Replication

Brian Nielsen
bnielsen@cs.aau.dk

Service Improvements

* Replication is a key technology to enhance
S e rVI Ce Replicated

< , service

e Performance enhancement
— Load-balance
— Proximity-based response

— Example
e caches in DNS servers / file servers (NFS/AFS)
 replicated web servers

A 4

Service Improvements

Increase availabllity

— Server failures, Network partitions

— Avallability (Uptime): 1 — p™

— The avalilability of the service that have n replicated
servers each of which would crash in a probability of p

N (p=0.05)

Availability

Down time

1

95%

18 days/Y

2

99.75%

lday/Y

3

99.99

1h/Y

4

99.999

3min/Y

Fault tolerance

— Guarantee strictly correct behavior despite a certain
number and type of faults

— Strict data consistency between all replicated servers

Basic Architectural Model

« Requirements

— Transparency: no need to be aware of multiple
replicas.

— Consistency: data consistency among replicated files.

«—p Front ¢) Replica
End Manger
Replica
Manger
Front |¢«—
End Replica
Manger

Operations

Client performs operations on a
replicated object obj.m(...)
— Executed atomically

“state machine objects”: state
depends only on initial state and
sequence of operations

(deterministic function) a.interest(10%)
— Precludes that operations depend on
external inputs such as system clock @

and sensor values
Updates vs. queries (read-only)

Single operations vs. sequence
(transactions (15.5))

Basic Architectural Model

*Requirements
—Transparency: no need to be aware of multiple replicas.
—Consistency: data consistency among replicated files.

«——p Front
End

Front
End

—

Replica
Manger

Replica

Manger
Replica
Manger

General Phases in an Replication alg.:

1.

Request: send a client request to a
manager.

Coordination: decide on delivery
order of the request.

Execution: process a client request
but not permanently commit it.

Agreement: agree on outcome and
If the execution will be committed

Response: respond to the front end

Fault Tolerance

Fault-tolerance

 Provide uninterrupted correct service
even In the presence of server failures

* A service based on replication is correct if
It keeps responding despite failures,

e and If clients cannot tell the difference
between the service they obtain form an
Implementation with replicated data and
one provided by a single correct replica
manager (Consistency).

An example of iInconsistency

between two replications
e Each of computer A and B maintains replicas of two
bank accounts x and y

 Client accesses any one of the two computers,
updates synchronized between the two computers

Synchronize

Y

X

Server B

Client 2 Client 1

An example of iInconsistency
between two replications
Initially x=y=%$0

Client1: Client2:

setBalanceg(x,1)

Server B failed...

setBalance,(y,2)

getBalance,(y)=2

getBalance,(x)=0

* Inconsistency happens since computer B fails
before propagating new value to computer A

Linearizability (Lamport)

* The Interleaved sequence of operations
— Assume client j performs operations: 0,,,0,4,0;,, - - -

10’

— Then a sequence of operations executed on one replica
that issued by two clients may be: 0,,,0,4,0,5,055,04, ...

 Linearizability criteria
— The interleaved sequence of operations meets the
specification of a (single) correct copy of the objects

— The order of operations in the interleaving is consistent
with the real times at which the operations occurred in
the actual execution

Physical time

Linearizability

 Rule:
— m; must be delivered before m; if T, < T,

* Implementation:
T, — A clock synchronized among machines

— A sliding time window used to commit
message delivery whose timestamp is in
this window.

j » Drawback

— Too strict constraint
— No absolute synchronized clock
— No guarantee to catch all tardy messages

Sequential consistency

(Lamport)
e Sequential consistency criteria

— The interleaved sequence of operations meets
the specification of a (single) correct copy of the
objects

— The order of operations In the interleaving is
consistent with the program order in which each
Individual client executed them

e Client 1: 044,044, - ..
e Client 2: 055,054,05,, ...
» Consistent order 0,5,0,4,0,5,055,044, ...

An example of sequential
consistency

Real

Initially x=y=%$0 Time Logical
Client1: Client2: Order sequence
setBalanceg(x, 1) 3
getBalance,(y)=0 1
getBalance ,(x)=0 2
setBalance,(y,2) v 4

* An Interleaving operations at server A:

getBalance ,(y)=0,getBalance ,(x)=0,setBalanceg(x,1),; setBalance(y,2)

— Does Not satisfy linearizability
— Satisfy sequential consistency

Multi-copy Update Problem

 Read-only replication
— Allow the replication of only immutable files.

* Primary backup replication

— Designate one copy as the primary copy and all the
others as secondary copies.

e Active backup replication

— Access any or all of replicas
» Read-any-write-all protocol
» Available-copies protocol
* Quorum-based consensus

Primary-Backup (Passive)
Replication

«—| Front Replica
End Manger/| 2.
Primary

Backup

Front \A 4.
End Replica
Manger

Backup

5.

Request: The front end sends a
request to the primary replica.

Coordination:. The primary takes
the request atomically.

Execution: The primary executes
and stores the results.

