
July 2003 Telelo

Chapter
14 The ASN.1 Utilities
The ASN.1 Utilities perform three main functions in Telelogic Tau:

• They can translate an ASN.1 module to an SDL package. This
makes it possible to use ASN.1 types and values in SDL.

• They make it possible for the TTCN suite to retrieve external
ASN.1 types and values that are used in TTCN.

• They produce type information for BER coders in SDL.

This chapter is the reference manual for the ASN.1 Utilities.

Note: ASN.1 support in the TTCN suite

The TTCN to C compiler supports only a limited subset of
ASN.1. See “TTCN ASN.1 BER Encoding/Decoding” on page 56
in chapter 2, Release Notes, in the Release Guide for further de-
tails on the restrictions that apply.
gic Tau 4.5 User’s Manual ,um-st1 695

Chapter 14 The ASN.1 Utilities
Introduction
This chapter describes the ASN.1 Utilities. It is assumed that the reader
is familiar with ASN.1.

Application Areas for the ASN.1 Utilities
The main foreseen applications of the ASN.1 Utilities are the following:

• A lot of telecommunication protocols and services are defined using
ASN.1. The ASN.1 Utilities make it easier to specify and imple-
ment these with SDL.

• The ASN.1 Utilities enable the SDL suite and the TTCN suite to
share common data types by specifying these in a separate ASN.1
module.

• The ASN.1 Utilities generate type information for BER encod-
ing/decoding for the SDL suite.

Overview of the ASN.1 Utilities
The ASN.1 Utilities support the following main functions:

1. Perform syntactic and semantic analysis of ASN.1 modules.

2. Generate SDL code from ASN.1 modules.

3. Extract the ASN.1 types and values which are referred in the TTCN
suite.

4. Generate type information for BER encoding and decoding for the
SDL suite.

For further information about BER encoding and decoding, see chapter
59, ASN.1 Encoding and De-coding in the SDL Suite, in the User’s
Manual.

In normal cases, the ASN.1 Utilities are completely hidden for the user
by the SDL Analyzer and the TTCN Analyzer.

From the user’s point of view, an ASN.1 module is very similar to an
SDL package: ASN.1 data types can be defined in a module, and then
be used within SDL, using operators that are defined in ITU Recom-
mendation Z.105. When an SDL system containing ASN.1 modules is
696 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using the ASN.1 Utilities
analyzed, the Analyzer will order the ASN.1 Utilities to translate these
modules into corresponding SDL packages.

In the TTCN suite, indirect use of the ASN.1 Utilities is made by the
ASN.1-by-reference table. When such a table is analyzed, the TTCN
suite orders the ASN.1 Utilities to extract the ASN.1 types and values
in a specified ASN.1 module. For more information about this function-
ality, see “ASN.1 External Type/Value References” on page 1188 in
chapter 27, Analyzing TTCN Documents (on UNIX).

Using the ASN.1 Utilities
The ASN.1 Utilities are implemented in the executable asn1util.
asn1util can be used in two ways:

1. Stand-alone from the organizer (command-line interface).

2. Via the PostMaster

Command-Line Interface
Usage: asn1util [options] { <file> [options] }*

Option Meaning

-h display a help message

-v display version

-q be quiet, suppress some output messages

-c generate encode/decode type information for the
SDL Suite and asn1_cfg.h configuration file

-g generate coder information for TTCN suite

-B set BER as default encoding

-P set PER as default encoding

-N <name> set <name> as default encoding

-m include module name in encode/decode type
nodes and macros
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 697

Chapter 14 The ASN.1 Utilities
-n <name> use <name> for the name of the interface (*.ifc)
files

-S <config> use <config> for type names configuration in
(*.ifc) files

-s <file> generate SDL output in <file>

-a append the output to an existing file instead of
creating a new file

-b generate SDL body only, i.e. do not generate
package headings (makes it possible to import
generated SDL with #INCLUDE)

-r generate references (#SDTREF) to source file

-e generate all operators for the SDL enumerated
type as listed in Z.105. Default is to emit some of
the operators in Z.105

-O generate values for SDL Make operator with op-
tional and default support

-u <package> add “use <package>;“ to all generated SDL pack-
ages

-J <name> <files> Join all ASN.1 modules from <files> into one
SDL package <name> (see Example 29 on page
699)

-K <file> Perform substitution for keywords listed in
<file> (see “Keywords substitution” on page
701)

-i <file> generate TTCN output to <file>

-l <file> take command line from <file>

-post wait for commands via the PostMaster (see
“PostMaster Interface” on page 700)

-T<dir> put generated code in directory <dir>

Option Meaning
698 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Using the ASN.1 Utilities
Example 27 ––

asn1util -r -s myfile.pr -c myfile.asn
(myfile.asn contains ASN.1 module MyModule)

––

The command in the example translates the module MyModule in file
myfile.asn to an SDL package MyModule in file ’myfile.pr’. The gener-
ated package will contain backward references to the source file ’my-
file.asn’. Encode/decode type nodes are generated in C-source file
’MyModule_asn1coder.c’ and C-header file ’MyModule_asn1coder.h’.
A configuration file “asn1_cfg.”' with compile switches for coder relat-
ed files is generated.

Example 28 ––

asn1util AsnModule1.asn AsnModule2.asn

––

If no options are specified, then asn1util only performs syntactic and
global semantic analysis for AsnModule1.asn and AsnModule2.asn, no
output is generated.

If no input file is specified, then asn1util does nothing except showing
help or version number if correspondent options are specified.

Example 29 Joining modules –––––––––––––––––––––––––––––––––

asn1util -J Join-Module -s my.pr my1.asn my2.asn

––

The ASN.1 modules from the files my1.asn and my2.asn will be joined
together in the SDL package Join_Module. Name clashes may occur if
the same name is available in different ASN.1 modules the filed are
joined. These problems are resolved according to a set of name clash re-
solving rules, see “Joining modules” on page 704.

Configuration file generation

For the -c option encode and decode type information is generated to
C-files. Also asn1util performs the analysis of ASN.1 types and some
features used in the specification and generates file asn1_cfg.h.

This file contains compile switches that are referenced from inside the
coders code. When asn1_cfg.h is used by the build process the prepro-
cessor automatically throws away useless parts of the code from encod-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 699

Chapter 14 The ASN.1 Utilities
ing and decoding related files. This helps to reduce the code size and im-
prove the performance of encoding and decoding procedures.

For example, if the ASN.1 file does not contain OCTET STRING and
SET OF types in the module, the following definitions

#ifdef CODER_AUTOMATIC_CONFIG
#define CODER_NOUSE_OCTET_STRING
#define CODER_NOUSE_SET_OF
#endif

will be included in the configuration file.

This feature can be turned on by the CODER_AUTOMATIC_CONFIG com-
pile switch. For more information about available compile switches for
the configuration see “Encoding configuration” on page 2820 in chapter
59, ASN.1 Encoding and De-coding in the SDL Suite.

PostMaster Interface
The ASN.1 Utilities can also be invoked via the PostMaster. An exam-
ple of this is when an SDL system that uses ASN.1 modules is analyzed.
The Analyzer will then order the ASN.1 Utilities, via the PostMaster, to
perform a translation of the ASN.1 modules to SDL packages. For a
complete description of the PostMaster, see chapter 11, The PostMas-
ter.

On UNIX, the PostMaster communication may also be invoked by start-
ing asn1util with the -post command-line option. asn1util will
then wait for commands sent to it from the PostMaster.

Translation of ASN.1 to SDL
This section describes the detailed translation rules from ASN.1 to SDL
that are implemented in the ASN.1 Utilities. The translation rules all
conform to Z.105, except for the cases described in “Restrictions to
Z.105” on page 31 in chapter 2, Release Notes, in the Release Guide.

General
• Case sensitivity is according to Z.105, i.e. ASN.1 names are con-

verted directly to SDL names. This implies that in rare cases, correct
ASN.1 modules may cause name conflicts when used in SDL.
700 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
• ‘-’ (dash) in ASN.1 names is transformed to ‘_’ (underscore), e.g.
long-name in ASN.1 is transformed to long_name in SDL.

• In accordance with Z.105, tag information is ignored in the transla-
tion to SDL.

• As SDL does not have “in-line types”, one ASN.1 type may be
mapped to more than one SDL type. The generated in-line types get
dummy names.

• External type/value references are mapped to qualifiers. For exam-
ple A.a is mapped to <<package A>> a. Also a use clause (use A;)
is generated.

Keywords substitution
ASN.1 generators can be configured to be sensitive to a certain number
of identifiers. There is a special text file named ‘asn1util_kwd.txt’ that
contains a list of identifiers and a list of their substitution during map-
ping. By default this file is used to configure target languages keywords
substitution. It can be edited to get another functionality or another set
of keywords to be replaced.

‘asn1util_kwd.txt’ should contain pairs of identifiers where the first one
is the identifier from original ASN.1 specification that will be replaced
by the second identifier during generation. ‘asn1util_kwd.txt’ should
conform to the following syntax:

Example 30 Configuration file syntax–––––––––––––––––––––––––––

<identifier1> <identifier1 substitution>
<identifier2> <identifier2 substitution>

 ...
<identifierN> <identifierN substitution>

––

ASN.1 Utility reads the first configuration file it finds. It searches for
the ‘asn1util_kwd.txt’ file first in the current folder, then in the home
folder and finally in the installation. If a configuration file named
‘asn1util_kwd.txt’ is put in the home folder or in the current working

Note:

Since named numbers, named bits, and integer values are all
mapped to integer synonyms, the same name should not be used
more than once, because this will lead to name conflicts in SDL.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 701

Chapter 14 The ASN.1 Utilities
folder, it will override the default configuration file from the installa-
tion. The configuration file to be used can also be specified in the Ana-
lyze dialog or from the command line with the ‘-K’ option (see “Com-
mand-Line Interface” on page 697).

‘asn1util_kwd.txt’ is always present in the installation and it is config-
ured to replace keywords from SDL, TTCN, C and C++ languages: the
ASN.1 identifier name, that is a keyword in SDL, TTCN or C++, is re-
placed by name_SDL_KEYWORD, name_TTCN_KEYWORD or
name_CPP_KEYWORD to avoid syntax errors in the target languages (see
“Appendix A: List of recognized keywords” on page 755). If an original
ASN.1 identifier has been modified, a warning message is reported. See
“ERROR 2077 ASN.1 identifier #1 is a keyword, it will be replaced by
#2” on page 754).

