Introduction Factorings Decoupled Search Pruning Heuristics

tics Recharging Robots

MAPF Conclusion References

Decoupled Search: A New Form of State-Space Exploration

Álvaro Torralba

Introduction Factorings Decoupled Search Pruning oo ooooo References

What's this About

- Decoupled Search:
 - New technique for state-space exploration in AI-planning and model-checking

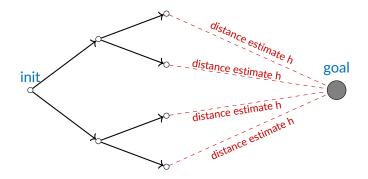
Daniel Gnad (Gnad (2021))

Joerg Hoffmann

Álvaro Torralba

Decoupled Search

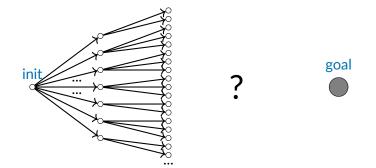
A Successful Approach in General: Heuristic Search



 \rightarrow State space search with heuristic function *h* maps states *s* to an estimate *h*(*s*) of goal distance.

Heuristic Search – Limitations

Decoupled Search



Heuristics

Recharging Robots

MAPF

State explosion problem:

State space of a planning task is exponential in the number of variables.

Álvaro Torralba

Introduction

00000000

Factorings

Decoupled Search

References

Domain-independent planning versus domain-dependent solvers

Pruning

Decoupled Search

Introduction

0000000 0000000 0000000

Finding Optimal Solutions to Rubik's Cube Using Pattern Databases

Heuristics

Recharging Robots

Conclusion

References

Richard E. Korf

Computer Science Department University of California, Los Angeles Los Angeles, Ca. 90095 Korf@cs.ucla.edu

Abstract

We have found the first optimal solutions to random instances of Rubik's Cube. The median optimal solution length appears to be 18 moves. The algorithm used is iterative-deepening-A* (IDA*), with a lowerbound heuristic function based on large memory-based lookup tables, or "pattern databases" (Culberson and Schaeffer 1996). These tables store the exact number of moves required to solve various subgoals of the problem, in this case subsets of the individual movable cubies. We characterize the effectiveness of an admissible heuristic function by its expected value. and hypothesize that the overall performance of the program obeys a relation in which the product of the time and space used equals the size of the state space. Thus, the speed of the program increases linearly with the amount of memory available. As computer memories become larger and cheaper, we believe that this approach will become increasingly cost-effective.

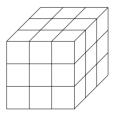


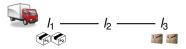
Figure 1: Rubik's Cube

The dream: reduce the gap to a point where domain-independent planners are as efficient than

Introduction Factorings Decoupled Search Pruning occoection occoec

Domain-independent vs domain-dependent

Running Example:



•
$$V = \{t, p_1, \dots, p_N\}$$
 with
 $D_t = \{l_1, l_2, l_3, l_4\}$ and $D_{p_i} = \{t, l_1, l_2, l_3, l_4\}$.

•
$$I = \{(t, l_1), (p_1, l_1), (p_2, l_1), (p_3, l_3), (p_4, l_3)\}$$

A = {load(p_i, x), unload(p_i, x), drive(x, x')}, where:

 $pre_{load(p_i,x)} = \{(t,x), (p_i,x)\}$ and $eff_{load(i,x)} = \{(p_i,t)\}$

•
$$G = \{(p_1, l_3), (p_2, l_3), (p_3, l_1), (p_4, l_1)\}$$

Álvaro Torralba

Decoupled Search

Domain-independent vs domain-dependent

Heuristics

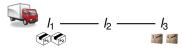
Recharging Robots

Running Example:

Factorings

Introduction

00000000 000



•
$$V = \{t, p_1, \dots, p_N\}$$
 with
 $D_t = \{l_1, l_2, l_3, l_4\}$ and $D_{p_i} = \{t, l_1, l_2, l_3, l_4\}$.

Decoupled Search

•
$$I = \{(t, l_1), (p_1, l_1), (p_2, l_1), (p_3, l_3), (p_4, l_3)\}$$

A = {load(p_i, x), unload(p_i, x), drive(x, x')}, where:

 $pre_{load(p_i,x)} = \{(t,x), (p_i,x)\}$ and $eff_{load(i,x)} = \{(p_i,t)\}$

•
$$G = \{(p_1, l_3), (p_2, l_3), (p_3, l_1), (p_4, l_1)\}$$

- State init (s)
- set(A) applicable (s)

Conclusion

References

- State apply (s, a)
- **bool** isGoal (s)
- int heuristic (s)

Heuristics

Recharging Robots

Running Example:

Factorings

Introduction

000000000

•
$$V = \{t, p_1, \dots, p_N\}$$
 with
 $D_t = \{l_1, l_2, l_3, l_4\}$ and $D_{p_i} = \{t, l_1, l_2, l_3, l_4\}$.

Decoupled Search

•
$$I = \{(t, l_1), (p_1, l_1), (p_2, l_1), (p_3, l_3), (p_4, l_3)\}$$

A = {load(p_i, x), unload(p_i, x), drive(x, x')}, where:

 $pre_{load(p_i,x)} = \{(t,x), (p_i,x)\}$ and $eff_{load(i,x)} = \{(p_i,t)\}$

•
$$G = \{(p_1, l_3), (p_2, l_3), (p_3, l_1), (p_4, l_1)\}$$

• State init (s)

 \rightarrow return *I*

- set(A) applicable (s)
 - \rightarrow return { $a \mid s \models pre(a)$ }

Conclusion

References

- State apply (s, a) →return *s*[*a*]
- **bool** isGoal (s) \rightarrow return $s \models G$
- int heuristic (s)

→Any domain-independent planning heuristic Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exercise: Pick-up and Delivery

We have *M* trucks and *N* packages across *L* locations. Trucks drive around to pick and deliver the packages. We want to compute a (optimal) route. How do you design the search space? States? Actions?

Introduction Factorings Decoupled Search Pruning

Heuristics Recharge

Recharging Robots

APF Conclusion References

Exercise: Pick-up and Delivery

We have *M* trucks and *N* packages across *L* locations. Trucks drive around to pick and deliver the packages. We want to compute a (optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

- State: position of each package and truck
- Actions: drive-to(*t*, *l*), pick(*p*, *t*), deliver(*p*, *t*)

Introduction Factorings Decoupled Search Prunin,

Heuristics Recharg

Recharging Robots

MAPF Conclusion References

Exercise: Pick-up and Delivery

We have *M* trucks and *N* packages across *L* locations. Trucks drive around to pick and deliver the packages. We want to compute a (optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

- State: position of each package and truck
- Actions: drive-to(*t*, *l*), pick(*p*, *t*), deliver(*p*, *t*)

Option 2: Package-centered

- State: position of each package and truck
- Actions: pick(*p*, *t*), deliver(*p*, *t*) (trucks move automatically)

Introduction Factorings Decoupled Search Prunin,

ning Heuristics Re

ics Recharging Robots

obots MAPF Concl

Conclusion References

Exercise: Pick-up and Delivery

We have *M* trucks and *N* packages across *L* locations. Trucks drive around to pick and deliver the packages. We want to compute a (optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

- State: position of each package and truck
- Actions: drive-to(*t*, *l*), pick(*p*, *t*), deliver(*p*, *t*)

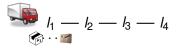
Option 2: Package-centered

- State: position of each package and truck
- Actions: pick(p, t), deliver(p, t) (trucks move automatically)

Option 3: Truck-centered

- State: truck routes, whether packages have been delivered
- Actions: drive-to(*t*, *l*)

Decoupled Search



Running Example:

Introduction

000000000 00000000

•
$$V = \{t, p_1, \dots, p_N\}$$

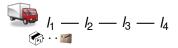
with $D_t = \{l_1, l_2, l_3, l_4\}$ and $D_{p_i} = \{t, l_1, l_2, l_3, l_4\}$.

Heuristics

Recharging Robots

References

Decoupled Search



MAPF

Conclusion

References

Running Example:

Introduction

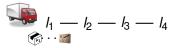
000000000

Heuristics

Recharging Robots

Size of the state space (number of reachable states):

Decoupled Search



MAPF

Conclusion

References

Running Example:

Introduction

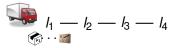
000000000

Size of the state space (number of reachable states): $4 \cdot 5^N$

Heuristics

Recharging Robots

Decoupled Search



Conclusion

References

Running Example:

Factorings

Introduction

000000000

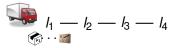
Size of the state space (number of reachable states): $4 \cdot 5^N$

Heuristics

Recharging Robots

How many different action permutations result from only loading all packages at l_1 ?

Decoupled Search



Conclusion

References

Running Example:

Factorings

Introduction

000000000

Size of the state space (number of reachable states): $4 \cdot 5^N$

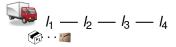
Heuristics

Recharging Robots

How many different action permutations result from only loading all packages at l_1 ?

 \rightarrow *N*! (2^{*N*} different states)

Decoupled Search



Conclusion

References

Running Example:

Factorings

Introduction

000000000

Size of the state space (number of reachable states): $4 \cdot 5^N$

Heuristics

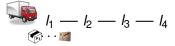
Recharging Robots

How many different action permutations result from only loading all packages at l_1 ?

 $\rightarrow N!$ (2^N different states)

Can this be avoided?

Decoupled Search



Conclusion

References

Running Example:

Introduction

000000000

Size of the state space (number of reachable states): $4 \cdot 5^N$

Heuristics

Recharging Robots

How many different action permutations result from only loading all packages at l_1 ?

 $\rightarrow N!$ (2^N different states)

Can this be avoided? What is the connection between the packages?

