
Wireless Personal Communications 21: 77–103, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

XMIDDLE: A Data-Sharing Middleware for Mobile Computing

CECILIA MASCOLO, LICIA CAPRA, STEFANOS ZACHARIADIS and
WOLFGANG EMMERICH
Department of Computer Science, University College London, Gower Street, London WC1E 6 BT, U.K.
E-mail: {C.Maxolo}{L.Capra}{S.Zachariadis}{W.Emmerich}@cs.ucl.ac.uk

Abstract. An increasing number of distributed applications will be written for mobile hosts, such as laptop
computers, third generation mobile phones, personal digital assistants, watches and the like. Application engineers
have to deal with a new set of problems caused by mobility, such as low bandwidth, context changes or loss of
connectivity. During disconnection, users will typically update local replicas of shared data independently from
each other. The resulting inconsistent replicas need to be reconciled upon re-connection. To support building mo-
bile applications that use both replication and reconciliation over ad-hoc networks, we have designed XMIDDLE, a
mobile computing middleware. In this paper we describe XMIDDLE and show how it uses reflection capabilities to
allow application engineers to influence replication and reconciliation techniques. XMIDDLE enables the transpar-
ent sharing of XML documents across heterogeneous mobile hosts, allowing on-line and off-line access to data.
We describe XMIDDLE using a collaborative e-shopping case study on mobile clients.

Keywords: mobile computing, middleware, data reconciliation, XML.

1. Introduction

According to Mark Squires (Nokia) it took 15 years for the TV to reach a cr itical mass of 50
million users, but it took the mobile phone industry only 18 months to sell 50 million phones in
Europe alone. Mobile phones become increasingly computationally powerful, are integrated
with PDA capabilities (e.g., Nokia’s 9210) and are equipped with ad-hoc networking technolo-
gies (e.g., Ericsson’s T36 that implements Bluetooth (Mettala, 1999)). Conversely, PDA’s gain
increasingly powerful wireless networking capabilities, by incorporating IrDA, Bluetooth, or
802.11b (WaveLan) hardware. For example, Xircom already ships a 802.11b module for the
Handspring Visor series of PDAs, Palm has repeatedly expressed interest on the Bluetooth
technology, implementing a prototype PDA with Bluetooth integrated. Moreover, Symbol
announced a 802.11b Compact Flash card, giving wireless connectivity to PocketPC PDAs
and laptop computers. Of further interest is that Anycom has announced the availability of a
Compact Flash Bluetooth card for PDAs and laptop computers. Such capabilities enable new
classes of applications to exploit, for example, the ability to form ad-hoc workgroups, but they
also present new challenges to the mobile application developer. In particular, resources, such
as available main memory, persistent storage, CPU speed and battery power are scarce and
need to be exploited efficiently. Moreover, network connectivity may be interrupted instan-
taneously and network bandwidth will remain by orders of magnitude lower than in wired
networks.

In distributed systems, the complexity introduced through distribution is made transparent
to the application programmer by means of middleware technologies, which raise the level
of abstraction. Existing middleware technologies, such as remote procedure call systems, dis-



78 Cecilia Mascolo et al.

tributed object middleware (Emmerich, 2000), and message- or transaction-oriented systems
hide the complexities of distribution and heterogeneity from application programmers and
thus support them in constructing and maintaining applications efficiently and cost-effectively.
However, these technologies have been built for wired networks and are unsuitable for a
mobile setting (Capra et al., 2001). In particular, the interaction primitives, such as remote
procedure calls, object requests, remote method invocations or distributed transactions that
are supported by current middleware paradigms assume a high-bandwidth connection of the
components, as well as their constant availability. In mobile systems, instead, unreachability
and low bandwidth are the norm rather than an exception. In Bayou (Petersen et al., 1997)
disconnection was contemplated as a rare and occasional event. The system hides mobility
from the application layer in the same way as transparency for relocation of object is used in
modern middleware systems.

We rather believe that middleware systems for mobile computing need to find different
kinds of interaction primitives to accommodate the possibility for mobile components to be-
come unreachable. Many PDA applications copy, for example, agendas, to-do lists and address
records from a desktop machine into their local memory so that they can be accessed when
the desktop is unreachable. In general, mobile applications must be able to replicate informa-
tion in order to access them off-line. Replication causes the need for synchronization when
a connection is re-established. This need is not properly addressed by existing middleware
systems. The commonly used principle of transparency prevents the middleware to exploit
knowledge that only the application has, such as which portion of data to replicate and which
reconciliation policy to apply. It seems therefore necessary to design a new generation of
middleware systems, which disclose information previously hidden, in order to make best use
of the resources available, such as local memory and network bandwidth.

Tuple space coordination primitives, that were initially suggested for Linda (Gelernter,
1985), have been used to facilitate component interaction for mobile systems. Tuple spaces
achieve a decoupling between interacting components in both time and space by matching
the idea of asynchronicity with the mobile computing embedded concept of disconnection
and reconnection. Tuple spaces do not impose any data structures for coordination allowing
more flexibility in the range of data that can be handled. On the other hand, the lack of any
data structuring primitives complicates the construction of applications that need to exchange
highly structured data.

In this paper we present XMIDDLE, which advances mobile computing middleware ap-
proaches by firstly choosing a more powerful underlying data structure and secondly by
supporting replication and reconciliation. XMIDDLE’s data structure are trees rather than tuple
spaces. More precisely, XMIDDLE uses the eXtended Markup Language (XML) (Bray et al.,
1998) to represent information and uses XML standards, most notably the Document Object
Model (DOM) (Apparao et al., 1998) to support the manipulation of its data. This means that
XMIDDLE data can be represented in a hierarchical structure rather than, for instance, in a
flat tuple space. The structure is typed and the types are defined in an XML Document Type
Definition or Schema (Fallside, 2000). XMIDDLE applications use XML Parsers to validate
that the tree structures actually conform to these types. The introduction of hierarchies also
facilitates the coordination between mobile hosts at different levels of granularity as XMID-
DLE supports sharing of subtrees. Furthermore, representing mobile data structures in XML
enables seamless integratin of XMIDDLE applications with the Micro Browsers, such as WML
browsers in mobile phones, that future mobile hosts will include.



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 79

The paper is organized as follows: in Section 2 we briefly introduce XMIDDLE and the
main characteristics of the system. XMIDDLE makes extensive use of XML and we sketch
how we use XML and related technologies in Section 3. Section 4 introduces a case study
that we use both to demonstrate and to evaluate the XMIDDLE concepts. XMIDDLE uses
versioning to manage updates of replicas and we discuss the underlying versioning principles
in Section 5. Section 6 contains the details of the protocols that we use for reconciliation and
conflict resolution, tree linking and disconnection. Section 7 discusses the basic architecture of
XMIDDLE and presents the primitives that this architecture provides for mobile applications.
The section also describes our implementation prototype. In Section 8 we discuss and evaluate
the XMIDDLE system and in Section 9 we conclude the paper and list some future work.

2. An Outline of XMIDDLE

XMIDDLE allows mobile hosts (i.e., PDAs, mobile phones, laptop computers or other wireless
devices) to be physically mobile, while yet communicating and sharing information with other
hosts. We do not assume the existence of any fixed network infrastructure underneath. Mobile
hosts may come and go, allowing complicated ad-hoc network configurations. Connection
is symmetric but not transitive as it depends on distance; for instance host HA can be con-
nected to host HB , which is also connected to host HC . However, host HA and host HC may
be not connected to each other. Mobile network technologies, such as Bluetooth (Mettala,
1999) facilitate these configurations with multiple so called piconets whose integration forms
scatternets in Bluetooth. We do not consider any multi-hop scenarios where routing through
mobile nodes is allowed, but it is in our agenda to investigate this issue further.

