
Consensus

Brian Nielsen
bnielsen@cs.aau.dk

Consensus problems
• Examples

– Mutex: which process is granted access
– Reliable and ordered Multicast
– Election
– Abort/proceed in space shuttle launch
– Consistent credit/debit bank account

• Fault Tolerance
– Crash
– Byzantine
– No message signing

• Message signing limits the harm a faulty process can do
• Problems

– Consensus
– Byzantine generals
– Interactive consistency

Redundancy

p1

p2

p3

s1

s2

s3

Agree-
ment

•Components (censors / memory / processors/processes)
may fail
•Critical systems: space / aeronautics / nuclear
•Increase availabiliy ⇒ Dublicate components/functionality

sensing
actuation

Agreed
actuation

10

10

20

Close
valve

Close
valve

Open
valve

Example
• The PASS (Primary

Avionics Software
System) developed
by IBM in 1981, was
used in a space
shuttle
– Could have been done

on one computer
– But 4 separate

processors were used
for fault-tolerance

• Voting on the outcome

Space Shuttle DS hardware

Radiation
• The Natural (and Hostile) Radiation Environment Poses

a Significant Threat to Many Electronic Devices
– Single Event Upset (SEU), Single Event Latchup (SEL), …

VIN

VOUT

p-type substrate

n+ n+

n-well

p+ p+p+ n+

VSSVDD

Source

Gate

Drain Source

Radiation
(proton, ion, neutron, …)

+

+
+

+

+
+

+

-

-

-

--
-

Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

VIN

VOUT

p-type substrate

n+ n+

n-well

p+ p+p+ n+

VSSVDD

Source

Gate

Drain Source

VIN

VOUT

p-type substrate

n+ n+

n-well

p+ p+p+ n+

VSSVDD

Source

Gate

Drain Source

Radiation
(proton, ion, neutron, …)

+

+
+

+

+
+

+

-

-

-

--
-

Radiation
(proton, ion, neutron, …)

+

+
+

+

+
+

+

-

-

-

--
-

Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

Tribble, A. C., The Space Environment – Implications for Spacecraft Design, 2nd Ed.,
(Princeton, NJ: Princeton University Press, 2003).

Consensus in a synchronous
systems w. crash failures

Communication Model

1p

2p

3p

4p5p

•Reliable point-to-point communication
•Pairwise channels (complete graph)
•Synchronous system

Send a message to all processors in one round

1p

2p

3p

4p5p

a
a

aa

B-Multicast

•More processes can multicast at the same
round

1p

2p

3p

4p5p

a

a

aa
b

b

b

b

Concurrent Multicast

1p

2p

3p

4p5p

a,b

a

b
a,b

a,b

Concurrent Multicast

Crash Failures

Faulty
processor

1p

2p

3p

4p5p

a
a

aa

Faulty
processor

B-multicast is unreliable
•Some of the messages are never
delivered, if sender crashes

1p

2p

3p

4p5p

a

a

Un-reliable multicast

Faulty
processor

1p

2p

3p

4p5p

a

a

Un-reliable multicast

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure the process disappears from the network

3p 3p

Crash-failures

Consensus for three
processes

P2

P3

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

(crashes)

d1:=proceed d2:=proceed

Selection function:
•di=majority(v1,…,vn)
•di=minimum(v1,…,vn)
•…

Consensus
• Termination: Eventually each correct process pi

sets its decision variable di.
• Agreement: The decision value of all correct

processes is the same: if pi and pj are correct
and have entered their decided state, then di=dj
(for all i,j∈ 1..N).

• Integrity: If the correct processes all proposed
the same value, then any correct process in the
decided state has chosen that value.

Consensus
0

1

2 3

4

Start

Everybody has an initial proposed value vi

3

3

3 3

3

Finish

Agreement: Everybody decides on the
same value: di=dj (for all i,j∈ 1..N)

Consensus

1

1

1 1

1

Start

Integrity: If the correct processes all proposed
the same value, then any correct process in the
decided state has chosen that value

Finish
1

1

1 1

1

Consensus

1. B-multicast its value to all processes
2. Decide on the minimum

Each proces pi:

(only one round is needed)

An Algorithm?

0

1

2 3

4

Start

An Algorithm?

