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Outline of this Talk
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AI Planning in a Nutshell

Deliver both packages to location B without depleting the
battery:

A B

V = {r , p1, p2, b}; Dpi = {A,B,R}, Dr = {A,B},
Db = {0, 1, 2, 3}.
A = {grab(pi , x), drop(pi , x),move(x , x ′)}:
pregrab(pi ,x)

= {pi = x , r = x} and
eff grab(pi ,x) = {pi = r}.
I = {r = A, p1 = A, p2 = A, b = 3}
G = {p1 = B, p2 = B}.
cost : All actions cost 1.
Some actions consume battery.

Plan of minimum cost:
grab(p1,A),grab(p2,A),move(A,B),drop(p2,B),drop(p1,B)
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State-Space Search
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 5



State-Space Explosion

goalinit

...

?...
...

Huge branching factor + exponential in depth
→ state space explosion.
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State-Space Search

A B
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Guide search with an evaluation function, h : S 7→ R
Estimation of the real goal-distance h∗

→ derived by inference and/or learning techniques
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Search + Heuristic: A common pattern

A B4

A B3
A B3

A B4

grab(p1)

grab(p2)

move(A, B)

A B2
A B3

grab(p2)

move(A, B)

A B2move(A, B)

A∗ (Shortest path/Classical Planning) LAO∗ (solving MDPs)1

Monte Carlo Tree Search (online decision making, e.g. AlphaGo)1

1 Images taken from (Hansen and Zilberstein, 2001) and (Silver et al. 2016).
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Reasoning with Sets of States (Topic for Another Day)
Symbolic Search:

goalinit

...

?...
...

g = 0

g = 1
g = 2

T at A

P in T P in T

P at A P at A

T F

Represent sets as BDDs

(Torralba, Linares López, Borrajo IJCAI’16)
(Torralba, Alcazar, Kissmann, Edelkamp, AIJ’17)
(Fiser, Torralba, Hoffmann, AAAI’22)
(Speck, PhD thesis, 2022)

Decoupled Search:

Causal Graph:
R1↔B1

R2↔B2 R3↔B3

R4↔B4

(Gnad, Hoffmann, AIJ’18)
(Gnad, Torralba, Fiser, ICAPS’22)
(Gnad, PhD thesis, 2021)
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What’s a Heuristic Anyway?

Heuristics (and Search) for Domain-independent Planning

The way to guide the search
A way to guide the search

Definition: A heuristic is a function h : S 7→ R+
0 ∪ {∞}.

h(s) estimates goal distance h∗(s)

Properties of Heuristics:
Admissible: h(s) ≤ h∗(s)

Consistent: h(s)− h(t) ≤ c(s, t)
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What’s Great About Heuristics

Very effective method for planning!

Provide a Theoretical Framework to Analyze Search-based
Planning Algorithms
Disantangle search algorithm from the source of
information
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Disantangle search algorithm and heuristics

define heuristics, analyze their properties(?), and compare
them(?) without considering how search algorithms will use

them:

We can compare search algorithms without considering
what heuristic is being used
→A∗ is optimally efficient!
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DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box
Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h

A10
h2

→ The algorithm does not have access to the task description. The
heuristic is its only source of information to guide the search
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A∗ is Optimally Efficient (Dechter and Pearl, 1985)
A∗: Expand nodes based on f -value: f (ns) = g(ns) + h(s)
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A∗ is Optimally Efficient (Dechter and Pearl, 1985)

A∗ is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB
algorithm, then there exists a tie-breaking of A∗ that expands a
subset of N .

Consistent Heuristic: h(s)− h(t) ≤ c(s, t)
1 Nodes are expanded with their optimal g-value (no

re-expansions)
2 Must-expand nodes: f (n) < f ∗

A10

B9

C9

C8 D7 E6 F5 G4

D8 E7 F6 G5

h2

h2 h2 h2 h2 h1 h0

h2 h2 h2 h1 h0
f2

f3 f4 f5 f6 f6 f6

f3 f4 f5 f5 f5
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Limitations of Heuristics
Definition: A heuristic is a function h : S 7→ R+

0 ∪ {∞}.

You cannot reduce everything to a number!

Stubborn sets: identify a sub-set of actions such that at least one
of them starts an optimal plan

S 7→ 2A

Preferred operators: identify a sub-set of actions such that
hopefully one of them starts an (optimal?) plan

S 7→ 2A

Fact Landmarks S 7→ 2F

Disjunctive-Action Landmarks S 7→ 22A

Heuristics with Uncertainty S 7→ PMF

Operator-counting constraints, Operator-mutexes, . . .
→Many of these are reduced to heuristics, is this optimally efficient?
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Are Operator Counting Constraints Optimally Efficient?

