
July 2003 Telelo

Chapter
63 The ADT Library
This chapter provides information about the library of Abstract
Data Types (ADT) that comes with the SDL suite. The data types
provide services that are often needed in SDL systems.

The ADT library is mainly intended for usage together with the
Cadvanced/Cbasic SDL to C Compiler and the ordinary simula-
tion, validation, and applications kernels. Some of the ADTs are,
however, also possible to use together with OS integrations (Cad-
vanced) and with Cmicro. If this is the case it is indicated in the de-
scription of the ADT.
gic Tau 4.5 User’s Manual ,um-st1 3137

Chapter 63 The ADT Library
General
The ADT library currently contains the following:

• A package, ctypes, that contains a number of sorts and generators
to simplify an integration with C data types

• A data type that provides handling of text files and I/O operations
as SDL operator calls

• A data type to generate random numbers from a number of distribu-
tions

• A data type that implements linked lists

• Data types for byte, unsigned, long int and so on (provided only for
backward compatibility; use package ctypes instead)

• A data type that makes it possible to define PId literals for static pro-
cess instances as synonyms

• A data type that provides a number of general purpose operators that
may be used to reduce the complexity of an SDL system

These data types are delivered in source code. Feel free to change and
adapt these data types for your own needs.

The files that are contained in the ADT library are located in the subdi-
rectory <installation directory>/include/ADT. (In Windows,
replace / in the path above with \)

Important!

There is no commitment from Telelogic to support the ADTs de-
scribed in this chapter. Telelogic has used the ADTs in internal
projects with successful results.

Note: Conformance with earlier releases

The ADTs in Telelogic Tau 4.5 are backward compatible with the
ADTs in earlier releases, in the sense that you only need to include
the new 4.5 versions of the ADTs to obtain the same behavior.

However, it is important to remember that the ADTs and the code
generators you use, must be from the same version of Telelogic Tau.
3138 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Integration with C Data Types
Integration with C Data Types
The package ctypes presented below contains a number of types and
generators that is intended to directly support C data types in SDL. The
package ctypes can also be used in OS integrations and with Cmicro.
However, usage of C pointers (generator Ref) might cause problems,
due to potential memory leaks and potential memory access protection
between OS tasks.

The file ctypes.sdl is a SDL/PR version of this package suitable to
use in an include statement in an SDL/PR system, while ctypes.sun is
a SDL/GR version of the package.

In an SDL/GR system it is only necessary to insert a use clause, i.e.

use ctypes;

at a proper place. The Organizer will then by itself include the ctypes
package, for example when the system is to be analyzed. To use the
ctypes package in an SDL/PR system the following structure should
be used.

/*#include ‘ctypes.sdl’*/

use ctypes;
system example;
 ...
endsystem;

The ctypes package consists of the following newtypes, syntypes, and
generators:

SDL C

syntype ShortInt short int, short

syntype LongInt long int, long

syntype UnsignedShortInt unsigned short int,
unsigned short

syntype UnsignedInt unsigned int, unsigned

syntype UnsignedLongInt unsigned long int,
unsigned long

syntype Float float

newtype Charstar char *
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3139

Chapter 63 The ADT Library
All the newtypes and syntypes introduce type names for “standard
types” in C.

Some of the types and generators are briefly described below.

Charstar
In Charstar there is a literal and some operators included:

LITERALS
 Null;
OPERATORS
 cstar2cstring : Charstar -> Charstring;
 cstring2cstar : Charstring -> Charstar;
 cstar2vstar : Charstar -> Voidstar;
 vstar2cstar : Voidstar -> Charstar;
 cstar2vstarstar : Charstar -> Voidstarstar;

Note that the operators cstar2cstring and cstring2cstar are not
available when using Cmicro.

The operators are all conversion routines to convert a value from one
type to another. Note that Charstar and Charstring are not the same
types even if they both corresponds to char * in C. Note also that freeing
allocated memory for Charstar is the responsibility of the user, as there
is not enough information to handle this automatically (as for Char-
string). For more information about how to free memory, see the Ref
generator below.

Voidstarstar
The Voidstarstar type has all the properties of the Ref generator (see be-
low). This means that *>, &, +, and - can be used and that the follow-
ing literal and operators are defined:

newtype Voidstar void *

newtype Voidstarstar void **

generator Carray array type

generator Ref pointer type

SDL C
3140 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Integration with C Data Types
LITERALS
 Null,
 Alloc;
OPERATORS
 vstarstar2vstar : Voidstarstar -> Voidstar;
 vstar2vstarstar : Voidstar -> Voidstarstar;

Carray
The generator Carray has the following parameters:

GENERATOR Carray (CONSTANT Length, TYPE Itemsort)

where Length is an integer giving the number of elements of the array
(index from 0 to Length-1), and Itemsort gives the type of each element
in the array. A Carray in SDL is translated to an array in C. Indexing a
Carray variable in SDL follows the same rules as for ordinary SDL Ar-
rays.

Ref
The generator Ref has the following definition:

GENERATOR Ref (TYPE Itemsort)
 LITERALS
 Null,
 Alloc;
 OPERATORS
 "*>" : Ref, Itemsort -> Ref;
 "*>" : Ref -> Itemsort;
 "&" : Itemsort -> Ref;
 make! : Itemsort -> Ref;
 free : in/out Ref;
 "+" : Ref, Integer -> Ref;
 "-" : Ref, Integer -> Ref;
 Ref2VStar : Ref -> Voidstar;
 VStar2Ref : Voidstar -> Ref;
 Ref2VStarStar : Ref /*#REF*/ -> Voidstarstar;
 DEFAULT Null;
ENDGENERATOR Ref;

procedure Free; fpar p Voidstarstar;
external;

Instantiating the Ref generator creates a pointer type on the type given
as generator parameter. The literals and operators have the following
behavior:

• Null: The NULL value (= 0) for the pointer type. This is also the de-
fault value for a pointer variable.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3141

Chapter 63 The ADT Library
• Alloc: An operator without parameters that returns a new allocated
data area with the size of the Itemsort.

• *>: This is the extract! and modify! operator and can be used to ref-
erence the value referenced by a pointer. If p is a pointer type, p*>
is the value the pointer refers to. Comparing with C, p*> is the same
as *p. If p is a pointer to a struct, then p*>!a is the same as (*p).a.

• &: The & operator corresponds to the C operator with the same
name. It can be used to take the address of a variable. Comparing
with C, &p and &(p) in SDL is the same as &p in C.

• make!: The make! operator, which as usual in SDL has the syntax
(. .), is a short hand for creating memory and initializing it to a given
value. The statement:
 a := (. 2 .);

has the same meaning as
 a := Alloc, a*> := 2;

• free: The Free operator is used to deallocate memory referenced by
a Ref pointer. If the component type contains automatically handled
pointers (Charstring, Octet_string, Bit_string, Bags, Own pointers,
and so on) the memory for these components is also deallocated.

• +, -: These operator have the meaning of pointer arithmetics in ex-
actly the same way as in C. For example, p+1 (if p is of a pointer
type) will add the Itemsort size to the value p. The + and - operators
are mostly used to step through an array in C.

• ref2vstar, vstar2ref, ref2vstarstar: These operators are conver-
sion operators, that can be used to cast between pointers and void *
and void **.

• procedure Free: NOTE: Old feature provided for backward com-
patibility. Use operator free above instead.

This external procedure is closely connected to the Ref generator. It
should be used to deallocate memory allocated by the Alloc opera-
tor. Free should be passed the pointer variable that references the
data area to be released. The variable should be casted to Voidstar-
star. After calling Free the pointer variable will have the value Null.

Example: Free(Ref2VStarStar(variable_name))

Apart from the difficult syntax for calling the Free procedure it has
another problem, it does not free components inside the referenced
data area as the free operator above does.
3142 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
The SDL Analyzer can allow implicit type conversion of pointer data
types created by the Ref generator; see “Implicit Type Conversions” on
page 134 in chapter 3, Using SDL Extensions, in the SDL Suite Method-
ology Guidelines.

Abstract Data Type for File Manipulations
and I/O

The ADT TextFile
In this section an SDL abstract data type, TextFile, is discussed where
file manipulations and I/O operations are implemented as operations on
the abstract data type. This ADT can be used also in OS integrations and
in Cmicro if the target system has support for files in C.

This data type, which you may include in any SDL system, makes it
possible to access, at the SDL level, a subset of the file and I/O opera-
tions provided by C.

The implementation of the operators are harmonized with the I/O in the
monitor, including the Simulator Graphical User interface. All terminal
I/O, for example, will be logged on the interaction log file if the monitor
command Log-On is given.

The data type defines a “file” type and contains three groups of opera-
tions:

1. Operations to open and close files
2. Operations to write information onto a file
3. Operations to read information from a file.

The operations may handle I/O operations both on files and on the ter-
minal (file stdin and stdout in C).

Purpose
The TextFile data type supplies basic file and I/O operations as ab-
stract data type operations in SDL, whereby I/O may be performed
within the SDL language. The operations may handle I/O both on the

Note:

This data type is not intended to be used in the SDL Validator!
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3143

Chapter 63 The ADT Library
terminal and on files and are harmonized with the I/O from the monitor,
from the trace functions, and from the functions handling dynamic er-
rors.

To make the data type available you include the file containing the def-
inition with an analyzer include in an appropriate text symbol:

Example 514: Including an ADT File ––––––––––––––––––––––––––––

/*#include ’file.pr’ */

––

Remember that all file systems are operating system specific. Any rules
in your file system apply.