Álvaro Torralba

Decoupled Search

	Reachable State Space. Right: Average over Instances Commonly Built						
	Success				Representation Size (in Thousands)		
Domain	Std	POR	Unfold.	Decoupled	Std	POR	Decoupled
Solvable Benchmarks: From the International Planning Competition (IPC)							
Depots	4	4	2	5	30,954.8	30,954.8	3,970.0
Driverlog	5	5	3	10	35,632.4	35,632.4	127.2
Elevators	21	17	3	41	22,652.1	22,651.1	186.7
Logistics	12	12	11	27	3,793.8	3,793.8	8.2
Miconic-STRIPS	50	45	30	145	52,728.9	52,673.1	2.4
Nomystery	11	11	7	40	29,459.3	25,581.5	10.0
Pathways	4	4	3	4	54,635.5	1,229.0	11,211.9
PSR	3	3	3	3	39.4	33.9	11.1
Rovers	5	6	4	5	98,051.6	6,534.4	4,032.9
Satellite	5	5	5	4	2,864.2	582.5	352.7
TPP	5	5	4	11	340,961.5	326,124.8	.8
Transport	28	23	11	34	4,958.6	4,958.5	173.3
Woodworking	11	20	22	16	438,638.5	226.8	9,688.9
Zenotravel	7	7	4	7	17,468.0	17,467.5	99.4
Unsolvable Benchmarks: Extended from Hoffmann and Nebel (2001)							
Nomystery	9	8	4	40	85,254.2	65,878.2	3.8
Rovers	4	4	0	4	697,778.9	302,608.9	20,924.4
Σ	186	181	116	398			

Heuristics

Recharging Robots

0000000000

Introduction

000000000 0000000 0000000

Decoupled Search

References

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Agenda

- 1 Introduction
- 2 Factorings
- Oecoupled Search
- 4 Dominance Pruning
- 5 Decoupled Heuristics
- 6 Recharging Robots
- Multi-Agent Pathfinding

8 Conclusion

Decoupled Search – Intuition

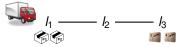
Decoupled Search

Running Example:

Factorings

••••••

Introduction



•
$$A = \{load(p_i, x), unload(p_i, x), drive(x, x')\},$$
 where:
 $pre_{load(p_i, x)} = \{(t, x), (p_i, x)\}$ and $eff_{load(i, x)} = \{(p_i, t)\},$
 $pre_{unload(p_i, x)} = \{(t, x), (p_i, t)\}$ and $eff_{unload(i, x)} = \{(p_i, x)\}.$

Heuristics

Recharging Robots

Causal Graph: Dependencies across (components of) state variables.

References

Decoupled Search – Intuition

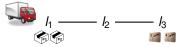
Decoupled Search

Running Example:

Factorings

0000000 0000

Introduction



MAPF

Conclusion

References

•
$$A = \{load(p_i, x), unload(p_i, x), drive(x, x')\},$$
 where:
 $pre_{load(p_i, x)} = \{(t, x), (p_i, x)\}$ and $eff_{load(i, x)} = \{(p_i, t)\},$
 $pre_{unload(p_i, x)} = \{(t, x), (p_i, t)\}$ and $eff_{unload(i, x)} = \{(p_i, x)\}.$

Heuristics

Recharging Robots

Causal Graph: Dependencies across (components of) state variables.

Decomposition: "Instantiate center to break the conditional dependencies".

Álvaro Torralba

Decoupled Search – Intuition

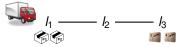
Decoupled Search

Running Example:

Factorings

0000000 0000

Introduction



MAPF

Conclusion

References

•
$$A = \{load(p_i, x), unload(p_i, x), drive(x, x')\},$$
 where:
 $pre_{load(p_i, x)} = \{(t, x), (p_i, x)\}$ and $eff_{load(i, x)} = \{(p_i, t)\},$
 $pre_{unload(p_i, x)} = \{(t, x), (p_i, t)\}$ and $eff_{unload(i, x)} = \{(p_i, x)\}.$

Heuristics

Recharging Robots

Causal Graph: Dependencies across (components of) state variables.

Decomposition: "Instantiate center to break the conditional dependencies".

Search over global actions; handle each leaf component separately.

Álvaro Torralba

Decoupled Search

Decoupled Search

Definition (Factoring). Let Π be a planning task with variables V. A factoring \mathcal{F} is a partitioning of V into non-empty subsets.

Heuristics

Recharging Robots

Conclusion

References

Introduction

Factorings

Decoupled Search

Definition (Factoring). Let Π be a planning task with variables V. A factoring \mathcal{F} is a partitioning of V into non-empty subsets.

Heuristics

Recharging Robots

MAPF

Conclusion

References

 \rightarrow Each of the variable sub-sets if called a factor:

Pruning

- One center factor (possibly empty)
- A set of leaf factors (typically two or more)

Introduction

Factorings

Decoupled Search

Definition (Factoring). Let Π be a planning task with variables V. A factoring \mathcal{F} is a partitioning of V into non-empty subsets.

Heuristics

Recharging Robots

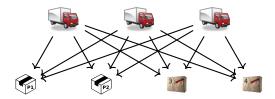
Conclusion

References

 \rightarrow Each of the variable sub-sets if called a factor:

Pruning

- One center factor (possibly empty)
- A set of leaf factors (typically two or more)



Introduction

Factorings

Decoupled Search

Definition (Factoring). Let Π be a planning task with variables V. A factoring \mathcal{F} is a partitioning of V into non-empty subsets.

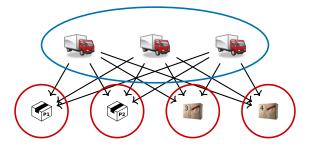
Heuristics

Recharging Robots

Conclusion

References

- \rightarrow Each of the variable sub-sets if called a factor:
 - One center factor (possibly empty)
 - A set of leaf factors (typically two or more)



Introduction

Factorings

Decoupled Search

Definition (Factoring). Let Π be a planning task with variables V. A factoring \mathcal{F} is a partitioning of V into non-empty subsets.

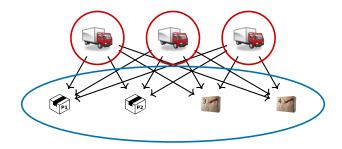
Heuristics

Recharging Robots

Conclusion

References

- \rightarrow Each of the variable sub-sets if called a factor:
 - One center factor (possibly empty)
 - A set of leaf factors (typically two or more)



Álvaro Torralba

Introduction

Factorings

0000000

Decoupled Search

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$.

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$.

The interaction graph is the quotient of $CG(\Pi)$ over \mathcal{F} .

00000000 0000000

Decoupled Search

Factorings

Introduction

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$. The interaction graph is the quotient of $CG(\Pi)$ over \mathcal{F} . **Definition** A factoring $\mathcal{F} = \{C\} \cup \mathcal{L}$ is a:

Heuristics

Recharging Robots

Conclusion

References

• fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $C \to L$,

Pruning

0000000 0000000

Decoupled Search

Factorings

Introduction

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$. The interaction graph is the quotient of $CG(\Pi)$ over \mathcal{F} . **Definition** A factoring $\mathcal{F} = \{C\} \cup \mathcal{L}$ is a:

Heuristics

Recharging Robots

Conclusion

References

• fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $C \to L$,

Pruning

• inverted-fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $L \to C$,

Decoupled Search

Factorings

0000000 0000

Introduction

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$. The interaction graph is the quotient of $CG(\Pi)$ over \mathcal{F} . **Definition** A factoring $\mathcal{F} = \{C\} \cup \mathcal{L}$ is a:

Heuristics

Recharging Robots

Conclusion

References

• fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $C \to L$,

Pruning

- inverted-fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $L \to C$,
- strict-star factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are incident to C.

Decoupled Search

Factorings

0000000

Definition (Interaction Graph) The interaction graph of Π given \mathcal{F} is the directed graph $IG_{\Pi}(\mathcal{F})$, with vertices \mathcal{F} , and an arc $F \to F'$ if $F \neq F'$, and there exist $v \in F$ and $v' \in F'$, s.t. $v \to v'$ is an arc in $CG(\Pi)$. The interaction graph is the quotient of $CG(\Pi)$ over \mathcal{F} . **Definition** A factoring $\mathcal{F} = \{C\} \cup \mathcal{L}$ is a:

Heuristics

Recharging Robots

MAPF

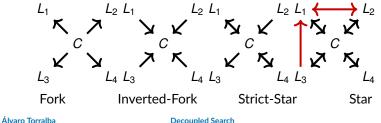
Conclusion

References

- fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $C \to L$,
- inverted-fork factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are of the form $L \to C$,
- strict-star factoring: all arcs in $IG_{\Pi}(\mathcal{F})$ are incident to C.

Examples:

Introduction



Dividing the Actions

Decoupled Search

Factorings

0000

Introduction

Given a Factoring $\mathcal{F} = \{C, L_1, ..., L_n\}$, the set of actions is divided into n + 1 subsets:

Pruning

• Internal (leaf-only) Actions A^L : affect only one leaf $L \in \mathcal{L}$, $a \in A^L \Leftrightarrow V[eff_a] \subseteq L \land V[pre_a] \cup V[eff_a] \subseteq C \cup L$.

Heuristics

Recharging Robots

Conclusion

References

- Global Actions A^C: those that are not leaf actions, e.g.:
 - have an effect on a center variable
 - have effects and/or preconditions on two leaves

Dividing the Actions

Decoupled Search

Factorings

00000000

Introduction

Given a Factoring $\mathcal{F} = \{C, L_1, ..., L_n\}$, the set of actions is divided into n + 1 subsets:

Pruning

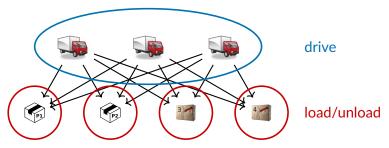
• Internal (leaf-only) Actions A^L : affect only one leaf $L \in \mathcal{L}$, $a \in A^L \Leftrightarrow V[eff_a] \subseteq L \land V[pre_a] \cup V[eff_a] \subseteq C \cup L$.

Heuristics

Recharging Robots

Conclusion

- Global Actions A^C: those that are not leaf actions, e.g.:
 - have an effect on a center variable
 - have effects and/or preconditions on two leaves



Dividing the Actions

Decoupled Search

Factorings

00000000

Introduction

Given a Factoring $\mathcal{F} = \{C, L_1, ..., L_n\}$, the set of actions is divided into n + 1 subsets:

Pruning

• Internal (leaf-only) Actions A^L : affect only one leaf $L \in \mathcal{L}$, $a \in A^L \Leftrightarrow V[eff_a] \subseteq L \land V[pre_a] \cup V[eff_a] \subseteq C \cup L$.

