Chapter

63

July 2003

The ADT Library

Thischapter providesinformation about thelibrary of Abstract
Data Types (ADT) that comeswith the SDL suite. The data types
provide servicesthat are often needed in SDL systems.

The ADT library ismainly intended for usage together with the
Cadvanced/Cbasic SDL to C Compiler and the ordinary simula-
tion, validation, and applications ker nels. Some of the ADTs are,
however, also possible to use together with OSintegrations (Cad-
vanced) and with Cmicro. If thisisthe caseit isindicated in the de-
scription of the ADT.

Telelogic Tau 4.5 User’ sManual 3137

Chapter 63 The ADT Library

General

3138

The ADT library currently contains the following:
* A package, ctypes, that containsanumber of sortsand generators
to simplify an integration with C datatypes

* A datatype that provides handling of text files and I/O operations
as SDL operator calls

» A datatypeto generate random numbers from anumber of distribu-
tions

* A datatype that implements linked lists

» Datatypesfor byte, unsigned, long int and so on (provided only for
backward compatibility; use package ctypes instead)

» A datatypethat makesit possibleto define Pid literalsfor static pro-
cess instances as synonyms

* A datatypethat providesanumber of general purpose operatorsthat
may be used to reduce the complexity of an SDL system

These data types are delivered in source code. Feel free to change and
adapt these data types for your own needs.

Important!

There is no commitment from Telelogic to support the ADTs de-
scribed in this chapter. Telelogic has used the ADTs in internal
projects with successful results.

Thefilesthat are contained in the ADT library are located in the subdi-
rectory <installation directorys>/include/ADT. (In Windows,
replace / inthe path above with \)

Note: Conformance with earlier releases

The ADTsin Telelogic Tau 4.5 are backward compatible with the
ADTsin earlier releases, in the sense that you only need to include
the new 4.5 versions of the ADTsto obtain the same behavior.

However, it isimportant to remember that the ADTs and the code

generatorsyou use, must be from the same version of Telelogic Tau.

Telelogic Tau 4.5 User's Manual July 2003

I ntegration with C Data Types

Integration with C Data Types

The package ctypes presented below contains anumber of typesand
generatorsthat isintended to directly support C datatypesin SDL. The
package ctypes canalso beused in OSintegrationsand with Cmicro.
However, usage of C pointers (generator Ref) might cause problems,
due to potential memory leaks and potential memory access protection
between OS tasks.

Thefile ctypes.sdl isa SDL/PR version of this package suitable to
usein aninclude statement in an SDL/PR system, whilectypes. sunis
a SDL/GR version of the package.

Inan SDL/GR system it is only necessary to insert a use clause, i.e.

use ctypes;

at aproper place. The Organizer will then by itself includethe ctypes
package, for example when the system is to be analyzed. To use the
ctypes packagein an SDL/PR system the following structure should
be used.

/*#include ‘ctypes.sdl’*/

use ctypes;
system example;

endsystem;

The ctypes package consistsof thefollowing newtypes, syntypes, and

generators:
SDL C
syntype ShortInt short int, short
syntype LongInt long int, long

syntype UnsignedShortInt | unsigned short int,
unsigned short

syntype UnsignedInt unsigned int, unsigned

syntype UnsignedLongInt unsigned long int,
unsigned long

syntype Float float

newtype Charstar char *

July 2003 Telelogic Tau 4.5 User's Manual 3139

Chapter 63 The ADT Library

SDL C

newtype Voidstar void *
newtype Voidstarstar void **
generator Carray array type
generator Ref pointer type

All the newtypes and syntypes introduce type names for “ standard
types’ inC.

Some of the types and generators are briefly described below.

Charstar
In Charstar there is aliteral and some operators included:
LITERALS
Null;
OPERATORS
cstar2cstring : Charstar -> Charstring;
cstring2cstar : Charstring -> Charstar;
cstar2vstar : Charstar -> Voidstar;
vstar2cstar : Voidstar -> Charstar;

cstar2vstarstar : Charstar -> Voidstarstar;

Note that the operators cstar2cstring and cstring2cstar are not
available when using Cmicro.

The operators are al conversion routines to convert avalue from one
type to another. Note that Charstar and Charstring are not the same
typesevenif they both correspondsto char * in C. Note aso that freeing
alocated memory for Charstar isthe responsibility of the user, asthere
is not enough information to handle this automatically (as for Char-
string). For more information about how to free memory, see the Ref
generator below.

Voidstarstar

The Voidstarstar type has all the properties of the Ref generator (see be-
low). Thismeansthat *>, &, +,and - can be used and that the follow-
ing literal and operators are defined:

3140 Teldlogic Tau 4.5 User's Manual July 2003

I ntegration with C Data Types

July 2003

LITERALS
Null,
Alloc;
OPERATORS
vstarstar2vstar : Voidstarstar -> Voidstar;
vstar2vstarstar : Voidstar -> Voidstarstar;

Carray
The generator Carray has the following parameters:

GENERATOR Carray (CONSTANT Length, TYPE Itemsort)

where Length is an integer giving the number of elements of the array

(index from 0 to Length-1), and Itemsort givesthe type of each element
inthearray. A Carray in SDL istranslated to an array in C. Indexing a
Carray variablein SDL followsthe same rules as for ordinary SDL Ar-

rays.

Ref
The generator Ref has the following definition:

GENERATOR Ref (TYPE Itemsort)

LITERALS
Null,
Alloc;
OPERATORS
TESN : Ref, Itemsort -> Ref;
LS : Ref -> Itemsort;
"E" : Itemsort -> Ref;
make ! : Itemsort -> Ref;
free : in/out Ref;
"y : Ref, Integer -> Ref;

r-n : Ref, Integer -> Ref;
Ref2VStar : Ref -> Voidstar;
VStar2Ref : Voidstar -> Ref;
Ref2VStarStar : Ref /*#REF*/ -> Voidstarstar;
DEFAULT Null;
ENDGENERATOR Ref;

procedure Free; fpar p Voidstarstar;
external;

Instantiating the Ref generator creates a pointer type on the type given
as generator parameter. The literals and operators have the following
behavior:

* Null: The NULL vaue (= 0) for the pointer type. Thisisalso the de-
fault value for a pointer variable.

Telelogic Tau 4.5 User's Manual 3141

Chapter 63 The ADT Library

3142

Alloc: An operator without parameters that returns a new allocated
data area with the size of the Itemsort.

*>: Thisisthe extract! and modify! operator and can be used to ref-
erence the value referenced by apointer. If pisapointer type, p*>
isthevaluethe pointer refersto. Comparing with C, p* > isthe same
as +p. If pisapointer to astruct, thenp*>1a isthesameas (*p) .a.

&: The & operator corresponds to the C operator with the same
name. It can be used to take the address of a variable. Comparing
with C, &p and &(p) in SDL isthesameas &pin C.

make!: The make! operator, which asusual in SDL hasthe syntax
(. .),isashort hand for creating memory andinitializing it to agiven
value. The statement:

a := (. 2 .);
has the same meaning as
a := Alloc, a*> := 2;

free: The Free operator is used to deallocate memory referenced by
aRef pointer. If the component type contains automatically handled
pointers (Charstring, Octet_string, Bit_string, Bags, Own pointers,
and so on) the memory for these componentsiis also deall ocated.

+, -: These operator have the meaning of pointer arithmeticsin ex-
actly the sasme way asin C. For example, p+1 (if p is of a pointer
type) will add the Itemsort sizeto the value p. The + and - operators
are mostly used to step through an array in C.

ref2vstar, vstar 2ref, ref2vstar star: These operators are conver-
sion operators, that can be used to cast between pointers and void *
and void **.

procedure Free: NOTE: Old feature provided for backward com-
patibility. Use operator free above instead.

Thisexternal procedureis closely connected to the Ref generator. It
should be used to deallocate memory allocated by the Alloc opera-
tor. Free should be passed the pointer variable that references the

data areato be released. The variable should be casted to Voidstar-
star. After calling Free the pointer variable will have the value Null.

Example: Free (Ref2VStarStar (variable name))

Apart from the difficult syntax for calling the Free procedure it has
another problem, it does not free componentsinside the referenced
data area as the free operator above does.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

The SDL Analyzer can alow implicit type conversion of pointer data
types created by the Ref generator; see“Implicit Type Conversions’ on
page 134 in chapter 3, Using SDL Extensions, in the SDL Suite Method-

ology Guidelines.

Abstract Data Type for File Manipulations

and 1/O

July 2003

The ADT TextFile

Inthissectionan SDL abstract datatype, TextFile, isdiscussed where
file manipulations and 1/O operations areimplemented as operations on
the abstract datatype. ThisADT can be used alsoin OSintegrations and
in Cmicro if the target system has support for filesin C.

This data type, which you may include in any SDL system, makes it
possible to access, at the SDL level, a subset of the file and I/O opera-
tions provided by C.

Theimplementation of the operators are harmonized with the 1/O inthe
monitor, including the Simulator Graphical User interface. All terminal
1/O, for example, will belogged ontheinteraction log fileif the monitor
command Log-On is given.

The data type defines a“file” type and contains three groups of opera-
tions:

1. Operationsto open and close files
2. Operations to write information onto afile
3. Operations to read information from afile.

The operations may handle I/O operations both on files and on the ter-
mina (file stdin and stdout in C).

Note:
This datatype is not intended to be used in the SDL Validator!

Purpose

The TextFile datatype supplies basic file and 1/0O operations as ab-
stract data type operationsin SDL, whereby 1/O may be performed
within the SDL language. The operations may handle I/O both on the

Telelogic Tau 4.5 User's Manual 3143

Chapter 63 The ADT Library

terminal and on files and are harmonized with the I/O from the monitor,
from the trace functions, and from the functions handling dynamic er-
rors.

To make the data type available you include the file containing the def-
inition with an analyzer include in an appropriate text symbol:

Example 514: Including an ADT File

/*#include 'file.pr’ */

Remember that all file systemsare operating system specific. Any rules
in your file system apply.

