
Isabelle-verified correctness of Datalog programs for
program analysis

Anders Schlichtkrull
Aalborg University

Copenhagen, Denmark
andsch@cs.aau.dk

René Rydhof Hansen
Aalborg University
Aalborg, Denmark
rrh@cs.aau.dk

Flemming Nielson
Technical University of Denmark

Kongens Lyngby, Denmark
fnie@dtu.dk

ABSTRACT
Static program analysis has become an essential tool for developers
to find and avoid bugs as well as security vulnerabilities. This is
particularly important for applications requiring formal verification,
e.g., safety- or security-critical applications.

We formalize and prove correct all the components needed to
specify and perform static analysis based on the Datalog logic pro-
gramming language, including the first known Isabelle formaliza-
tion of stratified Datalog. In addition the existence of least solutions
for any stratified Datalog program is established and proven. We
demonstrate the usefulness of our formalization by further formaliz-
ing the general Bit-Vector Framework and prove correct four classic
analyses in this framework.

CCS CONCEPTS
• Theory of computation→ Logic and verification; Program
analysis.

KEYWORDS
Datalog, static analysis, formal methods, Isabelle
ACM Reference Format:
Anders Schlichtkrull, René Rydhof Hansen, and Flemming Nielson. 2024.
Isabelle-verified correctness of Datalog programs for program analysis. In
The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April
8–12, 2024, Avila, Spain. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3605098.3636091

1 INTRODUCTION
The ability of static analysis to provide automated and scalable
bug-finding and verification has made it an intrinsic part of the
development process, not least for critical applications requiring
high assurance levels. Despite this, relatively little work has been
published on formalizing andmechanically verifying static analyses
and the frameworks for designing and implementing such analyses,
leaving a “formalization gap” where applications may be formally
verified by analysis tools and frameworks that are not.

In this work we use Isabelle [7, 8] to formalize and develop a
theory for stratified Datalog [2], a non-Turing complete logic pro-
gramming language that has been used to specify and implement

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636091

static analyses in a succinct form that scales to real-life code bases.
To the best of our knowledge this is the first such formalization in
Isabelle. We use our formalization to prove that all analyses in the
so-called Bit-Vector Framework [6] can be encoded as corresponding
Datalog analyses. The Bit-Vector Framework, sometimes known as
gen/kill analysis or simply bit-vector data flow analysis, is a general
and widely used subset of Kildall’s classic data flow analysis frame-
work [4] and the more general monotone framework [3], consisting
of the program analyses that can be defined and implemented using
efficient bit-vector representations of the data flow equations and
operations. To the best of our knowledge, this is the first published
proof that Datalog subsumes the Bit-Vector Framework. We further
use the Datalog formalization to formally establish the existence
of least solutions for any stratified Datalog program, essential for
reasoning about negations in clauses and for obtaining the most
precise analysis results. This is a non-trivial task, since the ordering
of solutions, and hence the least solution, has to take stratification
into account.

Lastly we illustrate the usefulness and applicability of our Dat-
alog and Bit-Vector Framework formalization by formalizing and
proving correct four classic bit-vector analyses, i.e., instances of the
Bit-Vector Framework. Analyses formulated as Datalog programs
are of particular interest because they have been shown to scale to
large code bases and are often easier and less time consuming to
define and develop [11–13].

In summary, our contributions are: (1) a formalization of strati-
fied Datalog, (2) a formal proof that a least solution exists for any
stratified Datalog program, (3) a formalization of program graphs,
(4) a formal proof that all bit-vector analyses can correctly be for-
mulated as Datalog programs, (5) a formalization and correctness
proof of the reaching definitions, live variables, available expres-
sions, and very busy expressions analyses. Our work is available
online [10].

2 DATALOG FOR PROGRAM ANALYSIS
Program analysis is traditionally concerned with proving properties
about programs at compile time, e.g., to enable compiler optimi-
sations or guaranteeing the absence of bugs. There are numerous
approaches to defining program analyses but the work here is based
on a recent approach using the Datalog language for specification
and implementation of the analyses [5, 6, 11, 12].

