Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

About Me

Associate Professor **DEiS** Aalborg University (Denmark)

Álvaro Torralba

https://homes.cs.aau.dk/alto/

2

Álvaro Torralba

Outline of this Talk

Deliver both packages to location *B* without depleting the battery:

- $V = \{r, p_1, p_2, b\}; D_{p_i} = \{A, B, R\}, D_r = \{A, B\}, D_b = \{0, 1, 2, 3\}.$
- $A = \{grab(p_i, x), drop(p_i, x), move(x, x')\}$:

$$pre_{grab(p_i,x)} = \{p_i = x, r = x\}$$
 and
 $eff_{grab(p_i,x)} = \{p_i = r\}.$

•
$$I = \{r = A, p_1 = A, p_2 = A, b = 3\}$$

•
$$G = \{p_1 = B, p_2 = B\}.$$

- *cost*: All actions cost 1.
- Some actions consume battery.

Deliver both packages to location *B* without depleting the battery:

- $V = \{r, p_1, p_2, b\}; D_{p_i} = \{A, B, R\}, D_r = \{A, B\}, D_b = \{0, 1, 2, 3\}.$
- $A = \{grab(p_i, x), drop(p_i, x), move(x, x')\}$:

$$pre_{grab(p_i,x)} = \{p_i = x, r = x\}$$
 and
 $eff_{grab(p_i,x)} = \{p_i = r\}.$

•
$$I = \{r = A, p_1 = A, p_2 = A, b = 3\}$$

•
$$G = \{p_1 = B, p_2 = B\}.$$

- *cost*: All actions cost 1.
- Some actions consume battery.

Plan of minimum cost:

 $\textit{grab}(p_1, A), \textit{grab}(p_2, A), \textit{move}(A, B), \textit{drop}(p_2, B), \textit{drop}(p_1, B)$

Álvaro Torralba

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

State-Space Explosion

Huge branching factor + exponential in depth \rightarrow state space *explosion*.

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance *h*^{*}
 → derived by inference and/or learning techniques

Álvaro Torralba

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance h^{*}
 → derived by inference and/or learning techniques

Álvaro Torralba

- Guide search with an evaluation function, $h: S \mapsto \mathbb{R}$
- Estimation of the real goal-distance *h*^{*}
 → derived by inference and/or learning techniques

Álvaro Torralba

Search + Heuristic: A common pattern

A* (Shortest path/Classical Planning)

Álvaro Torralba

LAO* (solving MDPs)¹

Monte Carlo Tree Search (online decision making, e.g. AlphaGo)¹

¹ Images taken from (Hansen and Zilberstein, 2001) and (Silver et al. 2016).

Contrastive Analysis: Heuristic Search Beyond Heuristics

Reasoning with Sets of States (Topic for Another Day)

Symbolic Search:

Decoupled Search:

9

Álvaro Torralba

The way to guide the search

The way to guide the search A way to guide the search

The way to guide the search A way to guide the search

Definition: A heuristic is a function $h : S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$. h(s) estimates goal distance $h^*(s)$

The way to guide the search A way to guide the search

Definition: A heuristic is a function $h : S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$. h(s) estimates goal distance $h^*(s)$

Properties of Heuristics:

- Admissible: $h(s) \le h^*(s)$
- Consistent: $h(s) h(t) \le c(s, t)$

Álvaro Torralba

• Very effective method for planning!

- Very effective method for planning!
- Provide a Theoretical Framework to Analyze Search-based Planning Algorithms

- Very effective method for planning!
- Provide a Theoretical Framework to Analyze Search-based Planning Algorithms
- Disantangle search algorithm from the source of information

Disantangle search algorithm and heuristics

• define heuristics, analyze their properties(?), and compare them(?) without considering how search algorithms will use

Disantangle search algorithm and heuristics

• define heuristics, analyze their properties(?), and compare them(?) without considering how search algorithms will use

- We can compare search algorithms without considering what heuristic is being used
 - ${\rightarrow} A^*$ is optimally efficient!