In order to allow mobile devices to store their data in a structured and useful way, we
assume that each device stores its data in a tree structure. Trees allow sophisticated manipula-
tions due to the different node levels, hierarchy among the nodes, and the relationships among
the different elements which could be defined. XMIDDLE defines a set of primitives for tree
manipulation, which applications can use to access and modify the data.

When hosts get in touch with each other they need to be able to communicate. XMIDDLE

therefore provides an approach to sharing that allows on-line collaboration, off-line data ma-
nipulation, synchronization and application dependent data reconciliation. On each device,
a set of possible access points for the owned data tree are defined so that other devices can
link to these points to gain access to this information; essentially, the access points address
branches of trees that can be modified and read by peers. In order to share data, a host needs to
explicitly link to another host’s tree. The concept of linking to a tree is similar to the mounting
of network file systems in distributed operating systems to access and update information on
a remote disk. Access oints to a host’s tree are a set that we call ExportLink. Let us say that
host Hi exports the branch A and that hosts Hj and host Hk link to it, expressing the wish to
share this information with host Hi . The owner of the branch is still host Hi but the data in the
branch can be modified and read by the three hosts. The way sharing and data replication and
reconciliation is allowed in XMIDDLE depends, however, also on additional conditions related
to the connection status among the hosts.

In order to share data, hosts need to be connected. Host HA becomes connected with host
HB when it is “in reach” of it.1 When two hosts are connected they can share and modify

1 The specific definition of in reach depends on the network protocols and hardware devices used. Considering
wireless LAN and Bluetooth in reach means in radio range.



80 Cecilia Mascolo et al.

Figure 1. (a) Host HB and Host HC are not in reach. (b) Host HB and Host HC connect and Host HB receives a
copy of the XML tree that it has linked from Host HC .

the information on each other’s linked data trees. Figure 1 shows the general structure of
XMIDDLE and the way hosts get in touch and interact. Each host has full control over its
own tree, however, it is obliged to notify other connected hosts that link to the modified part
(branch) of its tree about the changes introduced. If, for instance, host Hk wishes to modify a
branch A linked from the host Hi (owner of the branch), which is in reach, it requests Hi to
perform the desired changes. Hi then notifies the changes to all the hosts (in reach) that link
to the modified branch, including Hi .

The first time that the two hosts Hk and Hi are in reach of each others, the middleware
on the hosts realizes that Hk is linking to the branch A of host Hi and a download process of
the branch is started. Once downloaded the branch, host Hk may happen to go out of reach.
The host is allowed to make off-line changes to branch A which will then be reconciled to the
changes Hi did, when the two hosts get in reach again, if ever. While moving, Hk may happen
to meet Hj , which is also linking to branch A of host Hi . Also in this case the reconciliation
of the data takes place. A system of versions of the data in the tree is kept to allow this data
reconciliation and sharing (Section 5).

A host records the branches that it links from other remote hosts in the set LinkedFrom,
and the hosts linking to branches of the owned tree in the set LinkedBy. These sets contain
lists of tuples (host, branch) that define the host that is linking to a branch, and from whom a
branch is linked, respectively. LinkedFrom does not mirror the connection configuration, that
is, host HA can be in the LinkedFrom list of HB also if the two hosts are not in reach (specific
primitives for linking and unlinking trees modify these sets). On the contrary, the LinkedBy
set is updated by connection and disconnection operations and it is used to know to whom to
notify changes of parts of the tree.

Hosts may explicitly disconnect from other hosts, even though these hosts may be “in
reacht”. XMIDDLE supports explicit disconnection to enable, for instance, a host to save



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 81

battery power, to perform changes in isolation from other hosts and to not receive updates
that other hosts broadcast. Disconnection may also occur due to movement of a host into an
out of reach area, or to a fault. In both cases, the disconnected host retains replicas of the last
version of the trees it was sharing with other hosts while connected and continues to be able
to access and modify the data; the versioning system that we will describe later is in place to
allow consistent sharing and data reconciliation.

3. XMIDDLE and XML

In the previous section we have described the motivation and main characteristics of XMID-
DLE. We now give the details on how we use XML for structuring the device information
as trees, and how XML related technologies are exploited in order to achieve linking and
addressing.

XML documents can be semantically associated to trees. We therefore format the data
located on the mobile devices as XML trees. The applications on the devices are enabled to
manipulate the XML information through the DOM (Document Object Model) API (Apparao
et al., 1998) which provides primitives for traversing, adding and deleting nodes to an XML
tree. The implementation of this API, however, is XMIDDLE specific.

Furthermore, XML related technologies, and in particular XPath (Clark and DeRose,
1999), are used in XMIDDLE to format the addressing of points in a tree. LinkedFrom,
LinkedBy and ExportLink sets are formatted using XPath. The XPath syntax is very similar
to the Unix directory addressing notation. For instance, to address a node in an XML tree the
notation used is /root/child1/child2/. We will give extensive example of use in the Case
Study Section (Section 4).

The reconciliation of XML tree replicas which hosts use to concurrently and off-line
modify the shared data, exploits the tree differencing techniques developed in (Tai, 1979).
XMLTreeDiff (Alphaworks, 1998) is a package that implements this algorithm and that
XMIDDLE uses to handle reconciliation. We note, however, that reconciliation cannot in all
cases be completed by the XMIDDLE layer alone. Similarly to merging text files, tree updates
may lead to differences which can be solved only using application-specific policies or may
even need end-user interaction. The use of XML as an underlying data structure, however,
enables XMIDDLE to both highlight the differences and define reconciliation policies specific
to particular types of document elements, and therefore to specific applications (see Section 6).

4. A Case Study

In order to show how XMIDDLE supports building a mobile application we describe a collabo-
rative electronic shopping system. Assme that a family has three members and that the family
owns a PC and each member of the family has a PDA. Assume further that the PC and the
PDAs have embedded Bluetooth technology to establish ad-hoc networks. The family does
its weekly shopping electronically. To do so, the PC maintains a replica of the shop’s product
catalogue that is encoded in XML, as sketched in Figure 2. The catalogue on the PC is updated
whenever a price or the portfolio of the shop changes. Family members replicate subsets of
the product catalogue on their PDAs. We suppose that the different members hold replicas
of different parts of the catalogue as they are interested in different product categories. For
example, the mother may have an interest in beauty products, the father in hardware and the



82 Cecilia Mascolo et al.

Figure 2. The XML representation of the product catalogue.

child in sweets and toys. The product categories however may overlap among the members.
To show this in our example, we assume that MemberA is only interested in dairy products,
MemberB in fruit, while MemberC is interested in both dairy and fruit. Furthermore, each
family member has a replica of a joint shopping basket. They shop by dragging items of the
catalogue into their shopping basket and by selecting quantities for these items. Reconciliation
of product catalogues and shopping baskets happens whenever the PDAs establish connection
to each other or to the PC.

Both the PC’s catalogue subtrees and the PC’s basket can be linked using the “link” op-
eration provided by XMIDDLE. When a PDA gets within reach of the PC for the first time
after the link operation, it reconciles the PDA’s version with the PC’s version by transferring
catalogue subtrees and the empty basket to the PDA. MemberC , for example, may decide
to link to the whole catalogue in addition to the empty basket. To link only to the dairy
category on MemberA’s PDA, it specifies the path of the DOM tree of that category and also
links to the empty shopping basket. Figure 3 shows how MemberA and MemberC link to the
categories (i.e., dairy products for MemberA and the whole catalogue for MemberC ) and the
empty basket, which the applications on their respective PDAs will fill with products to be
purchased.

