
July 2003 Telelo

Chapter
73 From Analysis to Design
This chapter describes the differences between analysis and design 
activities. The aspects to cover when you are moving from object 
models to SDL, are also described.
gic Tau 4.5 User’s Manual ,um-st1 3743



Chapter 73 From Analysis to Design
From Analysis to Design – Overview
The task of moving from the analysis model of a system to a design of 
the system is a creative step that involves many design decisions to be 
taken. The reason is that the purpose of the analysis model is to give an 
abstract understanding of the system to be built, and an understanding 
of the concepts that are needed in order to describe a solution of the 
problem the system is to solve. The purpose of the analysis model is not 
to give a precise definition of how the problem is to be solved or to de-
cide how the architecture and reuse issues are taken care of. These as-
pects are the purpose of the design activities. Both the system design 
and the object design are focussed on these type of questions that are 
necessary to solve in an efficient way in a development project.

The SOMT method introduces a specific concept to emphasize the task 
of moving from one model to another. It is particularly useful when 
moving from the analysis model, with its abstract view of the problem, 
to the design model, with its constructive precise definition of the sys-
tem that solves the problem. This is the Paste As concept that was intro-
duced in “Implinks and the Paste As Concept” on page 3666.

During design the idea is to encapsulate the creative design action taken 
when moving from the analysis model to the design model into one vis-
ible action. From a pragmatic point of view the designer just takes an 
analysis object and pastes it as a design object. However by doing this 
simple action the designer documents a number of the design decisions 
that are involved in the design activity.

One important aspect of the paste-as concept is the relation to traceabil-
ity links between different models. When performing the paste-as ac-

Figure 645: The Paste As concept

Analysis model
(object model)

Design model
(SDL)

Paste AsDoorControl

DoorControl
3744 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Analysis vs. Design
tion the designer not only creates design objects. He also creates a link 
between the analysis object and the design objects. This link defines in 
a precise and compact way the design decisions taken. The links are a 
vital part of the project documentation that is automatically created by 
the tools. The links can be inspected when understanding the system 
and can be used for a number of purposes, e.g.:

• Verification that all analysis concepts are implemented

• “What if” analysis, what happens if one analysis object is changed 
because of changed requirements

Analysis vs. Design
When comparing analysis to design there is always a question of where 
the borderline between the activities are. In practise the distinction be-
tween analysis and design is somewhat arbitrary. From a practical point 
of view the important decision is not to define exactly what to call a spe-
cific activity, but rather to decide where to document a decision: in the 
analysis documentation or in the design model. The most important in-
put to guide this decision is to consider the purpose of the different mod-
els. The analysis model has a focus on the architecture and most impor-
tant concepts in the system, abstracting away from implementation de-
tails. It is used to provide a means to understand the application as 
efficiently as possible. The SDL design, on the other hand, is a complete 
definition of all necessary details.

In the context of mapping object models to SDL in SOMT the trade-off 
between analysis and design, essentially is a matter of where to docu-
ment a decision:

• In the object model
• In the SDL model

As an example of this type of question that either can be described in 
the analysis model or in the design model, consider the issue of the tra-
versal direction of an association, i.e. is the association a one-way or 
two-way association.

If the choice is to be made in the object model a notation or convention 
is needed to make it possible to add the extra information. For the one-
way/two-way associations a possible notation could be to use an arrow 
head to denote the direction of the association. Note that this is only an 
example. SOMT does not recommend this convention.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3745



Chapter 73 From Analysis to Design
If the choice is to be documented in the SDL model there is a choice of 
how the designer expresses his/her choice:, either

• During the Paste-As
• Directly in the SDL model

The result is in both cases the same: The design choice is documented 
in the combination of the implink (that defines the relation to the anal-
ysis model) and in the SDL model (that defines the details of the design 
choice).

For the one-way/two-way association the Paste-As alternative would 
imply that the designer interactively entered information as a parameter 
to the Paste-As of a class to a SDL data type that defined weather an as-
sociation would be visible in the SDL data type. The association would 
only be visible if the direction was from the given class (or it was a two-
way association).