Summary of Operators
The following literals are available in the data type FileName:

SYNTYPE FileName = Charstring

ENDSYNTYPE;

SYNONYM NULL FileName = ‘NULL’;
SYNONYM stdin FileName = ‘stdin’;
SYNONYM stdout FileName = ‘stdout’;
SYNONYM stderr FileName = ‘stderr’;

The following literals and operators are available in the data type
TextFile:

NEWTYPE TextFile
LITERALS
NULL, stdin, stdout, stderr;

OPERATORS
GetAndOpenR : FileName -> TextFile;
GetAndOpenW : FileName -> TextFile;
OpenR : FileName -> TextFile;
OpenW : FileName -> TextFile;
OpenA : FileName -> TextFile;
Close : TextFile -> TextFile;
Flush : TextFile -> TextFile;
IsOpened : TextFile -> Boolean;
AtEOF : TextFile -> Boolean;
AtLastChar : TextFile -> Boolean;
PutReal : TextFile, Real -> TextFile;
PutTime : TextFile, Time -> TextFile;
PutDuration : TextFile, Duration -> TextFile;
PutPId : TextFile, PId -> TextFile;
PutInteger : TextFile, Integer -> TextFile;
PutBoolean : TextFile, Boolean -> TextFile;

3144 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

PutCharacter TextFile, Character -> TextFile;
PutCharstring TextFile, Charstring -> TextFile;
PutString TextFile, Charstring -> TextFile;
PutLine TextFile, Charstring -> TextFile;
PutNewLine TextFile -> TextFile;

AV VA TextFile, Real -> TextFile;

Ay TextFile, Time -> TextFile;

AYVAd TextFile, Duration -> TextFile;
Ay TextFile, Integer -> TextFile;
Ay TextFile, Charstring -> TextFile;
Ay TextFile, Boolean -> TextFile;

w/ TextFile, PId -> TextFile;

wy TextFile, Character -> TextFile;
GetReal TextFile, Charstring -> Real;
GetTime TextFile, Charstring -> Time;
GetDuration TextFile, Charstring -> Duration;
GetPId TextFile, Charstring -> PId;
GetInteger TextFile, Charstring -> Integer;
GetBoolean TextFile, Charstring -> Boolean;
GetCharacter TextFile, Charstring -> Character;
GetCharstring TextFile, Charstring -> Charstring;
GetString TextFile, Charstring -> Charstring;
GetLine TextFile, Charstring -> Charstring;
GetSeed TextFile, Charstring -> Integer;
GetReal TextFile -> Real;

GetTime TextFile -> Time;

GetDuration TextFile -> Duration;

GetPId TextFile -> PId;

GetInteger TextFile -> Integer;

GetBoolean TextFile -> Boolean;

GetCharacter TextFile -> Character;
GetCharstring TextFile -> Charstring;

GetString TextFile -> Charstring;

GetLine TextFile -> Charstring;

GetSeed TextFile -> Integer;

ENDNEWTYPE TextFile;

The operators may be divided into three groups with different purpose:

1. Operatorsthat, together with theliterals, are used for handling files.
2. Operators suited for writing information to files.
3. Operators intended for reading information from files.

The next three subsections provide the necessary information for using
these operators. The datatypeitself will be discussed together with the
operators for handling files.

Telelogic Tau 4.5 User's Manual 3145

Chapter 63 The ADT Library

3146

File Handling Operators

First in this subsection each operator and literal will be discussed in de-
tail and then some typical applications of the operators will be present-
ed.

Caution!

The operators GetAndOpenR and GetAndOpenW do not work
with the Application library. The operators GetPld and PutPld (and
the // operator to write Plds) can be used with the Application li-
brary, but they will use a different output format.

Operator Behavior

ThetypeTextFile isimplemented using theordinary Cfiletype FILE.
A TextFile iSapointer to arFILE.

typedef FILE * TextFile;
Theliteral nurL representsanull valuefor files. Thisliteral istrandated
to TextFileNull () in the generated C code by an appropriate #NAME
directive and is then implemented using the macro:

##define TextFileNull () (TextFile)O
All variables of thetype TextFile will havethisvalue as default value.

Theliterals stdin and stdout represent the standard files stdin and
stdout in C, which arethefilesused in C for /O to the terminal. The
file stdin isused for reading information from the keyboard, while
stdout isused for writing information on the screen.

The standard operators assignment and test for equality isimplemented
in such away that a: -8 means that now A refersto the samefile as B,
while a=B testsif A and B refer to the samefile.

FileName

The datatype rileName isused to represent file namesin the operators
GetAndOpenR, Get AndOpenW, OpenR, OpenW, and opena. It has al
Charstring literals and the special synonyms NULL, stdin (input from
the keyboard), stdout (output to the screen), and stderr (output to the
screen from which the SDL suite was started). AS FileName isasyn-

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

type of Charstring, the usual Charstring operators are defined for this
type.

Caution!

The synonyms stdin, stdout, stderr in some circumstances hide
the literals with the same names according to SDL scope rules. If
that isthe case, please insert aqualifier <<type textfile>> be
fore theliteral name.

GetAndOpenR — GetAndOpenW

The operators et Andopenr and Get Andopenw are used to open afile
with aname prompted for on theterminal. cet andopenr opensthefile
for read, while cetandopenw opens the file for write. The operators
take the prompt as parameter (type charstring), print the prompt on the
screen (on stdout), and read afile name from the keyboard (from
stdin). An attempt is then made to open afile with that name. If the
open operation was successful, areference to thefileisreturned by the
GetAndOpenR Of Get AndOpenW Operator, otherwise NULL is returned.
After asuccessful open operation you may use the file for reading or
writing.

If you type <Returns, - or thefile name stdin at the promptin
GetAndopenR areferenceto stdin is returned by the operator.
GetAndopenw Will, inthe sameway, return areferenceto stdout if the
prompt is answered by <Returns, - or thefile name stdout.

Note:
To work properly in the Smulator Graphical User Interface, the
prompt string should be terminated with: “: “, i.e. colon space.

OpenR — OpenW — OpenA

The operators openRr, openw, and opena are used to open afilewith a
file name passed as parameter. openr opens the file for read, while
openw opens thefile for write and opena opensthefile for append. An
attempt is made to open afile with the name given as aparameter. If the
open operation was successful, areference to thefileisreturned by the
OpenR, OpenW, OF OpenA Operator, otherwise NULL is returned. After a
successful open operation you may read, write or append on thefile.

Telelogic Tau 4.5 User's Manual 3147

Chapter 63 The ADT Library

3148

Close

The operator close isused to closethefile passed as parameter. close
alwaysreturnsthevaluenurr. Thisoperator should be used on each file
opened for write after all information iswritten to thefileto ensure that
any possibly buffered datais flushed.

Note:

Always close afile variable before assigning it to a new file, other-
wise data may be lost.

Flush

Output to filesis usually buffered, and is therefore not immediately
written on the physical output device. The operator F1ush forces the
output buffer of the file that is passed as parameter to be written on the
physical output device. It is equivaent to C function ££1ush.

IsOpened

The operator I1sopened may be used to determineif a TextFileis
open or not. It may, for example, be used to test the result of the open
operation discussed above. Thetest 1sopened (F) isequivaent to

F /= NULL.

AtEOF

The operator AtEof may be used to determineif aTextFile has
reached the end of file or not. This operator could be used in order to
determine when to stop reading input from afile. Thetest atrof (F) is
equivalent to feof (F).

Note:

atEof first becomestrue when attempts are made to read behind the
end-of-file. Operator At Last Char becomestrue when the last char-
acter of the file has been read, and is usually more useful than
AtEof.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

AtLastChar

Theoperator atLastChar may beusedtodetermineif aTextFile has
reached the end of file or not. This operator is useful in order to deter-
mine when to stop reading input from afile. Thetest AtLastChar (F)
returns true if there are no more charactersto be read from thefile.

Examples of Use

Threetypical situations when you want to write information are easily
identified:

1. Theinformation isto be printed on the screen.
2. Theinformation isto be printed on afile with a given name.

3. Youwant to determine at run-time where the information is to be
printed.

Example 515: ADT for File I/O, Print to Screen

If theinformation isto be printed on the screen, you may use the fol-
lowing structure:

DCL F TextFile;
TASK F := stdout // ’'example’;

Declare avariable of type TextFile and assign it the value stdout.

Y ou may then useit in the write operators discussed under “Write Op-
erators’ on page 3151.

Example 516: ADT for File I/O, Print to File

If theinformation isto beprinted on afilewith agiven name, you may
use the following structure:

DCL F TextFile;

TASK F := OpenW(’filename’) ;

TASK F := F // ’'example’;
Thedifference from the aboveisthat the operator openw isused to open
afilewith the specified name. This outline may be complemented with
atest if the openw operation was successful or not.

Telelogic Tau 4.5 User's Manual 3149

Chapter 63 The ADT Library

3150

Example 517: ADT for File I/O, Accessing Text File

If you want to be able to determine at run-time wher e the informa-
tion should be printed, you should define aTextFile asin the exam-
ples above, and then use the following structure.

F:=
GetAndOpenW
(File:’)

k

IsOpened(F)

| (FALSE)

F:=
etAndOpenW

(TRUE) G
(lllegal name. File:’)

F:=Put...

Figure 553: Accessing a TextFile

If you answer the question by hitting <Return> or by typing stdout,
theinformationwill be printed on screen (stdout). If you typethe name
of afile, the information will be printed on that file.

If you want to open thefilefor read instead of write, you may use almost
identical structures.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

Write Operators

Operator Behavior

Thewrite operators putReal, PutTime, PutDuration, PutInteger,
PutBoolean, PutCharacter, and PutCharstring al take a
TextFile and avalue of the appropriate type as parameters. The oper-
ators print the value passed as parameter on the file referenced by the
TextFile parameter and thenreturnthe TextFile. The Put* operators
will print the valuesin the same format as the monitor uses for the com-
mand Examine-V ariable, and will append a space after each printed val-
ue.

