
July 2003 Telelogic Ta

Chapter
8 Tutorial: Using ASN.1

Data Types
This tutorial describes how to use ASN.1 types and values in the
SDL suite. You will learn how to import and use ASN.1 modules in
your SDL diagrams, how to generate code and how to encode and
decode your ASN.1 types using BER or PER encoding.

The tutorial contains all steps from creating ASN.1 data types to the
implementation of the ASN.1 data types in your source code.

To illustrate the functionality and the work flow, small examples
are presented throughout the tutorial. The SNMP protocol is used
as a base to illustrate how ASN.1 could be applied on a typical
SNMP stack.

In order for you to fully take advantage of this tutorial, you should
be familiar with the SDL suite and the basics of ASN.1.

Additional information regarding ASN.1 types and its usage togeth-
er with the SDL suite can be obtained in:

• chapter 2, Data Types, in the SDL Suite Methodology Guidelines

• chapter 14, The ASN.1 Utilities, in the User’s Manual

• chapter 58, Building an Application, in the User’s Manual

• chapter 59, ASN.1 Encoding and De-coding in the SDL Suite, in
the User’s Manual
u 4.5 SDL Suite Getting Started gs-s1 297

Chapter 8 Tutorial: Using ASN.1 Data Types
Introduction
The Abstract Syntax Notation One (ASN.1) is a notation language that
is used for describing structured information that is intended to be trans-
ferred across some type of interface or communication medium. It is es-
pecially used for defining communication protocols.

As ASN.1 is widely popular, the SDL suite allows you to translate
ASN.1 data types to SDL and to encode/decode ASN.1 data types.

By using ASN.1 data types in the implementation of your application,
you will optimize your development process. The following list dis-
plays some of the advantages of ASN.1:

• ASN.1 is a standardized, vendor-, platform- and language indepen-
dent notation.

• A vast number of telecommunication protocols and services are de-
fined using ASN.1. This means that pre-defined ASN.1 packages
and modules are available and can be obtained from standardization
organizations, RFCs, etc. For instance, the ASN.1 data types defin-
ing SNMP are available in RFC 1157.

• When ASN.1 data types are transmitted over computer networks,
their values must be represented in bit-patterns. Encoding and de-
coding rules determining the bit-patterns are already defined for
ASN.1. The SDL suite supports BER and PER encoding.

• ASN.1 enables extensibility. This means that it simplifies compati-
bility of systems that have been designed and implemented large
time frames apart.

• The SDL suite and the TTCN suite can share common data types by
specifying these in a separate ASN.1 module.

Implementation of ASN.1
When importing ASN.1 data types to your SDL system, you need to
translate the ASN.1 definitions to SDL. The SDL suite does this for you
using a tool called ASN.1 Utilities. This tool is automatically invoked
when you analyze your SDL system.

However, having the ASN.1 data types translated to SDL is not enough
to include them in your application. If you are going to transfer applica-
tion-generated information on computer networks, the values of the
298 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Introduction
data types must be encoded. When transferring signals in or out of your
SDL system, you must also create the interface between the environ-
ment and the system.

Thus, the process of implementing ASN.1 data types can be divided into
three separate steps:

1. Creating the abstract syntax

2. Creating the transfer syntax

3. Compiling the application

The definitions of the abstract syntax and the transfer syntax is present-
ed below.

Abstract Syntax
The basic idea is to transport some type of information between two
nodes using protocol messages. The abstract syntax is defined as the set
of all possible messages that can be transported. To create the abstract
syntax you must:

• design some form of data structure defined in a high-level program-
ming language, for instance ASN.1.

• define the possible set of values that the data structure can take.

Transfer Syntax
The transfer syntax is the set of bit patterns that represents the abstract
syntax messages with each bit pattern representing just one value. The
rules determining the bit-patterns are called the encoding rules.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 299

Chapter 8 Tutorial: Using ASN.1 Data Types
Creating the Abstract Syntax
When creating the abstract syntax you must perform the following
tasks:

• Adding ASN.1 modules to your project

• Importing the ASN.1 modules in your SDL diagrams.

