Multicast Communication

Brian Nielsen
bnielsen@cs.aau.dk



Communication modes in DS

 Uni-cast

 Messages are sent from exactly one
process to one process

Broad-cast

+ Messages are sent from exactly one
process to all processes on the network.

Multi-cast p1O
« Messages are sent from exactly one \

g={pP1 P, P3}

process to several processes on the
network (named group).

Any-cast P2 /Cj)
« Message is sent to one (eg “best” or O
“nearest”) of a set of possible receivers

Geo-cast:

 Message sent to geographically close
neighbors



Multicast applications

Shared whiteboards

Chat applications

Audio/Video conferencing
Communication with server group
Data replication

Event notification

Discovery of services

_arge scale interactive gaming on the Internet
Distributed databases

_arge scale news distribution

... etc.







LAN Multicast

 Hardware support = 1 message is sent




WAN Multicast

= 128.146.199.0/24 128.146.116.0/24 ==
—/ ]

& & 0
>

&
I

@%8.146.226.0/24
| I’ | I’

503 49O

128.146.222.0/24




Unicast to multiple receivers

IYY YN

ey 128.146.199.0/24 128.146.116.0/24 ==
T — 4

==& 0

Receiver

Sender
128.146.222.0/24 | | 128.146.226.0/24

|—~—— —uj

588 oO0A

Receiver Receivers




Unicast

With 4 receivers, sender must replicate the
stream 4 times.

Consider good quality audio/video streams
are about 1.5Mb/s (a T1)

Each additional receiver requires another
1.5Mb/s of capacity on the sender network

Multiple duplicate streams over expensive
WAN links



|IP - Multicast

A

128.146.199.0/24 128.146.116.0/24 ==
I

I
S—— [
@ Receiver

_’

Sender
128.146.222.0/24 | | les 146.226.0/24
=

ziz S0 a

Receiver Receivers




IP-Multicast Efficiency

* |P-multicast more Efficient than n sends!
— Source transmits one stream of data for n receivers
— Replication happens inside routers and switches
— WAN links only need one copy of the data, not n copies.

 |P datagram multicast:
— Hosts join/leave on a class D address
— IGMP constructs and maintains multicast tree



|P-Multicast Failures

HW- and IP-multicast Failure model ~ UDP

— Omission failures
* Delivery to none
* Delivery to some

— No ordering guarentees
« Consequetive multicasts may be received in different order

However, ordering and reliability are required by many
applications

Reliable & Ordered multicast requires “fancy”
algorithms



Replicated Bank Account

pct(interest) O O



Replicated Bank Account

B1 B2

Add(lOO)W Add(100)

© @



Replicated Bank Account

Add(lOO)\ d(100)

> Q

UNRELIABLE Multicast = INCONSISTENCY



Replicated Bank Account

B1 B2 s
Add(100) Add(100) p| 10)
pct(10) pct(10) Add(100)

UNORDERED Multicast = INCONSISTENCY



Replicated Bank Account
FIFO-ORDERING

B1 B2 I I
Add(100) Add(100) Add(100)
pct(10) pct(10) pct(10)

FIFO Multicast = CONSISTENCY??



Replicated Bank Account
FIFO-ORDERING

B1 B2 3
Add(100) Add(100) pct(10)
pct(10) 10) Add(100)

FIFO Multicast = INCONSISTENCY



Replicated Bank Account
TOTAL ORDERING

B1 B2 =
Add(100) Add(100) Add(100)
pCt(10) 19) pet(10)

TOTAL Multicast = CONSISTENCY??



Multicast-API

» X-multicast(g,m)
» X-deliver(m)
« Xis one of

Application
(process p)

— B: Basic, .
_ send + deliver
— R: Reliable multicast "multicast
— FO: FIFO,
MULTICAST PROTOCOL
- CO: Causal, Host OS/ Protocol Stack
0S F'otoco acC
— TO: Total
_ Incoming
meSSages

(Receive)



The Hold-back gueue

“stable”
messages

Incoming
messages

Message
processing

~

~
Adeliver

Hold-back

queue

Delivery queue

When delivery
guarantees a




Basic Multicast

« A basic multicast primitive guarantees

— All correct process eventually delivers the message, as long
as the sender (multicasting process) does not crash

— A “correct” process = a process that exhibits no failures at any
execution point under consideration

— NB: NOT satisfied by HW (IP) multicast

« A straightforward way to implement B-multicast is to use
a reliable one-to-one send operation:

— B-multicast(g,m): for each process p in g, send (p,m).
— receive(m) at p: B-deliver(m).