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box

Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h

h2 A10

 \rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box

Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h

 \rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box

Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h

 \rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box

Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h

 \rightarrow The algorithm does not have access to the task description. The heuristic is its only source of information to guide the search

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

A^{*}: Expand nodes based on *f*-value: $f(n_s) = g(n_s) + h(s)$

A*: Expand nodes based on *f*-value: $f(n_s) = g(n_s) + h(s)$

Generalized BF Search Strategies and the Optimality of A*

531

		Admissible if h≤h* A _{ad}	Globally Compatible with A* A _{gc}	Best-First A br
	Admissible I _{AD}	A** is 3-optimal No 2-optimal exists	A* is 1-optimal No 0-optimal exists	A* is 1-optimal No 0-optimal exists
Domain of	Admissible and non pathological I _{ÃD}	A* is 2-optimal No 1-optimal exists	A* is 0-optimal	A * is 0-optimal
Problem nstances	Consistent I CON	A* is 1-optimal No 0-optimal exists	A* is 1-optimal No 0-optimal exists	A* is 1-optimal No 0-optimal exists
	Consistent nonpathological I _{CON}	A* is 0-optimal	A* is 0-optimal	A* is 0-optimal

Class of Algorithms

Álvaro Torralba

A* is 1-optimal on consistent instances

Let *N* be the set of states expanded by any admissible *UDXBB* algorithm, then there exists a tie-breaking of A^* that expands a subset of *N*.

A* is 1-optimal on consistent instances

Let *N* be the set of states expanded by any admissible *UDXBB* algorithm, then there exists a tie-breaking of A^* that expands a subset of *N*.

Consistent Heuristic: $h(s) - h(t) \le c(s, t)$

A* is 1-optimal on consistent instances

Let *N* be the set of states expanded by any admissible *UDXBB* algorithm, then there exists a tie-breaking of A^* that expands a subset of *N*.

Consistent Heuristic: $h(s) - h(t) \le c(s, t)$

Nodes are expanded with their optimal g-value (no re-expansions)

A* is 1-optimal on consistent instances

Let *N* be the set of states expanded by any admissible *UDXBB* algorithm, then there exists a tie-breaking of A^* that expands a subset of *N*.

Consistent Heuristic: $h(s) - h(t) \le c(s, t)$

- Nodes are expanded with their optimal g-value (no re-expansions)
- 2 Must-expand nodes: $f(n) < f^*$

Limitations of Heuristics

Definition: A heuristic is a function $h : S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$.

Limitations of Heuristics

Definition: A heuristic is a function $h : S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$.

You cannot reduce everything to a number!
You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto \mathbf{2}^{A}$

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

• Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

 $S \mapsto 2^A$

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

• Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

 $S \mapsto 2^A$

Fact Landmarks

 $S \mapsto 2^F$

Álvaro Torralba

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

 Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

 $S \mapsto 2^A$ $S \mapsto 2^F$ Eact Landmarks $S \mapsto 2^{2^A}$

• Disjunctive-Action Landmarks

Álvaro Torralba

16

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

 $S \mapsto 2^A$

• Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

Fact Landmarks $S \mapsto 2^{F}$ Disjunctive-Action Landmarks $S \mapsto 2^{2^{A}}$ Heuristics with Uncertainty $S \mapsto PMF$

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

• Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

 $S \mapsto \mathbf{2}^{A}$

- Fact Landmarks $S \mapsto 2^F$
- Disjunctive-Action Landmarks $S \mapsto 2^{2^{A}}$
- Heuristics with Uncertainty $S \mapsto PMF$
- Operator-counting constraints, Operator-mutexes, ...

16

You cannot reduce everything to a number!

 Stubborn sets: identify a sub-set of actions such that at least one of them starts an optimal plan

 $S \mapsto 2^A$

• Preferred operators: identify a sub-set of actions such that hopefully one of them starts an (optimal?) plan

 $S\mapsto \mathbf{2}^{A}$

- Fact Landmarks $S \mapsto 2^F$
- Disjunctive-Action Landmarks $S \mapsto 2^{2^{A}}$
- Heuristics with Uncertainty $S \mapsto PMF$
- Operator-counting constraints, Operator-mutexes, ...

 \rightarrow Many of these are reduced to heuristics, is this optimally efficient?