The operator Putstring takesaTextFile and a Charstring param-
eter and printsthe string onthe TextFile. PutString printsthe string
asaC string, not using the format for SDL Charstring. This means that
no’isprinted. putstring returnsthe TextFile given as parameter as
result.

The infix write operator ~// takes as parametersaTextFile and a
valueof typeBoolean, Charstring, Integer, PId, Real, Time,
Or Duration. TextF // Vval printsthevalue ‘val’ tothe TextFile
referenced by *TextF’, and returnsvalue‘ TextF’ . Character Strings
are printed without enclosing *’’. All // operators except the one for
Charstring append a spaceto the file, after the valueiswritten.

Theinfix write operator »+~ takes as parametersaTextFile and a
Character. “+” behavesjust as ~//~, but it hasits special namein or-
der to avoid type conflicts with charstring.

The operator putNewLine takesaTextFile asparameter, printsacar-
riage return (actually a *\n”) on thisfile, and returnsthe Textrile as
operator result.

Thedifferent put operatorsareequivalenttothe// operators, and they
are mainly present for backward compatibility reasons.

Thereisafunction named xputvalue intheimplementation of the data
type TextFile. Thisfunction may print avalue of any typethat may be
handled by the monitor system, but may only be accessed from in-line
C code and not from SDL. A detailed description of the xputvalue
function may befound under “ A ccessing the Operatorsfrom C” on page
3153.

Telelogic Tau 4.5 User's Manual 3151

Chapter 63 The ADT Library

3152

Example 518: ADT for File I/O, Print to File

To print aline according to the following example, where 137 isthe val-
ue of the variable Noof Jobs:

Number of jobs: 137 Current time: 137.0000

Y ou could usethefollowing statements, assuming that the TextFile F
is already opened:

TASK

F := F // ‘Number of jobs: ‘' // NoOfJobs;
TASK

F := F // ‘current time: ‘' // Now;
TASK

F := PutNewLine (F) ;

Read Operators

Operator Behavior

The read operators GetReal, GetTime, GetDuration, GetInteger,
GetBoolean, GetCharacter, GetCharstring, and Getseed are used
to read values of the various sorts.

The operator Getseed isused to read appropriate valuesto initialize
random number generators (odd integersin the range 1 to 32767).

There are two versions of each cet operator: one that only takes as pa-
rameters a TextFile, and the other that takes as parameters a
TextFile and acharstring Whichisused as prompt. All cet opera-
tors behave differently depending on if the value should be read from
theterminal (stdin) or from afile.

If the value should be read from the terminal, the cet operators with
the prompt parameter may be used. Thisprompt isprinted onthe screen,
and then an attempt to read avalue of the current typeis made. If acet
operator with only the TextFile parameter isused, adefault promptis
used, that depends on the type that isto be input. If the operation is suc-
cessful, the read value is returned as a result, otherwise the message
“Illegal value” isprinted and the user isgiven anew chanceto type
avalue.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

Note:
To work properly in the Smulator Graphical User Interface, the
prompt string should be terminated with: “: “, i.e. colon space.

If the value should beread from afile, it is recommended to use the
Get operators without the prompt parameter, asit is not used. It isas-
sumed that avalue of the correct type will be found.

There are several cet operators for reading character strings:

GetString reads a sequence of characters until the first white space
character, and isequivalent to fscanf (£, “%$s”).

GetLine reads asequence of charactersuntil the end of lineisreached.
It isequivalent to fgets, but the end-of-line character will not be part
of the string.

GetCharstring reads aseguence of characterson asingle linethat is
enclosed by single quotes () . Thisoperator ismainly present for back-
ward compatibility reasons.

Thereisafunction named xgetvalue intheimplementation of the data
typeTextFile, which may read avaue of any typethat may be handled
by the monitor system. Thisfunction can only be accessed fromin-line
C code and not from SDL. A detailed description of the xGetvalue
function may befound under “ A ccessing the Operatorsfrom C” on page
3153.

Example 519: ADT for File I/0, Read from File

TASK
Mean := GetReal (F),
A(1) = GetReal (F),
A(2) := GetReal (F),
A(3) = GetReal (F);

Accessing the Operators from C

In some circumstances it may be easier to use C code (in #cope direc-
tives) rather than SDL to implement an algorithm. SDL implementa

tions for linear a gorithms sometimes become unnecessarily large and
complex, as SDL for example lacks aloop concept. Consider the SDL

Telelogic Tau 4.5 User's Manual 3153

Chapter 63 The ADT Library

graph in Figure 553 on page 3150. This graph could be replaced by a
Task with the following contents:

'Open file F’' /*#CODE

#(F) = GetAndOpenW ("LFile : ");
while (! IsOpened (#(F)))
#(F) = GetAndOpenW ("LIllegal name. File : "); */

which is more compact and gives a better overview at the SDL level.

(F) isan SDL directivetelling the SDL to C compiler to translate the
SDL variable r tothe name it will receive in the generated C code.

To simplify the use of in-line C code, #naME directives are introduced
on al identifiers defined in this data type. The same names are used in
Casin SDL.

Note:
Upper and lower case letters are significant in C (but not in SDL).

Note also the additional L in the Charstring literals, for example
“LIllegal name. File : ™. Thisfirst character isused inthe
implementation of the SDL sort Charstring and should always be L
in acharstring literal.

From in-line C, two functions xGetvalue and xPutvalue are aso
availableto read and write values of any type. These functions have the
following prototypes:

extern void xGetValue (

TextFile F,
SDL_Charstring Prompt,
xSortIdNode SortId,

void * Result,

char * FunctionName) ;

extern void xPutValue (

TextFile F,
xSortIdNode SortId,
void * Value,
char * FunctionName) ;
Parameter I nterpretation
TextFile F Thefile to read from or to print to.
In xGetValue: Isused as prompt in exactly the sameway as
SDL_Charstring Prompt | for the ordinary cet operators.

3154 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor File Manipulationsand I/O

July 2003

Parameter

Interpretation

xSortIdNode SortId A reference to the x1dnode that represents

the SDL sort to be read or printed

For the predefined SDL sortsyou may use
variables named xsrtN_SDL_Real,
xSrtN_SDL_Integer, and SO On, as param-
eter.

For user-defined sorts, you may use simi-
lar variables named ySrtN_# (SortName),
where sortName should be replaced by the
sort name.

void * Result The address to the variable where the result
void * Value should be stored, or the address to the vari-

able that should be printed.

char * FunctionName A string specifying the name of an appropri-

ate function. This name will be given if an
error is detected during reading or printing.

Note:

xGetValue and xPutValue will not wor k together with the Applica-
tion library.

To handle, for example, 1/0 of an SDL struct, theideas presented bel ow
may be used.

Example 520: ADT for File I/0O of an SDL Struct

NEWTYPE SName STRUCT

a,

b Integer;

ENDNEWTYPE ;

DCL

FIn, FOut TextFile,
SVar SName;

TASK

'Put SVar on FOut’ /*#CODE

xPutValue (#(FOut), ySrtN_# (SName),
& (#(Svar)), "PutSName"); */;

TASK ’'Get SVar from FIn’ /*#CODE
xGetValue(#(FIn), "Value : ",
ySrtN # (SName) , & (#(SVar)), "LGetSName"); */;

Telelogic Tau 4.5 User's Manual 3155

Chapter 63 The ADT Library

Abstract Data Type for Random Numbers

3156

One important feature, especially in performance simulations, is the
possibility to generate random numbers according to anumber of distri-
butions, like for example the negative exponential distribution and the
Erlang distribution. It is also important that the random number se-
guences are reproducible, to be able to run a slightly modified version
of asimulation with the same sequence of random numbers.

In this section an SDL abstract data type according to the previous dis-
cussion is presented. This data type may be included in any SDL sys-
tem. ThisADT can also be used in OSintegrationsand in Cmicro. Itis,
however, necessary to check that the typedef for the RandomControl,
see below, refers to an unsigned 32-hit type.

Purpose

The SDL rRandomControl datatype allowsyou to generate pseudo-ran-
dom numbers. A number of distributions are supported, including the
negative exponential distribution and the Erlang distribution. In perfor-
mance simulations, which isthe main application areafor thisdatatype,
themost important need for random numbersisin connection with Time
and buration values. Itis, for example, interesting to draw inter- arriv-
a timesin job generators, and service lengths in servers. Distributions
returning positive real numbers are thus most meaningful.

The basic mechanism behind pseudo-random number generation is as
follows. A sequence of bit-patterns is defined using a formula of type:

Seqn+1 = f(&eqn)

The function f should be such that the sequence of elements seen as
numbers should be “random”, and the number of element in the se-
guence, before it starts to repeat itself, should be as large as possible.

To obtain a new random number is thus atwo step process:

1. Compute and store a new bit-pattern from the old bit-pattern
2. Interpret the new bit-pattern as a number, which is returned as the
new random number.

In this data type, 32 bit patterns, implemented in C using the type un-
signed long, are used together with the formula:

Seq,,; = ((216+3) - Seq,)mod 2%

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Type for Random Numbers

July 2003

The result returned by the operator Random, which is the basic random
number generator, isthis bit-pattern seen as a number between O and 1,
and expressed as afloat.

The datatype Randomcontrol may beincluded in any SDL system us-
ing an analyzer include statement, where the file containing the defini-
tion of the datatypeisincluded. Example:

/*#include ’'random.pr’ */
Asthe C standard functions 1og and exp areused inthe random. pr fileg,
it is necessary to link the application together with the library for math
functions, i.e. to have -1m in the link operation in the makefile. See
“Makefile Options’ on page 122 in chapter 2, The Organizer. To usethe
entry -1min thelink list seemsto be afairly standard way to find the
library for math functions. If this does not work, or you want more de-
tails, please see the documentation for your C compiler.

Available Operators

The type Randomcontrol, introduced by this datatype, isin C imple-
mented as the address of an unsigned long.

typedef unsigned long * RandomControl;

Note that you have check that unsigned long isa 32 bit type, other-
wise you have to change the typedef.

