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Needs for precision time
• Stock market buy and sell orders
• Secure document timestamps (with 

cryptographic certification)
• Distributed network gaming and training
• Aviation traffic control and position reporting
• Multimedia synchronization for real-time 

teleconferencing
• Event synchronization and ordering
• Network monitoring, measurement and control



1. The sun 

2. An Atom

Today: 1 sec ~ 1 day / 86400
but rotation of earth slows down 

State transitions in atoms (defined by BIH in Paris)
1 sec = time a cesium atom needs for 9 192631 770

state transitions*

* TAI (International Atomic Time)

Physical Time

• A TAI-day is about 3 msec shorter than a day 
• BIH (Bureau International de l‘Heure)  inserts 1 sec, if the difference 
between a day and a TAI-day is more than 800 msec
• Definition of UTC = universal time coordinated, being the base of 
any international time measure.



•UTC-signals come from shortwave radio broadcasting 
stations or from satellites (GEOS, GPS) with an 
accuracy of:

• 1.0 msec (broadcasting station)

• 1.0 µsec (GPS)

•>> 1ms (UTC available via phone line) 

•Receivers are available commercialle and can be 
connected to PCs

UTC broadcasts



Computer Clocks
• Each node has its own private physical clock !
• Physical clocks are HW devices that count oscillations of 

a quartz.
• After a specified number of oscillations, the clock 

increments a register, thereby adding one clock-tick to a 
counter the represents the passing of time: Hi(t).

• Resolution: Period between clock updates
• The OS maintains SW Clock by scaling and adding an 

offset to it:
Ci(t) = αHi(t) + β.

• Ci(t) approximates the physical time t at process pi. Ci(t) 
may be implemented by a 64-bit word, representing 
nanoseconds that have elapsed at time t.

• Successive events can be distinguished if the clock 
resolutions is smaller that the time interval between the 
two events.



Network

Clock Skew

Drift and Skew

• Computer clocks, like any other clocks tend not to be in 
perfect agreement !!

• Clock skew (offset): the difference between the times 
on two clocks |Ci(t) – Cj(t)|

• Clock drift : they count time at different rates
– Ordinary quartz clocks drift by ~ 1sec in 11-12 days. (10-6

secs/sec).
– High precision quartz clocks drift rate is ~ 10-7 or 10-8 secs/sec
– Differences in material, Temperature variation.

C1 C2 C3 C4



Clock Drift
• Clock makers specify a maximum drift rate ρ (rho) sec/sec.
• By definition 

1-ρ ≤ dC/dt ≤ 1+ρ
where C(t) is the clock’s time as a function of the real time

• Max skew δ:Resynchronize at least every  δ/2ρ seconds



Internal/External Synchronization

• synchronization of process’ clocks Ci
with an authoritative external source 
S.

• Let δ >0 be the synchronization 
bound and S be the source of UTC.

• Then |S(t) – Ci(t)| < δ for i=1,2,…,N 
and for all real times t.

• We say that clocks Ci are accurate
within the bound of δ

• synchronization of process’ clocks
Ci with each other. 

•Let δ >0 be the synchronization 
bound and Ci and Cj are clocks at 
processes pi and pj, respectively.

•Then |Ci(t) – Cj(t)| < δ for i,j=1,2,…,N
and for all real times t.

•We say that clocks Ci, Cj agree
within the bound of δ

Note that clocks that are internally synchronized are not necessarily externally 
synchronized. i.e., even though they agree with each other, the drift collectively from the 
external source of time.

External synchronization Internal synchronization



Synchronization in a 
synchronous system

We have:
• known upper (max) and lower (min) bound for communication delay,
• known maximum clock drift,
• known maximum time taken for each computational step.

We synchronize by:
• time server sends its local time t to a client,
• Ideally, client sets clock to ts +Ttran (Unknown!)
• the client sets its local clock to ts +(max+min)/2.
• Skew is at most (max-min)/2 

S

C

ts

min max

ts

t’c= ts+(max+min)/2



Synchronization in an 
asynchronous system

• Christians algorithm.
• The Berkeley algorithm.
• Network time protocol (NTP).