Summary of Operators
The following literals are available in the data type FileName:

SYNTYPE FileName = Charstring
ENDSYNTYPE;

SYNONYM NULL FileName = ‘NULL’;
SYNONYM stdin FileName = ‘stdin’;
SYNONYM stdout FileName = ‘stdout’;
SYNONYM stderr FileName = ‘stderr’;

The following literals and operators are available in the data type
TextFile:

NEWTYPE TextFile
 LITERALS
 NULL, stdin, stdout, stderr;

 OPERATORS
 GetAndOpenR : FileName -> TextFile;
 GetAndOpenW : FileName -> TextFile;
 OpenR : FileName -> TextFile;
 OpenW : FileName -> TextFile;
 OpenA : FileName -> TextFile;
 Close : TextFile -> TextFile;
 Flush : TextFile -> TextFile;
 IsOpened : TextFile -> Boolean;
 AtEOF : TextFile -> Boolean;
 AtLastChar : TextFile -> Boolean;

 PutReal : TextFile, Real -> TextFile;
 PutTime : TextFile, Time -> TextFile;
 PutDuration : TextFile, Duration -> TextFile;
 PutPId : TextFile, PId -> TextFile;
 PutInteger : TextFile, Integer -> TextFile;
 PutBoolean : TextFile, Boolean -> TextFile;
3144 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
 PutCharacter : TextFile, Character -> TextFile;
 PutCharstring : TextFile, Charstring -> TextFile;
 PutString : TextFile, Charstring -> TextFile;
 PutLine : TextFile, Charstring -> TextFile;
 PutNewLine : TextFile -> TextFile;
 “//” : TextFile, Real -> TextFile;
 “//” : TextFile, Time -> TextFile;
 “//” : TextFile, Duration -> TextFile;
 “//” : TextFile, Integer -> TextFile;
 “//” : TextFile, Charstring -> TextFile;
 “//” : TextFile, Boolean -> TextFile;
 “//” : TextFile, PId -> TextFile;
 “+” : TextFile, Character -> TextFile;

 GetReal : TextFile, Charstring -> Real;
 GetTime : TextFile, Charstring -> Time;
 GetDuration : TextFile, Charstring -> Duration;
 GetPId : TextFile, Charstring -> PId;
 GetInteger : TextFile, Charstring -> Integer;
 GetBoolean : TextFile, Charstring -> Boolean;
 GetCharacter : TextFile, Charstring -> Character;
 GetCharstring : TextFile, Charstring -> Charstring;
 GetString : TextFile, Charstring -> Charstring;
 GetLine : TextFile, Charstring -> Charstring;
 GetSeed : TextFile, Charstring -> Integer;

 GetReal : TextFile -> Real;
 GetTime : TextFile -> Time;
 GetDuration : TextFile -> Duration;
 GetPId : TextFile -> PId;
 GetInteger : TextFile -> Integer;
 GetBoolean : TextFile -> Boolean;
 GetCharacter : TextFile -> Character;
 GetCharstring : TextFile -> Charstring;
 GetString : TextFile -> Charstring;
 GetLine : TextFile -> Charstring;
 GetSeed : TextFile -> Integer;
ENDNEWTYPE TextFile;

The operators may be divided into three groups with different purpose:

1. Operators that, together with the literals, are used for handling files.
2. Operators suited for writing information to files.
3. Operators intended for reading information from files.

The next three subsections provide the necessary information for using
these operators. The data type itself will be discussed together with the
operators for handling files.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3145

Chapter 63 The ADT Library
File Handling Operators
First in this subsection each operator and literal will be discussed in de-
tail and then some typical applications of the operators will be present-
ed.

Operator Behavior

The type TextFile is implemented using the ordinary C file type FILE.
A TextFile is a pointer to a FILE.

typedef FILE * TextFile;

The literal NULL represents a null value for files. This literal is translated
to TextFileNull() in the generated C code by an appropriate #NAME
directive and is then implemented using the macro:

#define TextFileNull() (TextFile)0

All variables of the type TextFile will have this value as default value.

The literals stdin and stdout represent the standard files stdin and
stdout in C, which are the files used in C for I/O to the terminal. The
file stdin is used for reading information from the keyboard, while
stdout is used for writing information on the screen.

The standard operators assignment and test for equality is implemented
in such a way that A:=B means that now A refers to the same file as B,
while A=B tests if A and B refer to the same file.

FileName

The data type FileName is used to represent file names in the operators
GetAndOpenR, GetAndOpenW, OpenR, OpenW, and OpenA. It has all
Charstring literals and the special synonyms NULL, stdin (input from
the keyboard), stdout (output to the screen), and stderr (output to the
screen from which the SDL suite was started). As FileName is a syn-

Caution!

The operators GetAndOpenR and GetAndOpenW do not work
with the Application library. The operators GetPId and PutPId (and
the // operator to write PIds) can be used with the Application li-
brary, but they will use a different output format.
3146 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
type of Charstring, the usual Charstring operators are defined for this
type.

GetAndOpenR – GetAndOpenW

The operators GetAndOpenR and GetAndOpenW are used to open a file
with a name prompted for on the terminal. GetAndOpenR opens the file
for read, while GetAndOpenW opens the file for write. The operators
take the prompt as parameter (type charstring), print the prompt on the
screen (on stdout), and read a file name from the keyboard (from
stdin). An attempt is then made to open a file with that name. If the
open operation was successful, a reference to the file is returned by the
GetAndOpenR or GetAndOpenW operator, otherwise NULL is returned.
After a successful open operation you may use the file for reading or
writing.

If you type <Return>, - or the file name stdin at the prompt in
GetAndOpenR a reference to stdin is returned by the operator.
GetAndOpenW will, in the same way, return a reference to stdout if the
prompt is answered by <Return>, - or the file name stdout.

OpenR – OpenW – OpenA

The operators OpenR, OpenW, and OpenA are used to open a file with a
file name passed as parameter. OpenR opens the file for read, while
OpenW opens the file for write and OpenA opens the file for append. An
attempt is made to open a file with the name given as a parameter. If the
open operation was successful, a reference to the file is returned by the
OpenR, OpenW, or OpenA operator, otherwise NULL is returned. After a
successful open operation you may read, write or append on the file.

Caution!

The synonyms stdin, stdout, stderr in some circumstances hide
the literals with the same names according to SDL scope rules. If
that is the case, please insert a qualifier <<type textfile>> be-
fore the literal name.

Note:

To work properly in the Simulator Graphical User Interface, the
prompt string should be terminated with: “: “, i.e. colon space.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3147

Chapter 63 The ADT Library
Close

The operator Close is used to close the file passed as parameter. Close
always returns the value NULL. This operator should be used on each file
opened for write after all information is written to the file to ensure that
any possibly buffered data is flushed.

Flush

Output to files is usually buffered, and is therefore not immediately
written on the physical output device. The operator Flush forces the
output buffer of the file that is passed as parameter to be written on the
physical output device. It is equivalent to C function fflush.

IsOpened

The operator IsOpened may be used to determine if a TextFile is
open or not. It may, for example, be used to test the result of the Open
operation discussed above. The test IsOpened(F) is equivalent to
F /= NULL.

AtEOF

The operator AtEof may be used to determine if a TextFile has
reached the end of file or not. This operator could be used in order to
determine when to stop reading input from a file. The test AtEof(F) is
equivalent to feof(F).

Note:

Always close a file variable before assigning it to a new file, other-
wise data may be lost.

Note:

AtEof first becomes true when attempts are made to read behind the
end-of-file. Operator AtLastChar becomes true when the last char-
acter of the file has been read, and is usually more useful than
AtEof.
3148 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
AtLastChar

The operator AtLastChar may be used to determine if a TextFile has
reached the end of file or not. This operator is useful in order to deter-
mine when to stop reading input from a file. The test AtLastChar(F)
returns true if there are no more characters to be read from the file.

Examples of Use

Three typical situations when you want to write information are easily
identified:

1. The information is to be printed on the screen.

2. The information is to be printed on a file with a given name.

3. You want to determine at run-time where the information is to be
printed.

Example 515: ADT for File I/O, Print to Screen –––––––––––––––––––

If the information is to be printed on the screen, you may use the fol-
lowing structure:

DCL F TextFile;
TASK F := stdout // ’example’;

Declare a variable of type TextFile and assign it the value stdout.
You may then use it in the write operators discussed under “Write Op-
erators” on page 3151.

––

Example 516: ADT for File I/O, Print to File ––––––––––––––––––––––

If the information is to be printed on a file with a given name, you may
use the following structure:

DCL F TextFile;
TASK F := OpenW(’filename’);
TASK F := F // ’example’;

The difference from the above is that the operator OpenW is used to open
a file with the specified name. This outline may be complemented with
a test if the OpenW operation was successful or not.

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3149

Chapter 63 The ADT Library
Example 517: ADT for File I/O, Accessing Text File –––––––––––––––

If you want to be able to determine at run-time where the informa-
tion should be printed, you should define a TextFile as in the exam-
ples above, and then use the following structure.

If you answer the question by hitting <Return> or by typing stdout,
the information will be printed on screen (stdout). If you type the name
of a file, the information will be printed on that file.

––

If you want to open the file for read instead of write, you may use almost
identical structures.

Figure 553: Accessing a TextFile

F:=
GetAndOpenW

(’File:’) A

IsOpened(F)

F:=
GetAndOpenW

(’Illegal name. File:’)

F:= Put...

A

(FALSE)

(TRUE)
3150 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
Write Operators

Operator Behavior

The write operators PutReal, PutTime, PutDuration, PutInteger,
PutBoolean, PutCharacter, and PutCharstring all take a
TextFile and a value of the appropriate type as parameters. The oper-
ators print the value passed as parameter on the file referenced by the
TextFile parameter and then return the TextFile. The Put* operators
will print the values in the same format as the monitor uses for the com-
mand Examine-Variable, and will append a space after each printed val-
ue.

