
Programming models 2

Brian Nielsen
bnielsen@cs.aau.dk

Registry = NameServer

3: proxy2 = proxy1.method()
proxy

RMI layer

transport

skeleton
RMI layer

transport

client VM server VM

RMI registry

2: proxy1 = Naming.lookup(URL)

1: Naming.bind(URL, obj1)

The registry provides a bootstrap
naming service using URLs.

rmi://slowww.server.edu/object1
obj1
obj2

obj3

server appclient app

Problem:
Client must know
what name the

server machine has

Motivation
• Example scenarios

– "Find all nearby color duplex printers"
– "Start brewing coffee five minutes before my alarm

clock goes off"
– "Let my cell phone use the car speakers“

• Coordination framework
– Simple, seamless, and scalable interoperability
– Network "plug and play" with minimum admin
– Networked software and hardware provide services
– Any device can find and use existing services

Network

One Way Scenarios Might
Be Done Today

Network Alarm Clock
Service

Coffee
Maker

Desktop
PC

Cell Phone
Stereo

Speaker
Service

Printer
Service

Network

What Jini Proposes

Lookup
service

Coffee
Maker

Desktop
PC

Alarm Clock
Service

Stereo
Speaker
Service

Printer
Service

Network

Cell Phone

Spontaneous networking

• Jini enables clients to automatically
discover services at runtime

• Associative search
– Not by name lookup (e.g. http://some.url:port)
– Instead: find a service that does this or that

• Loose coupling
– Services and clients can join and leave the

system (Jini federation) at any time without
causing system failure

Jini and Java

Service Interface
• Everything is a service on the network.
• Interfaces define what a service offers, not how

it implements it
• Java interfaces gives strong typing
• The ServiceItem Java object represents a

service registration:
• A unique service ID
• The service proxy object
• A set of optional Java attribute objects

– (e.g. location, status, vendor, etc)

• Services are found in the lookup service by
template matching described by a
ServiceTemplate object

Discovery, join, lookup protocols
• Join protocol

– Services register with lookup services
– Registration is a Java object

• Discovery protocol
– Clients and services find lookup services by multicasting

requests at predefined IP multicast address or direct addressing
(PULL)

– Lookup service may advertise its existence by periodic
multicasting its presence (PUSH)

• Lookup protocol
– Clients send a search request to lookup services
– Specify service type and properties as a Java object
– Lookup service finds and returns matching services
– Returned is a Java object (ServiceItem) that carries the service

proxy

Service Registration

Lookup
service

Network
Alarm Clock

Service

1. Find Lookup Service

2. send proxy to client serv

3. Upload service proxy

Lookup service’s Proxy Object

Alarm Clock service’s Proxy Object

Service Leasing

Lookup
service

Network
Alarm Clock

Service

1. Find Lookup Service

Coffee
Maker

2. Return proxy to lookup

3. Query for service

4. Service returned

Find interface AlarmClock(radio=yes, vendor=*)

Lookup service’s Proxy

Alarm Clock service’s Prox

Using Services

Lookup
service

Network
Alarm Clock

Service
Coffee
Maker

Can use any protocol to communicate to service
(or proxy can contain service itself!)

Lookup service’s Proxy

Alarm Clock service’s Prox

The role of the proxy

• The proxy is a Java object downloaded from the service
• Hides communication between proxy and service

– Costumizable, dedicated protocol (transparent)
• Protocol independent (TCP/IP, HTTP, SOAP, etc.)
• Replication

– Updatable
– protocol
– Interact directly with physical devices

Leasing
• What happens if a service dies?

– It must be de-registered at the lookup service
– May crash, or “forget” to do so

• A lease is a time period during which the
grantor of the lease promises that the holder
of the lease will have access to some
resource
– Eg. The lookup service stores a service registration

• A client requests a lease from the provider
(lease grantor) and must periodically renew it.

• Expired or non-renewed lease results in
removing lease and freeing up resources

Event Based Systems

Event driven programming
• Programming principle based on the idea that objects

should react on events (state change, either concretely
or abstractly) happening in other objects.

• Objects publishes information about events that other
objects might be interested in knowing about.

• Objects can subscribe to receive information about
when an event occur.

Event Programming

Keypad
ctrl

Tray
ctrl

Display
Ctrl

Motor
Ctrl

Event: OpenPressed

Open Tray Clear Display Stop Motor

Architecture for distributed
event notification

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

1. OOI directly notifies subscriber
2. OOI nofies subscriber via observer
3. Observer queries (polls) OOI and notifies subscriber

Remote Events
• Remote events more expensive to send

than local events
• Remote events propagate slowly
• Remote events may not arrive in order

sent
• Remote events may not arrive at all (or

at all subscribers)
• What does sender do if receiver has

crashed -- keep trying? How long?

