
Introduction to
Distributed Systems

Brian Nielsen
bnielsen@cs.aau.dk

About me
• Associate Professor
• Distributed Systems and

Semantics Research Unit
• Department of Computer Science
• Aalborg University, Denmark

• CISS: Center of Embedded Software Systems
• Research

– Distributed programming (Linda w. multiple tuple spaces)
– Distributed Multi-media
– Real-Time Operating Systems
– Automated testing of embedded, real-time, distributed systems

About You

• ??
• ⇒ Different background and expectations

Motivation
• Nearly all modern computer based systems are

network and operate dependently on other
systems.

• Distributed systems are fundamentally
different from centralized systems.

• Therefore, all students should obtain knowledge
about concepts in distributed systems,
knowledge about their construction, and an
understanding of advantages and disadvantages
of their use.

Goals

• Knowledge and overview of course topics
• Use correct terminology

• Fundamental properties of DS, their consequences on
architecture, and behavior

• Understand typical DS problems and algorithms for their
solution

• Compare distributed algorithms wrt. semantics,
performance, and fault tolerance

• Skill in implementation of basic distributed
systems/algorithms

Course Form
• 3 ECTS (3*30 study hours), 15 lectures
• 1 lecture = 6 study hrs

– 3*30 min of lectures
– 1.5 hrs of exercises (in groups)
– 1.5 hrs of reading homework
– 0.5 hrs of exam-preparation

• 1 “big” study/programming assignment
subject to examination

• Examination: ??

Text Book
• Coulouris, Dollimore and

Kindberg
• Distributed Systems:

Concepts and Design
• Edition 4

• www.cdk4.net

Pre-requisites
• Programming

– Practical programming in e.g. Java, C, C++
– Basic data-structures and algorithms
– Preferably also concurrent programming

• Networks
– IP-stack, IP-addressing, IP-routing, message enveloping,

TCP/UDP, Sliding-window, congestion and flow control, socket-
programming, basic encryption technology

– Else read chapter 3
• Operating Systems

– Processes, threads, concurrency, non-determinism, kernel and
user level, synchronization (semaphores, monitors), address
spaces, virtual memory, file-systems

– Else read chapter 6

Examples of Distributed
Systems

intranet

ISP

desktop computer:

backbone

satellite link

server:
network link:

A typical portion of the
Internet

A typical intranet

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

Intranets
• A portion of the Internet that

– is separately administered
– usually proprietary
– provides internal and external services
– can be configured to enforce local security policies

• may use a firewall to prevent unauthorized messages leaving
or entering

– may be connected to the internet via a router
• Services:

– File, print services, backup, program-sharing, user-,
system-administration, internet access

Automotive Control

•80+ ECU’s interconnected in controller area networks
•Vehicle dynamics (engine, brake, gear control,…)
•Instrumentation control (lights, indicators, windows,…)
•System Integration
•Information and entertainment systems
•Drive-by-wire

Sensor-networks

Distributed Computing
• Speed up huge computations by using multiple

computers
• NOWs (network of workstations) / cluster

computing

• Dedicated computers

• seti@home: project to scan data retrieved by a
radio telescope to search for radio signals from
another world;

• Grid Computing: www.grid.org (Millions CPUs
world-wide – source 2004)

Mission-critical applications
• Embedded systems, automotive, avionics
• Control Systems
• Banking, stock markets, stock brokerages
• Health care, hospital automation
• Control of power plants, electric grid
• Telecommunications infrastructure
• Electronic commerce and electronic cash on the Web
• Corporate “information” base: a company’s memory of

decisions, technologies, strategy
• Military command, control, intelligence systems
• …

Shared Memory Multi-Processor

processor

cache

processor

cache

processor

cache

Main
memory

System bus

i/o subsystem

NOT
a

distributed system!