The first parameter of link() operation is the server host name, in this case the PC. The
second parameter is the XPath expression (Clark and DeRose, 1999) for the root of the branch
to be linked. Consider the linking expression for the “Dairy” products branch in Figure 3, for
which we use a predicate XPath expression to select that category element, whose value of
attribute name equals Dairy. The third parameter of link() operation is the “mounting point”



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 83

Figure 3. Use of linking mechanism for MemberA and MemberC .

Figure 4. The tree representation on MemberA’s PDA.

on the local host. The resulting virtual XML trees containing the linked parts are shown in
Figures 4 and 5.

The application on each PDA can now use DOM primitives to traverse the catalogue in
order to display different categories and products. To implement the addition of new items
to the shopping basket, DOM operations are used to create new child nodes of the shopping
basket node. Let us suppose that MemberA begins to put products into the basket; a sample
configuration is shown in Figure 6, where an order for one bottle of milk has been added to the
basket. If these orders are entered while the PDA is connected to the PC, the implementation
of the DOM operations will request updates of the DOM tree from XMIDDLE middleware on
the PC (as the PC is the “owner” of the branch). Let us now assume that the PDA was either
out of reach of disconnected while these updates occurred.

When the PDA of a family member establishes a connection with the PC, the reconciliation
protocol (details in Section 6) will reconcile any update that the PC has receied via the Internet
from the shop. Likewise, any update that members have introduced to their shopping basket
will be incorporated into the basket on the PC.

The PDA can also establish a connection with other PDAs when they meet in different
rooms of the house or in town. The ability for every host to updte a replica opens the possibility
of conflicting updates. As an example, let us now suppose that MemberC is also buying milk

Figure 5. The tree representation on MemberC ’s PDA.



84 Cecilia Mascolo et al.

Figure 6. The tree representation of the data on MemberA’s PDA after an order has been entered.

from the dairy category, this time however ordering two bottles. When the two hosts MemberA
and MemberC connect their PDAs, their XMIDDLE middleware realize they are both linking
from the same host (i.e., the PC) common tree branches. The reconciliation process has to
compute a consistent new version of the linked branches, both the basket and the shop. The
PDAs may have two different versions of the shop catalogue if they synchronized with the PC
at different times. The reconciliation of the catalogue among the PDAs allows the members
to have a more up to date version of the catalogue even without connecting to the PC. The
reconciliation of the basket allows a member to communicate his or her part of the shopping
list to the other member so that, if one of them goes hom, this is immediately copied into the
PC. Eventually (once a week), the home PC can then fire off the shopping list to the shop.
The shopping basket on the PC is gradually filled through synchronization with the different
members of the family.

We now focus on the basket differences: the reconciliation algorithm (which is described
in Section 6 in detail) identifies that a conflict occurred as the quantities for the milk have
different values in the two basket replicas. Unfortunately, we cannot resolve this conflict
without using application-specific knowledge: only the application knows whether the total
amount of bottles to be bought must be one (MemberA), two (MemberC ) or three (sum of the
two). We show in the following sections how XMIDDLE addresses this issue.

5. Versioning

Before giving the details of the reconciliation protocol, we explain formally how XMIDDLE

manages different versions of DOM trees.
The principal data structure that XMIDDLE maintains for every host is a tree where each

node contains a directed version graph of DOM trees from potentially different hosts (Fig-
ure 7). A version graph can contain two types of elements: editions and versions. Informally,
an edition is a stable version that the host has agreed to save on persistent storage, e.g., in Flash
RAM. We refer to the process of establishing a new edition as releasing a version. A version,
on the contrary, is still subject to changes and it is only kept in main memory. This means that
an edition can have both versions and editions as directed descendents in the version graph,
while a version cannot have descendents at all: a version can only be derived from an edition.
At the moment we assume that every host has no more than one open version of a tree, either
linked or owned, and that this version has been created from the latest edition. We also assume
that every host X is uniquely identified by an identifier HX .



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 85

Figure 7. Tree of version history graph of DOM trees.

For every node in the ExportLink set, that is, for every remotely linkable point, XMIDDLE

provides an edition identifier EI that uniquely identifies, in a distributed environment, an
edition of the subtree with this node as root. This identifier is a tuple:

EI(e_number, HA, HB),

where HA and HB identify uniquely the at most two hosts2 that agreed in releasing this edi-
tion. The edition number e_number is the increment of the maximum of the two previous
edition numbers and it is used to disambiguate between subsequent editions agreed by the
same couple of hosts. We assume that the sequence of edition numbers always starts from
number 1. The edition number alone is not sufficient to distinguish among different editions.
Distributions adds new complexity to the problem of versioning as we lack now a central
authority to issue new edition numbers: it is possible for two hosts to reconcile a tree they
copied from another host, without asking the owner, that is a central authority, for a new
edition number. Let us consider for instance the scenario depicted in Figure 8: four hosts
HA, HB , HC and HD have edition 1 of a tree T linked from host HX. While disconnected, they
modify their local version independently of each other; when HA and HB get in touch, they can
reconcile this tree, creating a new edition with e_number = 2. The same can happen to HC

and HD , leading to another (but different) edition 2. If now HA and HC connect and look only at
the edition numbers they share, they may wrongly assume their latest common version of T is
number 2. Our approach eliminates the problem as when HA and HC connect to each other, they
recognize they have different versions of T, namely EI(2, HA, HB) and EI(2, HC, HD); the
only thing they can do now is to reconcile these different editions, generating EI(3, HA, HC).
A letter v attached to an edition number means that the corresponding node has been modified
and that the changes have not been agreed yet; a symbol $ for the host identifier means that
the agreement did not involve a second host (HA decided to create a new stable version without
reconciling with anyone else).

The basic principle upon which our distributed versioning scheme relies on is the
following.

2 An edition can be created by a single host alone while disconnected or by two hosts as the final step of a
reconciliation process. We assume that the reconciliation process is point-to-point, so no more than two hosts can
be involved.



86 Cecilia Mascolo et al.

Figure 8. Uniqueness of edition identifiers EI.

Figure 9. Distributed versioning scheme.

Versioning Principle
When releasing a subtree T′ of a tree T, for each changed node n ∈ T′ we increase the edition
number of all the linkable nodes on the path from n included towards the root of T. When
deriving a version from an edition, for every changed node n we mark the edition number of
all the linkable nodes on the path from n included towards the root with a v.

Figure 9 illustrates what happens to the edition numbers of the nodes of a tree linked by
two different hosts. HB has linked to a subtree T′ of a tree T owned by HA. While disconnected
from the owner, HB has reconciled with HC , which is linking to the same subtree T′. Once HA

and HB get in reach again, they reconcile. As a result, a new edition identifier has been created
for the root node of T′ and, for the versioning principle described above, the same happens
to the root node of T. This is necessary in order for other hosts moutning the whole tree T
to realize that it has changed since the last time they reconciled with HA (this will be clearer
when describing the details of the reconciliation process, in the following section). Nothing
happens to the left branch of T instead, as it has not been affected by any changes during the
reconciliation process.



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 87

6. Protocols

In this section we describe the protocols that we use to reconcile the trees that two hosts share,
to link a (sub)tree from one host to another, and to disconnect a host.

