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Consensus problems
• Examples

– Mutex: which process is granted access
– Reliable and ordered Multicast
– Election
– Abort/proceed in space shuttle launch
– Consistent credit/debit bank account 

• Fault Tolerance
– Crash
– Byzantine
– No message signing

• Message signing limits the harm a faulty process can do
• Problems

– Consensus
– Byzantine generals
– Interactive consistency
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•Components (censors / memory / processors/processes) 
may fail
•Critical systems: space / aeronautics / nuclear
•Increase availabiliy ⇒ Dublicate components/functionality
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Example
• The PASS (Primary 

Avionics Software 
System) developed 
by IBM in 1981, was 
used in a space 
shuttle
– Could have been done 

on one computer
– But 4 separate 

processors were used 
for fault-tolerance

• Voting on the outcome



Space Shuttle DS hardware



Radiation
• The Natural (and Hostile) Radiation Environment Poses 

a Significant Threat to Many Electronic Devices
– Single Event Upset (SEU), Single Event Latchup (SEL), …
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Tribble, A. C., The Space Environment – Implications for Spacecraft Design, 2nd Ed., 
(Princeton, NJ:  Princeton University Press, 2003).



Consensus in a synchronous 
systems w. crash failures



Communication Model
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•Reliable point-to-point communication 
•Pairwise channels (complete graph)
•Synchronous system



Send a message to all processors in one round
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•More processes can multicast at the same 
round
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Crash Failures

Faulty 
processor
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Faulty 
processor

B-multicast is unreliable
•Some of the messages are never 
delivered, if sender crashes
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Failure
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Consensus for three 
processes

P2

P3

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

(crashes)

d1:=proceed d2:=proceed

Selection function: 
•di=majority(v1,…,vn)
•di=minimum(v1,…,vn)
•…



Consensus
• Termination: Eventually each correct process pi

sets its decision variable di.
• Agreement: The decision value of all correct 

processes is the same: if pi and pj are correct 
and have entered their decided state, then di=dj
(for all i,j∈ 1..N).

• Integrity: If the correct processes all proposed 
the same value, then any correct process in the 
decided state has chosen that value.
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Agreement: Everybody decides on the 
same value: di=dj (for all i,j∈ 1..N)

Consensus
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1. B-multicast its value to all processes
2. Decide on the minimum

Each proces pi:

(only one round is needed)

An Algorithm?
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Without Failures, this algorithm gives consensus
If everybody starts with the same initial value, everybody decides on 
that value (minimum)
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Consensus w. Crash Failures

1. B-multicast value to all processors
2. Decide on the minimum

Each proces pi :

The simple algorithm doesn’t work
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Not all processes receives the proposed 
value from the failed process
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Consensus w. Crash Failures
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Consensus w. Crash Failures



f-resiliency

• f-resilient consensus algorithm
– Guarentees consensus with up to f failed 

process



The input and output of 
a 3-resilient consensus algorithm
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Example 3-resiliency 



Round 1:
Each process B-multicast its value

Round 2 to round f+1:
B-multicast any new received values

End of round f+1:
Decide on the minimum value received

An f-resilient algorithm



Consensus in a synchronous 
system

A round is 
completed in T secs
⇒ synchronous 
system
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Round 2
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Finish

Decide on minimum value: forall i: di=0,
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Example: f=2 failures, f+1 = 3 rounds needed
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At the end of this round all processes
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Remark:

Example run 2: f=2
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Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

Observation

If there are f failures and f+1 rounds then 
there is a round with no failed process



Need for f+1Rounds
• At the end of the round with no failure:

– Every (non faulty) process knows about all the values 
of all other participating processes

– This knowledge doesn’t change until the end of the 
algorithm

• Therefore, at the end of the round with no 
failure:

everybody would decide the same value
• The exact position of this ‘good’ round is not 

known:
– In worst-case we need f+1 rounds
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Round 1

fp

2

………

a np

f3

At the end of round f only one process
knows about value a

np

Worst-case Scenario



Round 1 2

………

f3

Process         may decide a, and all other 
processes may decide another value (b)

np

npa

b

decide
Worst-case Scenario



Round 1 2

………

f3

npa

b

decide

Therefore f rounds are not enough
At least f+1 rounds are needed

Worst-case Scenario



A Lower Bound
• Theorem

–Any f-resilient consensus 
algorithm requires at least f+1 
rounds



Byzantine Failures



The Byzantine generals 
problem

• Turkish invasion into Byzantium
– Byzantine generals have to agree on attack or retreaval
– The enemy works by corrupting the soldiers
– Byzantine generals are notoriously treacherous ...
– The loyal generals  have to prevent traitors from spoiling a 

coordinated attack
– Messengers are sent to each other camps
– Orders are distributed by exchange of messages, corrupt soldiers

violate protocol at will
– But corrupt soldiers can’t intercept and modify messages 

between loyal troops
– The gong sounds slowly: there is ample time for loyal soldiers to 

exchange messages (all to all)



