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Abstract. The ability to incorporate low-power, wireless communica-
tion into embedded devices gives rise to a new genre of embedded soft-
ware that is distributed, dynamic, and adaptive. This paper describes the
network-centric approach to designing software for highly constrained de-
vices embodied in TinyOS. It develops a tiny Active Message communi-
cation model and shows how it is used to build non-blocking applications
and higher level networking capabilities, such as multihop ad hoc rout-
ing. It shows how the TinyOS event-driven approach is used to tackle
challenges in implementing the communication model with very limited
storage and the radio channel modulated directly in software in an en-
ergy efficient manner. The open, component-based design allows many
novel relationships between system and application.1

1 Introduction

The emergence of compact, low-power wireless communication, sensors, and ac-
tuators in the technology that supports the ongoing miniaturization of processing
and storage is giving rise to entirely new kinds of embedded systems and a funda-
mentally new genre of embedded software. Historically, embedded systems have
been highly engineered to a particular task. For example, a disk drive controller
sits between a standardized command/response channel and the disk head as-
sembly, with its rotation sensors, positioning actuators, and read/write heads.
The controller software is a highly orchestrated command processing loop to
parse the request, move the heads, transfer the data, perform signal processing
on it, and respond. The system is sized and powered for the particular applica-
tion. The software is developed incrementally over generations of products and
loaded into a device for its lifetime. An engine ignition controller is even more
specialized to performing a particular sense/actuate loop autonomously.
The new kinds of embedded systems are distributed, deployed in environ-

ments where they may not be designed into a particular control path, and of-
ten very dynamic. The fundamental change is communication; collections of de-
vices can communicate to achieve higher level coordinated behavior. For exam-
ple, wireless sensor nodes may be deposited in offices and corridors throughout
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a building, providing light, temperature, and activity measurements. Wireless
nodes may be attached to circuits or appliances to sense current or to control
usage. Together they form a dynamic, multihop routing network that connects
each node to more powerful networks and processing resources. Through anal-
ysis of radio signal strength and other sensory nodes, nodes determine their
location. They tap into local energy sources, perhaps using photovoltaic cells or
nearby telephone or AC lines, to restore their energy reserves. Nodes come and
go, move around, and are affected by changes in their environment. Collectively,
they adapt to these changes, perform analysis of usage patterns and control light-
ing, temperature, and appliance operation to conform to overall energy usage
goals.

The new genre of embedded software is characterized by being agile, self-
organizing, critically resource constrained, and communication-centric on nu-
merous small devices operating as a collective, rather than highly engineered to
a particular stand-alone task on a device sized to suit. The application space is
huge, spanning from ubiquitous computing environments where numerous de-
vices on people and things interact in a context-aware manner, to dense in situ
monitoring of life science experiments, to condition-based maintenance, to dis-
aster management in a smart civil infrastructure. A common pattern we find is
that the mode of operation is concurrency intensive for bursts of activity and
otherwise very passive watching for a significant change or event. In the bursts,
data and events are streaming in from sensors and the network, out to the
network and to various actuators. A mix of real-time actions and longer-scale
processing must be performed. In remaining majority of the time, the device
must shutdown to a very low power state, yet monitor sensors and network for
important changes while perhaps restoring energy reserves. Net accumulation
of energy in the passive mode and efficiency in the active mode determine the
overall performance capability of the nodes.

To explore the system design techniques underlying these kinds of applica-
tions and the emerging technology of microscopic computing, we have developed
a series of small RF wireless sensor devices, a tiny operating system (TinyOS),
and a networking infrastructure for low-power, highly constrained devices in
dynamic, self-organized, interactive environments. The hardware platform grew
out of the ’Macromote’ developed in SmartDust project as a demonstration of
the current analog of what might be put into a cubic millimeter by 2005 [8]. Our
first experimental platform (Figure 1) had a 4MHz Atmel AVR 8535 Microcon-
troller, 8 KB of program store, 0.5 KB of SRAM, a single-channel low power
radio [9], EEPROM secondary store, and a range of sensors on an expansion
bus [4]. It operates at about 5 mA when active and 5µA in standby, so a pair of
AA batteries provides over a year of lifetime at 1% active duty cycle. The severe
resource constraints put this platform far beyond reach of conventional oper-
ating systems. TinyOS is a simple, component-based operating system, which
primarily is a framework for managing concurrency in a storage and energy lim-
ited context. A collection of modular components build up from modulating the
radio channel and accessing sensors via ADCs to an event-driven environmental
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monitoring application with dynamic network discovery and multihop ad hoc
routing. A non-blocking discipline is carried through out the design and most
components are essentially reentrant cooperating state machines.

