
Multicast Communication

Brian Nielsen
bnielsen@cs.aau.dk

Communication modes in DS
• Uni-cast

• Messages are sent from exactly one
process to one process

• Broad-cast
• Messages are sent from exactly one

process to all processes on the network.
• Multi-cast

• Messages are sent from exactly one
process to several processes on the
network (named group).

• Any-cast
• Message is sent to one (eg “best” or

“nearest”) of a set of possible receivers
• Geo-cast:

• Message sent to geographically close
neighbors

g={p1,p2, p3}

p1

p2

p3

Multicast applications
• Shared whiteboards
• Chat applications
• Audio/Video conferencing
• Communication with server group
• Data replication
• Event notification
• Discovery of services
• Large scale interactive gaming on the Internet
• Distributed databases
• Large scale news distribution
• … etc.

LAN Multicast
• Hardware support = 1 message is sent

WAN Multicast

128.146.222.0/24 128.146.226.0/24

128.146.116.0/24128.146.199.0/24

Unicast to multiple receivers

128.146.222.0/24 128.146.226.0/24

128.146.116.0/24

Receivers

128.146.199.0/24

Receiver

ReceiverSender

• With 4 receivers, sender must replicate the
stream 4 times.

• Consider good quality audio/video streams
are about 1.5Mb/s (a T1)

• Each additional receiver requires another
1.5Mb/s of capacity on the sender network

• Multiple duplicate streams over expensive
WAN links

Unicast

IP - Multicast

128.146.222.0/24 128.146.226.0/24

128.146.116.0/24

Receivers

128.146.199.0/24

Receiver

ReceiverSender

IP-Multicast Efficiency
• IP-multicast more Efficient than n sends!

– Source transmits one stream of data for n receivers
– Replication happens inside routers and switches
– WAN links only need one copy of the data, not n copies.

• IP datagram multicast:
– Hosts join/leave on a class D address
– IGMP constructs and maintains multicast tree

IP-Multicast Failures
• HW- and IP-multicast Failure model ~ UDP

– Omission failures
• Delivery to none
• Delivery to some

– No ordering guarentees
• Consequetive multicasts may be received ín different order

• However, ordering and reliability are required by many
applications

• Reliable & Ordered multicast requires “fancy”
algorithms

Replicated Bank Account

100 100 100

B1 B2 B3

Add(amount)
pct(interest)

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100) Add(100)

200 200 200

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100)

200 200

UNRELIABLE Multicast ⇒ INCONSISTENCY

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100)
Add(100)

200 200 110

pct(10) pct(10)
pct(10)

220 220 210

UNORDERED Multicast ⇒ INCONSISTENCY

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100) Add(100)

200 200 200

pct(10) pct(10) pct(10)

220 220 220

FIFO Multicast ⇒ CONSISTENCY??

FIFO-ORDERING

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100)
Add(100)

200 200 110

pct(10) pct(10)
pct(10)

220 220 210

FIFO Multicast ⇒ INCONSISTENCY

FIFO-ORDERING

Replicated Bank Account

100 100 100

B1 B2 B3

Add(100) Add(100) Add(100)

200 200 200

pct(10) pct(10) pct(10)

220 220 220

TOTAL Multicast ⇒ CONSISTENCY??

TOTAL ORDERING

Multicast-API
• X-multicast(g,m)
• X-deliver(m)
• X is one of

– B: Basic,
– R: Reliable
– FO: FIFO,
– CO: Causal,
– TO: Total
– …

Application
(process p)

MULTICAST PROTOCOL

send
multicast

Incoming
messages

deliver
multicast

(Receive)

Host OS/ Protocol Stack

The Hold-back queue

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

“stable”
messages

Basic Multicast
• A basic multicast primitive guarantees

– All correct process eventually delivers the message, as long
as the sender (multicasting process) does not crash

– A “correct” process = a process that exhibits no failures at any
execution point under consideration

– NB: NOT satisfied by HW (IP) multicast

• A straightforward way to implement B-multicast is to use
a reliable one-to-one send operation:

– B-multicast(g,m): for each process p in g, send (p,m).
– receive(m) at p: B-deliver(m).