Part of a search tree on a task with optimal solution cost of 10:

s

g = 7,h = 2

t

g = 8,h = 1

{c(a3) ≥ 1}

a1

A∗ must expand t , but an optimally efficient algorithm does not
have to

→Well, perhaps this is just under inconsistent operator counting
constraints . . .
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Limitations of Heuristics

Definition: A heuristic is a function h : S 7→ R+
0 ∪ {∞}.

States are evaluated independently of each other

Symmetry Detection: S × S 7→ {0,1}
Dominance Analysis: S × S 7→ {0,1}
Quantitative Dominance Analysis: S × S 7→ R ∪ {−∞}
Novelty Pruning: S × 2S 7→ {0,1}
Novelty Heuristics: S × 2S 7→ R+

0 ∪ {∞}

Contrastive Analysis: S × S 7→?
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Heuristics with Uncertainty
Consider heuristic functions that return a probability
distribution (?):

0 10 20 30 40

0.00

0.05

0.10

0 10 20 30 40

Multi-Valued Pattern Databases (?)

Heuristics evaluate states assuming independence!
→rarely the case for states close in the search tree
We cannot express h(blue) ≤ h(orange)
→e.g., battery(blue) = 40, battery(orange)=35
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We cannot express h(blue) ≤ h(orange)
→e.g., battery(blue) = 40, battery(orange)=35
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In the Rest of This Talk

Assumption of most search algorithms: Evaluate states
independently of each other

Break this assumption by directly comparing states:
→ New source of information

Inference

Find information
• Automatic: on any domain!
• Polynomial time
• Reliable (safe to use)

Exploitation

Use information
• Re-design state-space search
• Theory: Optimally efficient algorithms!
• Practice: Balance inference/search effort
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Dominance (Torralba, Hoffmann, IJCAI’15)

Is t at least as good as s?
t

A B

s
A B

t is at least as good as s

Source of Information: S × S 7→ {0,1}

Definition (Dominance Relation). binary relation � on S such
that s � t (t dominates s) only if t is at least as good as s, i.e.,
h∗(s) ≥ h∗(t).
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Using a Dominance Relation: Dominance Pruning

Prune a search node ns if there exists another nt that dominates
it: g(nt ) ≤ g(ns) and s � t

A B

A B

A B

A B

grab(p1)

grab(p2)

move(A, B)

A B

A B

A B

drop(p1)

grab(p2)

move(A, B)

A B
move(B, A)
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Inference of Dominance (?)

1 Consider a partition of the problem

A

B
l

l1A, l
2
A

l1B, l
2
B

l
l

A

R

B

l1 A
l1 B

A

R

B

l2 A
l2 B

2 Compute coarsest label-dominance relation such that:

s �i t =⇒
(

s ∈ SG
i ∨ ¬t ∈ SG

i and ∀
s

l−→s′
∃

t
l′−→t′

s′ �i t ′ ∧ l �L
i l
)

at A at B
at A > ⊥
at B ⊥ >

> > >
⊥ > >
⊥ ⊥ >

/
at A in R at B

at A > > >
in R ⊥ > >
at B ⊥ ⊥ >
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Combining the Partitions

at A at B
at A > ⊥
at B ⊥ >

/
at A in R at B

at A > > >
in R ⊥ > >
at B ⊥ ⊥ >

> > >
⊥ > >
⊥ ⊥ >

A state dominates another iff it dominates in every aspect:

s � t iff si �i ti for all i .

For example:

A A A � A A B
because A �1 A, A �2 A, A �3 B, and �4 .

A A A 6� B A B
because A 6�1 B.
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From Dominance Pruning to Dominance Analysis

at A at B
at A > ⊥
at B ⊥ >

/
at A in R at B

at A > > >
in R ⊥ > >
at B ⊥ ⊥ >

> > >
⊥ > >
⊥ ⊥ >

This information is extremely interesting. Useful for a lot of
things beyond pruning search!!

Dominance: Comparing things better than others
Analysis: Uses inference and/or learning to compare states
according to “estimated” goal distance.→In contrast to,
e.g., dominance in multi-objective and/or decoupled search
where states dominate each others in term of g-value
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Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving
an optimal plan

A

B

l1Al1A

l1B l1B

l

l

l

: A � T � B

Significant reduction: In some domains this can identify up to
90% of the actions to be irrelevant for a given goal!

Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 26



Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving
an optimal plan

A

B

: A � T � B

Significant reduction: In some domains this can identify up to
90% of the actions to be irrelevant for a given goal!
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 26



Identifying Irrelevant Actions (?)

Irrelevant Actions: those that can be removed while preserving
an optimal plan

A

B

C

D

E

F

: A � T � B

Significant reduction: In some domains this can identify up to
90% of the actions to be irrelevant for a given goal!
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Analyze the Optimal Efficiency

A∗: canonical choice for solving shortest path problems
A∗ is optimally efficient in node expansions (?)

Dominance pruning methods→ new source of information!

A∗ with dominance pruning (A∗pr ):
Expand nodes based on f -value: f (ns) = g(ns) + h(s)
Prune any node that can be pruned

Is this a good choice?
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Results of Optimal Efficiency Analysis

A∗pr is #-optimally efficient on consistent instances over
UDXBBpr algorithms

Consistent instances:
1 Consistent heuristic
2 Dominance relation is a transitive cost-simulation relation
3 Heuristic and dominance relation are consistent with each

other

No access to �: can only use dominance for pruning nodes
that are worse in g and h value

Open Question: What is the best way that any algorithm can
leverage dominance relations?
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Metamorphic Testing

Detect mistakes of a policy by comparing behaviour on
dominated/dominating states

J. Eisenhut, A. Torralba, M. Christakis, and J. Hoffmann,
Automatic Metamorphic Test Oracles for Action-Policy Testing
Tuesday, July, 11, 16:00-17:00
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Quantitative Dominance (?)

By how much t dominates s?

Source of Information: S × S 7→ {0,1}

Dominance Function: D(s, t) ≤ h∗(s)− h∗(t)

t
A B

s
A B

D(s, t) = 2:

t is strictly closer to the goal
than s by 2 actions (grab and
drop p1).

t
A B

s
A B

D(s, t) = −1

t is not farther than 1 action to
the goal than s (grab p1).
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 30



Quantitative Dominance

Dominance Function: D(s, t) ≤ h∗(s)− h∗(t)

D(s, t) =


C t is strictly closer to the goal than s (by at least C)
0 t is at least as close as s
−C t is at most C units of cost farther than s
−∞ we know nothing

: DP(A,T ) = DP(T ,B) = +1

: DT (A,B) = DT (B,A) = −1
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Inference of Quantitative Dominance
1 Consider a partition of the problem

A

B

l

l1A, l
2
A

l1B, l
2
B

l
l

A

R

B

l1 A
l1 B

A

R

B

l2 A
l2 B

2 Compute maximum fix point label-dominance function such that:

Di(s, t) ≤ min
s

`−→s′
max

u
`′−→u′

Di(s′, u′)− hτ (t , u) + c(`)− c(`′) +
∑
j 6=i

DL
j (`, `

′)

at A at B
at A 0 −∞
at B −∞ 0

0 0 0
−∞ 0 0
−∞ −∞ 0

/
at A in R at B

at A 0 1 2
in R −∞ 0 1
at B −∞ −∞ 0
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A

B

l

l1A, l
2
A

l1B, l
2
B

A

R

B

l1 A
l1 B

A

R

B

l2 A
l2 B

2 Compute maximum fix point label-dominance function such that:

Di(s, t) ≤ min
s

`−→s′
max

u
`′−→u′

Di(s′, u′)− hτ (t , u) + c(`)− c(`′) +
∑
j 6=i

DL
j (`, `

′)

at A at B
at A 0 −1
at B −1 0

/
at A in R at B

at A 0 1 2
in R −3 0 1
at B −5 −3 0
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Quantitative Dominance Pruning

Prune ns if there exists nt s.t.

Qualitative g(nt ) ≤ g(ns) and s � t

Quantitative

D(s, t) + g(ns)− g(nt ) ≥ 0 if D(s, t) ≥ 0

D(s, t) + g(ns)− g(nt ) > 0 if D(s, t) < 0

?

A B

A B

cost=5

cost=10

Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 34



Quantitative Dominance Pruning

Prune ns if there exists nt s.t.

Qualitative g(nt ) ≤ g(ns) and s � t

Quantitative D(s, t) + g(ns)− g(nt ) ≥ 0 if D(s, t) ≥ 0

D(s, t) + g(ns)− g(nt ) > 0 if D(s, t) < 0

?

