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Service Improvements
• Replication is a key technology to enhance 

service

• Performance enhancement
– Load-balance
– Proximity-based response
– Example

• caches in DNS servers / file servers (NFS/AFS)
• replicated web servers
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Service Improvements
• Increase availability

– Server failures, Network partitions
– Availability (Uptime): 1 – pn: 

– The availability of the service that have n replicated 
servers each of which would crash in a probability of p

• Fault tolerance
– Guarantee strictly correct behavior despite a certain 

number and type of faults
– Strict data consistency between all replicated servers
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Basic Architectural Model
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• Requirements
– Transparency: no need to be aware of multiple 

replicas.
– Consistency: data consistency among replicated files.



Operations
• Client performs operations on a 

replicated object obj.m(…)
– Executed atomically

• “state machine objects”: state 
depends only on initial state and 
sequence of operations 
(deterministic function)
– Precludes that operations depend on 

external inputs such as system clock 
and sensor values 

• Updates vs. queries (read-only)

• Single operations vs. sequence 
(transactions (15.5))
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Basic Architectural Model

General Phases in an Replication alg.:
1. Request: send a client request to a 

manager.
2. Coordination: decide on delivery 

order of the request. 
3. Execution: process a client request 

but not permanently commit it.
4. Agreement: agree on outcome and 

if the execution will be committed
5. Response: respond to the front end
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•Requirements
–Transparency: no need to be aware of multiple replicas.
–Consistency: data consistency among replicated files.



Fault Tolerance



Fault-tolerance

• Provide uninterrupted correct service 
even in the presence of server failures

• A service based on replication is correct if 
it keeps responding despite failures,

• and if clients cannot tell the difference 
between the service they obtain form an 
implementation with replicated data and 
one provided by a single correct replica 
manager (Consistency).



• Each of computer A and B maintains replicas of two 
bank accounts x and y

• Client accesses any one of the two computers, 
updates synchronized between the two computers

Server A

X Y

Server B

X YSynchronize

Client 2 Client 1

An example of inconsistency 
between two replications



An example of inconsistency 
between two replications

• Inconsistency happens since computer B fails 
before propagating new value to computer A

Client1:

setBalanceB(x,1)
Server B failed…

setBalanceA(y,2)

Client2:

getBalanceA(y)=2

getBalanceA(x)=0

Initially x=y=$0



• The interleaved sequence of operations
– Assume client i performs operations: oio,oi1,oi2,…
– Then a sequence of operations executed on one replica 

that issued by two clients may be: o20,o21,o10,o22,o11,…

• Linearizability criteria
– The interleaved sequence of operations meets the 

specification of a (single) correct copy of the objects
– The order of operations in the interleaving is consistent 

with the real times at which the operations occurred in 
the actual execution

Linearizability (Lamport) 



Linearizability

• Rule:
– mi must be delivered before mj if Ti < Tj

• Implementation:
– A clock synchronized among machines
– A sliding time window used to commit 

message delivery whose timestamp is in 
this window.

• Drawback
– Too strict constraint
– No absolute synchronized clock
– No guarantee to catch all tardy messages
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• Sequential consistency criteria
– The interleaved sequence of operations meets 

the specification of a (single) correct copy of the 
objects

– The order of operations in the interleaving is 
consistent with the program order in which each 
individual client executed them

• Client 1: o10,o11,…
• Client 2: o20,o21,o22,…
• Consistent order o20,o21,o10,o22,o11,…

Sequential consistency 
(Lamport)



An example of sequential 
consistency

• An interleaving operations at server A: 
getBalanceA(y)=0;getBalanceA(x)=0;setBalanceB(x,1); setBalanceA(y,2)

– Does Not satisfy linearizability
– Satisfy sequential consistency

Client1:

setBalanceB(x,1)

setBalanceA(y,2)

Client2:

getBalanceA(y)=0

getBalanceA(x)=0

Initially x=y=$0
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Multi-copy Update Problem

• Read-only replication
– Allow the replication of only immutable files.

• Primary backup replication
– Designate one copy as the primary copy and all the 

others as secondary copies.
• Active backup replication

– Access any or all of replicas
• Read-any-write-all protocol
• Available-copies protocol
• Quorum-based consensus



Primary-Backup (Passive) 
Replication
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1. Request: The front end sends a 
request to the primary replica.