6.1. RECONCILIATION PROTOCOL

The aim of reconciliation is to obtain a consistent version of the replicas of the same tree once
two hosts become connected. Our reconciliation approach is composed of two main parts,
one of which is application-independent and one application-specific. The former is based on
general techniques for XML tree comparison and merging, while the latter allows us to tune
reconciliation parameters for resolving conflicts in an application-specific way. We discuss
the two parts separately.

Application-Independent Reconciliation
Without loss of generality, we assume that two hosts HA and HB get in reach after having
worked off-line for a while on the same tree branch. The following reconciliation protocol is
started. We use the symbol X →msg Y to mean that message msg has been sent from X to Y.

1. HB →LinkedFromB,ExportLinkB HA

2. HA →LinkedFromA,ExportLinkA HB

Each time two hosts get in reach, they exchange their LinkedFrom and ExportLink sets,
in order to see whether they share some information. When they realize they share a
branch T, they first lock it and then start the actual reconciliation process. If one of the
hosts is the owner of the branch T, it also flushes the queue of pending requests for changes
(received from the on-line hosts linking that branch).

3. HB →TlistOfEI HA

HB sends the list of all the edition identifiers for T starting from the latest one until the root
of the version history graph to HA.

4. HA →lastSharedEI,listOfChanges HB

HA determines the most recent common edition it shares with HB (lastSharedEI).3 HA

then computes the changes done sine then and sends this list of differences together with
lastSharedEI, to HB .

5. HB →newChanges,newEI HA

HB applies the differences it received in order to establish an up-to-date copy of HA’s tree
T′; it computes the differences between its own latest version and T′, defining a newly
“merged” versin of T that we call T′′; it computes the differences between the newly built
tree T′′ and T′ in order to inform HA of the changes (newChanges) that it has to apply to its
own copy to build the merged one. It then constructs a new edition identifier newEI and
finally sends back newEI together with newChanges to HA.

6. HA →ackA HB

7. HB →ackB HA

The last two messages are needed just to acknowledge the two hosts that the protocol
has been successfully completed. When HB receives ackA, it knows that HA possesses
the new edition of T; it then releases locally the new edition, taking care of adjusting
the edition numbers as described in Section 5. The same actions happen on HA when

3 There is always edition 1 at least, as explained in the following section.



88 Cecilia Mascolo et al.

Figure 10. Schema definition of the application-specific reconciliation policy.

Figure 11. XML specification of the application-specific reconciliation policy.

receiving ackB from HB . The lock on the trees is now removed. If one of them is the
owner, it also broadcasts the changes done to the on-line hosts linking to it in order to
have a synchronized version.

In case of a failure before step 5, the reconciliation process simply stops: both HA and HB

re-establish the state they were before the process was started. If the protocol is being stopped
between steps 5 and 6, a rollback procedure drops the new edition on both hosts, so actually no
reconciliation happens at all. If the protocol fails between steps 6 and 7, HA rolls-back while
HB completes “successfully”, ignoring the fact that actually HA failed. This is of no harm: next
time the two hosts get in reach they will reconcile starting from lastSharedEI, because HA

does not possess newEI.

Application-Specific Reconciliation
Merging two versions may produce conflicts if both hosts have changed or deleted the same
element or attribute. These conflicts need to be reconciled. Unfortunately it is not possible to
devise generally applicable conflict resolution strategies that could resolve conflicting updates
between replicas without assuming application specific knowledge. XMIDDLE therefore pro-
vides the mobile application engineer, who designs the underlying schemas with primitives to
specify how confilcts can be resolved in an application specific way.

XMIDDLE supports the definition of confict resolution policies for reconciliation as part of
the XML Schema (Fallside, 2000) definition of the data structures that are handled by XMID-
DLE itself. This is achieved through the definition of an element type Resolutor, as shown
in Figure 10. To enable XMIDDLE to resolve the milk bottles conflict on the shopping basket
(Section 4), the application designer determines an additional conflict resolution policy in the
XML Schema. In particular, the Schema for this example defines type Resolutor with values
add, last, random, first, greatest. These policies have an associated priority, defined by
the order they appear in the Schema definition.

Figure 11 shows how applications select conflict resolution policies. Referring to our pre-
vious example, add means that the quantities ordered by the two reconciling members must be



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 89

Figure 12. XML file for MemberC ’s order.

added, therefore three bottles of milk will be included in the reconciled version of the shopping
basket. The reconciliation of the shop catalogue among the different PDAs is also performed
in a similar way. For the shop catalogue, resolutor can be set to last, to distribute the latest
versions of product catalogue entries.

During the execution of the merge operation, XMIDDLE on host HB , that is the host that
possesses the two trees to reconcile, identifies conflicts by finding changes to attribute or
element values. If such a conflict has been detected, the middleware consults the tree and
identifies the conflict resolution strategy that has been determined for the attribute or element
in question. If the strategy chosen by the two applications is the same, it is simply applied.
Otherwise, the policy with the highest priority is chosen, and it is also the one who appears in
the merged version on both hosts. If the mobile application designer has not defined a type-
specific conflict resolution strategy, XMIDDLE chooses the lastest change, otherwise XMIDDLE

determines the attribute or element value by executing the conflict resolution strategy.
We now revisit the collaborative shopping case study of Section 4 in order to see how the

reconciliation process actually works. When MemberA and MemberC connect, they consider
their linking sets (LinkedFrom and ExportLink) to identify whether they have common
replicas (which they do in our example). The reconciliation method is called by the initiator
of the connection (let us say MemberA). Reconciliation of the shop catalogue is trivial, as the
members would only read, but not modify it: the two members figure out who has the latest
version and the other one simply updates his version copying all the changes.

Let us focus now on reconciling the basket, and assume that MemberA has the shopping
basket of Figure 11 and that MemberC ’s basket contains the orders shown in Figure 12. To
achieve reconciliation, the ost of MemberA starts by sending the list of all edition identifiers,
starting from the current edition until the first one, to MemberC (in this case we suppose
MemberA never reconciled after having copied the empty basket from the PC, so he has edition
identifier (1.0, HPC , $) only in addition to the current version he is manipulating). MemberC
realizes that edition (1.0, HPC , $) is the last common one and computes the changes made
from that version: she added 2 bottles of milk and 3 apples (as she is also linking to the fruit
branch of the catalogue).



90 Cecilia Mascolo et al.

Figure 13. Diff of MemberA’s and MemberC ’s baskets.

MemberC sends the update done to the first edition of the basket branch, after calculating
them using XMLTreeDiff (Alphaworks, 1998) and locks the tree. The updates are shown
in Figure 14 as XMLTreeDiff differences. They are returned in such a way that the merge
operation of XMLTreeDiff can take the differences and turn edition (1.0, HPC , $) into (2.0,
HA, HC) on MemberA’s host.

MemberA locks the basket branch and establishes MemberC ’s update in a new successor
version of 1.0. It then uses XMLTreeDiff to compare MemberA’s most recent version (the one
shown in Figure 11) with the newly established version of MemberC ’s basket. XMLTreeD-
iff returns the difference as shown in Figure 13. The merge operation then analyzes these
XMLTreeDiff results and identifies that there are two differences. The first one graft is a
new order that is to be inserted. This can be merged into MemberA’s basket by XMLTreeDif
without causing a conflict. The second difference is a replace, which indicates a conflict.
The conflicting node is the howmuch element identified by the XPath expressin of the match
attribute. Instead of applying the replace operation as it is, the merge operation consults the
application-specific conflict resolution strategy in the document and as a resolution changes
the value element of the replace node to 3 (to cater for the additional bottle of milk that was
in the howmuch element of MemberA’s basket).