Domain Name Service

• Database that maps host names to IP-
addresses and vice versa

• homer.cs.aau.dk =130.225.194.13

root

dk com gov mil org net uk fr

aau mit

cs ece

homer

etc.

owlnet

• Client--server interaction on UDP Port 53

DNS: History
• Initially all host-addess mappings were in a file

called hosts.txt (in /etc/hosts)
– Changes were submitted to SRI (Stanford Research

Institute) by email
– New versions of hosts.txt ftp’d periodically from SRI
– An administrator could pick names at their discretion
– Any name is allowed: eugenesdesktopatrice (flat

namespace)

• As the internet grew this system broke down
because:
– SRI couldn’t handled the load
– Hard to enforce uniqueness of names
– Many hosts had inaccurate copies of hosts.txt

• Domain Name System (DNS) was born in ‘83

DNS zone data records

domain name time to live class type value

www 1D IN CNAME apricot
apricot 1D IN A 138.37.88.248

dcs 1D IN NS dns0.dcs
dns0.dcs 1D IN A 138.37.88.249
dcs 1D IN NS dns1.dcs
dns1.dcs 1D IN A 138.37.94.248
dcs 1D IN NS cancer.ucs.ed.ac.uk

Example Domain dcs.qmul.ac.uk

CNAME = Canonical name for an alias
A = IP Address
NS = Authorative name server

DNS: Root Name Servers

• Contacted by local name
server that can not
resolve name

• Root name server:
– Contacts authoritative

name server if name
mapping not known

– Gets mapping
– Returns mapping to

local name server
• ~ Dozen root name

servers worldwide

Example of Recursive DNS
Query

Root name server:
• May not know

authoritative name
server

• May know intermediate
name server: who to
contact to find
authoritative name
server?

Recursive query:
• Puts burden of name

resolution on contacted
name server

• Heavy load? requesting host
homer.cs.aau.dk

www.google.com

root name server

local name server
dns.cs.aau.dk

1

2
3

4 5

6

authoritative name server
ns1.google.com

intermediate name server
(com server)

7

8

Example of Iterated DNS Query
Iterated query

Contacted server
replies with name
of server to contact

• “I don’t know this
name, but ask this
server”
(delegation):

This is how
today’s DNS
system behaves

requesting host
homer.cs.aau.dk

www.google.com

root name server

local name server
dns.cs.aau.dk

1

2

3
4

6
7

authoritative name server
ns1.google.com

intermediate name server
(com server)

5

8

iterated query

DNS-spoofing

• Until the TTL expires, 172.133.44.44
serves netbank.dk

local name server
dns.cs.aau.dk

remote name server
ns1.bank.dk

Query: (A, netbank.bank.dk)

Response: (A, netbank.bank.dk 216.239.37.99)

Quick Response: (A, netbank.bank.dk,172.133.44.44)

Attacker
172.133.44.44

Definition

Definition

• A distributed system is the one in which
hardware and software components at
networked computers communicate and
coordinate their activity only by passing
messages.

• Examples: Internet, intranet and mobile
computing systems.

Consequences
• Concurrent execution of processes

– Users work independently & share resources
– non-determinism, race-conditions, synchronization, deadlock,

liveness, …
• No global clock

– Coordination is done by message exchange
– There are limits to the accuracy with which computers in a network

can synchronize their clocks
• No global state

– Generally, there is no single process in the distributed system that
would have a knowledge of the current global state of the system

• Units may fail independently.
– Network faults can result in the isolation of computers that continue

executing
– A system failure or crash might not be immediately known to other

systems

Why a Distributed System?
• Functional distribution

– computers have different functional capabilities yet
may need to share resources

• Client / server
• Data gathering / data processing

• Inherent distribution in application domain
• physically or across administrative domains
• cash register and inventory systems for supermarket chains
• computer supported collaborative work

• Economics
– collections of microprocessors offer a better price/

performance ratio than large mainframes

Why a Distributed System?