Agreement: The primary sends the
updates to all the backups and
receives an ack from them.

Response: reply to the front end.

Advantage: an easy implementation, linearizable, coping with n-1 crashes.
Disadvantage: large overhead especially if the failing primary must be

replaced with a backup

Reading from backups => sequential consistency
Handover: agree on performed operations, and elect unique new primary!

(View-synchrounous group communication)

1. Request: The front end RTO-
multicasts to all replicas.

2. Coordination:. All replica take the

Active Replication
request in the sequential order.

Replica
Manger
3. Execution: Every replica executes

the request.
Replica
Manger/ | 4. Agreement: No agreement needed.

5. Response: Each replies to the front.

Advantage: achieve sequential consistency,
cope with (n/2 — 1) byzantine failures using majority + message signing

Disadvantage: no more linearizable, RMs are state machines

Read-Any-Write-All Protocol

@—‘

Front
End

Write to all of them

@—’

Front
End

Replica
Manger
Replica
Manger

Replica
Manger

Read

— Perform read at any one of the
replicas

Write
— Perform on all of the replicas
Seqguential consistency

Cannot cope with even a single
crash (by definition)

Available-Copies Protocol

Front
End

@—‘

Write to all available

St

Front
End

Replica
I Manger
\\ ~ g

\ “‘
Replica
Manger
"‘ ®

Read

— Perform on any one of the
replicas

Write

— Perform on all available
replicas

Recovering replica

— Bring itself up to date by
coping from other servers

before accepting any user
request.

Better availability

Cannot cope with network
partition. (Inconsistency in two
sub-divided network groups)

Quorum-Based Protocols

Quorum Constriants
1. Intersecting R/W #replicas in read quorum + #replicas in write quorum > n
2. Write majority: #replicas in write quorum > n/2

e Read

" Read quordii - — Retrieve the read quorum

@ — Select the one with the latest
o1 Mange anger | _Mange version.
@ Frong :, Y g : g

\

End | ; — Perform aread on it

2 Replice « Write
Nange ange — Retrieve the write quorum.

@ o= — Find the latest version and
End ' I
increment it.
—Keptic: Replica . :
w ange — Perform a write on the entire
write quorum.

_ If a sufficient number of replicas
Read-any-write-all: r =1, w =n from read/write quorum fails, the
operation must be aborted.

&2
1)

Nrite quorun

High Availability

High availability vs. fault

tolerance
e Fault tolerance

— Strict (sequential) consistency

e all replicas reach agreement before passing control
to client

 High availability
— ODbtain access to a service for as much time as possible
— Reasonable Response time

— Relaxed consistency (lazy update)
* Reach consistency until next access
 Reach agreement after passing control to client

— Eg: Gossip, Bayou, Coda

Operations In a gossip service

Service

9035|p

Query, prev Val new Update, prev |Update id
Vector
timestamps

Query| y Val Update

Clients

Basic Gossip Operation

Perform operations in causal order
TI are vector time-stamps

If (Tj > Tk)
update RMk
else
discard the gossip message

RMi

Query, Tf lVa|ue, 1i Update, Tl | ypdate id

FE
If (Tf < Ti) () FE If (Tf > Tj))
return value ' update RMj
else { Query | Value Update else {

waits for RMi to be updated @ @ update Client
or or

query RMj/RMk} ignore and update RMj}

Phases in Gossip
Request

— The front end sends the request to a replica manager
* Query: client may be blocked
« Update: unblocked
Coordination
— Suspend the request until it can be apply
« May receive gossip messages that sent from other replica managers
Execution
— The replica manager executes the request

Agreement

— exchange gossip messages which contain the most recent updates
applied on the replica

« Exchange occasionally

* Ask the particular replica manager to send when some replica manager
finds it has missed one

Response
— Query: Reply after coordination
— Update: Replica manager replies immediately

(Recall) Vector Clocks

Lamport: e =2 f implies C(e) < C(f)
Vector clocks: e =2 f iff C(e) < C(f)

vector timestamps: Each node maintains
an array of N counters

Vi] is the local clock for process p.

In general, V] is the latest info the node
has on what p;'s local clock is.

Implementation Rules

o [VC1] Initially V[j]=0 fori,) = 1...N

* [VC2] Before P; timestamps an event:
V] == Vi[i] +1

» [VC3] P, sends m: piggy-back timestamp t=V::
m'=<m, t>

 [VC4](Merge) P, receives m'=<m, t>
Vill] :==max(Vill] , t;[1])

Comparison of Vector Clocks

Comparing vector clocks

e V=V Iiff V[j]=V'[j]forall j=1,2,...,N.
o« V= VIt V[j] = V'[]]for all j=1,2,...,N.
e V<Viff VSV and V£ V"

Vector clocks illustrated

(1,0,0) (2,0,0)
®

a I\
\2:10) (2,2,0)

(.0,0,1) (22.2)