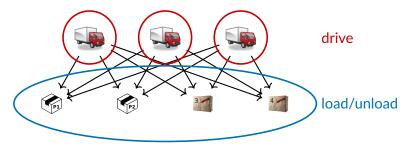
Heuristics

Recharging Robots

Conclusion

References

- Global Actions A^C: those that are not leaf actions, e.g.:
 - have an effect on a center variable
 - have effects and/or preconditions on two leaves



Álvaro Torralba

Applying a Factoring to a Planning Task

Decoupled Search

Given a Factoring $\mathcal{F} = \{C, L_1, \dots, L_n\}$, we define

- Center States $s^{C} \in S^{C}$: complete assignment to C
- Leaf States $s^{L} \in S^{L}$: complete assignment to an $L \in \mathcal{L}$

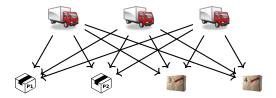
Heuristics

Recharging Robots

MAPF

Conclusion

References



Introduction

Factorings

Applying a Factoring to a Planning Task

Decoupled Search Pruning

Given a Factoring $\mathcal{F} = \{C, L_1, \dots, L_n\}$, we define

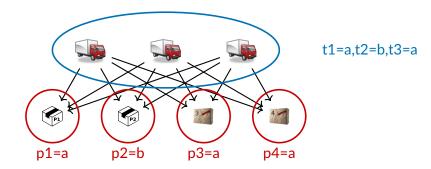
- Center States $s^{C} \in S^{C}$: complete assignment to C
- Leaf States $s^{L} \in S^{L}$: complete assignment to an $L \in \mathcal{L}$

Heuristics

Recharging Robots

Conclusion

References



Introduction

Factorings

Applying a Factoring to a Planning Task

Decoupled Search Pruning

Given a Factoring $\mathcal{F} = \{C, L_1, \dots, L_n\}$, we define

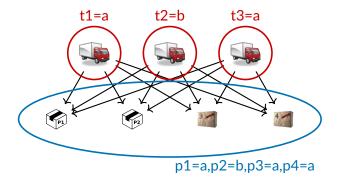
- Center States $s^{C} \in S^{C}$: complete assignment to C
- Leaf States $s^{L} \in S^{L}$: complete assignment to an $L \in \mathcal{L}$

Heuristics

Recharging Robots

Conclusion

References

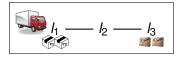


Introduction

Factorings

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

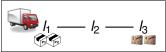


Center path:

-

Factorings Decoupled

Introduction



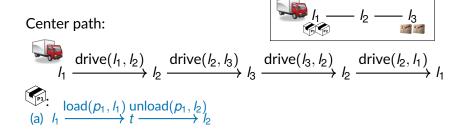
$$\underbrace{I_1}_{l_1} \xrightarrow{\text{drive}(l_1, l_2)}_{l_2} \downarrow_2 \xrightarrow{\text{drive}(l_2, l_3)}_{l_3} \downarrow_3 \xrightarrow{\text{drive}(l_3, l_2)}_{l_2} \downarrow_2 \xrightarrow{\text{drive}(l_2, l_1)}_{l_1} \downarrow_1$$

Heuristics

Recharging Robots

0000000000

Decoupled Search



Heuristics

Recharging Robots

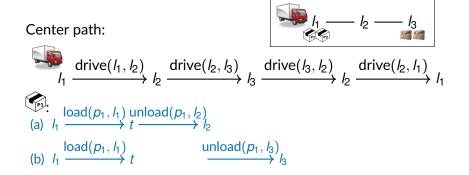
Conclusion

References

Introduction

Factorings

Decoupled Search



Heuristics

Recharging Robots

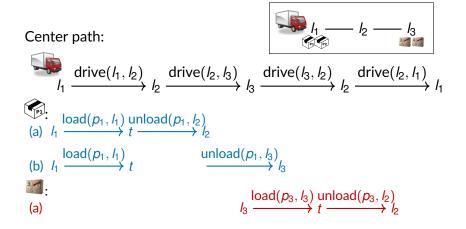
Conclusion

References

Introduction

Factorings

Decoupled Search



Heuristics

Recharging Robots

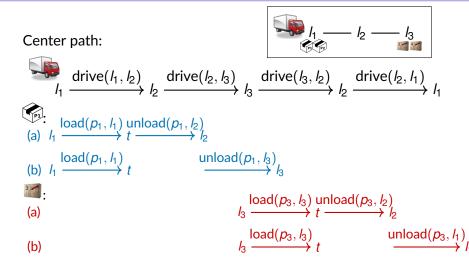
Conclusion

References

Introduction

Factorings

Decoupled Search



Heuristics

Recharging Robots

Conclusion

References

Introduction

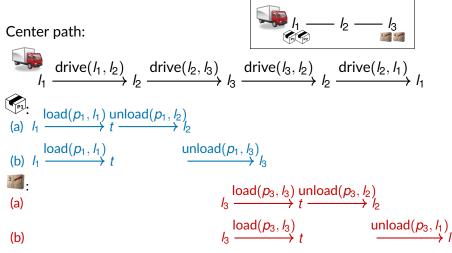
Factorings

Decoupled Search

Introduction

Factorings

00000000 0000



Heuristics

Recharging Robots

Conclusion

References

We can choose (a) or (b) for each of p_1 and p_3 independently \implies Maintain the compliant paths for each leaf separately. Alvaro Torralba Decoupled Search

Decoupled Search

Factorings Decoupled

$$\frac{\begin{array}{|c|c|c|c|c|c|c|c|} h & t & b_{2} & b_{3} & b_{4} \\ \hline p_{1} & 0 & 1 & 2 & 2 & \infty \\ \hline p_{1} & 0 & 1 & 2 & 2 & \infty \\ \hline p_{2} & 0 & 1 & \infty & 2 & 2 \\ \hline t & = & b_{3} \\ \hline \hline p_{3} & \infty & 1 & \infty & 2 & 0 \\ \hline p_{4} & \infty & 1 & \infty & 2 & 0 \\ \hline \end{array}$$

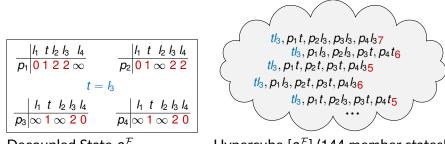
Decoupled State $s^{\mathcal{F}}$

Introduction

Heuristics

Recharging Robots

Decoupled Search



Heuristics

Recharging Robots

MAPF

Conclusion

References

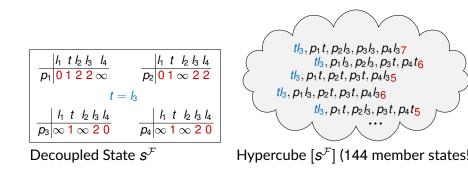
Decoupled State $s^{\mathcal{F}}$

Hypercube $[s^{\mathcal{F}}]$ (144 member states

Introduction

Factorings

Decoupled Search



Heuristics

Recharging Robots

MAPF

Conclusion

References

Every member state annotated with its price in $s^{\mathcal{F}}$.

Hypercube dimensions = Leaves; Axis values = Leaf States.

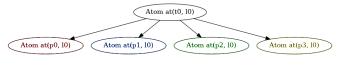
Álvaro Torralba

Introduction

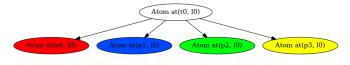
Factorings

00000000

Decoupled Search



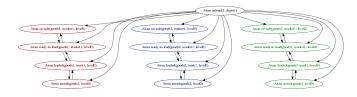
Logistics



Logistics

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

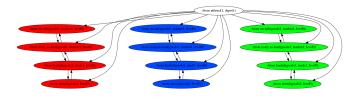
Examples



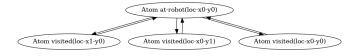
TPP

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

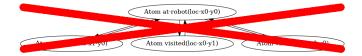


TPP



Visit-All

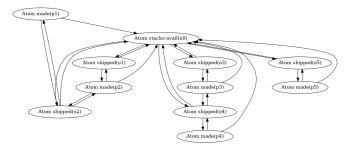
Introduction Factorings Decoupled Search Pruning October Octob



Visit-All

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

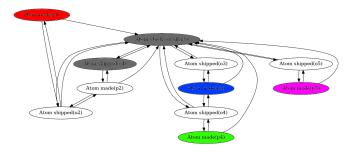
Examples



Openstacks

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples



Openstacks

Decoupled Search

000000

• Center variables get their value from the explicit state

Heuristics

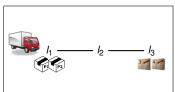
Recharging Robots

MAPF

Pruning

Example:

Introduction



Explicit initial state

$$\frac{\begin{vmatrix} l_1 & t & l_2 & l_3 \\ p_1 & \infty & \infty & \infty & p_2 \\ \hline l_1 & t & l_2 & l_3 \\ \hline l_1 & t & l_2 & l_3 \\ \hline l_1 & t & l_2 & l_3 \\ \hline p_3 & \infty & \infty & \infty & p_4 \\ \hline \end{pmatrix} \xrightarrow{l_1 & t & l_2 & l_3 \\ \hline p_3 & \infty & \infty & \infty & p_4 \\ \hline \\$$

Decoupled initial state

Factorings

• Center variables get their value from the explicit state

Pruning

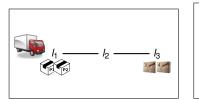
• Set price of 0 for the leaf state that holds in the initial state

Heuristics

Recharging Robots

Example:

Introduction



Decoupled Search

000000

Explicit initial state

$$\frac{\begin{vmatrix} l_1 & t & l_2 & l_3 \\ \hline p_1 & 0 & \infty & \infty \\ t & = l_1 \\ \hline l_1 & t & l_2 & l_3 \\ \hline p_3 & \infty & \infty & 0 \\ \hline p_4 & \infty & \infty & 0 \\ \hline
\end{vmatrix}
\frac{\begin{vmatrix} l_1 & t & l_2 & l_3 \\ \hline p_4 & \infty & \infty & 0 \\ \hline p_4 & \infty & \infty & 0 \\ \hline p_4 & \infty & \infty & 0 \\ \hline p_4 & 0 & 0 \\ \hline$$

