
Replication

Brian Nielsen
bnielsen@cs.aau.dk

Service Improvements
• Replication is a key technology to enhance

service

• Performance enhancement
– Load-balance
– Proximity-based response
– Example

• caches in DNS servers / file servers (NFS/AFS)
• replicated web servers

Client

Client

Replica
3

Replica
1

Replica
2

Replicated
service

Service Improvements
• Increase availability

– Server failures, Network partitions
– Availability (Uptime): 1 – pn:

– The availability of the service that have n replicated
servers each of which would crash in a probability of p

• Fault tolerance
– Guarantee strictly correct behavior despite a certain

number and type of faults
– Strict data consistency between all replicated servers

99.999

99.99

99.75%

95%

Availability

3 min / Y

1h / Y

1 day / Y

18 days / Y

Down time

3

4

2

1

N (p=0.05)

Basic Architectural Model

Client

Client

Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Front
End

• Requirements
– Transparency: no need to be aware of multiple

replicas.
– Consistency: data consistency among replicated files.

Operations
• Client performs operations on a

replicated object obj.m(…)
– Executed atomically

• “state machine objects”: state
depends only on initial state and
sequence of operations
(deterministic function)
– Precludes that operations depend on

external inputs such as system clock
and sensor values

• Updates vs. queries (read-only)

• Single operations vs. sequence
(transactions (15.5))

10

20

22 25

a.add(10)

a.add(5)a.interest(10%)

Basic Architectural Model

General Phases in an Replication alg.:
1. Request: send a client request to a

manager.
2. Coordination: decide on delivery

order of the request.
3. Execution: process a client request

but not permanently commit it.
4. Agreement: agree on outcome and

if the execution will be committed
5. Response: respond to the front end

Client

Client

Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Front
End

•Requirements
–Transparency: no need to be aware of multiple replicas.
–Consistency: data consistency among replicated files.

Fault Tolerance

Fault-tolerance

• Provide uninterrupted correct service
even in the presence of server failures

• A service based on replication is correct if
it keeps responding despite failures,

• and if clients cannot tell the difference
between the service they obtain form an
implementation with replicated data and
one provided by a single correct replica
manager (Consistency).

• Each of computer A and B maintains replicas of two
bank accounts x and y

• Client accesses any one of the two computers,
updates synchronized between the two computers

Server A

X Y

Server B

X YSynchronize

Client 2 Client 1

An example of inconsistency
between two replications

An example of inconsistency
between two replications

• Inconsistency happens since computer B fails
before propagating new value to computer A

Client1:

setBalanceB(x,1)
Server B failed…

setBalanceA(y,2)

Client2:

getBalanceA(y)=2

getBalanceA(x)=0

Initially x=y=$0

• The interleaved sequence of operations
– Assume client i performs operations: oio,oi1,oi2,…
– Then a sequence of operations executed on one replica

that issued by two clients may be: o20,o21,o10,o22,o11,…

• Linearizability criteria
– The interleaved sequence of operations meets the

specification of a (single) correct copy of the objects
– The order of operations in the interleaving is consistent

with the real times at which the operations occurred in
the actual execution

Linearizability (Lamport)

Linearizability

• Rule:
– mi must be delivered before mj if Ti < Tj

• Implementation:
– A clock synchronized among machines
– A sliding time window used to commit

message delivery whose timestamp is in
this window.

• Drawback
– Too strict constraint
– No absolute synchronized clock
– No guarantee to catch all tardy messages

mi

mi
mj

mj

Tj

Ti

Ti < Tj

Physical time

• Sequential consistency criteria
– The interleaved sequence of operations meets

the specification of a (single) correct copy of the
objects

– The order of operations in the interleaving is
consistent with the program order in which each
individual client executed them

• Client 1: o10,o11,…
• Client 2: o20,o21,o22,…
• Consistent order o20,o21,o10,o22,o11,…

Sequential consistency
(Lamport)

An example of sequential
consistency

• An interleaving operations at server A:
getBalanceA(y)=0;getBalanceA(x)=0;setBalanceB(x,1); setBalanceA(y,2)

– Does Not satisfy linearizability
– Satisfy sequential consistency

Client1:

setBalanceB(x,1)

setBalanceA(y,2)

Client2:

getBalanceA(y)=0

getBalanceA(x)=0

Initially x=y=$0

3
1
2
4

Real
Time
Order

Logical
sequence

Multi-copy Update Problem

• Read-only replication
– Allow the replication of only immutable files.

• Primary backup replication
– Designate one copy as the primary copy and all the

others as secondary copies.
• Active backup replication

– Access any or all of replicas
• Read-any-write-all protocol
• Available-copies protocol
• Quorum-based consensus

Primary-Backup (Passive)
Replication

Client

Client

Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Front
End

Primary
Backup

Backup

1. Request: The front end sends a
request to the primary replica.

2. Coordination:. The primary takes
the request atomically.

3. Execution: The primary executes
and stores the results.

4. Agreement: The primary sends the
updates to all the backups and
receives an ack from them.

5. Response: reply to the front end.

Advantage: an easy implementation, linearizable, coping with n-1 crashes.
Disadvantage: large overhead especially if the failing primary must be
replaced with a backup
Reading from backups => sequential consistency
Handover: agree on performed operations, and elect unique new primary!