B-Multicast

-\

X

If P, crashes, message not delivered in p, and p:

‘Hence, Unreliable



Reliable Uni-cast

* Integrity: A correct process p delivers a
message m at most once. Furthermore, m is
unmodified and was destined for p.

- Validity: If m was sent and the receiver is
correct, it eventually delivers m.



Reliable multicast

Integrity: A correct process p delivers a
message m at most once. Furthermore,
pegroup(m) and m was supplied to a multicast

operation by sender(m).

Validity: If a correct process multicasts
message m, then it will eventually deliver m.

Agreement: If a correct process delivers m,
then all other correct processes in group(m) will
eventually deliver m.

Liveness=Validity+agreement



Reliable multicast
Algorithm 1 with B-multicast

On initialization
Received = {};

For process p to R-multicast message m to group g
B-multicast(g, m); // p € g 1s included as a destination

On B-deliver(m) at process q with g = group(m)
if (m & Received )

then
Received := Received U {m};
if (q # p) then B-multicast(g, m); end if
R-deliver m;

end if

Each R-multicast message is sent |g| times, ie O(N?).



Reliable multicast

* Correct?

— Integrity

— Validity

— Agreement
« Efficient?

— NO: each message transmitted \g\ times



R-multicast using IP multicast

« Each process maintains sequence g
numbers o
— SP, next message to be sent

— R4, (for all geg) latest message
delivered from g

* On R-multicast of m to group g,
attach SP, and all pairs (q, R9;)

* R-deliver in process g happens iff
Spg:Rpg+1
— If SP,<RP +1, process g has seen the
message before,
— if SP>RP +1 or if R>RP, for some pair
(g, R) in message a message has been
lost

m,4,<2,3,1>)

Pn




R-multicast using IP multicast

Data structures at process p:

Sgp : sending sequence number

qu . sequence number of the latest msg p delivered from q (for each q)

On initialization:

Sgp =0, R9=-1, for all geg

For process p to R-multicast message m to group g

IP-multicast (g, <m, S,° , <R>>)

p
++
Sq

On IP-deliver (<m, S, <R>>) at q from |
(continued)



R-multicast using IP multicast

On IP-deliver (<m, S, <R>>) at q from p

save m
if S = RgID + 1
then R-deliver (m)

RgID ++

check hold-back queue
else if S>R+1

then store m in hold-back queue

request missing messages  endif

endif

if Ap. rgpeR and r’ > R then request missing messages endif



R-multicast using IP multicast

« 3 processes ingroup: P, Q, R
« State of process:

— S: Next sequence number
— Ry Already delivered from Q

— Set of Stored messages! p: 2
.+ Presentation: S:’ ROE




R-multicast using IP multicast

 |nitial state:

NQ O
— O




R-multicast using IP multicast

* First multicast by P:

P: 1
Q:-1 R:-1
/ R
Q: 0 \ R: 0
P.-1 R:-1 P:-1 Q:-1
<> <>




R-multicast using IP multicast

« Arrival multicast by P at Q:

P: 1
Q:-1 R:-1
/ R
\!
Q: 0 R: 0
P:0 R:-1 P:-1 Q:-1
<my > <>




R-multicast using IP multicast

« New state:

P: 1

Q:-1 R:-1

<my >
Q: 0 R: 0
P:0 R:-1 P:-1 Q:-1
<my > <>




R-multicast using IP multicast

* Multicast by Q:




R-multicast using IP multicast

« Arrival of multicast by Q:
P: 1

Q:0 R:-1
Q: 1 / R: 0

P:0 R: -1 ‘ P: -1 Q: 0
S My s sMgo = | <m




R-multicast using IP multicast

* R detects missing message!
* When to delete stored messages?