2. Coordination:. The primary takes 
the request atomically.

3. Execution: The primary executes 
and stores the results.

4. Agreement: The primary sends the 
updates to all the backups and 
receives an ack from them.

5. Response: reply to the front end.

Advantage: an easy implementation, linearizable, coping with n-1 crashes.
Disadvantage: large overhead especially if the failing primary must be 
replaced with a backup 
Reading from backups => sequential consistency
Handover: agree on performed operations,  and elect unique new primary! 

(View-synchrounous group communication)



Active Replication

1. Request: The front end RTO-
multicasts to all replicas.

2. Coordination:. All replica take the 
request in the sequential order.

3. Execution: Every replica executes 
the request.

4. Agreement: No agreement needed.
5. Response: Each replies to the front.
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Advantage: achieve sequential consistency, 
cope with (n/2 – 1) byzantine failures using majority + message signing
Disadvantage: no more linearizable, RMs are state machines 



Read-Any-Write-All Protocol

• Read
– Perform read at any one of the 

replicas
• Write

– Perform on all of the replicas
• Sequential consistency
• Cannot cope with even a single 

crash (by definition)
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Available-Copies Protocol
• Read

– Perform on any one of the 
replicas

• Write
– Perform on all available

replicas
• Recovering replica

– Bring itself up to date by 
coping from other servers 
before accepting any user 
request.

• Better availability
• Cannot cope with network 

partition. (Inconsistency in two 
sub-divided network groups)
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Quorum-Based Protocols
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Quorum Constriants
1. Intersecting R/W #replicas in read quorum + #replicas in write quorum > n
2. Write majority: #replicas in write quorum > n/2

• Read
– Retrieve the read quorum
– Select the one with the latest 

version.
– Perform a read on it

• Write
– Retrieve the write quorum.
– Find the latest version and 

increment it.
– Perform a write on the entire 

write quorum.
• If a sufficient number of replicas 

from read/write quorum fails, the 
operation must be aborted.

Read-any-write-all: r = 1, w = n



High Availability



• Fault tolerance
– Strict (sequential) consistency

• all replicas reach agreement before passing control 
to client

• High availability
– Obtain access to a service for as much time as possible
– Reasonable Response time
– Relaxed consistency (lazy update)

• Reach consistency until next access
• Reach agreement after passing control to client

– Eg: Gossip, Bayou, Coda

High availability vs. fault 
tolerance



Operations in a gossip service
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Basic Gossip Operation

RMk

RMj
(Tj)

RMi
(Ti)

FE
(Tf)

Client

FE

Client

Query

Query, Tf Value, Ti

Value

Update, Tf

Update

Update id

Gossip

If (Tf < Ti)
return value

else {
waits for RMi to be updated
or 
query RMj/RMk}

If (Tf > Tj)
update RMj

else {
update Client
or 
ignore and update RMj}

If (Tj > Tk)
update RMk

else
discard the gossip message

Ti are vector time-stamps
Perform operations in causal order



• Request
– The front end sends the request to a replica manager

• Query: client may be blocked
• Update: unblocked

• Coordination
– Suspend the request until it can be apply

• May receive gossip messages that sent from other replica managers
• Execution

– The replica manager executes the request
• Agreement

– exchange gossip messages which contain the most recent updates 
applied on the replica

• Exchange occasionally
• Ask the particular replica manager to send when some replica manager 

finds it has missed one
• Response

– Query: Reply after coordination
– Update: Replica manager replies immediately

Phases in Gossip



(Recall) Vector Clocks
• Lamport: e f  implies C(e) < C(f)
• Vector clocks: e f  iff C(e) < C(f)
• vector timestamps: Each node maintains 

an array of N counters
• Vi[i] is the local clock for process pi

• In general, Vi[j] is the latest info the node 
has on what pj‘s local clock is.



Implementation Rules

• [VC1] Initially Vi[j]=0 for i,j = 1…N 
• [VC2] Before Pi timestamps an event: 

Vi[i] := Vi [i] +1
• [VC3] Pi sends m: piggy-back timestamp t=Vi: 

m’=<m, t>
• [VC4](Merge) Pj receives m’=<m, t>

Vi[i] :=max(Vi[i] , ti[i])



Comparison of Vector Clocks

Comparing vector clocks
• V = V´ iff V[j] = V´[j] for all j=1,2,…,N.
• V ≤ V´ iff V[j] ≤ V´[j] for all j=1,2,…,N.
• V < V´ iff V ≤ V´ and V ≠ V´.