Cristian’s Algorithm

• A node is a time server TS (presumably 
with access to UTC).  How can the other 
nodes be sync’ed?

• Periodically, at least every  δ/2ρ seconds, 
each machine sends a message to the TS 
asking for the current time and the TS 
responds. 



Christians algorithm
• Client p sends request (mr) to time server S,
• S inserts its time t immediately before reply (mt) is returned,
• p measures how long it takes (Tround=T1 - T0) from mr is send to mt

is received
• p sets its local clock to t+Tround/2.

t



Accuracy of Christians algorithm
• Assume min = minimal message delay
• t is in the interval [T0+min, T1-min]
• Uncertainty on t = Tround-2min
• Estimated Accuracy= Tround/2-min

t

min min



Cristian’s Algorithm
• Monotonicity: 

– Jumps in time backward not permitted
– Jumps forward may be confusing
– Receiver adjusts clock rate α: Ci(t) = αHi(t) + β.

• Improve precision 
– by taking several measurements and taking the 

smallest round trip 
– or use an average after throwing out the large values



The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answers their offset
c) The time daemon tells each how to adjust its clocks



Network time protocol
• Synchronization of clients relative to UTC 

on an internet-wide scale
• Reliable, even in the presence of 

extensive loss of connectivity
• Allow frequent synchronization (relative to 

clock drift)
• Tolerant against disturbance
• <1ms within LAN
• 1-10 ms internet scale

read more about 
NTP at http://www.ntp.org
also, check out RFCs 1305 & 2030.



NTP Stratum

•Never synchronizewith
servers at lover stratum



• Multicast (for quick LANs, low accuracy)
- server periodically sends its actual time to its 
leaves in the LAN

• Procedure-call (medium accuracy)
- server responds to requests with its actual 
timestamp
- like Cristian’s algorithm 

• Symmetric mode (high accuracy)
-used to synchronize between pairs of time 
servers with resp. high and low stratum

- In all cases, the UDP is used

NTP-Modes



Messages exchanged 
between a pair of NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

•Exchanges local timestamps to estimate offset oi and delay di

•NTP servere filters pairs <oi,di>, saves 8 latest
•Use the oi, with smallest di.(the smaller delay the better accuracy)

oi=(Ti-2-Ti-3+Ti-1-Ti)/2 di=Ti-2-Ti-3+Ti-Ti-1



Theoretical Foundations
• Inherent characterstic of a distributed system:

– Absence of a global clock:
– Absence of 100% accurately synchronized clocks

– Impact: Due to the absence of global clock, it is 
difficult to reason about the temporal order of 
events in distributed system, e.g. scheduling 
events is more difficult.



Logical Clocks in a DS
• What is important is usually not when things 

happened but in what order they happened so the 
integer counter works well in a centralized 
system.  

• However, in a DS, each system has its own 
logical clock, and you can run into problems if one 
“clock” gets ahead of others.  (like with physical 
clocks)

• RELIABLE WAY OF ORDERING EVENTS IS 
REQUIRED

• We need a rule to synchronize the logical clocks.



Event Ordering

• A=100; B=100
• A’=(100+100)+10%=220 
• B’=(100+10%)+100=210
• Updates need to be performed in the same order at 

all sites of a replicated database.

BA

Deposit 100 Add Interest 10%



Events and Logical Clocks

• Leslie Lamport’s 1978 paper: Time, 
Clocks, and the Ordering of Events in 
Distributed Systems.
– Theoretical Foundation
– Logical Clocks
– Partial and Total Event Ordering

– Towards distribute mutual exclusion
– MUST KNOW FOR ANY COMPUTER 

SCIENTIST



System Model
• A distributed system is a collection P of sequential 

processes pi, i= 1,2,…N.
• A process pi has state si

• Each process pi executes a sequence of actions 
• Sending a message; 
• Receiving a message; 
• Performing an internal computation that alters its state si; 

• The sequence of events within a single process pi are 
totally ordered e ie’

• The history of process pi is the sequence of events that 
takes place therein 
history(pi) = hi = <ei

0,ei
1,ei

2,…>

ei
0 ei

1 ei
2 ei

4ei
3



Happened Before Relation
• The happened-before relation captures the causal 

dependencies between events, 
1. a b  if a and b are events in the same process and a 

occurred before b.
2. a b  if a is the event of sending a message m in a 

process and b is the event of receipt of the same 
message m by another process.

