode
operationA | INTEGER |1 {112]5..8} |{ 111.444}
operationB | SET OF IN- | 2 {2..8} {{1,2,3} |
TEGER {888}}
Cl ::= OPERATION.&ArgumentType ({My-Operations})
istranslated to TTCN
CHOICE {
integer INTEGER,
cl INLINE 2 SET OF INTEGER
C2 ::= OPERATION.&operationCode ({My-Operations})
istranslated to TTCN

INTEGER (1 | 2)

Telelogic Tau 4.5 User’s Manual

July 2003

Support for External ASN.1in the TTCN Suite

C3 ::= OPERATION.&ValueSet ({My-Operations})
istranslated to TTCN
INTEGER ((1 | 2 | 5..8) | (2..8))
C4 ::= OPERATION.&ArgSet ({My-Operations})
istranslated to TTCN
CHOICE {
c4 INLINE 1 INTEGER ((111..444)),
c4_ INLINE 2 SET OF INTEGER (({1,2,3} | {888}))

If an open typeisconstrained by the table for which al type settings are
omitted, then it istranslated to TTCN OCTET STRING instead of an
empty CHOICE type.

Example 72

MY-CLASS ::= CLASS ({
&id INTEGER,
&OpenType OPTIONAL

The My-Set object set:

Object name | &id | & OpenType

objectl 1 -
object2 2 -
S ::= SEQUENCE ({

id MY-CLASS.&id ({My-Set}),
val MY-CLASS.&OpenType ({My-Set}{@id})

1
istranslated to TTCN

SEQUENCE {
id INTEGER (1 | 2),
val OCTET STRING

July 2003 Telelogic Tau 4.5 User's Manual 739

Chapter 14 The ASN.1 Utilities

740

TypeFromObiject

TypeFromObject is a reference to an object and atype field in that ob-
ject. Thisis simply trandlated to the that typein TTCN. If thefield is
optional inthe classand not set in the object, then TypeFromObject can-
not be tranglated.

Example 73

OPERATION ::= CLASS {
&ArgumentType,
&ResultType

}

operationA OPERATION ::=
&ArgumentType INTEGER,
&ResultType BOOLEAN

01 ::= operationA.&ArgumentType
istranslated to TTCN

INTEGER

02 ::= operationB.&ResultType
istranslated to TTCN

BOOLEAN

ValueSetFromObject

VaueSetFromObject is areference to an object and afield with a set of
valuesin that object. Thisistranslated to a constrained typein TTCN,
alowing only values from the value set.

Example 74

OPERATION ::= CLASS {
&ValueSet INTEGER

operationA OPERATION ::=
&valueSet { 1 | 2 | 5..8 }

V1 ::= operationA.&ValueSet
istrandated to TTCN

Telelogic Tau 4.5 User’s Manual July 2003

Support for External ASN.1in the TTCN Suite

July 2003

INTEGER (1 | 2 | 5..8)

ValueFromObject

VaueFromObject is areferenceto an object and afield with avaluein
that object. Thisistranslated to the same value in TTCN.

Example 75

OPERATION ::= CLASS {
&operationCode INTEGER UNIQUE

operationA OPERATION ::= { &operationCode 1 }
val2 INTEGER ::= operationA.&operationCode
istranslated to TTCN

val2 of type INTEGER equal to 1

CONSTRAINED BY notation

CONSTRAINED BY istreated like acomment and is not translated to
TTCN.

Parameterization

Wherever aparameterized typeor valueisused, itistranslatedto TTCN
after all dummy references are replaced by the actual parameters. A pa-
rameterized value is also translated after all dummy references are re-
placed by the actual parameters.

Parameterized assignments are ignored when translating to TTCN.

Example 76

Container { ElemType, INTEGER : maxelements } ::=
SET SIZE (0..maxelements) OF ElemType

Intcontainer ::= Container {INTEGER, 25}
ismappedto TTCN

SET SIZE (0..25) OF INTEGER

Telelogic Tau 4.5 User's Manua 741

Chapter 14 The ASN.1 Utilities

Error and Warning Messages

742

This section contains a list of the error and warning messagesin the
ASN.1 Utilities. Each message has a short explanation and, where ap-
plicable, areference to the appropriate section of the recommendations
X.680,X.681,X.682, X.683 or Z.105.