Fig. 1. The DOT mote.

The remainder of this paper describes the communication-centric design is-
sues that have arose in developing TinyOS and its tiny networking stacks. Section
2 provides background and a general introduction to TinyOS. Section 3 intro-
duces the Tiny Active Message communication abstraction and illustrates how
it is used to form high level networking capabilities. Section 4 examines a collec-
tion of software challenges underlying the communication abstraction. Section 5
provides a brief performance evaluation and Section 6 outlines future directions.

2 TinyOS Concepts

Tiny OS, like conventional operating systems, seeks to reduce the burden of ap-
plication development by providing convenient abstractions of physical devices
and highly tuned implementations of common functions. However, this goal is
especially challenging because of the highly constrained resource context, the
unusual and application specific character of the devices, and the lack of con-
sensus on what layers of abstraction are most appropriate in this regime. The
TinyOS approach is to define a very simple component model and to develop
a range of components, subsets of which are composed to support a particular
application. With time and experience, the new layers of abstraction are likely to
emerge. The TinyOS component model focuses on providing a rich expression of
concurrency within limited resources, rather than interface discovery or format
adaptation [1,10]. Since the deeply embedded sensor networks that we target
must run unattended for long periods, robustness is essential. The component
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model with narrow interfaces is a significant aid, but given the processing, stor-
age, and energy constraints, we need very efficient modularity. The programming
model provides extensive static information, so that compile-time techniques can
remove much of the overhead associated with a modular approach and eventually
can provide unusual analyses, such as jitter bounds.

A complete TinyOS application consists of a scheduler and a graph of compo-
nents. Each component is described by its interface and its internal implementa-
tion, in a manner similar to many hardware description languages, such as VHDL
and Verilog. An interface comprises synchronous commands and asynchronous
events. We think of the component as having an upper interface, which names
the commands it implements and the events it signals, and a lower interface,
which names the commands it uses and the events it handles. The implemen-
tation is written entirely in terms of the interface name space. A component
also has internal storage, structured into a frame, and internal concurrency, in
the form of very light-weight threads, called tasks. The command, event, and
task handlers are declared explicitly in the source. The points where an external
command is called, event is signaled, or task is posted are also explicit in the
static code, as are references to frame storage. A separate application description
describes how the interfaces are ’wired together’ to form the overall application
composition. The wiring need not be 1-1; an event may be delivered to mul-
tiple components or multiple components may use the same command. Thus,
although the application is extremely modular, the compiler has a great deal
of static information to use in optimizing across the whole application, includ-
ing the operating system. In addition, the underlying run-time execution model
and storage model can be optimized for specific platforms. A typical application
graph is shown in Figure 2, containing a low-power radio stack, a UART serial
port stack, sensor stacks, and higher level network discovery and ad hoc routing
to support distributed sensor data acquisition. This entire application occupies
about three kilobytes.

The TinyOS concurrency model is essentially a two-level scheduling hierar-
chy - events preempt tasks, tasks do not preempt other tasks. The philosophy
is that the vast majority of operation is in the form of non-blocking state tran-
sitions. Inter-component operation in tasks is relatively familiar. Within a task,
commands may be called, a command may call subordinate commands, or it
may post tasks to continue working logically in parallel with its invocation. By
convention, all commands return a status indicating whether the command was
accepted, providing a full handshake. Since all components have bounded stor-
age, a component must be able to refuse commands. It is very common for a
command to merely initiate an operation, say accessing a sensor or sending a
message, leaving the operation to be carried out concurrently with other activi-
ties, either using hardware parallelism or tasks.