• Assigning values to the data types.

Adding ASN.1 Modules to your Project
An ASN.1 module is a file containing the ASN.1 data type definitions.
If you are implementing a standard communication protocol, it is very
likely that pre-defined ASN.1 modules have been created. The modules
can be obtained from standardization organizations, RFCs, etc. In
Example 10 on page 323, the ASN.1 module that defines the SNMP
protocol is presented. This module is available in the RFC 1157.

However, should a pre-defined module not be available for your type of
application, you must create your own module. Please see adequate
ASN.1 literature for instructions and guidelines on creating ASN.1
modules.

Regardless how you obtain the ASN.1 modules, you must add the mod-
ule to your project before the SDL suite can include the data types.

Follow the instructions below to add the ASN.1 module to your project.

1. Save your ASN.1 module in a subdirectory to your project. Make
sure that you append the .asn file extension to the saved module.

2. Open the Organizer and select the chapter where you want to in-
clude the module. This is done by clicking the chapter marker, for
instance the Other Documents marker, see Figure 191 on page 301.
300 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Abstract Syntax
3. From the Edit menu, select the Add Existing... command. The Add
Existing window opens.

4. Click the folder image button in order to find your ASN.1 module.
The Select file to add window opens.

5. Select the directory you want to search and change the search filter,
by typing *.asn in the Filter field. Click the Filter button. The avail-
able ASN.1 modules are now displayed in the Files window. Select

Figure 191: Selection of chapter marker

Figure 192: The Add Existing window
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 301

Chapter 8 Tutorial: Using ASN.1 Data Types
module and click the OK button. The Select file to add window clos-
es.

6. The selected module is now displayed in the Add Existing window.
Just click the OK button to add the module to your system. The
module should now be visible in the Organizer in your selected
chapter.

The ASN.1 modules are now added to your project.

Example 1: Adding ASN.1 modules to SDL project –––––––––––––––

In the SNMP example, the three modules RFC1155_SMI,
RFC1157_SNMP and USE_SNMP have been added to the project.

––

Importing ASN.1 Modules
After the modules have been added to the project, they must be made
available to the SDL system. This is done by importing the modules to

Figure 193: View of added ASN.1 modules
302 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Abstract Syntax
the SDL system file. When the modules have been imported, the ASN.1
data types can be used as regular SDL types.

Follow the instructions below to import the modules in the SDL dia-
grams:

1. From the Organizer, open the system file, <system_name>.ssy.

2. Enter the name of the added modules in the package reference
frame, which is located outside the system frame. (See Figure 194).

3. Save the diagram.

Example 2: Importing ASN.1 modules ––––––––––––––––––––––––––

In the SNMP example, the three modules RFC1155_SMI,
RFC1157_SNMP and USE_SNMP are imported.

––

Figure 194: View of the imported ASN.1 modules
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 303

Chapter 8 Tutorial: Using ASN.1 Data Types
Assigning Values to the Data Types
When the modules are imported to the SDL system, you are free to de-
clare signal parameters and variables of ASN.1 data types. The param-
eters and variables are treated as regular SDL parameters and variables,
and you assign values to them in the same manner as you normally do.

When declaring signals that are transporting information defined using
ASN.1, it is recommended that you define a top-level type of a ASN.1
module as the signal parameter.

When your variables have been assigned values, you have created the
abstract syntax.

Example 3: Assigning values to variables –––––––––––––––––––––––

In this example the variable Reply has been declared as the type
Message. This type is a top-level type that is defined in the ASN.1
module SNMP1157.asn, see Example 10 on page 323.

When the variable reply has been declared, you can use it in the
SDL diagram as a regular SDL variable. Figure 196 on page 305
shows how reply is used as the argument of a signal that has been
received by the SDL system.

Figure 195: Declaration of the reply variable
304 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Abstract Syntax
––

Example 4: Declaring signals –––––––––––––––––––––––––––––––––

The signal snmp_reply in the previous example must be declared
before it can be used. As mentioned before, the argument of the sig-
nal is a top-level type of the ASN.1 module.