3. If a b and b c, then a c, i.e. happened before 
relation is transitive.

• That is, past events causal affects future events



Concurrent Events

• Two distinct events a and b are 
concurrent (a||b) if not (a b or b a). 

• We cannot say whether one event 
happened-before

• For any two events a and b in a distributed 
system, either  a b,  b a or  a||b.



Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

• a b and a c and b f 
• b f and e f  Does e b? 



Logical Clocks
• There is a clock Ci at each process pi

• The clock Ci can be thought of as a function 
that assigns a number Ci(a) to any event a, 
called the timestamp of event a, at pi

• These clocks can be implemented by 
counters and have no relation to physical 
time.



Conditions Satisfied by the 
System of Clocks

• For any events a and b: if  a b , then C(a)<C(b).

• implies the following two conditions:
– [C1] For any two events a and b in a process Pi, if a 

occurs before b, then  Ci(a) < Ci (b).
– [C2] If a is the event of sending a message m in process 

Pi and b is the event of receiving the same message m at 
process Pj, then  Ci (a) < Cj (b).



Implementation Rules

• [IR1] Before Pi timestamps an event
Ci:= Ci+1

• [IR2a] Pi sends m: [IR1] and piggy-back 
timestamp t=Ci: m’=<m, t>

• [IR2b] Pj receives m’=<m, t>:
Cj:=max(Cj, t), followed by [IR1]



Lamport clocks example

b

2

a

1

1m

c

3

d

4

f

m2

5

e

1

p1

p2

p3

Physical
time

NOTE:  C(e)<C(b), but not e b



Total Ordering of Events

• Lamport’s happened before relation defines an 
irreflexive partial order among the events.

• Total ordering (denoted by =>) can be obtained 
by using process-id to break tie if timestamps 
are equal: 

• a => b iff  
1. Ci(a) < Cj(b) or 
2. Ci(a) = Cj(b) and Pi<Pj

• Allows processes to agree on order 
everywhere based on timestamp



Total Order Lamport Timestamps

• The order will be (1,1), (1,3), (2,1), (3,2) etc

(1,1) (2,1)

(3,2)

(4,2)

(1,3) (5,3)



Exercise: Lamport Clocks 

• Assuming the only events are message send 
and receive, what are the clock values at 
events a-g?

A

B

C

a    b                     c

d          e

f                          g   



Vector Clocks
• Lamport: e f  implies C(e) < C(f)
• Vector clocks: e f  iff C(e) < C(f)
• Allows nodes to order events in happens-before 

order based on time-stamps

• Vector timestamps: Each node maintains an 
array of N counters

• Vi[i] is the local clock for process pi
• In general, Vi[j] is the latest info the node has on 

what pj‘s local clock is.



Implementation Rules

• [VC1] Initially Vi[j]=0 for i,j = 1…N 
• [VC2] Before Pi timestamps an event: 

Vi[i] := Vi [i] +1
• [VC3] Pi sends m: piggy-back timestamp t=Vi: 

m’=<m, t>
• [VC4] Pj receives m’=<m, t>

Vi[j] :=max(Vi[j] , ti[j]), I!=j



Comparison of Vector Clocks

Comparing vector clocks
• V = V´ iff V[j] = V´[j] for all j=1,2,…,N.
• V ≤ V´ iff V[j] ≤ V´[j] for all j=1,2,…,N.
• V < V´ iff V ≤ V´ and V ≠ V´.



Vector clocks illustrated

b

(2,0,0)

a

(1,0,0)

1m

c

(2,1,0)

d

(2,2,0)

f

m2

(2,2,2)

e

(0,0,1)

p1

p2

p3

Physical
time

NOTE e and b are not related



Vector Clock Exercise
• Assuming the only events are send and 

receive:
• What is the vector clock at events a-f?
• Which events are concurrent?

A

B

C

a

b         e

c         d

f



END