P: 1

Q:0 R:-1

<My Mo >
Q: 1 R: 0O
P:0 R:-1 P:-1 Q:0
<Myy, Mo > <Mgo >




R-multicast using IP multicast

e Correct?
— Integrity:

« seq numbers (duplicate detection) + checksums in IP
multicast

— Validity:
« Self delivery assumed for IP

— Agreement:

« if missing messages are detected
« = Correct processes multicasts indefinitely
« if copy of message remains available

- IMPROVE IT!



Ordered multicast

» FIFO: If a correct process issues multicast(g,m,),
and then multicast(g, m,), then every correct
process that delivers m, will deliver m; before m,

» Causal: If multicast(g, m,)—multicast(g, m,),
where — is the happed-before relation for

messages send to g, then any correct process that
delivers m, will deliver m; before m,

- Total: If a correct process delivers message m,
before it delivers m, then any other correct
process that delivers m, will deliver m; before m,



Total, FIFO and causal ordering

T, | -

Notice the consistent

ordering of totally ordered
messages T, and T,,

the FIFO-related Fi

messages F, and F, and -
F : 3

the causally related 2

messages C; and C,

— and the otherwise \.

arbitrary delivery ordering Time

of messages.




FIFO multicast

* Analyse our algorithm for reliable multicast
on top of IP-multicast.

* A process q delivers all messages from p
in p sending order (SP;) by comparing to
local expected sequence number RP



(Unreliable) TO-multicast

 Basic approach as FIFO:

— Uses globally unique IDs instead of per
process unique IDs (as FIFO)

— Receiver: deliver as for FIFO ordering

* Alg. 1: use a (single) sequencer process

* Alg. 2: participants collectively agree on
the assignment of sequence numbers



TO-multicast: sequencer
1 Alport forgroup member |

On initialization: r _ := 0; I’g: seqg nr of last delivered message

&

To TO-multicast message m to group g
B-multicast( g\ {sequencer(g)}, <m, i>);

i Unique message id

On B-deliver(<m, i>) with g = group(m)
Place <m, i> 1n hold-back queue;

On B-deliver(<“order”, i, §>) with g = group(m)

wait until <m, i> in hold-back queue and § = P l;
TO-deliver m; // (after deleting it from the hold-back queue)

rgZS;

| On initialization: s_:=0; |
F=)

sq4: global unique seq nr

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <“order”, i, Sg>);

— +1-
Sg 1T S, 1;




(Unreliable) TO-multicast:

ISIS

* Approach:

— Sender:
* B-multicasts message

— Recelvers:
* Propose sequence numbers to sender

— Sender:

e uses returned sequence numbers to
generate agreed sequence number



The ISIS algorithm for total
ordering




The ISIS algorithm

Process q maintains sequence numbers
— AY, the largest agreed seq nr q has observed for g
— P9, d’s own largest proposed sequence number g

Process p performs B-multicast({m.,i},q),
where | as a unique identifier for message m.

Each process g replies p with a proposed
sequence number P9;:=max(Ad,,P9,)+1.

Process p collects proposed sequence numbers
and chooses the largest, let's call it a. Then p

performs B-multicast({i,a),g).
Each process q in g sets A9,:=max(A9,,a) and
attach sequence number a to message m



TO-multicast: ISIS alg.

e Correct?

— Processes will agree on sequence number
for a message

— Sequence numbers are monotonically
Increasing

— No process can prematurely deliver a
message

« Performance
— 3 serial messages!



CO-multicast

« Each process p, maintains vector clock

— V{'[i]is the number of messages from each process
P that happened-before next message to be

multicast
« TJo CO- multlcast(m) P,increments V[i] and
B-multicasts(g,< V' m>)

 P,CO-delivers(m) from P, iff
a) It has delivered any earlier message send by P;
V[l =V '[] +1, and
b) It has dellved any message that P, had delivered at
the time it multicast the message:
VK] = V' [K] +1,k=]

E.g. message: Vi=[3,6,2] Receiver V'=[2,5,2]



Summary

So you thought multi-cast was simple??!!

Applications have different semantic ordering, reliability
and cost requirements

— Unreliable / reliable multicast

— FiFo, Causal, Causal-Fifo, Total, ...

— FiFo+Total (Exercise)

Many algorithms available with different cost / ordering
tradeoff

Did you see an algorithm for totally ordered reliable
multicasting ??77?



END