Álvaro Torralba

Part of a search tree on a task with optimal solution cost of 10:

$$g = 7, h = 2$$
 $g = 8, h = 7$
 $g = 1$

Part of a search tree on a task with optimal solution cost of 10:

 A^* must expand t

Part of a search tree on a task with optimal solution cost of 10:

 A^* must expand *t*, but an optimally efficient algorithm does not have to

Part of a search tree on a task with optimal solution cost of 10:

 A^* must expand *t*, but an optimally efficient algorithm does not have to

 \rightarrow Well, perhaps this is just under inconsistent operator counting constraints \ldots

Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 17

States are evaluated independently of each other

States are evaluated independently of each other

- Symmetry Detection: $S \times S \mapsto \{0, 1\}$
- Dominance Analysis: $S \times S \mapsto \{0, 1\}$
- Quantitative Dominance Analysis: $S \times S \mapsto \mathbb{R} \cup \{-\infty\}$
- Novelty Pruning: $S \times 2^S \mapsto \{0, 1\}$
- Novelty Heuristics: $S \times 2^S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

18

States are evaluated independently of each other

- Symmetry Detection: $S \times S \mapsto \{0, 1\}$
- Dominance Analysis: $S \times S \mapsto \{0, 1\}$
- Quantitative Dominance Analysis: $S \times S \mapsto \mathbb{R} \cup \{-\infty\}$
- Novelty Pruning: $S \times 2^{S} \mapsto \{0, 1\}$
- Novelty Heuristics: $S \times 2^S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$
- Contrastive Analysis: $S \times S \mapsto$?

Álvaro Torralba

18

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Multi-Valued Pattern Databases (?)

Heuristics evaluate states assuming independence!
→rarely the case for states close in the search tree

Heuristics with Uncertainty

Consider heuristic functions that return a probability distribution (?):

Multi-Valued Pattern Databases (?)

Heuristics evaluate states assuming independence!
→rarely the case for states close in the search tree

• We cannot express $h(blue) \le h(orange)$ Álvaro Torralba , Contrastive Analysis: Heuristic Search Beyond Heuristics 25 19 Assumption of most search algorithms: Evaluate states independently of each other

Assumption of most search algorithms: Evaluate states independently of each other

Break this assumption by directly comparing states: \rightarrow New source of information

Assumption of most search algorithms: Evaluate states independently of each other

Break this assumption by directly comparing states:

 \rightarrow New source of information

Find information

- Automatic: on any domain!
- Polynomial time
- Reliable (safe to use)

Use information

- Re-design state-space search
- Theory: Optimally efficient algorithms!
- Practice: Balance inference/search effort

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Is t at least as good as s?

t is at least as good as s

Source of Information: $S \times S \mapsto \{0, 1\}$

Is t at least as good as s?

t is at least as good as s

Source of Information: $S \times S \mapsto \{0, 1\}$

Definition (Dominance Relation). binary relation \leq on S such that $s \leq t$ (*t* dominates s) only if *t* is at least as good as s, i.e., $h^*(s) \geq h^*(t)$.

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Prune a search node n_s if there exists another n_t that dominates it: $g(n_t) \le g(n_s)$ and $s \le t$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

22

Prune a search node n_s if there exists another n_t that dominates it: $g(n_t) \le g(n_s)$ and $s \le t$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

22

Inference of Dominance (?)

Consider a partition of the problem

Inference of Dominance (?)

Consider a partition of the problem

Ocmpute coarsest label-dominance relation such that:

$$s \preceq_i t \implies \left(s \in S_i^G \lor \neg t \in S_i^G \text{ and } \forall_{s \xrightarrow{l} \Rightarrow s'} \exists_{t \xrightarrow{l'} t'} s' \preceq_i t' \land l \preceq_i^L l\right)$$

			(F) / (F)									
* <u>שב</u> *			1			((at A	in R	at B
	at A	at B	ļ		Т	Т	Т		at A	T	Т	Т
at A	Т	\perp		<u> </u>	T	Т	т		in R	\perp	Т	т
at B	\perp	Т		(111)	⊥	\perp	т		at B	\perp	\perp	Т

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Combining the Partitions

A state dominates another iff it dominates in every aspect:

 $s \leq t$ iff $s_i \leq_i t_i$ for all *i*.

For example:

Combining the Partitions

A state dominates another iff it dominates in every aspect:

 $s \leq t$ iff $s_i \leq_i t_i$ for all *i*.

For example:

Álvaro Torralba

Combining the Partitions

A state dominates another iff it dominates in every aspect:

 $s \leq t$ iff $s_i \leq_i t_i$ for all *i*.