Jini Remote Events

Jini Remote Events

Remote event
listener

Event
generatorRegistrant

1:register(…)

2: eventRegstration

3: notify(remoteEvent)

4: renew(..)

Jini Events
• Event generators: An object, that allows other

objects to subscribe to its events and generates
notification (via RMI).

• Remote event listeners: An object that can
receive notifications.

• Remote events: An object that is passed by
value to remote event listeners (a notification).

• Third-party agents: Objects that may be
interposed between an object of interest and a
subscriber (observers).

• Subscriptions are subject to leasing

RemoteEventListener
interface

public interface RemoteEventListener extends
Remote,
java.util.EventListener

{
void notify(RemoteEvent theEvent)

throws UnknownEventException,
RemoteException;

}

RemoteEvent Class
public class RemoteEvent extends java.util.EventObject {

public RemoteEvent(Object source,
long event ID,
long SeqNum,
MarshalledObject handback) {…}

)

public Object getSource() {…}
public long getID() {…}
public long getSequenceJumber() {…}
public MarshalledObject getRegitrationObject {…}

}

source+eventID+SeqNum uniquely identifies event occurrence:
⇒ Notify is IDEMPOTENT

Example EventGenerator
public interface EventGenerator extends Remote {

public EventRegistration register(long evID,
MarshalledObject handback,
RemoteEventListenter toInform,
long leaseLength)

throws UnknownEventException, RemoteException;
}

The EventRegistration Class
public class EventRegistration implements java.io.Serializable
{

public EventRegistration(long eventID,
Object eventSource,
Lease eventLease,
long seqNum) {…}

public long getID() {…}
public Object getSource() {…}
public Lease getLease() {…}
public long getSequenceNumber() {…}

}

3rd party objects (Observers)

• Store-and-forward agents
• Notification filters
• Notification mailboxes

Store and forward agent

Event
generator

Store and
forward
agent

Store and
forward
agent

• Offloading the (remote) communication of the event
generator.
• Delivery policies (eg retry policies)
• reliable Multicast, hardware multicast

Obj X

Obj Y

Obj Z

notify(…)

notify(…)

notify(…)

notify(…)

Notification Multiplexing
Obj X

Obj Y

Obj Z

Event
generator

Notification
filter

Notification
filter

Machine B

Obj X

Obj Y

Obj Z

Optimize network usage

Machine A

Machine B

Notification Demultiplexing

Notification
filter

Registrant

Obj X

Obj Y

Obj Z Generate Composite Events
•N consequetive events

•N different events

•An event at each source

Notification mailbox

Event
generator

Notification
mailbox

Registrant
(“offline”)

1) Mailbox stores events until
registrant comes “online”.

Registrant
(“online”)

2) When registrant comes
“online” the stored events are
delivered.

David Gelernter, yale University.

Linda (and JavaSpaces)

Linda
• Program Concurrency by using uncoupled

processes with shared data space
• Add concurrency into a sequential

language by adding:
– Simple operators
– Runtime kernel (language-independent)
– Preprocessor (or compiler)

Basic Idea

• Have a shared memory space (“tuple space”)
– Processes can add, read, and take away values from this space

• Bag of processes, each looks for work it can do by
matching values in the tuple space

• Implicit load balancing, synchronization, messaging, etc.

Tuples

in, out, read
JavaSpaces:

read, write, take
Immutable

read, writeOperations

Selection of valuesAddress (variable)Access Using

Logical Tuple
(23, “test”, false)

BitUnit

Linda/JavaSpacesConventional
Memory

Tuple Space Operations
• out (t) – add tuple t to tuple space
• in (s) → t – returns and removes tuple t

matching template s
• read (s) → t – same as in, except doesn’t

remove t.

• Originally also Eval(f(42),g(45));
• Operations are atomic (even if space is

distributed)

Meaning of in

in (“f”, int n)

in (“f”, 23)

in (“t”, ? bool b, ?int n)

in (?string s,? int n)

in (“cookie”)

(“f”, 23)

(“f”, 17)

(“t”, 25)

(“t”, true)
(“t”, false)

Tuple Space

Counting Semaphore

• Create (int n, String resource)
for (i = 0; i < n; i++) out (resource);

• Down (String resource)
in (resource)

• Up (String resource)
out (resource)

Distributed Ebay
• Offer Item (String item, int min bid, int

timeout):
out (item, minbid, “owner”);
sleep (timeout);
in (item, ? bid, ? bidder);
if (bidder ≠ “owner”) SOLD!

• Bid (String bidder, String item, int bid):
in (item, ? highbid, ? highbidder);
if (bid > highbid) out (item, bid, bidder)
else out (item, highbid, highbidder)

Further Reading

• Jini Specification
http://www.sun.com/jini/specs

• Jini Developers
http://jini.org

• Universal Plug and Play
http://www.upnp.org

• Salutation
http://www.salutation.org

END