Decoupled initial state

MAPF

Conclusion

Decoupled Search

000000

Factorings

Introduction

• Center variables get their value from the explicit state

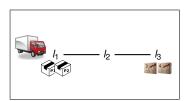
Pruning

• Set price of 0 for the leaf state that holds in the initial state

Heuristics

Recharging Robots

• Saturate the leaves: reachability analysis (Dijkstra) on each leaf using leaf-only actions whose center preconditions hold **Example:**



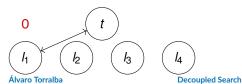
 $\frac{\begin{vmatrix} l_1 & t_1 l_2 & l_3 \\ p_1 & 0 & \infty & \infty \\ t & = l_1 \\ \hline l_1 & t_1 l_2 & l_3 \\ p_3 & \infty & \infty & 0 \\ \hline p_2 & 0 & \infty & \infty \\ p_2 & 0 & \infty & \infty \\ p_4 & 0 & \infty & \infty \\ p_4 & \infty & \infty & 0 \\ \hline
\end{cases}$

Explicit initial state

Decoupled initial state

MAPF

Conclusion



Decoupled Search

000000

Factorings

Introduction

• Center variables get their value from the explicit state

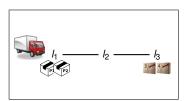
Pruning

• Set price of 0 for the leaf state that holds in the initial state

Heuristics

Recharging Robots

• Saturate the leaves: reachability analysis (Dijkstra) on each leaf using leaf-only actions whose center preconditions hold **Example:**



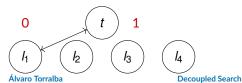
 $\frac{\begin{vmatrix} l_1 & t & l_2 & l_3 \\ \hline p_1 & 0 & 1 & \infty & \infty \\ t & = l_1 \\ \hline p_3 & \infty & \infty & 0 \\ \hline p_2 & 0 & 1 & \infty & \infty \\ \hline p_1 & 0 & 1 & 0 & 0 \\ \hline p_2 & 0 & 1 & 0 & \infty \\ \hline p_2 & 0 & 1 & 0 & \infty \\ \hline p_1 & 0 & 0 & 0 \\ \hline p_2 & 0 & 1 & 0 & \infty \\ \hline p_2 & 0 & 1 & 0 & 0 \\ \hline p_1 & 0$

Explicit initial state

Decoupled initial state

MAPF

Conclusion



• States: decoupled states (saturated w.r.t. reachable leaf states),

- States: decoupled states (saturated w.r.t. reachable leaf states),
- Transitions: induced only by center actions, saturate successor,

- States: decoupled states (saturated w.r.t. reachable leaf states),
- Transitions: induced only by center actions, saturate successor,
- Initial state: saturated explicit initial state,

- States: decoupled states (saturated w.r.t. reachable leaf states),
- Transitions: induced only by center actions, saturate successor,
- Initial state: saturated explicit initial state,
- Goal states: all goals are **reached** in decoupled state (goal member state).

- States: decoupled states (saturated w.r.t. reachable leaf states),
- Transitions: induced only by center actions, saturate successor,
- Initial state: saturated explicit initial state,
- Goal states: all goals are **reached** in decoupled state (goal member state).
- \rightarrow Run in principle any (heuristic) search algorithm on this TS.

- States: decoupled states (saturated w.r.t. reachable leaf states),
- Transitions: induced only by center actions, saturate successor,
- Initial state: saturated explicit initial state,
- Goal states: all goals are **reached** in decoupled state (goal member state).

 \rightarrow Run – in principle – any (heuristic) search algorithm on this TS.

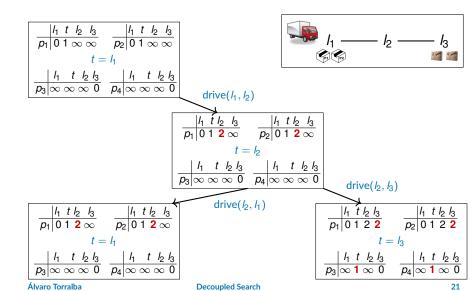
(Optimal planning: minor modifications required)

Decoupled Search – Fork (Truck-centered)

Decoupled Search

Introduction

000000000 00000000 **000000**



Heuristics

Recharging Robots

Solution Reconstruction

Decoupled Search

0000000

Factorings

Introduction

For every member state $s \in [s^{\mathcal{F}}]$ of a decoupled state $s^{\mathcal{F}}$, we can construct a global plan reaching *s* from the initial state *l*.

Heuristics

Recharging Robots

Decoupled Search

0000000

Factorings

For every member state $s \in [s^{\mathcal{F}}]$ of a decoupled state $s^{\mathcal{F}}$, we can construct a global plan reaching *s* from the initial state *l*.

Heuristics

Recharging Robots

MAPF

Conclusion

References

Approach:

Introduction

Extract global plan following parent pointers

Decoupled Search

Factorings

For every member state $s \in [s^{\mathcal{F}}]$ of a decoupled state $s^{\mathcal{F}}$, we can construct a global plan reaching *s* from the initial state *l*.

Heuristics

Recharging Robots

Conclusion

References

Approach:

- Extract global plan following parent pointers
- Por every step in the global plan, each leaf adds actions (by independence, actions of different leaves can be applied in any order)

Decoupled Search

0000000

For every member state $s \in [s^{\mathcal{F}}]$ of a decoupled state $s^{\mathcal{F}}$, we can construct a global plan reaching *s* from the initial state *l*.

Heuristics

Recharging Robots

Conclusion

References

Approach:

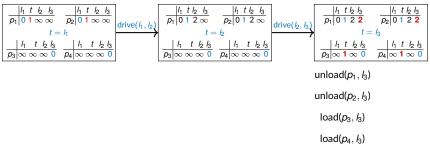
Factorings

Introduction

Extract global plan following parent pointers

Pruning

Por every step in the global plan, each leaf adds actions (by independence, actions of different leaves can be applied in any order)



Decoupled Search

0000000

For every member state $s \in [s^{\mathcal{F}}]$ of a decoupled state $s^{\mathcal{F}}$, we can construct a global plan reaching *s* from the initial state *l*.

Heuristics

Recharging Robots

MAPF

Conclusion

References

Approach:

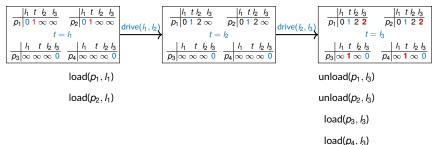
Factorings

Introduction

Extract global plan following parent pointers

Pruning

Por every step in the global plan, each leaf adds actions (by independence, actions of different leaves can be applied in any order)



Heuristics

Recharging Robots

MAPF

Conclusion

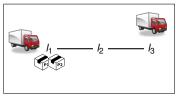
References

• Center variables get their value from the explicit state

Example:

Factorings

Introduction



Decoupled Search

0000000

Explicit initial state

$$\frac{|l_1 \ l_2 \ l_3}{|t_1| \infty \infty \infty} \frac{|l_1 \ l_2 \ l_3}{|t_2| \infty \infty \infty}$$

$$p_1 = l_1, p_2 = l_1$$

Decoupled initial state

Álvaro Torralba

Initial Decoupled State – Inv Fork (Package-centered)

Heuristics

Recharging Robots

Conclusion

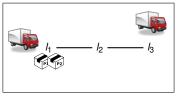
References

- Center variables get their value from the explicit state
- Set price of 0 for the leaf state that holds in the initial state

Example:

Introduction

Factorings



Decoupled Search

0000000

Explicit initial state

$$\frac{\begin{vmatrix} l_1 & l_2 & l_3 \\ \hline t_1 & 0 & \infty \\ p_1 &= l_1, p_2 &= l_1 \end{vmatrix}}{t_2 & \infty & 0}$$

Decoupled initial state

Initial Decoupled State – Inv Fork (Package-centered)

Heuristics

Recharging Robots

MAPF

Conclusion

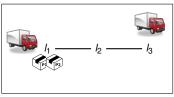
References

Pruning

- Center variables get their value from the explicit state
- Set price of 0 for the leaf state that holds in the initial state
- Saturate the leaves: reachability analysis (Dijkstra) on each leaf using leaf-only actions whose center preconditions hold

Example:

Introduction



Decoupled Search

0000000

Explicit initial state

$$\frac{\begin{vmatrix} l_1 & l_2 & l_3 \\ \hline t_1 & 0 & 1 \\ p_1 &= l_1, p_2 &= l_1 \end{vmatrix}}{p_1 = l_1, p_2 = l_1}$$

Decoupled initial state

Initial Decoupled State – Inv Fork (Package-centered)

Heuristics

Recharging Robots

MAPF

Conclusion

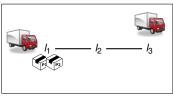
References

Pruning

- Center variables get their value from the explicit state
- Set price of 0 for the leaf state that holds in the initial state
- Saturate the leaves: reachability analysis (Dijkstra) on each leaf using leaf-only actions whose center preconditions hold

Example:

Introduction



Decoupled Search

0000000

Explicit initial state

$$\frac{\begin{vmatrix} l_1 & l_2 & l_3 \\ \hline t_1 & 0 & 1 & 2 \\ p_1 &= l_1, & p_2 &= l_1 \end{vmatrix}}{t_2 & 2 & 1 & 0$$

