
Programming models 1
Remote Object Invocation

Brian Nielsen
bnielsen@cs.aau.dk

Distributed programming
• Directly using the available network protocols

– Socket API
• Extension of existing language primitives to support

distributed programming
– Remote Method Invocation,
– Remote Procedure Calls
– Message Queues

• Coordination Languages
– Embed coordination language in sequential Programming

language
– Linda, Actors

• New distributed programming languages,
– Emerald, Argus, ADA, Clouds, Arjuna, Salsa

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

FileManager Object
ResultType ReadFile(Name,Position,Len);

Boolean = WriteFile(Name, Posistion, Len);

…
…

res = CALL filemanager.readFile(Name,Position,Len);

… Problem 1:
Data representation??

Problem 2:
Handling of failures of

client/server and
communication

Problem 3:
Localization of server

Operations of the request-
reply protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the
arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Request-reply message
structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Request-Reply Communication

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

External Data
Representation

Heterogeneity
Hardware
• big or little endian?
• 16, 32, 64 bit integers ?
• ASCII characters vs. unicode
• floating point values, IEEE?
• C-strings vs. UTF-8
• Instruction-sets
Software
• Internal representation of data-structures

(padding)

Marshalling
• Marshalling is the process of taking a collection of data

items and assembling them into a form suitable for
transmission in a message.

• Unmarshalling it the process of disassembling them on
arrival.
– Values are converted to an agreed external format before

transmission, and converted to the local format on receipt.
– Values are transmitted in the sender’s format together with an

indication of the format used.
– Translate at sender side, receiver side, or both!

Marshall =
Ceremonial-Master

100101011111001111111111

struct Person{
string name;
string place;
long year;

} = {“Brian”, “aau”, 1969}

struct Person{
string name;
string place;
long year;

} = {“Brian”, “aau”, 1969}

Sender Representation Receiver RepresentationTransfer / “on wire”
Representation

External data representation
and marshalling

• CORBA common data representation (CDR).

• Java object serialization / .NET object serialization
• XML
• ASN.1

– BER (Basic Encoding Rules)
– PER (Packed Encoding Rules)

• Issues
– speed
– compactness (of messages and marshalling code)
– self-containment (type info included)
– hand-programming vs. interface-compilers
– robustness

0 0 0 3b n i e l s e n a a u 0 0 0 7 1770 0 0 8

Byte 1

Request-Reply
Communication

Failure model for request-
reply protocols

• Omission failures (lost request /reply)
• No ordering guaranteed (eg.UDP does not

guarantee ordering)
• Clients and servers have crash faults

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

FileManager Object
ResultType ReadFile(Name,Position,Len);

Boolean = WriteFile(Name, Posistion, Len);

…
…

res = CALL filemanager.readFile(Name,Position,Len);

…

Failures??

Coping with failure
• Clients times out ⇒ abort or retry

– Lost Requests
• Client: Times out and retransmits
• Server discards duplicated request messages (seq nr)

– Lost replies
• Client: Times out and retransmits request
• Server:

– Rexecute, if idempotent operation
– Use a history (buffer) of results and retransmit

– Server Crash
• Same as lost request or lost reply

• Client Crash

Server Reply History

• Cost of History
– Many clients, many requests
– Large replies (File-server)
– How do we garbage collect the history?

Client Request# Reply

C1 1 ”Hello World”

C1 2 42

…

C1 17 3.14

C2 1 56

…

C2 19 John & Jane Doe

C3

C4

…

Server

Reply
History

Request-reply exchange
protocols

Name Message sent by
Client Server Client

R Request
RR Request Reply

RRA Request Reply Acknowledge reply

Distributed Objects
&

RMI

Objects for Dist. Sys?
• Objects are units of data with the following properties:

– typed and self-contained
• Each object is an instance of a type that defines a set of methods (interface) that can

be invoked to operate on the object.
• The separation between interfaces and the objects implementation
• Invocation is syntactically and (semantically) independent of an object’s location or

implementation.
– encapsulated

• The only way to operate on an object is through its methods; the internal
representation/implementation is hidden from view.