The merge operation then applies the differences to MemberA’s shopping list by calling
XMLTreeDiff’s merge operation. Finally, it computes the differences between the result and
MemberC’s list to be sent back to MemberC together with the new common version number.
In this way we have fully reconciled the two versions on the PDAs.

6.2. LINKING PROTOCOL

This protocol is a simplification of the previously described one. In fact, we can think of the
link operation as a reconciliation between a tree T and an empty one T0 considered as edition
0 of T. The output of the reconciliation process causes no changes to the linked tree T, while
the empty tree T0 becomes a full copy of T, with no conflicts to reconcile at all.

1. HB →LinkedFromB,ExportLinkB HA



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 91

Figure 14. Result of TreeDiff between edition 1.0 (i.e., the empty basket) and the current shopping list of
MemberC .

2. HA →LinkedFromA,ExportLinkA HB

The first two steps are exactly the same as in the reconciliation protocol: the two hosts
exchange their LinkedFrom and ExportLink sets in order to find out whether they share
information. We assume here that they do not share anything, in order to illustrate this new
case. For example, HB may decide to link a subtree T belonging to HA after having seen it
listed in ExportLinkA , or we may think that HB already linked to T while disconnected
from HA.

3. HB →T,(0,$,$) HA

This message is exactly the same as in the reconciliation protocol, but the list of edition
identifiers contains only one entry, (0, $, $).4

4. HA →(1,HA,$),LastEdition,activeChanges HB

When HA receives the tuple (0, $, $), it knows that HB wishes to link T, and replies with
the latest edition of the tree together with a list of changes previously broadcasted but not
already released in an edition. HB can now store this latest edition and apply the changes in
order to synchronize with HA. Since now on HB receives all the changes to T broadcasted
by HA. It is worthwhile noticing that HA sends also the very first edition of T to HB ; doing
so, HB will be able to reconcile with any other hosts linking to the same tree, as there is
always at least one common edition, the first one.

6.3. DISCONNECTION PROTOCOL

The disconnection protocol involves only the host who is disconnecting, for instance HB , so
we would actually call it “disconnection procedure” rather than “disconnection protocol”.

4 We use the tuple (0, $, $) to identify the empty edition.



92 Cecilia Mascolo et al.

Figure 15. The protocol stack for mobile environments using XMIDDLE.

This protocol is initiated by the application in case of an explicit disconnection, while it is
started by XMIDDLE in case of an implicit disconnection. In both cases, for each version not
yet released, the host releases it: the versioning process is started and finally the tree is stored.
All the edition identifiers issued in this procedure will have the form (editionNumber, HB ,
$). There is no need for HB to broadcast a message to notify of its imminent disconnection:
the middleware of the hosts connected (i.e., listed in the InReach set) will take care of the
fault, initiating a disconnection procedure that releases all the versions of branches linked to
the disconnected host.

It is worth noticing that this protocol completely disconnects a host from the network when
it is invoked by the application; on the contrary, it may disconnect a host HA from another host
HB while leaving HA still connected to HC and HD, when invoked by the middleware of HA as a
consequence, for instance, of a movement.

7. The XMIDDLE Architecture

We now present an overview of the XMIDDLE architecture, which follows the ISO/OSI refer-
ence model. Figure 15 shows the protocol stack. As shown, XMIDDLE implements the session
and presentation layers on top of standard network protocols, such as UDP or TCP, that are
provided in mobile networks on top of, for instance, a Bluetooth data-link layer (i.e., Logical
Link Control and Adaptation Protocol) and MAC and physical layer (i.e., Bluetooth core
which is based on radio communication). Our current prototype is however based on UDP
upon Wireless Lan (WaveLan (Technologies, 2000)), which is another possible option.

The presentation layer implementation maps XML documents to DOM trees and provides
the mobile application layer with the primitives to link, unlink and manipulate its own DOM
tree, as well as replicas of remote trees. The session layer implementation manages connection
and disconnection.

Figure 16 refines the presentation and session layer implementations of XMIDDLE. The
Xmiddle Controller is a concurrent thread that communicates with the underlying network pro-
tocol and handles new connections and disconnections, triggers the reconciliation procedures
and handles reconciliation conflicts according to application specific policies. As XMIDDLE

is entirely implemented in Java, it relies on a Java Virtual Machine (JVM). A large variety of
JVMs have been implemented for mobile devices. The Symbian operating system for the third



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 93

Figure 16. The XMIDDLE architecture.

generation of mobile phones, for examples, has a Java Virtual Machine built in. Likewise, Sun
provides a minimal kernal virtual machine (KVM) implementatin for Palm PDAs.

The Xmiddle Primitives API provides mobile applications with operations implementing
the XMIDDLE primitives, such as link, unlink, connect and disconnect. The ability to link to
trees from other devices introduces a client/server dependency between mobile hosts. We refer
to the host which a tree is linked from as the server host and the host that links the three as
a client host. The XMIDDLE implementation maintains this client/server relationship in the
LinkedFrom and LinkedBy tables that are kept on each host (they correspond to the sets with
the same names defined in Section 2). The LinkedFrom table also needs to keep track of the
host that owns a subtree in order to allow the application to be able to request updates from
that host; this is done using XPath. It is also necessary to the hosts that have linked to a tree
for being able to broadcast updates when the hosts are in reach.

The Xmiddle_DOM component provides the XMIDDLE implementation of the DOM to
mobile applications. We now proceed with a detailed description of the XMIDDLE primitives.

7.1. XMIDDLE PRIMITIVES

Connect
Each entry in the LinkedFrom and LinkedBy tables identifies a remote host as well as a
specific branch of that host’s XML tree. The ExportLink table identifies the branches of the
local tree that can be linked to from remote hosts. The InReach table contains the list of hosts
in reach. The connect primitive allows an application to notify the hosts in reach that it is
re-connected. The notified hosts will then update their InReach tables. Upon reconnection the
host starts the reconciliation protocol with all the hosts in reach which are linking/linked to
some parts of its tree. After reconciliation, and provided that the connection is still available,
the host maintains the on-line mode update status: it broadcasts all changes to its tree to other
hosts included in the LinkedBy table and the client hosts send requests for changes to the
server.

Disconnect
The disconnect primitive allows a host HA to explicitly decide to work off-line. Apart from
the explicit disconnection of HA, the unreachability of a host HB from HA can be obtained
implicitly when one of the two hosts moves away. The disconnection process changes the
content of the InReach table and the disconnection protocol is invoked in order to handle the
tree changes and information caching.



94 Cecilia Mascolo et al.

Link
Linking a tree from a remote host is achieved by calling the XMIDDLE operation link. Its
arguments indicate the server host and the complete path to the branch. Furthermore, they
identify the local “mounting” point. During execution of the link operation XMIDDLE records
the linking details in the LinkedFrom table. Note that the link primitive can be used indepen-
dently from the connection status in order to indicate an intention to share some information
with another host. When linked and connected to a remote client host, the server host records
the name of the client host, the branch it is linking to, and the linking point in the LinkedBy
table. This is used for broadcasting changes from the server host during connection with the
client host.

Unlink
The unlink primitive modifies the local LinkedFrom table “unmounting” a particular branch
of a tree (maybe because the application does not need it anymore).

DOM Operations
XMIDDLE provides all the operations specified for tree traversal and manipulation in the DOM
Level1 Recommendation. All operations access and manipulate the local XML tree.

For access (i.e., read) operations, such as firstChild, parentNode, and nextSibling,
that return data from either the owned tree of the host, or any linked tree, the XMIDDLE DOM
interface just accesses the local DOM tree (or replica) using the Apache DOM implementa-
tion. No remote communication is needed to perform these generally frequently used access
operations.