The operator PutString takes a TextFile and a Charstring param-
eter and prints the string on the TextFile. PutString prints the string
as a C string, not using the format for SDL Charstring. This means that
no ’ is printed. PutString returns the TextFile given as parameter as
result.

The infix write operator “//” takes as parameters a TextFile and a
value of type Boolean, Charstring, Integer, PId, Real, Time,
or Duration. TextF // Val prints the value ‘Val’ to the TextFile
referenced by ‘TextF’, and returns value ‘TextF’. Character strings
are printed without enclosing ‘’’. All // operators except the one for
Charstring append a space to the file, after the value is written.

The infix write operator “+” takes as parameters a TextFile and a
Character. “+” behaves just as “//”, but it has its special name in or-
der to avoid type conflicts with Charstring.

The operator PutNewLine takes a TextFile as parameter, prints a car-
riage return (actually a “\n”) on this file, and returns the TextFile as
operator result.

The different Put operators are equivalent to the // operators, and they
are mainly present for backward compatibility reasons.

There is a function named xPutValue in the implementation of the data
type TextFile. This function may print a value of any type that may be
handled by the monitor system, but may only be accessed from in-line
C code and not from SDL. A detailed description of the xPutValue
function may be found under “Accessing the Operators from C” on page
3153.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3151

Chapter 63 The ADT Library
Example 518: ADT for File I/O, Print to File ––––––––––––––––––––––

To print a line according to the following example, where 137 is the val-
ue of the variable NoOfJobs:

Number of jobs: 137 Current time: 137.0000

You could use the following statements, assuming that the TextFile F
is already opened:

TASK
 F := F // ‘Number of jobs: ‘ // NoOfJobs;
TASK
 F := F // ‘current time: ‘ // Now;
TASK
 F := PutNewLine(F);

––

Read Operators

Operator Behavior

The read operators GetReal, GetTime, GetDuration, GetInteger,
GetBoolean, GetCharacter, GetCharstring, and GetSeed are used
to read values of the various sorts.

The operator GetSeed is used to read appropriate values to initialize
random number generators (odd integers in the range 1 to 32767).

There are two versions of each Get operator: one that only takes as pa-
rameters a TextFile, and the other that takes as parameters a
TextFile and a Charstring which is used as prompt. All Get opera-
tors behave differently depending on if the value should be read from
the terminal (stdin) or from a file.

If the value should be read from the terminal, the Get operators with
the prompt parameter may be used. This prompt is printed on the screen,
and then an attempt to read a value of the current type is made. If a Get
operator with only the TextFile parameter is used, a default prompt is
used, that depends on the type that is to be input. If the operation is suc-
cessful, the read value is returned as a result, otherwise the message
“Illegal value” is printed and the user is given a new chance to type
a value.
3152 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
If the value should be read from a file, it is recommended to use the
Get operators without the prompt parameter, as it is not used. It is as-
sumed that a value of the correct type will be found.

There are several Get operators for reading character strings:

GetString reads a sequence of characters until the first white space
character, and is equivalent to fscanf (f, “%s”).

GetLine reads a sequence of characters until the end of line is reached.
It is equivalent to fgets, but the end-of-line character will not be part
of the string.

GetCharstring reads a sequence of characters on a single line that is
enclosed by single quotes (‘). This operator is mainly present for back-
ward compatibility reasons.

There is a function named xGetValue in the implementation of the data
type TextFile, which may read a value of any type that may be handled
by the monitor system. This function can only be accessed from in-line
C code and not from SDL. A detailed description of the xGetValue
function may be found under “Accessing the Operators from C” on page
3153.

Example 519: ADT for File I/O, Read from File––––––––––––––––––––

TASK
 Mean := GetReal (F),
 A(1) := GetReal (F),
 A(2) := GetReal (F),
 A(3) := GetReal (F);

––

Accessing the Operators from C
In some circumstances it may be easier to use C code (in #CODE direc-
tives) rather than SDL to implement an algorithm. SDL implementa-
tions for linear algorithms sometimes become unnecessarily large and
complex, as SDL for example lacks a loop concept. Consider the SDL

Note:

To work properly in the Simulator Graphical User Interface, the
prompt string should be terminated with: “: “, i.e. colon space.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3153

Chapter 63 The ADT Library
graph in Figure 553 on page 3150. This graph could be replaced by a
TASK with the following contents:

’Open file F’ /*#CODE
#(F) = GetAndOpenW("LFile : ");
while (! IsOpened(#(F)))
 #(F) = GetAndOpenW("LIllegal name. File : "); */

which is more compact and gives a better overview at the SDL level.

#(F) is an SDL directive telling the SDL to C compiler to translate the
SDL variable F to the name it will receive in the generated C code.

To simplify the use of in-line C code, #NAME directives are introduced
on all identifiers defined in this data type. The same names are used in
C as in SDL.

From in-line C, two functions xGetValue and xPutValue are also
available to read and write values of any type. These functions have the
following prototypes:

extern void xGetValue(
 TextFile F,
 SDL_Charstring Prompt,
 xSortIdNode SortId,
 void * Result,
 char * FunctionName);

extern void xPutValue(
 TextFile F,
 xSortIdNode SortId,
 void * Value,
 char * FunctionName);

Note:

Upper and lower case letters are significant in C (but not in SDL).

Note also the additional L in the Charstring literals, for example
“LIllegal name. File : “. This first character is used in the
implementation of the SDL sort Charstring and should always be L
in a charstring literal.

Parameter Interpretation

TextFile F The file to read from or to print to.

In xGetValue:
SDL_Charstring Prompt

Is used as prompt in exactly the same way as
for the ordinary Get operators.
3154 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for File Manipulations and I/O
To handle, for example, I/O of an SDL struct, the ideas presented below
may be used.

Example 520: ADT for File I/O of an SDL Struct ––––––––––––––––––

NEWTYPE SName STRUCT
 a, b Integer;
ENDNEWTYPE;

DCL
 FIn, FOut TextFile,
 SVar SName;

TASK ’Put SVar on FOut’ /*#CODE
 xPutValue(#(FOut), ySrtN_#(SName),
 &(#(SVar)), "PutSName"); */;

TASK ’Get SVar from FIn’ /*#CODE
 xGetValue(#(FIn), "Value : ",
 ySrtN_#(SName),&(#(SVar)), "LGetSName"); */;

––

xSortIdNode SortId A reference to the xIdNode that represents
the SDL sort to be read or printed
For the predefined SDL sorts you may use
variables named xSrtN_SDL_Real,
xSrtN_SDL_Integer, and so on, as param-
eter.
For user-defined sorts, you may use simi-
lar variables named ySrtN_#(SortName),
where SortName should be replaced by the
sort name.

void * Result
void * Value

The address to the variable where the result
should be stored, or the address to the vari-
able that should be printed.

char * FunctionName A string specifying the name of an appropri-
ate function. This name will be given if an
error is detected during reading or printing.

Note:

xGetValue and xPutValue will not work together with the Applica-
tion library.

Parameter Interpretation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3155

Chapter 63 The ADT Library
Abstract Data Type for Random Numbers
One important feature, especially in performance simulations, is the
possibility to generate random numbers according to a number of distri-
butions, like for example the negative exponential distribution and the
Erlang distribution. It is also important that the random number se-
quences are reproducible, to be able to run a slightly modified version
of a simulation with the same sequence of random numbers.

In this section an SDL abstract data type according to the previous dis-
cussion is presented. This data type may be included in any SDL sys-
tem. This ADT can also be used in OS integrations and in Cmicro. It is,
however, necessary to check that the typedef for the RandomControl,
see below, refers to an unsigned 32-bit type.

Purpose
The SDL RandomControl data type allows you to generate pseudo-ran-
dom numbers. A number of distributions are supported, including the
negative exponential distribution and the Erlang distribution. In perfor-
mance simulations, which is the main application area for this data type,
the most important need for random numbers is in connection with Time
and Duration values. It is, for example, interesting to draw inter- arriv-
al times in job generators, and service lengths in servers. Distributions
returning positive real numbers are thus most meaningful.

The basic mechanism behind pseudo-random number generation is as
follows. A sequence of bit-patterns is defined using a formula of type:

The function f should be such that the sequence of elements seen as
numbers should be “random”, and the number of element in the se-
quence, before it starts to repeat itself, should be as large as possible.

To obtain a new random number is thus a two step process:

1. Compute and store a new bit-pattern from the old bit-pattern
2. Interpret the new bit-pattern as a number, which is returned as the

new random number.

In this data type, 32 bit patterns, implemented in C using the type un-
signed long, are used together with the formula:

Seqn 1+ f Seqn()=

Seqn 1+ 216 3+() Seqn⋅()mod 2
32

=

3156 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for Random Numbers
The result returned by the operator Random, which is the basic random
number generator, is this bit-pattern seen as a number between 0 and 1,
and expressed as a float.

The data type RandomControl may be included in any SDL system us-
ing an analyzer include statement, where the file containing the defini-
tion of the data type is included. Example:

/*#include ’random.pr’ */

As the C standard functions log and exp are used in the random.pr file,
it is necessary to link the application together with the library for math
functions, i.e. to have -lm in the link operation in the makefile. See
“Makefile Options” on page 122 in chapter 2, The Organizer. To use the
entry -lm in the link list seems to be a fairly standard way to find the
library for math functions. If this does not work, or you want more de-
tails, please see the documentation for your C compiler.

Available Operators
The type RandomControl, introduced by this data type, is in C imple-
mented as the address of an unsigned long.

typedef unsigned long * RandomControl;

Note that you have check that unsigned long is a 32 bit type, other-
wise you have to change the typedef.