Some messagesinclude areferenceto the object that isthe source of the
diagnostic. These messages adhere to the format adopted in the SDL
suite. See chapter 19, SDT Referencesfor areferenceto thisformat and
for examples.

WARNING 2000 Unknown option ‘#1’

Thiswarning message indicates that the ASN.1 Utilities were started
with an unknown option. See " Command-Line Interface” on page 697
for an overview of the valid options.

WARNING 2001 No #1 specified after ’#2’ option

This warning message indicates that the ASN.1 Utilities were started
with anillegal combination of options. See “* Command-Line Interface’

on page 697 for an overview of the valid options.

For example,

asnlutil -s -r MyModule.asn

In this case no output file for sdl generation is specified after '-s option.

ERROR 2002 Too many errors

This error message indicates that the maximum number of errors was
reached when analyzing an ASN.1 module. The analysis has been
aborted by the ASN.1 Utilities.

ERROR 2003 Multiple #1 paths

Thiswarning message indicates an incorrect usage of the options of the
ASN.1 Utilities.

For example,
asnlutil -Tdirl -Tdir2 -s MyModule.pr MyModule.asn

Multiple target directories provide a warning message

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

July 2003

WARNING 2004 Option missing
This warning message indicates that no option is specified after dash.

ERROR 2005 Can not open #1

This error message indicates that an error occurred when the ASN. 1
Utilities attempted to open afile. Modify, if necessary, the file protec-
tionandtry to runthe ASN.1 Utilitiesagain. If the error persists, contact
Telelogic Customer Support. Contact information for Telelogic Cus-
tomer Support can be found in “How to Contact Customer Support” on

pageiv in the Release Guide.

For example,
asnlutil -Tdir -i MyModule.ttcn MyModule.asn

This command line can cause an error message “ Can not open air/My-
Modulettcn” if there is no target directory ‘dir' in the catalogue from
which asnlutil is called.

ERROR 2006 Illegal characters in bstring

This message indicates that an ASN.1 binary string item (used in BIT
STRING and OCTET STRING) containsillegal characters. The only
charactersallowed are "0', “1' and white space characters. (X.680: 9.9)

ERROR 2007 Illegal characters in hstring

Thismessage indicatesthat an ASN.1 hexadecimal string item (used in
BIT STRING and OCTET STRING) containsillegal characters. The
only characters allowed are “0'-'9', "A'-'F' and white space characters.
(X.680: 9.10)

For example: 'F30C 973D'H is avalid hexadecimal string item.

ERROR 2008 ’'H’ or ’'B’ expected

This error message indicates that an ASN.1 BIT STRING or OCTET
STRING valueis not ended with a "B or an "H. (X.680: 9.9 and 9.10).

For example: '0110'B or '1IAFC'H arevalid valuesfor BIT STRING and
OCTET STRING, '01110'isillegal.

ERROR 2009 Unclosed #1 string

Thiserror is reported when there is no closing apostrophe at the end of
string

Telelogic Tau 4.5 User's Manual 743

Chapter 14 The ASN.1 Utilities

744

WARNING 2010 Unknown token ‘#1’
Thiswarning indicates a syntax error in the ASN.1 module.

ERROR 2011 Syntax error

This message indicates asyntax error in the ASN.1 module with syntax
from standard X.680-X.683. This could be caused by a misspelling. It
could also be caused by X.228 constructs that are not part of X.680.

ERROR 2012 Out of memory

This message indicates that the ASN.1 Utilities ran out of memory. Try
to makethe ASN.1 module smaller or supply more memory. If the error
persists, contact Telelogic Customer Support. Contact information for
Telelogic Customer Support can befound in“How to Contact Customer
Support” on pageiv in the Release Guide.

WARNING 2013 No semantic support for ‘#1°

Thiswarning indicates that an ASN.1 construct is used that is not sup-
ported by the ASN.1 Utilities. The construct will be ignored by the
ASN.1 Utilities.

ERROR 2014 Export-file ‘#1’ corrupt

This message indicates that the export file format of an ASN.1 module
was corrupt or unknown. Thiserror should normally not occur. Contact
Telelogic Customer Support. Contact information for Telelogic Cus-
tomer Support can be found in “How to Contact Customer Support” on
pageiv in the Release Guide.

