Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

AALBORG UNIVERSITY

About Me

Associate

Professor

DEIS

Álvaro Torralba
https://homes.cs.aau.dk/alto/

Outline of this Talk

Al Planning in a Nutshell

Deliver both packages to location B without depleting the battery:

- $V=\left\{r, p_{1}, p_{2}, b\right\} ; D_{p_{i}}=\{A, B, R\}, D_{r}=\{A, B\}$, $D_{b}=\{0,1,2,3\}$.
- $A=\left\{\operatorname{grab}\left(p_{i}, x\right), \operatorname{drop}\left(p_{i}, x\right), \operatorname{move}\left(x, x^{\prime}\right)\right\}:$

$\operatorname{pre}_{\operatorname{grab}\left(p_{i}, x\right)}=\left\{p_{i}=x, r=x\right\}$ and
eff ${\text { grab }\left(p_{i}, x\right)}=\left\{p_{i}=r\right\}$.
- $I=\left\{r=A, p_{1}=A, p_{2}=A, b=3\right\}$
- $G=\left\{p_{1}=B, p_{2}=B\right\}$.
- cost: All actions cost 1 .
- Some actions consume battery.

Al Planning in a Nutshell

Deliver both packages to location B without depleting the battery:

- $V=\left\{r, p_{1}, p_{2}, b\right\} ; D_{p_{i}}=\{A, B, R\}, D_{r}=\{A, B\}$, $D_{b}=\{0,1,2,3\}$.
- $A=\left\{\operatorname{grab}\left(p_{i}, x\right), \operatorname{drop}\left(p_{i}, x\right), \operatorname{move}\left(x, x^{\prime}\right)\right\}:$

$$
\operatorname{pre}_{\operatorname{grab}\left(p_{i}, x\right)}=\left\{p_{i}=x, r=x\right\} \text { and }
$$

$$
\text { eff }_{\text {grab }\left(p_{i}, x\right)}=\left\{p_{i}=r\right\}
$$

- $I=\left\{r=A, p_{1}=A, p_{2}=A, b=3\right\}$
- $G=\left\{p_{1}=B, p_{2}=B\right\}$.
- cost: All actions cost 1 .
- Some actions consume battery.

Plan of minimum cost: $\operatorname{grab}\left(p_{1}, A\right), \operatorname{grab}\left(p_{2}, A\right), \operatorname{move}(A, B), \operatorname{drop}\left(p_{2}, B\right), \operatorname{drop}\left(p_{1}, B\right)$

State-Space Search

State-Space Search

State-Space Search

State-Space Explosion

Huge branching factor + exponential in depth \rightarrow state space explosion.

State-Space Search

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance h^{*} \rightarrow derived by inference and/or learning techniques

State-Space Search

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance h^{*} \rightarrow derived by inference and/or learning techniques

State-Space Search

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance h^{*} \rightarrow derived by inference and/or learning techniques

Search + Heuristic: A common pattern

A* (Shortest path/Classical Planning)

LAO* (solving MDPs) ${ }^{1}$

Monte Carlo Tree Search (online decision making, e.g. AlphaGo) ${ }^{1}$
${ }^{1}$ Images taken from (Hansen and Zilberstein, 2001) and (Silver et al. 2016).

Reasoning with Sets of States (Topic for Another Day)

Symbolic Search:

What's a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning

What's a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning
The way to guide the search

What's a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning
The way to guide the search
A way to guide the search

What's a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning
The way to guide the search
A way to guide the search
Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$. $h(s)$ estimates goal distance $h^{*}(s)$

What's a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning
The way to guide the search
A way to guide the search
Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$. $h(s)$ estimates goal distance $h^{*}(s)$

Properties of Heuristics:

- Admissible: $h(s) \leq h^{*}(s)$
- Consistent: $h(s)-h(t) \leq c(s, t)$

What's Great About Heuristics

- Very effective method for planning!

What's Great About Heuristics

- Very effective method for planning!
- Provide a Theoretical Framework to Analyze Search-based Planning Algorithms

What's Great About Heuristics

- Very effective method for planning!
- Provide a Theoretical Framework to Analyze Search-based Planning Algorithms
- Disantangle search algorithm from the source of information

Disantangle search algorithm and heuristics

- define heuristics, analyze their properties(?), and compare them(?) without considering how search algorithms will use

Disantangle search algorithm and heuristics

- define heuristics, analyze their properties(?), and compare them(?) without considering how search algorithms will use

- We can compare search algorithms without considering what heuristic is being used
$\rightarrow \mathrm{A}^{*}$ is optimally efficient!

DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box
Access to the state space Θ only via node expansions
Additionally the algorithm is given an admissible heuristic function h
h2
A10
\rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box
Access to the state space Θ only via node expansions
Additionally the algorithm is given an admissible heuristic function h

\rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box
Access to the state space Θ only via node expansions
Additionally the algorithm is given an admissible heuristic function h

\rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box

Access to the state space Θ only via node expansions
Additionally the algorithm is given an admissible heuristic function h

\rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

A^{*} is Optimally Efficient (Dechter and Pearl, 1985)

A*: Expand nodes based on f-value: $f\left(n_{s}\right)=g\left(n_{s}\right)+h(s)$

A* is Optimally Efficient (Dechter and Pearl, 1985)

A*: Expand nodes based on f-value: $f\left(n_{s}\right)=g\left(n_{s}\right)+h(s)$

Generalized BF Search Strategies and the Optimality of A*531

		Class of Algorthms		
		Admissible if $h \leq h$. $A_{a c}$	Globally Compatible with $\mathrm{A}^{\text {* }}$ Agc	Best-First Abf
	Admissible $I_{A D}$	A^{*} is 3-optimal No 2-optimal exists	A^{*} is 1 -optimal No 0-optimal exists	A^{*} is 1 -optimal No D-optimal exists
Domain	Admissible and non pathological $I^{\prime}{ }_{\text {AD }}$	A^{*} is 2-optimal No 1-optimal exists	A^{*} is 0-optimal	A * is 0-optimal
Problem Instances	$\frac{\text { Consistent }}{I_{\mathrm{CON}}}$	A^{*} is 1-optimal No 0-optimal exists	A^{*} is 1 -optimal No O-optimal exists	A^{*} is 1 -optimal No 0-optimal exists
	Consistent nonpathological $\mathrm{I}_{\mathrm{Co}} \mathrm{ON}$	A^{*} is 0-optimal	A^{*} is 0-optimal	A^{*} is 0-optimal

A^{*} is Optimally Efficient (Dechter and Pearl, 1985)

\mathbf{A}^{*} is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB algorithm, then there exists a tie-breaking of A^{*} that expands a subset of N.

A^{*} is Optimally Efficient (Dechter and Pearl, 1985)

\mathbf{A}^{*} is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB algorithm, then there exists a tie-breaking of A^{*} that expands a subset of N.

Consistent Heuristic: $h(s)-h(t) \leq c(s, t)$

A* is Optimally Efficient (Dechter and Pearl, 1985)

\mathbf{A}^{*} is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB algorithm, then there exists a tie-breaking of A^{*} that expands a subset of N.

Consistent Heuristic: $h(s)-h(t) \leq c(s, t)$
(1) Nodes are expanded with their optimal g-value (no re-expansions)

A* is Optimally Efficient (Dechter and Pearl, 1985)

\mathbf{A}^{*} is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB algorithm, then there exists a tie-breaking of A^{*} that expands a subset of N.

Consistent Heuristic: $h(s)-h(t) \leq c(s, t)$
(1) Nodes are expanded with their optimal g-value (no re-expansions)
(2) Must-expand nodes: $f(n)<f^{*}$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

- Fact Landmarks

$$
S \mapsto 2^{F}
$$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

- Fact Landmarks $S \mapsto 2^{F}$
- Disjunctive-Action Landmarks $\quad S \mapsto 2^{2^{A}}$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

- Fact Landmarks
$S \mapsto 2^{F}$
- Disjunctive-Action Landmarks $\quad S \mapsto 2^{2^{A}}$
- Heuristics with Uncertainty
$S \mapsto P M F$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.

You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

- Fact Landmarks $S \mapsto 2^{F}$
- Disjunctive-Action Landmarks $\quad S \mapsto 2^{2^{A}}$
- Heuristics with Uncertainty $\quad S \mapsto P M F$
- Operator-counting constraints, Operator-mutexes, ...

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.

You cannot reduce everything to a number!

- Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

$$
S \mapsto 2^{A}
$$

- Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

$$
S \mapsto 2^{A}
$$

- Fact Landmarks

$$
S \mapsto 2^{F}
$$

- Disjunctive-Action Landmarks $\quad S \mapsto 2^{2^{A}}$
- Heuristics with Uncertainty $\quad S \mapsto P M F$
- Operator-counting constraints, Operator-mutexes, ...
\rightarrow Many of these are reduced to heuristics, is this optimally efficient?

Are Operator Counting Constraints Optimally Efficient?

Part of a search tree on a task with optimal solution cost of 10:

$$
g=7, h=2 \quad g=8, h=1
$$

Are Operator Counting Constraints Optimally Efficient?

Part of a search tree on a task with optimal solution cost of 10:

$$
\begin{gathered}
g=7, h=2 \quad g=8, h=1 \\
\left\{c\left(a_{2}\right) \geq 2\right\} \quad\left\{c\left(a_{3}\right) \geq 1\right\}
\end{gathered}
$$

A* must expand t

Are Operator Counting Constraints Optimally Efficient?

Part of a search tree on a task with optimal solution cost of 10:

$$
\begin{gathered}
g=7, h=2 \quad g=8, h=1 \\
\left\{c\left(a_{2}\right) \geq 2\right\} \quad\left\{c\left(a_{3}\right) \geq 1\right\}
\end{gathered}
$$

A* must expand t, but an optimally efficient algorithm does not have to

Are Operator Counting Constraints Optimally Efficient?

Part of a search tree on a task with optimal solution cost of 10:

A* must expand t, but an optimally efficient algorithm does not have to
\rightarrow Well, perhaps this is just under inconsistent operator counting constraints...