Events are initiated at the lowest level by hardware interrupts. Events may
signal higher level events, call commands, or post tasks. Commands cannot sig-
nal events. Thus, an individual event may propagate through multiple levels
of components, triggering collateral activity. Whenever the work cannot be ac-
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Fig. 2. Typical networking application component graph.

complished in a small, bounded amount of time, the component should record
continuation information in its frame and post a task to complete the work. By
convention, the lowest level hardware abstraction components perform enough
interrupt processing to reenable interrupts before signaling the event. Events (or
tasks posted within events) typically complete the split-phase operations initi-
ated by commands, signaling the higher-level component that the operation has
completed and perhaps passing it the data.
A non-blocking approach is taken throughout TinyOS. There are no locks

and components never spin on a synchronization variable. A lock-free queue
data structure is used by the scheduler. Components perform a phase of an op-
eration and terminate, allowing the completion event to resume their execution.
Most components are written essentially as reentrant state machines. Currently,
TinyOS is written in C with conventional preprocessor macros to highlight the
key concepts. Better linguistic support would be natural and desirable as the
approach becomes established. In our current implementation, the TinyOS ex-
ecution model is implemented on a single shared stack with a static frame per
component.
To make the discussion concrete, Figure 3 shows a TinyOS C code fragment

that periodically obtains a value from a sensor and communicates it to neighbor-
ing nodes, which render it on their LEDs. The top level structure declares the
component storage frame, a command handler, and four event handlers, one of
which handles a message event. Each declaration is decorated with a TOS han-
dler type and each would be reflected in the external interface. Here the frame
provides an outgoing message buffer for the component and a state variable. The
CHIRP INIT command illustrates the synchronous module interface; it invokes
a subordinate command in the clock module to request periodic events, one per
second. A local name is used for the clock initialization command, which is bound
to the name used within the particular clock component by the application de-
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scription graph. Similarly, a local event handler (CHIRP CLOCK EVENT) is
wired to the clock output event. Here the clock event initiates acquisition of a
sensor data value, unless the previous data has not yet been transmitted. The
reference to a frame variable is explicit, using VAR.

TOS_FRAME_BEGIN(CHIRP_frame) {
TOS_Msg msg; /* Message transmission buffer */
char send_pending; /* State of buffer*/

}
TOS_FRAME_END(CHIRP_frame);

char TOS_COMMAND(CHIRP_INIT)(){
return TOS_CALL_COMMAND(CHIRP_CLOCK_INIT)(tick1ps);

}

void TOS_EVENT(CHIRP_CLOCK_EVENT)(){
if (VAR(send_pending) == 0) return TOS_CALL_COMMAND(CHIRP_GET_DATA)();

}

char TOS_EVENT(CHIRP_DATA_EVENT)(int data){
VAR(msg).data[0] = (char)(data >> 2) & 0xff;
VAR(send_pending) = 1;
if (TOS_CALL_COMMAND(CHIRP_SEND_MSG)(TOS_BCAST_ADDR,AM_MSG(CHIRP_MSG),

&VAR(data))
return 1;

}else {
VAR(send_pending) = 0;
return 0;

}
}

char TOS_EVENT(CHIRP_MSG_SEND_DONE)(TOS_MsgPtr msg){
if(&VAR(msg) == msg) VAR(send_pending) = 0;
return 1;

}

TOS_MsgPtr TOS_MSG_EVENT(CHIRP_MSG)(TOS_MsgPtr msg){
TOS_CALL_COMMAND(CHIRP_OUTPUT(msg->data[0]);
return msg;

}

Fig. 3. Example Tiny Active Message application.

The sensor data acquisition protocol illustrates a common, split-phase ac-
cess pattern. The command causes the operation to start. The component will
finish a phase of its work and return, typically allowing the task or event to
complete. When the operation is complete, a corresponding event is fired. Here,
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the ADC runs concurrently and signals the data ready event, which converts
the 10-bit sensor value to an 8-bit quantity and requests that it be trans-
mitted in a message. Completion of the transmission operation will signal the
CHIRP MSG SEND DONE event on the local node. Arrival of the message at
neighboring nodes will signal the CHIRP MSG event on those nodes, passing it
the message data. Details of the messaging portions are described below.

3 Application-Level Communications Challenges

A key test of the communication-centric design approach in TinyOS is its utility
in constructing a networking infrastructure for self-organized, deeply embedded
collections of devices. We outline several of the key challenges that arise within
the networking ’stack’ and describe how they are addressed within TinyOS.
We begin with the application level messaging model, a variant of Active Mes-
sages [11]. Going upward, we describe a simple dynamic network discovery and
ad hoc multihop routing layer. Going down, the next section addresses a num-
ber of the detailed issues in implementing such a stack in few instructions, little
storage, and very little power.

