
Mutual Exclusion & Election

Brian Nielsen
bnielsen@cs.aau.dk

Failure Assumptions
• Reliable channels

– Guaranteed delivery eventually in asynchronous systems
– Guaranteed delivery within bound D)
– ⇒ network partitions/paths eventually repaired

• Independent processes P1…Pn

• Crash failures
– Cannot be detected reliably in an asyncronous system by timeout
– Heartbeats or probing in synchronous systems

Crashed
router

Network Partitioning

Distributed mutual exclusion
• A number of processes want to access some shared resource
• Prevent interference, maintain consistency; critical section.

Resource

P1 P2 Pi PN… …

Application-level protocol:
enter() // block till free

resourceAccess() // critical section

exit() // free resource

General requirements for mutual exclusion

ME1: safety: at most one process may execute in the critical section at a time

ME2: liveness: requests eventually succeed (no deadlock, no starvation)

ME3: ordering: if request A happens-before request B then grant A before grant B

Problems: fault tolerance, performance

Performance Measures

• Bandwidth: number of messages required
for entry and exit

• Client delay (entry and exit)
• Throughput (Synchronization delay)

P1 Request P1 Grant P1 Exit R Free

P2 Request
P2 Grant

Time

Mutual Exclusion: A
Centralized Algorithm

a) Process 1 asks the coordinator for permission to
enter a critical region. Permission is granted

b) Process 2 then asks permission to enter the same
critical region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the
coordinator, which then replies to 2

Mutual Exclusion: A
Centralized Algorithm

• Shortcomings
– The coordinator is a single point of failure, so if it

crashes, the entire system may go down.
• Wait; why not just elect another coordinator?
• You can. The only concern is figuring out who has access to

the critical section.
• How do you tell the difference between a dead coordinator

and “permission denied”?
– In a large system a single coordinator may become a

performance bottleneck.
• Advantages:

– Simple
– Reasonable efficient

Mutual Exclusion: A
Centralized Algorithm

• Bandwidth
– 3 messages to enter and leave a critical

region: A request, a grant to enter and a
release to exit

• Client Delay:
– Entry: 2 messages: request + grant
– Exit: 0 (asynchronous sending of release)

• Synchronization Delay: release + grant

A Token Ring Algorithm

a) An unordered group of processes on a network.
b) A logical ring constructed in software.
c) Token holder may enter CS

Token Ring

• Client Delay
– Entry: Wait: 0…N hops (N/2 in average)
– Exit: send 1 msg (asynchronously)

• Synchronization Delay
– 0…N hops (N/2 in average)

• Bandwidth
– Always uses bandwidth to circulate token,

used or not.

Ricart and Agrawala’s
Algorithm [`81]

• Fully Distributed
• Optimized version of Lamports ’78 algorithm
• Send “request” to N–1 other processes.
• Execute CS when “reply OK” permission is

received from all other processes.
• Pi maintains Lamport Clock

– I.e., adjust counter Ci on every internal event,
and send and receive

• Break ties with Lamport time-stamp.

Ricart and Agrawala

• The general idea:
– ask everybody
– wait for permission from

everybody

Pi

Pi

Pi

Pi

resource
?

The problem:
– several simultaneous requests (e.g., Pi and Pj)
– all members have to agree (everybody: “first Pi

then Pj”)

On initialization
state := RELEASED;

To enter the section
state := WANTED;
T := request’s timestamp; request processing deferred here
Multicast request to all processes;
Wait until (number of replies received = (N-1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply OK immediately to pi;
end if;

To exit the critical section
state := RELEASED;
reply OK to all queued requests;

Ricart – Agrawal’s Algorithm

Ricart – Agrawala EX.

p
3

34

OK

41

41

34
OK

Decision base:
Lamport timestamp

41
X

OK

34
X

P1 and P2 requests access concurrently at time 41 and 34

X: i=j

p
1

p
2

Performance
• Gaining entry: 2(n-1) messages per

request without HW-multicast
– N-1 to multicast request
– N-1 replies

• Client Entry Delay: 1 round-trip time
(multicasting is counted as 1 step)

• Client Exit Delay: 1 message
• Synchronization delay is one message
• N-points of failure

Maekawa’s Algorithm [1981]
• Idea: Get permission from only a subset of

processes.
– quorum:

• ”The minimal number of officers and members of a
committee or organization, usually a majority, who must
be present for valid transaction of business.”