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
States are evaluated independently of each other

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$.
States are evaluated independently of each other

- Symmetry Detection: $S \times S \mapsto\{0,1\}$
- Dominance Analysis: $S \times S \mapsto\{0,1\}$
- Quantitative Dominance Analysis: $S \times S \mapsto \mathbb{R} \cup\{-\infty\}$
- Novelty Pruning: $S \times 2^{S} \mapsto\{0,1\}$
- Novelty Heuristics: $S \times 2^{S} \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$

Limitations of Heuristics

Definition: A heuristic is a function $h: S \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$. States are evaluated independently of each other

- Symmetry Detection: $S \times S \mapsto\{0,1\}$
- Dominance Analysis: $S \times S \mapsto\{0,1\}$
- Quantitative Dominance Analysis: $S \times S \mapsto \mathbb{R} \cup\{-\infty\}$
- Novelty Pruning: $S \times 2^{S} \mapsto\{0,1\}$
- Novelty Heuristics: $S \times 2^{S} \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$
- Contrastive Analysis: $S \times S \mapsto$?

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Multi-Valued Pattern Databases (?)

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Multi-Valued Pattern Databases (?)

- Heuristics evaluate states assuming independence! \rightarrow rarely the case for states close in the search tree

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Multi-Valued Pattern Databases (?)

- Heuristics evaluate states assuming independence! \rightarrow rarely the case for states close in the search tree
- We cannot express h (blue) $\leq h$ (orange)

In the Rest of This Talk

Assumption of most search algorithms: Evaluate states independently of each other

In the Rest of This Talk

Assumption of most search algorithms: Evaluate states independently of each other

Break this assumption by directly comparing states:
\rightarrow New source of information

In the Rest of This Talk

Assumption of most search algorithms: Evaluate states independently of each other

Break this assumption by directly comparing states:
\rightarrow New source of information

Find information

- Automatic: on any domain!
- Polynomial time
- Reliable (safe to use)

Monte Carlo Tree Search (online decision making, e.g. AlphaGo) ${ }^{1}$

Use information

- Re-design state-space search
- Theory: Optimally efficient algorithms!
- Practice: Balance inference/search effort

Dominance (Torralba, Hoffmann, IJCAl'15)

Is t at least as good as s ?

t is at least as good as s
Source of Information: $S \times S \mapsto\{0,1\}$

Dominance (Torralba, Hoffmann, IJCAl'15)

Is t at least as good as s ?

t is at least as good as s
Source of Information: $S \times S \mapsto\{0,1\}$
Definition (Dominance Relation). binary relation \preceq on S such that $s \preceq t$ (t dominates s) only if t is at least as good as s, i.e., $h^{*}(s) \geq h^{*}(t)$.

Using a Dominance Relation: Dominance Pruning

Prune a search node n_{s} if there exists another n_{t} that dominates it: $g\left(n_{t}\right) \leq g\left(n_{s}\right)$ and $s \preceq t$

Using a Dominance Relation: Dominance Pruning

Prune a search node n_{s} if there exists another n_{t} that dominates it: $g\left(n_{t}\right) \leq g\left(n_{s}\right)$ and $s \preceq t$

Inference of Dominance (?)

(1) Consider a partition of the problem

Inference of Dominance (?)

(1) Consider a partition of the problem

(2) Compute coarsest label-dominance relation such that:

$$
s \preceq_{i} t \Longrightarrow\left(s \in S_{i}^{G} \vee \neg t \in S_{i}^{G} \text { and } \forall_{s \rightarrow s^{\prime}} \forall_{t} \xrightarrow[\rightarrow t^{\prime}]{ } s^{\prime} \preceq_{i} t^{\prime} \wedge I \preceq_{i}^{L} I\right)
$$

Combining the Partitions

A state dominates another iff it dominates in every aspect:

$$
s \preceq t \text { iff } s_{i} \preceq_{i} t_{i} \text { for all } i .
$$

For example:

Combining the Partitions

	at A	at B
at A	T	\perp
at B	\perp	†

$c \mid$							
	at A	in R	at B		\square	\square	四
at A	T	T	T	\square	T	T	T
in R	\perp	T	T	\square	\perp	T	T
at B	\perp	\perp	T	\square	\perp	\perp	T

A state dominates another iff it dominates in every aspect:

$$
s \preceq t \text { iff } s_{i} \preceq_{i} t_{i} \text { for all } i .
$$

For example:

Combining the Partitions

愹突	
	at A at B
at A	「 \perp
at B	\perp

$c \mid$							
	at A	in R	at B		\square	\square	四
at A	T	T	T	\square	\top	T	T
in R	\perp	T	T	\square	\perp	T	T
at B	\perp	\perp	T	\square	\perp	\perp	T

A state dominates another iff it dominates in every aspect：

$$
s \preceq t \text { iff } s_{i} \preceq_{i} t_{i} \text { for all } i .
$$

For example：

From Dominance Pruning to Dominance Analysis

This information is extremely interesting. Useful for a lot of things beyond pruning search!!