(View-synchrounous group communication)

Active Replication

1. Request: The front end RTO-
multicasts to all replicas.

2. Coordination:. All replica take the
request in the sequential order.

3. Execution: Every replica executes
the request.

4. Agreement: No agreement needed.
5. Response: Each replies to the front.

Client

Client

Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Front
End

Advantage: achieve sequential consistency,
cope with (n/2 – 1) byzantine failures using majority + message signing
Disadvantage: no more linearizable, RMs are state machines

Read-Any-Write-All Protocol

• Read
– Perform read at any one of the

replicas
• Write

– Perform on all of the replicas
• Sequential consistency
• Cannot cope with even a single

crash (by definition)

Client Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Read from any one of them

Write to all of them

Client Replica
Manger

Front
End

Available-Copies Protocol
• Read

– Perform on any one of the
replicas

• Write
– Perform on all available

replicas
• Recovering replica

– Bring itself up to date by
coping from other servers
before accepting any user
request.

• Better availability
• Cannot cope with network

partition. (Inconsistency in two
sub-divided network groups)

Client Replica
Manger

Replica
Manger

Replica
Manger

Front
End

Read from any one of them

Write to all available replicas

X
Client Replica

Manger

Front
End

Quorum-Based Protocols

Client

Replica
Manger

Replica
Manger

Front
End

Client

Replica
Manger

Front
End

Replica
Manger

Replica
Manger

Replica
Manger

Replica
Manger

Replica
Manger

Read quorum

Write quorum

Quorum Constriants
1. Intersecting R/W #replicas in read quorum + #replicas in write quorum > n
2. Write majority: #replicas in write quorum > n/2

• Read
– Retrieve the read quorum
– Select the one with the latest

version.
– Perform a read on it

• Write
– Retrieve the write quorum.
– Find the latest version and

increment it.
– Perform a write on the entire

write quorum.
• If a sufficient number of replicas

from read/write quorum fails, the
operation must be aborted.

Read-any-write-all: r = 1, w = n

High Availability

• Fault tolerance
– Strict (sequential) consistency

• all replicas reach agreement before passing control
to client

• High availability
– Obtain access to a service for as much time as possible
– Reasonable Response time
– Relaxed consistency (lazy update)

• Reach consistency until next access
• Reach agreement after passing control to client

– Eg: Gossip, Bayou, Coda

High availability vs. fault
tolerance

Operations in a gossip service

Query Val

FE

RM RM

RM

Update

FE

Service

Query, prev Val, new Update, prev Update id

Clients

gossip

Vector
timestamps

Basic Gossip Operation

RMk

RMj
(Tj)

RMi
(Ti)

FE
(Tf)

Client

FE

Client

Query

Query, Tf Value, Ti

Value

Update, Tf

Update

Update id

Gossip

If (Tf < Ti)
return value

else {
waits for RMi to be updated
or
query RMj/RMk}

If (Tf > Tj)
update RMj

else {
update Client
or
ignore and update RMj}

If (Tj > Tk)
update RMk

else
discard the gossip message

Ti are vector time-stamps
Perform operations in causal order

• Request
– The front end sends the request to a replica manager

• Query: client may be blocked
• Update: unblocked

• Coordination
– Suspend the request until it can be apply

• May receive gossip messages that sent from other replica managers
• Execution

– The replica manager executes the request
• Agreement

– exchange gossip messages which contain the most recent updates
applied on the replica

• Exchange occasionally
• Ask the particular replica manager to send when some replica manager

finds it has missed one
• Response

– Query: Reply after coordination
– Update: Replica manager replies immediately

Phases in Gossip

(Recall) Vector Clocks
• Lamport: e f implies C(e) < C(f)
• Vector clocks: e f iff C(e) < C(f)
• vector timestamps: Each node maintains

an array of N counters
• Vi[i] is the local clock for process pi

• In general, Vi[j] is the latest info the node
has on what pj‘s local clock is.

Implementation Rules

• [VC1] Initially Vi[j]=0 for i,j = 1…N
• [VC2] Before Pi timestamps an event:

Vi[i] := Vi [i] +1
• [VC3] Pi sends m: piggy-back timestamp t=Vi:

m’=<m, t>
• [VC4](Merge) Pj receives m’=<m, t>

Vi[i] :=max(Vi[i] , ti[i])

Comparison of Vector Clocks

Comparing vector clocks
• V = V´ iff V[j] = V´[j] for all j=1,2,…,N.
• V ≤ V´ iff V[j] ≤ V´[j] for all j=1,2,…,N.
• V < V´ iff V ≤ V´ and V ≠ V´.