The reason for passing the address to the bit-pattern (that is to the un-
signed long), is that this bit-pattern has to be updated by the random
functions.

Below the operators provided in this data type are listed. There are, for
many of the operators, several versions with different sets of parameters
and/or result types to support different usage of the operator.

Random : RandomControl -> Real;
Random : RandomControl -> Duration;
Random : RandomControl -> Time;

Erlang : Real, Integer, RandomControl -> Real;
Erlang : Real, Integer, RandomControl -> Duration;
Erlang : Real, Integer, RandomControl -> Time;
Erlang : Duration, Integer, RandomControl -> Real;
Erlang : Duration, Integer, RandomControl -> Duration;
Erlang : Duration, Integer, RandomControl -> Time;
Erlang : Time, Integer, RandomControl -> Real;
Erlang : Time, Integer, RandomControl -> Duration;
Erlang : Time, Integer, RandomControl -> Time;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3157

Chapter 63 The ADT Library
HyperExp2 :
 Real, Real, Real, RandomControl -> Real;
HyperExp2 :
 Real, Real, Real, RandomControl -> Duration;
HyperExp2 :
 Real, Real, Real, RandomControl -> Time;
HyperExp2 :
 Duration, Duration, Real, RandomControl -> Real;
HyperExp2 :
 Duration, Duration, Real, RandomControl -> Duration;
HyperExp2 :
 Duration, Duration, Real, RandomControl -> Time;
HyperExp2 :
 Time, Time, Real, RandomControl -> Real;
HyperExp2 :
 Time, Time, Real, RandomControl -> Duration;
HyperExp2 :
 Time, Time, Real, RandomControl -> Time;

NegExp : Real, RandomControl -> Real;
NegExp : Real, RandomControl -> Duration;
NegExp : Real, RandomControl -> Time;
NegExp : Duration, RandomControl -> Real;
NegExp : Duration, Rando mControl -> Duration;
NegExp : Duration, RandomControl -> Time;
NegExp : Time, RandomControl -> Real;
NegExp : Time, RandomControl -> Duration;
NegExp : Time, RandomControl -> Time;

Uniform : Real, Real, RandomControl -> Real;
Uniform : Real, Real, RandomControl -> Duration;
Uniform : Real, Real, RandomControl -> Time;
Uniform : Duration, Duration, RandomControl -> Real;
Uniform :
 Duration, Duration, RandomControl -> Duration;
Uniform : Duration, Duration, RandomControl -> Time;
Uniform : Time, Time, RandomControl -> Real;
Uniform : Time, Time, RandomControl -> Duration;
Uniform : Time, Time, RandomControl -> Time;

Draw : Real, RandomControl -> Boolean;

Geometric : Real, RandomControl -> Integer;
Geometric : Real, RandomControl -> Duration;
Geometric : Real, RandomControl -> Time;
Geometric : Duration, RandomControl -> Integer;
Geometric : Duration, RandomControl -> Duration;
Geometric : Duration, RandomControl -> Time;
Geometric : Time, RandomControl -> Integer;
Geometric : Time, RandomControl -> Duration;
Geometric : Time, RandomControl -> Time;

Poisson : Real, RandomControl -> Integer;
Poisson : Real, RandomControl -> Duration;
3158 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for Random Numbers
Poisson : Real, RandomControl -> Time;
Poisson : Duration, RandomControl -> Integer;
Poisson : Duration, RandomControl -> Duration;
Poisson : Duration, RandomControl -> Time;
Poisson : Time, RandomControl -> Integer;
Poisson : Time, RandomControl -> Duration;
Poisson : Time, RandomControl -> Time;

RandInt : Integer, Integer, RandomControl -> Integer;
RandInt : Integer, Integer, RandomControl -> Duration;
RandInt : Integer, Integer, RandomControl -> Time;

DefineSeed : Integer -> RandomControl;
GetSeed : Charstring -> Integer;
Seed : RandomControl -> Integer;

Random (RandomControl)

The operator Random is the basic random generator and is called by all
the other operators. Random uses the formula

to compute the next value stored in the parameter of type
RandomControl. The result from Random is a real random number in
the interval 0.0 < Value < 1.0.

Erlang (Mean, N, RandomControl)

The operator Erlang provides random numbers from the Erlang-N dis-
tribution with mean Mean. The first parameter Mean should be > 0.0,
and the second parameter N should be > 0.

HyperExp2 (Mean1, Mean2, Alpha, RandomControl)

The HyperExp2 operator provides random numbers from the hyperex-
ponential distribution. With probability Alpha it return a random num-
ber from the negative exponential distribution with mean Mean1, and
with the probability 1-Alpha it returns a random number from the neg-
ative exponential distribution with mean Mean2. Mean1 and Mean2
should be > 0.0, and Alpha should be in the range 0.0 <= Alpha <= 1.0.

NegExp (Mean, RandomControl)

The operator NegExp provides random numbers from the negative ex-
ponential distribution with mean Mean. Mean should be > 0.0.

Seqn 1+ 216 3+() Seqn⋅()mod 232=
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3159

Chapter 63 The ADT Library
Uniform (Low, High, RandomControl)

The operator Uniform is given a range Low to High and returns a uni-
formly distributed random number in this range.
Low should be <= High.

Draw (Alpha, RandomControl)

The Draw operator returns true with the probability Alpha and false
with the probability 1-Alpha. Alpha should be in the range
0.0 <= Alpha <= 1.0.

Geometric (p, RandomControl)

The operator Geometric returns an integer random number according
to the geometric distribution with the mean p/(1-p). The parameter p
should be 0.0 <= p < 1.0.

Poisson (m, RandomControl)

The operator Poisson returns an integer random number according to
the Poisson distribution with mean m. The parameter m should be >= 0.0.

RandInt (Low, High, RandomControl)

This operator RandInt returns one of the values Low, Low+1,...,
High-1, High, with equal probability. Low should be <= High.

DefineSeed (Integer) -> RandomControl

Each RandomControl variable, which is used as a control variable for
a random generator, has to be initialized correctly so the first bit-pattern
used by the basic random function is a legal pattern. This DefineSeed

Caution!

Since the range of feasible samples from the distribution is infinite
and the result type is integer, integer overflow may occur.

Caution!

Since the range of feasible samples from the distribution is infinite
and the result type is integer, integer overflow may occur.
3160 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for Random Numbers
operator takes an integer parameter, which should be an odd value in the
range 1 to 32767, and creates a legal bit-pattern. This first value is usu-
ally referred to as the seed for the random generator. Using the same
seed value, the same random number sequence is generated, which
means that the random number sequences are reproducible.

Seed (RandomControl) -> Integer

The Seed operator returns random numbers that are acceptable as pa-
rameters to the operator DefineSeed. If many RandomControl vari-
ables are to be initialized, the Seed operator may be useful.

GetSeed (Prompt) -> Integer

The GetSeed operator, which is implemented in the data type
TextFile (see “The ADT TextFile” on page 3143), may be used to read
an integer value that is acceptable as parameter to the DefineSeed op-
erator.

Using the Data Type
To use the abstract data type for random number generation you must:

• Include the definition of the data type using an analyzer include.
Usually it is appropriate to include the data type in a text symbol in
the system diagram.

• Define a suitable number of RandomControl variables, one for each
random number sequence that is to be used.

• Initialize the RandomControl variables, either in the variable dec-
laration or in a TASK often placed in the start transition of the pro-
cess. The operator DefineSeed should be used to initialize a
RandomControl variable.

• Use the RandomControl variables in appropriate random number
operators.

Note:

SDL variables can only be declared in processes and will be local to
the process instances.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3161

Chapter 63 The ADT Library
To have global RandomControl variables you may, however, define
synonyms of type RandomControl and use them in random generator
operators.

Example 521: Using RandomControl, DefineSeed ––––––––––––––––

SYNONYM Seed1 RandomControl =
 DefineSeed(GetSeed(stdin, ’Seed1 : ’));

TASK Delay := NegExp(Mean1, Seed1);

––

This is correct according to SDL as operators only have IN parameters
and therefore expressions are allowed as actual parameters. In C it is
also an IN parameter and cannot be changed. But as a RandomControl
value is an address it is possible to change the contents in that address.

The SDL to C Compiler will, for synonyms that cannot be computed at
generation time, allocate a variable and initialize it according to the syn-
onym definition at start-up time. Note that this will be performed before
any transitions have been executed.

A typical application of RandomControl synonyms are together with
the Seed operator. The Seed operator is used to generate values suitable
to initialize RandomControl variables with.

Example 522: Using RandomControl, Seed ––––––––––––––––––––––

SYNONYM BasicSeed RandomControl =
 DefineSeed(GetSeed(stdin, ’Seed : ’));

DCL S1 RandomControl :=
 DefineSeed(Seed(BasicSeed));
DCL S2 RandomControl :=
 DefineSeed(Seed(BasicSeed));

––

The variety of operators with the same name makes it possible to direct-
ly use operators in many more situations. This is called overloading of
operators. If, for example, there were only the NegExp version:

NegExp : Real, RandomControl -> Real;

then explicit conversion operators would have been necessary to draw,
for example, a Duration value from the negative exponential distribu-
tion. The code to draw a Duration value would then be something like:

RealToDuration(NegExp(Mean, Seq))
3162 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for Random Numbers
We have instead introduced several operators with the same name and
purpose, but with different combinations of parameter types and result
type. So for the NegExp operator discussed above, there is also a ver-
sion:

NegExp : Real, RandomControl -> Duration;

which is exactly what we wanted.

There is, however, a price to be paid for having overloaded operators. It
must be possible for the SDL Analyzer to tell which operator that is
used in a particular situation. It then uses all available information about
the parameters and what the result is used for. Consider Example 523
below.