From Dominance Pruning to Dominance Analysis

This information is extremely interesting. Useful for a lot of things beyond pruning search!!

- Dominance: Comparing things better than others
- Analysis: Uses inference and/or learning to compare states according to "estimated" goal distance. \rightarrow In contrast to, e.g., dominance in multi-objective and/or decoupled search where states dominate each others in term of g-value

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

P1 $A \preceq T \preceq B$

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

P1 $A \preceq T \preceq B$

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

P1 : $A \preceq T \preceq B$

Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving an optimal plan

Analyze the Optimal Efficiency

- A*: canonical choice for solving shortest path problems
- A^{*} is optimally efficient in node expansions (?)
- Dominance pruning methods \rightarrow new source of information!

Analyze the Optimal Efficiency

- A*: canonical choice for solving shortest path problems
- A^{*} is optimally efficient in node expansions (?)
- Dominance pruning methods \rightarrow new source of information!
- A^{*} with dominance pruning $\left(\mathrm{A}_{p r}^{*}\right)$:
- Expand nodes based on f-value: $f\left(n_{s}\right)=g\left(n_{s}\right)+h(s)$
- Prune any node that can be pruned
- Is this a good choice?

Results of Optimal Efficiency Analysis

- $\mathrm{A}_{p r}^{*}$ is \#-optimally efficient on consistent instances over $U D X B B_{p r}$ algorithms

Results of Optimal Efficiency Analysis

- $\mathrm{A}_{p r}^{*}$ is \#-optimally efficient on consistent instances over UDXBB ${ }_{p r}$ algorithms
- Consistent instances:
(1) Consistent heuristic
(2) Dominance relation is a transitive cost-simulation relation
(3) Heuristic and dominance relation are consistent with each other

Results of Optimal Efficiency Analysis

- $\mathrm{A}_{p r}^{*}$ is \#-optimally efficient on consistent instances over UDXBB ${ }_{p r}$ algorithms
- Consistent instances:
(1) Consistent heuristic
(2) Dominance relation is a transitive cost-simulation relation
(3) Heuristic and dominance relation are consistent with each other
- No access to \preceq : can only use dominance for pruning nodes that are worse in g and h value

Open Question: What is the best way that any algorithm can leverage dominance relations?

Metamorphic Testing

- Detect mistakes of a policy by comparing behaviour on dominated/dominating states

J. Eisenhut, A. Torralba, M. Christakis, and J. Hoffmann, Automatic Metamorphic Test Oracles for Action-Policy Testing Tuesday, July, 11, 16:00-17:00

Quantitative Dominance (?)

By how much t dominates s ?

Source of Information: $S \times S \mapsto\{0,1\}$
Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

Quantitative Dominance (?)

By how much t dominates s ?

Source of Information: $S \times S \mapsto\{0,1\}$
Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

Quantitative Dominance (?)

By how much t dominates s ?

Source of Information: $S \times S \mapsto\{0,1\}$
Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$D(s, t)=2:$
t is strictly closer to the goal than s by 2 actions (grab and drop p_{1}).
Álvaro Torralba

Quantitative Dominance (?)

By how much t dominates s ?

Source of Information: $S \times S \mapsto\{0,1\}$
Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$$
D(s, t)=2:
$$

S

t is strictly closer to the goal than s by 2 actions (grab and drop p_{1}).

Quantitative Dominance (?)

By how much t dominates s ?

Source of Information: $S \times S \mapsto\{0,1\}$
Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$$
D(s, t)=2:
$$

$$
D(s, t)=-1
$$

t is strictly closer to the goal than s by 2 actions (grab and $\operatorname{drop} p_{1}$).
Álvaro Tórraĺba

Quantitative Dominance

Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

Quantitative Dominance

Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$$
D(s, t)= \begin{cases}C & t \text { is strictly closer to the goal than } s \text { (by at least } C \text {) } \\ 0 & t \text { is at least as close as } s \\ -C & \mathrm{t} \text { is at most } C \text { units of cost farther than } s \\ -\infty & \text { we know nothing }\end{cases}
$$

Quantitative Dominance

Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$$
D(s, t)= \begin{cases}C & t \text { is strictly closer to the goal than } \mathrm{s} \text { (by at least } C \text {) } \\ 0 & t \text { is at least as close as } s \\ -C & \mathrm{t} \text { is at most } C \text { units of cost farther than } s \\ -\infty & \text { we know nothing }\end{cases}
$$

$$
\text { PIR: } \quad D_{P}(A, T)=D_{P}(T, B)=+1
$$

Quantitative Dominance

Dominance Function: $D(s, t) \leq h^{*}(s)-h^{*}(t)$

$$
D(s, t)= \begin{cases}C & t \text { is strictly closer to the goal than } \mathrm{s} \text { (by at least } C \text {) } \\ 0 & t \text { is at least as close as } s \\ -C & \mathrm{t} \text { is at most } C \text { units of cost farther than } s \\ -\infty & \text { we know nothing }\end{cases}
$$

$$
\begin{aligned}
& D_{P}(A, T)=D_{P}(T, B)=+1 \\
& D_{T}(A, B)=D_{T}(B, A)=-1
\end{aligned}
$$