For example:

- $\mathbb{B}A$ $\otimes A$ $\otimes A \subseteq \mathbb{B}A$ $\otimes A \otimes B \subseteq \mathbb{B}$ because $\mathbb{B}A \preceq_1 \mathbb{B}A$, $\otimes A \preceq_2 \otimes A$, $\otimes A \preceq_3 \otimes B$, and $\subseteq \mathbb{B} \preceq_4 \subseteq \mathbb{B}$.

Álvaro Torralba

24

From Dominance Pruning to Dominance Analysis

This information is extremely interesting. Useful for a lot of things beyond pruning search!!

From Dominance Pruning to Dominance Analysis

This information is extremely interesting. Useful for a lot of things beyond pruning search!!

- Dominance: Comparing things better than others
- Analysis: Uses inference and/or learning to compare states according to "estimated" goal distance. →In contrast to, e.g., dominance in multi-objective and/or decoupled search where states dominate each others in term of g-value

- A*: canonical choice for solving shortest path problems
- A* is optimally efficient in node expansions (?)
- **Dominance pruning** methods → new source of information!

- A*: canonical choice for solving shortest path problems
- A* is optimally efficient in node expansions (?)
- **Dominance pruning** methods \rightarrow new source of information!
- A^{*} with dominance pruning (A^{*}_{pr}):
 - Expand nodes based on *f*-value: $f(n_s) = g(n_s) + h(s)$
 - Prune any node that can be pruned
- Is this a good choice?

• A^{*}_{pr} is #-optimally efficient on consistent instances over *UDXBB*_{pr} algorithms

Results of Optimal Efficiency Analysis

- A^{*}_{pr} is #-optimally efficient on consistent instances over *UDXBB*_{pr} algorithms
- Consistent instances:
 - Consistent heuristic
 - 2 Dominance relation is a transitive cost-simulation relation
 - Heuristic and dominance relation are consistent with each other

- A^{*}_{pr} is #-optimally efficient on consistent instances over *UDXBB*_{pr} algorithms
- Consistent instances:
 - Consistent heuristic
 - 2 Dominance relation is a transitive cost-simulation relation
 - Heuristic and dominance relation are consistent with each other
- No access to ≤: can only use dominance for pruning nodes that are worse in g and h value

Open Question: What is the best way that any algorithm can leverage dominance relations?

 Detect mistakes of a policy by comparing behaviour on dominated/dominating states

J. Eisenhut, A. Torralba, M. Christakis, and J. Hoffmann, Automatic Metamorphic Test Oracles for Action-Policy Testing Tuesday, July, 11, 16:00-17:00

Source of Information: $S \times S \mapsto \{0, 1\}$

Dominance Function: $D(s, t) \le h^*(s) - h^*(t)$

Source of Information: $S \times S \mapsto \{0, 1\}$

Dominance Function: $D(s, t) \leq h^*(s) - h^*(t)$

Source of Information: $S \times S \mapsto \{0, 1\}$

Dominance Function: $D(s, t) \leq h^*(s) - h^*(t)$

t is strictly closer to the goal than *s* by 2 actions (grab and drop p_1).

Contrastive Analysis: Heuristic Search Beyond Heuristics

Source of Information: $S \times S \mapsto \{0, 1\}$

Dominance Function: $D(s, t) \leq h^*(s) - h^*(t)$

t is strictly closer to the goal than *s* by 2 actions (grab and drop p_1). Alvaro Torraba Contrastive Analysis: Heur

Contrastive Analysis: Heuristic Search Beyond Heuristics

Source of Information: $S \times S \mapsto \{0, 1\}$

Dominance Function: $D(s, t) \leq h^*(s) - h^*(t)$

D(s, t) = 2:

t is not farther than 1 action to the goal than s (grab p_1).

Contrastive Analysis: Heuristic Search Beyond Heuristics

$$D(s,t) = \begin{cases} C & t \text{ is strictly closer to the goal than s (by at least C)} \\ 0 & t \text{ is at least as close as } s \\ -C & t \text{ is at most C units of cost farther than } s \\ -\infty & \text{we know nothing} \end{cases}$$

$$D(s,t) = \begin{cases} C & t \text{ is strictly closer to the goal than s (by at least C)} \\ 0 & t \text{ is at least as close as } s \\ -C & t \text{ is at most C units of cost farther than } s \\ -\infty & \text{we know nothing} \end{cases}$$

$$\square : D_P(A,T) = D_P(T,B) = +1$$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics 31

$$D(s,t) = \begin{cases} C & t \text{ is strictly closer to the goal than s (by at least C)} \\ 0 & t \text{ is at least as close as } s \\ -C & t \text{ is at most C units of cost farther than } s \\ -\infty & \text{we know nothing} \end{cases}$$

Inference of Quantitative Dominance

Consider a partition of the problem

Ocmpute maximum fix point label-dominance function such that:

Inference of Quantitative Dominance

Consider a partition of the problem

Ocompute maximum fix point label-dominance function such that:

Prune n_s if there exists n_t s.t.