• State only accessible via message passing / RMI
• Already logically partitioned ⇒ physical distribution
• Unit for persistence, caching, location, replication, and/or access control.

– dynamically allocated/destroyed/binding
• Objects are created as needed and destroyed when no longer needed; not bound to

specific program scope
• Garbage collection: even more necessary in DS
• Client dynamically locates and binds to servers,

– uniquely referenced
• Each object is uniquely identified during its existence by reference that can be

held/passed/stored/shared.
• For Distr sys: add mapping between id and (current) location

Distributed Objects in the
Marketplace

1. Java Remote Method Invocation (JAVA-RMI)
• API and architecture for distributed Java objects

2. Microsoft Remoting
• Distributed objects for .NET

3. Microsoft Component Object Model (COM/DCOM)
• binary standard for distributed objects for Windows platforms
• e.g., clients generated with Visual Basic, servers in C++
• extends OSF DCE standard for RPC

4. CORBA (Common Object Request Broker Architecture)
• OMG consortium formed in 1989
• multi-vendor, multi-language, multi-platform standard

5. Enterprise Java Beans (EJB) [1998]
• CORBA-compliant distributed objects for Java, built using RMI

6. Web services and SOAP

A remote object and its
remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

Service Interface:
•specification of remotely callable procedures offered by server
•method signatures (name, input/out parameters and types)
•=remote interface
•Interface Definition Language (IDL): Allows for language heterogeneity

Distributed Objects

stub, surrogate, or proxy
stub, skeleton or guard

Common organization of a remote object with client-side proxy.

Invocation semantic

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Implementing RMI

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

Servant

(B-proxy ref, remote ref for B)
…

type 0=request / 1=reply

requestId

remoteObjectReference
methodId

arguments

Representation of a remote
object reference

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

Remote Object Reference: uniquely identifies an object system-wide

Fx:

Problem: What if objects may migrate?

Implementation of RMI

Proxy:
•Make RMI transparent to calling object
•Hide remote object reference
•Marshall/Unmarshall

Communication Module:
•Implements request/reply protocol

Remote Reference Module
•remote object table
•Translates local and remote references
•Updated dynamically
•(B-proxy-ref, B remote ref)

Dispatcher:
•Inspects request and calls requested method
in skeleton

Skeleton:
•Implements methods of remote interface
•unmarshalls, invokes servant, marshalls

Implementing RMI
1. client calls proxy
2. proxy obtains remote reference, updates remote references
3. proxy marshalls parameters
4. proxy forwards request to clients communication module
5. clients communication module sends request to server
6. server communication module at server receives request
7. server communication module forwards request to dispatcher for the requested class
8. dispatcher calls requested method in skeleton
9. skeleton unmarshals parameters, updates remote reference module,
10. skeleton calls servant
11. skeleton marshalls results, and updates remote reference module
12. skeleton forwards reply to server communication module
13. server communication module sends reply
14. clients communication module receives request, forwards it to proxy object
15. proxy unmarshalls
16. proxy updates remote reference module
17. proxy returns to result to client

Parameter Passing
• o1=remoteObj.m(o2, o3,o4);
• Should parameters (IN and OUT / return) be transferred by

value or reference???
– Normally, anything is by reference, except primitive or valueTypes

• By reference: an remoteObjectRef is transfered
– Access to by-reference-parameters will be yet another expensive RMI

• IN parameters at server
• Return parameters at client

• Call-By-Value: a copy created at receiver
– potentially expensive marshalling and communication of large objects

state+code
• System objects cannot be marshalled eg. open files,threads,)