The reason for passing the address to the bit-pattern (that isto the un-
signed long), is that this bit-pattern has to be updated by the random
functions.

Below the operators provided in this data type are listed. There are, for
many of the operators, several versionswith different setsof parameters
and/or result types to support different usage of the operator.

Random : RandomControl -> Real;
Random : RandomControl -> Duration;
Random : RandomControl -> Time;

Erlang : Real, Integer, RandomControl -> Real;

Erlang : Real, Integer, RandomControl -> Duration;
Erlang : Real, Integer, RandomControl -> Time;

Erlang : Duration, Integer, RandomControl -> Real;
Erlang : Duration, Integer, RandomControl -> Duration;
Erlang : Duration, Integer, RandomControl -> Time;
Erlang : Time, Integer, RandomControl -> Real;

Erlang : Time, Integer, RandomControl -> Duration;
Erlang : Time, Integer, RandomControl -> Time;

Telelogic Tau 4.5 User's Manual 3157

Chapter 63 The ADT Library

HyperExp2 :
Real, Real,
HyperExp2
Real, Real,
HyperExp2 :
Real, Real,
HyperExp2
Duration,
HyperExp2
Duration,
HyperExp2
Duration,
HyperExp2
Time, Time,
HyperExp2
Time, Time,
HyperExp2
Time, Time,

Real,
Real,
Real,

Duration, Real,

Duration, Real,

Duration, Real,

Real,
Real,
Real,

RandomControl
Real, RandomControl
Real, RandomControl
Duration,
Duration,
Duration,
Time, RandomControl
Time, RandomControl
Time, RandomControl

NegExp Real,
NegExp
NegExp
NegExp
NegExp
NegExp
NegExp
NegExp
NegExp

Uniform
Uniform
Uniform
Uniform
Uniform

Real,
Real, Real,
Real, Real,
Duration, Duration,

Real,

Duration, Duration, RandomControl -> Duration;
-> Time;

Duration, Duration,
Time, Time,
Time, Time,
Time, Time,

Uniform
Uniform
Uniform
Uniform
Draw Real, RandomControl
Geometric
Geometric
Geometric
Geometric
Geometric
Geometric
Geometric
Geometric
Geometric

Real,
Real,
Real,
Duration,
Duration,
Duration,
Time,
Time,
Time,

RandomControl
RandomControl

Poisson
Poisson

Real,
Real,

3158

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl

RandomControl
Rando mControl
RandomControl

RandomControl
RandomControl
RandomControl

RandomControl
RandomControl
RandomControl

RandomControl
RandomControl
RandomControl
RandomControl
RandomControl
RandomControl
RandomControl
RandomControl
RandomControl

-> Real;
-> Duration;

-> Time;

-> Real;
-> Duration;
-> Time;

-> Real;

-> Duration;

-> Time;

-> Real;

-> Duration;
-> Time;

-> Real;

-> Duration;

-> Time;

-> Real;

-> Time;
RandomControl

RandomControl
-> Real;

-> Time;
-> Boolean;

-> Integer;

-> Duration;

-> Time;

-> Integer;

-> Time;
-> Integer;
-> Duration;
-> Time;

-> Integer;
-> Duration;

Telelogic Tau 4.5 User's Manual

-> Duration;

-> Duration;

-> Duration;

-> Real;
-> Duration;

-> Time;

-> Real;

July 2003

Abstract Data Type for Random Numbers

July 2003

Poisson : Real, RandomControl -> Time;

Poisson : Duration, RandomControl -> Integer;
Poisson : Duration, RandomControl -> Duration;
Poisson : Duration, RandomControl -> Time;
Poisson : Time, RandomControl -> Integer;
Poisson : Time, RandomControl -> Duration;
Poisson : Time, RandomControl -> Time;

RandInt : Integer, Integer, RandomControl -> Integer;
RandInt : Integer, Integer, RandomControl -> Duration;
RandInt : Integer, Integer, RandomControl -> Time;
DefineSeed : Integer -> RandomControl;

GetSeed : Charstring -> Integer;

Seed : RandomControl -> Integer;

Random (RandomControl)

The operator Random is the basic random generator and is called by all
the other operators. Random uses the formula

Seq, .1 = ((26+3) - Seq,)mod 2%2

to compute the next value stored in the parameter of type
RandomControl. Theresult from Random isarea random number in
theinterval 0.0 < Value< 1.0.

Erlang (Mean, N, RandomControl)

The operator Erlang provides random numbers from the Erlang-N dis-
tribution with mean mean. The first parameter Mean should be > 0.0,
and the second parameter N should be > 0.

HyperExp2 (Meanl, Mean2, Alpha, RandomControl)

The HyperExp2 operator provides random numbers from the hyperex-
ponentia distribution. With probability a1pha it return arandom num-
ber from the negative exponential distribution with mean Mmean1, and
with the probability 1-a1pha it returnsarandom number from the neg-
ative exponentia distribution with mean Mean2. Mean1 and Mean2
should be> 0.0, and a1pha should beintherange 0.0 <= alpha <= 1.0.

NegExp (Mean, RandomControl)

The operator NegExp provides random numbers from the negative ex-
ponentia distribution with mean Mean. Mean should be > 0.0.

Telelogic Tau 4.5 User's Manual 3159

Chapter 63 The ADT Library

3160

Uniform (Low, High, RandomControl)

The operator uniform iSgiven arange Low t0 High and returns a uni-
formly distributed random number in this range.
Low should be <= High.

Draw (Alpha, RandomControl)

The praw operator returns true with the probability a1pha and false
with the probability 1-2a1pha. a1pha should be in the range
0.0 <= alpha <=1.0.

Geometric (p, RandomControl)

The operator Geomet ric returns an integer random number according
to the geometric distribution with the mean p/(1-p). The parameter p
should be 0.0 <= p< 1.0.

Caution!

Since the range of feasible samples from the distribution isinfinite
and the result type is integer, integer overflow may occur.

Poisson (m, RandomControl)

The operator Poisson returns an integer random number according to
the Poisson distribution with mean m. The parameter m should be >=0.0.

Caution!

Since the range of feasible samples from the distribution isinfinite
and the result type is integer, integer overflow may occur.

RandInt (Low, High, RandomControl)

This operator RandInt returns one of the values Low, Low+1,. . .,
High-1, High, with equa probability. Low should be <= High.

DefineSeed (Integer) -> RandomControl

Each Randomcontrol variable, which is used as a control variable for
arandom generator, hasto beinitialized correctly so thefirst bit-pattern
used by the basic random function isalegal pattern. Thispefineseed

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Type for Random Numbers

July 2003

operator takes an integer parameter, which should be an odd valueinthe
range 1 to 32767, and creates alegal bit-pattern. Thisfirst valueis usu-
ally referred to as the seed for the random generator. Using the same
seed value, the same random number sequence is generated, which
means that the random number sequences are reproducible.

Seed (RandomControl) -> Integer

The seed operator returns random numbers that are acceptable as pa-
rametersto the operator befineseed. If many Randomcontrol vari-
ables are to beinitialized, the seed operator may be useful.

GetSeed (Prompt) -> Integer

The getseed operator, which isimplemented in the data type
TextFile (See“The ADT TextFile” on page3143), may be usedtoread
an integer value that is acceptable as parameter to the befineseed Op-
erator.

Using the Data Type
To use the abstract data type for random number generation you must:
* Include the definition of the data type using an analyzer include.

Usualy it is appropriate to include the datatype in atext symbol in
the system diagram.

* Defineasuitable number of Randomcontrol variables, onefor each
random number sequence that is to be used.

* Initialize the Randomcontrol variables, either in the variable dec-
laration or in a Task often placed in the start transition of the pro-
cess. The operator befineseed should be used to initialize a
RandomControl variable.

» Usetherandomcontrol variablesin appropriate random number
operators.

Note:

SDL variables can only be declared in processes and will be local to
the process instances.

Telelogic Tau 4.5 User's Manual 3161

Chapter 63 The ADT Library

To have global rRandomcontrol variables you may, however, define
synonyms of type RandomControl and use them in random generator
operators.

Example 521: Using RandomControl, DefineSeed

SYNONYM Seedl RandomControl =
DefineSeed (GetSeed (stdin, ’'Seedl : ’));

TASK Delay := NegExp (Meanl, Seedl) ;

Thisiscorrect according to SDL as operators only have In parameters
and therefore expressions are allowed as actual parameters. InCitis

also an 1N parameter and cannot be changed. But asaRandomControl
valueisan addressit is possible to change the contents in that address.

The SDL to C Compiler will, for synonyms that cannot be computed at
generationtime, alocateavariable and initialize it according to the syn-
onym definition at start-up time. Notethat thiswill be performed before
any transitions have been executed.

A typical application of RandomControl synonyms are together with
the seed operator. The seed operator isused to generate val ues suitable
to initialize Randomcontrol variables with.

Example 522: Using RandomControl, Seed

SYNONYM BasicSeed RandomControl =
DefineSeed (GetSeed (stdin, ’'Seed : ’'));

DCL S1 RandomControl :=
DefineSeed (Seed(BasicSeed)) ;

DCL S2 RandomControl :=
DefineSeed (Seed(BasicSeed)) ;

Thevariety of operators with the same name makesit possibleto direct-
ly use operators in many more situations. Thisis called overloading of
operators. If, for example, there were only the NegExp version:

NegExp : Real, RandomControl -> Real;

then explicit conversion operators would have been necessary to draw,
for example, aburation value from the negative exponentia distribu-
tion. The codeto draw apuration value would then be something like:

RealToDuration (NegExp (Mean, Seq))

3162 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Type for Random Numbers

July 2003

We have instead introduced severa operators with the same name and
purpose, but with different combinations of parameter types and result
type. So for the NegExp operator discussed above, thereisalso aver-
sion:

NegExp : Real, RandomControl -> Duration;
which is exactly what we wanted.