Inference of Quantitative Dominance

(1) Consider a partition of the problem

(2) Compute maximum fix point label-dominance function such that:

$$
D_{i}(s, t) \leq \min _{s \rightarrow s^{\prime}} \max _{s \rightarrow s^{\prime}}^{\ell^{\prime}} \Delta^{\prime} \leq D_{i}\left(s^{\prime}, u^{\prime}\right)-h^{\tau}(t, u)+c(\ell)-c\left(\ell^{\prime}\right)+\sum_{j \neq i} \mathcal{D}_{j}^{L}\left(\ell, \ell^{\prime}\right)
$$

		(1910)							
			\square	b	四		at A	in R	at B
	at A at B	\square	0	0	0	at A	0	1	2
at A	$\begin{array}{cc}0 & -\infty \\ -\infty & 0\end{array}$	\square	-	0	0	in R	$-\infty$	0	1
at B	- 0	四			0	at B	$-\infty$	$-\infty$	0

Inference of Quantitative Dominance

(1) Consider a partition of the problem

(2) Compute maximum fix point label-dominance function such that:

$$
D_{i}(s, t) \leq \min _{s \rightarrow s^{\prime} u \xrightarrow{\prime} u u^{\prime}} \max _{s \rightarrow l^{\prime}} D_{i}\left(s^{\prime}, u^{\prime}\right)-h^{\tau}(t, u)+c(\ell)-c\left(\ell^{\prime}\right)+\sum_{j \neq i} \mathcal{D}_{j}^{L}\left(\ell, \ell^{\prime}\right)
$$

	at A	in R	at B
at A	0	1	2
in R	-3	0	1
at B	-5	-3	0

Quantitative Dominance Pruning

Prune n_{s} if there exists n_{t} s.t.

Qualitative $\quad g\left(n_{t}\right) \leq g\left(n_{s}\right)$ and $s \preceq t$
Quantitative

Quantitative Dominance Pruning

Prune n_{s} if there exists n_{t} s.t.

Qualitative $\quad g\left(n_{t}\right) \leq g\left(n_{s}\right)$ and $s \preceq t$
Quantitative $\quad D(s, t)+g\left(n_{s}\right)-g\left(n_{t}\right) \geq 0$ if $D(s, t) \geq 0$

Quantitative Dominance Pruning

Prune n_{s} if there exists n_{t} s.t.

Qualitative $\quad g\left(n_{t}\right) \leq g\left(n_{s}\right)$ and $s \preceq t$
Quantitative $\quad D(s, t)+g\left(n_{s}\right)-g\left(n_{t}\right) \geq 0$ if $D(s, t) \geq 0$
$D(s, t)+g\left(n_{s}\right)-g\left(n_{t}\right)>0$ if $D(s, t)<0$

Action Selection Pruning

If $s \xrightarrow{a} s^{\prime}$ and $D\left(s, s^{\prime}\right) \geq c(a)$ then a starts an optimal plan from s.

Action Selection Pruning

If $s \xrightarrow{a} s^{\prime}$ and $D\left(s, s^{\prime}\right) \geq c(a)$ then a starts an optimal plan from s.

Action Selection Pruning

If $s \xrightarrow{a} s^{\prime}$ and $D\left(s, s^{\prime}\right) \geq c(a)$ then a starts an optimal plan from s.

- Prune every other successor
- Reduce branching factor to $1!$
\rightarrow Branch only over move actions!

Dramatic Pruning Power!

Factor of search space reduction to find optimal plan over A* search with LM-cut (10 = one order of magnitude) in selected domains:

Nomystery 4
Parcprinter 7
Rovers 14.8
Satellite
2.114.82.9
-- Dominance -- Quantitative Dominance + Action Selection

Novelty Pruning

Novelty (??): Compare each state against previously seen states to prioritize most novel states:
(1) States that have a new fact that no other state had.
(2) States that have a pair of facts that no other state had.
(3) ...

\rightarrow Extremely successful at diversifying search (e.g. also in Atari games (?))!

Novelty

The novelty of $s N(s)$ is defined to be the size of the smallest fact set it produces for the first time.

Novelty

The novelty of $s N(s)$ is defined to be the size of the smallest fact set it produces for the first time.

IW(K): Breadth first search, pruning all s with $N(s)>k$

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty

The novelty of $s N(s)$ is defined to be the size of the smallest fact set it produces for the first time.

IW(K): Breadth first search, pruning all s with $N(s)>k$

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty Heuristics:

- Combine the definition of novelty with heuristics
- State of the art in satisficing planning

Novelty

The novelty of $s N(s)$ is defined to be the size of the smallest fact set it produces for the first time.

IW(K): Breadth first search, pruning all s with $N(s)>k$

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty Heuristics:

- Combine the definition of novelty with heuristics
- State of the art in satisficing planning

But, why is novelty so good?