Datalog is a logic programming language inspired by and resem-
bling (a simplified subset of) Prolog that is not Turing complete [2].
This choice facilitates developing program analyses in a way that
separates specification and implementation of the analysis while
leveraging efficient implementation that scales to real-life code
bases.

https://orcid.org/0000-0001-9212-6150
https://doi.org/10.1145/3605098.3636091
https://doi.org/10.1145/3605098.3636091
https://doi.org/10.1145/3605098.3636091

SAC ’24, April 8–12, 2024, Avila, Spain Anders Schlichtkrull, René Rydhof Hansen, and Flemming Nielson

Using Datalog for program analysis generally works by defining
Datalog predicates that track analysis information for each program
point and Datalog clauses that propagate this information accord-
ing to the instructions of the program under analysis. For typical
analyses, this specification only has to be done once for each type
of instruction, e.g., all assignments are handled by similar Datalog
clauses. The Datalog clauses comprising the analysis specification
can then be used to perform analysis of a concrete program by first
generating a set of ground facts that represents the program to be
analyzed and then applying the Datalog program to the ground
facts. In particular, the control flow is encoded as ground facts, e.g.,
by encoding the program graph of the program to be analyzed as
shown in this paper. The solution to the Datalog program is now
also the analysis result.

3 FORMALIZING DATALOG IN ISABELLE/HOL
Given the widespread use of Datalog in diverse areas of application
our formalization is of separate interest also outside of program
analysis. The goal is a formalization enabling us to not only establish
meta-theoretical results about Datalog, but to prove correctness of
specific Datalog programs. This is in contrast to the formalization by
Benzaken, Contejean and Bembrava [1] whose goal is to prove the
correctness of strategies for evaluating clauses of Datalog programs.

For convenience in specifying analyses, we use a Datalog ex-
tension, called stratified Datalog, that allows negation. To ensure
well-definedness, negation must be used in a structured way to
avoid circular, nonsensical clauses. While convenient for users,
stratification makes the formalization more involved and demand-
ing. Due to the semantics and the ordering of solutions to Datalog
programs, that needs to take stratification into account, we also
need to prove thatminimal solutions to stratified Datalog programs
coincide with least solutions. We prove this as a consequence of a
proof of the existence of a least solution (also known as the perfect
model [2, 9]).

Our formalization of Datalog is based on Nielson and Nielson’s
textbook [6] and was done using Isabelle/HOL [7, 8] which is a
proof assistant for Higher-Order Logic. Proof assistants allow their
users to define objects from mathematics, logic and computer sci-
ence and to prove lemmas and theorems about them. The proof
assistant checks if the proofs are correct and can also do parts of
proofs automatically. The advantage is clear: a proof done in a proof
assistant is highly trustworthy. Proof assistants typically rely on
a small, trusted kernel based on a relatively simple proof system.
Isabelle/HOL’s logic (HOL) can be seen as a combination of typed
functional programming with logic. Therefore a formalization will
specify the types of objects we want to reason about, and then we
study terms (representing mathematical objects) of these types.

To give a flavour of the actual formalisation we present the
following excerpt formalizing the semantics of Datalog. For lack of
space, we do not go into any details:

fun eval_id (⟦_⟧id) where
⟦Var 𝑥⟧id 𝜎 = 𝜎 𝑥

| ⟦Cst 𝑐⟧id 𝜎 = 𝑐

fun eval_ids (⟦_⟧ids) where
⟦ids⟧ids 𝜎 = map (𝜆𝑎. ⟦𝑎⟧id 𝜎) ids

fun meaning_lh (⟦_⟧lh) where
⟦𝑝 (ids)⟧lh 𝜚 𝜎 ←→ ⟦ids⟧ids 𝜎 ∈ 𝜚 𝑝

fun meaning_rh (⟦_⟧rh)where
⟦𝑎 === 𝑎′⟧rh 𝜚 𝜎 ←→ ⟦𝑎⟧id 𝜎 = ⟦𝑎′⟧id 𝜎

| ⟦𝑎 ≠≠≠ 𝑎′⟧rh 𝜚 𝜎 ←→ ⟦𝑎⟧id 𝜎 ≠ ⟦𝑎′⟧id 𝜎

| ⟦𝑝 (ids)⟧rh 𝜚 𝜎 ←→ ⟦𝑖𝑑𝑠⟧ids 𝜎 ∈ 𝜚 𝑝

| ⟦¬¬¬𝑝 (ids)⟧rh 𝜚 𝜎 ←→ ¬ ⟦ids⟧ids 𝜎 ∈ 𝜚 𝑝

fun meaning_rhs (⟦_⟧rh) where
⟦rhs⟧rhs 𝜚 𝜎 ←→ (∀rh ∈ set rhs. ⟦rh⟧rh 𝜚 𝜎)