Qualitative $g(n_t) \leq g(n_s)$ and $s \leq t$

Quantitative

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Prune n_s if there exists n_t s.t.

Qualitative $g(n_t) \le g(n_s)$ and $s \le t$ Quantitative $D(s,t) + g(n_s) - g(n_t) \ge 0$ if $D(s,t) \ge 0$

Prune n_s if there exists n_t s.t.

Qualitative Quantitative $egin{aligned} g(n_t) &\leq g(n_s) ext{ and } s \preceq t \ D(s,t) + g(n_s) - g(n_t) &\geq 0 ext{ if } D(s,t) \geq 0 \ D(s,t) + g(n_s) - g(n_t) &> 0 ext{ if } D(s,t) < 0 \end{aligned}$

If $s \xrightarrow{a} s'$ and $D(s, s') \ge c(a)$ then *a* starts an optimal plan from *s*.

If $s \xrightarrow{a} s'$ and $D(s, s') \ge c(a)$ then *a* starts an optimal plan from *s*.

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

If $s \xrightarrow{a} s'$ and $D(s, s') \ge c(a)$ then *a* starts an optimal plan from *s*.

- Prune every other successor
- Reduce branching factor to 1!
- \rightarrow Branch only over move actions!

Factor of search space reduction to find optimal plan over A^{*} search with LM-cut (10 = one order of magnitude) in selected domains:

Novelty Pruning

Novelty (??): Compare each state against previously seen states to prioritize most novel states:

- States that have a new fact that no other state had.
- States that have a pair of facts that no other state had.

 \rightarrow Extremely successful at diversifying search (e.g. also in Atari games (?))!

Álvaro Torralba

3

Contrastive Analysis: Heuristic Search Beyond Heuristics

IW(K): Breadth first search, pruning all s with N(s) > k

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

IW(K): Breadth first search, pruning all s with N(s) > k

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty Heuristics:

- Combine the definition of novelty with heuristics
- State of the art in satisficing planning

IW(K): Breadth first search, pruning all s with N(s) > k

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty Heuristics:

- Combine the definition of novelty with heuristics
- State of the art in satisficing planning

But, why is novelty so good?

Example IW(1)

نن هشما	₩ B	¢А	®в	€R	<u>_</u> 100	 99	 98	 97
х		х			х			

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Example IW(1)

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

نن هشما	E B	€ A	®В	€R	<u>_</u> 100	 99	 98	 97
х	х	x		х	х	х		

Álvaro Torralba

نن هشم	С Ш В	■ A	®В	€R	<u>_</u> 100	 99	98	 97
х	х	x		x	х	х		

Álvaro Torralba

نن هشم	E B	∳®A	®В	€R	<u>_</u> 100	 99	 98	 97
х	х	x		x	x	х		

Álvaro Torralba

نن هشم	С Ш В	■ A	®В	€R	<u>_</u> 100	 99	 98	 97
х	х	x		х	x	х		

Álvaro Torralba

i Man A	Ŭ ₽ ₽ ₽ ₽	∳®A	®в	€R	100	 99	 98	 97
х	х	x		х	x	х		

Álvaro Torralba

Álvaro Torralba

Álvaro Torralba

Álvaro Torralba

Álvaro Torralba

Both compare new states s against all previously seen states \mathcal{T}

Both compare new states *s* against all previously seen states \mathcal{T} Source of Information: $S \times 2^S \mapsto \{0, 1\}$

Both compare new states *s* against all previously seen states \mathcal{T} Source of Information: $S \times 2^S \mapsto \{0, 1\}$

Safe dominance pruning $\exists t \in \mathcal{T} \forall v \in V \quad s[v] \preceq t[v]$