Vector clocks illustrated
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• Client Communication
– Access the gossip service

• Update any set of RMs
• Read from any RM

– Communicate with other clients directly
• Causal Updates

– A vector timestamp at each front end contains an entry 
for each replica manager

– Attached to every message sent to the gossip service or 
other front ends

– When front end receives a message 
• Merge the local vector timestamp with the timestamp in the 

message
• Front end Vector timestamp:

– Reflect the version of the latest data values accessed by 
the front end

The front end’s version timestamp



Gossip Manager State
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• Value
• Value timestamp

– Represent the updates that are reflected in the value
– E.g., (2,3,5): the replica has received 2 updates from 1st FE, 3

updates from 2nd FE, and 5 updates from 3rd FE

• Update log
– Record all received updates; stable update; gossip propagated

• Replica timestamp
– Represents the updates that have been accepted by the replica 

manager

• Executed operation table
– Filter duplicated updates that could be received from front end and 

other replica managers

• Timestamp table
– Contain a vector timestamp for each other replica manager to 

identify what updates have been applied at these replica managers

Replica Manager State



• When the query q reach the RM 
– If q.prev <= valueTS

• Return immediately
• The timestamp in the returned message is valueTS

– Otherwise
• Pend the query in a hold-back queue until the 

condition is satisfied
• E.g. valueTS = (2,5,5), q.prev=(2,4,6): one update 

from replica manager 2 is missing

• When query return
– frontEndTS:= merge(frontEndTS, valueTS)

Queries



• A front end sends the update as
– <u.op(par-list), u.prev, u.id>

• u.prev: the timestamp of the front end

• When replica manager i receives the update
– Discard

• If the update has been in the executed operation table or is in the 
log

– Otherwise, save it in the log
• Replica timestamp[i]++
• logRecord= <i, ts, u.op, u.prev, u.id>

– Where ts =u.prev, ts[i]=replica timestamp[i]

– Pass ts back to the front end
• frontEndTS=merge(frontEndTS, ts)

Causal Update 1



• Check if the update becomes stable
– u.prev <= valueTS
– Example: a stable update at RM 0

• ts=(3,3,4), u.prev=(2,3,4), valueTS=(2,4,6)

• Apply the stable update
– Value = apply(value, r.u.op)
– valueTS = merge(valueTS, r.ts) (3,4,6)
– executed = executed ∪{r.u.id}

Causal Update 2



• Exchange gossip message
– Estimate the missed messages of one replica 

manager by its timestamp table
– Exchange gossip messages periodically or 

when some other replica manager ask
• The format or a gossip message

– <m.log,m.ts>
– m.log: one or more updates in the source 

replica manager’s log
– m.ts: the replica timestamp of the source replica 

manager

Sending Gossip



1. Check the record r in m.log
– Discard if r.ts <= replicaTS

• The record r has been already in the local log or has been 
applied to the value

– Otherwise, insert r in the local log
• replicaTS = merge (replicaTS, m.ts)

2. Find out the stable updates
– Sort the updates log to find out stable ones, and apply 

to the value according to the “≤” (thus happens-before) 
order

3. Update the timestamp table
– If the gossip message is from replica manager j, then 

tableTS[j]=m.ts

Receiving Gossip 1



• Discard useless (have been received 
everywhere) update r in the log
– if tableTS[i][c] >= r.ts[c], then discard r

• c is the replica manager that created r
• For all i

rm1  {2,3,6}
rm0  {2,4,6}

rm2  {2,5,6}

logRecord {i,ts,u.op,u.prev,u.id}
1

Receiving Gossip 2



• How often to exchange gossip messages?
– Minutes, hours or days

• Depend on the requirement of application

• How to choose partners to exchange?
– Random
– Deterministic

• Utilize a simple function of the replica manager’s 
state to make the choice of partner

– Topological
• Mesh, circle, tree

Gossiping



Discussion of Gossip 
architecture

• the gossip architecture is designed to provide a highly available 
service

• clients with access to a single RM can work when other RMs are 
inaccessible
– but it is not suitable for data such as bank accounts
– it is inappropriate for updating replicas in real time (e.g. a conference)

• scalability
– as the number of RMs grow, so does the number of gossip messages
– for R RMs, the number of messages per request (2 for the request and 

the rest for gossip) = 2 + (R-1)/G
• G is the number of updates per gossip message
• increase G and improve number of gossip messages, but make latency 

worse
• for applications where queries are more frequent than updates, use some 

read-only replicas, which are updated only by gossip messages



Optimistic approaches
• Provides a high availability by relaxing the 

consistency guarantees
• When conflicts are rare
• Detect conflicts

– Relies domain specific conflict detection and 
resolution

– Inform user
• Eg

– Bayou data replication service
– CODE file system
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