fun meaning_cls (⟦_⟧cls) where
⟦𝑝 (ids) ← rhs⟧cls 𝜚 𝜎 ←→
(⟦rhs⟧rhs 𝜚 𝜎 −→ ⟦𝑝 (ids)⟧lh 𝜚 𝜎)

fun solves_lh (|=lh) where 𝜚 |=lh lh←→ (∀𝜎. ⟦lh⟧lh 𝜚 𝜎)
fun solves_rh (|=rh) where 𝜚 |=rh rh←→ (∀𝜎. ⟦rh⟧rh 𝜚 𝜎)
definition solves_cls (|=cls) where
𝜚 |=cls 𝑐 ←→ (∀𝜎. ⟦𝑐⟧cls 𝜚 𝜎)

definition solves_program (|=dl) where
𝜚 |=dl dl ←→ (∀cls ∈ 𝑑𝑙 . 𝜚 |=cls cls)

REFERENCES
[1] Véronique Benzaken, Evelyne Contejean, and Stefania Dumbrava. 2017. Cer-

tifying Standard and Stratified Datalog Inference Engines in SSReflect. In In-
teractive Theorem Proving - 8th International Conference, ITP 2017, Brasília,
Brazil, September 26-29, 2017, Proceedings (Lecture Notes in Computer Science,
Vol. 10499), Mauricio Ayala-Rincón and César A. Muñoz (Eds.). Springer, 171–188.
https://doi.org/10.1007/978-3-319-66107-0_12

[2] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng.
1, 1 (1989), 146–166. https://doi.org/10.1109/69.43410

[3] John B. Kam and Jeffrey D. Ullman. 1977. Monotone Data Flow Analysis Frame-
works. Acta Informatica 7 (1977), 305–317.

[4] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization.
In Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL 1973). 194–206. https://doi.org/10.1145/512927.512945

[5] Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to Flix:
a declarative language for fixed points on lattices. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2016). 194–208.

[6] FlemmingNielson andHanne Riis Nielson. 2020. ProgramAnalysis (an Appetizer).
CoRR abs/2012.10086 (2020). arXiv:2012.10086 https://arxiv.org/abs/2012.10086

[7] Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics - With Isabelle/HOL.
Springer. https://doi.org/10.1007/978-3-319-10542-0

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science,
Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

[9] Teodor C. Przymusinski. 1988. On the Declarative Semantics of Deductive
Databases and Logic Programs. In Foundations of Deductive Databases and Logic
Programming, Jack Minker (Ed.). Morgan Kaufmann, 193–216. https://doi.org/10.
1016/b978-0-934613-40-8.50009-9

[10] Anders Schlichtkrull, René Rydhof Hansen, and Flemming Nielson. 2023. Formal
proof development for the present paper. https://github.com/anderssch/LTS-
formalization/tree/SAC2023/Datalog.

[11] Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for Fast and
Easy Program Analysis. In Datalog Reloaded - Revised Selected Papers of the First
International Workshop on Datalog (Datalog 2010) (Lecture Notes in Computer
Science, Vol. 6702). Springer, 245–251. https://doi.org/10.1007/978-3-642-24206-
9_14

[12] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using
Datalog with Binary Decision Diagrams for Program Analysis. In Proceedings of
the Third Asian Symposium on Programming Languages and Systems (APLAS 2005)
(Lecture Notes in Computer Science, Vol. 3780). Springer, 97–118. https://doi.org/
10.1007/11575467_8

[13] John Whaley and Monica S. Lam. 2004. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2004).
ACM, 131–144. https://doi.org/10.1145/996841.996859

https://doi.org/10.1007/978-3-319-66107-0_12
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/512927.512945
https://arxiv.org/abs/2012.10086
https://arxiv.org/abs/2012.10086
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1016/b978-0-934613-40-8.50009-9
https://doi.org/10.1016/b978-0-934613-40-8.50009-9
https://github.com/anderssch/LTS-formalization/tree/SAC2023/Datalog
https://github.com/anderssch/LTS-formalization/tree/SAC2023/Datalog
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1007/11575467_8
https://doi.org/10.1007/11575467_8
https://doi.org/10.1145/996841.996859

	Abstract
	1 Introduction
	2 Datalog for Program Analysis
	3 Formalizing Datalog in Isabelle/HOL
	References