A B

A B

cost=5

cost=10
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Action Selection Pruning

If s a−→ s′ and D(s, s′) ≥ c(a) then a starts an optimal plan from
s.

A B

A B

A B

A B

grab(p1)

grab(p2)

move

Prune every other
successor
Reduce branching factor to
1!

→Branch only over move
actions!
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Dramatic Pruning Power!

Factor of search space reduction to find optimal plan over A∗

search with LM-cut (10 = one order of magnitude) in selected
domains:

Driverlog
1.4

4.3

Logistics
1.4

83.9

Nomystery
4

53

Parcprinter
7

95

Rovers
2.3

14.8

Satellite
2.1

2.9

Woodworking
5.8

77

Dominance Quantitative Dominance + Action Selection
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Novelty Pruning

Novelty (??): Compare each state against previously seen states to
prioritize most novel states:

1 States that have a new fact that no other state had.
2 States that have a pair of facts that no other state had.
3 . . .

0 1 2 3 4 5 6
0

1

2

3

4

5

6 11

10

9

8 8

9

8 8

15

→ Extremely successful at diversifying search (e.g. also in Atari
games (?))!
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Novelty

The novelty of s N(s) is defined to be the size of the smallest
fact set it produces for the first time.

IW(K): Breadth first search, pruning all s with N(s) > k
Polynomial time
No guidance towards the goal
Good for exploration/achieving single goal facts

Novelty Heuristics:
Combine the definition of novelty with heuristics
State of the art in satisficing planning

But, why is novelty so good?
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 39



Example IW(1)

A B

100
A B

100
load(p1)

A B
99

move(A, B)

A B

100
unload(p1)

A B
99

move(A, B)

A B

98

move(B, A)

A B

98

load(p1)

A B
97

move(A, B)

A B A B R 100 99 98 97

x x x x x x

x x
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So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states T
Source of Information: S × 2S 7→ {0,1}

Safe dominance pruning ∃t ∈ T ∀v ∈ V s[v ] � t [v ]

Novelty IW(1) pruning ∀v ∈ V ∃t ∈ T s[v ] = t [v ]

→ Novelty can be interpreted as (unsafe/inadmissible) dominance

∃t ∈ T h∗(t) ≤ h∗(s)

Let R = {�1, ...,�k} be a set of relations on P.
Let Q be a set of subsets of V .

∀Q ∈ Q : ∃t ∈ T : ∀v ∈ Q : s[v ] � t [v ]
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Unsafe Dominance Pruning (?)

Q
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= IW(1) IW(2) Duplicate
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 41



Unsafe Dominance Pruning (?)

Q

R

=

�

IW(1) IW(2) Duplicate

Safe DominanceIW�(1) IW�(2)

{V1}

. . .

{Vn}

{V1,V2}

. . .

{Vi ,Vj}

{V1, . . . ,Vn}
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Álvaro Torralba Contrastive Analysis: Heuristic Search Beyond Heuristics 42



Example IW�(1)

A B
100

A B
100

load(p1)

A B
99

move(A, B)

A B
100

unload(p1)

A B
99

move(A, B)

A B
98

move(B, A)
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Results IW(2) with dominance
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Novelty Heuristics (?)

Not “heuristic” functions in the traditional sense:
S × 2S 7→ R+

0 ∪ {∞}
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Overview of Results:

We analyze three variants:
1 Changing R: = vs. �

Decreases the number of novel states
Expansions similar to baseline
Performance decreases due to overhead

2 Changing Q→Best configuration in practice: choose
subsets of variables that appear together in action
preconditions

3 Changing quantification of non-novel states (count number
of states seen with the same fact to estimate the
probability that the state is really dominated)

Our non-novel priority is superior to the previous one!
But, not good synergy with changing Q
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Using Dominance for Agile Planning

at A at B
at A 0 −1
at B −1 0

/
at A in R at B

at A 0 1 2
in R −3 0 1
at B −3 −3 0

We can also use dominance to identify “sub-goals” from
which it is safe to restart the search! (torralba:ijcai-18)

When we deliver a package we have gotten “closer to the
goal”, so we can restart the search from there
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Using Dominance for Agile Planning

at A at B
at A 0 −1
at B −1 0

/
at A in R at B

at A 0 10 20
in R −12 0 10
at B −14 −12 0

We can also use dominance to identify “sub-goals” from
which it is safe to restart the search! (torralba:ijcai-18)