Vector clocks illustrated

b

(2,0,0)

a

(1,0,0)

1m

c

(2,1,0)

d

(2,2,0)

f

m2

(2,2,2)

e

(0,0,1)

p1

p2

p3

Physical
time

NOTE e and b are not related

• Client Communication
– Access the gossip service

• Update any set of RMs
• Read from any RM

– Communicate with other clients directly
• Causal Updates

– A vector timestamp at each front end contains an entry
for each replica manager

– Attached to every message sent to the gossip service or
other front ends

– When front end receives a message
• Merge the local vector timestamp with the timestamp in the

message
• Front end Vector timestamp:

– Reflect the version of the latest data values accessed by
the front end

The front end’s version timestamp

Gossip Manager State

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Value

Value timestamp

Executed operation table

Update log

Replica timestamp

Timestamp table

• Value
• Value timestamp

– Represent the updates that are reflected in the value
– E.g., (2,3,5): the replica has received 2 updates from 1st FE, 3

updates from 2nd FE, and 5 updates from 3rd FE

• Update log
– Record all received updates; stable update; gossip propagated

• Replica timestamp
– Represents the updates that have been accepted by the replica

manager

• Executed operation table
– Filter duplicated updates that could be received from front end and

other replica managers

• Timestamp table
– Contain a vector timestamp for each other replica manager to

identify what updates have been applied at these replica managers

Replica Manager State

• When the query q reach the RM
– If q.prev <= valueTS

• Return immediately
• The timestamp in the returned message is valueTS

– Otherwise
• Pend the query in a hold-back queue until the

condition is satisfied
• E.g. valueTS = (2,5,5), q.prev=(2,4,6): one update

from replica manager 2 is missing

• When query return
– frontEndTS:= merge(frontEndTS, valueTS)

Queries

• A front end sends the update as
– <u.op(par-list), u.prev, u.id>

• u.prev: the timestamp of the front end

• When replica manager i receives the update
– Discard

• If the update has been in the executed operation table or is in the
log

– Otherwise, save it in the log
• Replica timestamp[i]++
• logRecord= <i, ts, u.op, u.prev, u.id>

– Where ts =u.prev, ts[i]=replica timestamp[i]

– Pass ts back to the front end
• frontEndTS=merge(frontEndTS, ts)

Causal Update 1

• Check if the update becomes stable
– u.prev <= valueTS
– Example: a stable update at RM 0

• ts=(3,3,4), u.prev=(2,3,4), valueTS=(2,4,6)

• Apply the stable update
– Value = apply(value, r.u.op)
– valueTS = merge(valueTS, r.ts) (3,4,6)
– executed = executed ∪{r.u.id}

Causal Update 2

• Exchange gossip message
– Estimate the missed messages of one replica

manager by its timestamp table
– Exchange gossip messages periodically or

when some other replica manager ask
• The format or a gossip message

– <m.log,m.ts>
– m.log: one or more updates in the source

replica manager’s log
– m.ts: the replica timestamp of the source replica

manager

Sending Gossip

1. Check the record r in m.log
– Discard if r.ts <= replicaTS

• The record r has been already in the local log or has been
applied to the value

– Otherwise, insert r in the local log
• replicaTS = merge (replicaTS, m.ts)

2. Find out the stable updates
– Sort the updates log to find out stable ones, and apply

to the value according to the “≤” (thus happens-before)
order

3. Update the timestamp table
– If the gossip message is from replica manager j, then

tableTS[j]=m.ts

Receiving Gossip 1

• Discard useless (have been received
everywhere) update r in the log
– if tableTS[i][c] >= r.ts[c], then discard r

• c is the replica manager that created r
• For all i

rm1 {2,3,6}
rm0 {2,4,6}

rm2 {2,5,6}

logRecord {i,ts,u.op,u.prev,u.id}
1

Receiving Gossip 2

• How often to exchange gossip messages?
– Minutes, hours or days

• Depend on the requirement of application

• How to choose partners to exchange?
– Random
– Deterministic

• Utilize a simple function of the replica manager’s
state to make the choice of partner

– Topological
• Mesh, circle, tree

Gossiping

Discussion of Gossip
architecture

• the gossip architecture is designed to provide a highly available
service

• clients with access to a single RM can work when other RMs are
inaccessible
– but it is not suitable for data such as bank accounts
– it is inappropriate for updating replicas in real time (e.g. a conference)

• scalability
– as the number of RMs grow, so does the number of gossip messages
– for R RMs, the number of messages per request (2 for the request and

the rest for gossip) = 2 + (R-1)/G
• G is the number of updates per gossip message
• increase G and improve number of gossip messages, but make latency

worse
• for applications where queries are more frequent than updates, use some

read-only replicas, which are updated only by gossip messages

Optimistic approaches
• Provides a high availability by relaxing the

consistency guarantees
• When conflicts are rare
• Detect conflicts

– Relies domain specific conflict detection and
resolution

– Inform user
• Eg

– Bayou data replication service
– CODE file system

END