Voting

p5

V2

V3

V1

p1 p2 p3

p6

p4

•To enter its CS, a process gets permission from all members of its group
•A process may grant permission to only one process at a time
(between each request / release pair

•Complexity depends on group size
•Want to minimize group size

Voting-Sets
Voting-set Vi for Pi

1. ∀i,j: Vi ∩ V ≠∅
• Safety: at least one common member of any two voting-sets

2. Vi contains process pi
• Saves a message

3. |V1| = |V2| = … = |VN| = K
• Fairness: every process has a voting set of the same size

4. Each process is in M of the voting sets Vi’s
• Each processor has the same responsibility

• Minimal K satisfying 1..4 is c√N.
• Heuristic algorithms exist

Maekawa’s algorithm – part 1
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

Maekawa’s algorithm – part 2

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

Deadlock Example

Q2Q2

Q2

Q4

Q4Q4

Q6

Q6Q6

L

L

L

Concurrent request ⇒ common processes votes to left most quorum ⇒
Circular wait possible ⇒ deadlock possible

Comparison

A comparison of mutual exclusion algorithms.
Notice: the system may contain a remarkable amount of
sharable resources!

Lost token,
process crash0..n-1 (Avg: n/2)1 … ∞Token ring

Crash of process
in voting set23√NMaekava

voting

Crash of any
process12 (n – 1)Ricart &

Agrawali

Coordinator crash23Centralized

ProblemsSynchronization
Delay (seq. msgs)

Messages per
entry/exitAlgorithm

Summary

• All distributed algorithms suffer badly in
event of crashes.

• Special measures and additional
complexity must be introduced to avoid
having a crash bring down the entire
system.

Election Algorithms
• Need:

– computation: a group of concurrent processes
– algorithms based on the activity of a special role

(coordinator, initiator)
– election of a coordinator: initially or after some

special event (e.g., the previous coordinator has
disappeared)

• Premises:
– each member of the group

• knows the identities of all other members
• does not know who is up and who is down

– all electors use the same algorithm
– election rule: the member with the highest process id

Election Requirements
• E1: (safety) A participant process pi has

either electedi=⊥, or electedi=p, where p is
the non-crashed process having the
largest process identifier

• E2: (liveness) All processes pi participate
and will at some point in time set their
electedi variable to a value different from ⊥
or crash

• ⊥ = undefined

A ring-based election 1

17

24

1

28
15

9

4

3

17

C=28

17,24

17,24,1

17,24,1,28

17,24,1,28,15

17,24,1,28,15,9

17,24,1,28,15,9,4

17,24,1,28,15,9,4,3

Chang-Roberts

• Improvement Idea:
– When a node receives a token with smaller id

than itself, why should it keep forwarding it?
• It is a waste, we know that that id will never win!
• Lets drop tokens with smaller ids than ourselves!

– Mark nodes that has already participated in an
ongoing election to kill concurrent elections

– A process declares itself elected when it
receives its own ID back

Chang-Roberts

17

24

1

28
15

9

4

3

17

C=28

24

24

28

28

28

28

28
28

28

28

Performance

• Bandwidth: 3N-1
– N-1 in worst case to reach process with

highest ID +
– One round of N messages before node with

highest ID can announce it is a winner +
– One round of N messages to inform other

nodes about coordinator
• Turnaround: an election takes sequential 3

rounds

Bully Algorithm
• Bully

– A person who is habitually cruel, especially to smaller
or weaker people

• Processes may fail during election
• Uses timeout to detect failure (⇒assumes

synchronous system)
• Each process knows processes with higher ID’s
• 3 message types

– A process sends Election to all processes with larger
IDs to start an election

– Answer (OK): to election message tells receiver that
sender is alive and that receiver must shut-up

– Coordinator: inform about new coordinator

The Bully Algorithm (2)

Coordinator id 7 is dead
(a) Process 4 holds an election
(b) Process 5 and 6 respond, telling 4 to stop
(c) Now 5 and 6 each hold an election

The Bully Algorithm (3)

(d) Process 6 tells 5 to stop
(e) Process 6 wins and tells everyone

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

• P1 detects crash of coordinator p4
• P1 decides to hold an election
• P2 and p3 tells P1 to shut up and

hold their own (concurrent)
elections

• p3 tells P2 to shut up
• p3 times out waiting from answer

from P4 and declares itself the
coordinator

• Alas, P3 fails
• P1 times out waiting for

coordinator and decides to hold
an election

• P2 starts an election and realizes
that it is largest living process
and declares itself the
coordinator p2,

END