Figure 168: Keywords substitution
702 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
Example 31 Keywords default substitution ––––––––––––––––––––––

For these ASN.1 definitions:

CASE ::= ENUMERATED { upper, lower }

T ::= SEQUENCE {
int INTEGER,
explicit BOOLEAN,
case CASE,
signal INTEGER

}

value1 T ::= {
int 5,
explicit TRUE,
case lower,
signal 27 }

With default keywords substitution file the following SDL is generated:

newtype CASE_TTCN_KEYWORD
 literals upper,lower
 operators
 ordering;
endnewtype;

newtype T struct
 int_CPP_KEYWORD Integer;
 explicit_CPP_KEYWORD Boolean;
 case_CPP_KEYWORD CASE_TTCN_KEYWORD;
 signal_SDL_KEYWORD Integer;
endnewtype;

synonym value1 T = (. 5, true, lower, 27 .);

––

A configuration file allows the user to control the set of keywords to be
replaced. Removing lines with TTCN keywords, for example, will

Note: Keywords recognition

ASN.1 in case-sensitive language and target language keywords are
also recognized in case-sensitive mode. If generated SDL is ana-
lyzed in case-insensitive mode, there could still be keyword prob-
lems left. For example, ASN.1 contains the type named Start and
it will not be recognized to be an SDL keyword, because the key-
word start will be compared, but in case-insensitive mode Start
is still a keyword in SDL, which will result in syntax errors.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 703

Chapter 14 The ASN.1 Utilities
switch off TTCN keywords sensitivity. Providing an empty configura-
tion file will result in switching off keywords substitution completely.

Module
• An ASN.1 module is translated to an SDL package as specified in

Z.105. The DefinitiveIdentifier (object identifier after mod-
ule name) is ignored. The tag default is also ignored.

• EXPORTS is mapped to a corresponding interface-clause.

• IMPORTS is mapped to a corresponding package reference clause.
The AssignedIdentifier (object identifier after module name) is
ignored.

Example 32 ––

MyModule DEFINITIONS ::= BEGIN

EXPORTS A, b, C;
IMPORTS X, Y, z FROM SomeModule { iso 3 0 8 }
...
END

is mapped to

package MyModule;
interface newtype A, synonym b, newtype C;
use SomeModule / newtype X, newtype Y, synonym z;
...
endpackage;

––

Joining modules
Mapping for ASN.1 original module structure can be changed by apply-
ing joining module functionality. Several ASN.1 modules can be gener-
ated into one SDL package, if ASN.1 modules are arranged into groups
in the Organizer. Joining modules can also be controlled from the com-
mand line (see “Command-Line Interface” on page 697).

Note:

On UNIX, the -b option disables generation of package/endpackage,
interface and use clauses. Files that have been generated this way
can be included in SDL with the #INCLUDE directive, see “Includ-
ing PR Files” on page 2436 in chapter 55, The SDL Analyzer.
704 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
Joining means throwing away all import/export clauses and module
headers and generating all module bodies into one big package with the
name specified in the Organizer or command line interface.

When joining definitions from several ASN.1 modules into one SDL
package, names in the resulting SDL package change according to the
following rules:

• Clashed names are prefixed by the original ASN.1 module name

• Package names in the external references are replaced by the join
package name

Example 33 ––

M1
DEFINITIONS ::=
BEGIN

IMPORTS S2 FROM M2;

T ::= SET OF SEQUENCE { a S2 }
S1 ::= IA5String

Figure 169: Joining modules
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 705

Chapter 14 The ASN.1 Utilities
END

M2
DEFINITIONS ::=
BEGIN

T ::= SEQUENCE OF SEQUENCE OF M1.S1
S2 ::= BOOLEAN

END

without joining applied ASN.1 modules M1 and M2 are mapped to

use M2/
 newtype S2;
package M1; /*#ASN.1 ’M1’*/

newtype T
 Bag(T_INLINE_0)
endnewtype;

newtype T_INLINE_0 /*#SYNT*/ struct
 a S2;
endnewtype;

syntype S1 = IA5String endsyntype;

endpackage M1;

package M2; /*#ASN.1 ’M2’*/

newtype T
 String (T_INLINE_0, emptystring)
endnewtype;

newtype T_INLINE_0 /*#SYNT*/
 String (<<package M1>>S1, emptystring)
endnewtype;

syntype S2 = Boolean endsyntype;

endpackage M2;

with joining to package Join-Package applied ASN.1 modules are
mapped to

package Join_Package; /*#ASN.1 ’Join_Package’*/

newtype M1_T
 Bag(M1_T_INLINE_0)
endnewtype;
newtype M1_T_INLINE_0 /*#SYNT*/ struct
706 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
 a S2;
endnewtype;
syntype S1 = IA5String endsyntype;

newtype M2_T
 String (M2_T_INLINE_0, emptystring)
endnewtype;
newtype M2_T_INLINE_0 /*#SYNT*/
 String (<<package Join_Package>>S1, emptystring)
endnewtype;
syntype S2 = Boolean endsyntype;

endpackage Join_Package;

––

General Type and Value Assignment
A type assignment is mapped to a newtype or a syntype, depending on
the type on the right-hand side of the ‘::=’. Tags are ignored. An ASN.1
value assignment is mapped to a synonym.

Example 34 ––

T1 ::= INTEGER
T2 ::= [APPLICATION 28] T1
a BOOLEAN ::= TRUE

is mapped to

syntype T1 = Integer endsyntype;
syntype T2 = T1 endsyntype;
synonym a Boolean = True;

––

Inline types naming
The ASN.1 language can use type definitions inside composite types,
which are called inline types. Inline types are not allowed in SDL. In
SDL, only named types can be used in a composite type. Implicit names
are assigned to ASN.1 inline types and they are referenced by this name
in SDL.

Implicit names for generated SDL have the following syntax:
<parent_definition_name>_INLINE_<counter>, where
parent_definition_name is either the name of the parent type or the
name of the parent value, depending on if inline type exists in type or
value assignment construct in ASN.1.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 707

Chapter 14 The ASN.1 Utilities
Example 35 ––

T1 ::= SEQUENCE {
 a SET OF INTEGER,
 b CHOICE { x BIT STRING,
 y OCTET STRING },
 c ENUMERATED { sat, sun } }

For type T the following inline types will be
generated to SDL

newtype T1 struct
 a T1_INLINE_0;
 b T1_INLINE_1;
 c T1_INLINE_2;
endnewtype;

newtype T1_INLINE_0 /*#SYNT*/
 Bag(Integer)
endnewtype;

newtype T1_INLINE_1 /*#SYNT*/ choice
 x Bit_string;
 y Octet_string;
endnewtype;

newtype T1_INLINE_2 /*#SYNT*/
 literals sat,sun
 operators
 first: T1_INLINE_2 -> T1_INLINE_2;
 last: T1_INLINE_2 -> T1_INLINE_2;
 succ: T1_INLINE_2 -> T1_INLINE_2;
 pred: T1_INLINE_2 -> T1_INLINE_2;
 num: T1_INLINE_2 -> Integer;
 ordering;

 <operator definitions>

endnewtype;

––

Example 36 ––

T2 SEQUENCE OF INTEGER ::= { {1,1} | {2,2} }

For T2 the following inline types will be generated
to SDL

newtype T2 /*#SYNT*/
 String (Integer, emptystring)
 constants ((. 1, 1 .)), ((. 2, 2 .))
endnewtype;
708 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
––

Example 37 ––

val BIT STRING (SIZE(3)) ::= ‘101’B

synonym val val_INLINE_0 = bitstr(’101’);

syntype val_INLINE_0 = Bit_string constants size (3)
endsyntype;

––

Boolean, NULL, and Real
BOOLEAN, NULL and REAL are mapped to the corresponding SDL
types. Value notations for these types are mapped as follows

If a REAL value has an exponent bigger than 1000 and if the mantissa
is not zero, then it is mapped to PLUS_INFINITY or
MINUS_INFINITY. If a REAL value has an exponent less than -1000,
then it is mapped to 0.

Note:

SDL inline names can change if you change within the parent type
or value in the ASN.1 specification, the counter can differ. If these
names are used within an SDL system, then you must update the
SDL system.

ASN.1 type ASN.1 value Corresponding SDL value

ANY not supported (conform
Z.105)

BOOLEAN TRUE
FALSE

True
False

NULL NULL NULL

REAL 0
PLUS-INFINITY
MINUS-INFINITY
{ mantissa 31416,
base 10, exponent
-4 }

0.0
PLUS_INFINITY
MINUS_INFINITY
3.1416
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 709

Chapter 14 The ASN.1 Utilities
Bit String
BIT STRING is mapped to the Z.105-specific type Bit_string. Named
bits are mapped to integer synonyms. Values for bit strings are mapped
to hexstr/bitstr expressions.

Example 38 ––

B ::= BIT STRING { bit0(0), bit23(23) }

b1 BIT STRING ::= ‘011 1110’B
b2 BIT STRING ::= ‘3AFC’H

is mapped to

syntype B = Bit_string endsyntype;
synonym bit0 Integer = 0;
synonym bit23 Integer = 23;

synonym b1 Bit_string = bitstr(‘0110 1110’);
synonym b2 Bit_string = hexstr(‘3AFC’);

––

Type Bit is a Z.105 specific type with literals 0 and 1, and with boolean
operators.

Available operators:

bitstr : Charstring -> Bit_string;
 /* converts a Charstring consisting of ‘0’ and
 ‘1’-s to a Bit_string */
hexstr : Charstring -> bit_string;
 /* converts a Charstring consisting of
 hexadecimal characters to a bit_string */
“not” : Bit_string -> Bit_string;
“and” : Bit_string, Bit_string -> Bit_string;
“or” : Bit_string, Bit_string -> Bit_string;
“xor” : Bit_string, Bit_string -> Bit_string;
“=>” : Bit_string, Bit_string -> Bit_string;
 /* bitwise logical operators */
mkstring : Bit -> Bit_string;
length : Bit_string -> Integer;
first : Bit_string -> Bit;
last : Bit_string -> Bit;
“//” : Bit_string, Bit_string -> Bit_string;
extract : Bit_string, Integer -> Bit;
modify! : Bit_string, Integer, Bit-> Bit_string;
substring : Bit_string, Integer, Integer ->

Note:

Bit_string, as opposed to most other string types in SDL, has in-
dices starting with 0!
710 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
 Bit_string;
 /* normal String operators, except that index
 starts with 0;
 see also “Sequence of Types” on page 716 */

Character Strings
PrintableString, NumericString, VisibleString, and
IA5String (i.e. all ASN.1 character string types with character sets that
are a subset of ASCII) are mapped to syntypes of SDL Charstring.
Values for these strings are mapped to corresponding Charstring syn-
onyms in SDL.