3.1 Tiny Active Messages

Active Messages (AM) is a simple, extensible paradigm for message-based com-
munication widely used in large parallel and distributed computing systems [6,
11]. At its core is the concept of overlapping communication and computation
through lightweight remote procedure calls. Each message contains the name of
a handler to be invoked on a target node upon arrival and a data payload to pass
in as arguments. The handler function serves the dual purpose of extracting the
message from the network and either integrating the data into the computation
or sending a response. The AM communication model is especially well-suited
to the execution framework of TinyOS, as it is event-driven and specifically de-
signed to allow a very lean communication stack to process packets directly off
the network, while supporting a wide range of applications.
Initiating an Active Message involves four components, specifying the data

arguments, naming the handler, requesting the transmission, and detecting
transmission completion. Receiving involves invoking the specified handler on
a copy of the transmitted data. This family of issues is illustrated in Figure 3.
The SEND MSG command identifies intended recipients (here using the

broadcast address for the local cell of nodes that pick up the radio transmis-
sion), the handler that will process the message on arrival, (here CHIRP MSG),
and the source output message buffer in the local frame. A handler registry is
maintained, and TOS MSG extracts the identifier for the named handler. The
status handshake for this command illustrates the general notion of components
managing their bounded resources. The messaging component may refuse the
send request, for example, if it is busy transmitting or receiving a message and
does not have resources with which to queue the request. The reaction to this
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occurrence is application specific; in this example we forgo transmitting the par-
ticular sensor reading. We might instead adjust data acquisition frequency or
phase.
The message arrival event is similar to other events. One key difference is that

the Active Message component dispatches the event to the component with the
associated message handler. Many components may register one or more message
handlers. Additionally, the input to the handler is a reference to a message buffer
provided by the Active Message component.

3.2 Managing Packet Buffers

Managing buffer storage is a sticky problem in any communication stack. Tradi-
tional operating systems push this complexity into the kernel, providing a simple,
unlimited user model at the cost of copying, storage management complexity,
and blocking interfaces. High performance models, such as MPI, define a suite of
send and receive operations with distinct completion semantics[3]. Three issues
must be addressed: encapsulating useful data with transport header and trailer
information, determining when output message data storage can be reused, and
providing an input buffer for an incoming message before the message has been
inspected to determine where it goes. The Tiny Active Message layer provides
simple primitives for resolving these issues with no copying and very simple
storage management.
The message buffer has a defined type in the frame that provides holes for

system specific encapsulation, such as routing information and error detection.
These holes are filled in as the packet moves down the stack, rather than following
pointers or copying. The application components refer only to the data field or
the entire buffer. References to message buffers are the only pointers carried
across component boundaries in TinyOS.
Once the send command is called, the transmit buffer is considered ’owned’

by the network until the messaging component signals that transmission is com-
plete. The mechanism for tracking ownership is application specific; our example
maintains a pending flag. Since a strict ownership exchange is involved, no mu-
tex is required around updates to the flag, although some care in coding must
be exercised. If the send command is accepted, the SEND DONE event will
asynchronously clear the pending flag.
Observe that the SEND DONE event receives a reference to the completed

buffer as an argument and must check whether the buffer is its own. This event
is delivered to all components that register AM handlers. A component that
receives a done signal for another’s transmission may use the event to retry a
previously refused request.
The message handler receives a reference to a ’system owned’ buffer, which

is distinct from its frame. The typical behavior is to process information in the
message and return the buffer, as in our example. In general, the handler must
return a reference to some free buffer. It could retain the buffer it was given by
the system and return a different buffer that it ’owns’. A common special case
of this scenario is a handler that makes a small change to an incoming message
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and retransmits it. We would like to avoid copying the remainder of the message.
However, we cannot retain ownership of the buffer for transmission and return
the same buffer to the system. Such a component should declare a message buffer
and a message buffer pointer in its frame. The handler modifies the incoming
buffer and exchanges buffer ownership with the system. If its previous transmit
buffer is still busy, one of the two operations must be discarded. A component
performing reassembly from multiple packets may own multiple such buffers.
In any case, runtime buffer storage management is reduced to a simple pointer
swap.