Example 523: Overloaded Operator ––––––––––––––––––––––––––––

TIMER T;
DCL
 Mean, Rand Real,
 D Duration,
 Seq RandomControl :=
 DefineSeed(GetSeed(’Seed : ’));

TASK Rand := NegExp(Mean, Seq);
TASK D := NegExp(Mean, Seq);
TASK D := NegExp(TYPE Real 1.5, Seq);

DECISION NegExp(Mean, Seq) >
 TYPE Duration 10.0;
 (true) :
 ELSE :
ENDDECISION;
SET (Now + NegExp(Mean, Seq), T);

• The first two applications of NegExp are no problem, as the param-
eter type is given by the type of the Mean variable, and the result
type is given by the variable that result is assigned to.

• In the third NegExp call, the value 1.5 has to be given a qualifier,
that is, TYPE Real, as the literal 1.5 may be of type Real,
Duration, or Time.

• In the fourth example it is the result type that cannot be determined
if the literal 10.0 was not given with a qualifier.

• In the fifth example the only + operator that takes Time as left pa-
rameter and returns Time (SET should have a Time value as first pa-
rameter) is:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3163

Chapter 63 The ADT Library
"+" : Time, Duration -> Time;

defined in the sort Time. So, both the type for the parameter and the
result are possible to determine for the NegExp operator in this ex-
ample.

––

Most of these problems can be avoided by using SYNONYMS or variables
instead of literal values. This is in most cases a better solution than to
introduce qualifiers.

Example 524: Using SYNONYMS–––––––––––––––––––––––––––––––

If, for example, the synonyms:

SYNONYM MeanValue Real = 1.5;
SYNONYM Limit Duration = 10.0;

were defined, the third and fourth NegExp call would cause no problem:

TASK D := NegExp(MeanValue, Seq);
DECISION NegExp(Mean, Seq) > Limit;
 (true) :
 ELSE :
ENDDECISION;

––

Trace Printouts
Trace printouts are available for the functions in this abstract data type.
By assigning a trace value greater or equal to nine (9) using the monitor
command Set-Trace, each call to an operator in this data type causes a
printout of the name of the operator.

Accessing the Operators from C
The operator for random number generation may be used directly in C
by using the name given in the appropriate #NAME directive. Please look
at the random.pr file for the #NAME directives.

Note:

Each operator returning a random number will call the basic opera-
tor Random at least once.
3164 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
Abstract Data Types for List Processing
The abstract data types defined in this “package” are intended for pro-
cessing of linked lists. Linked lists are commonly appearing in applica-
tions and are one of the basic data structures in computer science. With
these data types, you can concentrate on using the lists and do not have
to worry about the implementation details, as all list manipulations are
hidden in operators in the data types.

Purpose

Definitions

A queue is a list in which the members are ordered. The ordering is en-
tirely performed by the user. The available operations make it possible
to access members of the queue and insert members into or remove
members from any position. Furthermore, the operators suppress the
implementation aspects. That is, the fact that the queue is implemented
as a doubly linked list with a queue head. The operators also prevent the
unwary user from trying to access, for instance, the successor of the last
member or the predecessor of the first member.

The entities which may be members of a queue are called object in-
stances. An object instance is a passive entity containing user defined
information. This information is described in the object description.

In SDL these definitions are implemented using sorts called Queue,
ObjectInstance, and ObjectDescr, where ObjectDescr should be
defined by the user. ObjectDescr should have the structure given in the
example below (Example 525).

The data types for list processing may be included in any SDL system
using Analyzer #include statements, where the files containing the
definitions of the data types are included. The definitions should be
placed in the order given in the example below:

Note:

This data type is not implemented in a way that makes it possible to
be used in the SDL Validator. It can be used in OS integrations and
with Cmicro, but it is not recommended, due to the risk for memory
leaks.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3165

Chapter 63 The ADT Library
Example 525: Including ADT for List Processing –––––––––––––––––

/*#include ’list1.pr’*/
NEWTYPE ObjectDescr /*#NAME ’ObjectDescr’*/
 STRUCT
 SysVar SysTypeObject;
 /* other user defined components */
ENDNEWTYPE;
/*#include ’list2.pr’*/

––

The file list1.pr contains the definition of the sort Queue (and the
help sorts ObjectType and SysTypeObject), while the file list2.pr
contains the definition of the type ObjectInstance.

Available Sorts
When the data types for list processing are included, two new sorts,
Queue and ObjectInstance, are mainly defined, together with the
type ObjectDescr defined by the user. The user can declare variables
of type Queue and type ObjectInstance, but should never declare a
variable of type ObjectDescr.

Variables of the sorts Queue and ObjectInstance are references
(pointers) to the representation of the queue or the object instance. In
both sorts there is a null value, the literal NULL, which indicates that a
variable refers to no queue or no object instance. The default value for
Queue and ObjectInstance variables is NULL.

A variable of sort ObjectInstance can refer to a data area containing
the components defined in the struct ObjectDescr. The example below
shows how to manipulate these components.

Example 526: ADT for List Processing, Struct ObjectDescr–––––––––

/*#include ’list1.pr’*/
NEWTYPE ObjectDescr /*#NAME ’ObjectDescr’*/
 STRUCT
 SysVar SysTypeObject;
 Component1 Integer;
 Component2 Boolean;
ENDNEWTYPE;
/*#include ’list2.pr’*/

DCL O1 ObjectInstance;

TASK
 O1 := NewObject; /* see next section */
3166 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
TASK
 O1!ref!Component1 := 23,
 O1!ref!Component2 := false;

TASK
 IntVar := O1!ref!Component1,
 BoolVar := O1!ref!Component2;

––

A component is thus referenced by the syntax:

ObjectInstanceVariable ! ref ! ComponentName

Assignments and test for equality may be performed for queues and for
object instances. The assignments:

Q1 := Q2; O1 := O2;

mean that Q1 now refers to the same queue as Q2 and that O1 now refers
to the same object instance as O2. Assignment is thus implemented as
copying of the reference to the queue (and not as copying of the contents
of the queue). The same is true for object instances.

The test for equality is in the same way implemented as a test if the left
and right hand expression reference the same queue or the same object
instance (and not if two queue or object instances have the same con-
tents).

Due to the order in which the sorts are defined, a component of sort
Queue can be a part of the ObjectDescr struct, while components of
type ObjectInstance cannot be part of ObjectDescr.

If you want several different types of objects in a queue, with different
contents, the #UNION directive (see “Union” on page 2598 in chapter
57, The Cadvanced/Cbasic SDL to C Compiler) may be used according
to the following example:

Caution!

You should never directly manipulate the component SysVar in the
struct ObjectDescr. It contains information about if and how the
object instance is inserted into a queue and should only be used by
the queue handling operators.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3167

Chapter 63 The ADT Library
Example 527: Unions and Queues –––––––––––––––––––––––––––––

NEWTYPE Ob1 STRUCT
 Comp1Ob1 integer;
 Comp2Ob1 boolean;
ENDNEWTYPE;

NEWTYPE Ob2 STRUCT
 Comp1Ob2 character;
 Comp2Ob2 charstring;
ENDNEWTYPE;

NEWTYPE Ob /*#UNION*/ STRUCT
 Tag integer;
 C1 Ob1;
 C2 Ob2;
ENDNEWTYPE;

NEWTYPE ObjectDescr /*#NAME ’ObjectDescr’*/
 STRUCT
 SysVar SysTypeObject;
 U Ob;
/*#ADT (X)*/
ENDNEWTYPE;

The components may now be reached using:

O1 ! ref ! U ! Tag
O1 ! ref ! U ! C1 ! Comp1Ob1
O1 ! ref ! U ! C2 ! Comp2Ob1

––

Available Operators

Operators in the Sort Queue

In the sort Queue, the following literals and operators are available:

null
NewQueue

Cardinal : Queue -> Integer;
DisposeQueue : Queue -> Queue;
Empty : Queue -> Boolean;
FirstInQueue : Queue -> ObjectInstance;
Follow :
 Queue, ObjectInstance, ObjectInstance -> Queue;
IntoAsFirst : Queue, ObjectInstance -> Queue;
IntoAsLast : Queue, ObjectInstance -> Queue;
LastInQueue : Queue -> ObjectInstance;
Member : Queue, ObjectInstance -> Boolean;
3168 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
Precede :
 Queue, ObjectInstance, ObjectInstance -> Queue;
Predecessor : ObjectInstance -> ObjectInstance;
Remove : ObjectInstance -> ObjectInstance;
Successor : ObjectInstance -> ObjectInstance;

Operators in the Sort ObjectInstance

In the sort ObjectInstance, the following literals and operators are
available:

null
NewObject

DisposeObject: ObjectInstance -> ObjectInstance;

The operators defined in the sorts Queue and ObjectInstance have
the behavior described below. All operators will check the consistency
of the parameters. Each queue and object instance parameter should, for
example, be /= null. If an error is detected the operator will cause an
SDL dynamic error that will be treated as any other dynamic error found
in an SDL system.

NewQueue: -> Queue

The literal NewQueue is used as an operator with no parameters and re-
turns a reference to a new empty queue. The data area used to represent
the queue is taken from an avail stack maintained by the list processing
sorts. Only if the avail stack is empty new dynamic memory is allocated.

Cardinal: Queue -> Integer

This operator takes a reference to a queue as parameter and returns the
number of components in the queue.

DisposeQueue: Queue -> Queue

This operator take a reference to a queue as parameter and returns all
object instances and the data area used to represent the queue to the
avail stack mentioned in the presentation of NewQueue. DisposeQueue
always returns the value null.