Example IW(1)

		- A	- B	目 R	-100	-99	-98	$\square 97$
x		x			x			

Example IW(1)

		(6)A	* B	- R	-100	-99	-98	$\square 97$
x		x		x	X			

Example IW(1)

A	$\overbrace{1}^{3}$	- A	- B	-	-100	-99	$\square 98$	$\square 97$
x	x	x		x	x	x		

Example IW(1)

$\overbrace{2}^{3}$	Bind	, A	- B	, R	-100	-99	-98	$\square 97$
x	x	x		x	x	x		

Example IW(1)

$\overbrace{2}^{3}$	Bind	, A	- B	, R	-100	-99	-98	$\square 97$
x	x	x		x	x	x		

Example IW(1)

A	\overbrace{B}^{3}	- A	- B	, R	-100	$\square 99$	-98	$\square 97$
x	x	x		x	x	x		

Example IW(1)

$\overbrace{2}^{3}$	Bind	, A	- B	, R	-100	-99	-98	$\square 97$
x	x	x		x	x	x		

Example IW(1)

㒸	$\overbrace{3}^{3}$	- A	- B	回	-100	-99	-98	-97
x	x	x		x	x	x	x	

Example IW(1)

		- A	- B	- R	-100	-99	-98	-97
X	X	x		x	x	x	x	

Example IW(1)

		- A	- B	- R	-100	-99	-98	-97
X	X	x		x	x	x	x	

Example IW(1)

A	\overbrace{B}^{3}	- A	- B	, R	-100	$\square 99$	-98	$\square 97$
x	x	x		x	x	x	x	x

So, What Novelty and Dominance Have In Common?

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T}

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T} Source of Information: $S \times 2^{S} \mapsto\{0,1\}$

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T} Source of Information: $S \times 2^{S} \mapsto\{0,1\}$

Safe dominance pruning $\quad \exists t \in \mathcal{T} \forall v \in V \quad s[v] \preceq t[v]$

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T} Source of Information: $S \times 2^{S} \mapsto\{0,1\}$

Safe dominance pruning $\quad \exists t \in \mathcal{T} \forall v \in V \quad s[v] \preceq t[v]$

Novelty IW(1) pruning $\quad \forall v \in V \exists t \in \mathcal{T} \quad s[v]=t[v]$

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T} Source of Information: $S \times 2^{S} \mapsto\{0,1\}$

Safe dominance pruning $\quad \exists t \in \mathcal{T} \forall v \in V \quad s[v] \preceq t[v]$

Novelty IW(1) pruning $\quad \forall v \in V \exists t \in \mathcal{T} \quad s[v]=t[v]$
\rightarrow Novelty can be interpreted as (unsafe/inadmissible) dominance

$$
\exists t \in \mathcal{T} h^{*}(t) \leq h^{*}(s)
$$

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T} Source of Information: $S \times 2^{S} \mapsto\{0,1\}$

Safe dominance pruning $\quad \exists t \in \mathcal{T} \forall v \in V \quad s[v] \preceq t[v]$
Novelty IW(1) pruning $\quad \forall v \in V \exists t \in \mathcal{T} \quad s[v]=t[v]$
\rightarrow Novelty can be interpreted as (unsafe/inadmissible) dominance

$$
\exists t \in \mathcal{T} h^{*}(t) \leq h^{*}(s)
$$

Let $\mathcal{R}=\left\{\preceq_{1}, \ldots, \preceq_{k}\right\}$ be a set of relations on P. Let \mathcal{Q} be a set of subsets of V.

$$
\forall Q \in \mathcal{Q}: \exists t \in \mathcal{T}: \forall v \in Q: s[v] \preceq t[v]
$$

Unsafe Dominance Pruning (?)

Unsafe Dominance Pruning (?)

Unsafe Dominance Pruning (?)

Example IW $\preceq(1)$

Results IW(2) with dominance

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense:
$S \times 2^{S} \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense:
$S \times 2^{S} \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$

$\left\{V_{1}\right\} \quad\left\{V_{1}, V_{2}\right\}$
$\left\{V_{1}, \ldots, V_{n}\right\}$

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense:
$S \times 2^{S} \mapsto \mathbb{R}_{0}^{+} \cup\{\infty\}$

Overview of Results:

We analyze three variants:
(1) Changing $\mathcal{R}:=\mathrm{vs} . \preceq$

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead

Overview of Results:

We analyze three variants:
(1) Changing $\mathcal{R}:=\mathrm{vs} . \preceq$

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead
(2) Changing $\mathcal{Q} \rightarrow$ Best configuration in practice: choose subsets of variables that appear together in action preconditions

Overview of Results:

We analyze three variants:
(1) Changing $\mathcal{R}:=$ vs. \preceq

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead
(2) Changing $\mathcal{Q} \rightarrow$ Best configuration in practice: choose subsets of variables that appear together in action preconditions
(3) Changing quantification of non-novel states (count number of states seen with the same fact to estimate the probability that the state is really dominated)
- Our non-novel priority is superior to the previous one!
- But, not good synergy with changing \mathcal{Q}

Using Dominance for Agile Planning

- We can also use dominance to identify "sub-goals" from which it is safe to restart the search! (torralba:ijcai-18)
- When we deliver a package we have gotten "closer to the goal", so we can restart the search from there

