
Distributed File Systems

Brian Nielsen
bnielsen@cs.aau.dk

Distributed filesystems
• The most important intranet distributed

application
– Sharing of data (cscw) and programs
– Easy management and backup, economy
– Fast, reliable file-server HW (eg RAID)
– Infrastructure for print+naming
– User mobility
– Security

• High transparency requirements
• High performance requirements
• Today:

– Basic Distributed FS (emulate ordinary FS for clients
on different computers)

– No replication

Files

• Unix Style: sequence of bytes+meta-data

File length
Creation timestamp

Read timestamp
Write timestamp

Attribute timestamp
Reference count

Owner
File type

Access control list

T h i s i s a f i l e T T T T T T T T

filePointer
(offset)

Attributes, eg.

UNIX file system operations
filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count =read(filedes,buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.

Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually
transferred and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

Semantics of File Sharing

• Four ways of dealing with the shared files in a
distributed system.

All changes occur atomically.
The file system supports transactions on a single file
Issue: how to allow concurrent access to a physically distributed file

Transaction
semantics

No updates are possible; simplifies sharing and replicationImmutable files

No changes are visible to other processes until the file is closed.
The effects of read and write operations are seen only to the client
that has opened (a local copy) of the file.
When the file is closed, only one client’s writes remain

Session
semantics

Every operation on a file is instantly visible to all processes:
a read operation returns the effect of the last write operation
Can only be implemented for remote access models in which
there is only a single copy of the file

UNIX
semantics

CommentMethod

File System Models

Remote access model Upload/download model

Fault-Tolerance
• No open / close!
• File-pointer supplied at each invocation
• Operations are Idempotent

– Repeated invocations leaves server in same
state

• Server is State-less!
– Server crash: Client can continue unaffected

when server recovers
– Client crash: No state to be cleaned up at

server

The Sun Network File System
(NFS)

• An implementation and a specification (RFC) of
a software system for accessing remote files
across LANs (or WANs)

• SUN 1985
• RPC/XDR based protocol
• Goals

– Access transparency
– Heterogeneous,
– OS Independent

• Mounting and the actual remote-file-access are distinct services

NFS Protocol
• Provides a set of remote procedure calls for remote file

operations.
– searching for a file within a directory
– reading a set of directory entries
– manipulating links and directories
– accessing file attributes
– reading and writing files

• NFS servers are stateless; each request has to provide a
full set of arguments

(NFS V4 is becoming available – very different, stateful)
• Modified data must be committed to the server’s disk before

results are returned to the client (lose advantages of
caching)

• The NFS protocol does not provide concurrency-control
mechanisms

NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system
O

th
er

fil
e

sy
st

em

RPC/XDR

•Virtual File System (VFS) provides a standard file system interface that hides the difference
between accessing local or remote file systems.
•V-node = virtual file identifier (remote/local, ID)

• ID= i-node number, if local
• ID=fileHandle, if remote (File-Sys id, i-node, i-node-generation)

NFS server operations
(simplified) – 1

lookup(dirfh, name) → fh, attr Returns file handle and attributes for the file name in the
directory dirfh.

create(dirfh, name, attr) →
newfh, attr

Creates a new file name in directory dirfh with attributes
attr and returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.
getattr(fh) → attr Returns file attributes of file fh. (Similar to the UNIX stat

system call.)
setattr(fh, attr) → attr Sets the attributes (mode, user id, group id, size,

access time and modify time of a file). Setting the size
to 0 truncates the file.

read(fh, offset, count) →
attr, data

Returns up to count bytes of data from a file starting at offset.
Also returns the latest attributes of the file.

write(fh, offset, count, data) →
attr

Writes count bytes of data to a file starting at offset.
Returns the attributes of the file after the write has taken place.

rename(dirfh, name, todirfh,
toname) → status

Changes the name of file name in directory dirfh to toname
in directory to todirfh.

link(newdirfh, newname, dirfh,
name) → status

Creates an entry newname in the directory newdirfh which
refers to file name in the directory dirfh.

Continues on next slide .

NFS server operations
(simplified) – 2

symlink(newdirfh, newname,
string) → status

Creates an entry newname in the directory newdirfh of type
symbolic link with the value string. The server does not
interpret the string but makes a symbolic link file to hold it.

readlink(fh) → string Returns the string that is associated with the symbolic link file
identified by fh.

mkdir(dirfh, name, attr) →
newfh, attr

Creates a new directory name with attributes attr and
returns the new file handle and attributes.

rmdir(dirfh, name) → status Removes the empty directory name from the parent
directory dirfh. Fails if the directory is not empty.

readdir(dirfh, cookie, count) →
entries

Returns up to count bytes of directory entries from the
directory dirfh. Each entry contains a file name, a file handle,
and an opaque pointer to the next directory entry, called a
cookie. The cookie is used in subsequent readdir calls to start
reading from the following entry. If the value of cookie is 0,
reads from the first entry in the directory.

statfs(fh) → fsstats Returns file system information (such as block size, number
of free blocks and so on) for the file system containing a file fh.