3.3 Network Discovery and Ad Hoc Routing

A more sophisticated use of the tiny Active Message model is illustrated by
its use in supporting dynamic network discovery and multihop ad hoc routing.
Discovery could be initiated from any node, but often it is rooted at gateway
nodes that provide connectivity to conventional networks. Each root periodically
transmits a message carrying its ID and its distance (zero) to its neighborhood.
The message handler checks whether the source is the ’closest’ node it has heard
from recently (i.e., in the current discovery phase) and, if so, records the source
ID as its multihop parent, increments the distance, and retransmits the message
with its own ID as the source. The discovery component utilizes the buffer swap
described above. Observe, this simple algorithm builds a breadth first spanning
tree in a distributed fashion rooted at the original source. Each node records only
a fixed amount of information. The specific shape of the tree is determined by the
physical propagation characteristics of the network, not any prespecified layout,
so the network is self-organizing. With multiple concurrent roots, a spanning
forest is formed.
Routing packets up the tree is straightforward. A node transmitting data to

be routed specifies a multihop forwarding handler and identifies its parent as the
recipient. The handler will fire in each of its neighbors. The parent retransmits
the packet to its parent, using the buffer swap. Other neighbors simply discard
the packet. The data is thus routed hop-by-hop to the root. Reduction operators
can be formed by accumulating data from multiple ’children’ before transmitting
a packet up the tree.
The discovery algorithm is non-optimal because of redundancy in the outgo-

ing discovery wave front and might be improved by electing cluster leaders or
retransmitting the beacon with some probability inversely related to the num-
ber of siblings. Alternatively, the discovery phase can be eliminated entirely by
piggybacking the distance information on the sensor data messages. When a
node hears a packet from a node fewer hops from the base station, it adopts the
source as its parent. The root node simply transmits a packet to itself to grow
the routing tree. (Nodes must also age their current distance to adapt to changes
in network topology due to movement or signal propagation changes.)
These simple examples illustrate the fundamental communication step upon

which distributed algorithms for embedded wireless networks are based: receiving
a packet, transforming it, and selectively retransmitting it or not. Squelching
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retransmission forms an outgoing wave front in discovery and forms a beam on
multihop routing. In these algorithms the data structure for determining whether
to retransmit is little more than a hop count, more generally it might be a cache
of recent packets [5,7].

4 Lower-Level Communication Challenges

This section works down from the messaging component to illustrate the nuts
and bolts of realizing the lower layers if a tiny communications stack.

4.1 Crossing Layers without Buffering

One challenge is to move the message data from the application storage buffer
to the physical modulation of the channel without making entire copies, and
similarly in the reverse direction. A common pattern that has emerged is a cross
layer ’data pump’. We find this at each layer of the stack in Figure 2. The upper
component has a unit of data partitioned into subunits. It issues a command
to request transmission of the first subunit. The lower component acknowledges
that it has accepted the subunit and when it is ready for the next one it signals
a subunit event. The upper handler provides the next unit, or indicates that
no more are forthcoming. Typically this is done by calling the next subunit
command within the ready handler. The message layer is effectively a packet
pump. The packet layer encodes and frames the packet, pumping it byte-by-byte
into the byte layer. On the UART, the byte-by-byte abstraction is implemented
directly in hardware, whereas on the radio the byte layer pumps the data bit-
by-bit into the radio. Each of these components utilizes the frame, command,
and event framework to construct a re-entrant software state machine.

4.2 Listening at Low Power

In traditional remote control or remote monitoring applications, a well-powered
stationary device is always receiving and a portable device transmits infre-
quently. However, in a multi hop data collection network, each node will transmit
its own data from time to time and listen the rest of the time for data that it
needs to forward toward a sink.
Although active transmission is the most power intensive mode, most radios

consume a substantial fraction of the transmit energy when the radio is on and
receiving nothing. In ad hoc networks, a device will only be transmitting for short
periods of time but must be continually listening in order to forward data for
the surrounding nodes. The total energy consumption of a device ends up being
dominated by RF reception cost. To address this, we employ two techniques to
reduce the power consumption while listening.
A fairly traditional way to accomplish this is through a technique we refer

to as periodic listening. By creating time periods when it is illegal to transmit,
nodes must listen only part time. This approach works well when the time scale
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of the invalid periods is quite large relative to the message transmission time. For
example, we have an implementation of this mechanism where the transmission
window is ten seconds and the sleep window is 90 seconds. This reduces the
reception power consumption of the nodes by approximately 90%. However,
downside of this simple approach is that it limits the realized bandwidth available
by the same factor.
The reduction of network bandwidth into a mobile node is often unacceptable