Thereis, however, apriceto be paid for having overloaded operators. It
must be possible for the SDL Analyzer to tell which operator that is
used inaparticular situation. It then usesall avail ableinformation about
the parameters and what the result is used for. Consider Example 523
below.

Example 523: Overloaded Operator

TIMER T;
DCL
Mean, Rand Real,
D Duration,
Seq RandomControl :=
DefineSeed (GetSeed (’'Seed : '));

TASK Rand := NegExp (Mean, Seq) ;
TASK D := NegExp (Mean, Seq) ;
TASK D := NegExp (TYPE Real 1.5, Seq);

DECISION NegExp (Mean, Seq) >
TYPE Duration 10.0;
(true) ..
ELSE :
ENDDECISION;
SET (Now + NegExp (Mean, Seq), T);

* Thefirst two applications of NegExp are no problem, as the param-
eter type is given by the type of the Mean variable, and the result
type is given by the variable that result is assigned to.

* Inthethird NegExp call, the value 1.5 has to be given a qualifier,
that is, TYPE Real, astheliteral 1.5 may be of type real,
Duration, Of Time.

* Inthefourth exampleit isthe result type that cannot be determined
if theliteral 10.0 was not given with a qualifier.

* Inthefifth examplethe only + operator that takes Time as left pa
rameter and returns Time (sSET should have aTime value asfirst pa-
rameter) is:

Telelogic Tau 4.5 User's Manual 3163

Chapter 63 The ADT Library

3164

"y . Time, Duration -> Time;

defined in the sort Time. So, both the type for the parameter and the
result are possible to determine for the NegExp operator in this ex-
ample.

Most of these problems can be avoided by using synoNyMs or variables
instead of literal values. Thisisin most cases a better solution than to
introduce qualifiers.

Example 524: Using SYNONYMS
If, for example, the synonymes:

SYNONYM MeanValue Real 1.5;
SYNONYM Limit Duration 10.0;

were defined, the third and fourth NegExp call would cause no problem:

TASK D := NegExp (MeanValue, Seq) ;
DECISION NegExp (Mean, Seq) > Limit;
(true) :
ELSE :
ENDDECISION;

Trace Printouts

Trace printouts are available for the functions in this abstract datatype.
By assigning atrace value greater or equal to nine (9) using the monitor
command Set-Trace, each call to an operator in this data type causes a
printout of the name of the operator.

Note:

Each operator returning arandom number will call the basic opera-
tor Random at least once.

Accessing the Operators from C

The operator for random number generation may be used directly in C
by using the name given in the appropriate #naMe directive. Please ook
a the random. pr file for the #NamME directives.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

Abstract Data Types for List Processing

July 2003

The abstract data types defined in this “package” are intended for pro-

cessing of linked lists. Linked lists are commonly appearing in applica-
tions and are one of the basic data structures in computer science. With
these data types, you can concentrate on using the lists and do not have
to worry about the implementation details, as al list manipulations are
hidden in operators in the data types.

Note:

Thisdatatypeisnot implemented in away that makesit possibleto
be used in the SDL Validator. It can be used in OS integrations and
with Cmicro, but it isnot recommended, dueto the risk for memory
leaks.

Purpose

Definitions

A queueisalist in which the members are ordered. The ordering is en-
tirely performed by the user. The available operations make it possible
to access members of the queue and insert members into or remove
members from any position. Furthermore, the operators suppress the
implementation aspects. That is, the fact that the queue isimplemented
asadoubly linked list with aqueue head. The operatorsalso prevent the
unwary user from trying to access, for instance, the successor of thelast
member or the predecessor of the first member.

The entities which may be members of a queue are called object in-
stances. An object instance is a passive entity containing user defined
information. Thisinformation is described in the object description.

In SDL these definitions are implemented using sorts called Queue,
ObjectInstance, and ObjectDescr, Where objectbescr should be
defined by the user. objectDescr should havethestructuregiveninthe
example below (Example 525).

The data types for list processing may be included in any SDL system
using Analyzer #include statements, where the files containing the
definitions of the data types are included. The definitions should be
placed in the order given in the example below:

Telelogic Tau 4.5 User's Manual 3165

Chapter 63 The ADT Library

3166

Example 525: Including ADT for List Processing

/*#include ’'listl.pr’'*/
NEWTYPE ObjectDescr /*#NAME ’‘ObjectDescr’*/
STRUCT
SysVar SysTypeObject;
/* other user defined components */
ENDNEWTYPE;
/*#include ’'list2.pr’'*/

Thefilelist1.pr containsthe definition of the sort gueue (and the
help sorts objectType and sysTypeobject), whilethefile1ist2.pr
contains the definition of the type object Instance.

Available Sorts

When the data types for list processing are included, two new sorts,
Queue and objectInstance, are mainly defined, together with the
type objectbDescr defined by the user. The user can declare variables
of type gueue and type object Instance, but should never declare a
variable of type objectbDescr.

Variables of the sorts gueue and objectInstance are references
(pointers) to the representation of the queue or the object instance. In
both sortsthere isanull value, the literal nuLL, which indicates that a
variable refers to no queue or no object instance. The default value for
Queue and ObjectInstance variables iISNULL.

A variable of sort objectInstance can refer to a dataarea containing
the components defined in the struct objectbescr. Theexamplebelow
shows how to manipulate these components.

Example 526: ADT for List Processing, Struct ObjectDescr

/*#include ‘listl.pr’'*/
NEWTYPE ObjectDescr /*#NAME ’'ObjectDescr’*/
STRUCT
SysVar SysTypeObject;
Componentl Integer;
Component2 Boolean;
ENDNEWTYPE;
/*#include ’'list2.pr’'*/

DCL Ol ObjectInstance;

TASK
01 := NewObject; /* see next section */

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

July 2003

TASK
Ol!ref!Componentl := 23,
Ol!ref!Component2 := false;
TASK
IntVar := Ol!ref!Componentl,
BoolVar := Ol!ref!Component2;

A component is thus referenced by the syntax:

ObjectInstanceVariable ! ref ! ComponentName

Caution!

Y ou should never directly manipul ate the component sysvar inthe
struct objectpescr. It containsinformation about if and how the
object instance is inserted into a queue and should only be used by
the queue handling operators.

Assignments and test for equality may be performed for queues and for
object instances. The assignments:

Q1 := Q2; 0l := 02;
mean that 91 now refersto the same queue as g2 and that o1 now refers
to the same object instance as 02. Assignment is thus implemented as
copying of thereferenceto the queue (and not as copying of the contents
of the queue). The same istrue for object instances.

Thetest for equality isin the same way implemented as atest if the left
and right hand expression reference the same queue or the same object
instance (and not if two queue or object instances have the same con-
tents).

Due to the order in which the sorts are defined, a component of sort
Queue can be apart of the objectbescr struct, while components of
type object Instance cannot be part of objectDescr.

If you want several different types of objectsin aqueue, with different
contents, the #unTon directive (see“ Union” on page 2598 in chapter

57, The Cadvanced/Cbasic SDL to C Compiler) may be used according
to the following example:

Telelogic Tau 4.5 User's Manual 3167

Chapter 63 The ADT Library

3168

Example 527: Unions and Queues

NEWTYPE Obl STRUCT
ComplObl integer;
Comp20bl boolean;

ENDNEWTYPE;

NEWTYPE Ob2 STRUCT
ComplOb2 character;
Comp20b2 charstring;

ENDNEWTYPE;

NEWTYPE Ob /*#UNION*/ STRUCT
Tag integer;
Cl Obl;
Cc2 0b2;

ENDNEWTYPE;

NEWTYPE ObjectDescr /*#NAME ’'ObjectDescr’*/
STRUCT
SysVar SysTypeObject;
U Ob;
/*#ADT (X)*/
ENDNEWTYPE;

The components may now be reached using:

Ol ! ref | U ! Tag
01 ! ref | U ! Cl1 ! ComplObl
01 ! ref | U ! C2 ! Comp20bl

Available Operators

Operators in the Sort Queue
In the sort Queue, the following literals and operators are available:

null

NewQueue

Cardinal : Queue -> Integer;
DisposeQueue : Queue -> Queue;

Empty : Queue -> Boolean;
FirstInQueue : Queue -> ObjectInstance;
Follow :

Queue, ObjectInstance, ObjectInstance -> Queue;
IntoAsFirst : Queue, ObjectInstance -> Queue;
IntoAsLast : Queue, ObjectInstance -> Queue;
LastInQueue : Queue -> ObjectInstance;

Member : Queue, ObjectInstance -> Boolean;

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

July 2003

Precede :

Queue, ObjectInstance, ObjectInstance -> Queue;
Predecessor : ObjectInstance -> ObjectInstance;
Remove : ObjectInstance -> ObjectInstance;
Successor : ObjectInstance -> ObjectInstance;

Operators in the Sort Objectinstance

In the sort objectInstance, thefollowing literals and operators are
available:

null
NewObject

DisposeObject: ObjectInstance -> ObjectInstance;
The operators defined in the sorts gueue and object Instance have
the behavior described below. All operators will check the consistency
of the parameters. Each queue and object instance parameter should, for
example, be /= nu1l. If an error is detected the operator will cause an
SDL dynamic error that will betreated asany other dynamic error found
inan SDL system.

NewQueue: -> Queue

The literal Newqueue iS used as an operator with no parameters and re-
turns areference to anew empty queue. The data area used to represent
the queueistaken from an avail stack maintained by the list processing
sorts. Only if theavail stack isempty new dynamic memory isallocated.

Cardinal: Queue -> Integer

This operator takes areference to a queue as parameter and returns the
number of components in the queue.

DisposeQueue: Queue -> Queue

This operator take a reference to a queue as parameter and returns all
object instances and the data area used to represent the queue to the
avail stack mentioned in the presentation of NewQueue. DisposeQueue
always returnsthe value nu11.

Note:

Any referencesto an object instance or to aqueue that isreturned to
the avail stack is now invalid and any use of such areferenceiser-
roneous and has an unpredictable result.