Byzantine Failures

Faulty 
processor

1p
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4p5p

a
b

c

•Aka. Arbitrary Faults
•Different processes receive different values
•Ommision failures
•Crash Failure

v1=a



Failure
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Byzantine Generals

• Termination: Eventually each correct 
process sets its decision variable.

• Agreement: The decision value of all 
correct process is the same: if pi and pj are 
correct and have entered their decided
state, then di=dj (for all i,j∈ 1..N).

• Integrity: If the commander is correct, 
then all correct processes decide on the 
value that the commander proposed.



A Theorem
• N processes must tolerate f-faults
• There is no f-resilient algorithm if N≤3f
• Outline

1. Impossibility with 3 processes case,
2. Impossibility if N≤3f
3. An algorithm for N≥3f+1 in synchronous 

systems
4. Impossibility of consensus in asynchronous 

systems



Impossibility of 
Three Byzantine Generals

p1 (Commander)

p2 p3

1:v1:v

p1 (Commander)

p2 p3

2:1:v

3:1:u

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

1. Left: p2 gets conflicting information. Which is correct?
2. If commander is correct p2 and p3 must decide v accordingly (integrity)
3. Right: Symmetrically, p2 must decide w and p3 must decide x
4. An algorithm cannot distinguish scenarios: No Agreement

Notation: 
1:v ~ p1 says 1
2:1:v ~ p2 says p1 says v
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Impossibility of 
N≤3f Byzantine Generals

Reduction: 
Each process  q simulates N/3 processes 
using algorithm X
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fails

When a ‘q’ fails n/3 then processes fail too 

Impossibility of 
N≤3f Byzantine Generals
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algorithm X tolerates n/3 failures 

Finish of 
algorithm X
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Impossibility of 
N≤3f Byzantine Generals



1q

2q3q

fails

Final decision 
k

k

We reached consensus with 1 failure
Previously shown Impossible!!!
algorithm X cannot exist

Impossibility of 
N≤3f Byzantine Generals



Four byzantine generals

p1 (Commander)

p2 p3

Faulty processes are shown shaded
p4

1:v1:v
1:v

3:1:u

3:1:w

2:1:v

4:1:v

2:1:v

4:1:v

p1 (Commander)

p2 p3

p4

1:w1:u
1:v

3:1:w

3:1:w

4:1:v 4:1:v

2:1:u

2:1:u

p2 and p4 agrees:
d2 =majority (v,v,u)=v
d4 =majority (v,v,w)=v

p2, p3, and p4 agrees:
d2= d2 = d4 =majority (v,u,w)=⊥
⇒Use common default value



Cost of Byzantine Generals

• Requires f+1 rounds,
• Sends O(n f+1) messages
• If we use digital signatures a solution exist

with O(n2) messages (f+1 rounds)
– False claims not possible:
– If ”p says v” other processes can detect if ”q 

says p says w”
• Truely arbitrary failures are rare.



Impossibility of Consensus in 
asynchronous systems

• No algorithm exists to reach consensus
– (Concensus may possibly (very often) be reached, but cannot

always guaranteed)
– Neither for crash or byzantine failues

• Eg. Two-army problem:
– There is some program continutation that avoids consensus

• No guaranteed solution to
• Byzantine generals problem
• Interactive consistency
• Totally ordered multicast
• Reliable multicast



Two-Army Problem

Arbitrarily slow processes (or channels) are 
indistinguishable from crashed ones (omission) 



Workarounds in an 
asynchronous system

• Masking faults: 
– restart crashed process and use persistent storage
– Eg recovery files like in databases

• Use failure detectors: 
– make failure fail-silent by discarding messages

• Probabilistic algorithms: 
– conceal strategy for adversary



END