For update operations of the tree, we have to distinguish several cases. If a host wants to
update its own tree, the update is performed by calling the underlying Apache DOM imple-
mentation and then broadcasting the changes to all the hosts connected and that are linked to
the changed branch (i.e., the LinkedBy table is interrogated). If an application wishes to up-
date a remote branch that is linked from another host, we again have to distinguish two cases. If
the owner is not within reach we perform the changes on that version locally using the Apache
DOM implementation. The reconciliation protocol upon reconnection will synchronize the
versions of the common branches. If the owner host is within reach, we request it to perform
the update and wait until we receive the notification of the changes before performing them on
its replica. The update requests that the server host receives are queued together with the ones
issued by itself, and then processed with a FIFO policy. If a reconciliation protocol is started
by a re-connecting host, this has priority, the request queue is flushed and after reconciliation
the resulting changes are broadcasted to the hosts in reach linking to the branch.

7.2. IMPLEMENTATION

We have been implementing the XMIDDLE platform and an addressbook application utilising
the middleware, on a Compaq iPAQ PDA running Linux. Figure 18 shows the use interface
of the addressbook application. We used Xerces as the DOM implementation and Xalan as
the XPath expression processor, as provided by the Apache Software Foundation. We found
that these packages are not suitable for running under the sun CDLC virtual machine of Java
2 Micro Edition, so we resolved to using Java 2 Standard Edition version 1.3.1. Figure 17
shows the versions of all the main software components used. Note that the XMIDDLE platform
requires just 156 KB of space, while the addressbook application requires 24 KB.



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 95

Figure 17. A table showing the packages, versions and storage requirements of the various components used.

Figure 18. (a) The addressbook application running on the IPAQ. (b) Showing more features of the application,
including sharing data and discovering host information.

With the sample document used, we found the addressbook along with the middleware to
require approximately 14 MB of RAM and startup time for the middleware services and the
application is approximately 22 seconds. Note that in all measurements, XML validation was
turned off in the parser. Moreover, the virtual machine used does not have a Just In Time (JIT)
compiler for the ARM processor that the iPAQ uses.

Further tests conducted concluded that the major bottleneck in these results was the Xerces
parser, which we found not to be suitable for mobile devices. Xerces 2, not available at the
time of writing, is supposed to be much faster and more efficient than the current versions



96 Cecilia Mascolo et al.

available, and thus we plan to switch our implementation to that, when available. We also plan
to investigate the possibility of developing an XPath processor and a DOM implementation
specifically targeted to mobile devices. We feel that this is an area which has yet to be targeted,
and that we will be able to have our prototype running using Java 2 Micro Edition.

8. Discussion and Related Work

We have described XMIDDLE and shown its architecture. Through a case study we have illus-
trated how it is used and shown the details of the tree reconciliation algorithms and linking
used for data synchronization among the mobile devices. Synchronization and data locking
have been described as main problems in wireless environments by Imielinski and Badrinath
in (Imielinski and Badrinath, 1994). XMIDDLE offers a possible solution.

We focus our interest on ad-hoc networks where host configurations are relative and dy-
namic. No discovery services are set-up as in Jini (Arnold et al., 1999) as all the hosts have the
same capabilities. They are able to reconfigure their own connection groups while they move,
through connection and disconnection with the other hosts.

Tuple space based systems for logical and physical mobility such as JavaSpaces (Freeman
et al., 1999), Lime (Murphy et al., 2001), Limbo (Davies et al., 1997), T Spaces (IBM), and
Mars (Cabri et al., 1998) exploit the decoupling in time and space of these data structures in
the mobility context where connect and disconnect are very relevant and frequent operations.
However, tuple spaces are very general and loose data structures, which do not allow complex
data organizations and therefore do not fit all the application domains. XML allows us to in-
troduce hierarchy of data and to address specific paths in the structure so that more elaborated
operations can be performed by the applications. The value of XML in structuring data has
already been recognized and some work has also been carried out to integrate tuple spaces
and XML: in Cabri et al. (2000), a mobile agent system based on tuple spaces is integrated
with XML for the encoding of data. This allows a more structured way of dealing with data
communication, while introducing flexibility in the data treatment. In that paper, however,
XML is only used for data formatting. Tuples are translated into XML files and stored into a
data-space. In Abraham et al. (1999), XML is used to create a lightweight repository of XML
documents, based on IBM’s T Spaces. This repository supports XML (DOM) oriented queries.
XML documents are somehow stored as tuples in the tuple spaces. TSpaces recently offered
direct support for storage and indexing of XML documents. This is done by transforming
XML documents into a tree of TSpaces tuples, linked internally via pointers.

An additional disadvantage of tuple-spaced based systems is in term of synchronization
capabilities. Tuple-spaces are multi-sets, which means every tuple can be duplicated in the
space. Whenever two or more devices, which replicate a piece of data (represented as a
tuple), disconnect and modify it the reconciliation process of rejoining the tuple spaces during
reconnection becomes an unnatural operation (due to the multi-set property of tuple spaces).

The issue of data replication and synchronization has been addressed in the context of
distributed file systems by Coda (Satyanarayanan et al., 1990), which adopts an application-
transparent adaptation technique, and its successor Odyssey (Satyanarayanan, 1996), which
enables application-aware adaptation. Compared to these approaches, XMIDDLE firstly defines
a different level of granularity of the data that can be moved across mobile devices, that is,
parts of an XML document, as small as we wish, as opposed to whole files. This may have
a relevant impact when dealing with slow and/or expensive connection. Moreover, we do not



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 97

assume the existence of any server that is more capable and trustworthy than mobile clients,
as we target pure ad-hoc network configurations. Finally, the use of XML adds semantic to the
replicated data, against the uninterpreted byte streams of files; this added semantics can then
be exploited to provide better confict detection and resolution policies from an application
point of view (as shown in Section 6).

XMIDDLE uses only XML trees as data structures and exploits the power of the nature
of the data structure with specific operations; for instance, the linking primitive facilitates
off-line sharing of information, which is very valuable in mobile computing contexts where
hosts have the need to move away from the source of information even if they may want to
continue to work on the downloaded data. Reconciliation mechanisms are needed to maintain
a certain level of consistency and to support synchronization. Existing mobile computing
middleware systems do not address this issue and a consortium (i.e., SyncML (SyncML,
2000)) has been established in order to provide standards for synchronizing data in mobile
computing. SyncML provides a set of specifications for the standardization of synchronization
of data (in any format) between different devices, using WSP, HTTP, or Bluetooth protocols,
XMIDDLE uses tree structures for representing data and defines protocols that take advantage
of this format. SyncML focuses on peer-to-peer synchronization, where a client/server rela-
tionship is always established among the devices. No ad-hoc networking setting is supported
by SyncML, whereas XMIDDLE also supports reconciliation of different clients that possess
replicas of specific branches of an XML tree. SyncML also defines reconciliation policies for
data synchronization. However, the policies are either on the server or client side. The case
in which the client wants to indicate how to reconcile data to the server is not supported.
As we have shown in the case study analysis, hosts sometimes need to specify different
reconciliation policies and some priority structure among the policies is needed to actually
choose which policy to apply. Unlike SyncML, XMIDDLE avoids the need for application to
log every change they apply to shared data. Instead XMIDDLE uses a versioning system to
make this aspect transparent. SyncML, on the contrary, leaves the logging to the application
level. Security and authentication aspects are investigated in the SyncML specification which
XMIDDLE does not tackle yet. However, some authentication mechanisms similar to the one
of SyncML could be put in place in XMIDDLE, too.