The same operators as for Charstring are available for these types,
and values of these types can be assigned freely to each other without
need for conversion operators.

For example, in SDL an IA5String value can be assigned to a
NumericString variable (given that the IA5String only contains nu-
meric characters).

Choice Types
A CHOICE type is mapped to the choice-construct that is described in
more detail in “Choice” on page 2600 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler.

Example 39 ––

C ::= CHOICE {
 a INTEGER,
 b BOOLEAN}

c C ::= a:7

is mapped to

newtype C choice
 a Integer;
 b Boolean;
endnewtype;

synonym c C = a:7

––

The operators that are available for a CHOICE type are (assuming that C
is defined as in Example 39 above):

aextract! : C -> Integer;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 711

Chapter 14 The ASN.1 Utilities
 /* e.g. c!a returns 7 */
bextract! : C -> Boolean;
 /* but c!b gives dynamic error! */
amake! : Integer -> C;
bmake! : Boolean -> C;
 /* build choice value, e.g. in SDL
 it is possible to write b:True */
amodify! : C, Integer -> C;
 /* e.g. var!a := -5 */
bmodify! : C, Boolean -> C;
presentextract! : C -> xxx;
 /* returns the selected field.
 xxx is an anonymous type with values a and
b.
 E.g. c!present gives a */

Enumerated Types
An ENUMERATED type is mapped to a newtype with a set of literals plus
some operators. By default only ordering operators are generated, use
command line option -e to get the rest. The list of literals that is gener-
ated is reordered in accordance with the associated integer values.

Example 40 ––

N ::= ENUMERATED { yellow(5), red(0), blue(6) }

is mapped to (only signature of operators shown)

newtype N
 literals red, yellow, blue
 /* note that the literals have been reordered! */
operators
 ordering;
 first: N -> N;
 last: N -> N;
 succ: N -> N;
 pred: N -> N;
 num: N -> Integer;
 endnewtype,

––

The operators that are available for an ENUMERATED type are (assuming
that N is defined as in Example 40 above):

num : N -> Integer;
 /* num(yellow)=5, num(red)=0, num(blue)=6 */
“<“ : N, N -> Boolean;
“<=”: N, N -> Boolean;
“>” : N, N -> Boolean;
“>=”: N, N -> Boolean;
 /* comparison based on num, i.e. red < yellow */
712 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
pred: N -> N;
succ: N -> N;
 /* predecessor/successor based on num, i.e.
 succ(red)=yellow, succ(yellow)=blue,
 pred(red) gives a dynamic error */
first: N -> N;
last : N -> N;
 /* first/last element based on num, i.e.
 first(red)=red, last(red)=blue */

Integer
INTEGER is mapped to the SDL Integer type, and ASN.1 integer val-
ues are mapped to corresponding SDL values.

Named numbers are mapped to synonyms.

Example 41 ––

A ::= INTEGER { a(5), b(7) }

is mapped to

syntype A = Integer endsyntype;
synonym a Integer = 5;
synonym b Integer = 7;

––

Object Identifier
OBJECT IDENTIFIER is mapped to the Z.105-specific type
Object_Identifier. The normal String operators are available for
Object_Identifier, listed also in “Sequence of Types” on page 716.
Indices start as usual with 1.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 713

Chapter 14 The ASN.1 Utilities
Octet String
OCTET STRING is mapped to the Z.105-specific type Octet_string.
Octet_string is based on type Octet. This type is further described
in “SDL Predefined Types” on page 2588 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler. The mapping for the octet string
value notation to SDL is identical to bit strings, see “Bit String” on page
710.

Operators available:

bitstr : Charstring -> Octet_string;
hexstr : Charstring -> Octet_string;
 /* conversion from Charstring to Octet_string,
 see also “Bit String” on page 710*/
bit_string : Octet_string -> Bit_string;
octet_string: Bit_string -> Octet_string;
 /* conversion operators
 Octet_string <-> Bit_string */
mkstring : Octet -> Octet_string;
length : Octet_string -> Integer;
first : Octet_string -> Octet;
last : Octet_string -> Octet;
“//” : Octet_string, Octet_string ->
 Octet_string;
extract! : Octet_string, Integer -> Octet;
modify! : Octet_string, Integer, Octet ->
 Octet_string;
substring : Octet_string, Integer, Integer ->
 Octet_string;
 /* normal String operators, see also
 “Sequence of Types” on page 716 */

Sequence/Set Types
SEQUENCE and SET are both mapped to SDL struct. From an SDL point
of view there is no difference between SEQUENCE and SET. In order to
support optional and default components, SDL has been extended with
corresponding concepts.

Note:

Octet_string, has indices starting with 1.

Note:

Optional and default fields in struct are both non-standardized ex-
tensions to SDL.
714 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
Values are mapped to the “(.)” construct (= Make! operator). Values
for optional and default components are not supported. Instead, SDL
tasks should be used to assign optional and default components.

Example 42 ––

S ::= SEQUENCE {
 a INTEGER OPTIONAL,
 b BOOLEAN,
 c IA5String DEFAULT “xyz” }

s S ::= { b TRUE }

is mapped to

newtype S struct
 a Integer optional;
 b Boolean;
 c IA5String := ‘xyz’;
endnewtype;

synonym s S = (. True .);

––

The operators that are available for a SEQUENCE or SET type are (assum-
ing that S is defined as in Example 42 above):

make! : Boolean -> S;
 /* builds a value for S */
aextract!: S -> Integer;
bextract!: S -> Boolean;
cextract!: S -> IA5String;
 /* Extract operators. Note that aextract! gives
 dynamic error if the field has not been set */
amodify! : S, Integer -> S;
bmodify! : S, Boolean -> S;
cmodify! : S, IA5String -> S;
 /* Modify operators change one component
 in a Sequence/Set */
apresent : S -> Boolean;
 /* gives True if component a has been assigned
 a value, e.g. aPresent(s) = False */
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 715

Chapter 14 The ASN.1 Utilities
Sequence of Types
SEQUENCE OF is mapped to the String generator. Values are mapped
to corresponding synonyms.

Example 43 ––

S ::= SEQUENCE OF INTEGER
s1 S ::= { 3, 2, 5 }
s2 S ::= {}

is mapped to

newtype S
 String (Integer, Emptystring)
endnewtype;

synonym s1 S = (. 3, 2, 5 .);
synonym s2 S = (. .);

––

The normal String operators are available for Sequence types. Indices
start at 1.

The operators that are available for a SEQUENCE OF type are (assuming
that S is defined as in Example 43 above):

mkstring : Integer -> S;
 /* make a sequence of one item */
length : S -> Integer;
 /* returns number of elements in sequence */
first : S -> Integer;
 /* returns first element in sequence */
last : S -> Integer;
 /* returns last element in sequence
“//” : S, S -> S;
 /* returns concatenation of two sequences */
extract! : S, Integer -> Integer;
 /* returns the indexed element */
modify! : S, Integer, Integer -> S;
 /* modify the indexed element */
substring : S, Integer, Integer -> S;
 /* Substring(S, i, l) returns substring of S
 of length l, starting at index i */
make! : * Integer -> S;
 /* adds the included elements to the string,
 * corresponds to (. .) */
append : in/out S, Integer;
 /* appends one element to the string */
716 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
Set of Types
SET OF is mapped to the Z.105 specific Bag generator. For a more com-
plete description of the Bag generator, see “Bag” on page 2603 in chap-
ter 57, The Cadvanced/Cbasic SDL to C Compiler.

Example 44 ––

S ::= SET OF INTEGER
s1 S ::= { 2, 2, 5 }
s2 S ::= {}

is mapped to

newtype S
 Bag (Integer)
endnewtype;

synonym s1 S = (. 2, 2, 5 .);
synonym s2 S = (. .);

––

The operators that are available for a SET OF type are (assuming that S
is defined as in Example 44 above):

incl : Integer, S -> S;
 /* add an element to the bag */
del : Integer, S -> S;
 /* delete one element */
incl : Integer, in/out S;
del : Integer, in/out S;
length : S -> Integer;
 /* returns number of elements */
take : S -> Integer;
 /* return some element from the bag */
take : S, Integer -> Integer;
 /* return the indexed element in the bag */
makebag : Integer -> S;
 /* build a bag of one element */
“in” : Integer, S -> Boolean;
 /* gives true if the element is in the bag */
“<“ : S, S -> Boolean;
“>” : S, S -> Boolean;
“<=” : S, S -> Boolean;
“>=” : S, S -> Boolean;
 /* subset/superset comparison operators */
“and” : S, S -> S;
“or” : S, S -> S;
 /* intersection/union operators */
make! : * Integer -> S;
 /* adds the included elements to the bag,
 * corresponds to (. .) */
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 717

Chapter 14 The ASN.1 Utilities
Useful Types
The types GeneralizedTime and UTCTime have been defined in terms
of ASN.1 as specified in X.680. It follows from their definition in
X.680, together with the information about the translation rules given in
this chapter, which operators are available in SDL for these types.

Constrained Types
Constrained types are mapped to sdl syntypes of the associated parent
sort. Value constraints are mapped to sdl range condition.

When specifying ASN.1 value constraints, several constructs can be
used that are not supported in the SDL suite, such as ALL EXCEPT,IN-
CLUDES <subtype> and value range with MIN or MAX endpoint. Pos-
sible values for such a type are computed and mapped to syntype with
range condition represented by a sequence of open and closed ranges.

Example 45 ––

 T ::= INTEGER ((1..10) EXCEPT 8)

 T1 ::= INTEGER (INCLUDES T EXCEPT (3..<6))

is mapped to

 syntype T = Integer
 constants 9 : 10, 1 : 7
 endsyntype;

 syntype T1 = Integer
 constants 9 : 10, 6 : 7, 1 : 2
 endsyntype;

––

“COMPONENTS OF” and “WITH COMPONENT” constraints are
mapped by using extra inline types. If the present constraint is applied
to the parent type, then the new type is generated excluding fields
marked as ABSENT and including fields marked as PRESENT.