––

Figure 196: Usage of the reply variable

Figure 197: Signal Declarations
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 305

Chapter 8 Tutorial: Using ASN.1 Data Types
Creating the Transfer Syntax
The SDL suite offers several way to create the transfer syntax. The
available coding access interfaces are:

• Basic SDL interface

• Extended SDL interface

• C code interface

In this tutorial, only the C code interface will be covered. For a complete
description of ASN.1 encoding and decoding, please see chapter 59,
ASN.1 Encoding and De-coding in the SDL Suite, in the User’s Manual.

Using the C code interface, the transfer syntax can be created either us-
ing the Organizer’s make dialog or using the Targeting Expert. Both
methods are presented in this tutorial. When using the Targeting Expert,
you can select to use the Cadvanced SDL to C Compiler or the Cmicro
SDL to C Compiler when creating the transfer syntax. Both methods
will be covered as well.

This section starts with a short introduction and the actual instructions
are presented in:

• “Generating Template Files - the Organizer” on page 310

• “Generating Template Files - Targeting Expert” on page 315

Introduction
To be able to transfer the abstract syntax between two nodes in network,
you must first create the transfer syntax. The transfer syntax represen-
tation is then transmitted in a protocol buffer.

When creating the transfer syntax you must perform the following
tasks:

• Generating template files

• Editing the generated template files

The template files must be generated in order for you to include the
ASN.1 data types in the compilation and code generation processes.
The template files extract information from your SDL system and create
a skeleton. Often these template files do not contain sufficient informa-
306 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
tion to meet the demands of the application and therefore you must edit
the templates. The template files that are generated cover the following
areas:

• the environment functions

• the make process

However, the SDL suite needs additional information in order to create
the environment file. Before the generation you must determine which
encoding/decoding schemes to use and you must create type nodes files.

Environment Functions

The environment is defined as all devices or functions that are needed
by the application but not specified within the SDL system. By sending
signals to the environment, the SDL system wants certain tasks to be
performed. This could be for instance:

• reading or writing information to a file

• sending or receiving messages across the network

• reading or writing information on hardware ports or sockets

However, the SDL system only controls events that occur within the
system. It does not specify how signals leaving the system are handled
by the environment. This is why you must provide an interface between

Note: Environment File

There are several ways to create the environment file. This tutorial
shows how to auto-generate the file. However, you can also make
your own file from scratch. This procedure is more advanced and is
only partially covered.

Note: Type Nodes

The type nodes are auto-created by ASN.1 Utilities and must not be
edited.

Note: The Make process

The template makefile is only created if you are using the Make di-
alog. The default makefile of the Targeting Expert handles all nec-
essary make functionality.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 307

Chapter 8 Tutorial: Using ASN.1 Data Types
the SDL system and the environment. This interface is made up by the
environment functions.

The SDL suite is rather helpful and can generate a template environ-
ment file that includes a skeleton of the environment functions. The en-
vironment file is written in C code and by editing this file you can spec-
ify the behavior of signals from the SDL system and of signals going in
to the SDL system.

An environment header file or system interface header file can also be
created. This file contains all type definitions and other external defini-
tions that are necessary in order to implement the environment func-
tions.

Encoding/Decoding

When creating the transfer syntax, the messages that will be transferred
must be encoded and the incoming messages must be decoded. The type
of encoding rules to apply is specified in the environment file. This
means that the encoding/decoding function calls must be included in the
environment file.

Figure 198: The environment functions

Note: Environment files

There are several ways to create the environment file. You can:

• auto-create the file. This procedure is covered in this tutorial.

• make your own file from scratch. This is a more advanced pro-
cedure and is only partially covered in this tutorial.
308 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
The SDL suite supports the standard BER and PER encoding/decoding
schemes, but it also allows you to use a user specified encoding scheme.
ASCII encoding is available in the SDL suite as well, but it does not
support encoding of ASN.1 types.

Type Nodes

To include the ASN.1 data types in your application, they must be trans-
lated into a form that the SDL suite understands. Within the SDL suite,
this translation is handled by the ASN.1 Utilities.