Caching
• Store recently accessed disk-blocks locally in main

memory
• Needed for good performance

– disk access time
– network latency,
– bandwidth

• Exploit memory hierarchy
– locality-of-reference
– local access is fast(er)

• Caching in Normal Unix FS
– Read-ahead
– Delayed-write (write dirty blocks every 30s)

registers
L1

main memory

local disks

tape storage

L2

L0:

L1:

L2:

L3:

L4:

L5:

Caching in NFS
• Server-side caching

– Read operations: easy.
– Write operations:

• Write-through, or
• Delayed-write: flush on commit operation (+file close)

• Client-side caching
– Consistency problems when several clients holds

copies of the same blocks

Client 1 Client 2Server

“Hello”

2 read
“Hello”

1 read
“Hello”

“HelloWorld”3 write“HelloWorld”

client
cache

Server
cache

Client cache check in NFS
• Time stamps based validation
• Client validation before use of cache contents

– TC is the time of the last validation of cached block
• Tm-server is the modification timestamp stored at server
• Tm-client is the modification timestamp stored at client

– T=current time
– t is the freshness interval

• (T- TC < t) or (Tm-client = Tm-server)
– Tm obtained through getattr polling before cache entry

is used
– t is 3-30s adaptive (compromise between consistency

and efficiency)

Inconsistency Time

• Optional block I/O daemon perform
commit and read-ahead

Client 2 polls
freshness interval

Client 1
Commit

(close/sync)

Client 1
write

server
write

NFS Goals
• Access transparency : yes
• Location transparency : yes, (dependent on

mounting)
• Failure transparency : partial
• Mobility transparency : yes, (with update of

mount tables)
• Replication transparency : no
• HW/SW heterogeneity: Yes
• Consistency: approximation to one-copy

semantics (3 sec lag)
• Scalability : no

Performance

• Early experiences
– Getattr polling (many optimizations needed)

• Piggy-backing on every operation
• Apply attributes to all cached blocks

– Write-through cache at server (no commit)
– Few writes

• LADDIS Benchmark
• Effective in LAN intranets

The Andrews file system
(AFS)

• A distributed computing environment under development
since 1983 at Carnegie-Mellon University

• AFS 1, AFS 2, AFS-3
• Design objectives

– Highly scalable: targeted to span over 5000
workstations.

– Secure: Little discussed here (see the above paper)
• Whole-file-serving
• Whole-file-caching (on client’s disk)
• Shared vs. private files
• Clients more independent of server than NFS

Basic idea
• A user process issues an open operation on a

shared files not in the local cache. The client
requests a copy of the file

• The copy is cached on the local files system, it is
opened, and the user process can continue.

• Read and write operations are performed on the
local copy

• When the user process performs a close
operation, and if the file has been modified, it is
copied back to the server. The server installs the
new version of the file, and updates the last
modified timestamp for the file.

Why AFS
• For infrequently updated files, the cached copies

remain valid for long periods (e.g. system
binaries)

• Large caches are possible
• The following observations: (Unix Workload)

– Files are small (often less than 10Kb)
– Reads are more common than writes
– Sequential access is common
– Most files are read and written by only one user
– When a file is shared it is often only one user who

modifies it
– Files are referenced in bursts.

Distribution of processes in
the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

The main components of the
Vice service interface

Fetch(fid) → attr, dataReturns the attributes (status) and, optionally, the contents
of file identified by the fid and records a callback promise
on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a
specified file.

Create() → fid Creates a new file and records a callback promise on it.
Remove(fid) Deletes the specified file.
SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the

lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.
RemoveCallback(fid) Informs server that a Venus process has flushed a file

from its cache.
BreakCallback(fid) This call is made by a Vice server to a Venus process.

It cancels the callback promise on the relevant file.

Implementation of calls in AFS
User process UNIX kernel Venus (client) Net Vice (server)

open(FileName,
mode)

If FileName refers to a file
in shared file space pass
the request to Venus.

Open the local file and
return the file descriptor
to the application.

Check list of files in local
cache. If not present or
there is no valid callback
promise send a request for
the file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the file
in the local file system,
enter its local name in the
local cache list and return
the local name to UNIX.

Transfer a copy of the file and
a callback promise to the
workstation. Log the callback
promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed.

If the local copy has
been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file contents and
send a callback to all other
clients holding callback
promises on the file.

Cache Consistency 1
• “call-back promise” is a token representing a

promise made by server that it will notify the
client when the cached file is modified by other
clients

• Stored in client disk-cache
• States: valid or cancelled

– Moves from valid to cancelled state when callback is
received

– Client access to file with cancelled call-back promise
=> fetch fresh copy from server

– Client access to file with valid call-back promise
=> use local copy

Cache Consistency 2
• Client Crash: missed callbacks!

– State of callbacks uncertain
– First use after restart: send cache validation request

to server to check timestamp
• Communication Failures

– No communication with server for T minutes:
– Renew callback (leasing principle)

• Server Crash (State-full)
– List of clients with callback promises stored on disk
– With atomic update

Update Semantics
• Unix

• one-copy semantics
• there is one copy of the file, and each write is destructive

(i.e., “last write wins”)

• NFS
• one-copy semantics, except:

• clients may have out-of-date cache entries for brief periods
of time when files are shared

• this can lead to invalid writes at the server

• AFS
• one-copy semantics, except:

• if a callback message is lost, a client will continue working
with an out-of-date copy for at most T minutes

Failure Performance
• When an NFS server fails, everything fails

• all accesses have apparent local semantics (except for
“soft mounts”)

• when a server fails, it is as though the local disk has
become unobtainable

• since authentication files are often stored on NFS
servers, this brings down the entire system

• When an AFS server fails, life (partly) goes on
• all locally cached files remain available
• work is still possible, though there is a higher chance

of conflict for shared files

END