ERROR 2015 0Old ASN1, #1

This message indicates that an ASN.1 construct of the older X.228 rec-
ommendation is used that has been superseded in the X.680 Recom-
mendation.

For example:
S ::= SEQUENCE { INTEGER }
isold ASN.1. Correct X.680 ASN.1 s

S ::= SEQUENCE { fieldl INTEGER }

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

ERROR 2016 Recursive expansion of COMPONENTS OF in type
#1

This error message indicates that the ASN.1 type uses directly or indi-
rectly COMPONENTS OF itself.

ERROR 2017 Recursive #1
This message indicates that the ASN.1 construct is recursively defined.

For example; T1::=T2, T2::=T1; T::=SET OF T,O0rVT =V

ERROR 2018 Recursive #1 constraint

This error message indicates that type being constrained is recursively
used in applied constraint.

Forexample: I ::= INTEGER (1 .. 10 | INCLUDES I)

ERROR 2019 Field ’‘#1’ should be initialized by #2

This message is reported when you assign wrong kind of value for the
field in the object, for example when you try to assign avalue for the
typefield in the object

ERROR 2020 Value for “#1' can not be #2
This error message indicates a semantic error in the ASN.1 module.
For example, T ::= BIT STRING { a(-1)} causestheerror “Value

for 'named bit' can not be negative”

WARNING 2021 Construct ‘#1’ has no mapping in SDL

Thiswarning indicates that an ASN.1 construct is used that can not be
mapped to SDL.

For example:
S1 SEQUENCE ::= { }

-- empty SEQUENCE/SET
s SEQUENCE { a INTEGER OPTIONAL } ::= {}

-- value for SEQUENCE/SET without components

July 2003 Telelogic Tau 4.5 User's Manua 745

Chapter 14 The ASN.1 Utilities

746

ERROR 2022 Ambiguous reference, symbol ‘#1’ imported
more than once

A valueisused that isimported more than once. Use an external value

reference to specify unambiguously the module of the value that you
want to use.

ERROR 2023 Multiple definition of #1

Thiserror message appears, when the sameidentifier appears morethen
once on the right side of assignment.

For example, X ::= INTEGER, X ::= SET OF REAL

ERROR 2024 Exported symbol #1 not defined

Thiserror messageisreported when symbol isexported, but it isneither
defined in the module nor imported to it

ERROR 2025 Ambiguous export, symbol #1 is imported more
than once

This error message indicates that it isimpossible to decide which sym-

bol to export, because two symbols with the name #1 are imported to
the module

ERROR 2026 Ambiguous export, symbol #1 is defined and
imported

This error message indicates that it isimpossible to decide which sym-
bol to export, because symbol #1 is defined in the module and imported
toit at the same time

ERROR 2027 Nothing known about module #1

This message appears when modul e referenced from imports clause
does not exist. Y ou should specify al modules from which symbolsare
imported to the analyzed module in the same command line, otherwise
itisimpossible to perform global semantic analysis

ERROR 2028 Import from empty module #1

This message appears when importing symbols from a module, that
does not contain any definitions

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

July 2003

ERROR 2029 Module does not export symbols

This message appears when you are trying to import symbols from
module with empty export: “EXPORTS ;"

ERROR 2030 Imported symbol #1 is not exported from module
#2

This message appears when symbol #1 is present in imports from mod-
ule#2 clause, but it isnot exported from#2. *ExporTS ; ~ indicatesthat
nothing is exported, while empty exports clause indicates that all defi-
nitions are exported from the module.

ERROR 2031 Imported symbol #1 is not defined in module #2

This error situation occurs when symbol is imported from module that
exports al, but symbol is not defined there

ERROR 2032 Ambiguous import, symbol #1 imported more than
once to module #2

Thisindicates that all symbols are exported from module #2, but it is
impossible to import symbol #1 from module #2 because symbol #1 is
imported more than once to #2. The symbols have the same name, but
defined in different modules.