The ASN.1 Utilities tool is invoked automatically when the SDL system
is analyzed and it allows you to:

• perform syntactic and semantic analysis of your ASN.1 modules

• generate SDL code from the ASN.1 modules

• generate type information for encoding and decoding using BER or
PER

This means that when you are using the ASN.1 utilities, you create type
nodes. A type node is a static variable that describes the properties and
characteristics of an ASN.1 data type, including tag information needed
by BER/PER encoders and decoders. The variable is named
yASN1_<type_name>.

All nodes are generated in files named
<asn1module_name>_asn1coder.c and declarations to access them
in files named <asn1module_name>_asn1coder.h.

Make Process

The default makefile in the SDL suite, determines the relationship be-
tween source files, header files, object files and libraries in your project.

Note:

The type nodes are auto-created by ASN.1 Utilities and must not be
edited.

Note: Make dialog only

This section is only valid if you build and analyze your project using
the Organizer’s make dialog.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 309

Chapter 8 Tutorial: Using ASN.1 Data Types
However, the default makefile does not include the generated files in the
make process. To include the environment files and the type node files
in the make process, you must generate a template makefile that will be
appended to the default makefile, see Figure 199. The template make-
file can be generated by the SDL suite.

Generating Template Files - the Organizer
Follow the instructions below to generate environment files, type node
files and the template makefile using the Organizer’s Make dialog:

1. Click the SDL system symbol in the Organizer.

2. From the Generate menu, select the Make... command. The SDL
Make window opens.

3. Specify your options in the make dialog according to the following
list:

– Select Analyze & generate code

– From the Code generator drop-down list, select Cadvanced

– Select Generate environment header file

– Select Generate environment functions

– Select Generate ASN.1 coder, to invoke ASN.1 Utilities.

– From the Use standard kernel drop-down list, select Application

Figure 199: The make process
310 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
4. Specify your target directory where the generated files will be
stored.

Figure 200 shows the Make dialog with the selected options.

5. Press the Full Make button.

In your target directory, you will now find the generated files including:

• <system_name>_env.c

This is the environment skeleton file.

• <system_name>.ifc

This is the environment header file.

Note:

Make sure that you de-select the Compile & link option as you only
want to generate the template files.

Figure 200: The Make dialog - generating template files

Note:

Encode and decode calls are only generated if the Generate ASN.1
coder option is enabled in the make dialog.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 311

Chapter 8 Tutorial: Using ASN.1 Data Types
• <system_name>_env.tpm

This is the template makefile.

• <asn1module_name>_asn1coder.c

<asn1module_name>_asn1coder.h

These files are the type nodes created by the ASN.1 utilities.

Editing the Generated Files - the Organizer
As the generated files only consist of skeleton functions, you must edit
the files to suit the functionality of your application.

1. Edit the environment file <system_name>_env.c file using any
text editor. In the skeleton file, macros are included but they are not
defined. To define the macros, create a <system_name>_env.h file
and enter the code manually. Example 5 on page 313 shows the
unedited SNMP environment file.

2. Save the environment file.

3. Edit the template makefile <system_name>_env.tpm if necessary.

4. Save the template makefile.

5. Make copies of the edited files and save the copies in a different
folder.

Note:

Make a habit of making a copy of the environment file and the tem-
plate makefile after they have been edited. Otherwise the edits will
be overwritten, if the files are re-generated from the Make dialog by
mistake.

Notes:

• In order to transfer the information on the network, you must
add socket commands to an appropriate header file.

• If you want to use more than one encoding scheme, for instance
BER and PER, you must enter the appropriate encoding function
calls in the environment file
312 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
Example 5: Environment Functions ––––––––––––––––––––––––––––

The following code is part of the environment file skeleton and dis-
plays the function that handles the out signals.