0

1

2 3

4

B-multicast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

An Algorithm?

0

0

0 0

0

Decide on minimum
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4
0,1,2,3,4

An Algorithm?

0

0

0 0

0

Finish

An Algorithm?

Without Failures, this algorithm gives consensus
If everybody starts with the same initial value, everybody decides on
that value (minimum)

0

1

2 4

3

Start Finish
0

0

0 0

0

An Algorithm?

Consensus w. Crash Failures

1. B-multicast value to all processors
2. Decide on the minimum

Each proces pi :

The simple algorithm doesn’t work

0

1

2 3

4

Start fail

Not all processes receives the proposed
value from the failed process

0

0

Consensus w. Crash Failures

0

1

2 3

4

Communicated values

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Consensus w. Crash Failures

0

0

1 0

1

Decide on minimum

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Consensus w. Crash Failures

0

0

1 0

1

Finish fail

No Consensus!!!

Consensus w. Crash Failures

f-resiliency

• f-resilient consensus algorithm
– Guarentees consensus with up to f failed

process

The input and output of
a 3-resilient consensus algorithm

0

1

4 3

2

Start Finish
1

1

Example:

Example 3-resiliency

Round 1:
Each process B-multicast its value

Round 2 to round f+1:
B-multicast any new received values

End of round f+1:
Decide on the minimum value received

An f-resilient algorithm

Consensus in a synchronous
system

A round is
completed in T secs
⇒ synchronous
system

0

1

2 3

4

Start

f=1 failures, f+1 = 2 rounds needed

Example

0

1

2 3

4

Round 1

0

0
fail

B-multicast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)

Example: f=1

Round 2

B-multicast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4

Example: f=1

Finish

Decide on minimum value: forall i: di=0,

0

0 0

0
0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Example: f=1

0

1

2 3

4

Start
Example run 1: f=2

Example: f=2 failures, f+1 = 3 rounds needed

0

1

2 3

4

Round 1

0

Failure 1

B-multicast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example run 1: f=2

0

1

2 3

4

Round 2 Failure 1

B-multicast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example run 1: f=2

0

1

2 3

4

Round 3 Failure 1

B-Multicast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O, 1,2,3,4

Failure 2

Example run 1: f=2

0

0

0 3

0

Finish Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O, 1,2,3,4

Failure 2

Example run 1: f=2

0

1

2 3

4

Start

Example run 2: f=2

0

1

2 3

4

Round 1

0

Failure 1

B-multicast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example run 2: f=2

0

1

2 3

4

Round 2 Failure 1

B-multicast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

At the end of this round all processes
know about all the other values

Remark:

Example run 2: f=2

0

1

2 3

4

Round 3 Failure 1

B-multicast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

(no new values are learned in this round)

Failure 2

Example run 2: f=2

0

0

0 3

0

Finish Failure 1

Decide on minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 2

Example run 2: f=2

Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

Observation

If there are f failures and f+1 rounds then
there is a round with no failed process

Need for f+1Rounds
• At the end of the round with no failure:

– Every (non faulty) process knows about all the values
of all other participating processes

– This knowledge doesn’t change until the end of the
algorithm

• Therefore, at the end of the round with no
failure:

everybody would decide the same value
• The exact position of this ‘good’ round is not

known:
– In worst-case we need f+1 rounds

Round

a

1

before process fails, it sends its value a
to only one process

ip

kp

ip
kp

Worst-case Scenario

Round

a

1

before process fails, it sends value a
to only one process

mp

kp

kp
mp

2
Worst-case Scenario

ip

Round 1

fp

2

………

a np

f3

At the end of round f only one process
knows about value a

np

Worst-case Scenario

Round 1 2

………

f3

Process may decide a, and all other
processes may decide another value (b)

np

npa

b

decide
Worst-case Scenario

Round 1 2

………

f3

npa

b

decide

Therefore f rounds are not enough
At least f+1 rounds are needed

Worst-case Scenario

A Lower Bound
• Theorem

–Any f-resilient consensus
algorithm requires at least f+1
rounds

Byzantine Failures

The Byzantine generals
problem

• Turkish invasion into Byzantium
– Byzantine generals have to agree on attack or retreaval
– The enemy works by corrupting the soldiers
– Byzantine generals are notoriously treacherous ...
– The loyal generals have to prevent traitors from spoiling a

coordinated attack
– Messengers are sent to each other camps
– Orders are distributed by exchange of messages, corrupt soldiers

violate protocol at will
– But corrupt soldiers can’t intercept and modify messages

between loyal troops
– The gong sounds slowly: there is ample time for loyal soldiers to

exchange messages (all to all)