in the context of sensor networks. Any node may be act as a router or data
processing point and need to fully utilize the radio bandwidth. To address this
issue we have developed second technique that we call low power listening. This
method keeps the same listener duty cycle concept, but greatly reduces the time
scale. Each receiver turns its radio on for 30 µs out of a 300 µs window instead
of 10 sec out of 100 sec. This permits the same 90% energy savings as periodic
listening yet does not decrease the available channel capacity. The downside of
this method is that a transmitter must spend extra energy to make sure that the
receiver has its radio on before packet transmission begins. A transmitter must
send a packet preamble designed to get the attention of the receiver. Because the
sender knows that the receiver will be listening every 300µs, the preamble must
be at least the same duration. In our system, the data packet length is 56,100 µs
long, so preamble overhead is quite small compared to the transmission cost. A
90% decrease in idle power consumption is gained with less than a 1% increase
in transmission cost without changing the channel capacity. In the case of a node
that transmits one packet per second and receives one packet per second from
other nodes, there is a net power reduction for the radio of approximately 75%.
System level power measurements on real hardware have confirmed this power
savings.

Table 1. Power savings breakdown for a radio that receives and transmits 1 packet
per second with a TX power consumption of 12mA and an RX power consumption of
5mA. Packet transmission and reception takes 50ms.

Operation Time Normal Low Power Mode
Transmit 50 ms/50.5 ms 600uj 606uj
Receive 50 ms 250 uj 250 uj
Listen 900 ms 4500 uj 450 uj
Total 1000 ms 5350 uj 1306 uj
Savings 7̃5%

To further reduce the average power consumption of the network, low power
listening can be combined with the periodic listening. Running both schemes si-
multaneously results in listening at reduced power for only a fraction of the time.
The power reductions are multiplicative. These techniques provide a mechanism
for trading bandwidth and transmission cost for a reduction in receive power
consumption.
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4.3 Physical Layer Interface

Traditional I/O subsystems have a controller hierarchy that abstracts the device
specific characteristics and timing requirements of the physical layer from the
main system controller. In contrast, our hardware directly connects the central
microcontroller to the radio. This places all of the real time requirements of the
radio onto the microcontroller. It must handle every bit that is transmitted or
received in real time. Additionally, it controls the timing of each bit so that any
jitter in the control signals that it generates is propagated to the transmitted
signal. The TinyOS communication stack has been constructed to handle these
constraints while allowing higher level functions to continue in parallel.
At the base of our component stack is a state machine that performs the bit

timing. The RFM component transfers a single bit at a time to and from the RF
Monolithics radio. For a correct transmission to occur, the transmitted bit must
be placed and held on the TX line of the radio for exactly one bit time. In our
system that is 100µs. For reception, the RX line of the radio must be sampled
at the midpoint of the transmission period. The radio provides no support for
determining when bit times have completed.
The interface to our RFM component takes the form of a data pump. It

orchestrates a bit-by-bit transfer from a byte level component to the physical
hardware. To start the transmission of data, a command is issued to the RFM
component to switch into transmit mode. Then a second command is used to
transfer a single bit down to the RFM component. This bit is immediately placed
onto the transmit line. After 100µs has passed, the RFM component will signal
an event to indicate that it is ready for another bit. The byte level components
response is to issue another command to the RFM component that contains
the next bit. This interaction of signaling and event and receiving the next
bit continues until the entire packet is completed. The RFM layer component
abstracts the real time deadlines of the transmission process from the higher
layer components.
During transmission, complex encoding must be done on each byte while

simultaneously meeting the strict real time requirements of the bit layer. The
encoding operation for a single byte takes longer than the transmission time of
single bit. To ensure that the encoded data is ready in time to meet the bit
level transmission deadline, we must start the encoding of the next byte prior to
the completion of the transmission of the current byte. We use the TinyOS task
mechanism to execute the encoding operation while simultaneously performing
the transmission of previous data. By encoding data one byte in advance of
transmission, we are using buffering to decouple the bit level timing from the
byte encoding process.
Data reception takes the same form as transmission except that the receiver