XENV_OUT_START

 /* Signals going to the env via the channel Signal_env */

 /* Signal snmp_request */
 IF_OUT_SIGNAL(snmp_request,"snmp_request")
 OUT_SIGNAL1(snmp_request,"snmp_request")
 XENV_BUF(BufInitWriteMode(Buf));
 XENV_ENC(BER_ENCODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
 (void *)&((yPDef_snmp_request *)(*SignalOut))->Param1));
 OUT_SIGNAL2(snmp_request,"snmp_request")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(snmp_request,"snmp_request")

 /* Signal Init */
 IF_OUT_SIGNAL(Init,"Init")
 OUT_SIGNAL1(Init,"Init")
 XENV_BUF(BufInitWriteMode(Buf));
 OUT_SIGNAL2(Init,"Init")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(Init,"Init")

 /* Signal Close */
 IF_OUT_SIGNAL(Close,"Close")
 OUT_SIGNAL1(Close,"Close")
 XENV_BUF(BufInitWriteMode(Buf));
 OUT_SIGNAL2(Close,"Close")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(Close,"Close")
}

––

Encoder and Decoder function calls

As stated earlier, it is not necessary to auto-create the environment file.
By copying another environment file or by writing it from scratch, you
can customize the environment file for your needs. If you do so you
must use the correct syntax of the encoding and decoding functions.

The syntax of the BER function calls is:

BER_ENCODE (
 Buffer,
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 313

Chapter 8 Tutorial: Using ASN.1 Data Types
 &Typenode,
 &Signalparameter)

BER_DECODE (
Buffer,
&Typenode,
&Signalparameter)

The syntax of the PER function calls is:

PER_ENCODE (
 Buffer,
 &Typenode,
 &Signalparameter)

PER_DECODE (
Buffer,
&Typenode,
&Signalparameter)

Example 6: Encoding and Decoding function calls –––––––––––––––

The following function calls are being used in the SNMP example:

BER_ENCODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_request *)(*SignalOut))-

>Param1));

BER_DECODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_reply *)SignalIn)->Param1))

––

Decoding incoming signals

Before the SDL system can use the information that is encapsulated in
the incoming signals, a number of tasks must be performed. Most of
them are automatically performed by the SDL suite, but some must be
handled manually.

The following list defines the steps involved in the decoding process.
You must perform steps 1 and 2 manually, while steps 3 through 5 are
generated by the SDL suite:

1. In order to auto-generate a correct environment file, declare incom-
ing and outgoing signals in the SDL system. If signal parameters are
declared as ASN.1 types, a top-level node in the ASN.1 module
should be used, see Example 4 on page 305. It is recommended that
314 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
you use the same top-level type when decoding as you do when en-
coding.

2. Extract the encoded information from the protocol-specific packet
and transfer it to a data buffer. This should be implemented in C
code in the environment file. Instructions and further information is
available in chapter 58, Building an Application, in the User’s Man-
ual

The functions and function calls of the following functionality are auto-
generated in the environment file.

3. Memory for the signal structure is allocated.

4. The BER_DECODE function is called. The function is defined in
the decoding library and handles the actual decoding process.

5. The decoded signal is sent to the SDL system. This is performed by
the SDL_Output function.

Generating Template Files - Targeting Expert
Follow the instructions below to generate environment files, type node
files and the template makefile using the Targeting Expert.

1. From the Generate menu, select the Targeting Expert command.
The SDL Targeting Expert window opens.

2. From the drop-down menu located above the Partitioning Diagram
Model frame, select Light Integrations and the desired SDL to C
Compiler. It is possible to used either Cadvanced or Cmicro. The
pre-defined alternative specifies the type of compiler needed for the
generation.

3. Select the SDL to C Compiler tab.

4. In the General box, select Analyze/generate code.

5. In the Environment box, select:

– Environment functions

– Environment header file

6. Select the Communication tab. In the Coders box, select the Gener-
ate ASN.1 coder functions check box.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 315

Chapter 8 Tutorial: Using ASN.1 Data Types
7. Press the Full Make button. This generates the environment file.

In your target directory, you will now find the generated files including:

• <system_name>_env.c (Cadvanced)
env.c (Cmicro)
This is the environment skeleton file.