Note:

Any references to an object instance or to a queue that is returned to
the avail stack is now invalid and any use of such a reference is er-
roneous and has an unpredictable result.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3169

Chapter 63 The ADT Library
Empty: Queue -> Boolean

This operator takes a reference to a queue as parameter and returns
false if the queue contains any object instances. Otherwise the opera-
tor returns true.

FirstInQueue: Queue -> ObjectInstance

This operator takes a reference to a queue as parameter and returns a ref-
erence to the first object instance in the queue. If the queue is empty,
null is returned.

Follow: Queue, ObjectInstance, ObjectInstance -> Queue

Follow takes a reference to a queue and to two object instances and in-
serts the first object instance directly after the second object instance. It
is assumed and checked that the second object instance is a member of
the queue given as parameter, and that the first object instance is not a
member of any queue prior to the call.

IntoAsFirst: Queue, ObjectInstance -> Queue

This operator takes a reference to a queue and to an object instance and
inserts the object instance as the first object in the queue. The queue giv-
en as parameter is returned as result from the operator. It is assumed and
checked that the object instance is not a member of any queue prior to
the call.

IntoAsLast: Queue, ObjectInstance -> Queue

This operator takes a reference to a queue and to an object instance and
inserts the object instance as last object in the queue. The queue given
as parameter is returned as result from the operator. It is assumed and
checked that the object instance is not a member of any queue prior to
the call.

Note:

The operator Member is used to check that the second object instance
is member of the queue.
3170 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
LastInQueue: Queue -> ObjectInstance

This operator takes a reference to a queue as parameter and returns a ref-
erence to the last object instance in the queue. If the queue is empty,
null is returned.

Member: Queue, ObjectInstance -> Boolean

This operator takes a reference to a queue and to an object instance and
returns true if the object instance is member of the queue, otherwise it
returns false.

Precede: Queue, ObjectInstance, ObjectInstance-> Queue

Precede takes a reference to a queue and to two object instances and in-
serts the first object instance directly before the second object instance.
It is assumed and checked that the second object instance is a member
of the queue given as parameter, and that the first object instance is not
a member of any queue prior to the call.

Predecessor: ObjectInstance -> ObjectInstance

This operator takes a reference to an object instance and returns a refer-
ence to the object instance immediately before the current object in-
stance. If the object instance given as parameter is the first object in the
queue, null is returned. It is assumed and checked that the object in-
stance given as parameter is a member of a queue.

Remove: ObjectInstance -> ObjectInstance

Remove takes a reference to an object instance and removes it from the
queue it is currently a member of. A reference to the object instance is
returned as result from the operator. It is assumed and checked that the
object instance given as parameter is a member of a queue.

Successor: ObjectInstance -> ObjectInstance

This operator takes a reference to an object instance and returns a refer-
ence to the object instance immediately after the current object instance.
If the object instance given as parameter is the last object in the queue,

Note:

The operator Member is used to check that the second object instance
is member of the queue.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3171

Chapter 63 The ADT Library
null is returned. It is assumed and checked that the object instance giv-
en as parameter is a member of a queue.

NewObject: -> ObjectInstance

The literal NewObject is used as an operator with no parameters and re-
turns a reference to a new object instance, which is not member of any
queue. The data area used to represent the object instance is taken from
an avail stack maintained by the list processing sorts. Only if the avail
stack is empty new dynamic memory is allocated.

DisposeObject: ObjectInstance -> ObjectInstance

This operator take a reference to an object instance as parameter and re-
turns it to the avail stack mentioned above. DisposeObject always re-
turns the value null.

Examples of Use
In this section a number of examples will be given to give some indica-
tions of how to use the list processing “package”. The following sort
definitions are assumed to be included in the system diagram:

/*#include ’list1.pr’ */

NEWTYPE ObjectDescr /*#NAME ’ObjectDescr’*/
 STRUCT
 SysVar SysTypeObject;
 Number Integer;
 Name Charstring;
ENDNEWTYPE;

/*#include ’list2.pr’ */

Example 528: Creating a Queue –––––––––––––––––––––––––––––––

To create a new queue and insert two objects in the queue, so that the
first object has Number = 23 and Name = ’xyz’ and the second object
has Number = 139 and Name = ’Telelogic’, you could use the fol-
lowing code (assuming appropriate variable declarations):

Note:

Any references to an object instance that is returned to the available
stack are now invalid and any use of such a reference is erroneous
and has an unpredictable result.
3172 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
TASK
 Q := NewQueue,
 O1 := NewObject,
 O1!ref!Number := 23,
 O1!ref!Name := ’xyz’,
 Q := IntoAsFirst(Q, O1),
 O1 := NewObject,
 O1!ref!Number := 139,
 O1!ref!Name := ’Telelogic’,
 Q := IntoAsLast(Q, O1);

––

Example 529: Removing from Queue –––––––––––––––––––––––––––

To remove the last object instance from a queue, assuming the queue is
not empty, you could use the following code:

TASK
 O1 := Remove(LastInQueue(Q));

––

Example 530: Looking in Queue –––––––––––––––––––––––––––––––

You may look at the component Name in the first object instance in the
queue in the following way:

TASK
 O1 := FirstInQueue(Q),
 StringVar := O1!ref!Name;

or if the reference to O1 is not going to be used any further

TASK
 StringVar := FirstInQueue(Q)!ref!Name;

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3173

Chapter 63 The ADT Library
Example 531: Searching in Queue –––––––––––––––––––––––––––––

The result of the following algorithm is that O1 will be a reference to the
first object instance that has the value IntVar in the component
Number. If no such object is found O1 is assigned the value null.

TASK O1 := FirstInQueue(Q);
NextObject:
DECISION O1 /= null;
 (true) :
 DECISION O1!ref!Number /= IntVar;
 (true):
 TASK O1 := Successor(O1);
 JOIN NextObject;
 (false):
 ENDDECISION;
 (false):
ENDDECISION;

––

Example 532: Removing Duplicates from Queue –––––––––––––––––

The algorithm below removes all duplicates from a queue (and returns
them to the avail stack). A duplicate is here defined as an object instance
with the same Number as a previous object in the queue.

TASK O1 := FirstInQueue(Q);
NextObject:
DECISION O1 /= null;
 (true) :
 TASK O2 := Successor(O1);
 NextTry:
 DECISION O2 /= null;
 (true):
 DECISION O1!ref!Number = O2!ref!Number;
 (true):
 TASK Temp := O2,
 O2 := Successor(O2),
 Temp := DisposeObject (
 Remove(Temp));
 (false):
 TASK O2 := Successor(O2);
 ENDDECISION;
 JOIN NextTry;
 (false):
 TASK O1 := Successor(O1);
 JOIN NextObject;
 ENDDECISION;
 (false) :
ENDDECISION;

––
3174 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Types for List Processing
Connection to the Monitor
Trace printouts are available for the operators in this abstract data type.
By assigning a trace value greater or equal to eight (8) using the monitor
command Set-Trace, each call to an operator in this data type causes a
printout of the name of the current operator. Note that some of the op-
erators may call some other operator to perform its task.

You may use the monitor command Examine-Variable to examine the
values stored in a variable of type ObjectInstance. By typing an ad-
ditional index number after the variable Queue the value of the
ObjectInstance at that position of the queue is printed.

Accessing List Operators from C
The sorts Queue, ObjectInstance, and ObjectDescr, and all the op-
erators and the literals NewQueue and NewObject have the same name
in C as in SDL, as #NAME directives are used. The literal null is the sort
Queue and is translated to QueueNull(), while the literal null in sort
ObjectInstance is translated to ObjectInstanceNull().

In C you access a component in an ObjectInstance using the -> op-
erator:

OI_Var -> Component

As an example of an algorithm in C, consider the algorithm in
Example 531 on page 3174. A reference to the first object instance that
has the value IntVar in the component Number is computed:

#(O1) = FirstInQueue(#(Q));
while (#(O1) != ObjectInstanceNull ()) {
 if (#(O1)->Number == #(IntVar)) break;
 #(O1) = Successor(#(O1));
}

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3175

Chapter 63 The ADT Library
Abstract Data Type for Byte
In this section an abstract data type for byte, i.e. unsigned char in C,
is presented. This ADT can be used also in OS integrations and with
Cmicro. However, please see the note below.

Purpose
The purpose of this data type is of course to have the type byte and the
byte operations available directly in SDL.

The data type becomes available by including the file containing the
definition with an analyzer included in an appropriate text symbol.

Example 533: –––

/*#include ’byte.pr’ */

––

Available Operators
The following operators are available in this data type:

BAND: byte, byte -> byte

Bitwise and. Corresponds to C operator &

BOR: byte, byte -> byte

Bitwise or. Corresponds to C operator |

BXOR: byte, byte -> byte

Bitwise exclusive or. Corresponds to C operator ^

BNOT: byte -> byte

Unary not. Corresponds to C operator ~

Note:

This ADT is only provided for backward compatibility, as the new
predefined data type Octet should be used instead of Byte.
3176 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Abstract Data Type for Byte
BSHL: byte, integer -> byte

Left shift of the byte parameter the number of steps specified by the in-
teger parameter. Corresponds to C operator <<

Implementation:

(byte)((b << i) & 0xFF)

BSHR: byte, integer -> byte

Right shift of the byte parameter the number of steps specified by the
integer parameter. Corresponds to C operator >>

Implementation: (b >> i)

BPLUS: byte, byte -> byte

Byte plus (modulus 0xFF). Corresponds to C operator +

BSUB: byte, byte -> byte

Byte minus (modulus 0xFF). Corresponds to C operator -

BMUL: byte, byte -> byte

Byte multiplication (modulus 0xFF). Corresponds to C operator *

BDIV: byte, byte -> byte

Byte division. Corresponds to C operator /

BMOD: byte, byte -> byte

Byte modulus. Corresponds to C operator %

BHEX: charstring -> byte

This operator transforms a charstring (’00’ - ’ff’ or ’FF’) into a byte.
The string may be prefixed with an optional ’0x’.