ERROR 2033 Ambiguous import, symbol #1 defined and
imported to module #2

Thisindicates that all symbols are exported from module #2, but it is
impossible to import symbol #1 from module #2 due to ambiguity be-
tween symbol #1defined in module #2 and symbol #1 imported to mod-
ule #2.

For example;
M1 DEFINITIONS ::= BEGIN
IMPORTS a FROM M2;
END
M2 DEFINITIONS ::= BEGIN
IMPORTS a FROM M3;
a INTEGER ::=5
END
M3 DEFINITIONS ::= BEGIN
EXPORTS a;
a BOOLEAN ::= TRUE
END
Telelogic Tau 4.5 User's Manua 47

Chapter 14 The ASN.1 Utilities

748

In the above case you can not import ato M1, athough ais exported
from M2

ERROR 2034 Multiple declaratiom of module name #2
Module name shall appear only oncein IMPORTS clause.

For example
IMPORTS a, b FROM X ¢ FROM X; iswrong ASN.1 declaration

ERROR 2035 Recursive import for #1

Thiserror message isreported, for example, when module A imports T
from B, and B imports T from A at the same time

ERROR 2036 Multiple occurance of #1 ’#2’ in #3

This error is reported when some types are defined incorrectly - they
have the same identifier, for example enumeration can not have the
sameidentifiers, named number list for INTEGER type can not havethe
sameidentifiersin the list, #2 isastring

ERROR 2037 Multiple occurance of #1 #2 in #3

The same class of error as ERROR 2036 above, but #2 isan integer val-
ue.

ERROR 2038 External references are not allowed

When imports clause looks like “IMPORTS ;" ,no external references
are allowed from the module (X.680, 10.14, d), NOTE 2)

ERROR 2039 Referenced #1 ’'#2’ not defined

Thiserror isreported when you use reference that is not assigned value
or type anywhere.

ERROR 2040 Value of type #1 needed

Thiserror message indi cates that val ue does not correspond to the type.
For example x INTEGER ::= TRUE - thisresultsinan error “Value of
type INTEGER needed’

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

July 2003

ERROR 2041 #1 type needed after COMPONENTS OF

The type after in COMPONENTS OF expansion should be either SET
or SEQUENCE, and it should be the same as the type to which it is ex-
tracted.

For example SET { aINTEGER, b COMPONENTSOF T }, where T
is SEQUENCE type is wrong usage of COMPONENTS OF nota-
tion(X.680, 22.4, 24.2)

ERROR 2042 Field names in type after COMPONENT OF already
declared

After performing the COMPONENTS OF transformation, all field
names should be distinct.

For example, type S1 iswrong (it has two fields named 'a)

S ::= SET { a INTEGER, b REAL }
S1 ::= SET { a SET OF IA5String, COMPONENTS OF S }

ERROR 2043 #1 type needed
This error is reported when type in selection type is not choice.

For example x < INTEGER does not satisfy that requirement

ERROR 2044 No alternative named #1 in Choice type

This error isreported when type notation is “#1 < type”, typeisa
CHOICE type, but it does not have alternative named #1

ERROR 2045 Too many components

This error message appears when you are trying to assign extra compo-
nents, which are not defined in the type, when specifying the value of
SET or SEQUENCE

ERROR 2046 No such field ’#1’ in #2 type

This error indicates that type #2 does not have field named #1, but you
aretrying to assign it avalue.

ERROR 2047 Missing values for non-optional #1 fields : #2
This message indicates that not all required #1 components have been
initialized in the value, and #2 isthe list of names of fields, for which
valuesare missing. Theexample S::=SET{ aINTEGER, b REAL, c

Telelogic Tau 4.5 User's Manual 749

Chapter 14 The ASN.1 Utilities

750

NULL OPTIONAL }, sS::={a57} resultsinerror message“Missing
values for non-optional SET fields: 'b'”.

ERROR 2048 More than one #1 for the field ’#2’

This error occurs when you are trying to assign more then one compo-
nent to one field.