Both compare new states *s* against all previously seen states \mathcal{T} Source of Information: $S \times 2^S \mapsto \{0, 1\}$

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \preceq t[v]$

Novelty IW(1) pruning $\forall v \in V \exists t \in \mathcal{T} \quad s[v] = t[v]$

Both compare new states *s* against all previously seen states \mathcal{T} Source of Information: $S \times 2^S \mapsto \{0, 1\}$

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \leq t[v]$

Novelty IW(1) pruning $\forall v \in V \exists t \in \mathcal{T} \quad s[v] = t[v]$

 \rightarrow Novelty can be interpreted as (unsafe/inadmissible) dominance

 $\exists t \in \mathcal{T} \ h^*(t) \leq h^*(s)$

Both compare new states *s* against all previously seen states \mathcal{T} Source of Information: $S \times 2^S \mapsto \{0, 1\}$

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \leq t[v]$

Novelty IW(1) pruning $\forall v \in V \exists t \in \mathcal{T} \quad s[v] = t[v]$

 \rightarrow Novelty can be interpreted as (unsafe/inadmissible) dominance

$$\exists t \in \mathcal{T} \ h^*(t) \leq h^*(s)$$

Let $\mathcal{R} = \{ \preceq_1, ..., \preceq_k \}$ be a set of relations on P. Let \mathcal{Q} be a set of subsets of V.

$$\forall \boldsymbol{Q} \in \boldsymbol{\mathcal{Q}} : \exists t \in \mathcal{T} : \forall \boldsymbol{v} \in \boldsymbol{Q} : \boldsymbol{s}[\boldsymbol{v}] \preceq t[\boldsymbol{v}]$$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Example IW \leq (1)

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

a Contrastive Analysis: Heuristic Search Beyond Heuristics

43

Álvaro Torralba

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense: $S \times 2^S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense: $S \times 2^S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Novelty Heuristics (?)

Not "heuristic" functions in the traditional sense: $S \times 2^S \mapsto \mathbb{R}^+_0 \cup \{\infty\}$

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

We analyze three variants:

① Changing \mathcal{R} : = vs. \leq

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead

We analyze three variants:

1 Changing \mathcal{R} : = vs. \leq

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead
- ② Changing Q →Best configuration in practice: choose subsets of variables that appear together in action preconditions

We analyze three variants:

1 Changing \mathcal{R} : = vs. \leq

- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead
- ② Changing Q →Best configuration in practice: choose subsets of variables that appear together in action preconditions
- Changing quantification of non-novel states (count number of states seen with the same fact to estimate the probability that the state is really dominated)
 - Our non-novel priority is superior to the previous one!
 - But, not good synergy with changing $\ensuremath{\mathcal{Q}}$

Using Dominance for Agile Planning

- We can also use dominance to identify "sub-goals" from which it is safe to restart the search! (torralba:ijcai-18)
- When we deliver a package we have gotten "closer to the goal", so we can restart the search from there
Using Dominance for Agile Planning

- We can also use dominance to identify "sub-goals" from which it is safe to restart the search! (torralba:ijcai-18)
- When we deliver a package we have gotten "closer to the goal", so we can restart the search from there

```
input : Task \Pi = (V, A, I, G), heuristic h
  output: Plan or fail
1 \ S = I
2 plan = \langle \rangle
3 while s \not\models G do
       Run breadth-first search from s until finding t with h(s) < h(t)
4
       if succeed then
5
            plan += sequence of actions from s to t
6
            s \leftarrow t
7
       else
8
            return fail
9
```

```
input : Task \Pi = (V, A, I, G), heuristic h
  output: Plan or fail
1 S = I
2 plan = \langle \rangle
3 while s \not\models G do
       Run breadth-first search from s until finding t with h(s) < h(t)
4
       if succeed then
5
           plan += sequence of actions from s to t
6
           s \leftarrow t
7
       else
8
           return fail
9
```

- Very effective in domains with the right state space topology
- Incomplete in the presence of unrecognized dead-ends

Álvaro Torralba

47

```
input : Task \Pi = (V, A, I, G), heuristic h
  output: Plan or fail
1 S = I
2 plan = \langle \rangle
3 while s \not\models G do
       Run breadth-first search from s until finding t with h(s) < h(t)
4
       if succeed then
5
           plan += sequence of actions from s to t
6
           s \leftarrow t
7
       else
8
           return fail
9
```

- Very effective in domains with the right state space topology
- Incomplete in the presence of unrecognized dead-ends
- \rightarrow Role of *h*: is a state **better than** my current state?