• Better performance
– Load balancing
– Replication of processing power

• Increased Reliability
– Exploit independent failures property and
– Redundancy

Models

Architectural
Fundamental (semantic

assumptions)

Architectural models

• Software layers
• System architecture

•Session Layer: Dialog
controller

•Establish
•Maintain
•Synchronize
•Terminate

Presentation layer: handles
syntax and semantics

•Data translation
•Encryption/decryption
•Compression/expansion

OSI-model
•Open Systems Interconnection model (ISO standard)

Service layers

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Middleware
• Software layer (library of functions) that

simplifies programming
– Masks heterogeneity
– Provides a convenient programming model

• Objects/ processes
• Communication primitives
• Synchronization
• Group and multicasting
• Naming and Localization services
• Event notification

– Corba, JavaRMI, .NET Remoting, MPI, ISIS,…

Clients / Server model

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Variations:
•thin / thick / smart (dynamic) clients
•multiple server services
•multi-tier systems

A distributed application
based on peer processes

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

Client Server vs Peer based
Client-Server
• Most widely used

model
• Functional

specialization
• Asymmetrical
• Tends to be

Centralized
• Tends to scale poorly

Peer
• Symmetrical,

computers runs same
algorithms / same
responsibilities

• Truly Distributed
• Share / exploit

resources at a large
number of
participants

Fundamental Models

Design and solutions depend on
fundamental assumptions on

– Process Interaction
– Failures
– Security threats

Interaction Model
• Process:

– executing program with private state
– sending and receiving messages

• Distributed Algorithms:
– A definition of the steps to be taken by each of the processes of

which the system is composed, especially the messages
transmitted between them

• Communication Performance is a limiting characteristic
– Latency, bandwidth, Jitter

• It is impossible to maintain a single notion of time
– Computer clocks have drift
– GPS: 1 micro Sec
– Message Passing (eg.NTP) 100ms

Message send / receive

Communication speed
static void Main(string[] args)
{

uint i = 0; long y; int x = 500;
const uint MAX_ITER = 1000000; // 1million
DateTime tmStart; DateTime tmEnd;

tmStart = DateTime.Now;
for (i = 0; i <= MAX_ITER; i++)

y = x * i;
tmEnd = DateTime.Now;
TimeSpan tmDiff = tmEnd - tmStart;
Console.WriteLine(MAX_ITER + "iterations took "+

(tmDiff.TotalMilliseconds) + "ms");
}

What is the total execution time of this program?

Communication speed
static void Main(string[] args)
{

uint i = 0; long y;
const uint MAX_ITER = 1000000; // 1million
DateTime tmStart; DateTime tmEnd;

tmStart = DateTime.Now;
for (i = 0; i <= MAX_ITER; i++)

y = READ_REMOTE(x) * i;
tmEnd = DateTime.Now;
TimeSpan tmDiff = tmEnd - tmStart;
Console.WriteLine(MAX_ITER + "iterations took "+

(tmDiff.TotalMilliseconds) + "ms");
}

Roundtrip time:
Ping www.cs
Ping krak.dk
Ping google.com

X is located on a remote host:

Read_Remote

Interaction model 1:
Asynchronous systems

No known bounds for:
• The execution speed of a process
• Message delay on the network
• Clock drift

Interaction model 2:
(Partly) Synchronous systems

• Known upper and lower bound for each
process step

• Known upper bound for the time it task for
a message to be received

• Known upper bound for clock drift

Failure Model

• The system might need to tolerate failures
– processes

• might stop / crash
• degrade gracefully
• exhibit Byzantine failures

– may also be failures of
• communication mechanisms

Omission and arbitrary
failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes

may detect this state.
Crash Process Process halts and remains halted. Other processes

may not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer

never arrives at the other end’s incoming message
buffer.

Send-omission Process A process completes a send but the message is
not put in its outgoing message buffer.

Receive-
omission

Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process
or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds

on its rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than

the stated bound.

Security model

• Protection of objects
• Securing processes and their interaction

– Goals
• Secrecy, integrity, authentication, authorization,..

– Attacks
• man-in-the-middle, eaves-dropping, play-back, …

END