Distributed Garbage Collection
• Reclaim object when no object/node in the

system can reference the object
• GCProtocol, v. 1.0: Reference Counting

client C
1. When creating a new proxy for object o: call server.addRef(o)
2. When destroying a stub, call server.removeRef(o)

server o
1. On addref(o), increment o.count.
2. On removeRef(o), decrement o.count
3. Reclaim object when:

no local references remain
AND

o.count is 0

Garbage Collection:
Complications

1. Cyclic datastructures
2. What if a client fails without releasing object references?

1. If we can detect client-failure: decrement counts, but we must
associate counts with unique clientIDs.

3. What if an object is reclaimed prematurely due to a transient
network failure that heals?

1. must guarantee that the server detects the dangling reference
2. requires unique objectIDs

4. What if addRef and removeRef messages from a given client
are delivered out of order?

1. tag messages with increasing sequence-numbers
5. What about races if a last reference is in transit??

Reliable GC: Client

1. When creating a proxy for object o, call server.addRef(o,C)
Always await acknowledgement for addRef call before acknowledging receipt
of the reference.

2. When destroying a proxy, send server.removeRef(o,C)
Never destroy a stub until all transmitted references have been acknowledged
by their recipients.

3. Resend server.addRef(o,C) every lease interval.

4. Tag each garbage collection message with:
(i) a strictly increasing sequence-number
(ii) a clientID C guaranteed unique across all clients.

•Garbage Collection Protocol, version 2.0: holders+leasing

Reliable GC: Server

1. On addRef(o,C) add C to o.holders
o.holders shows (clientID, add-time, sequence#)
add-time is the server’s time when it received the addRef request
sequence# is the client’s sequence-number recorded in the addRef request

2. On removeRef(o,C), remove C from o.holders
discard removeRef messages with sequence-number < sequence# in record

3. Periodically scan o.holders
if C’s add-time is older than lease interval

remove C from o.holders

4. Reclaim object when o.holders is empty and no local references exist

•Garbage Collection Protocol, version 2.0: holders+leasing

JavaRMI

Case study: Java RMI
• Extends the Java object model providing support

for distributed objects.
– Same syntax as for local method invocation
– Different

• call semantics
• parameter passing semantics
• remote exceptions

• Classes can be downloaded dynamically

Remote Objects
• Remote interfaces defined by extending the Remote

interface.
• “Remote objects” (servants) =def implements Remote

interface
• All methods must throw RemoteException
• Corollary: because the visible parts of a remote object

are defined through a Java interface, constructors, static
methods and non-constant fields are not remotely
accessible (because Java interfaces can’t contain such
things).

• the rmic compiler generates stub-code for classes that
implement remote interfaces.

Registry = NameServer

3: proxy2 = proxy1.method()
proxy

RMI layer

transport

skeleton
RMI layer

transport

client VM server VM

RMI registry

2: proxy1 = Naming.lookup(URL)

1: Naming.bind(URL, obj1)

The registry provides a bootstrap
naming service using URLs.

rmi://slowww.server.edu/object1
obj1
obj2

obj3

server appclient app

The Naming class of Java
RMIregistry

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote
object by name, as shown in Figure 15.13, line 3.

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote
object by name, but if the name is already bound to a remote object
reference an exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as
shown in Figure 15.15 line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in
the registry.

Byte Code Instructions for Stubs?
• A client (server) receives a (serialized) object

passed by RMI.
• It wants to call a method on the received object
• BUT serialized objects do not contain is the

actual JVM instructions (the byte codes), that
implement methods of the received object.