When we deliver a package we have gotten “closer to the
goal”, so we can restart the search from there
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Enforced Hill Climbing

input : Task Π = (V ,A, I,G), heuristic h
output: Plan or fail

1 s = I
2 plan = 〈〉
3 while s 6|= G do
4 Run breadth-first search from s until finding t with h(s) < h(t)
5 if succeed then
6 plan += sequence of actions from s to t
7 s ← t
8 else
9 return fail

10 return plan

Very effective in domains with the right state space topology
Incomplete in the presence of unrecognized dead-ends

→Role of h: is a state better than my current state?
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Dominance Enforced Hill Climbing

input : Task Π = (V ,A, I,G), search algorithm X , dom relation �
output: Plan or fail

1 s = I
2 plan = 〈〉
3 while s 6|= G do
4 Run X from s until finding t with h(s) ≺ h(t)
5 if succeed then
6 plan += sequence of actions from s to t
7 s ← t
8 else
9 return fail

10 return plan

Use dominance to compare states:
Guarantees completeness if � is dead-end safe
If � is a (satisficing) dominance relation, we may do pruning in X
→Never goes back
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Modified Running Example

Fuel is consumed when moving into stripped tiles

5 10 15

100

102

Height/Width of the square part of the grid

To
ta

lt
im

e
(s) LAMA

DEHC�S (hFF )

DEHC�D (hB)

DEHC�S (hB)

→ Dominance distinguishes which sub-goals are safe!
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Sketches (?)

General language for representing the subgoal structure
Given a start state s, and a candidate state s′, the sketch
tells whether s′ is a sub-goal for reaching the goal from s

Source of Information: S × S 7→ {0,1}

→We do have an automatic way of finding “safe” sketches for
any single task! (for tasks with informative QDFs)
Open Question: Can we use this to verify if a sketch is safe for a
new instance?
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Contrastive Analysis
Contrastive: showing the differences between things

What are the advantages and disadvantages of t over s?

t
A B

s
A B

t is at least as good as s
Disadvantage of s: has less battery

How can we compare states against each other in general ways?
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A Family of Contrastive Analysis Methods
→What does it mean to compare states?

Symmetry: Are A and B equivalent?

Dominance: Is A at least as good as B? (Torralba, Hoffmann,
2015)
Quantitative: How much better/worse is A compared to B?
(Torralba 2017)
Logic: Why isn’t A better than B?
Quantitative + Logic

QLCA

QCA LCA
DCA

SCA
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What’s the Most we can get from Comparing States?

Optimally Efficient Algorithms: Explore the least amount of
states given their sources of information

A∗ is optimally efficient

if your only source of information is a
traditional heuristic function
Dominance pruning ([Torralba,Hoffmann, 2015; Torralba, 2017])
→ discard states that are worse than others
Is A∗ with dominance pruning optimally efficient?
→only over algorithms that only do pruning! ([Torralba, 2021])

What is the best way to use CA information?

Develop algorithms that can fully reason about the seen states
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Beyond Classical Planning

Markov Decision Processes:
Actions with Stochastic Effects
Maximize reward and/or minimize cost

→ Recent advances on evaluation functions for finding optimal
policies! (Klößner et al., ICAPS’21, SOCS’21)
→Setting up framework for M&S abstractions Wednesday,
11:40

Extend Dominance/Contrastive Analysis to more general
planning formalisms
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Further Uses of State Comparisons

One can use Dominance/Contrastive Analysis beyond improving
search algorithms!

Policy Testing: Enhance metamorphic
oracles! (Eisenhut,Torralba,Christakis,Hoffmann, 2023) Tuesday, 16:00
Explainability

One can do explanations based on plan properties (Eifler et
al., AAAI’20, ICAPS’20), or model reconciliation (Sreedharan,
Chakraborti, Kambhampati, AIJ’21).
Can we use our dominance/contrastive analysis techniques
in the context of explanations to an end user?

Explore further uses of dominance/contrastive analysis
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Conclusions

There is plenty of research to be done on state-space search!
→ Beyond heuristic functions!
→ How an agent should think about possible courses of action?

State-space search algorithms can reason among the entire set of
seen states:

Dominance Analysis: some states are better than others!
Contrastive Analysis: compare advantages and
disadvantages

Seemingly unrelated methods can be related to each other if they
have the same “signature”

Novelty and dominance pruning
Sketches and sub-goal detection

Ability of comparing states useful for a variety of purposes!
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