Telelogic Tau 4.5 User's Manual 3169

Chapter 63 The ADT Library

3170

Empty: Queue -> Boolean

This operator takes a reference to a queue as parameter and returns
false if the queue contains any object instances. Otherwise the opera-
tor returns true.

FirstinQueue: Queue -> Objectinstance

Thisoperator takesareferenceto aqueue as parameter and returnsaref-
erence to the first object instance in the queue. If the queue is empty,
null isreturned.

Follow: Queue, Objectinstance, Objectinstance -> Queue

Follow takes areference to a queue and to two object instances and in-
sertsthefirst object instance directly after the second object instance. It
isassumed and checked that the second object instance is a member of
the queue given as parameter, and that the first object instance is not a
member of any queue prior to the call.

Note:

Theoperator member IS used to check that the second obj ect instance
is member of the queue.

IntoAsFirst: Queue, Objectinstance -> Queue

This operator takes a reference to a queue and to an object instance and
insertsthe object instance asthefirst object in the queue. The queue giv-
en as parameter isreturned asresult from the operator. It isassumed and
checked that the object instance is not a member of any queue prior to
the call.

IntoAsL ast: Queue, Objectinstance -> Queue

This operator takes a reference to a queue and to an object instance and
inserts the object instance as last object in the queue. The queue given
as parameter is returned as result from the operator. It is assumed and
checked that the object instance is not a member of any queue prior to
the call.

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

July 2003

LastinQueue: Queue -> Objectinstance

Thisoperator takes areferenceto a queue as parameter and returns a ref-
erence to the last object instance in the queue. If the queue is empty,
null isreturned.

Member: Queue, Objectinstance -> Boolean

This operator takes a reference to a queue and to an object instance and
returns true if the object instance is member of the queue, otherwise it
returns false.

Precede: Queue, Objectinstance, Objectinstance-> Queue

Precede takes areference to a queue and to two object instances and in-
sertsthe first object instance directly before the second object instance.

It is assumed and checked that the second object instance is a member

of the queue given as parameter, and that the first object instanceis not
amember of any queue prior to the call.

Note:

The operator member isused to check that the second obj ect instance
is member of the queue.

Predecessor: Objectinstance -> Objectinstance

This operator takes areference to an object instance and returns arefer-
ence to the object instance immediately before the current object in-
stance. If the object instance given as parameter isthe first object in the
gueue, null isreturned. It is assumed and checked that the object in-
stance given as parameter is amember of a queue.

Remove: Objectinstance -> Objectinstance

Remove takes a reference to an object instance and removesit from the
gueueit is currently amember of. A reference to the object instance is
returned as result from the operator. It is assumed and checked that the
object instance given as parameter is a member of a queue.

Successor: Objectinstance -> Objectinstance

This operator takes areference to an object instance and returns arefer-
enceto the object instanceimmediately after the current object instance.
If the object instance given as parameter isthe last object in the queue,

Telelogic Tau 4.5 User's Manual 3171

Chapter 63 The ADT Library

3172

null isreturned. Itisassumed and checked that the object instance giv-
en as parameter is amember of a queue.

NewObject: -> Objectinstance

Theliteral Newobject isused as an operator with no parameters and re-
turns areference to anew object instance, which is not member of any
gueue. The data area used to represent the object instance is taken from
an avail stack maintained by the list processing sorts. Only if the avail
stack is empty new dynamic memory is allocated.

DisposeObject: Objectinstance -> Objectinstance

Thisoperator take areference to an object instance as parameter and re-
turnsit to the avail stack mentioned above. bisposeobject awaysre-
turnsthe value nui1.

Note:

Any referencesto an object instancethat isreturned to the available
stack are now invalid and any use of such areference is erroneous
and has an unpredictable result.

Examples of Use

In this section a number of exampleswill be given to give some indica-
tions of how to use the list processing “package’. The following sort
definitions are assumed to be included in the system diagram:

/*#include ’listl.pr’ */

NEWTYPE ObjectDescr /*#NAME ’'ObjectDescr’*/
STRUCT
SysVar SysTypeObject;
Number Integer;
Name Charstring;
ENDNEWTYPE;

/*#include ’'list2.pr’ */

Example 528: Creating a Queue

To create anew gqueue and insert two objects in the queue, so that the
first object hasnumber = 23 andName = 'xyz’ and the second object
hasNumber = 139 and Name = ’'Telelogic’, you could usethefol-
lowing code (assuming appropriate variable declarations):

Telelogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

TASK
Q := NewQueue,
01 := NewObject,
Ol!ref !INumber := 23,
Ol!ref!Name := ’'xyz’,
Q := IntoAsFirst(Q, 0O1),
01 := NewObject,
Ol!ref !INumber := 139,
Ol!ref!Name := ’'Telelogic’,
Q := IntoAsLast(Q, 0O1);

Example 529: Removing from Queue

To remove the last object instance from a queue, assuming the queueis
not empty, you could use the following code:

TASK
01 := Remove (LastInQueue (Q)) ;

Example 530: Looking in Queue

Y ou may look at the component Name in the first object instance in the
gueue in the following way:

TASK
0l := FirstInQueue(Q),
StringVar := Ol!ref!Name;

or if the reference to o1 is not going to be used any further

TASK
StringVar := FirstInQueue (Q) !ref !Name;

July 2003 Telelogic Tau 4.5 User's Manual 3173

Chapter 63 The ADT Library

Example 531: Searching in Queue

Theresult of thefollowing algorithm isthat o1 will be areferencetothe
first object instance that has the value 1ntvar in the component
Number. If Nno such object isfound o1 is assigned the value nu11.

TASK 01 := FirstInQueue (Q) ;
NextObject:
DECISION Ol /= null;
(true) :
DECISION O1l1!ref!Number /= IntVar;
(true) :
TASK 01 := Successor(01) ;
JOIN NextObject;
(false) :
ENDDECISION;
(false) :
ENDDECISION;

Example 532: Removing Duplicates from Queue

The agorithm below removes all duplicates from a queue (and returns
themtotheavail stack). A duplicateisheredefined asan object instance
with the same Number as a previous object in the queue.

TASK 01 := FirstInQueue (Q) ;
NextObject:
DECISION Ol /= null;
(true) :
TASK 02 := Successor(01) ;
NextTry:
DECISION 02 /= null;
(true) :
DECISION Ol!ref !Number = O2!ref!Number;
(true) :
TASK Temp := 02,
02 := Successor (02),
Temp := DisposeObject (
Remove (Temp)) ;
(false) :
TASK 02 := Successor (02) ;
ENDDECISION;
JOIN NextTry;
(false) :
TASK 01 := Successor (01) ;
JOIN NextObject;
ENDDECISION;
(false)
ENDDECISION;

3174 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Typesfor List Processing

Connection to the Monitor

Trace printouts are available for the operatorsin this abstract datatype.
By assigning atrace value greater or equal to eight (8) using the monitor
command Set-Trace, each call to an operator in this data type causes a
printout of the name of the current operator. Note that some of the op-
erators may call some other operator to perform its task.

Y ou may use the monitor command Examine-V ariable to examine the
values stored in avariable of type objectInstance. By typing an ad-
ditional index number after the variable oueue the value of the
ObjectInstance a that position of the queue is printed.

Accessing List Operators from C

The sorts Queue, ObjectInstance, and objectDescr, and al the op-
erators and the literals NewQueue and NewObject have the same name
inCasinSDL, as#NaME directivesareused. Theliteral nul1 isthe sort
oueue and istrandated to QueueNull (), whiletheliteral nul1l in sort
ObjectInstance iStransated to objectInstanceNull ().

In C you access acomponent in an objectInstance using the -> op-
erator:

OI Var -> Component
As an example of an algorithm in C, consider the algorithm in
Example 531 on page 3174. A referenceto the first object instance that
has the value 1ntvar in the component Number is computed:

#(01) = FirstInQueue (#(Q));

while (#(01) != ObjectInstanceNull ()) {
if (#(01) ->Number == #(IntVar)) break;
#(01) = Successor (#(01)) ;

July 2003 Telelogic Tau 4.5 User's Manual 3175

Chapter 63 The ADT Library

Abstract Data Type for Byte

In this section an abstract datatype for byte, i.e. unsigned charinC,
ispresented. This ADT can be used also in OS integrations and with
Cmicro. However, please see the note below.

Note:

This ADT isonly provided for backward compatibility, as the new
predefined data type Octet should be used instead of Byte.

Purpose

The purpose of this datatype is of course to have the type byte and the
byte operations available directly in SDL.

The data type becomes available by including the file containing the
definition with an analyzer included in an appropriate text symbol.

Example 533:

/*#include ’'byte.pr’ */

Available Operators
The following operators are available in this data type:

BAND: byte, byte -> byte
Bitwise and. Corresponds to C operator &

BOR: byte, byte -> byte
Bitwise or. Correspondsto C operator |

BXOR: byte, byte -> byte
Bitwise exclusive or. Corresponds to C operator »

BNOT: byte -> byte
Unary not. Correspondsto C operator ~

3176 Teldlogic Tau 4.5 User's Manual July 2003

Abstract Data Typefor Byte

July 2003

BSHL: byte, integer -> byte

L eft shift of the byte parameter the number of steps specified by thein-
teger parameter. Correspondsto C operator <<

Implementation:
(byte) ((b << 1) & OXFF)

BSHR: byte, integer -> byte

Right shift of the byte parameter the number of steps specified by the
integer parameter. Correspondsto C operator >>

Implementation: (b >> i)

BPLUS: byte, byte -> byte
Byte plus (modulus OxFF). Corresponds to C operator +

BSUB: byte, byte -> byte
Byte minus (modulus OxFF). Corresponds to C operator -

BMUL: byte, byte -> byte
Byte multiplication (modulus OxFF). Corresponds to C operator *

BDIV: byte, byte -> byte
Byte division. Corresponds to C operator /

BMOD: byte, byte -> byte

Byte modulus. Corresponds to C operator %

BHEX: charstring -> byte

This operator transforms a charstring (' 00" - 'ff” or 'FF’) into a byte.
The string may be prefixed with an optional "0x’.