I2B: integer -> byte

I2B transforms an integer in range 0 - 255 into a byte.

B2I: byte -> integer

B2I transforms a byte into an integer.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3177

Chapter 63 The ADT Library
Unsigned (and Similar) Types
There are three files called:

unsigned.pr
unsigned_long.pr
longint.pr

where three SDL sorts implemented in C as unsigned, unsigned long,
and long int may be found. All these types are in SDL implemented as
syntypes of integer. For more information please see the definitions of
the data types.

How to Obtain PId Literals
This section describes a way to obtain PId literals for static process in-
stances. PId literals will make it possible to simplify the start-up phase
of an SDL system, as direct communication (OUTPUT TO) may be
used from the very beginning. It is otherwise necessary to start sending
signals without TO, as the only PId values known at the beginning are
the Parent - Offspring relations.

Note:

These ADTs are only provided for backward compatibility, as is
recommended to use the types in the package ctypes instead. The
package ctypes is discussed first in this chapter.

Note:

This ADT cannot be used in OS integrations or with Cmicro. There
are, however, a special version for OS integrations that can be found
in the directory for the OS integration, and a special version for
Cmicro that can be found in the Cmicro installation directory.

Note:

PId literals cannot be created for processes within block types or
system types.
3178 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 How to Obtain PId Literals
Purpose
In SDL the only way to obtain a PId value is to use one of the basic
functions Self, Parent, Offspring, or Sender. Such values may then, of
course, be passed as parameters in signals, in procedure calls and in cre-
ate operations.

During system start-up there is no way to obtain the PId value for a stat-
ic process instance at the output that starts a communication session.
The receiver of the first signal must therefore be implicit, by using an
output without TO.

To be able to handle outputs without TO, in SDL-92 types and in sepa-
rate generated units, complete knowledge about the structure of chan-
nels and signal routes must be known at run-time. The same knowledge
is also necessary if we want to check that there is a path from the sender
to the receiver in an output with TO. As the information needed about
channels and signal routes requires substantial amounts of memory, it
would be nice, in applications with severe memory requirements, to be
able to optimize this.

To remove all information about channels and signal routes from a gen-
erated application means two things:

1. Output without TO cannot be used in SDL-92 types or in separate
generated units.

2. It is not possible to check that there is a path between the sender and
the receiver at an output with TO.

The second limitation is no problem as this is the way we probably want
it in a running application (during debugging the test ought to be used,
but not in the application).

The first limitation, that output without TO cannot be used, is however
more difficult. In an SDL system not using the OO concepts (block type,
process type, and so on) and not using separate generation there are no
problems, but otherwise such outputs are necessary at the system start-
up phase to establish communication between processes in different
blocks. The purpose of this abstract data type is to provide a way to es-
tablish PId literals and thereby to be able to avoid outputs without TO.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3179

Chapter 63 The ADT Library
The Data Type PIdLit

The data type PIdLit contains the following operators:

PId_Lit : xPrsIdNode -> PId;
PId_Lit : xPrsIdNode -> PIdList;
PId_Lit : xPrsIdNode, Integer -> PId;

In the file containing the data type (pidlist.pr) there is also a syn-
onym that you may use to access the environment:

SYNONYM EnvPId PId = ...;

The type xPrsIdNode corresponds to the C type xPrsIdNode, which is
used to refer to the process nodes in the symbol table tree built up by a
generated application.

Use the first version of PId_Lit to obtain a synonym referring to the
process instance of a process instance set with one initial instance.

Use the second version of PId_Lit to obtain a synonym of array type
referring to the process instances of a process instance set with several
initial instances.

Use the third version of PId_Lit to obtain a synonym referring to one
of the process instances of a process instance set with several initial in-
stances.

Caution!

The PIdLit data type should only be used in the way described here
to introduce synonyms referring to static process instances. Other
usage may not work!

If you are using this data type in a system that is to be validated us-
ing the SDL Validator there are two additional requirements:

• Only process types with the number of instances equal to (N,N)
for N>0, may be referenced in PId_Lit operators.

• No process type with the number of instances equal to (N,N) for
N>0, may contain a Stop symbol, independently if a PId_Lit op-
erator is used for the process type or not.
3180 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 How to Obtain PId Literals
To introduce PId literals implemented as SDL synonyms, follow the
steps below:

1. Include the file pidlist.pr, which contains the implementation of
the PIdList type, among the declarations in the system:

/*#include ’pidlist.pr’ */

2. Identify which process instance sets that should have PId literals.

3. Introduce #NAME directives for these process instance sets.

4. Insert a #CODE directive among the declarations in the system. If.
however, separate generation is not used, this #CODE directive need
not be included.

/*#CODE
#HEADING
extern XCONST struct xPrsIdStruct
 yPrsR_ProcessName1;
extern XCONST struct xPrsIdStruct
 yPrsR_ProcessName2;
extern XCONST struct xPrsIdStruct
 yPrsR_ProcessName3;
*/

There should be an external definition for each process instance set
identified in step 2. ProcessNameX should be replaced by the name
introduced in the #NAME directives for the processes.

5. For each process instance set that should have PId literals, introduce
the following synonym definition in the system diagram.

If the process type has one initial instance:

 SYNONYM Name1 PId =
 PId_Lit(#CODE(’&yPrsR_ProcessName1’));

If the process type has several initial instances:

 SYNONYM Name2 PIdList =
 PId_Lit(#CODE(’&yPrsR_ProcessName2’));

If the process type has several initial instances, but only one of
them should be possible to refer to by a synonym:

 SYNONYM Name3 PId =
 PId_Lit(#CODE(’&yPrsR_ProcessName3’), No);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3181

Chapter 63 The ADT Library
where No should be the instance number, that is, if No is 2, then the
synonym Name3 should refer to the second instance of the process
type.

Of course, you may choose the names of the synonyms, but the
string in the #CODE directive should be the xPrsIdNode variables in
the extern definitions discussed in step 4 above.

6. You may now use the synonyms of type PId that you defined in step
5 in expressions of PId type, for example as a receiver in the TO
clause in an output. The synonym EnvPId, which refers to an envi-
ronment process instance, can be used in the same way.

Synonyms of type PIdList may be indexed (as an array) by an in-
teger expression to obtain a PId value and may then be used in the
same way as the synonyms of type PId. Indexes should be in the
range 1 to the number of initial instances.

Example 534: PIdList Data Type –––––––––––––––––––––––––––––––

OUTPUT Sig1 TO Name1;
OUTPUT Sig2 TO Name2(2);
OUTPUT Sig3 TO Name2(InstNo);
OUTPUT Sig4 TO EnvPId;
DECISION (Name3 = Sender);
TASK PId_Variable := Name2(1);

where InstNo is an integer variable or synonym and
PId_Variable is a variable of type PId.

––

Note:

Note that no index check will be performed when indexing a PIdList
synonym.
3182 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 General Purpose Operators
General Purpose Operators

Introduction
The abstract data type IdNode described in this section introduces a
number of operators that may be used to simplify an SDL system. The
simplifications will give both reduced code size and higher speed of ex-
ecution for your application, as well as make debugging easier. This
ADT cannot be used in OS integrations or with Cmicro.

The operators may be grouped into two groups:

• “Almost SDL operations”, that is, operators that are easy to under-
stand in an SDL context, but which are not available in SDL. Exam-
ples are the possibility to enumerate all active instances of a certain
process instance set, or to count the number of signals in an input
port.

• Operators that handle implementation aspects. An example is an op-
erator to reuse memory in avail lists.

Type IdNode
This abstract data type becomes available by inserting the analyzer in-
clude:

/*#include ’idnode.pr’*/

This abstract data type file introduces three SDL sorts called
PrsIdNode, PrdIdNode, and SignalIdNode in SDL. These sort cor-
respond to the types xPrsIdNode, xPrdIdNode, and xSignalIdNode
in C, which are used to represent the symbol table in the generated ap-
plication. The symbol table, which is a tree, will contain the static infor-
mation about the SDL system during the execution of the generated pro-
gram.

Caution!

Be very careful using these operators, as you will then not be design-
ing true SDL systems.

If the SDL description is a goal in itself you should not use the op-
erators. If the SDL system is just a means to obtain something else,
an application for example, the operators may be very useful.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3183

Chapter 63 The ADT Library
Is is possible to refer to processes, procedures, and signals (among oth-
ers) using the following the names:

yPrsN_ProcessName or &yPrsR_ProcessName
yPrdN_ProcedureName or &yPrdR_ProcedureName
ySigN_SignalName or &ySigR_SignalName

where ProcessName, ProcedureName, and SignalName should be re-
placed by the name of the process, procedure, or signal with prefix, or
by the name given to the unit in a #NAME directive. To obtain a name of
a unit with prefix the directive #SDL may be used:

yPrsN_#(ProcessName) or &yPrsR_#(ProcessName)

To avoid problems when separate generation is to be used, the
&yPrsR_... syntax is recommended.

The #SDL directive is not always possible to use. It will look for an en-
tity with the specified name in the current scope unit (where the #SDL
directive is used) and outwards in the scope hierarchy. So, for example,
if the reference for a process is to be used in a process defined in another
block, a #SDL directive cannot be used for the referenced process. The
name of the referenced process ought then to be given in a #NAME direc-
tive.

If separate generation is used there may be more problems to access
these references. The variables will be defined in the compilation unit
where the entity they represent is defined.

• The xPrsIdNode for a process will be defined in the file containing
the code for the block enclosing the process.