If the one-way/two-way design choice was to be expressed directly in 
SDL the designer would manually either include or not include the as-
sociation in the SDL data type corresponding to the class.

SOMT makes a trade-off between the different alternatives to accom-
plish an as smooth as possible transition from the analysis model to the 
design model. The SOMT mechanism is based on the following:

• The information that is naturally found in an analysis model is used 
as far as possible to deduce the mapping to SDL.

• The Paste-As functionality is defined to encapsulate the major de-
sign choices, like if an object will be mapped to a process type, 
struct data type or to some other concept. Paste-As also provides a 
predefined default choice for all other, minor design choices that 
have to be made. The intention is that the default settings should be 
useful in many cases, but in general some of the default choices will 
have to be modified during the design process.

• The designer will make the final design decisions directly in SDL. 
This implies that the SDL model is the artifact that documents most 
of the design choices.

The rationale behind this mechanism is mainly to be able to fulfil the 
objective of the analysis and design models as good as possible. The 
analysis model should define the high-level architecture and provide a 
sound basis for understanding the application as efficiently as possible. 
3746 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Active vs. Passive Objects
To facilitate this the analysis model should be as abstract as possible 
while still containing all relevant information. The implication is that 
design decisions that are not needed to understand the application as far 
as possible should be kept in the design model and that abstractions 
should be used as much as possible in the analysis.

Active vs. Passive Objects
One choice to be made when moving from analysis to design is to de-
cide whether an analysis object is to be implemented as an active object 
or a passive object. An active object is one that has its own thread of 
control and that can exhibit an autonomous behavior without any other 
object acting upon it. An active object can be viewed as executing in 
parallel with other active objects. In a distributed system the active ob-
jects may execute on different hardware. In other cases the scheduling 
mechanisms and operating system creates an abstract interface on 
which the active objects are executing. One important implication of 
this is that when two different active objects interact, e.g. when invok-
ing operations, this interaction is a communication between two parallel 
possibly distributed applications over some communication medium. 
The communication may be synchronous, e.g. in a client-server relation 
between objects; the client requests a service from the server and waits 
for a response from the server before continuing, or asynchronous, e.g. 
when peer entities are performing a common task using a specific pro-
tocol.

A passive object on the other hand does not have its own thread of con-
trol. It changes state only when it is being operated upon by another ob-
ject. Typically a passive object is mainly an information container used 
in the system to store information about the outside world and the inter-
nal state. If the information handled by a system is complex then an en-
tire structure of passive objects may be needed to model it. Often, par-
ticularly in distributed applications, there is a relation between the ac-
tive objects and the passive objects in the sense that an active object 
“owns” a passive object. The passive object is part of the same thread 
of control as the active object and it is localized in the same place in the 
system structure. An example of this might be an active data base server 
object that handles the control of the access and operations on a data 
base defined by a number of passive objects. This is very similar to the 
notion of “container classes” that are used as abstractions of the classes 
that they contain.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3747



Chapter 73 From Analysis to Design
Reuse Issues in the Design Models
Another aspect of objects is if a particular object class is subject to reuse 
or not. The reuse may be on different levels of ambition. The lowest lev-
el of reuse is when an object is reused within one subsystem in an appli-
cation. This has no major implication on how to package the object def-
inition. Since one subsystem is most often developed by a small group 
of individuals there are no special requirements on the packaging of the 
object. The next level is when an object class is found to be useful in 
different subsystems implemented by different development teams. 
This situation makes things a bit more complex, since the object defini-
tion now probably should be grouped together with other similar objects 
and put in a special package. This package is used by many of the de-
velopment groups and there may even be a special team devoted to the 
development of this support package. In any case it needs its own ver-
sion control, interface definitions etc.