9]
e f

NOTE e and b are not related

Physical
time

The front end’s version timestamp

e Client Communication

— Access the gossip service
o Update any set of RMs
 Read from any RM

— Communicate with other clients directly

 Causal Updates

— A vector timestamp at each front end contains an entry
for each replica manager

— Attached to every message sent to the gossip service or
other front ends

— When front end receives a message

* Merge the local vector timestamp with the timestamp in the
message

 Front end Vector timestamp:

— Reflect the version of the latest data values accessed by
the front end

Gossip Manager State

Other‘rephca managers

Gossip
messages

C

-
—_—
-
-
—

timestamp

‘ Replica

—
-
-
—
—
-
-—

-
-
-
-

Replica manager

| Timestamp table |

| Replica timestamp I

I I |Update|og| |

—
-~ -— -
—
—
—

| Value timestamp |
Stable |

ﬁ
updates

Value |

| Executed operation table |

— o

i
—
—
-—
—
—
—
—

Replica Manager State

Value

Value timestamp

— Represent the updates that are reflected in the value

— E.g., (2,3,5): the replica has received 2 updates from 1st FE, 3
updates from 2nd FE, and 5 updates from 3rd FE

Update log

— Record all received updates; stable update; gossip propagated

Replica timestamp

— Represents the updates that have been accepted by the replica
manager

Executed operation table

— Filter duplicated updates that could be received from front end and
other replica managers

Timestamp table

— Contain a vector timestamp for each other replica manager to
identify what updates have been applied at these replica managers

Queries

 \When the query q reach the RM

—If g.prev <=valueTS

* Return immediately

e The timestamp in the returned message is valueTS
— Otherwise

* Pend the query in a hold-back queue until the
condition Is satisfied

 E.g. valueTS = (2,5,5), q.prev=(2,4,6): one update
from replica manager 2 i1s missing

 When query return
— frontEnd TS:= merge(frontEndTS, valueTS)

Causal Update 1

A front end sends the update as

— <u.op(par-list), u.prev, u.id>
* u.prev. the timestamp of the front end

 When replica manager i receives the update

— Discard
« If the update has been in the executed operation table or is in the
log
— Otherwise, save it in the log
* Replica timestamp[i]++
 logRecord=<i, ts, u.op, u.prev, u.id>
— Where ts =u.prev, tsfi]=replica timestampl[i]

— Pass ts back to the front end
o frontEndTS=merge(frontEndTS, ts)

Causal Update 2

* Check If the update becomes stable
—u.prev <=valueTS
— Example: a stable update at RM O
e 15s=(3,3,4), u.prev=(2,3,4), valueTS=(2,4,6)
* Apply the stable update
— Value = apply(value, r.u.op)
— valueTS = merge(valueTsS, r.ts) (3,4,6)
— executed = executed \J{r.u.id}

Sending Gossip

« Exchange gossip message

— Estimate the missed messages of one replica
manager by its timestamp table

— Exchange gossip messages periodically or
when some other replica manager ask

 The format or a gossip message
—<m.log,m.ts>

— m.log: one or more updates Iin the source
replica manager’s log

— m.ts: the replica timestamp of the source replica
manager

Recelving Gossip 1

1. Check therecord rin m.log

— Discard if r.ts <= replicaTS

« The record r has been already in the local log or has been
applied to the value

— Otherwise, insert r in the local log
 replicaTS = merge (replicaTS, m.ts)
2. Find out the stable updates

— Sort the updates log to find out stable ones, and apply
to the value according to the “<” (thus happens-before)
order

3. Update the timestamp table

— If the gossip message is from replica manager J, then
table TS[j]=m.ts

Recelving Gossip 2

e Discard useless (have been received
everywhere) update rin the log
—If table TS]ij[c] >= r.ts[c], then discard r
* c IS the replica manager that created r
e Forall j rm0 {2,4,6}

rml {2,3,6}
rm2 {2,5,6}

logRecord {i,ts,u.op,u.prev,u.id}

Gossiping

 How often to exchange gossip messages?
— Minutes, hours or days
* Depend on the requirement of application
 How to choose partners to exchange?
— Random

— Deterministic

 Utilize a simple function of the replica manager’s
state to make the choice of partner

— Topological
 Mesh, circle, tree

Discussion of GossIp
architecture

the gossip architecture is designed to provide a highly available
service

clients with access to a single RM can work when other RMs are
inaccessible

— but it is not suitable for data such as bank accounts

— itis inappropriate for updating replicas in real time (e.g. a conference)

scalability
— as the number of RMs grow, so does the number of gossip messages
— for R RMs, the number of messages per request (2 for the request and
the rest for gossip) =2 + (R-1)/G
* G is the number of updates per gossip message

* increase G and improve number of gossip messages, but make latency
worse

» for applications where queries are more frequent than updates, use some
read-only replicas, which are updated only by gossip messages

Optimistic approaches

* Provides a high availability by relaxing the
consistency guarantees

e When conflicts are rare

« Detect conflicts
— Relies domain specific conflict detection and

resolution
— Inform user
° Eg
— Bayou data replication service
— CODE file system

END