B-Multicast

p1

p2

p3

p4

p5

p1

•If Pn crashes, message not delivered in p4 and p5

•Hence, Unreliable

Reliable Uni-cast
• Integrity: A correct process p delivers a

message m at most once. Furthermore, m is
unmodified and was destined for p.

• Validity: If m was sent and the receiver is
correct, it eventually delivers m.

Reliable multicast
• Integrity: A correct process p delivers a

message m at most once. Furthermore,
p∈group(m) and m was supplied to a multicast
operation by sender(m).

• Validity: If a correct process multicasts
message m, then it will eventually deliver m.

• Agreement: If a correct process delivers m,
then all other correct processes in group(m) will
eventually deliver m.

• Liveness=Validity+agreement

Reliable multicast
Algorithm 1 with B-multicast

Each R-multicast message is sent |g| times, ie O(N2).

Reliable multicast
• Correct?

– Integrity

– Validity

– Agreement

• Efficient?
– NO: each message transmitted ⏐g⏐ times

R-multicast using IP multicast
• Each process maintains sequence

numbers
– Sp

g next message to be sent
– Rq

g (for all q∈g) latest message
delivered from q

• On R-multicast of m to group g,
attach Sp

g and all pairs hq, Rq
gi

• R-deliver in process q happens iff
Sp

g=Rp
g+1

– if Sp
g<Rp

g+1, process q has seen the
message before,

– if Sp
g>Rp

g+1 or if R>Rp
g for some pair

hq, Ri in message a message has been
lost

2

g

4

3 2

p1

pi

pn

S1

Ri

2 3 1
R1

(m,4,<2,3,1>)

Data structures at process p:

Sg
p : sending sequence number

Rg
q : sequence number of the latest msg p delivered from q (for each q)

On initialization:

Sg
p = 0, Rg

q= -1, for all q∈g

For process p to R-multicast message m to group g

IP-multicast (g, <m, Sg
p , <Rg> >)

Sg
p ++

On IP-deliver (<m, S, <R>>) at q from p

R-multicast using IP multicast

(continued)

R-multicast using IP multicast

On IP-deliver (<m, S, <R>>) at q from p

save m

if S = Rg
p + 1

then R-deliver (m)

Rg
p ++

check hold-back queue

else if S > Rg
p + 1

then store m in hold-back queue

request missing messages endif

endif

if ∃p. rg
p∈R and rg

p > Rg
p then request missing messages endif

R-multicast using IP multicast

• 3 processes in group: P, Q, R
• State of process:

– S: Next sequence number
– Rq: Already delivered from Q
– Set of Stored messages!

• Presentation:
P: 2
Q: 3 R: 5
< >

R-multicast using IP multicast

• Initial state:
P: 0
Q: -1 R: -1
< >

Q: 0
P: -1 R: -1
< >

R: 0
P: -1 Q: -1
< >

R-multicast using IP multicast

• First multicast by P:
P: 1
Q: -1 R: -1
< mp0 >

Q: 0
P: -1 R: -1
< >

R: 0
P: -1 Q: -1
< >

P: mp0, 0, <Q:-1, R:-1>

R-multicast using IP multicast

• Arrival multicast by P at Q:
P: 1
Q: -1 R: -1
< mp0 >

Q: 0
P: 0 R: -1
< mp0 >

R: 0
P: -1 Q: -1
< >

P: mp0, 0, <Q:-1, R:-1>

!

R-multicast using IP multicast

• New state:
P: 1
Q: -1 R: -1
< mp0 >

Q: 0
P: 0 R: -1
< mp0 >

R: 0
P: -1 Q: -1
< >

R-multicast using IP multicast

• Multicast by Q:
P: 1
Q: -1 R: -1
< mp0 >

Q: 1
P: 0 R: -1
< mp0 ,mq0 >

R: 0
P: -1 Q: -1
< >

Q: mq0, 0, <P:0, R:-1>

R-multicast using IP multicast

• Arrival of multicast by Q:
P: 1
Q: 0 R: -1
< mp0 ,mq0 >

Q: 1
P: 0 R: -1
< mp0 , ,mq0 >

R: 0
P: -1 Q: 0
< mq0 >

Q: mq0, 0, <P:0, R:-1>

R-multicast using IP multicast

• R detects missing message!
• When to delete stored messages?