• <system_name>.ifc

This is the environment header file.

• <asn1module_name>_asn1coder.c

<asn1module_name>_asn1coder.h

These files are the type nodes created by the ASN.1 utilities.

Editing the Generated Files - Targeting Expert
As the generated files only consist of skeleton functions, you must edit
the files to suit the functionality of your application.

1. Rename the environment file.

2. Edit the environment file <system_name>_env.c file according to
your needs. In the skeleton file, macros are included but they are not
defined. To define the macros, create a <system_name>_env.h file
and enter the code manually. Example 7 on page 317 shows the
unedited SNMP environment file.

3. Save the environment file.

Note:

Encode and decode calls are only generated if the Coder functions...
option is enabled.

Note:

Make a habit of making a copy of the environment file after it has
been edited. Otherwise the edits will be overwritten, if the file is re-
generated by mistake.
316 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
Example 7: Environment Functions - Cadvanced ––––––––––––––––

The following code is part of the environment file skeleton and dis-
plays the function that handles of the out signals.

XENV_OUT_START

 /* Signals going to the env via the channel Signal_env */

 /* Signal snmp_request */
 IF_OUT_SIGNAL(snmp_request,"snmp_request")
 OUT_SIGNAL1(snmp_request,"snmp_request")
 XENV_BUF(BufInitWriteMode(Buf));
 XENV_ENC(BER_ENCODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
 (void *)&((yPDef_snmp_request *)(*SignalOut))->Param1));
 OUT_SIGNAL2(snmp_request,"snmp_request")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(snmp_request,"snmp_request")

 /* Signal Init */
 IF_OUT_SIGNAL(Init,"Init")
 OUT_SIGNAL1(Init,"Init")
 XENV_BUF(BufInitWriteMode(Buf));
 OUT_SIGNAL2(Init,"Init")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(Init,"Init")

 /* Signal Close */
 IF_OUT_SIGNAL(Close,"Close")
 OUT_SIGNAL1(Close,"Close")
 XENV_BUF(BufInitWriteMode(Buf));
 OUT_SIGNAL2(Close,"Close")
 XENV_BUF(BufCloseWriteMode(Buf));
 RELEASE_SIGNAL
 END_IF_OUT_SIGNAL(Close,"Close")
}

––

Notes:

• In order to transfer the information on the network, you must
add socket commands to an appropriate header file.

• If you want to use more than one encoding scheme, for instance
BER and PER, you must enter the appropriate encoding function
calls in the environment file
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 317

Chapter 8 Tutorial: Using ASN.1 Data Types
Example 8: Environment functions - Cmicro ––––––––––––––––––––

The following code is part of the environment file skeleton and dis-
plays the function that handles of the out signals.

 switch (xmk_TmpSignalID)
 {
 case snmp_request :
 {
 /* BEGIN User Code */
 /* Use (yPDP_snmp_request)xmk_TmpDataPtr to access the signal’s
parameters */
 /* ATTENTION: the data needs to be copied. Otherwise it */
 /* will be lost when leaving xOutEnv */
 /* This section can be used to encode outgoing data with the
selected coder functions.
 ** Please remove the comments and send the data with your
communications interface!
 ** (<SendViaCommunicationsInterface(data, datalen)> must be
replaced)
 char* data;
 int datalen;

 BufInitWriteMode(Buf);
 XENV_ENC(PER_ENCODE(Buf, (tASN1TypeInfo *)
&yASN1_z_RFC1157_SNMP_0_Message,
 (void *) &((yPDef_snmp_request *)xmk_TmpDataPtr)-
>Param1));
 BufCloseWriteMode(Buf);
 BufInitReadMode(Buf);
 datalen = BufGetDataLen(Buf);
 data = BufGetSeg(Buf, datalen);
 <SendViaCommunicationsInterface(data, datalen)>;
 BufCloseReadMode(Buf);
 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;

 case Init :
 {
 /* BEGIN User Code */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;

 case Close :
 {
 /* BEGIN User Code */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;
318 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Creating the Transfer Syntax
 default :
 xmk_result = XMK_FALSE;/* to tell the caller that */
 /* signal is NOT consumed */
 /* and to be handled by */
 /* the Cmicro Kernel ... */
 break ;
 }

––

Encoder and Decoder function calls

As stated earlier, it is not necessary to auto-create the environment file.
By copying another environment file or by writing it from scratch, you
can customize the environment file for your needs. If you do so you
must use the correct syntax of the encoding and decoding functions.