Decoupled initial state

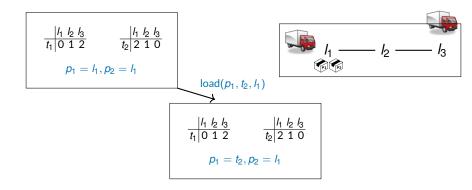
Heuristics

Recharging Robots

0000000000

Decoupled Search

00000000 000000



Álvaro Torralba

Introduction

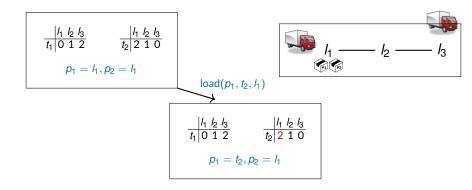
Decoupled Search

Heuristics

0000000000

Decoupled Search

00000000 000000



Álvaro Torralba

Introduction

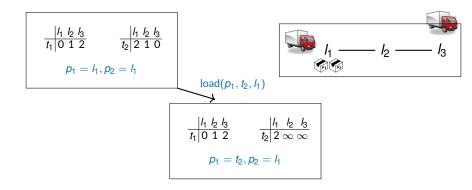
Decoupled Search

Heuristics

0000000000

Decoupled Search

00000000 000000



Álvaro Torralba

Introduction

Decoupled Search

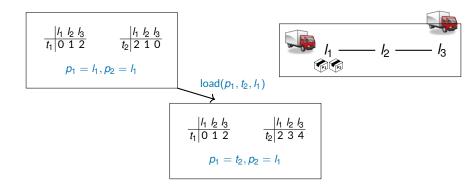
Heuristics

Recharging Robots

0000000000

Decoupled Search

00000000 000000



Álvaro Torralba

Introduction

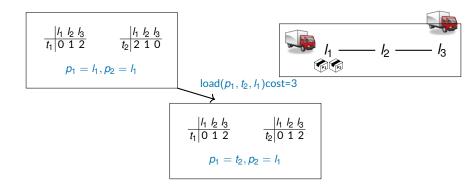
Decoupled Search

Heuristics

0000000000

Decoupled Search

00000000 000000



Álvaro Torralba

Introduction

Decoupled Search

Ensuring optimallity

Decoupled Search

0000000

Factorings

Introduction

All search algorithms can directly be applied in the decoupled search space

Heuristics

Recharging Robots

MAPF

Conclusion

References

- Complete
- Optimal

Minor technical detail: in optimal planning, stop when min_f open \geq current solution cost

Ensuring optimallity

Decoupled Search

000000

Factorings

Introduction

All search algorithms can directly be applied in the decoupled search space

Heuristics

Recharging Robots

MAPF

Conclusion

References

- Complete
- Optimal

Minor technical detail: in optimal planning, stop when min_f open \geq current solution cost

 \mathbf{A}^* cannot stopped when expanding a goal decoupled state

Ensuring optimallity

Decoupled Search

Pruning

Factorings

Introduction

All search algorithms can directly be applied in the decoupled search space

Heuristics

Recharging Robots

Conclusion

References

- Complete
- Optimal

Minor technical detail: in optimal planning, stop when min_f open \geq current solution cost

A* cannot stopped when expanding a goal decoupled state

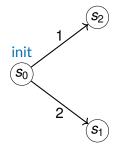
Reason: decoupled states contain multiple states, so the state with minimum f and the goal state could be two different ones

Introduction Factorings Decoupled Search Pruning

g Heuristics

Recharging Robots

APF Conclusion References

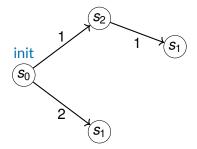


Introduction Factorings Decoupled Search

Pruning ●○ Heuristics Recharging Robots

MAPF Conclusion

usion References

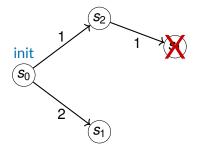


Introduction Factorings Decoupled Search

Pruning

Heuristics Recharging Robots

MAPF Conclusion References

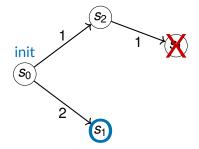


Introduction Factorings Decoupled Search

Pruning Heuristics

Recharging Robots

MAPF Conclusion References



actorings Decoupled Search

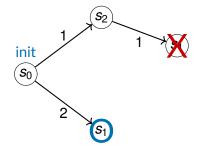
Introduction

Pruning ●○

Heuristics Recharging Robots

MAPF Conclusion

clusion References

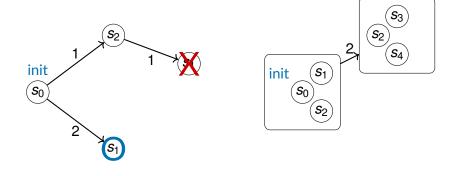


How to Eliminate Previously Seen States?

Pruning

•0

Decoupled Search



Heuristics

Recharging Robots

Introduction

How to Eliminate Previously Seen States?

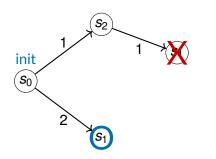
Pruning

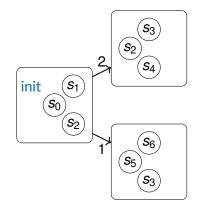
•0

Heuristics

Recharging Robots

Decoupled Search





Introduction

Decoupled Search

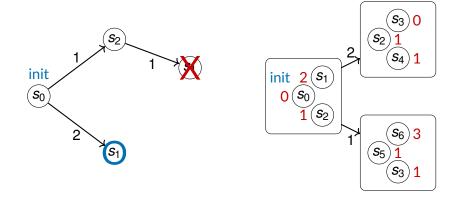
Factorings Decoupled Search Pruning + • • • • •

Heuristics Recharging Robots

ts MAPF Conclusion

ision References

How to Eliminate Previously Seen States?

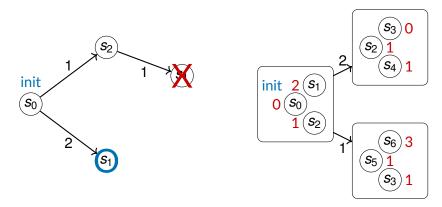


How to Eliminate Previously Seen States?

Pruning

-0

Decoupled Search



Heuristics

Recharging Robots

MAPF

How powerful is exact duplicate checking for decoupled search?

Álvaro Torralba

Introduction

Factorings

Decoupled Search

Pruning

Decoupled Search

Definition Dominance Pruning. A decoupled state $s^{\mathcal{F}}$ dominates another state $t^{\mathcal{F}}$, denoted $t^{\mathcal{F}} \leq s^{\mathcal{F}}$, if the center state is the same, i.e. $s^{\mathcal{C}}(s^{\mathcal{F}}) = s^{\mathcal{C}}(t^{\mathcal{F}})$, and for all leaf states s^{L} : $prices(s^{\mathcal{F}})[s^{L}] \leq prices(t^{\mathcal{F}})[s^{L}]$.

Heuristics

Recharging Robots

Conclusion

References

Introduction

Factorings

Pruning

Decoupled Search

Definition Dominance Pruning. A decoupled state $s^{\mathcal{F}}$ dominates another state $t^{\mathcal{F}}$, denoted $t^{\mathcal{F}} \leq s^{\mathcal{F}}$, if the center state is the same, i.e. $s^{\mathcal{C}}(s^{\mathcal{F}}) = s^{\mathcal{C}}(t^{\mathcal{F}})$, and for all leaf states s^{L} : $prices(s^{\mathcal{F}})[s^{L}] \leq prices(t^{\mathcal{F}})[s^{L}]$.

Heuristics

Recharging Robots

Conclusion

References

- Opminance pruning can be exponentially stronger than exact duplicate checking.
- ② Optimality is preserved when comparing new state $t^{\mathcal{F}}$ only to other states with lower *g*-value (A^{*}).

Pruning

Decoupled Search

Definition Dominance Pruning. A decoupled state $s^{\mathcal{F}}$ dominates another state $t^{\mathcal{F}}$, denoted $t^{\mathcal{F}} \leq s^{\mathcal{F}}$, if the center state is the same, i.e. $s^{\mathcal{C}}(s^{\mathcal{F}}) = s^{\mathcal{C}}(t^{\mathcal{F}})$, and for all leaf states s^{L} : $prices(s^{\mathcal{F}})[s^{L}] \leq prices(t^{\mathcal{F}})[s^{L}]$.

Heuristics

Recharging Robots

Conclusion

References

- Opminance pruning can be exponentially stronger than exact duplicate checking.
- ② Optimality is preserved when comparing new state $t^{\mathcal{F}}$ only to other states with lower *g*-value (A^{*}).

Practical Issues?

Pruning

Decoupled Search

Definition Dominance Pruning. A decoupled state $s^{\mathcal{F}}$ dominates another state $t^{\mathcal{F}}$, denoted $t^{\mathcal{F}} \leq s^{\mathcal{F}}$, if the center state is the same, i.e. $s^{\mathcal{C}}(s^{\mathcal{F}}) = s^{\mathcal{C}}(t^{\mathcal{F}})$, and for all leaf states s^{L} : $prices(s^{\mathcal{F}})[s^{L}] \leq prices(t^{\mathcal{F}})[s^{L}]$.

Heuristics

Recharging Robots

ΜΔΡΡ

Conclusion

References

- Opminance pruning can be exponentially stronger than exact duplicate checking.
- ② Optimality is preserved when comparing new state $t^{\mathcal{F}}$ only to other states with lower *g*-value (A^{*}).

Practical Issues?

Exact duplicate checking is extremely efficient \rightarrow hashing.

Pruning

Decoupled Search

Definition Dominance Pruning. A decoupled state $s^{\mathcal{F}}$ dominates another state $t^{\mathcal{F}}$, denoted $t^{\mathcal{F}} \leq s^{\mathcal{F}}$, if the center state is the same, i.e. $s^{\mathcal{C}}(s^{\mathcal{F}}) = s^{\mathcal{C}}(t^{\mathcal{F}})$, and for all leaf states s^{L} : $prices(s^{\mathcal{F}})[s^{L}] \leq prices(t^{\mathcal{F}})[s^{L}]$.

Heuristics

Recharging Robots

Conclusion

References

- Opminance pruning can be exponentially stronger than exact duplicate checking.
- ② Optimality is preserved when comparing new state $t^{\mathcal{F}}$ only to other states with lower *g*-value (A^{*}).

Practical Issues?

Introduction

Exact duplicate checking is extremely efficient \rightarrow hashing.

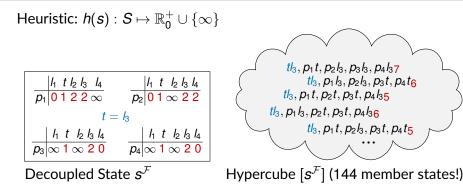
 \rightarrow For dominance pruning, we need to compare a new decoupled state to all previously seen states with the same center state.