Byzantine Failures

Faulty
processor

1p

2p

3p

4p5p

a
b

c

•Aka. Arbitrary Faults
•Different processes receive different values
•Ommision failures
•Crash Failure

v1=a

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure a byzantine process may
continue functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round
6

3p

Byzantine Failures

Byzantine Generals

• Termination: Eventually each correct
process sets its decision variable.

• Agreement: The decision value of all
correct process is the same: if pi and pj are
correct and have entered their decided
state, then di=dj (for all i,j∈ 1..N).

• Integrity: If the commander is correct,
then all correct processes decide on the
value that the commander proposed.

A Theorem
• N processes must tolerate f-faults
• There is no f-resilient algorithm if N≤3f
• Outline

1. Impossibility with 3 processes case,
2. Impossibility if N≤3f
3. An algorithm for N≥3f+1 in synchronous

systems
4. Impossibility of consensus in asynchronous

systems

Impossibility of
Three Byzantine Generals

p1 (Commander)

p2 p3

1:v1:v

p1 (Commander)

p2 p3

2:1:v

3:1:u

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

1. Left: p2 gets conflicting information. Which is correct?
2. If commander is correct p2 and p3 must decide v accordingly (integrity)
3. Right: Symmetrically, p2 must decide w and p3 must decide x
4. An algorithm cannot distinguish scenarios: No Agreement

Notation:
1:v ~ p1 says 1
2:1:v ~ p2 says p1 says v

3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

Impossibility of
N≤3f Byzantine Generals

Reduction:
Each process q simulates N/3 processes
using algorithm X

3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails

When a ‘q’ fails n/3 then processes fail too

Impossibility of
N≤3f Byzantine Generals

3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails
algorithm X tolerates n/3 failures

Finish of
algorithm X

k
kk

k kk

k

k

kk
kk

k
all decide k

Impossibility of
N≤3f Byzantine Generals

1q

2q3q

fails

Final decision
k

k

We reached consensus with 1 failure
Previously shown Impossible!!!
algorithm X cannot exist

Impossibility of
N≤3f Byzantine Generals

Four byzantine generals

p1 (Commander)

p2 p3

Faulty processes are shown shaded
p4

1:v1:v
1:v

3:1:u

3:1:w

2:1:v

4:1:v

2:1:v

4:1:v

p1 (Commander)

p2 p3

p4

1:w1:u
1:v

3:1:w

3:1:w

4:1:v 4:1:v

2:1:u

2:1:u

p2 and p4 agrees:
d2 =majority (v,v,u)=v
d4 =majority (v,v,w)=v

p2, p3, and p4 agrees:
d2= d2 = d4 =majority (v,u,w)=⊥
⇒Use common default value

Cost of Byzantine Generals

• Requires f+1 rounds,
• Sends O(n f+1) messages
• If we use digital signatures a solution exist

with O(n2) messages (f+1 rounds)
– False claims not possible:
– If ”p says v” other processes can detect if ”q

says p says w”
• Truely arbitrary failures are rare.

Impossibility of Consensus in
asynchronous systems

• No algorithm exists to reach consensus
– (Concensus may possibly (very often) be reached, but cannot

always guaranteed)
– Neither for crash or byzantine failues

• Eg. Two-army problem:
– There is some program continutation that avoids consensus

• No guaranteed solution to
• Byzantine generals problem
• Interactive consistency
• Totally ordered multicast
• Reliable multicast

Two-Army Problem

Arbitrarily slow processes (or channels) are
indistinguishable from crashed ones (omission)

Workarounds in an
asynchronous system

• Masking faults:
– restart crashed process and use persistent storage
– Eg recovery files like in databases

• Use failure detectors:
– make failure fail-silent by discarding messages

• Probabilistic algorithms:
– conceal strategy for adversary

END