The syntax of the BER function calls is:

BER_ENCODE (
 Buffer,
 &Typenode,
 &Signalparameter)

BER_DECODE (
Buffer,
&Typenode,
&Signalparameter)

The syntax of the PER function calls is:

PER_ENCODE (
Buffer,

 &Typenode,
 &Signalparameter)

PER_DECODE (
Buffer,
&Typenode,
&Signalparameter)

Example 9: Encoding and Decoding function calls –––––––––––––––

The following function calls are being used in the SNMP example:

BER_ENCODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_request *)(*SignalOut))-

>Param1));

BER_DECODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_reply *)SignalIn)->Param1))

––
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 319

Chapter 8 Tutorial: Using ASN.1 Data Types
Decoding incoming signals

Before the SDL system can use the information that is encapsulated in
the incoming signals, a number of tasks must be performed. Most of
them are automatically performed by the SDL suite, but some must be
handled manually.

The following list defines the steps involved in the decoding process.
You must perform steps 1 and 2 manually, while steps 3 through 5 are
generated by the SDL suite:

1. In order to auto-generate a correct environment file, declare incom-
ing and outgoing signals in the SDL system. If signal parameters are
declared as ASN.1 types, a top-level type in the ASN.1 module
should be used, see Example 4 on page 305. It is recommended that
you use the same top-level type when decoding as you do when en-
coding.

2. Extract the encoded information from the protocol-specific packet
and transfer it to a data buffer. This should be implemented in C
code in the environment file. Instructions and further information is
available in chapter 58, Building an Application, in the User’s Man-
ual.

The functions and function calls of the following functionality are auto-
generated in the environment file.

3. Memory for the signal structure is allocated.

4. The BER_DECODE function is called. The function is defined in
the decoding library and handles the actual decoding process.

5. The decoded signal is sent to the SDL system. This is performed by
the SDL_Output function.
320 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Compiling Your Application
Compiling Your Application
After you have created the transfer syntax, you are ready to compile and
build your application, including the edited environment file and the
template makefile. Follow the appropriate instructions as presented in:

• “Using the edited files - Organizer” on page 321

• “Using the edited files - Targeting Expert” on page 322

Using the edited files - Organizer
Please follow the instructions below:

1. Click the SDL system symbol in the Organizer

2. From the Generate menu, select the Make... command. The SDL
Make window opens.

3. Change your options in the make dialog according to 0 following
list:

– Select Analyze & generate code

– From the Code generator drop-down list, select Cadvanced

– De-select Generate environment header file

– De-select Generate environment functions

– De-select Generate ASN.1 coder

– Select the Makefile button

– Select Generate makefile and use template and enter the gener-
ated template makefile /<new_name>_env.tmp in the
text field.

– Select Compile & link

– From the Use standard kernel drop-down list, select Applica-
tion.

Figure 201 on page 322 shows the Make dialog with the selected
options.
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 321

Chapter 8 Tutorial: Using ASN.1 Data Types
4. Specify your target directory where the generated files will be
stored.