I12B: integer -> byte
I2B transforms an integer in range O - 255 into a byte.

B2I: byte -> integer
B2l transforms a byte into an integer.

Telelogic Tau 4.5 User's Manual 3177

Chapter 63 The ADT Library

Unsigned (and Similar) Types

There are threefiles called:

unsigned.pr

unsigned long.pr

longint.pr
where three SDL sorts implemented in C as unsigned, unsigned long,
and long int may be found. All these types arein SDL implemented as
syntypes of integer. For more information please see the definitions of
the data types.

Note:

These ADTs are only provided for backward compatibility, asis
recommended to use the typesin the package ctypes instead. The
package ctypes isdiscussed first in this chapter.

How to Obtain PId Literals

3178

This section describes away to obtain p1d literals for static processin-
stances. p1d literalswill make it possible to simplify the start-up phase
of an SDL system, as direct communication (OUTPUT TO) may be
used from the very beginning. It is otherwise necessary to start sending
signals without TO, asthe only p1d values known at the beginning are
the Parent - Offspring relations.

Note:

ThisADT cannot beused in OSintegrations or with Cmicro. There
are, however, aspecial versionfor OSintegrationsthat can be found
in the directory for the OS integration, and a special version for
Cmicro that can be found in the Cmicro installation directory.

Note:
p1d literals cannot be created for processes within block types or

system types.

Telelogic Tau 4.5 User's Manual July 2003

How to Obtain PId Literals

July 2003

Purpose

In SDL the only way to obtain ap1d valueisto use one of the basic
functions Self, Parent, Offspring, or Sender. Such values may then, of
course, be passed as parametersin signals, in procedure callsand in cre-
ate operations.

During system start-up thereis no way to obtain the p1d valuefor a stat-
ic processinstance at the output that starts acommunication session.
The receiver of the first signal must therefore be implicit, by using an
output without TO.

To be able to handle outputs without TO, in SDL-92 types and in sepa-
rate generated units, complete knowledge about the structure of chan-
nels and signal routes must be known at run-time. The same knowledge
isalso necessary if wewant to check that thereis apath from the sender
to the receiver in an output with TO. Asthe information needed about
channels and signal routes requires substantial amounts of memory, it
would be nice, in applications with severe memory requirements, to be
ableto optimize this.

To removeall information about channels and signal routes from agen-
erated application means two things:

1. Output without TO cannot be used in SDL-92 types or in separate
generated units.

2. Itisnot possibleto check that thereisa path between the sender and
the receiver at an output with TO.

The second limitation isno problem asthisistheway we probably want
it in arunning application (during debugging the test ought to be used,
but not in the application).

Thefirst limitation, that output without TO cannot be used, is however
moredifficult. Inan SDL system not using the OO concepts (block type,
process type, and so on) and not using separate generation there are no
problems, but otherwise such outputs are necessary at the system start-
up phase to establish communication between processes in different

blocks. The purpose of this abstract data type isto provide away to es-
tablish p1d literals and thereby to be able to avoid outputs without TO.

Telelogic Tau 4.5 User's Manual 3179

Chapter 63 The ADT Library

3180

The Data Type PldLit

Caution!

The PldLit data type should only be used in the way described here
to introduce synonyms referring to static process instances. Other
usage may not work!

If you are using this data type in a system that isto be validated us-
ing the SDL Validator there are two additional requirements:

» Only process types with the number of instances equal to (N,N)
for N>0, may be referenced in Pld_L it operators.

» No processtype with the number of instances equal to (N,N) for
N>0, may contain a Stop symbol, independently if aPld_Lit op-
erator is used for the process type or not.

The data type PldLit contains the following operators:

PId_Lit : xPrsIdNode -> PId;
PId Lit : xPrsIdNode -> PIdList;
PId Lit : xPrsIdNode, Integer -> PId;

In thefile containing the datatype (pidlist .pr) thereisaso asyn-
onym that you may use to access the environment:

SYNONYM EnvPId PId = ...;
Thetype xPrs1dNode correspondsto the C type xprsidNode, Whichis
used to refer to the process nodes in the symbol table tree built up by a
generated application.

Usethefirst version of p1d_rit to obtain a synonym referring to the
process instance of a process instance set with oneinitial instance.

Use the second version of p1d it to obtain a synonym of array type
referring to the process instances of a process instance set with several
initial instances.

Usethethird version of p1d_rit to obtain asynonym referring to one

of the process instances of a process instance set with several initial in-
stances.

Telelogic Tau 4.5 User's Manual July 2003

How to Obtain PId Literals

July 2003

To introduce p1d literals implemented as SDL synonyms, follow the
steps below:

1.

Includethefilepidlist.pr, which containstheimplementation of
the prdrist type, among the declarationsin the system:

/*#include ’'pidlist.pr’ */
Identify which process instance sets that should have p14d literals.

Introduce #NaME directives for these process instance sets.

Insert a#copk directive among the declarations in the system. If.
however, separate generation is not used, this #cope directive need
not be included.

/ *#CODE

#HEADING

extern XCONST struct xPrsIdStruct
yPrsR ProcessNamel;

extern XCONST struct xPrsIdStruct
yPrsR _ProcessName2;

extern XCONST struct xPrsIdStruct
yPrsR ProcessName3;

*

/

There should be an external definition for each process instance set
identified in step 2. ProcessNamex should be replaced by the name
introduced in the #naME directives for the processes.

For each processinstance set that should have Pid literals, introduce
the following synonym definition in the system diagram.

If the process type has one initial instance:

SYNONYM Namel PId =
PId Lit (#CODE (' &yPrsR_ProcessNamel’)) ;

If the process type has several initial instances:

SYNONYM Name2 PIdList =
PId Lit (#CODE (’ &yPrsR_ProcessName2’)) ;

If the process type has several initial instances, but only one of
them should be possibleto refer to by a synonym:

SYNONYM Name3 PId =
PId Lit (#CODE (' &yPrsR_ProcessName3’), No) ;

Telelogic Tau 4.5 User's Manual 3181

Chapter 63 The ADT Library

where No should be the instance number, that is, if No is 2, then the
synonym nName3 should refer to the second instance of the process

type.

Of course, you may choose the names of the synonymes, but the
string in the #copk directive should bethe xprs1dNode variablesin
the extern definitions discussed in step 4 above.

6. Y oumay now usethe synonymsof type p1d that you defined in step
5in expressions of p1d type, for example as areceiver in the To
clause in an output. The synonym Envp1d, which refersto an envi-
ronment process instance, can be used in the same way.

Synonyms of type prdList may beindexed (as an array) by anin-
teger expression to obtain a p1d value and may then be used in the
same way as the synonyms of type p1d. Indexes should be in the
range 1 to the number of initia instances.

Example 534: PldList Data Type

OUTPUT Sigl TO Namel;

OUTPUT Sig2 TO Name2 (2) ;
OUTPUT Sig3 TO Name2 (InstNo) ;
OUTPUT Sig4 TO EnvPId;
DECISION (Name3 = Sender) ;
TASK PId Variable := Name2(1);

where InstNo is an integer variable or synonym and
PId Variable isavariable of type p1d.

Note:

Note that noindex check will be performed whenindexing aPldList
synonym.

3182 Teldlogic Tau 4.5 User's Manual July 2003

General Purpose Operators

General Purpose Operators

July 2003

Introduction

The abstract datatype 1dNode described in this section introduces a
number of operators that may be used to simplify an SDL system. The
simplificationswill give both reduced code size and higher speed of ex-
ecution for your application, as well as make debugging easier. This
ADT cannot be used in OS integrations or with Cmicro.

The operators may be grouped into two groups:

* “Almost SDL operations’, that is, operators that are easy to under-
stand in an SDL context, but which are not availablein SDL. Exam-
ples are the possibility to enumerate al activeinstances of acertain
process instance set, or to count the number of signalsin an input
port.

» Operatorsthat handleimplementation aspects. An exampleisan op-
erator to reuse memory in avail lists.

Caution!

Bevery careful using these operators, asyou will then not be design-
ing true SDL systems.

If the SDL description isagoal in itself you should not use the op-
erators. If the SDL system isjust a means to obtain something else,
an application for example, the operators may be very useful.

Type IdNode

This abstract data type becomes available by inserting the analyzer in-
clude:

/*#include ’'idnode.pr’*/

This abstract data type file introduces three SDL sorts called
PrsIdNode, PrdIdNode, and SignalIdNode in SDL. These sort cor-
respond to thetypesxprsIdNode, xPrdIdNode, andxSignalIdNode
in C, which are used to represent the symbol table in the generated ap-
plication. The symbol table, whichisatree, will contain the static infor-
mation about the SDL system during the execution of the generated pro-
gram.

Telelogic Tau 4.5 User's Manual 3183

Chapter 63 The ADT Library

3184

Isispossibleto refer to processes, procedures, and signas (among oth-
ers) using the following the names:

yPrsN_ProcessName or &yPrsR_ProcessName
yPrdN_ProcedureName or &yPrdR ProcedureName
ySigN_ SignalName or &ySigR_SignalName

where ProcessName, ProcedureName, and SignalName should be re-
placed by the name of the process, procedure, or signal with prefix, or

by the name given to the unit in a #NaMe directive. To obtain aname of

aunit with prefix the directive #sp1. may be used:

yPrsN_# (ProcessName) or &yPrsR_#(ProcessName)

To avoid problems when separate generation is to be used, the
&yPrsR_... Syntax isrecommended.

The #spL directiveis not always possible to use. It will look for an en-
tity with the specified name in the current scope unit (where the #spL,
directiveisused) and outwardsin the scope hierarchy. So, for example,
if thereferencefor aprocessisto beused in aprocessdefined in another
block, a#spr directive cannot be used for the referenced process. The
name of the referenced process ought then to be given in a #name direc-
tive.