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

```
input : Task \Pi = (V, A, I, G), search algorithm X, dom relation \prec
  output: Plan or fail
1 S = I
2 plan = \langle \rangle
3 while s \not\models G do
       Run X from s until finding t with h(s) \prec h(t)
4
       if succeed then
5
            plan += sequence of actions from s to t
6
            s \leftarrow t
7
       else
8
            return fail
9
```

```
input : Task \Pi = (V, A, I, G), search algorithm X, dom relation \prec
  output: Plan or fail
1 S = I
2 plan = \langle \rangle
3 while s \not\models G do
       Run X from s until finding t with h(s) \prec h(t)
4
       if succeed then
5
            plan += sequence of actions from s to t
6
            s \leftarrow t
7
       else
8
            return fail
9
```

Use dominance to compare states:

- Guarantees completeness if \leq is dead-end safe
- If \leq is a (satisficing) dominance relation, we may do pruning in X \rightarrow Never goes back <u>Alvaro Torraba</u> Contrastive Analysis: Heuristic Search Beyond Heuristics 48

Modified Running Example

• Fuel is consumed when moving into stripped tiles

Height/Width of the square part of the grid

→ Dominance distinguishes which sub-goals are safe! Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics

$$\begin{split} &\{\neg H, p > 0\} \mapsto \{p \downarrow, t?\} & ; \text{ go to nearest pkg} \\ &\{\neg H, p = 0\} \mapsto \{H\} & ; \text{ pick it up} \\ &\{H, t > 0\} \mapsto \{t \downarrow\} & ; \text{ go to target} \\ &\{H, n > 0, t = 0\} \mapsto \{H?, n \downarrow, p?\} & ; \text{ deliver pkg} \end{split}$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s', the sketch tells whether s' is a sub-goal for reaching the goal from s

$$\begin{array}{ll} \{\neg H,p>0\}\mapsto\{p\downarrow,t?\} & ; \mbox{ go to nearest pkg} \\ \{\neg H,p=0\}\mapsto\{H\} & ; \mbox{ pick it up} \\ \{H,t>0\}\mapsto\{t\downarrow\} & ; \mbox{ go to target} \\ \{H,n>0,t=0\}\mapsto\{H?,n\downarrow,p?\} & ; \mbox{ deliver pkg} \end{array}$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s', the sketch tells whether s' is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto \{0, 1\}$

Álvaro Torralba

50

$$\begin{array}{ll} \{\neg H,p>0\}\mapsto\{p\downarrow,t?\} & ; \mbox{ go to nearest pkg} \\ \{\neg H,p=0\}\mapsto\{H\} & ; \mbox{ pick it up} \\ \{H,t>0\}\mapsto\{t\downarrow\} & ; \mbox{ go to target} \\ \{H,n>0,t=0\}\mapsto\{H?,n\downarrow,p?\} & ; \mbox{ deliver pkg} \end{array}$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s', the sketch tells whether s' is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto \{0, 1\}$

 \rightarrow We do have an automatic way of finding "safe" sketches for any single task!

$$\begin{array}{ll} \{\neg H,p>0\}\mapsto\{p\downarrow,t?\} & ; \mbox{ go to nearest pkg} \\ \{\neg H,p=0\}\mapsto\{H\} & ; \mbox{ pick it up} \\ \{H,t>0\}\mapsto\{t\downarrow\} & ; \mbox{ go to target} \\ \{H,n>0,t=0\}\mapsto\{H?,n\downarrow,p?\} & ; \mbox{ deliver pkg} \end{array}$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s', the sketch tells whether s' is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto \{0, 1\}$

 \rightarrow We do have an automatic way of finding "safe" sketches for any single task! (for tasks with informative QDFs)

$$\begin{split} \{\neg H, p > 0\} &\mapsto \{p \downarrow, t?\} & ; \text{ go to nearest pkg} \\ \{\neg H, p = 0\} &\mapsto \{H\} & ; \text{ pick it up} \\ \{H, t > 0\} &\mapsto \{t \downarrow\} & ; \text{ go to target} \\ \{H, n > 0, t = 0\} &\mapsto \{H?, n \downarrow, p?\} & ; \text{ deliver pkg} \end{split}$$

- General language for representing the subgoal structure
- Given a start state s, and a candidate state s', the sketch tells whether s' is a sub-goal for reaching the goal from s

Source of Information: $S \times S \mapsto \{0, 1\}$

 \rightarrow We do have an automatic way of finding "safe" sketches for any single task! (for tasks with informative QDFs)

Open Question: Can we use this to verify if a sketch is safe for a new instance?