P: 1
Q: 0 R: -1
< mp0 ,mq0 >

Q: 1
P: 0 R: -1
< mp0 , ,mq0 >

R: 0
P: -1 Q: 0
< mq0 >

R-multicast using IP multicast

• Correct?
– Integrity:

• seq numbers (duplicate detection) + checksums in IP
multicast

– Validity:
• Self delivery assumed for IP

– Agreement:
• if missing messages are detected
• ⇒ Correct processes multicasts indefinitely
• if copy of message remains available

– IMPROVE IT!

Ordered multicast
• FIFO: If a correct process issues multicast(g,m1),

and then multicast(g, m2), then every correct
process that delivers m2 will deliver m1 before m2

• Causal: If multicast(g, m1)→multicast(g, m2),
where → is the happed-before relation for
messages send to g, then any correct process that
delivers m2 will deliver m1 before m2

• Total: If a correct process delivers message m1
before it delivers m2 then any other correct
process that delivers m2 will deliver m1 before m2

Total, FIFO and causal ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent
ordering of totally ordered
messages T1 and T2,
the FIFO-related

messages F1 and F2 and
the causally related
messages C1 and C3
– and the otherwise
arbitrary delivery ordering
of messages.

FIFO multicast
• Analyse our algorithm for reliable multicast

on top of IP-multicast.
• A process q delivers all messages from p

in p sending order (Sp
g) by comparing to

local expected sequence number Rp
g

(Unreliable) TO-multicast
• Basic approach as FIFO:

– Uses globally unique IDs instead of per
process unique IDs (as FIFO)

– Receiver: deliver as for FIFO ordering

• Alg. 1: use a (single) sequencer process
• Alg. 2: participants collectively agree on

the assignment of sequence numbers

TO-multicast: sequencer

i: Unique message id

rg: seq nr of last delivered message

sg: global unique seq nr

(Unreliable) TO-multicast:
ISIS

• Approach:
– Sender:

• B-multicasts message
– Receivers:

• Propose sequence numbers to sender
– Sender:

• uses returned sequence numbers to
generate agreed sequence number

The ISIS algorithm for total
ordering

1

1

1 Message
P2

P3

P1

P42

2

2 Proposed Seq

3 Agreed Seq

3

3

The ISIS algorithm
• Process q maintains sequence numbers

– Aq
g the largest agreed seq nr q has observed for g

– Pq
g q’s own largest proposed sequence number q

• Process p performs B-multicast(hm,ii,g),
where i as a unique identifier for message m.

• Each process q replies p with a proposed
sequence number Pq

g:=max(Aq
g,Pq

g)+1.
• Process p collects proposed sequence numbers

and chooses the largest, let’s call it a. Then p
performs B-multicast(hi,ai,g).

• Each process q in g sets Aq
g:=max(Aq

g,a) and
attach sequence number a to message m

TO-multicast: ISIS alg.
• Correct?

– Processes will agree on sequence number
for a message

– Sequence numbers are monotonically
increasing

– No process can prematurely deliver a
message

• Performance
– 3 serial messages!

CO-multicast
• Each process pi maintains vector clock

– Vg
i [j] is the number of messages from each process

Pj that happened-before next message to be
multicast

• To CO-multicast(m): Pi increments Vg
i [i] and

B-multicasts(g,< Vg
i,m>)

• Pi CO-delivers(m) from Pj iff
a) It has delivered any earlier message send by Pj

Vg
j [j] = Vg

i [j] +1, and
b) It has delived any message that Pj had delivered at

the time it multicast the message:
Vg

j [k] ≤ Vg
i [k] +1,k≠j

message: Vj=[3,6,2] Receiver Vi=[2,5,2]E.g.

Summary
• So you thought multi-cast was simple??!!

• Applications have different semantic ordering, reliability
and cost requirements
– Unreliable / reliable multicast
– FiFo, Causal, Causal-Fifo, Total, …
– FiFo+Total (Exercise)

• Many algorithms available with different cost / ordering
tradeoff

• Did you see an algorithm for totally ordered reliable
multicasting ????

END