5. Press the Full Make button.

Using the edited files - Targeting Expert
Please follow the instructions below:

1. Select the SDL to C Compiler tab.

2. In the Environment box, de-select the Environment functions option
and the Environment header file option.

3. Press the Full Make button.

Figure 201: The Make dialog - Compiling
322 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Appendix A
Appendix A
Example 10: The RFC1157 ASN.1 Module –––––––––––––––––––––––

RFC1157-SNMP DEFINITIONS ::= BEGIN

IMPORTS
 ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks
 FROM RFC1155-SMI;

-- top-level message

 Message ::=
SEQUENCE {

 version -- version-1 for this RFC
 INTEGER {
 version-1(0)
 },

 community -- community name
 OCTET STRING,

 data -- e.g., PDUs if trivial
 PDUs --ANY-- -- authentication is being used
 }

-- protocol data units

 PDUs ::=
 CHOICE {
 get-request
 GetRequest-PDU,

 get-next-request
 GetNextRequest-PDU,

 get-response
 GetResponse-PDU,

 set-request
 SetRequest-PDU,

 trap
 Trap-PDU
 }

 GetRequest-PDU ::=
 [0]
 IMPLICIT SEQUENCE {
 request-id
 RequestID,

 error-status -- always 0
 ErrorStatus,

 error-index -- always 0
 ErrorIndex,

 variable-bindings
 VarBindList
 }
 GetNextRequest-PDU ::=
 [1]
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 323

Chapter 8 Tutorial: Using ASN.1 Data Types
 IMPLICIT SEQUENCE {
 request-id
 RequestID,
 error-status -- always 0
 ErrorStatus,

 error-index -- always 0
 ErrorIndex,

 variable-bindings
 VarBindList
 }
 GetResponse-PDU ::=
 [2]
 IMPLICIT SEQUENCE {
 request-id
 RequestID,
 error-status
 ErrorStatus,

 error-index
 ErrorIndex,

 variable-bindings
 VarBindList
 }
 SetRequest-PDU ::=
 [3]
 IMPLICIT SEQUENCE {
 request-id
 RequestID,

 error-status -- always 0
 ErrorStatus,

 error-index -- always 0
 ErrorIndex,

 variable-bindings
 VarBindList
 }

 Trap-PDU ::=
 [4]

 IMPLICIT SEQUENCE {
 enterprise -- type of object generating
 -- trap, see sysObjectID in [5]
 OBJECT IDENTIFIER,

 agent-addr -- address of object generating
 NetworkAddress, -- trap

 generic-trap -- generic trap type
 INTEGER {
 coldStart(0),
 warmStart(1),
 linkDown(2),
 linkUp(3),
 authenticationFailure(4),
 egpNeighborLoss(5),
 enterpriseSpecific(6)
 },

 specific-trap -- specific code, present even
 INTEGER, -- if generic-trap is not
324 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

 Appendix A
 -- enterpriseSpecific

 time-stamp -- time elapsed between the last
 TimeTicks, -- (re)initialization of the network
 -- entity and the generation of the trap

 variable-bindings -- "interesting" information
 VarBindList
 }

 -- request/response information
 RequestID ::=
 INTEGER

 ErrorStatus ::=
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2),
 badValue(3),
 readOnly(4),
 genErr(5)
 }

 ErrorIndex ::=
 INTEGER

 -- variable bindings

 VarBind ::=
 SEQUENCE {
 name
 ObjectName,

 value
 ObjectSyntax
 }

 VarBindList ::=
 SEQUENCE OF
 VarBind

END

––
July 2003 Telelogic Tau 4.5 SDL Suite Getting Started gs-s1 325

Chapter 8 Tutorial: Using ASN.1 Data Types
326 gs-s1 Telelogic Tau 4.5 SDL Suite Getting Started July 2003

	8 Tutorial: Using ASN.1 Data Types
	Introduction
	Implementation of ASN.1
	Abstract Syntax
	Transfer Syntax

	Creating the Abstract Syntax
	Adding ASN.1 Modules to your Project
	Importing ASN.1 Modules
	Assigning Values to the Data Types

	Creating the Transfer Syntax
	Introduction
	Environment Functions
	Encoding/Decoding
	Type Nodes
	Make Process

	Generating Template Files - the Organizer
	Editing the Generated Files - the Organizer
	Encoder and Decoder function calls
	Decoding incoming signals

	Generating Template Files - Targeting Expert
	Editing the Generated Files - Targeting Expert
	Encoder and Decoder function calls
	Decoding incoming signals

	Compiling Your Application
	Using the edited files - Organizer
	Using the edited files - Targeting Expert

	Appendix A