The aim of Globe (v. Steen et al., 1999) is to provide an object based middleware that scales
to a billion users. To achieve this aim, Globe makes extensive use of replication. Unlike other
replication mechanisms, such as Isis (Birman, 1997), Globe does not assume the existence of
an application independent replication strategy. It rather suggests that replication policies have
to be object-type specific, and therefore they have to be determined by server object designers.
In Globe each type of object has its own strategy that pro-actively replicates objects. XMIDDLE

policies definition follows this approach.
The XMIDDLE strategy for data synchronization exploits well established techniques and

tools for replication and reconciliation on trees (Tai, 1979; Alphaworks, 1998). In Shapiro
et al. (2000), some formal work on application-independent reconciliation has been carried
out, which also focuses on a structured way for applications to influence data reconciliation
choices, XMIDDLE exploits semantic knowledge about elemental types; a set of reconciliation
primitives is defined in XMIDDLE, as described in Section 6, and the mobile application
engineer can specify the way these primitives are combined to determine an application-
specific reconciliation policy. In this way we can ease the burden of applications, relying
as much as possible on the middleware, while, at the same time, providing for the application
semantics and user policies. This differentiates XMIDDLE from systems like CVS (Cederqvist



98 Cecilia Mascolo et al.

et al., 1992) and Bayou (Petersen et al., 1997). CVS is a source code versioning tool that
leaves everything in the hands of the user; conflicts are detected based on updates done in the
same line of the file by different users, and the conflict resolution is left to the user. Bayou
reconciles application-specific information in an application-independent way, preventing the
application from influencing the outcome of the reconciliation process. Bayou’s philosophy is
the traditional middleware one, which call for complete transparency.

The XMIDDLE reconciliation algorithm is relying on versioning mechanisms. Like text-
based versioning systems, such as RCS (Tichy, 1985), we store and transmit differences as
shown in Figures 13 and 14 to minimize the transmission load during reconciliation: only
the updates from the last common version are exchanged between the hosts. Unlike text-
based versioning, however, the differences the XMIDDLE implementation is able to obtain
from XMLTreeDiff are more precise and semantically richer. This is because the differencing
algorithms are able to take attribute and element, as well as their arrangements in trees into
account. This generally leads to a smaller number of conficts than in text-based differencing
tools.

9. Further Work and Concluding Remarks

The growth of the recent mobile computing devices and networking strategies call for the
investigation of new middleware that deal with mobile computing properties such as dis-
connection, low/expensive bandwidth, scarce resources and in particular battery power, in
a natural way. XMIDDLE is one possible answer to these needs that focuses on data replica-
tion and synchronization problems and solves them exploiting reconciliation strategies and
technologies.

The implementation of the current prototype of XMIDDLE is based on Wireless LAN and
UDP, however we plan to migrate the system to Bluetooth for more testing. Every host has a
unique ID, which is used for enumerating the tree versions in a consistent way (as described
in Section 5). In an earlier versin of the prototype we used the XMLTreeDiff tool developed
by IBM (Alphaworks, 1998) but later we decided to implement our own one that does not
“optimize” the results as the IBM version does as this was not needed in XMIDDLE. The
linking of a tree is currently implemented replicating the linked branch locally. However, we
plan to use different linking policies, depending on the available bandwidth. That is, avoiding
caching of the linked tree when the two hosts are in reach and good bandwidth conditions
are matched. A weakness of the current reconciliation protocol implementation is that it does
not cover the case when two hosts that link to the same branch get in reach. The prototype
currently reconciles the two replica, but if further modifications are done by either of the
hosts, these changes are not broadcasted to the other host but instead the replicas become
inconsistent again until either an implicit or an explicit reconciliation is started. We chose
to implement the reconciliation this way in order to avoid a heavy leader election protocol
implementation but realize that we might have to revisit this decision after we have gained
some practical experience with it.

The reconciliation and linking policies can be refined, especially considering the case
where trees become graphs through XPath expressions that create links (pointers) inside
the tree. We are also considering more case studies to deal with the conflict resolutions in
a mixed application/non-application oriented fashion. The definition of policies for incon-
sistency resolution during the reconciliation process may also be considered as quality of



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 99

service specification. By defining the level of consistency the application needs on specific
data it is possible to specify different “qualities of reconciliation”. We itnend to investigate
this approach further.

Security policies can also be established in order to limit the access of hosts on XML trees.
For instance, specific branches of the trees may be defined as accessible to all the hosts while
other branches may be accessible only to particular hosts. This can be done enriching the
syntax of the LinkExport table which allows a host to make only some subtrees remotely
accessible while retaining exclusive access to other subtrees. Digital signatures and common
security strategies (i.e., passwords and public/private keys) could be applied as well in order
to guarantee further levels of security. Issues of fault tolerance which we tackle only partially
are in our agenda as well.

The use of XML and XPath for data formatting has advantages not only at the level of
the tree structure and at the use of readily available technologies, but also at the information
rendering level as XSL and WAP could be integrated in order to customize the display of the
data for different mobile devices.

In Mascolo et al. (2001), we used XML for the implementation of a fine-grained code
mobility approach which allows single lines of code to be transferred among hosts in an in-
cremental manner. XMIDDLE allows data sharing through XML; however, using the approach
presented in the mentioned paper we could provide code sharing and mobility using the same
XML format. This feature would power XMIDDLE with more flexibility and extensibility: we
plan to look into this aspect.

Tuple spaces based systems allow notification of events on the tuple spaces in different
ways (e.g., transactions and reactions). We plan to extend XMIDDLE by introducing some
event notification mechanisms that allow hosts to register for events on trees. At the moment
a basic event notification mechanism is in place for connected hosts to be notified about the
modification of linked tree branches, but some extensions can be developed.

In conclusion, XMIDDLE is an example of a reflective middleware (Eliassen et al., 1999).
XMIDDLE abandons replication transparency as we believe that in the challenging mobile
computing environments middleware systems have to take advantage of application-specific
information to achieve an acceptable performance, usability and scalability. We consider our
effort on XMIDDLE to be just the first step in that direction and believe that a number of other
forms of transprency have to be given up, too. Location transparency, for example, may have
to be discontinued to provide location aware services. In general, this will lead to a new class
of context-aware applications (Capa, Emmerich and Mascolo, 2001), which can influence the
way middleware implements interactions between mobile components based on the context in
which the components operate.

Moreover, mobile ad-hoc network research is recently investigating behaviour and routing
in a multi-hop scenario, where hosts act as router allowing transitive communication. We think
XMIDDLE can be expanded to deal with these protocol and we plan to investigate this issue
further.

Acknowledgements

We would like to thank Jon Crowcroft, Adam Greenhalgh, Steve Hailes, Gruia-Catalin Ro-
man, and Vassilis Rizopoulos for the helpful discussions on the topic and their comments on



100 Cecilia Mascolo et al.

a draft of this paper. We also thank Christian Nentwich for the non-optimizing XMLTreeDiff
code.

References

J. Abraham, H. Le and C. Cedro, “XML Repository in T Spaces and UIA Event Notification Application”,
http://www.cse.edu/projects/1998–99/project19, 1999.

I. Alphaworks, “SML TreeDiff”, http://www.alphaworks.ibm.com/tech/xmltreediff, 1998.
V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A.L. Hors, G. Nicol, J. Robie, R. Sutor, C.

Wilson and L. Wood, “Document Object Model (DOM) Level 1 Specification”, W3C Recommendation
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, World Wide Web Consortium, 1998.