Example 46 ––

T ::= SEQUENCE {
 a INTEGER,
 b IA5String
}

T1 ::= T (WITH COMPONENTS {
 a (-5..5),
718 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
 b (SIZE (7))
})

is mapped to

newtype T struct
 a Integer;
 b IA5String;
endnewtype;

newtype T1 struct
 a T1_INLINE_0;
 b T1_INLINE_1;
endnewtype;

syntype T1_INLINE_0 = Integer constants -5 : 5
endsyntype;

syntype T1_INLINE_1 = IA5String constants size(7)
endsyntype;

––

Example 47 ––

T ::= SET OF BIT STRING

T1 ::= T (WITH COMPONENT (SIZE (5)))

is mapped to

newtype T
 Bag(Bit_string)
endnewtype;

syntype T1 = T1_INLINE_0 endsyntype;

newtype T1_INLINE_0 /*#SYNT*/
 Bag(T1_INLINE_1)
endnewtype;

syntype T1_INLINE_1 = Bit_string
 constants size (5)
endsyntype;

––

Example 48 ––

T ::= SET {
 a INTEGER OPTIONAL,
 b REAL OPTIONAL
}

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 719

Chapter 14 The ASN.1 Utilities
T1 ::= T (WITH COMPONENTS {
 a (0..<MAX) PRESENT,
 b ABSENT
})

is mapped to

newtype T struct
 a Integer optional;
 b Real optional;
endnewtype;

newtype T1 struct
 a T1_INLINE_0;
endnewtype;

syntype T1_INLINE_0 = Integer constants >=0
endsyntype;

––

ASN.1 SET OF and SEQUENCE OF types with SIZE or single value
constraints are mapped to one SDL type with constraint without intro-
ducing any extra inline types.

Example 49 ––

T1 ::= SEQUENCE SIZE (5..15) OF INTEGER

T2 ::= SEQUENCE ({ 1 } | {}) OF INTEGER

T3 ::= SET (SIZE (MIN .. <100)) OF BOOLEAN

T4 ::= SET (SIZE (15) | { ’’B }) OF BIT STRING

is mapped to

newtype T1
 String(Integer, emptystring)
 constants size (5 : 15)
endnewtype;

newtype T2
 String(Integer, emptystring)
 constants ((. .)), ((. 1 .))
endnewtype;

newtype T3

Note:

According to ASN.1, the types T and T1 are compatible, because
they are derived from each other. In SDL these are different types
and values of type T can not be assigned to type T1.
720 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
 Bag(Boolean)
 constants size (<=99)
endnewtype;

newtype T4
 Bag(Bit_string)
 constants ((. bitstr(’’) .)), size (15)
endnewtype;

––

Extensibility
Extensibility was introduced in X.680 (1997). In ASN.1 extensibility is
represented with extension markers and extension addition groups, that
can be specified inside SET, SEQUENCE, CHOICE, ENUMERATED
types and constraints.

Extension markers are not visible in SDL translations. All square brack-
ets are ignored and all components from extension addition groups are
translated into SDL as individual fields. All required components from
extension additions, individual or from extension addition groups are
mapped to optional ones.

Example 50 ––

S1 ::= SET
{
 x [100] INTEGER,
 ... ,
 [[
 gr11 REAL
]],
 t BIT STRING,
 [[
 gr21 BOOLEAN OPTIONAL,
 gr22 SET OF INTEGER
]],
 ... ,
 y INTEGER
}

is mapped to SDL

newtype S1 struct
 x Integer;
 gr11 Real optional;
 t Bit_string optional;
 gr21 Boolean optional;
 gr22 S1_INLINE_1 optional;
 y Integer;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 721

Chapter 14 The ASN.1 Utilities
endnewtype;

newtype S1_INLINE_1 /*#SYNT*/
 Bag(Integer)
endnewtype;

––

Extension markers are ignored in constraints. If both root and additional
constraints are present, they are translated to the union constraint.

Example 51 ––

T1 ::= INTEGER (1..10 ^ 2..20, ... , 12)

is mapped to SDL

syntype T1 = Integer constants 12, 2 : 10
endsyntype;

T2 ::= INTEGER (1 | 3, ...)

is mapped to SDL

syntype T2 = Integer constants 3, 1 endsyntype;

––

Information from Object Classes, Objects and
Object Sets
Object classes, object and objects sets are not translated to SDL. Only
types and values are translated to SDL, but it is possible in ASN.1 to use
information from object classes, objects and object sets when specify-
ing types and values. This information is translated into SDL.

Note:

SDL translation removes the borders of additional groups and
makes all required components optional.The semantics for assign-
ing values to types with additional groups are: either the whole ad-
dition group ([[....]]) is absent, or it is all present unless compo-
nents inside the group are optional. This is not checked in SDL tools
but inconsistency will cause errors in ASN.1 encoding.
722 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
ObjectClassFieldType

ObjectClassFieldType is a reference to object class and a field in that
class. The translation to SDL depends on the kind of field name used.

An open type is defined if the field name references a type field, a vari-
able type value field or variable type value set field. An open type can
be any ASN.1 type. Open types are translated to Octet_string types in
SDL.

Example 52 ––

OPERATION ::= CLASS {
 &ArgumentType,
 &arg &ArgumentType
}

T1 ::= SEQUENCE { a OPERATION.&ArgumentType }

is translated to SDL

newtype T1 struct
 a T1_INLINE_0;
endnewtype;

syntype T1_INLINE_0 = Octet_string endsyntype;

T2 ::= OPERATION.&arg

is translated to SDL

syntype T2 = Octet_string endsyntype;

––

If the field name in the class references a fixed type value or fixed type
value set fields, then the fixed type is used when translated to SDL.

Example 53 ––

OPERATION ::= CLASS {
 &ValueSet INTEGER
 }

T ::= OPERATION.&ValueSet

is translated to SDL

syntype T = Integer endsyntype;

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 723

Chapter 14 The ASN.1 Utilities
ObjectClassFieldType with table constraint (object set
constraint)

Table constraint applied to ObjectClassFieldType restricts the set of
possible types or values to those specified in a column of the table. A
table corresponds to an object set. The columns of the table correspond
to the object class fields and the rows correspond to the objects in the
set.

If the field name in ObjectClassFieldType is a type field and con-
strained with a table, then it is translated to a CHOICE type with fields
of the types specified in the table column. The names of the fields in the
choice are the same as the names of the types in the column but the first
letter is changed from upper case to lower case.

If the field name in ObjectClassFieldType is a fixed type value or a
fixed type value set, then this is translated to a constrained type where
only values that are specified in the table column are permitted.

If the field name in ObjectClassFieldType is a variable type value or
variable type value set field, then this is translated to a CHOICE type
with types, that are constrained to have values specified in the corre-
sponding cell in the same row of the table.

Example 54 ––

OPERATION ::= CLASS {
 &ArgumentType,
 &operationCode INTEGER UNIQUE,
 &ValueSet INTEGER,
 &ArgSet &ArgumentType
 }

The My-Operations object set

Note: Field names

If the type in the field is inline then the name in the field will be an
implicitly generated inline name, like t_INLINE_4.

Object
name

&Argu-
mentType

&opera-
tionCode

&ValueSet &ArgSet

operationA INTEGER 1 {1 | 2 | 5 .. 8} { 111..444 }
724 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
C1 ::= OPERATION.&ArgumentType ({My-Operations})

is translated to SDL

newtype C1 choice
 integer Integer;
 c1_INLINE_2 C1_INLINE_1;
endnewtype;

newtype C1_INLINE_1 /*#SYNT*/
 Bag(Integer)
endnewtype;

C2 ::= OPERATION.&operationCode ({My-Operations})

is translated to SDL

syntype C2 = Integer constants 2, 1 endsyntype;

C3 ::= OPERATION.&ValueSet ({My-Operations})

is translated to SDL

syntype C3 = Integer constants 2 : 8, 1, 5 : 8, 2
endsyntype;

C4 ::= OPERATION.&ArgSet ({My-Operations})

is translated to SDL

newtype C4 choice
 c4_INLINE_1 C4_INLINE_1;
 c4_INLINE_1 C4_INLINE_2;
endnewtype;

syntype C4_INLINE_1 = Integer constants 111 : 444
endsyntype;

syntype C4_INLINE_2 /*#SYNT*/
 Bag(Integer)
 constants ((. 888 .)), ((. 1, 2, 3 .))
endsyntype;

––

operationB SET OF IN-
TEGER

2 { 2 .. 8 } { {1,2,3} |
 { 888 } }

Object
name

&Argu-
mentType

&opera-
tionCode &ValueSet &ArgSet
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 725

Chapter 14 The ASN.1 Utilities
If an open type is constrained by the table for which all type settings are
omitted, then it is translated to SDL Octet_string instead of an empty
CHOICE type.

Example 55 ––

MY-CLASS ::= CLASS {
 &id INTEGER,
 &OpenType OPTIONAL
 }

 The My-Set object set:

S ::= SEQUENCE {
 id MY-CLASS.&id({My-Set}),
 val MY-CLASS.&OpenType({My-Set}{@id})
}

is translated to SDL

newtype S struct
 id S_INLINE_0;
 val S_INLINE_2;
endnewtype;

syntype S_INLINE_0 = Integer constants 2, 1
endsyntype;

syntype S_INLINE_2 = Octet_string endsyntype;

––

TypeFromObject

TypeFromObject is a reference to an object and a type field in that ob-
ject. This is simply translated to that type in SDL. If the field is optional
in the class and not set in the object, then TypeFromObject cannot be
translated.

Example 56 ––

OPERATION ::= CLASS {
 &ArgumentType,

Object name &id &OpenType

object1 1 -

object2 2 -
726 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Translation of ASN.1 to SDL
 &ResultType
 }

operationA OPERATION ::= {
 &ArgumentType INTEGER,
 &ResultType BOOLEAN
 }

O1 ::= operationA.&ArgumentType

is translated to SDL

syntype O1 = Integer endsyntype;

O2 ::= operationA.&ResultType

is translated to SDL

syntype O2 = Boolean endsyntype;

––

ValueSetFromObject

ValueSetFromObject is a reference to an object and a field with a set of
values in that object. This is translated to a constrained type in SDL, al-
lowing only values from the value set.