• The xPrdIdNode for a procedure will be defined in the file contain-
ing code for the enclosing unit.

• The xSignalIdNode for a signal will be defined in the file contain-
ing code for the enclosing system, block, or process.

A reference is visible in the compilation unit (file) where it is defined
and in all subunits to the unit, as a compilation unit will include the .h
file of all its parent units.

Problems occur when we want to use a reference in a place where it is
not visible, for example using an xPrsIdNode for a process defined in
a separate block, in a process in another block. All references are, how-
ever, extern, which makes it possible for a user to introduce an appro-
3184 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 General Purpose Operators
priate extern definition (in a #CODE directive) himself in the compila-
tion units where it is needed.

Example 535 –––

/*#CODE
#HEADING
extern XCONST struct xPrsIdStruct yPrsR_ProcessName;
*/

––

To know the name of the referenced process, a #NAME directive ought to
be used.

Available Operators

GetIdNode: PId -> PrsIdNode;

This operator takes a PId value and returns a reference to the
PrsIdNode that represents the process type. PrsIdNode values are not
useful for anything except as parameters to the operators discussed here.

Kill: PId -> PId;

The Kill operator can be used to stop another process instance. In SDL
a process instance may only stop itself. This operator has exactly the
same effect as if the process instance given as parameter executed a stop
operation. The Kill operator always returns the value null.

KillAll: PrsIdNode -> Integer;

This operator takes a reference to an PrsIdNode representing a process
type and will kill all the instances of the specified process type. The ef-
fect is the same as if all the instances executed stop operations. The op-
erator returns the number of “killed” process instances.

FirstPId: PrsdNode -> PId;

See “SucPId: PId -> PId;” on page 3186 (next).

Note:

Such extern definitions introduce dependencies between otherwise
independent compilation units. It is your responsibility completely
to maintain these dependencies.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3185

Chapter 63 The ADT Library
SucPId: PId -> PId;

This operator, together with FirstPId, are intended to be used to enumer-
ate all process instances of the process type referenced by the
PrsIdNode given as parameter to FirstPId. FirstPId should be giv-
en a reference to an PrsIdNode for a process type and returns the first
(last created) process instance. SucPId should be given a PId value and
will return the next PId for the given process type.

InputPortLength: PId -> Integer;

This operator returns the number of signals in the input port of the given
process instance.

InputPortLength: PId, SignalIdNode -> Integer;

This operator returns the number of signals, of the signal type given as
IdNode parameter, that are present in the input port of the given process
instance. The SignalIdNode parameter should refer to a
SignalIdNode that represents a signal or a timer.

NoOfProcesses: PrsIdNode -> Integer;

This operator should be given a reference to an PrsIdNode representing
a process instance set and will return the number of active instances of
this instance set.

IsStopped: PId -> Boolean;

The operator may be used to determine if a PId value refers to a process
instance that is active or has executed a stop operation.

Broadcast: PrsIdNode, SignalIdNode, PId -> Integer;

This operator may be used to send one signal (without parameters) to
each active process instance of a specified process instance set. The val-
ue of the third parameter, of type PId, will be used as sender in the sig-
nals. The result of the operator is the number of signals that are sent dur-

Note:

During the enumeration of the process instances, no action that stops
any instance of the enumerated process type may be executed.

This means, for example, that the complete enumeration should take
place in one transition and that Kill operations should not be used
in the enumeration.
3186 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 General Purpose Operators
ing this operation, i.e. the number of active process instances of the
specified type.

FreeAvailList: PrsIdNode -> Integer and PrdIdNode -> Integer
and SignalIdNode -> Integer

The operator takes a reference to an IdNode (of one of the three type
above) that represents a process, a procedure, or a signal and returns the
memory in the avail list for the specified IdNode to the free memory by
calling the sctOS function xFree. The function xFree uses the C stan-
dard function ’free’ to release the memory. The FreeAvailList opera-
tor requires thus that free really releases the memory in such a way that
it can be reused in subsequent memory allocations. Otherwise the oper-
ator is meaningless.

FreeAvailList is intended to be applied for reusing memory allocated
for processes, procedures, and signals used only during a start-up phase.
If the system, for example, contains a process used only during start-up,
that is, all instances of this process perform stop actions early during the
execution and no more processes will be created later, then the memory
for these instances can be reused.

Connection to Monitor
In the trace output, operators like Kill and Broadcast will produce
trace messages exactly in the same way as the equivalent Stop opera-
tion and the sequence of Output operations.

Note:

When you use this operator you hide signal sending in an expression
in, for example, a task. This will decrease the readability of your
SDL description, and should be well documented, at least with a
comment.

Note:

The FreeAvailList operator has no meaning in the SDL Validator. It
can be used but will in the Validator be a null action.

Caution!

This operator should only be used as one of the last resorts in the
process of minimizing the memory requirements of an application.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 3187

Chapter 63 The ADT Library
Summary of Restrictions
The table below summarizes the restrictions concerning the usability of
the various Abstract Data Types that are delivered with the SDL suite.

Table Legend:

✓ Compatible

✟ Incompatible

☛ Meaningless combination, or restrictions. See the respective
section for more information.

Sim.
Real-
Time
Sim.

Perf.
Sim.

Sim.
with
env.

Appl.
with
Cadv.

Valid.

list1, list2 ✓ ✓ ✓ ✓ ✓ ✟

file ✓ ✓ ✓ ✓ ☛ ☛

random ✓ ✓ ✓ ✓ ✓ ☛

pidlist ✓ ✓ ✓ ✓ ✓ ☛

idnode ✓ ✓ ✓ ✓ ✓ ✓

byte ✓ ✓ ✓ ✓ ✓ ✓

longint ✓ ✓ ✓ ✓ ✓ ✓

unsigned ✓ ✓ ✓ ✓ ✓ ✓

unsigned_long ✓ ✓ ✓ ✓ ✓ ✓
3188 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	63 The ADT Library
	General
	Integration with C Data Types
	Charstar
	Voidstarstar
	Carray
	Ref

	Abstract Data Type for File Manipulations and I/O
	The ADT TextFile
	Purpose
	Summary of Operators
	File Handling Operators
	Operator Behavior
	FileName
	GetAndOpenR – GetAndOpenW
	OpenR – OpenW – OpenA
	Close
	Flush
	IsOpened
	AtEOF
	AtLastChar
	Examples of Use

	Write Operators
	Operator Behavior

	Read Operators
	Operator Behavior

	Accessing the Operators from C

	Abstract Data Type for Random Numbers
	Purpose
	Available Operators
	Random (RandomControl)
	Erlang (Mean, N, RandomControl)
	HyperExp2 (Mean1, Mean2, Alpha, RandomControl)
	NegExp (Mean, RandomControl)
	Uniform (Low, High, RandomControl)
	Draw (Alpha, RandomControl)
	Geometric (p, RandomControl)
	Poisson (m, RandomControl)
	RandInt (Low, High, RandomControl)
	DefineSeed (Integer) -> RandomControl
	Seed (RandomControl) -> Integer
	GetSeed (Prompt) -> Integer

	Using the Data Type
	Trace Printouts
	Accessing the Operators from C

	Abstract Data Types for List Processing
	Purpose
	Definitions

	Available Sorts
	Available Operators
	Operators in the Sort Queue
	Operators in the Sort ObjectInstance
	NewQueue: -> Queue
	Cardinal: Queue -> Integer
	DisposeQueue: Queue -> Queue
	Empty: Queue -> Boolean
	FirstInQueue: Queue -> ObjectInstance
	Follow: Queue, ObjectInstance, ObjectInstance -> Queue
	IntoAsFirst: Queue, ObjectInstance -> Queue
	IntoAsLast: Queue, ObjectInstance -> Queue
	LastInQueue: Queue -> ObjectInstance
	Member: Queue, ObjectInstance -> Boolean
	Precede: Queue, ObjectInstance, ObjectInstance-> Queue
	Predecessor: ObjectInstance -> ObjectInstance
	Remove: ObjectInstance -> ObjectInstance
	Successor: ObjectInstance -> ObjectInstance
	NewObject: -> ObjectInstance
	DisposeObject: ObjectInstance -> ObjectInstance

	Examples of Use
	Connection to the Monitor
	Accessing List Operators from C

	Abstract Data Type for Byte
	Purpose
	Available Operators
	BAND: byte, byte -> byte
	BOR: byte, byte -> byte
	BXOR: byte, byte -> byte
	BNOT: byte -> byte
	BSHL: byte, integer -> byte
	BSHR: byte, integer -> byte
	BPLUS: byte, byte -> byte
	BSUB: byte, byte -> byte
	BMUL: byte, byte -> byte
	BDIV: byte, byte -> byte
	BMOD: byte, byte -> byte
	BHEX: charstring -> byte
	I2B: integer -> byte
	B2I: byte -> integer

	Unsigned (and Similar) Types
	How to Obtain PId Literals
	Purpose
	The Data Type PIdLit

	General Purpose Operators
	Introduction
	Type IdNode
	Available Operators
	GetIdNode: PId -> PrsIdNode;
	Kill: PId -> PId;
	KillAll: PrsIdNode -> Integer;
	FirstPId: PrsdNode -> PId;
	SucPId: PId -> PId;
	InputPortLength: PId -> Integer;
	InputPortLength: PId, SignalIdNode -> Integer;
	NoOfProcesses: PrsIdNode -> Integer;
	IsStopped: PId -> Boolean;
	Broadcast: PrsIdNode, SignalIdNode, PId -> Integer;
	FreeAvailList: PrsIdNode -> Integer and PrdIdNode -> Integer and SignalIdNode -> Integer

	Connection to Monitor

	Summary of Restrictions