For example
T ::= SET { a IA5String , b NULL }
t T ::={ a "vall", b NULL, a "val2" }

ERROR 2049 Nothing known about bit named ’#1’

Thiserror isreported when bitstring value contains identifier that is not
declared in the correspondent type definition

ERROR 2050 Value for #l1 should be #2

If you specify table for the value of 1A5String, TableColumn should be
intherangefrom Oto 7, if thisconstraint isviolated then the above error
message is reported

ERROR 2051 Type is required to be derived from #1

This error indicates that type used in SubtypeConstraint is not derived
from the type being constrained and thus does not satisfy X.680,45.3.2

ERROR 2052 Can not apply #1 constraint to #2 type

Not al constraints can be applied to every type, X.680, Table 6 de-
scribes which constraints can be applied to which types, if the require-
ments declared in Table 6 are not satisfied, the above error message is
reported

ERROR 2053 There shall be at most one #1
Two presents constraints are not allowed when constraining a CHOICE
type.

For example:

C ::= CHOICE { a Tl , b T2 } (WITH COMPONENTS {a PRESENT,
b PRESENT})

causes the error message

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

July 2003

ERROR 2054 Wrong value : out of constraint
Thiserror is reported when value does not correspond to the constraint
applied to the type.

For example: x INTEGER (1..10) ::= -1,Xisoutof constraint

ERROR 2055 The same tags for #1 components

This error message indicates that type does not correspond to the re-
quirements for distinct tags specified in X.680, 22.5, 24.3, 26.2; If you
use AUTOMATIC TAGS in the module, requirement for distinct tags
will always be satisfied if automatic tagging has been applied

ERROR 2056 OBJECT IDENTIFIER value should have at least
two components

x OBJECT IDENTIFIER ::= { iso } isSwrongobjectidentifier value
because encode/decode functions require at least two components for
object identifier value

WARNING 2057 Construct #1 has no mapping in SDL

Thiswarning is reported if no mapping to sdl exist but it does not pre-
vent further code generation.

ERROR 2058 Construct #1 has no mapping in SDL
This error indicates that no mapping to sdl exist and isfatal for further
code generation.

WARNING 2059 Value given for #1 component

Thiswarning indicates that a value has been given to an optiona or de-
fault component of an ASN.1 SEQUENCE or SET type. Valuesfor op-
tional and default components cannot be translated to SDL.

WARNING 2060 Constraint could have been extended when
mapped to sdl

Thiswarning indicates that constraint transformation has been applied
when mapping complex ASN.1 constraintsto sdl but the sdl type can al-
low more values than the ASN. 1 type. This can occur when there is no
exact mapping of ASN.1 constraints.

Telelogic Tau 4.5 User's Manua 751

Chapter 14 The ASN.1 Utilities

752

ERROR 2061 INTERNAL ERROR in #1

This message indicates an error in the implementation in the utilities.
Please send areport to Telelogic Customer Support, especialy if the er-
ror can be reproduced as the only error message of an anaysis. Contact
information for Telelogic Customer Support can be found in “How to
Contact Customer Support” on pageiv in the Release Guide

ERROR 2062 Code generation : #1
Error in the generation of SDL, TTCN or encode/decode output.

WARNING 2063 Too big exponent

Exponent in areal value istoo big to translate to SDL. This warning
message is shown if the exponent isbigger than 1000 or less than -1000.

WARNING 2064 Duplicate synonym name, this synonym will
not be mapped to SDL

This message indicates that there are synonym name clashes between
named numbers and named bits from INTEGER and BIT STRING
typesand ASN.1 valuesif they all will bemapped to SDL (see”Integer”
on page 713 and “Bit String” on page 710), and in order to avoid errors
only one synonym will be mapped, others are ignored.

ERROR 2065 Number #1 is already assigned to previously
defined enumeration item

This error message is reported when NamedNumber alternative is used
in an enumerated type definition in an addition enumeration after exten-
sion marker and the number #1 has aready been assigned to identifier
from root enumeration, for example A ::= ENUMERATED {apb, ...,
c(0)} First corresponding numbers are assigned to identifiersin root
enumeration, and then in additional enumeration. The above caseisin-
valid, sinceboth'a and’'c’ are equal to 0.

ERROR 2066 Value for the field ’'#1’ needed #2
This message indicates that value for the field '#1' ismissing, but it
should be present in #2

ERROR 2067 #1 omitted in #2
Indicates that #1 is omitted, but it should be present in #2

Telelogic Tau 4.5 User’s Manual July 2003

Error and Warning M essages

July 2003

ERROR 2068 #1 should reference #2

Thismessageindicatesthat afield name references an object classfield
that is not allowed to be referenced.