Heuristics for Decoupled States

Heuristic: $h(s) : S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$

Heuristics for Decoupled States

Decoupled Search



Heuristics

0000

Recharging Robots

MAPF

Conclusion

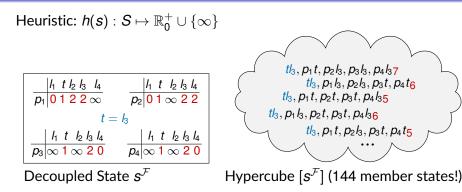
References

Introduction

Factorings

Heuristics for Decoupled States

Decoupled Search



Heuristics

0000

Recharging Robots

MAPF

Conclusion

References

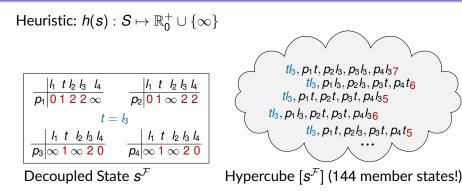
Definition (Decoupled Heuristic). $h : S^{\mathcal{F}} \mapsto \mathbb{R} \cup \{\infty\}$ Star-perfect heuristic: $h_{\mathcal{F}}^*(s^{\mathcal{F}}) := \min_{s \in [s^{\mathcal{F}}]} prices(s^{\mathcal{F}}, s) + h^*(s)$ $h_{\mathcal{F}}$ is star-admissible if $h_{\mathcal{F}} \leq h_{\mathcal{F}}^*$

Introduction

Factorings

Heuristics for Decoupled States

Decoupled Search



Heuristics

0000

Recharging Robots

MAPF

Conclusion

References

Definition (Decoupled Heuristic). $h : S^{\mathcal{F}} \mapsto \mathbb{R} \cup \{\infty\}$ Star-perfect heuristic: $h_{\mathcal{F}}^*(s^{\mathcal{F}}) := \min_{s \in [s^{\mathcal{F}}]} prices(s^{\mathcal{F}}, s) + h^*(s)$ $h_{\mathcal{F}}$ is star-admissible if $h_{\mathcal{F}} \leq h_{\mathcal{F}}^*$

 \rightarrow Pricing function is taken into account.

Álvaro Torralba

Introduction

Factorings

Decoupled Search

Planning Heuristics I: Naive Method

Decoupled Search

Given any planning heuristic $h_{\Pi}(s) : S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$, How to use $h_{\Pi}(s)$ to compute $h_{\mathcal{F}}(s^{\mathcal{F}})$?

Heuristics

00000

Recharging Robots

Conclusion

References

Planning Heuristics I: Naive Method

Decoupled Search

Given any planning heuristic $h_{\Pi}(s) : S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$, How to use $h_{\Pi}(s)$ to compute $h_{\mathcal{F}}(s^{\mathcal{F}})$?

$$\min_{m{s}\in[m{s}^{\mathcal{F}}]}m{prices}(m{s}^{\mathcal{F}},m{s})+h(m{s})$$

Heuristics

00000

Recharging Robots

Conclusion

References

Planning Heuristics I: Naive Method

Decoupled Search

Given any planning heuristic $h_{\Pi}(s) : S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$, How to use $h_{\Pi}(s)$ to compute $h_{\mathcal{F}}(s^{\mathcal{F}})$?

$$\min_{s \in [s^{\mathcal{F}}]} prices(s^{\mathcal{F}}, s) + h(s)$$

Heuristics

00000

Recharging Robots

MAPF

Conclusion

References

Pros:

Introduction

• As informative as it gets (makes the most out of h)

Planning Heuristics I: Naive Method

Decoupled Search

Given any planning heuristic $h_{\Pi}(s) : S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$, How to use $h_{\Pi}(s)$ to compute $h_{\mathcal{F}}(s^{\mathcal{F}})$?

$$\min_{s \in [s^{\mathcal{F}}]} prices(s^{\mathcal{F}}, s) + h(s)$$

Heuristics

00000

Recharging Robots

Conclusion

References

Pros:

Introduction

Factorings

• As informative as it gets (makes the most out of h)

Cons:

 Decompresses the decoupled state, losing all the gains that decoupled search has Planning Heuristics I: Naive Method

Decoupled Search

Given any planning heuristic $h_{\Pi}(s) : S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$, How to use $h_{\Pi}(s)$ to compute $h_{\mathcal{F}}(s^{\mathcal{F}})$?

$$\min_{s \in [s^{\mathcal{F}}]} prices(s^{\mathcal{F}}, s) + h(s)$$

Heuristics

00000

Recharging Robots

Conclusion

References

Pros:

Introduction

Factorings

• As informative as it gets (makes the most out of h)

Cons:

- Decompresses the decoupled state, losing all the gains that decoupled search has
- \rightarrow So, we need better ways to compute or approximate this

Buy-Leaves compilation: compute $h_{\Pi'}(s)$ on a different planning task Π' , which is equal to Π but with additional actions:

Heuristics

00000

Recharging Robots

Conclusion

References

 buy-p1-l1: eff: p₁ = l₁, cost=0, 	$\frac{l_1 t l_2 l_3 l_4}{p_1 0 1 2 2 \infty} \qquad \frac{l_1 t l_2 l_3 l_4}{p_2 0 1 \infty 2 2}$
buy-p1-t: eff: p ₁ = t, cost=1,	$p_1 0122\infty$ $p_2 01\infty22$ t=b
• buy-p1-l2: eff: <i>p</i> ₁ = <i>l</i> ₂ , cost=2,	$\frac{l_{1} + l_{2} l_{3} l_{4}}{p_{3} \infty 1 \infty 2 0} = \frac{l_{1} + l_{2} l_{3} l_{4}}{p_{4} \infty 1 \infty 2 0}$
•	$p_3 \propto 1 \propto 2 0 \qquad p_4 \propto 1 \propto 2 0$

plus additional machinery so that exactly one leaf state is bought per leaf

Introduction

Factorings

Decoupled Search

Buy-Leaves compilation: compute $h_{\Pi'}(s)$ on a different planning task Π' , which is equal to Π but with additional actions:

Heuristics

00000

Recharging Robots

Conclusion

References

• buy-p1-l1: eff: p ₁ = l ₁ , cost=0,	$\frac{ l_1 t l_2 l_3 l_4}{p_1 0 1 2 2 \infty} \qquad \frac{ l_1 t l_2 l_3 l_4}{p_2 0 1 \infty 2 2}$
• buy-p1-t: eff: p ₁ = t, cost=1,	$p_1 0122\infty$ $p_2 01\infty22$ t=h
• buy-p1-l2: eff: <i>p</i> ₁ = <i>l</i> ₂ , cost=2,	1/1 t 1/2 1/3 1/4 1/1 t 1/2 1/3 1/4
•	$p_3 \propto 1 \propto 2 0 \qquad p_4 \propto 1 \propto 2 0$

plus additional machinery so that exactly one leaf state is bought per leaf

Pros:

Introduction

Factorings

- Limited overhead (the new task is not much bigger)
- Can use any admissible heuristic (e.g., LM-cut)

Decoupled Search

Buy-Leaves compilation: compute $h_{\Pi'}(s)$ on a different planning task Π' , which is equal to Π but with additional actions:

Heuristics

00000

Recharging Robots

Conclusion

References

 buy-p1-l1: eff: p₁ = l₁, cost=0, 	$\frac{ l_1 t l_2 l_3 l_4}{p_1 0 1 2 2 \infty} \qquad \frac{ l_1 t l_2 l_3 l_4}{p_2 0 1 \infty 2 2}$
• buy-p1-t: eff: p ₁ = t, cost=1,	$p_1 0122\infty$ $p_2 01\infty22$ t=h
• buy-p1-l2: eff: <i>p</i> ₁ = <i>l</i> ₂ , cost=2,	h t k k k k k k k k k k k k k k k k k k
•	$\overline{p_3 \otimes 1 \otimes 2 0} \qquad \overline{p_4 \otimes 1 \otimes 2 0}$

plus additional machinery so that exactly one leaf state is bought per leaf

Pros:

Introduction

Factorings

- Limited overhead (the new task is not much bigger)
- Can use any admissible heuristic (e.g., LM-cut)

Cons:

• Buy-actions change per state, so *h* cannot be precomputed (huge overhead for abstraction heuristics, PDBs, etc.)

Decoupled Search

Buy-Leaves compilation: compute $h_{\Pi'}(s)$ on a different planning task Π' , which is equal to Π but with additional actions:

Heuristics

00000

Recharging Robots

Conclusion

References

 buy-p1-l1: eff: p₁ = l₁, cost=0, 	$\frac{ l_1 t l_2 l_3 l_4}{p_1 0 1 2 2 \infty} \qquad \frac{ l_1 t l_2 l_3 l_4}{p_2 0 1 \infty 2 2}$
• buy-p1-t: eff: p ₁ = t, cost=1,	$p_1 0122\infty$ $p_2 01\infty22$ t=h
• buy-p1-l2: eff: <i>p</i> ₁ = <i>l</i> ₂ , cost=2,	h t k k k k k k k k k k k k k k k k k k
•	$\overline{p_3 \otimes 1 \otimes 2 0} \qquad \overline{p_4 \otimes 1 \otimes 2 0}$

plus additional machinery so that exactly one leaf state is bought per leaf

Pros:

Introduction

Factorings

- Limited overhead (the new task is not much bigger)
- Can use any admissible heuristic (e.g., LM-cut)

Cons:

- Buy-actions change per state, so *h* cannot be precomputed (huge overhead for abstraction heuristics, PDBs, etc.)
- Heuristic may approximate buying leaf states

Álvaro Torralba

Decoupled Search

Given a precomputed abstraction heuristic (PDB, ADD, M&S) can we compute $h_{\mathcal{F}}(s^{\mathcal{F}})$ efficiently?

Heuristics

00000

Recharging Robots

Conclusion

References

Single PDBs: yes

Introduction

Decoupled Search

Given a precomputed abstraction heuristic (PDB, ADD, M&S) can we compute $h_{\mathcal{F}}(s^{\mathcal{F}})$ efficiently?