must first detect that a transmission is about to begin and then determine the
timing of the transmission. To accomplish this, when there is activity on the ra-
dio channel, the RFM layer component is set to sample bits every 50µs, double
sampling each byte. These bits are handed up one at a time to the byte level
component. The byte level component creates a sliding buffer of these bit values
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that contains the last 18 bits. When the value of the last 18 bits received matches
the designated start symbol, the start of a packet has been detected. Addition-
ally, the timing of the packet has been determined to within half a bit time.
Next, the RFM layer is told to sample a single bit after 75µs. This causes the
next sample to fall in the middle of the next bit window, half way between where
the double sampling would have occurred if the sample period had remained at
50µs. Finally, the RFM is told to sample every 100µs for the remainder of the
packet.

4.4 Media Access and Transmission Rate Control

In wireless embedded systems, the communication path to the devices is not
a dedicated link as it is in most traditional embedded system, but instead a
shared channel. This channel represents a precious resource that must be shared
effectively in the context of resource constrained processing and ad hoc multihop
routing. Moreover, many applications require that nodes have roughly equal abil-
ity to move data through the network, regardless of position within the network
topology. We have extended the low-level TinyOS communication components
with an energy-aware media access control (MAC) protocol and developed a
simple technique for application specific adaptive rate control [12].
Since the I/O controller hierarchy on our small devices is so primitive, the

MAC protocols must be performed on micro-controller concurrently with other
operations. The RF transceiver lacks support for collision detection, so we focus
on Carrier Sense Multiple Access (CSMA) schemes, where a node listens for
the channel and only transmits a packet if the channel is idle. The mechanism
for clocking in bits at the physical layer is also used for carrier sensing. Thus,
the MAC layer is implemented at both the bit and byte level in the network
stack. If consecutive sampling of the channel discovers no signal, the channel is
deemed idle and a packet transmission is attempted. However, if the channel is
busy, a random back off occurs. The entire process repeats until the channel is
idle. A simple 16-bit linear feedback shift register is used as a pseudo random
number generator for the back off period. Since energy is a precious resource,
the radio is turned off during back off. Many applications collect and transmit
data periodically, perhaps after detecting a triggering event, so traffic can be
highly correlated. Detection of a busy channel suggests that a neighboring node
may indicate that the communication patterns of the nodes are synchronized.
The application uses the failure to send as feedback and shifts it sampling phase
to potentially desynchronize. This simple scheme has been shown to yield 75%
channel utilization for densly populated cell.
Another common application requirement is roughly equal coverage of data

sampling over the entire network. In other words, each node in the network
should be able to deliver fair allocation of bandwidth to the base station. With
our ad hoc routing layer, nodes self organize into a spanning forest, where each
node originates and routes traffic to a base station. The competition between
originated and route-thru traffic for upstream bandwidth must be balanced in
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order to meet the fairness goal. Furthermore, given that the capacity of a multi-
hop network is limited [2], nodes must adapt their offered load to the available
bandwidth rather than over-commit the channel and waste energy in transmit-
ting packets that can never reach the base station. Our adaptive transmission
control scheme is a local algorithm implemented above the Active Message layer
and below the application level. The application has a baseline sampling rate
that determines in maximum transmission rate and transmits a sample with a
dynamically determined probability. On successful transmission the probability
is increased linearly, whereas on failure it is decreased multiplicatively. A suc-
cessful transmission can be indicated by an explicit acknowledgment from the
receiver or an implicit acknowledgment when the sender hears its packet being
forwarded by its parent. Since implicit acknowledgment is often application spe-
cific, the application decides if the transmission was successful and propagates
the information down to the transmission control layer. Rejection of application’s
transmission command at the transmission control level triggers the adaptation.