If separate generation is used there may be more problems to access
these references. The variables will be defined in the compilation unit
where the entity they represent is defined.

* ThexprsIdNode for aprocesswill be defined inthefile containing
the code for the block enclosing the process.

» Thexprdrdnode for aprocedure will be defined in the file contain-
ing code for the enclosing unit.

e ThexsignalIldNode for asignal will be defined in thefile contain-
ing code for the enclosing system, block, or process.

A referenceis visible in the compilation unit (file) where it is defined
and in all subunitsto the unit, asacompilation unit will includethe .n
file of al its parent units.

Problems occur when we want to use areference in aplace whereit is
not visible, for example using an xpPrsIdNode for a process defined in
a separate block, in aprocessin another block. All references are, how-
ever, extern, which makes it possible for a user to introduce an appro-

Telelogic Tau 4.5 User's Manual July 2003

General Purpose Operators

July 2003

priate extern definition (in a #copk directive) himself in the compila-
tion unitswhere it is needed.

Example 535

/ *#CODE
#HEADING
extern XCONST struct xPrsIdStruct yPrsR_ProcessName;

*/

To know the name of the referenced process, a #NaME directive ought to
be used.

Note:

Such extern definitionsintroduce dependencies between otherwise
independent compilation units. It is your responsibility completely
to maintain these dependencies.

Available Operators

GetldNode: Pld -> PrsildNode;

This operator takes a p1d value and returns a reference to the
PrsIdNode that representsthe processtype. prsIdNode values are not
useful for anything except as parametersto the operators discussed here.

Kill: Pld -> PlId;

Thexkill operator can be used to stop another processinstance. In SDL
aprocess instance may only stop itself. This operator has exactly the
sameeffect asif the processinstance given as parameter executed astop
operation. The ki11 operator always returns the value nu11.

KillAll: PrsldNode -> Integer;

This operator takes areference to an prsIdNode representing a process
type and will kill al the instances of the specified processtype. The ef-
fect isthe same asif all theinstances executed stop operations. The op-
erator returns the number of “killed” process instances.

FirstPId: PrsdNode -> PId;
See “SucPld: Pid -> PId;” on page 3186 (next).

Telelogic Tau 4.5 User's Manual 3185

Chapter 63 The ADT Library

3186

SucPId: PId -> PId;

Thisoperator, together with FirstPld, are intended to be used to enumer-
ate all process instances of the process type referenced by the
PrsIdNode given asparameter to FirstPId. FirstPId should be giv-
en areference to an prsIdNode for aprocess type and returns the first
(last created) processinstance. sucp1d should begivenar1d vaueand
will return the next p1d for the given process type.

Note:
During the enumeration of the processinstances, no actionthat stops
any instance of the enumerated process type may be executed.

Thismeans, for example, that the compl ete enumeration should take
place in one transition and that ki11 operations should not be used

in the enumeration.

InputPortLength: PId -> Integer;

Thisoperator returnsthe number of signalsin theinput port of the given
process instance.

InputPortLength: Pld, SignalldNode -> Integer;

This operator returns the number of signals, of the signal type given as
IdNode parameter, that are present in theinput port of the given process
instance. The signalIdNode parameter should refer to a
SignalIdNode that representsasignal or atimer.

NoOfProcesses: PrsldNode -> Integer;

Thisoperator should be given areferenceto an prsIdNode representing
aprocess instance set and will return the number of active instances of
this instance set.

IsStopped: PId -> Boolean;

The operator may be used to determineif ap1d valuerefersto aprocess
instance that is active or has executed a stop operation.

Broadcast: PrsldNode, SignalldNode, PId -> Integer;

This operator may be used to send one signal (without parameters) to

each active processinstance of a specified processinstance set. Theval-
ue of the third parameter, of type p1d, will be used as sender in the sig-
nals. Theresult of the operator isthe number of signalsthat are sent dur-

Telelogic Tau 4.5 User's Manual July 2003

General Purpose Operators

July 2003

ing this operation, i.e. the number of active process instances of the
specified type.

Note:

When you usethis operator you hide signal sending in an expression
in, for example, atask. Thiswill decrease the readability of your
SDL description, and should be well documented, at least with a
comment.

FreeAvailList: PrsidNode -> Integer and PrdldNode -> Integer
and SignalldNode -> Integer

Note:

The FreeAvailList operator has no meaning inthe SDL Validator. It
can be used but will in the Validator be anull action.

The operator takes a reference to an 1dvode (of one of the three type
above) that represents a process, aprocedure, or asignal and returnsthe
memory intheavail list for the specified 1dNode to the free memory by
calling the sctos function xFree. The function xFree uses the C stan-
dard function 'free’ to release the memory. The FreeavailList opera
tor requires thusthat free really rel eases the memory in such away that
it can be reused in subsequent memory allocations. Otherwise the oper-
ator is meaningless.

FreeAvailList isintended to beapplied for reusing memory allocated
for processes, procedures, and signals used only during astart-up phase.
If the system, for exampl e, contains a process used only during start-up,
that is, al instances of this process perform stop actions early during the
execution and no more processes will be created | ater, then the memory
for these instances can be reused.

Caution!

This operator should only be used as one of the last resortsin the
process of minimizing the memory requirements of an application.

Connection to Monitor

In the trace output, operators likexill and Broadcast Will produce
trace messages exactly in the same way as the equivalent stop opera-
tion and the sequence of output operations.

Telelogic Tau 4.5 User's Manual 3187

Chapter 63 The ADT Library

Summary of Restrictions

Thetable below summarizesthe restrictions concerning the usability of
the various Abstract Data Types that are delivered with the SDL suite.

. Rgal— Perf. Si.m. Appl. .
Sim T_|me Sim. with | with | Valid.
Sim. env. Cadv.

listl, list2 v v v v v L
file v v v v - -
random v v v v v -
pidlist v v v v v -
idnode v v v v v v
byte v v v v v v
longint v v v v v v
unsigned v v v v v v
unsigned_long v v v v v v

Table Legend:
v Compatible
¥ Incompatible

- M eaningless combination, or restrictions. See the respective
section for more information.

3188 Teldlogic Tau 4.5 User's Manual July 2003

	63 The ADT Library
	General
	Integration with C Data Types
	Charstar
	Voidstarstar
	Carray
	Ref

	Abstract Data Type for File Manipulations and I/O
	The ADT TextFile
	Purpose
	Summary of Operators
	File Handling Operators
	Operator Behavior
	FileName
	GetAndOpenR – GetAndOpenW
	OpenR – OpenW – OpenA
	Close
	Flush
	IsOpened
	AtEOF
	AtLastChar
	Examples of Use

	Write Operators
	Operator Behavior

	Read Operators
	Operator Behavior

	Accessing the Operators from C

	Abstract Data Type for Random Numbers
	Purpose
	Available Operators
	Random (RandomControl)
	Erlang (Mean, N, RandomControl)
	HyperExp2 (Mean1, Mean2, Alpha, RandomControl)
	NegExp (Mean, RandomControl)
	Uniform (Low, High, RandomControl)
	Draw (Alpha, RandomControl)
	Geometric (p, RandomControl)
	Poisson (m, RandomControl)
	RandInt (Low, High, RandomControl)
	DefineSeed (Integer) -> RandomControl
	Seed (RandomControl) -> Integer
	GetSeed (Prompt) -> Integer

	Using the Data Type
	Trace Printouts
	Accessing the Operators from C

	Abstract Data Types for List Processing
	Purpose
	Definitions

	Available Sorts
	Available Operators
	Operators in the Sort Queue
	Operators in the Sort ObjectInstance
	NewQueue: -> Queue
	Cardinal: Queue -> Integer
	DisposeQueue: Queue -> Queue
	Empty: Queue -> Boolean
	FirstInQueue: Queue -> ObjectInstance
	Follow: Queue, ObjectInstance, ObjectInstance -> Queue
	IntoAsFirst: Queue, ObjectInstance -> Queue
	IntoAsLast: Queue, ObjectInstance -> Queue
	LastInQueue: Queue -> ObjectInstance
	Member: Queue, ObjectInstance -> Boolean
	Precede: Queue, ObjectInstance, ObjectInstance-> Queue
	Predecessor: ObjectInstance -> ObjectInstance
	Remove: ObjectInstance -> ObjectInstance
	Successor: ObjectInstance -> ObjectInstance
	NewObject: -> ObjectInstance
	DisposeObject: ObjectInstance -> ObjectInstance

	Examples of Use
	Connection to the Monitor
	Accessing List Operators from C

	Abstract Data Type for Byte
	Purpose
	Available Operators
	BAND: byte, byte -> byte
	BOR: byte, byte -> byte
	BXOR: byte, byte -> byte
	BNOT: byte -> byte
	BSHL: byte, integer -> byte
	BSHR: byte, integer -> byte
	BPLUS: byte, byte -> byte
	BSUB: byte, byte -> byte
	BMUL: byte, byte -> byte
	BDIV: byte, byte -> byte
	BMOD: byte, byte -> byte
	BHEX: charstring -> byte
	I2B: integer -> byte
	B2I: byte -> integer

	Unsigned (and Similar) Types
	How to Obtain PId Literals
	Purpose
	The Data Type PIdLit

	General Purpose Operators
	Introduction
	Type IdNode
	Available Operators
	GetIdNode: PId -> PrsIdNode;
	Kill: PId -> PId;
	KillAll: PrsIdNode -> Integer;
	FirstPId: PrsdNode -> PId;
	SucPId: PId -> PId;
	InputPortLength: PId -> Integer;
	InputPortLength: PId, SignalIdNode -> Integer;
	NoOfProcesses: PrsIdNode -> Integer;
	IsStopped: PId -> Boolean;
	Broadcast: PrsIdNode, SignalIdNode, PId -> Integer;
	FreeAvailList: PrsIdNode -> Integer and PrdIdNode -> Integer and SignalIdNode -> Integer

	Connection to Monitor

	Summary of Restrictions