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

Contrastive: showing the differences between things

What are the advantages and disadvantages of t over s?

t is at least as good as s Disadvantage of s: has less battery

How can we compare states against each other in general ways?

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

- \rightarrow What does it mean to compare states?
 - Symmetry: Are A and B equivalent?

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is A compared to B? (Torralba 2017)

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is A compared to B? (Torralba 2017)
- Logic: Why isn't A better than B?

\rightarrow What does it mean to compare states?

- Symmetry: Are A and B equivalent?
- Dominance: Is A at least as good as B? (Torralba, Hoffmann, 2015)
- Quantitative: How much better/worse is A compared to B? (Torralba 2017)

52

- Logic: Why isn't A better than B?
- Quantitative + Logic

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

• A* is optimally efficient

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

- A* is optimally efficient if your only source of information is a traditional heuristic function
- Dominance pruning ([Torralba,Hoffmann, 2015; Torralba, 2017])
 → discard states that are worse than others
- Is A* with dominance pruning optimally efficient?
 →only over algorithms that only do pruning! ([Torralba, 2021])

53

Optimally Efficient Algorithms: Explore the least amount of states given their sources of information

- A* is optimally efficient if your only source of information is a traditional heuristic function
- Dominance pruning ([Torralba,Hoffmann, 2015; Torralba, 2017])
 → discard states that are worse than others
- Is A* with dominance pruning optimally efficient?
 →only over algorithms that only do pruning! ([Torralba, 2021])

What is the best way to use CA information?

Develop algorithms that can fully reason about the seen states

Markov Decision Processes:

- Actions with Stochastic Effects
- Maximize reward and/or minimize cost

 \rightarrow Recent advances on evaluation functions for finding optimal policies! (Klößner et al., ICAPS'21, SOCS'21)

 \rightarrow Setting up framework for M&S abstractions Wednesday, 11:40

Extend Dominance/Contrastive Analysis to more general planning formalisms

One can use Dominance/Contrastive Analysis beyond improving search algorithms!

- Policy Testing: Enhance metamorphic oracles! (Eisenhut,Torralba,Christakis,Hoffmann, 2023) Tuesday, 16:00
- Explainability
 - One can do explanations based on plan properties (Eifler et al., AAAI'20, ICAPS'20), or model reconciliation (Sreedharan, Chakraborti, Kambhampati, AIJ'21).
 - Can we use our dominance/contrastive analysis techniques in the context of explanations to an end user?

Explore further uses of dominance/contrastive analysis

- There is plenty of research to be done on state-space search!
 - \rightarrow Beyond heuristic functions!
 - \rightarrow How an agent should think about possible courses of action?

- There is plenty of research to be done on state-space search!
 - \rightarrow Beyond heuristic functions!
 - \rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
 - Dominance Analysis: some states are better than others!
 - Contrastive Analysis: compare advantages and disadvantages

- There is plenty of research to be done on state-space search!
 - \rightarrow Beyond heuristic functions!
 - \rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
 - Dominance Analysis: some states are better than others!
 - Contrastive Analysis: compare advantages and disadvantages
- Seemingly unrelated methods can be related to each other if they have the same "signature"
 - Novelty and dominance pruning
 - Sketches and sub-goal detection

- There is plenty of research to be done on state-space search!
 - \rightarrow Beyond heuristic functions!
 - \rightarrow How an agent should think about possible courses of action?
- State-space search algorithms can reason among the entire set of seen states:
 - Dominance Analysis: some states are better than others!
 - Contrastive Analysis: compare advantages and disadvantages
- Seemingly unrelated methods can be related to each other if they have the same "signature"
 - Novelty and dominance pruning
 - Sketches and sub-goal detection
- Ability of comparing states useful for a variety of purposes!

Álvaro Torralba

Contrastive Analysis: Heuristic Search Beyond Heuristics

References I