Example 57 ––

OPERATION ::= CLASS {
 &ValueSet INTEGER
 }

operationA OPERATION ::= {
 &ValueSet { 1 | 2 | 5..8 }
 }

V1 ::= operationA.&ValueSet

is translated to SDL

syntype V1 = Integer constants 2, 5 : 8, 1
endsyntype;

––

ValueFromObject

ValueFromObject is a reference to an object and a field with a value in
that object. This is translated to the same value in SDL.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 727

Chapter 14 The ASN.1 Utilities
Example 58 ––

OPERATION ::= CLASS {
 &operationCode INTEGER UNIQUE
 }

operationA OPERATION ::= { &operationCode 1 }

val2 INTEGER ::= operationA.&operationCode

is mapped to SDL

synonym val2 Integer = 1;

––

CONSTRAINED BY notation
CONSTRAINED BY is treated like a comment and is not translated to
SDL.

Parameterization
Wherever a parameterized type or value is used, it is translated to SDL
after all dummy references are replaced by the actual parameters. A pa-
rameterized value is also translated after all dummy references are re-
placed by the actual parameters.

Parameterized assignments are ignored when translating to SDL.

Example 59 ––

Container { ElemType, INTEGER : maxelements } ::=
 SET SIZE (0..maxelements) OF ElemType

Intcontainer ::= Container {INTEGER, 25}

is first internally mapped to

Intcontainer ::= SET SIZE(0..25) OF INTEGER

and then translated to SDL. Container is not translated to SDL.

––
728 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
Support for External ASN.1 in the TTCN
Suite

The ASN.1 Utilities are also used by the TTCN suite if a TTCN test
suite contains data types and constraints that are defined in the tables
“ASN.1 Type Definitions By Reference” and “ASN.1 Constraints By
Reference”. For more information, see “ASN.1 External Type/Value
References” on page 1188 in chapter 27, Analyzing TTCN Documents
(on UNIX).

Since TTCN is based on the older X.228 standard, while the ASN.1
Utilities are based on the new X.680 standard, users should be careful
to use the common subset of X.680 and X.228 if an ASN.1 module is to
be used in TTCN. In particular there are a number of differences:

• In ENUMERATED types, a value must be supplied for all values. For
example:

E ::= ENUMERATED { a, b }

should be replaced by

E ::= ENUMERATED { a(0), b(1) }

• X.680 offers more possibilities for specifying constraints than
X.228 does. X.228 does not have the keywords ALL, EXCEPT,
UNION, and INTERSECTION.

• For ASN.1 types that have components (e.g. SET or SEQUENCE), an
identifier must be provided for every component (according to
X.680), while in X.228 identifiers can be omitted. For example:

S ::= SEQUENCE { INTEGER } -- valid X.228

This is invalid according to X.680. The following should be used in-
stead:

S ::= SEQUENCE { field1 INTEGER }

General
• ‘-’ (dash) in ASN.1 names is transformed to ‘_’ (underscore), e.g.

long-name in ASN.1 is transformed to long_name in TTCN.

• In general ASN.1 to TTCN translation look like pretty printing of
ASN.1 modules into TTCN tables for most of the constructs, but not
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 729

Chapter 14 The ASN.1 Utilities
all of them. Some ASN.1 concepts are not supported in TTCN suite,
they have to be modified during TTCN generation:

– Concepts defined in X.681, X.682 and X.683 (see “Information
from Object Classes, Objects and Object Sets” on page 736,
“CONSTRAINED BY notation” on page 741 and “Parameter-
ization” on page 741)

– automatic tagging (see “Keywords substitution” on page 730)

– COMPONENTS OF Type notation (see “COMPONENTS OF
Type notation” on page 733)

– selection types (see “Selection types” on page 734)

– enumerated types without numbers for enum identifiers (see
“Enumerated types” on page 734)

– extensibility (see “Extensibility” on page 721)

Keywords substitution
ASN.1 generators can be configured to be sensitive to a certain number
of identifiers. There is a special text file named ‘asn1util_kwd.txt’ that
contains a list of identifiers and a list of their substitution during map-
ping. By default this file is used to configure target languages keywords
substitution. It can be edited to get another functionality or another set
of keywords to be replaced.

‘asn1util_kwd.txt’ should contain pairs of identifiers where the first one
is the identifier from the original ASN.1 specification that will be re-
placed by the second identifier during generation. ‘asn1util_kwd.txt’
should conform to the following syntax:

Example 60 Configuration file syntax –––––––––––––––––––––––––––

<identifier1> <identifier1 substitution>
<identifier2> <identifier2 substitution>

 ...
<identifierN> <identifierN substitution>

––

ASN.1 Utility reads the first configuration file it finds. It searches for
‘asn1util_kwd.txt’ file first in the current folder, then in the home folder
and finally in the installation. If a configuration file named
‘asn1util_kwd.txt’ is put in the home folder or in the current working
730 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
folder, it will override the default configuration file from the installa-
tion. The configuration file to be used can also be specified in the com-
mand line with the ‘-K’ option (see “Command-Line Interface” on page
697), for example,

Example 61 Configuration file specification –––––––––––––––––––––

asn1util -K my_config.txt -i File.ttcn File.asn

––

‘asn1util_kwd.txt’ is always present in the installation and it is config-
ured to replace keywords from the SDL, TTCN, C and C++ languages:
the ASN.1 identifier name, that is a keyword in SDL, TTCN or C++, is
replaced by name_SDL_KEYWORD, name_TTCN_KEYWORD or
name_CPP_KEYWORD to avoid syntax errors in the target languages (see
“Appendix A: List of recognized keywords” on page 755). If an original
ASN.1 identifier has been modified, a warning message is reported. See
“ERROR 2077 ASN.1 identifier #1 is a keyword, it will be replaced by
#2” on page 754).

Example 62 Keywords default substitution ––––––––––––––––––––––

For these ASN.1 definitions:

CASE ::= ENUMERATED { upper, lower }

T ::= SEQUENCE {
int INTEGER,
explicit BOOLEAN,
case CASE,
signal INTEGER

}

value1 T ::= {
int 5,
explicit TRUE,
case lower,
signal 27 }

With default keywords substitution file the following TTCN is generat-
ed:

CASE_TTCN_KEYWORD ::=
 ENUMERATED {upper(0), lower(1)}

T ::= SEQUENCE {
int_CPP_KEYWORD INTEGER,
explicit_CPP_KEYWORD BOOLEAN,
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 731

Chapter 14 The ASN.1 Utilities
case_CPP_KEYWORD CASE_TTCN_KEYWORD,
signal_SDL_KEYWORD INTEGER

}

value1 T ::= {
 int_CPP_KEYWORD 5,
 explicit_CPP_KEYWORD TRUE,
 case_CPP_KEYWORD lower,
 signal_SDL_KEYWORD 27
}

––

A configuration file allows user to control the set of keywords to be re-
placed. Removing lines with SDL keywords, for example, will switch
off SDL keywords sensitivity. Providing an empty configuration file
will result in switching off keywords substitution completely.

Automatic tagging
If ’AUTOMATIC TAGS’ is written in the header of an external ASN.1
module, then implicit tags are inserted into SET, SEQUENCE and
CHOICE types. During the TTCN generation they are inserted in the
type definitions explicitly.

Example 63 ––

M1
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
T ::= SEQUENCE
{
 a INTEGER OPTIONAL,
 b INTEGER DEFAULT 5
}

C ::= CHOICE
 {
 x INTEGER,
 y BOOLEAN,
 z REAL
 }
END

is translated to TTCN

SEQUENCE
{
 a [0] INTEGER OPTIONAL,
 b [1] INTEGER DEFAULT 5
}

732 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
CHOICE
{
 x [0] INTEGER,
 y [1] BOOLEAN,
 z [2] REAL
}

––

COMPONENTS OF Type notation
COMPONENTS OF Type can appear in SET or SEQUENCE field
types. Instead of COMPONENTS OF Type a list of components of the
referenced type is included, except extension addition components.

Example 64 ––

 S1 ::= SEQUENCE
{
 x INTEGER,
 g NULL,
 ... ,
 [[
 y BOOLEAN,
 z BIT STRING
]],
 [[
 c IA5String
]],
 d SET OF
 INTEGER OPTIONAL,
 ... ,
 f REAL
}

S2 ::= SEQUENCE
 {
 a IA5String,
 COMPONENTS OF S1,
 b OCTET STRING
 }

Type S2 is translated to TTCN

SEQUENCE
{
 a IA5String,
 x INTEGER,
 g NULL,
 f REAL,
 b OCTET STRING
}

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 733

Chapter 14 The ASN.1 Utilities
Selection types
A selection type is mapped to the type it denotes.

Example 65 ––

C ::= CHOICE
 {
 a INTEGER,
 b BOOLEAN
 }

T1 ::= a < C

T1 is translated to TTCN

INTEGER

T2 ::= b < C

T2 is translated to TTCN

BOOLEAN

––

Enumerated types
Enumerated items can be defined using “identifier” notation or “identi-
fier and number” notation. For “identifier” notations, implicit numbers
are assigned to the identifiers according to the rules described in X.680
(1997), 19.

For TTCN, all enumeration items are generated with their correspond-
ing numbers using “identifier and number” notation, and they are ar-
ranged according to their number values in ascending order in the gen-
erated enumeration.

Extension markers are ignored.

Example 66 ––

A ::= ENUMERATED { a, b, c(0), d, e(2) }

is translated to TTCN

ENUMERATED { c(0), a(1), e(2), b(3), d(4) }

B ::= ENUMERATED { a, b(3), ... , c(1) }

is translated to TTCN
734 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
ENUMERATED { a(0), c(1), b(3) }

––

Extensibility
Extensibility was introduced in X.680 (1997). In ASN.1 extensibility is
represented with extension markers and extension addition groups, that
can be specified inside SET, SEQUENCE, CHOICE, ENUMERATED
types and constraints.

Extension markers are not visible in TTCN translation. All square
brackets are ignored and all components from extension addition groups
are translated into TTCN as individual fields. All required components
from extension additions, individual or from extension addition groups,
are mapped to optional ones.

Example 67 ––

S1 ::= SET
{
 x [100] INTEGER,
 ... ,
 [[
 gr11 REAL
]],
 t BIT STRING,
 [[
 gr21 BOOLEAN OPTIONAL,
 gr22 SET OF INTEGER
]],
 ... ,
 y INTEGER
}

is translated to TTCN

SET
 {
 x [100] INTEGER,
 gr11 REAL OPTIONAL,
 t BIT STRING OPTIONAL,
 gr21 BOOLEAN OPTIONAL,
 gr22 SET OF INTEGER OPTIONAL,
 y INTEGER
 }
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 735

Chapter 14 The ASN.1 Utilities
Extension markers are ignored in constraints. If
both root and additional constraints are present,
they are translated to the union constraint.