The third level of reuse is when an object is found so general and useful 
that it can be used in more than one project for more than one applica-
tion. In this case there is obviously an even stronger need for a packag-
ing mechanism, since the object together with other related objects now 
must be seen as a separate product. 

Designing an object that is suitable for reuse requires special care: al-
ready early in the design it is necessary to identify that an object might 
be suitable for future reuse. Then the object needs to be specially de-
signed to make it as general (and reusable) as possible. Careful thinking 
is also required to identify the parts of the object that later might have 
to be redefined when reused. These parts have to be marked “virtual” in 
SDL. A rule of thumb is that it is worthwhile to design a reusable object 
when it is expected that the object can be reused at least three times.
3748 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Mapping Object Models to SDL
Mapping Object Models to SDL
When moving from an analysis view of an application to a design of the 
application, one of the major tasks is to define the relation between anal-
ysis concepts and design concepts. There are two different ways to view 
this: either the design is seen as an elaboration and refinement of the 
analysis model or the design can be seen as a transformation of the anal-
ysis model. In practice both viewpoints are useful. When creating the 
design a transformation is performed from the object model developed 
in the analysis activity to the SDL design models. The concepts in the 
object model are mapped to suitable concepts in the SDL domain. How-
ever, when this mapping has been done the analysis model is used as an 
abstract view of the application where only the details relevant from an 
analysis perspective is present and the design is viewed as an elabora-
tion and refinement of the analysis model.

When mapping object models to SDL there are several aspects to cover:

• Mapping the structure of object models to the structure of SDL

• Mapping the interfaces of objects to interface definitions in SDL

• Mapping the classes in the object model to SDL definitions

• Mapping existing state charts to SDL process definitions

The structure of an object model of interest for the mapping to SDL are 
of two kinds:

• The aggregation structure in the class diagrams

• The module structure that defines how the complete object model is 
divided into different modules

The aggregation structure in the object model is in general in SDL rep-
resented by the block hierarchy as described in “Architecture Defini-
tion” on page 3755. The actual mapping between the object model and 
SDL involves creating the block structure based on the aggregation 
structure and is further discussed in “Mapping Aggregations of Active 
Objects” on page 3777. 

The module structure of the analysis model is one of the inputs to the 
definition of the design module structure. In SDL the major code struc-
turing concept is the package and in general it is recommended to keep 
a simple mapping from the module structure of the analysis model to the 
packages in the SDL design. This is further discussed in “Design Mod-
ule Structure” on page 3757.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3749



Chapter 73 From Analysis to Design
In SDL the interfaces of processes, blocks etc. are separated from the 
description of behavior or implementation of the block/process. This 
implies that in general there are two different mappings from classes in 
the object model to SDL, one to the interface definition and one to the 
process/block definition. Interfaces in SDL are defined using signals or 
remote procedure calls as described in “Static Interface Definitions Us-
ing SDL” on page 3761 and the mapping to these concepts is outlined 
in “Mapping Object Models to SDL Interface Definitions” on page 
3762.

The mapping of the classes in the object model to the corresponding 
SDL behavior definition is an issue of object design and is depending 
on if the object is an active or passive object. Active objects are mapped 
to SDL processes (or process types) and passive objects to data types. 
These different mappings are discussed in “Mapping Object Models to 
SDL Design Models” on page 3774.

Summary
When moving from analysis to design, several decisions has to be made. 
These decisions should be documented and it should be possible to view 
the impact of such decisions. A way to achieve this is the Paste As func-
tionality that produces links that could be traversed in order to do “what 
if” analysis or to do consistency checks between requirements and de-
sign.

When we start to design from our analysis models, several possible 
SDL mappings exist for entities in the object model and the use cases. 
The important decisions that have to be made concern issues like reuse 
and determining if objects should have autonomous behavior or not (ac-
tive/passive objects).
3750 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003


	73 From Analysis to Design
	From Analysis to Design – Overview
	Analysis vs. Design
	Active vs. Passive Objects
	Reuse Issues in the Design Models
	Mapping Object Models to SDL
	Summary