Using Dominance for Agile Planning

- We can also use dominance to identify "sub-goals" from which it is safe to restart the search! (torralba:ijcai-18)
- When we deliver a package we have gotten "closer to the goal", so we can restart the search from there

Enforced Hill Climbing

```
input :Task }\Pi=(V,A,I,G),\mathrm{ heuristic }
```

output: Plan or fail
$1 s=1$
2 plan = \rangle
3 while $s \not \vDash G$ do
4 Run breadth-first search from s until finding t with $h(s)<h(t)$
if succeed then
plan += sequence of actions from s to t
$s \leftarrow t$
else
return fail
10 return plan

Enforced Hill Climbing

```
input : Task \(\Pi=(V, A, I, G)\), heuristic \(h\)
output: Plan or fail
\(1 s=1\)
2 plan = \(\rangle\)
3 while \(s \not \vDash G\) do
4 Run breadth-first search from \(s\) until finding \(t\) with \(h(s)<h(t)\)
        if succeed then
                        plan += sequence of actions from \(s\) to \(t\)
                \(s \leftarrow t\)
        else
            return fail
```

10 return plan

- Very effective in domains with the right state space topology
- Incomplete in the presence of unrecognized dead-ends

Enforced Hill Climbing

```
input : Task \(\Pi=(V, A, I, G)\), heuristic \(h\)
output: Plan or fail
\(1 s=1\)
2 plan = \(\rangle\)
3 while \(s \not \vDash G\) do
4 Run breadth-first search from \(s\) until finding \(t\) with \(h(s)<h(t)\)
        if succeed then
                        plan += sequence of actions from \(s\) to \(t\)
                \(s \leftarrow t\)
        else
            return fail
```

10 return plan

- Very effective in domains with the right state space topology
- Incomplete in the presence of unrecognized dead-ends
\rightarrow Role of h : is a state better than my current state?

Dominance Enforced Hill Climbing

input : Task $\Pi=(V, A, I, G)$, search algorithm X, dom relation \preceq output: Plan or fail
$1 s=1$
2 plan $=\langle \rangle$
3 while $s \not \vDash G$ do
$4 \quad$ Run X from s until finding t with $h(s) \prec h(t)$
5 if succeed then
plan += sequence of actions from s to t $s \leftarrow t$
else
return fail
10 return plan

Dominance Enforced Hill Climbing

input : Task $\Pi=(V, A, I, G)$, search algorithm X, dom relation \preceq
output: Plan or fail
$1 S=1$
2 plan = \rangle
3 while $s \not \vDash G$ do
$4 \quad$ Run X from s until finding t with $h(s) \prec h(t)$
if succeed then
plan += sequence of actions from s to t $s \leftarrow t$
else
return fail
10 return plan
Use dominance to compare states:

- Guarantees completeness if \preceq is dead-end safe
- If \preceq is a (satisficing) dominance relation, we may do pruning in X \rightarrow Never goes back

Modified Running Example

- Fuel is consumed when moving into stripped tiles

Height/Width of the square part of the grid
\rightarrow Dominance distinguishes which sub-goals are safe!

Sketches (?)

$$
\begin{array}{ll}
\{\neg H, p>0\} \mapsto\{p \downarrow, t ?\} & \\
\{\neg \text { go to nearest pkg } \\
\{H, p=0\} \mapsto\{H\} & \\
\{H, t>0\} \mapsto\{\downarrow \downarrow & \text { pick it up } \\
\{H, n>0, t=0\} \mapsto\{H ?, n \downarrow, p ?\} & \text {; de to target } \\
\text { diver pkg }
\end{array}
$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s^{\prime}, the sketch tells whether s^{\prime} is a sub-goal for reaching the goal from s

Sketches (?)

$$
\begin{array}{ll}
\{\neg H, p>0\} \mapsto\{p \downarrow, t ?\} & \\
\{\neg \text { go to nearest pkg } \\
\{H, p=0\} \mapsto\{H\} & \\
\{H, t>0\} \mapsto\{\downarrow \downarrow & \text { pick it up } \\
\{H, n>0, t=0\} \mapsto\{H ?, n \downarrow, p ?\} & \text {; de to target } \\
\text { diver pkg }
\end{array}
$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s^{\prime}, the sketch tells whether s^{\prime} is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto\{0,1\}$

Sketches (3)

$$
\begin{array}{ll}
\{\neg H, p>0\} \mapsto\{p \downarrow, t ?\} & \\
\{\neg H, p=0\} \mapsto\{H\} & \\
\{H, t>0\} \mapsto\{\downarrow \text { to nearest pkg } \\
\{H, n>0, t=0\} \mapsto\{H ?, n \downarrow, p ?\} & \\
\{\text {; de to target } \\
\{H, n \text { perg }
\end{array}
$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s^{\prime}, the sketch tells whether s^{\prime} is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto\{0,1\}$
\rightarrow We do have an automatic way of finding "safe" sketches for any single task!