Example 68 ––

T1 ::= INTEGER (1..10 ^ 2..20, ... , 12)

is translated to TTCN

INTEGER ((1..10 ^ 2..20) | (12))

T2 ::= INTEGER (1 | 3, ...)

is translated to TTCN

INTEGER (1 | 3)

––

Information from Object Classes, Objects and
Object Sets
Object classes, object and objects sets are not translated to TTCN. Only
types and values are translated to TTCN, but it is possible in ASN.1 to
use information from object classes, objects and object sets when spec-
ifying types and values. This information is translated into TTCN.

ObjectClassFieldType

ObjectClassFieldType is a reference to an object class and a field in that
class. The translation to TTCN depends on the kind of field name used.

An open type is defined if the field name references a type field, a vari-
able type value field or variable type value set field. An open type can
be any ASN.1 type. Open types are translated to OCTET STRING types
in TTCN.

Note:

TTCN translation removes the borders of additional groups and
makes all required components optional. The semantics for assign-
ing values to types with additional groups is: either the whole addi-
tion group ([[....]]) is absent, or it is all present unless components
inside the group are optional. This is not checked in TTCN tools but
inconsistency will cause errors in ASN.1 encoding.
736 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
Example 69 ––

OPERATION ::= CLASS {
 &ArgumentType,
 &arg &ArgumentType
}

T1 ::= SEQUENCE { a OPERATION.&ArgumentType }

is translated to TTCN

SEQUENCE { a OCTET STRING }

T2 ::= OPERATION.&arg

is translated to TTCN

OCTET STRING

––

If the field name in the class references a fixed type value or fixed type
value set fields, then the fixed type is used when translated to TTCN.

Example 70 ––

OPERATION ::= CLASS {
 &ValueSet INTEGER
 }

T ::= OPERATION.&ValueSet

is translated to TTCN

INTEGER

––

ObjectClassFieldType with table constraint (object set
constraint)

A table constraint applied to ObjectClassFieldType restricts the set of
possible types or values to those specified in a column of the table. A
table corresponds to an object set. The columns of the table correspond
to the object class fields and the rows correspond to the objects in the
set.

If the field name in ObjectClassFieldType is a type field and con-
strained with a table, then it is translated to a CHOICE type with fields
of the types specified in the table column. The names of the fields in the
choice are the same as the names of the types in the column but the first
letter is changed from upper case to lower case.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 737

Chapter 14 The ASN.1 Utilities
If the field name in ObjectClassFieldType is a fixed type value or a
fixed type value set, then this is translated to a constrained type where
only values that are specified in the table column are permitted.

If the field name in ObjectClassFieldType is a variable type value or
variable type value set field, then this is translated to a CHOICE type
with types, that are constrained to have values specified in the corre-
sponding cell in the same row of the table.

Example 71 ––

OPERATION ::= CLASS {
 &ArgumentType,
 &operationCode INTEGER UNIQUE,
 &ValueSet INTEGER,
 &ArgSet &ArgumentType
 }

The My-Operations object set:

C1 ::= OPERATION.&ArgumentType ({My-Operations})

is translated to TTCN

CHOICE {
 integer INTEGER,
 c1_INLINE_2 SET OF INTEGER
}

C2 ::= OPERATION.&operationCode ({My-Operations})

is translated to TTCN

INTEGER (1 | 2)

Note:

If the type in the field is inline then the name in the field will be an
implicitly generated inline name, like t_INLINE_4.

Object
name

&Argu-
mentType

&opera-
tionCode

&ValueSet &ArgSet

operationA INTEGER 1 {1 | 2 | 5 .. 8} { 111..444 }

operationB SET OF IN-
TEGER

2 { 2 .. 8 } { {1,2,3} |
 { 888 } }
738 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
C3 ::= OPERATION.&ValueSet ({My-Operations})

is translated to TTCN

INTEGER ((1 | 2 | 5..8) | (2..8))

C4 ::= OPERATION.&ArgSet ({My-Operations})

is translated to TTCN

CHOICE {
 c4_INLINE_1 INTEGER ((111..444)),
 c4_INLINE_2 SET OF INTEGER (({1,2,3} | {888}))
}

––

If an open type is constrained by the table for which all type settings are
omitted, then it is translated to TTCN OCTET STRING instead of an
empty CHOICE type.

Example 72 ––

MY-CLASS ::= CLASS {
 &id INTEGER,
 &OpenType OPTIONAL
 }

 The My-Set object set:

S ::= SEQUENCE {
 id MY-CLASS.&id({My-Set}),
 val MY-CLASS.&OpenType({My-Set}{@id})
}

is translated to TTCN

SEQUENCE {
 id INTEGER (1 | 2),
 val OCTET STRING
}

––

Object name &id &OpenType

object1 1 -

object2 2 -
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 739

Chapter 14 The ASN.1 Utilities
TypeFromObject

TypeFromObject is a reference to an object and a type field in that ob-
ject. This is simply translated to the that type in TTCN. If the field is
optional in the class and not set in the object, then TypeFromObject can-
not be translated.

Example 73 ––

OPERATION ::= CLASS {
 &ArgumentType,
 &ResultType
 }

operationA OPERATION ::= {
 &ArgumentType INTEGER,
 &ResultType BOOLEAN
 }

O1 ::= operationA.&ArgumentType

is translated to TTCN

INTEGER

O2 ::= operationB.&ResultType

is translated to TTCN

BOOLEAN

––

ValueSetFromObject

ValueSetFromObject is a reference to an object and a field with a set of
values in that object. This is translated to a constrained type in TTCN,
allowing only values from the value set.

Example 74 ––

OPERATION ::= CLASS {
 &ValueSet INTEGER
 }

operationA OPERATION ::= {
 &ValueSet { 1 | 2 | 5..8 }
 }

V1 ::= operationA.&ValueSet

is translated to TTCN
740 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Support for External ASN.1 in the TTCN Suite
INTEGER (1 | 2 | 5..8)

––

ValueFromObject

ValueFromObject is a reference to an object and a field with a value in
that object. This is translated to the same value in TTCN.

Example 75 ––

OPERATION ::= CLASS {
 &operationCode INTEGER UNIQUE
 }

operationA OPERATION ::= { &operationCode 1 }

val2 INTEGER ::= operationA.&operationCode

is translated to TTCN

val2 of type INTEGER equal to 1

––

CONSTRAINED BY notation
CONSTRAINED BY is treated like a comment and is not translated to
TTCN.

Parameterization
Wherever a parameterized type or value is used, it is translated to TTCN
after all dummy references are replaced by the actual parameters. A pa-
rameterized value is also translated after all dummy references are re-
placed by the actual parameters.

Parameterized assignments are ignored when translating to TTCN.

Example 76 ––

Container { ElemType, INTEGER : maxelements } ::=
 SET SIZE (0..maxelements) OF ElemType

Intcontainer ::= Container {INTEGER, 25}

is mapped to TTCN

SET SIZE (0..25) OF INTEGER

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 741

Chapter 14 The ASN.1 Utilities
Error and Warning Messages
This section contains a list of the error and warning messages in the
ASN.1 Utilities. Each message has a short explanation and, where ap-
plicable, a reference to the appropriate section of the recommendations
X.680,X.681,X.682, X.683 or Z.105.

Some messages include a reference to the object that is the source of the
diagnostic. These messages adhere to the format adopted in the SDL
suite. See chapter 19, SDT References for a reference to this format and
for examples.

WARNING 2000 Unknown option ‘#1’

This warning message indicates that the ASN.1 Utilities were started
with an unknown option. See “Command-Line Interface” on page 697
for an overview of the valid options.

WARNING 2001 No #1 specified after ’#2’ option

This warning message indicates that the ASN.1 Utilities were started
with an illegal combination of options. See “Command-Line Interface”
on page 697 for an overview of the valid options.

For example,

 asn1util -s -r MyModule.asn

In this case no output file for sdl generation is specified after '-s' option.

ERROR 2002 Too many errors

This error message indicates that the maximum number of errors was
reached when analyzing an ASN.1 module. The analysis has been
aborted by the ASN.1 Utilities.

ERROR 2003 Multiple #1 paths

This warning message indicates an incorrect usage of the options of the
ASN.1 Utilities.

For example,

 asn1util -Tdir1 -Tdir2 -s MyModule.pr MyModule.asn

Multiple target directories provide a warning message
742 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
WARNING 2004 Option missing

This warning message indicates that no option is specified after dash.

ERROR 2005 Can not open #1

This error message indicates that an error occurred when the ASN.1
Utilities attempted to open a file. Modify, if necessary, the file protec-
tion and try to run the ASN.1 Utilities again. If the error persists, contact
Telelogic Customer Support. Contact information for Telelogic Cus-
tomer Support can be found in “How to Contact Customer Support” on
page iv in the Release Guide.

For example,

 asn1util -Tdir -i MyModule.ttcn MyModule.asn

This command line can cause an error message “Can not open air/My-
Module.ttcn” if there is no target directory 'dir' in the catalogue from
which asn1util is called.

ERROR 2006 Illegal characters in bstring

This message indicates that an ASN.1 binary string item (used in BIT
STRING and OCTET STRING) contains illegal characters. The only
characters allowed are `0', `1' and white space characters. (X.680: 9.9)

ERROR 2007 Illegal characters in hstring

This message indicates that an ASN.1 hexadecimal string item (used in
BIT STRING and OCTET STRING) contains illegal characters. The
only characters allowed are `0'-'9', `A'-'F' and white space characters.
(X.680: 9.10)

For example: 'F30C 973D'H is a valid hexadecimal string item.

ERROR 2008 ’H’ or ’B’ expected

This error message indicates that an ASN.1 BIT STRING or OCTET
STRING value is not ended with a `B or an `H. (X.680: 9.9 and 9.10).

For example: '0110'B or '1AFC'H are valid values for BIT STRING and
OCTET STRING, '01110' is illegal.

ERROR 2009 Unclosed #1 string

 This error is reported when there is no closing apostrophe at the end of
string
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 743

Chapter 14 The ASN.1 Utilities
WARNING 2010 Unknown token ‘#1’

This warning indicates a syntax error in the ASN.1 module.