Heuristics

00000

Recharging Robots

Conclusion

References

- Single PDBs: yes
- ADDs/M&S: not in general (NP-complete), but yes for compliant data-structures (Gnad *et al.* (2023))

 \rightarrow align data-structure with the factoring has no cost

Introduction

Factorings

Decoupled Search

Given a precomputed abstraction heuristic (PDB, ADD, M&S) can we compute $h_{\mathcal{F}}(s^{\mathcal{F}})$ efficiently?

Heuristics

00000

Recharging Robots

Conclusion

References

- Single PDBs: yes
- ADDs/M&S: not in general (NP-complete), but yes for compliant data-structures (Gnad *et al.* (2023))
 - \rightarrow align data-structure with the factoring has no cost
- Multiple PDBs (max or sum): not in general (NP-complete)
 → For PDBs that only affect a single leaf, we can approximate their sum (Sievers *et al.* (2022))

Introduction

Factorings

Decoupled Search

Given a precomputed abstraction heuristic (PDB, ADD, M&S) can we compute $h_{\mathcal{F}}(s^{\mathcal{F}})$ efficiently?

Heuristics

00000

Recharging Robots

Conclusion

References

- Single PDBs: yes
- ADDs/M&S: not in general (NP-complete), but yes for compliant data-structures (Gnad *et al.* (2023))
 - \rightarrow align data-structure with the factoring has no cost
- Multiple PDBs (max or sum): not in general (NP-complete)
 → For PDBs that only affect a single leaf, we can approximate their sum (Sievers *et al.* (2022))

Open Question: How to approximate additive abstractions in more general ways?

Álvaro Torralba

Introduction

Introduction Factorings Decoupled Search

Pruning 00

Heuristics Recharg

Recharging Robots MAPF

Conclusion References

Pruning Methods

- Symmetry breaking (Gnad et al. (2017))
 - \rightarrow Permute prices and/or center state
- Dominance pruning with dominance analysis (for forks) (Torralba *et al.* (2016))
 - \rightarrow Propagate prices from better to worse leaf states
- Partial order reduction (Gnad et al. (2019))
 - \rightarrow over global actions

Decoupled Search

MAPF Conclusion References

Recharging Robots

Factorings

Introduction

- Running Example from (Gnad et al. (2022))
- Submitted to the International Planning Competition
- IPC Organizers improved the domain (so, the version here is substantially different from the IPC version).

Decoupled Search – The Story so far..

 Beating LM-cut with hmax (Sometimes) – Fork-Decoupled State-Space Search

Heuristics

Recharging Robots

000000000

MAPF

Conclusion

References

G, Hoffmann, ICAPS'15.

Decoupled Search

Introduction

Decoupled Search – The Story so far..

Decoupled Search

 Beating LM-cut with hmax (Sometimes) – Fork-Decoupled State-Space Search
 G. Hoffmann, ICAPS'15.

Heuristics

Recharging Robots

Conclusion

References

• From Fork Decoupling to Star-Topology Decoupling *G*, Hoffmann, Domshlak, SOCS'15.

$$\begin{array}{ccc} L_1 & L_2 \\ & \stackrel{\scriptstyle \ltimes}{} & \stackrel{\scriptstyle \swarrow}{} \\ & \stackrel{\scriptstyle \swarrow}{} \\ L_3 \leftarrow - \rightarrow L_4 \end{array}$$

Introduction

Factorings

Decoupled Search – The Story so far..

Pruning

 Beating LM-cut with hmax (Sometimes) – Fork-Decoupled State-Space Search

Heuristics

Recharging Robots

Conclusion

References

G. Hoffmann, ICAPS'15.

Decoupled Search

From Fork Decoupling to Star-Topology Decoupling G, Hoffmann, Domshlak, SOCS'15.

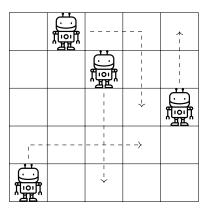
How to obtain Star Factorings? IJCAI'17, ICAPS'19.

Introduction

Factorings

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

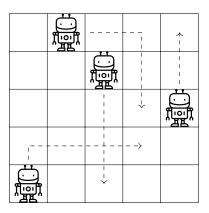
Collaborative Robots - Where is the center?



Robots (R_i) move freely in world, no collisions, battery usage (B_i).

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots - Where is the center?



Robots (R_i) move freely in world, no collisions, battery usage (B_i). Actions: $move(R_i, B_i, I_x, I_y)$: moving consumes battery; robots can $charge(R_i, B_i, R_j, B_j)$ each other.

Álvaro Torralba

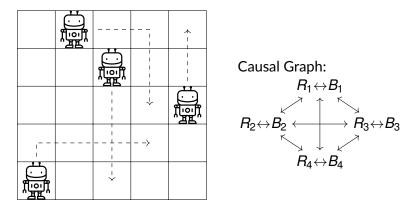
Decoupled Search Heuristics **Recharging Robots**

MAPF

Conclusion

References

Collaborative Robots – Where is the center?



Robots (R_i) move freely in world, no collisions, battery usage (B_i) . Actions: $move(R_i, B_i, I_x, I_y)$: moving consumes battery; robots can $charge(R_i, B_i, R_i, B_i)$ each other.

Álvaro Torralba

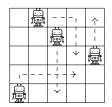
Introduction

Factorings

Factoring in the Recharging Robots

Decoupled Search

$$move(R_i, B_i, I_x, I_y): \\ pre = \{R_i = I_x, B_i = b\}, \\ eff = \{R_i = I_y, B_i = b - 1\}$$

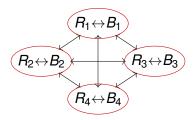


References

$$harge(R_i, B_i, R_j, B_j):$$

$$pre = \{R_i = R_j = I_x, B_i = b, B_j = c\},$$

$$eff = \{B_i = b - 1, B_j = c + 1\}$$



Heuristics

Recharging Robots

0000000000

Álvaro Torralba

Introduction

С

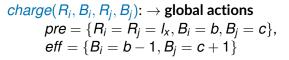
Factoring in the Recharging Robots

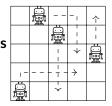
Decoupled Search

$$move(R_i, B_i, I_x, I_y): \rightarrow \text{internal(leaf-only) actions}$$

$$pre = \{R_i = I_x, B_i = b\},$$

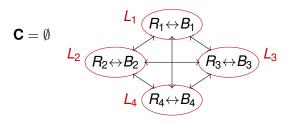
$$eff = \{R_i = I_y, B_i = b - 1\}$$





Conclusion

References



Álvaro Torralba

Introduction

Factorings

Decoupled Search

Heuristics

Recharging Robots

0000000000

MAPF

Decoupled Search

• Formulate factoring process as integer linear program (ILP).

Heuristics

Recharging Robots

0000000000

MAPF

• Any partition of the state variables is a valid factoring.

Introduction

References

Decoupled Search

• Formulate factoring process as integer linear program (ILP).

Heuristics

Recharging Robots

MAPF

Conclusion

References

- Any partition of the state variables is a valid factoring.
- Optimize important properties of the factoring:

Introduction

Factorings

Decoupled Search

• Formulate factoring process as integer linear program (ILP).

Heuristics

Recharging Robots

Conclusion

References

- Any partition of the state variables is a valid factoring.
- Optimize important properties of the factoring:

Pruning

- Number of leaves,
- Mobility: number of leaf-only actions (sum over leaves),
- Balanced mobility: # leaf-only actions (product over leaves),
- Flexibility: ratio of leaf-only actions (sum over facts).

Introduction

Factorings

Decoupled Search

• Formulate factoring process as integer linear program (ILP).

Heuristics

Recharging Robots

Conclusion

References

- Any partition of the state variables is a valid factoring.
- Optimize important properties of the factoring:

Pruning

- Number of leaves,
- Mobility: number of leaf-only actions (sum over leaves),
- Balanced mobility: # leaf-only actions (product over leaves),
- Flexibility: ratio of leaf-only actions (sum over facts).
- Require minimum flexibility $\{0\%, 5\%, \dots 100\%\}$.

Introduction

Decoupled Search

• Formulate factoring process as integer linear program (ILP).

Heuristics

Recharging Robots

Conclusion

References

- Any partition of the state variables is a valid factoring.
- Optimize important properties of the factoring:
 - Number of leaves,
 - Mobility: number of leaf-only actions (sum over leaves),
 - Balanced mobility: # leaf-only actions (product over leaves),
 - Flexibility: ratio of leaf-only actions (sum over facts).
- Require minimum flexibility $\{0\%, 5\%, \dots 100\%\}$.
- Leaf candidates: action effect schemas vars(eff a) and SCCs of CG.

Introduction

Introduction Factorings Decoupled Search Pruning October Octob

Factoring Properties

What are important properties of a factoring that influence search-space reduction?

Introduction Factorings Decoupled Search Pruning October Octob

Factoring Properties

What are important properties of a factoring that influence search-space reduction?

• Number of leaf factors:

Factoring Properties

Introduction

What are important properties of a factoring that influence search-space reduction?

• Number of leaf factors:

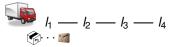
Decoupled Search

 2^{N} different states resulting from only loading all packages at $l_{1}!$

Heuristics

Recharging Robots

00000000000



MAPF

Conclusion

References

Factoring Properties

Factorings

Introduction

What are important properties of a factoring that influence search-space reduction?

• Number of leaf factors:

Decoupled Search

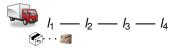
 2^{N} different states resulting from only loading all packages at l_{1} !

Heuristics

Recharging Robots

00000000000

 \rightarrow This is a single decoupled state.



MAPF

Conclusion

References

The reduction is exponential in the number of leaves. (Gnad and Hoffmann (2018))

Factoring Properties

Factorings

Introduction

What are important properties of a factoring that influence search-space reduction?

Pruning

• Number of leaf factors:

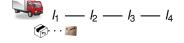
Decoupled Search

 2^N different states resulting from only loading all packages at l_1 !

Heuristics

Recharging Robots

 \rightarrow This is a single decoupled state.



Conclusion

References

The reduction is exponential in the number of leaves. (Gnad and Hoffmann (2018))

• Leaf mobility:

A leaf factor $L \in \mathcal{L}$ is *mobile*, if it has only-leaf actions \rightarrow Leaves that are not mobile do not contribute to the search-space reduction

Álvaro Torralba

Maximizing the Number of Leaves – Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π , it is **NP**-hard to decide if there exists a factoring with N leaves.