ERROR 2069 Wrong object specification
This message indicates that an object specification isincorrect

ERROR 2070 #1 of class #2 needed

This message indicates that an object or object set does not match the
governing object class specified in object or object set’s definitions

ERROR 2071 Wrong defined syntax

Thismessageindicatesthat an error in defined syntax for the object def-
inition

ERROR 2072 #1 can not be used in object set specification
This message indicates that anillegal construct isused in the object set
specification

ERROR 2073 #1 in the field ’'#2’ is not specified in the #3
This messageis reported when information, for example, type or value,
is extracted from object field that has not been initialized in the object.
This can occur when the field is optional or default in the object class.

WARNING 2074 #1 is not supported in the encoders /
decoders

Thiswarning messageisreported when ASN.1 notation is used that the
encoder / decoder library cannot support

ERROR 2075 #1 can be used only for #2

This message is reported when #1 is used in a component relation con-
straint but is not allowed to be used in that context.

ERROR 2076 #1

Thisisused for severa different messages concerning component rela-
tion constraint, each messageis listed and explained below:

Telelogic Tau 4.5 User's Manual 753

Chapter 14 The ASN.1 Utilities

754

Referenced component should refer to the same object
class as the referencing one

This message indicates that the referenced and referencing components
in a component relation constraint do not stem from the same object
class.

Only fixed type value fields are allowed to be specified
in a referenced component

This message indicates that a referenced component in acomponent re-
lation constraint is not a fixed type value field, for example

SET
a MY-CLASS.eid ({My-set}),
b MY-CLASS.@TypeField ({My-set})

For thefield a, @id should referencefixed typevauefieldin class’MY -
CLASS

Only values of INTEGER types can be used as component
relation identifiers";

Thismessage s reported when areferenced fixed type valuefield isnot
an INTEGER, only INTEGERS are supported.

SET
a MY-CLASS.eid ({My-set}),
b MY-CLASS.@TypeField ({My-set})

In the example above @id should be derived from an INTEGER.

Wrong referenced component

This message indicates that awrong type of component isreferencedin
a component relation constraint, for example not using ObjectClass-
FieldType notation.

Referenced components should be constrained by the same
object set as the referencing one

This message indicates that the referenced and referencing component
are not constrained with the same object sets.

ERROR 2077 ASN.1l identifier #1 is a keyword, it will be
replaced by #2

Thismessageis reported when an ASN.1 identifier isakeyword in one
of the target languages and will be changed according to the keywords

Telelogic Tau 4.5 User’s Manual July 2003

Restrictions

configuration file during mapping for avoiding syntax errorsin the tar-
get languages.

ERROR 2078 Module #1 has got name clashes within joined
modules group ‘#2’

This message is reported when an ASN.1 definition name causes name
clasheswithin joined SDL package and will be prefixed by the original
ASN.1 module name during mapping to avoid errorsin SDL (see* Join-
ing modules’ on page 704).

Restrictions

The ASN.1 Utilitieshandleall constructsof ASN.1 asdefined in ITU-T
recommendations X.680, X.681, X.682, X.683, X.690, X.691. Thereis
no support for features defined in the old ASN.1 version X.208 that
have been superseded in X.680.

For alist of restrictions see “ASN.1 Utilities” on page 29 in chapter 2,
Release Notes, in the Release Guide.

Appendix A: List of recognized keywords

July 2003

By default target language keywords are recognized among ASN.1
identifiersand a postfix * _<language> KEYWORD' isadded at the end
of theidentifier when SDL (<1anguage> = spL), TTCN (<language>
= TTCcN) or C (<language> = CPP) isgenerated. This appendix de-
scribes lists of supported keywords for all supported target the target
languages.