ERROR 2011 Syntax error

This message indicates a syntax error in the ASN.1 module with syntax
from standard X.680-X.683. This could be caused by a misspelling. It
could also be caused by X.228 constructs that are not part of X.680.

ERROR 2012 Out of memory

This message indicates that the ASN.1 Utilities ran out of memory. Try
to make the ASN.1 module smaller or supply more memory. If the error
persists, contact Telelogic Customer Support. Contact information for
Telelogic Customer Support can be found in “How to Contact Customer
Support” on page iv in the Release Guide.

WARNING 2013 No semantic support for ‘#1’

This warning indicates that an ASN.1 construct is used that is not sup-
ported by the ASN.1 Utilities. The construct will be ignored by the
ASN.1 Utilities.

ERROR 2014 Export-file ‘#1’ corrupt

This message indicates that the export file format of an ASN.1 module
was corrupt or unknown. This error should normally not occur. Contact
Telelogic Customer Support. Contact information for Telelogic Cus-
tomer Support can be found in “How to Contact Customer Support” on
page iv in the Release Guide.

ERROR 2015 Old ASN1,#1

This message indicates that an ASN.1 construct of the older X.228 rec-
ommendation is used that has been superseded in the X.680 Recom-
mendation.

For example:

 S ::= SEQUENCE { INTEGER }

is old ASN.1. Correct X.680 ASN.1 is:

 S ::= SEQUENCE { field1 INTEGER }
744 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
ERROR 2016 Recursive expansion of COMPONENTS OF in type
#1

This error message indicates that the ASN.1 type uses directly or indi-
rectly COMPONENTS OF itself.

ERROR 2017 Recursive #1

This message indicates that the ASN.1 construct is recursively defined.

For example: T1::=T2, T2::=T1; T::=SET OF T, or v T ::= v

ERROR 2018 Recursive #1 constraint

This error message indicates that type being constrained is recursively
used in applied constraint.

 For example: I ::= INTEGER (1 .. 10 | INCLUDES I)

ERROR 2019 Field ’#1’ should be initialized by #2

This message is reported when you assign wrong kind of value for the
field in the object, for example when you try to assign a value for the
type field in the object

ERROR 2020 Value for `#1' can not be #2

This error message indicates a semantic error in the ASN.1 module.

For example, T ::= BIT STRING { a(-1)} causes the error “Value
for 'named bit' can not be negative”

WARNING 2021 Construct ‘#1’ has no mapping in SDL

This warning indicates that an ASN.1 construct is used that can not be
mapped to SDL.

For example:

 S1 SEQUENCE ::= { }

 -- empty SEQUENCE/SET

 s SEQUENCE { a INTEGER OPTIONAL } ::= {}

 -- value for SEQUENCE/SET without components
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 745

Chapter 14 The ASN.1 Utilities
ERROR 2022 Ambiguous reference, symbol ‘#1’ imported
more than once

A value is used that is imported more than once. Use an external value
reference to specify unambiguously the module of the value that you
want to use.

ERROR 2023 Multiple definition of #1

This error message appears, when the same identifier appears more then
once on the right side of assignment.

For example, X ::= INTEGER, X ::= SET OF REAL

ERROR 2024 Exported symbol #1 not defined

This error message is reported when symbol is exported, but it is neither
defined in the module nor imported to it

ERROR 2025 Ambiguous export, symbol #1 is imported more
than once

This error message indicates that it is impossible to decide which sym-
bol to export, because two symbols with the name #1 are imported to
the module

ERROR 2026 Ambiguous export, symbol #1 is defined and
imported

This error message indicates that it is impossible to decide which sym-
bol to export, because symbol #1 is defined in the module and imported
to it at the same time

ERROR 2027 Nothing known about module #1

This message appears when module referenced from imports clause
does not exist. You should specify all modules from which symbols are
imported to the analyzed module in the same command line, otherwise
it is impossible to perform global semantic analysis

ERROR 2028 Import from empty module #1

This message appears when importing symbols from a module, that
does not contain any definitions
746 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
ERROR 2029 Module does not export symbols

This message appears when you are trying to import symbols from
module with empty export: “EXPORTS ;”

ERROR 2030 Imported symbol #1 is not exported from module
#2

This message appears when symbol #1 is present in imports from mod-
ule #2 clause, but it is not exported from #2. “EXPORTS ;” indicates that
nothing is exported, while empty exports clause indicates that all defi-
nitions are exported from the module.

ERROR 2031 Imported symbol #1 is not defined in module #2

This error situation occurs when symbol is imported from module that
exports all, but symbol is not defined there

ERROR 2032 Ambiguous import, symbol #1 imported more than
once to module #2

This indicates that all symbols are exported from module #2, but it is
impossible to import symbol #1 from module #2 because symbol #1 is
imported more than once to #2. The symbols have the same name, but
defined in different modules.

ERROR 2033 Ambiguous import, symbol #1 defined and
imported to module #2

This indicates that all symbols are exported from module #2, but it is
impossible to import symbol #1 from module #2 due to ambiguity be-
tween symbol #1defined in module #2 and symbol #1 imported to mod-
ule #2.

For example;

M1 DEFINITIONS ::= BEGIN
 IMPORTS a FROM M2;
END

M2 DEFINITIONS ::= BEGIN
 IMPORTS a FROM M3;
 a INTEGER ::=5
END

M3 DEFINITIONS ::= BEGIN
 EXPORTS a;
 a BOOLEAN ::= TRUE

END
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 747

Chapter 14 The ASN.1 Utilities
In the above case you can not import a to M1, although a is exported
from M2.

ERROR 2034 Multiple declaratiom of module name #2

Module name shall appear only once in IMPORTS clause.

For example

IMPORTS a , b FROM X c FROM X; is wrong ASN.1 declaration

ERROR 2035 Recursive import for #1

This error message is reported, for example, when module A imports T
from B, and B imports T from A at the same time

ERROR 2036 Multiple occurance of #1 ’#2’ in #3

This error is reported when some types are defined incorrectly - they
have the same identifier, for example enumeration can not have the
same identifiers, named number list for INTEGER type can not have the
same identifiers in the list, #2 is a string

ERROR 2037 Multiple occurance of #1 #2 in #3

The same class of error as ERROR 2036 above, but #2 is an integer val-
ue.

ERROR 2038 External references are not allowed

When imports clause looks like “IMPORTS ;”,no external references
are allowed from the module (X.680, 10.14, d), NOTE 2)

ERROR 2039 Referenced #1 ’#2’ not defined

This error is reported when you use reference that is not assigned value
or type anywhere.

ERROR 2040 Value of type #1 needed

This error message indicates that value does not correspond to the type.
For example x INTEGER ::= TRUE - this results in an error “Value of
type INTEGER needed”
748 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
ERROR 2041 #1 type needed after COMPONENTS OF

The type after in COMPONENTS OF expansion should be either SET
or SEQUENCE, and it should be the same as the type to which it is ex-
tracted.

For example SET { a INTEGER, b COMPONENTS OF T }, where T
is SEQUENCE type is wrong usage of COMPONENTS OF nota-
tion(X.680, 22.4, 24.2)

ERROR 2042 Field names in type after COMPONENT OF already
declared

After performing the COMPONENTS OF transformation, all field
names should be distinct.

For example, type S1 is wrong (it has two fields named ’a’)

 S ::= SET { a INTEGER, b REAL }

 S1 ::= SET { a SET OF IA5String, COMPONENTS OF S }

ERROR 2043 #1 type needed

This error is reported when type in selection type is not choice.

For example x < INTEGER does not satisfy that requirement

ERROR 2044 No alternative named #1 in Choice type

This error is reported when type notation is “#1 < type”, type is a
CHOICE type, but it does not have alternative named #1

ERROR 2045 Too many components

This error message appears when you are trying to assign extra compo-
nents, which are not defined in the type, when specifying the value of
SET or SEQUENCE

ERROR 2046 No such field ’#1’ in #2 type

This error indicates that type #2 does not have field named #1, but you
are trying to assign it a value.

ERROR 2047 Missing values for non-optional #1 fields : #2

This message indicates that not all required #1 components have been
initialized in the value, and #2 is the list of names of fields, for which
values are missing. The example S ::= SET { a INTEGER, b REAL, c
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 749

Chapter 14 The ASN.1 Utilities
NULL OPTIONAL }, s S ::= { a 57 } results in error message “Missing
values for non-optional SET fields: ’b’”.

ERROR 2048 More than one #1 for the field ’#2’

This error occurs when you are trying to assign more then one compo-
nent to one field.

For example

T ::= SET { a IA5String , b NULL }

t T ::= { a "val1", b NULL, a "val2" }

ERROR 2049 Nothing known about bit named ’#1’

This error is reported when bitstring value contains identifier that is not
declared in the correspondent type definition

ERROR 2050 Value for #1 should be #2

If you specify table for the value of IA5String, TableColumn should be
in the range from 0 to 7, if this constraint is violated then the above error
message is reported

ERROR 2051 Type is required to be derived from #1

This error indicates that type used in SubtypeConstraint is not derived
from the type being constrained and thus does not satisfy X.680,45.3.2

ERROR 2052 Can not apply #1 constraint to #2 type

Not all constraints can be applied to every type, X.680, Table 6 de-
scribes which constraints can be applied to which types, if the require-
ments declared in Table 6 are not satisfied, the above error message is
reported

ERROR 2053 There shall be at most one #1

Two presents constraints are not allowed when constraining a CHOICE
type.

For example:

C ::= CHOICE { a T1 , b T2 } (WITH COMPONENTS {a PRESENT,
b PRESENT})

causes the error message
750 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
ERROR 2054 Wrong value : out of constraint

This error is reported when value does not correspond to the constraint
applied to the type.

For example: x INTEGER (1..10) ::= -1, x is out of constraint

ERROR 2055 The same tags for #1 components

This error message indicates that type does not correspond to the re-
quirements for distinct tags specified in X.680, 22.5, 24.3, 26.2; If you
use AUTOMATIC TAGS in the module, requirement for distinct tags
will always be satisfied if automatic tagging has been applied

ERROR 2056 OBJECT IDENTIFIER value should have at least
two components

x OBJECT IDENTIFIER ::= { iso } is wrong object identifier value
because encode/decode functions require at least two components for
object identifier value

WARNING 2057 Construct #1 has no mapping in SDL

This warning is reported if no mapping to sdl exist but it does not pre-
vent further code generation.