Maximizing the Number of Leaves - Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π , it is **NP**-hard to decide if there exists a factoring with N leaves.

Proof sketch. Reduction from maximum independent set (MIS) Compute a MIS of $CG(\Pi)$. By construction, no connection between variables in the maximum independent set.

 \rightarrow Each of these variables forms a leaf factor, the rest is the center.

Maximizing the Number of Leaves - Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π , it is **NP**-hard to decide if there exists a factoring with N leaves.

Proof sketch. Reduction from maximum independent set (MIS) Compute a MIS of $CG(\Pi)$. By construction, no connection between variables in the maximum independent set.

 \rightarrow Each of these variables forms a leaf factor, the rest is the center.

Practical Approaches:

- $\bullet~$ Compute MIS of CG \rightarrow strict-star factorings,
- Analyze strongly-connected components in CG
 → (inverted-)fork factorings,
- Greedy selection of center variables based on CG connectivity \rightarrow strict-star factorings,
- Encode factoring as Integer Linear Program \rightarrow star factorings.

Enforce minimum Leaf Fact Flexibility

Decoupled Search

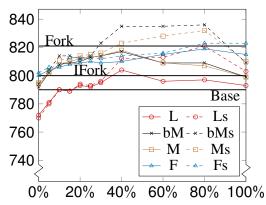
 $A^* + h^{LM-cut}$

Heuristics

Recharging Robots

00000000000

MAPF



Fork: fork factorings, IFork: inverted-forks, Base: explicit-state search.

Álvaro Torralba

Introduction

Factorings

Decoupled Search

References

Enforce minimum Leaf Fact Flexibility

Decoupled Search

 $GBFS + h^{FF} + PO$ 1,450 IFork 1,400 Fork Base 1,350 \rightarrow L - \circ Ls 1,300 1,250 20% 40% 60% 80% 100% 0%

Heuristics

Recharging Robots

00000000000

MAPF

Fork: fork factorings, IFork: inverted-forks, Base: explicit-state search.

Álvaro Torralba

Introduction

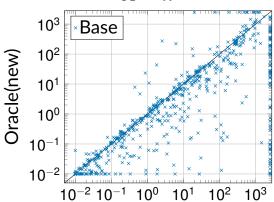
Factorings

Decoupled Search

References

Runtime Scatterplot – LM-cut

Decoupled Search



Heuristics

 $A^* + h^{LM-cut}$

Recharging Robots

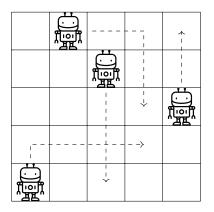
Introduction

Decoupled Search

References

Collaborative Robots – Deja vu?

Decoupled Search



Heuristics

Recharging Robots

MAPF

00000

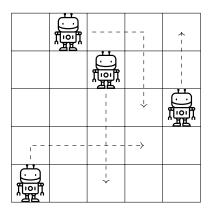
Robots (R_i) move freely in world, no collisions, battery usage (B_i).

Introduction

References

Collaborative Robots – Deja vu?

Decoupled Search



Heuristics

Recharging Robots

MAPF

00000

Conclusion

References

Robots (R_i) move freely in world, no collisions, battery usage (B_i). Actions: $move(R_i, B_i, I_x, I_y)$: moving consumes battery; robots can $charge(R_i, B_i, R_j, B_j)$ each other.

Álvaro Torralba

Introduction

Decoupled Search

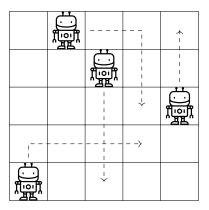
Introduction Factorings Decoupled Search

ning Heuristics

Recharging Robots

MAPF Conclusion References

Multi-Agent Pathfinding



Actions: $move(R_i, I_x, I_y)$

- Constraint: Two agents cannot be in the same cell at the same time
- Metric: Minimize Makespan

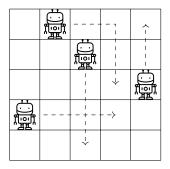
Álvaro Torralba

Decoupled Search

Conflict-Based Search(Sharon et al. (2015))

Decoupled Search

- Each agent plans their own shortest path
- If there is no conflict, done



Introduction

Heuristics

Recharging Robots

MAPF

000000

References

Conflict-Based Search(Sharon et al. (2015))

Decoupled Search

- Each agent plans their own shortest path
- If there is no conflict, done
- If there is a conflict, branch adding constraints that resolve it

Heuristics

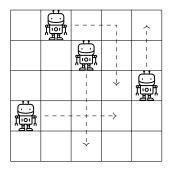
Recharging Robots

MAPF

000000

Conclusion

References



R2 cannot be at (3, 2) at t = 2Ø R1 cannot be at (3, 2) at t = 2

Introduction

- Can decoupled search be applied to multi-agent pathfinding?
- What is the relation to Conflict-based Search (CBS)?

- Can decoupled search be applied to multi-agent pathfinding?
- What is the relation to Conflict-based Search (CBS)?

Challenge: Representing MAPF as a Planning Task is not Straightforward

- How to represent the constraint that two robots cannot be in the same cell at the same time?
- How to make sure that robots move simultaneously?

- Can decoupled search be applied to multi-agent pathfinding?
- What is the relation to Conflict-based Search (CBS)?

Challenge: Representing MAPF as a Planning Task is not Straightforward

- How to represent the constraint that two robots cannot be in the same cell at the same time?
- How to make sure that robots move simultaneously?

 \rightarrow Let's Ignore the Details

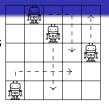
Let's Ignore the Details

Decoupled Search

Factorings

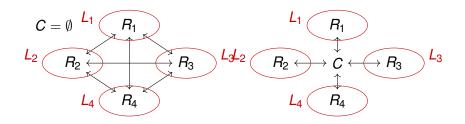
Introduction

 $move(R_i, B_i, I_x, I_y)$: \rightarrow internal(leaf-only) actions $book_space(R_i, I_y, t)$: \rightarrow global actions



Conclusion

References



Heuristics

Recharging Robots

MAPF

000000

Recharging Robots

MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning:	CBS for MAPF:
Leafs are conditionally indepen-	Agents are conditionally inde-
dent	pendent
Search over center actions	Search over conflict resolution
Handle conflicts eagerly	Handle conflicts lazily

Recharging Robots

MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning:	CBS for MAPF:
Leafs are conditionally indepen-	Agents are conditionally inde-
dent	pendent
Search over center actions	Search over conflict resolution
Handle conflicts eagerly	Handle conflicts lazily

- Typically more conflicts in planning
- Conflicts in planning are more complex to represent and resolve (e.g. the plans of the leaves may need to be interleaved in a specific way)
- Extensions of CBS handle conflicts more eagerly when needed

Recharging Robots

MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning:	CBS for MAPF:
Leafs are conditionally indepen-	Agents are conditionally inde-
dent	pendent
Search over center actions	Search over conflict resolution
Handle conflicts eagerly	Handle conflicts lazily

- Typically more conflicts in planning
- Conflicts in planning are more complex to represent and resolve (e.g. the plans of the leaves may need to be interleaved in a specific way)
- Extensions of CBS handle conflicts more eagerly when needed
- \rightarrow Can we transfer ideas?

• The success of heuristic search heavily depends on the definition of the search space

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Conclusion

- The success of heuristic search heavily depends on the definition of the search space
- Decoupled Search:
 - State-space reduction method (reduce the search space by orders of magnitude)
 - Define the search space
 - Exploit the task structure (conditional independence)
 - Each search node in the new search space represents many states of the planning task
- Properties:
 - captures the reachability of all states of a planning task and preserves optimality for any optimal search algorithm
 - Decoupled search can be combined with (in principle) any known AI Planning heuristic, making available highly informed search guidance techniques for decoupled states.
- Still lots of things to do!

Álvaro Torralba

Decoupled Search

Introduction Factorings Decoupled Search Pruning on Heuristics Recharging Robots 0000000 O References References

- Daniel Gnad and Jörg Hoffmann. Star-topology decoupled state space search. *Artificial Intelligence*, 257:24–60, 2018.
- Daniel Gnad, Álvaro Torralba, Alexander Shleyfman, and Jörg Hoffmann. Symmetry breaking in star-topology decoupled search. In Laura Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith, editors, *Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)*, pages 125–134. AAAI Press, 2017.
- Daniel Gnad, Jörg Hoffmann, and Martin Wehrle. Strong stubborn set pruning for star-topology decoupled state space search. *Journal of Artificial Intelligence Research*, 65:343–392, 2019.
- Daniel Gnad, Álvaro Torralba, and Daniel Fišer. Beyond stars generalized topologies for decoupled search. In Sylvie Thiébaux and William Yeoh, editors, Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022), pages 110–118. AAAI Press, 2022.

Introduction Factorings Decoupled Search Pruning de leuristics Recharging Robots MAPF Conclusion References References II

- Daniel Gnad, Silvan Sievers, and Álvaro Torralba. Efficient evaluation of large abstractions for decoupled search: Merge-and-shrink and symbolic pattern databases. In Sven Koenig, Roni Stern, and Mauro Vallati, editors, *Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023).* AAAI Press, 2023.
- Daniel Gnad. Star-Topology Decoupled State-Space Search in Al Planning and Model Checking. PhD thesis, Saarland University, 2021.
- Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search. *Journal of Artificial Intelligence Research*, 14:253–302, 2001.
- Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Conflict-based search for optimal multi-agent pathfinding. *Artificial Intelligence*, 219:40–66, 2015.
- Silvan Sievers, Daniel Gnad, and Álvaro Torralba. Additive pattern databases for decoupled search. In *Proceedings of the 15th Annual Symposium on Combinatorial Search (SoCS 2022)*, pages 180–189. AAAI Press, 2022.

Introduction Factorings Decoupled Search Pruning October Octob

Álvaro Torralba, Daniel Gnad, Patrick Dubbert, and Jörg Hoffmann. On state-dominance criteria in fork-decoupled search. In Subbarao Kambhampati, editor, Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pages 3265–3271. AAAI Press, 2016.