K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo and A. Wollrath, The Jini[tm] Specification, Addison-Wesley,
1999.

K.P. Birman, Building Secure and Reliable Network Applications, Manning Publishing, 1997.
T. Bray, J. Paoli and C.M. Sperberg-McQueen, “Extensible Markup Language”, Recommendation http://www.

w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium, 1998.
G. Cabri, L. Leonardi and F. Zambonelli, “Reactive Tuple Spaces for Mobile Agent Coordination”, in Proceedings

of the 2nd International Workshop on Mobile Agents (MA 98), Springer, 1998.
G. Cabri, L. Leonardi and F. Zambonelli, “SML Dataspaces for Mobile Agent Coordination”, in Proceedings of

the 2000 ACM Symposium on Applied Computing (SAC 2000), Como, Italy, ACM Press, 2000.
L. Capra, W. Emmerich and C. Mascolo, “Middleware for Mobile Computing: Awareness vs. Transparency

(position paper)”, in Int. 8th Workshop on Hot Topics in Operating Systems, 2001.
J. Clark and S. DeRose, “XML Path Language (XPath)”, Technical Report, http://www.w3.org/TR/xpath, World

Wide Web Consortium, 1999.
N. Davies, S.P. Wade, A. Friday and G.S. Blair, “Limbo: A Tuple Space Based Platform for Adaptive Mobile

Applications”, in Proceedings of the International Conference on Open Distributed Processing/Distributed
Platforms (ICODP/ICDP ’97), pp. 291–302, 1997.

F. Eliassen, A. Andersen, G.S. Blair, F. Costa, G. Coulson, V. Goebel, O. Hansen, T. Kristensen, T. Plagemann,
H.O. Rafaelsen, K.B. Soikoski and W. Yu, “Next Generation Middleware: Requirements, Architecture and
Prototypes”, in Proceedings of the 7th IEEE Workshop on Future Trends in Distributed Computing Systems,
IEEE Computer Society Press, pp. 60–65, 1999.

W. Emmerich, Engineering Distributed Objects, John Wiley & Sons, 2000.
D.C. Fallside, “XML Schema”, Technical Report, http://www.w3.org/TR/xmlschema-0/, World Wide Web

Consortium, 2000.
E. Freeman, S. Hupfer and K. Arnold, JavaSpaces[tm] Principles, Patterns, and Practice, Addison-Wesley, 1999.

D. Gelernter, “Generative Communication in Linda”, ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 1, pp. 80–112, 1985.

IBM, “T Spaces”, http://almaden.ibm.com/cs/TSpaces.
T. Imielinski and B.R. Badrinath, “Mobile Wireless Computing: Challenges in Data Management”, Communica-

tions of the ACM, Vol. 37, No. 10, pp. 18–28, 1994.
L. Capra, W. Emmerich and C. Mascolo, “Reflective Middleware Solutions for Context-Aware Application”, in

3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns (Reflection
01), 2001, to appear.

C. Mascolo, L. Zanolin and W. Emmerich, “XMILE: an XML Based Approach for Incremental Code Mobility
and Update”, Automated Software Engineering, 2001, to appear.

R. Mettala, “Bluetooth Protocol Architecture”, http://www.bluetooth.com/developer/whitepaper/, 1999.
A.L. Murphy, G.P. Picco and G.-C. Roman, “LIME: A Middleware for Physical and Logical Mobility”, in

Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21), 2001.
P. Cederqvist et al., “Version Management with CVS”, 1992.
K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer and A.J. Demers, “Flexible Update Propagation for Weakly

Consistent Replication”, in Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP-
16), ACM Press, pp. 288–301, 1997.

M. Satyanarayanan, “Mobile Information Access”, IEEE Personal Communications, Vol. 3, No. 1, 1996.



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 101

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel and D. Steere, “Coda, A Highly Available File
System for a Distributed Workstation Environment”, IEEE Transactions on Computers, Vol. 39, No. 4, 1990.

M. Shapiro, A. Rowstron and A. Kermarrec, “Application-Independent Reconciliation for Nomadic Applications”,
in Proceedings of European Workshop: “Beyond the PC: New Challenges for the Operating System”, Kolding:
Denmmark, SIGOPS, 2000.

SyncML, “Building an Industry-Wide Mobile Data Synchronization Protocol”, http://www.syncml.org/
technical.htm, 2000.

K. Tai, “The Tree-to-Tree Correction Problem”, Journal of the ACM, Vol. 29, No. 3, 422–433.
L. Technologies, “WaveLan”, http://www.wavelan.com, 2000.
W.F. Tichy, “RCS – A System for Version Control”, Software – Practice and Experience, Vol. 15, No. 7, pp. 637–

654, 1985. M. v. Steen, P. Homburg and A.S. Tanenbaum, “Globe: A Wide-Area Distributed System”, IEEE
Concurrency, pp. 70–78, 1999.

Cecilia Mascolo (http://www.cs.ucl.ac.uk/staff/c.mascolo) holds a Laurea degree in Science
dell’ Informazione and a Ph.D. in informatica from the University of Bologna, Italy. In 1999,
she spent a year as a visiting academic at the Department of Computer Science at Washington
University, Saint Louis. In February 2000, she became a research fellow at the Department
of Computer Science at University College London and joined the academic staff of the
Department as a lecturer in computer science in February 2001. She has published extensively
in the areas of software engineering, mobile computing, mobile code, ad-hoc and active and
peer to peer networks. Cecilia is also interested in the use of mark-up languages for mobile
computing applications. She is principal investigator and co-investigator in three projects
related to mobile computing middleware and middleware for active networks.



102 Cecilia Mascolo et al.

Licia Capra (http://www.cs.ucl.ac.uk/staff/l.capra) holds a Laurea degree in informatica from
the University of Bologna, Italy. From May 2000 to September 2000, she worked as a research
assistant in the Department of Computer Science at University College London and since
September 2000 she is a Ph.D. student in the same department. Her research focuses on the
design and prototyping of reflective middleware for mobile computing. Licia is also working
as a software engineer for the Zuhlke Technology Group (www.zuhlke.com).

Stefanos Zachariadis (http://www.cs.ucl.ac.uk/staff/s.zachariadis) received his B.Sc. in com-
puter science from University College London, United Kingdom, in 2001. He is currently a
Ph.D. student at the same institution, researching the use of logical mobility in physically mo-
bile environments. His interests include ad-hoc networking, mobile computing middleware,
mobile code techniques and peer to peer communications.



XMIDDLE: A Data-Sharing Middleware for Mobile Computing 103

Wolfgang Emmerich (http://www.cs.ucl.ac.uk/staff/w.emmerich) received his M.Sc. from
University of Dortmund, Germany in 1990 and his Ph.D. from University of Paderborn in
1995. His Ph.D. thesis was on database support for integrated software engineering environ-
ments. Wolfgang was a research assistant in the Department of Computer Science at Dortmund
between 1990 and 1995. After his Ph.D. he joined City University, London as a lecturer and
developed an interest in software engineering for distributed object-based systems. In No-
vember 1997, he joined UCL where he now has the position of a senior lecturer. His reserch
interests are in design of distributed objects and middleware for mobile systems. Wolfgang
was a senior consultant at the OMG Representative for Central Europe, where he developed
his distributed object consulting expertise. He has become a recognised expert in the area of
software engineering for distributed objects and is the author of a text book on “Engineering
Distributed Objects” published by John Wiley & Sons. Wolfgang has extensively consulted in
the European software engineering industry and is now a partner of the Zuhlke Technology
Group and a senior consultant and director of Zuhlke Engineering (U.K.) Ltd. in London.