Sketches (?)

$$
\begin{array}{ll}
\{\neg H, p>0\} \mapsto\{p \downarrow, t ?\} & \\
\{\neg H, p=0\} \mapsto\{H\} & \\
\{H, t>0\} \mapsto \text { to nearest pkg } \\
\{H, n>0, t=0\} \mapsto\{H ?, n \downarrow, p ?\} & \\
\{\text {; de to target } \\
\{H, n \text { pkg }
\end{array}
$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s^{\prime}, the sketch tells whether s^{\prime} is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto\{0,1\}$
\rightarrow We do have an automatic way of finding "safe" sketches for any single task! (for tasks with informative QDFs)

Sketches (3)

$$
\begin{array}{ll}
\{\neg H, p>0\} \mapsto\{p \downarrow, t ?\} & \\
\{\neg H, p=0\} \mapsto\{H\} & \\
\{H, t>0\} \mapsto \text { to nearest pkg } \\
\{H, n>0, t=0\} \mapsto\{H ?, n \downarrow, p ?\} & \\
\{\text {; de to target } \\
\{H, n \text { pkg }
\end{array}
$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s^{\prime}, the sketch tells whether s^{\prime} is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto\{0,1\}$
\rightarrow We do have an automatic way of finding "safe" sketches for any single task! (for tasks with informative QDFs)

Open Question: Can we use this to verify if a sketch is safe for a new instance?

Contrastive Analysis

Contrastive: showing the differences between things
What are the advantages and disadvantages of t over s ?

t is at least as good as s
Disadvantage of s : has less battery

How can we compare states against each other in general ways?

A Family of Contrastive Analysis Methods

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?

A Family of Contrastive Analysis Methods

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is \mathbf{A} compared to \mathbf{B} ?
(Torralba 2017)

A Family of Contrastive Analysis Methods

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is \mathbf{A} compared to \mathbf{B} ? (Torralba 2017)
- Logic: Why isn't A better than B?

A Family of Contrastive Analysis Methods

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is \mathbf{A} compared to \mathbf{B} ? (Torralba 2017)
- Logic: Why isn't A better than B?
- Quantitative + Logic

What's the Most we can get from Comparing States?

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

- A* is optimally efficient

What's the Most we can get from Comparing States?

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

- A* is optimally efficient if your only source of information is a traditional heuristic function
- Dominance pruning ([Torralba,Hoffmann, 2015; Torralba, 2017])
\rightarrow discard states that are worse than others
- Is A^{*} with dominance pruning optimally efficient?
\rightarrow only over algorithms that only do pruning! ([Torralba, 2021])

What's the Most we can get from Comparing States?

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

- A* is optimally efficient if your only source of information is a traditional heuristic function
- Dominance pruning ([Torralba,Hoffmann, 2015; Torralba, 2017])
\rightarrow discard states that are worse than others
- Is A^{*} with dominance pruning optimally efficient?
\rightarrow only over algorithms that only do pruning! ([Torralba, 2021])

What is the best way to use CA information?
Develop algorithms that can fully reason about the seen states

Beyond Classical Planning

Markov Decision Processes:

- Actions with Stochastic Effects
- Maximize reward and/or minimize cost
\rightarrow Recent advances on evaluation functions for finding optimal policies! (Klößner et al., ICAPS'21, SOCS'21)
\rightarrow Setting up framework for M\&S abstractions Wednesday, 11:40

Extend Dominance/Contrastive Analysis to more general planning formalisms

Further Uses of State Comparisons

One can use Dominance/Contrastive Analysis beyond improving search algorithms!

- Policy Testing: Enhance metamorphic oracles! (Eisenhut,Torralba,Christakis,Hoffmann, 2023) Tuesday, 16:00
- Explainability
- One can do explanations based on plan properties (Eifler et al., AAA|'20, ICAPS'20), or model reconciliation (Sreedharan, Chakraborti, Kambhampati, AIJ'21).
- Can we use our dominance/contrastive analysis techniques in the context of explanations to an end user?

Explore further uses of dominance/contrastive analysis

Conclusions

- There is plenty of research to be done on state-space search!
\rightarrow Beyond heuristic functions!
\rightarrow How an agent should think about possible courses of action?

Conclusions

- There is plenty of research to be done on state-space search!
\rightarrow Beyond heuristic functions!
\rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
- Dominance Analysis: some states are better than others!
- Contrastive Analysis: compare advantages and disadvantages

Conclusions

- There is plenty of research to be done on state-space search!
\rightarrow Beyond heuristic functions!
\rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
- Dominance Analysis: some states are better than others!
- Contrastive Analysis: compare advantages and disadvantages
- Seemingly unrelated methods can be related to each other if they have the same "signature"
- Novelty and dominance pruning
- Sketches and sub-goal detection

Conclusions

- There is plenty of research to be done on state-space search!
\rightarrow Beyond heuristic functions!
\rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
- Dominance Analysis: some states are better than others!
- Contrastive Analysis: compare advantages and disadvantages
- Seemingly unrelated methods can be related to each other if they have the same "signature"
- Novelty and dominance pruning
- Sketches and sub-goal detection
- Ability of comparing states useful for a variety of purposes!

References I