SDL keywords

active, adding, all, alternative, and, any, as, atleast,
axioms, block, break, call, channel, choice, comment,
connect, connection, constant, constants, continue, cre-
ate, dcl, decision, default, else, endalternative, end-
block, endchannel, endconnection, enddecision, endgener-
ator, endmacro, endnewtype, endoperator, endpackage,
endprocedure, endprocess, endrefinement, endselect, end-
service, endstate, endsubstructure, endsyntype, endsys-
tem, env, error, export, exported, external, fi, final-
ized, for, fpar, from, gate, generator, if, import, im-
ported, in, inherits, input, interface, join, literal,
literals, macro, macrodefinition, macroid, map, mod,
nameclass, newtype, nextstate, nodelay, noequality,

Telelogic Tau 4.5 User's Manua 755

Chapter 14 The ASN.1 Utilities

756

none, not, now, offspring, operator, operators, option-
al, or, ordering, out, output, package, parent, priori-
ty, procedure, process, provided, redefined, referenced,
refinement, rem, remote, reset, return, returns, re-
vealed, reverse, save, select, self, sender, service,
set, signal, signallist, signalroute, signalset, size,
spelling, start, state, stop, struct, substructure, syn-
onym, syntype, system, task, then, this, timer, to, type,
use, via, view, viewed, virtual, with, xor

TTCN keywords

ACTIVATE, AND, BITSTRING, BIT_TO INT, BY, CANCEL, CASE,
COMPLEMENT, CP, CREATE, DO, DONE, ELSE, ENC, ENDCASE, EN-
DIF, ENDVAR, ENDWHILE, F, FAIL, fail, GOTO, HEXSTRING,
HEX TO INT, I, IF, IF_PRESENT, INCONC, inconc, INFINITY,
INT TO BIT, INT TO HEX, IS _CHOSEN, IUT, LT, min, MOD,
ms, MTC, NOT, ns, OMIT, OR, OTHERWISE, P, LENGTH OF,
none, NUMBER OF ELEMENTS, OCTETSTRING, OBJECTIDENTIFI-
ER, PASS, pass, PDU, PERMUTATION, ps, PTC, R, READTIMER,
REPEAT, REPLACE, RETURN, RETURNVALUE, R Type, s, START,
STATIC, SUPERSET, SUBSET, THEN, TIMEOUT, TIMER, TO, UN-
TIL, us, UT, VAR, WHILE

C++ keywords

bool, catch, class, const cast, delete, dynamic_ cast,
explicit, false, friend, inline, multiple inheritance,
mutable, namespace, new, operator, private, protected,
public, reinterpret cast, _ single inheritance,
static_cast, template, this, throw, true, try, typeid,
typename, using, virtual, _ virtual inheritance, xalloc

auto, asm, break, case, char, const, continue, default,
do, double, else, enum, extern, float, for, goto, if,
int, long, register, return, short, signed, sizeof,
static, struct, switch, typedef, union, unsigned, void,
volatile, while

Telelogic Tau 4.5 User’s Manual July 2003

	14 The ASN.1 Utilities
	Introduction
	Application Areas for the ASN.1 Utilities
	Overview of the ASN.1 Utilities

	Using the ASN.1 Utilities
	Command-Line Interface
	Configuration file generation

	PostMaster Interface

	Translation of ASN.1 to SDL
	General
	Keywords substitution
	Module
	Joining modules
	General Type and Value Assignment
	Inline types naming
	Boolean, NULL, and Real
	Bit String
	Character Strings
	Choice Types
	Enumerated Types
	Integer
	Object Identifier
	Octet String
	Sequence/Set Types
	Sequence of Types
	Set of Types
	Useful Types
	Constrained Types
	Extensibility
	Information from Object Classes, Objects and Object Sets
	ObjectClassFieldType
	ObjectClassFieldType with table constraint (object set constraint)
	TypeFromObject
	ValueSetFromObject
	ValueFromObject

	CONSTRAINED BY notation
	Parameterization

	Support for External ASN.1 in the TTCN Suite
	General
	Keywords substitution
	Automatic tagging
	COMPONENTS OF Type notation
	Selection types
	Enumerated types
	Extensibility
	Information from Object Classes, Objects and Object Sets
	ObjectClassFieldType
	ObjectClassFieldType with table constraint (object set constraint)
	TypeFromObject
	ValueSetFromObject
	ValueFromObject

	CONSTRAINED BY notation
	Parameterization

	Error and Warning Messages
	Restrictions
	Appendix A: List of recognized keywords
	SDL keywords
	TTCN keywords
	C++ keywords