ERROR 2058 Construct #1 has no mapping in SDL

This error indicates that no mapping to sdl exist and is fatal for further
code generation.

WARNING 2059 Value given for #1 component

This warning indicates that a value has been given to an optional or de-
fault component of an ASN.1 SEQUENCE or SET type. Values for op-
tional and default components cannot be translated to SDL.

WARNING 2060 Constraint could have been extended when
mapped to sdl

This warning indicates that constraint transformation has been applied
when mapping complex ASN.1 constraints to sdl but the sdl type can al-
low more values than the ASN.1 type. This can occur when there is no
exact mapping of ASN.1 constraints.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 751

Chapter 14 The ASN.1 Utilities
ERROR 2061 INTERNAL ERROR in #1

This message indicates an error in the implementation in the utilities.
Please send a report to Telelogic Customer Support, especially if the er-
ror can be reproduced as the only error message of an analysis. Contact
information for Telelogic Customer Support can be found in “How to
Contact Customer Support” on page iv in the Release Guide

ERROR 2062 Code generation : #1

Error in the generation of SDL, TTCN or encode/decode output.

WARNING 2063 Too big exponent

Exponent in a real value is too big to translate to SDL. This warning
message is shown if the exponent is bigger than 1000 or less than -1000.

WARNING 2064 Duplicate synonym name, this synonym will
not be mapped to SDL

This message indicates that there are synonym name clashes between
named numbers and named bits from INTEGER and BIT STRING
types and ASN.1 values if they all will be mapped to SDL (see “Integer”
on page 713 and “Bit String” on page 710), and in order to avoid errors
only one synonym will be mapped, others are ignored.

ERROR 2065 Number #1 is already assigned to previously
defined enumeration item

This error message is reported when NamedNumber alternative is used
in an enumerated type definition in an addition enumeration after exten-
sion marker and the number #1 has already been assigned to identifier
from root enumeration, for example A ::= ENUMERATED {a,b, ... ,
c(0)} First corresponding numbers are assigned to identifiers in root
enumeration, and then in additional enumeration. The above case is in-
valid, since both ’a’ and ’c’ are equal to 0.

ERROR 2066 Value for the field ’#1’ needed #2

This message indicates that value for the field ’#1’ is missing, but it
should be present in #2

ERROR 2067 #1 omitted in #2

Indicates that #1 is omitted, but it should be present in #2
752 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Error and Warning Messages
ERROR 2068 #1 should reference #2

This message indicates that a field name references an object class field
that is not allowed to be referenced.

ERROR 2069 Wrong object specification

This message indicates that an object specification is incorrect

ERROR 2070 #1 of class #2 needed

This message indicates that an object or object set does not match the
governing object class specified in object or object set’s definitions

ERROR 2071 Wrong defined syntax

This message indicates that an error in defined syntax for the object def-
inition

ERROR 2072 #1 can not be used in object set specification

This message indicates that an illegal construct is used in the object set
specification

ERROR 2073 #1 in the field ’#2’ is not specified in the #3

This message is reported when information, for example, type or value,
is extracted from object field that has not been initialized in the object.
This can occur when the field is optional or default in the object class.

WARNING 2074 #1 is not supported in the encoders /
decoders

This warning message is reported when ASN.1 notation is used that the
encoder / decoder library cannot support

ERROR 2075 #1 can be used only for #2

This message is reported when #1 is used in a component relation con-
straint but is not allowed to be used in that context.

ERROR 2076 #1

This is used for several different messages concerning component rela-
tion constraint, each message is listed and explained below:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 753

Chapter 14 The ASN.1 Utilities
Referenced component should refer to the same object
class as the referencing one

This message indicates that the referenced and referencing components
in a component relation constraint do not stem from the same object
class.

Only fixed type value fields are allowed to be specified
in a referenced component

This message indicates that a referenced component in a component re-
lation constraint is not a fixed type value field, for example

SET {
 a MY-CLASS.@id ({My-set}),
 b MY-CLASS.@TypeField ({My-set})
 }

For the field a, @id should reference fixed type value field in class ’MY-
CLASS’

Only values of INTEGER types can be used as component
relation identifiers";

This message is reported when a referenced fixed type value field is not
an INTEGER, only INTEGERS are supported.

SET {
 a MY-CLASS.@id ({My-set}),
 b MY-CLASS.@TypeField ({My-set})
 }

In the example above @id should be derived from an INTEGER.

Wrong referenced component

This message indicates that a wrong type of component is referenced in
a component relation constraint, for example not using ObjectClass-
FieldType notation.

Referenced components should be constrained by the same
object set as the referencing one

This message indicates that the referenced and referencing component
are not constrained with the same object sets.

ERROR 2077 ASN.1 identifier #1 is a keyword, it will be
replaced by #2

This message is reported when an ASN.1 identifier is a keyword in one
of the target languages and will be changed according to the keywords
754 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Restrictions
configuration file during mapping for avoiding syntax errors in the tar-
get languages.

ERROR 2078 Module #1 has got name clashes within joined
modules group ’#2’

This message is reported when an ASN.1 definition name causes name
clashes within joined SDL package and will be prefixed by the original
ASN.1 module name during mapping to avoid errors in SDL (see “Join-
ing modules” on page 704).

Restrictions
The ASN.1 Utilities handle all constructs of ASN.1 as defined in ITU-T
recommendations X.680, X.681, X.682, X.683, X.690, X.691. There is
no support for features defined in the old ASN.1 version X.208 that
have been superseded in X.680.

For a list of restrictions see “ASN.1 Utilities” on page 29 in chapter 2,
Release Notes, in the Release Guide.

Appendix A: List of recognized keywords
By default target language keywords are recognized among ASN.1
identifiers and a postfix ‘_<language>_KEYWORD’ is added at the end
of the identifier when SDL (<language> = SDL), TTCN (<language>
= TTCN) or C (<language> = CPP) is generated. This appendix de-
scribes lists of supported keywords for all supported target the target
languages.

SDL keywords
active, adding, all, alternative, and, any, as, atleast,
axioms, block, break, call, channel, choice, comment,
connect, connection, constant, constants, continue, cre-
ate, dcl, decision, default, else, endalternative, end-
block, endchannel, endconnection, enddecision, endgener-
ator, endmacro, endnewtype, endoperator, endpackage,
endprocedure, endprocess, endrefinement, endselect, end-
service, endstate, endsubstructure, endsyntype, endsys-
tem, env, error, export, exported, external, fi, final-
ized, for, fpar, from, gate, generator, if, import, im-
ported, in, inherits, input, interface, join, literal,
literals, macro, macrodefinition, macroid, map, mod,
nameclass, newtype, nextstate, nodelay, noequality,
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 755

Chapter 14 The ASN.1 Utilities
none, not, now, offspring, operator, operators, option-
al, or, ordering, out, output, package, parent, priori-
ty, procedure, process, provided, redefined, referenced,
refinement, rem, remote, reset, return, returns, re-
vealed, reverse, save, select, self, sender, service,
set, signal, signallist, signalroute, signalset, size,
spelling, start, state, stop, struct, substructure, syn-
onym, syntype, system, task, then, this, timer, to, type,
use, via, view, viewed, virtual, with, xor

TTCN keywords
ACTIVATE, AND, BITSTRING, BIT_TO_INT, BY, CANCEL, CASE,
COMPLEMENT, CP, CREATE, DO, DONE, ELSE, ENC, ENDCASE, EN-
DIF, ENDVAR, ENDWHILE, F, FAIL, fail, GOTO, HEXSTRING,
HEX_TO_INT, I, IF, IF_PRESENT, INCONC, inconc, INFINITY,
INT_TO_BIT, INT_TO_HEX, IS_CHOSEN, IUT, LT, min, MOD,
ms, MTC, NOT, ns, OMIT, OR, OTHERWISE, P, LENGTH_OF,
none, NUMBER_OF_ELEMENTS, OCTETSTRING, OBJECTIDENTIFI-
ER, PASS, pass, PDU, PERMUTATION, ps, PTC, R, READTIMER,
REPEAT, REPLACE, RETURN, RETURNVALUE, R_Type, s, START,
STATIC, SUPERSET, SUBSET, THEN, TIMEOUT, TIMER, TO, UN-
TIL, us, UT, VAR, WHILE

C++ keywords
bool, catch, class, const_cast, delete, dynamic_cast,
explicit, false, friend, inline, __multiple_inheritance,
mutable, namespace, new, operator, private, protected,
public, reinterpret_cast, __single_inheritance,
static_cast, template, this, throw, true, try, typeid,
typename, using, virtual, __virtual_inheritance, xalloc

auto, asm, break, case, char, const, continue, default,
do, double, else, enum, extern, float, for, goto, if,
int, long, register, return, short, signed, sizeof,
static, struct, switch, typedef, union, unsigned, void,
volatile, while
756 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	14 The ASN.1 Utilities
	Introduction
	Application Areas for the ASN.1 Utilities
	Overview of the ASN.1 Utilities

	Using the ASN.1 Utilities
	Command-Line Interface
	Configuration file generation

	PostMaster Interface

	Translation of ASN.1 to SDL
	General
	Keywords substitution
	Module
	Joining modules
	General Type and Value Assignment
	Inline types naming
	Boolean, NULL, and Real
	Bit String
	Character Strings
	Choice Types
	Enumerated Types
	Integer
	Object Identifier
	Octet String
	Sequence/Set Types
	Sequence of Types
	Set of Types
	Useful Types
	Constrained Types
	Extensibility
	Information from Object Classes, Objects and Object Sets
	ObjectClassFieldType
	ObjectClassFieldType with table constraint (object set constraint)
	TypeFromObject
	ValueSetFromObject
	ValueFromObject

	CONSTRAINED BY notation
	Parameterization

	Support for External ASN.1 in the TTCN Suite
	General
	Keywords substitution
	Automatic tagging
	COMPONENTS OF Type notation
	Selection types
	Enumerated types
	Extensibility
	Information from Object Classes, Objects and Object Sets
	ObjectClassFieldType
	ObjectClassFieldType with table constraint (object set constraint)
	TypeFromObject
	ValueSetFromObject
	ValueFromObject

	CONSTRAINED BY notation
	Parameterization

	Error and Warning Messages
	Restrictions
	Appendix A: List of recognized keywords
	SDL keywords
	TTCN keywords
	C++ keywords