5 Evaluation

To demonstrate the performance of the Active Messages model, we performed
single message round-trip timings (RTT) and measured energy overhead on a
sample implementation. The measurements were made on embedded sensors
with a 4MHz Atmel AVR 8535 Microocontroller and an RFM radio. The Tiny
Active Messages software component consumes 322 bytes of a 2.6KB total binary
image. At a 10kbps raw bit rate and using a 4b6 encoding scheme, the wireless
link supports 833 bytes/sec of throughput. Figure 4 presents the RTT results
for various lengths through a network. A route length of one measures a host
computer to base station time (40ms) and reflects the cost of the wired link,
device processing, and the host OS overhead. For routes greater than one hop,
the RTT includes the latency of the wireless link between two devices. The
difference between the two and one hop RTT yields the device-to-device RTT of
78ms. Table 2 presents a cumulative profile of the single hop RTT. The difference
between request arrival and reply transmission of .3 ms shows that the Active
Message layer only accounts for .75% of the total RTT time over the wired link.
This decreases when compared to the longer transmission times of the wireless
link.
Exploiting the event based nature of Active Messages enables a high degree

of power savings. When no communication or computation is being performed,
the device enters a low-power idle state. We measured the power consumption for
this idle state, the peak power consumption and the energy required to transmit
one bit. The results are presented in Table 3.

6 Conclusion

The TinyOS approach has proven quite effective in supporting general purpose
communication among potentially many devices that are highly constrained in
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Fig. 4. Round trip times for various route lengths. Note that one hop measures the
time for a message between the Host PC and base station device.

Table 2. Cumulative time profile for a single hop RTT test.

Component Cumulative Time (msec)
First bit of request on device 0
Last bit of request on device 15.6
First bit of reply from device 15.9
Last bit of reply from device 32.8
First bit of next request on device 40.0

Table 3. Power and energy consumption measurements.

Idle State 5 µAmps
Peak 5 mAmps
Energy per bit 1 µJoule

terms of processing, storage, bandwidth, and energy with primitive hardware
support for I/O. Its event driven model facilitates interleaving the processor be-
tween multiple flows of data and between multiple layers in the stack for each
flow while still meeting the severe real-time requirements of servicing the radio.
Since storage is very limited, it is common to process messages incrementally at
several levels, rather than buffering entire messages and processing them level-
by-level. However, events alone are not sufficient; it is essential that an event
be able to hand any substantial processing off to a task that will run outside
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the real-time window. This provides logical concurrency within the stack and is
used at every level except the lowest hardware abstraction layer. By adopting
a non-blocking, event-driven approach, we have been able to avoid supporting
traditional threads, with the associated multiple stacks and complex synchro-
nization support.

The component approach has yielded not only robust operation despite lim-
ited debugging capabilities, it has greatly facilitated experimentation. For ex-
ample, we had little understanding of what would be the practical error char-
acteristics of the radio channel when the development started, and we ended
up building several packet layers that implemented different coding and error
detection strategies. The packet components could be swapped with a simple
change to the description graph and temporary components could be interposed
between existing components, without changing any of the internal implemen-
tations. Moreover, the use of components and the TinyOS programming style
allows essentially an entire subtree of components to be replaced by hardware
and vice versa.

The Tiny Active Message programming model has made it easy to experi-
ment with numerous higher level networking layers and fine-grained distributed
algorithms. Although the devices are quite limited, we spend little effort wor-
rying about the low-level machinery while building high-level, often application
specific protocols. Several higher level capabilities have recently been developed
on this substrate. One example is the ability to reprogram the nodes over the
network. A node can obtain code capsules from its neighbors or over multihop
routes and assemble a complete execution image in its EEPROM tiny secondary
store. The node can then use this to reprogram itself. Other examples include
a general purpose data logging and acquisition capability, a facility to query
nodes by schema, and to aggregate data from a large number of nodes within
the network. We are currently developing mechanisms for operating the radio at
five to ten times the bit rate, while keeping all of the higher level structures.

Without the traditional layers of abstraction dictating what kinds of capa-
bilities are available, it is possible to foresee many novel relationships between
the application and the underlying system. Our adaptive transmission control
scheme is a simple example; rejection of the send request causes the applica-
tion to adjust its rate of originating data. The application level forwarding of
multihop traffic allows the node to keep track of its changing set of neighbors.
Moreover, the radio is itself another sensor, since receive signal strength is pro-
vided to the ADC. Thus, each packet can be accompanied by signal strength data
for use in estimating physical distance or presence of obstructions. The radio is
also an actuator, as its signal strength, and therefore cell size, can be controlled.
The lowest layer components are synchronizing all receivers to the transmitter
to within a fraction of a bit. Thus, very fine grain time synchronization informa-
tion could be provided with every packet for control applications. What started
as a tremendously constraining environment where traditional abstractions were
intractable has become a rich and open playground for experimenting with novel
software structures for deeply embedded, networked systems.
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