• ⇒ When an object is unserialized, the client
JVM must have some way of loading a class file
that does contain the code
– If no suitable class file is found it throws

java.lang.ClassNotFoundException
• ⇒ Dynamic loading of code

Distributing Class Files
1. Manually copy all class files to (all) client and

servers CLASSPATH eg. by ftp
2. Put in shared directory in Network File System

(LANs only)
3. JVM can be instructed to automatically fetch

code through http
– publish code at a web-server
– serialized object contains URL
– set the property java.rmi.server.codebase in the

JVM where the serialized object originates, eg.
java –Djava.rmi.server.codebase=

http://mywww/users/bn/html/HelloServer

Dynamic Class Loading

Client
JVM

Remote Object
(MyImpl instance)

Client

Server

Web
Server

Request stub
class file

HelloServer/
html/

MyImpl_Stub.class
Server

(myWWW)

Serialized object,
annotated with code-base:

http://mywww/users/bn/html/HelloServer

/

Security Managers
• Dynamically loaded code from remote clients (perhaps programmed

by other people) cannot / should not be trusted
• Anybody that knows the interface can access the remote object!
• Before a Java application is allowed to download code dynamically,

a suitable security manager and security policy must be set.
• If no security manager is set, stubs and classes can only be loaded

from the local CLASSPATH.
1. This command at the start of the program enables dynamic loading

System.setSecurityManager(new RMISecurityManager()) ;
2. Define the the java.security.policy property

1. java –Djava.security.policy=policy.all HelloClient

2. (or use System.setProperty() in the program)

3. policy.all is a text file containing our security policy

Defining a Security Policy
• text file with contents:

grant {
permission java.security.AllPermission “”, “” ;

} ;

• This policy allows downloaded code to do essentially
anything the current user has privileges to do:
– Read, write and delete arbitrary files; open, read and write to

arbitrary Internet sockets; execute arbitrary UNIX/Windows
commands on the local machine, etc.

– It is a dangerous policy if there is any chance you may download
code from untrustworthy sources (e.g. the Web).

– For now you can use this policy, but please avoid dynamically
loading code you cannot trust!

RMIC
• RMIC stub compiler creates proxy and

skeleton code
• Use RMIC –keep if you want to see these

fire2 [~]:javac examples/RMIShape/ShapeListClient.java

fire2 [~]:javac examples/RMIShape/ShapeListServer.java

fire2 [~]:rmic –keep examples.RMIShape.ShapeListServant

fire2 [~]:rmic –keep examples.RMIShape.ShapeServant

//Stub code contained in ShapeListServant_Stub.java and

//ShapeListServant_Skel.java

//Start Server

borg [~]:rmiregistry&

borg [~]:java -Djava.security.policy=Grant.java examples/RMIShape/ShapeListServer

//start Client

fire2 [~]:java -Djava.security.policy=Grant.java examples/RMIShape/ShapeListClient
Write Rectangle

Case .Net Remoting

.NET Remoting Architecture

Client
object

Channel
TCP/HTTP/SMPT

Formatter Formatter

Server
Object

Proxy
ObjRef

Application domain 1 Application domain 2

Stack
Builder

sink

• Pluggable transports and formatters
• Encryption, Authentication, Authorization
• Server activations: singleton, singleCall, Client-Activated based on leases
• Asynchronous invocation (use multithreading instead)

Custom sink Custom sink

.NET Remoting: Remotable Types

• Any type that extends the class
MarshalByRefObject

• Object references that are not remote
should be passed by value
– implement the ISerializable interface
– or set the [serializable] attribute
– A new copy gets created at the destination

• Remote object references are passed by
reference (ObjRef instance)

.NET Binding

• Explicit host/port/name, programmed or in
configuration file

public static void Main() {
ChannelServices.RegisterChannel(new
HttpChannel(1234));
WellKnownServiceTypeEntry WKSTE = new
WellKnownServiceTypeEntry(
typeof(BankAccountManager),
"boc", WellKnownObjectMode.Singleton);
RemotingConfiguration.ApplicationName = "boc";
RemotingConfiguration.RegisterWellKnownService
Type(WKSTE);

public static void Main() {
HttpChannel chan = new HttpChannel();
ChannelServices.RegisterChannel(chan);
RemotingConfiguration.RegisterWellKnownClientType
(typeof(BankAccountManager),

"http://localhost:1234/boc");
try{

BankAccountManager bank =
new BankAccountManager();

CLIENT SERVER

END

